Sample records for active layer sandwiched

  1. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    NASA Astrophysics Data System (ADS)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  2. Evaluation of sandwich layer system of flexible pavements in Virginia.

    DOT National Transportation Integrated Search

    1972-01-01

    The use of a weak sandwich layer in a four-layer system is common in the construction of flexible pavements, but the use of a sandwich layer in a three-layer system is in the experimental stage in Virginia. Theoretical and field studies have been car...

  3. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  4. The time-dependent response of 3- and 5-layer sandwich beams

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Oleksuk, L. S. S.; Bowles, D. E.

    1992-01-01

    Simple sandwich beam models have been developed to study the effect of the time-dependent constitutive properties of fiber-reinforced polymer matrix composites, considered for use in orbiting precision segmented reflectors, on the overall deformations. The 3- and 5-layer beam models include layers representing the face sheets, the core, and the adhesive. The static elastic deformation response of the sandwich beam models to a midspan point load is studied using the principle of stationary potential energy. In addition to quantitative conclusions, several assumptions are discussed which simplify the analysis for the case of more complicated material models. It is shown that the simple three-layer model is sufficient in many situations.

  5. Piezoelectric anisotropy and energy-harvesting characteristics of novel sandwich layer BaTiO3 structures

    NASA Astrophysics Data System (ADS)

    Roscow, James I.; Topolov, Vitaly Yu; Taylor, John T.; Bowen, Christopher R.

    2017-10-01

    This paper presents a detailed modelling and experimental study of the piezoelectric and dielectric properties of novel ferroelectric sandwich layer BaTiO3 structures that consist of an inner porous layer and dense outer layers. The dependencies of the piezoelectric coefficients {d}3j* and dielectric permittivity {\\varepsilon }33* σ of the sandwich structure on the bulk relative density α are analysed by taking into account an inner layer with a porosity volume fraction of 0.5-0.6. The observed changes in {d}3j* and {\\varepsilon }33* σ are interpreted within the framework of a model of a laminar structure whereby the electromechanical interaction of the inner porous layer and outer dense layers have an important role in determining the effective properties of the system. The porous layer is represented as a piezocomposite with a 1-3-0 connectivity pattern, and the composite is considered as a system of long poled ceramic rods with 1-3 connectivity which are surrounded by an unpoled ceramic matrix that contains a system of oblate air pores (3-0 connectivity). The outer monolithic is considered as a dense poled ceramic, however its electromechanical properties differ from those of the ceramic rods in the porous layer due to different levels of mobility of 90° domain walls in ceramic grains. A large anisotropy of {d}3j* at α = 0.64-0.86 is achieved due to the difference in the properties of the porous and monolithic layers and the presence of highly oblate air pores. As a consequence, high energy-harvesting figures of merit {d}3j* {g}3j* are achieved that obey the condition {d}33* {g}33* /({d}31* {g}31* )˜ {10}2 at {d}33* {g}33* ˜ {10}-12 {{{Pa}}}-1, and values of the hydrostatic piezoelectric coefficients {d}h* ≈ 100 {{pC}} {{{N}}}-1 and {g}h* ≈ 20 {{mV}} {{m}} {{{N}}}-1 are achieved at α= 0.64-0.70. The studied BaTiO3-based sandwich structures has advantages over highly anisotropic PbTiO3-type ceramics as a result of the higher piezoelectric activity

  6. Bi-layer sandwich film for antibacterial catheters

    PubMed Central

    Schamberger, Florian; Zare, Hamideh Heidari; Bröskamp, Sara Felicitas; Jocham, Dieter

    2017-01-01

    Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly(p-xylylene). This top layer is mainly designed to release a controlled amount of Ag+ ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens’ reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin’s pot and the principle of Le Chatelier. PMID:29046846

  7. Bi-layer sandwich film for antibacterial catheters.

    PubMed

    Franz, Gerhard; Schamberger, Florian; Zare, Hamideh Heidari; Bröskamp, Sara Felicitas; Jocham, Dieter

    2017-01-01

    Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly( p -xylylene). This top layer is mainly designed to release a controlled amount of Ag + ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens' reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin's pot and the principle of Le Chatelier.

  8. Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Zhang, Yu; Xing, Wei; Li, Li; Xue, Qingzhong; Yan, Zifeng

    2016-11-01

    Electrode design in nanoscale is considered to be ultra-important to construct a superb capacitor. Herein, a sandwich-like composite was made by combining graphene/polypyrrole (GPPY) with nickel-aluminum layered double hydroxide nanowires (NiAl-NWs) via a facile hydrothermal method. This sandwich-like architecture is promising in energy storage applications due to three unique features: (1) the conductive GPPY substrate not only effectively prevents the layered double hydroxides species from aggregating, but also considerably facilitates the electron transmission; (2) the ultrathin NiAl-NWs ensure a maximum exposure of active Ni2+, which can improve the efficiency of rapid redox reactions even at high current densities; (3) the sufficient space between anisotropic NiAl-NWs can accommodate a large volume change of the nanowires to avoid their collapse or distortion during the reduplicative redox reactions. Keeping all these unique features in mind, when the as-prepared composite was applied to supercapacitors, it presented an enhanced capacitive performance in terms of high specific capacitance (845 F g-1), excellent rate performance (67% retained at 30 A g-1), remarkable cyclic stability (92% maintained after 5000 cycles) and large energy density (40.1 Wh·Kg-1). This accomplishment in the present work inspires an innovative strategy of nanoscale electrode design for high-rate performance supercapacitor electrodes containing pseuducapacitive metal oxide.

  9. FAST TRACK COMMUNICATION: Emission wavelength extension of mid-infrared InAsSb/InP nanostructures using InGaAsSb sandwich layers

    NASA Astrophysics Data System (ADS)

    Lei, W.; Tan, H. H.; Jagadish, C.

    2010-08-01

    This paper presents a study on the emission wavelength extension of InAsSb nanostructures using InGaAsSb sandwich layers. Due to the reduced lattice mismatch between InAsSb nanostructure layer and buffer/capping layer, the introduction of InGaAsSb sandwich layers leads to larger island size, reduced compressive strain and lower confinement barrier for InAsSb nanostructures, thus resulting in a longer emission wavelength. For InGaAsSb sandwich layers with nominal Sb concentration higher than 10%, type II band alignment is observed for the InAsSb/InGaAsSb heterostructure, which also contributes to the extension of emission wavelength. The InGaAsSb sandwich layers provide an effective approach to extend the emission wavelength of InAsSb nanostructures well beyond 2 µm, which is very useful for device applications in the mid-infrared region.

  10. Effective anomalous Hall coefficient in an ultrathin Co layer sandwiched by Pt layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Wu, Di; Jiang, Zhengsheng

    2014-02-14

    Anomalous Hall effect in Co/Pt multilayer is important to study the effect of interface with strong spin-orbit coupling. However, the shunting effect of the layers in such system and the circuit in the plane perpendicular to the injected current were overlooked in most works and thus, anomalous Hall coefficient in Co/Pt multilayer has not been determined accurately. Considering the shunting effect and the equivalent circuit, we show that the effective anomalous Hall coefficient of a 0.5 nm thick Co layer sandwiched by Pt layers R{sub S} is 0.29 ± 0.01 μΩ cm/T at the zero temperature limit and increases to about 0.73 μΩ cm/T at the temperaturemore » of 300 K. R{sub S} is one order larger than that in bulk Co film, indicating the large contribution of the Co/Pt interface. R{sub S} increases with the resistivity of Co as well as a resistivity independent contribution of −0.23 ± 0.01 μΩ cm/T. The equivalent anomalous Hall current in the Co layer has a maximum of 1.1% of the injected transverse current in the Co layer around the temperature of 80 K.« less

  11. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    NASA Astrophysics Data System (ADS)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  12. ITO-TiN-ITO Sandwiches for Near-Infrared Plasmonic Materials.

    PubMed

    Chen, Chaonan; Wang, Zhewei; Wu, Ke; Chong, Haining; Xu, Zemin; Ye, Hui

    2018-05-02

    Indium tin oxide (ITO)-based sandwich structures with the insertion of ultrathin (<10 nm) titanium nitride (TiN) are investigated as near-infrared (NIR) plasmonic materials. The structural, electrical, and optical properties reveal the improvement of the sandwich structures stemmed from TiN insertion. TiN is a well-established alternative to noble metals such as gold, elevating the electron conductivity of sandwich structures as its thickness increases. Dielectric permittivities of TiN and top ITO layers show TiN-thickness-dependent properties, which lead to moderate and tunable effective permittivities for the sandwiches. The surface plasmon polaritons (SPP) of the ITO-TiN-ITO sandwich at the telecommunication window (1480-1570 nm) are activated by prism coupling using Kretschmann configuration. Compared with pure ITO films or sandwiches with metal insertion, the reflectivity dip for sandwiches with TiN is relatively deeper and wider, indicating the enhanced coupling ability in plasmonic materials for telecommunications. The SPP spatial profile, penetration depth, and degree of confinement, as well as the quality factors, demonstrate the applicability of such sandwiches for NIR plasmonic materials in various devices.

  13. Actively cooled plate fin sandwich structural panels for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Beuyukian, C. S.

    1979-01-01

    An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.

  14. Robust optical properties of sandwiched lateral composition modulation GaInP structure grown by molecular beam epitaxy

    DOE PAGES

    Park, Kwangwook; Kang, Seokjin; Ravindran, Sooraj; ...

    2016-12-26

    Double-hetero structure lateral composition modulated (LCM) GaInP and sandwiched LCM GaInP having the same active layer thickness were grown and their optical properties were compared. Sandwiched LCM GaInP showed robust optical properties due to periodic potential nature of the LCM structure, and the periodicity was undistorted even for thickness far beyond the critical layer thickness. A thick LCM GaInP structure with undistorted potential that could preserve the properties of native LCM structure was possible by stacking thin LCM GaInP structures interspaced with strain compensating GaInP layers. Furthermore, the sandwiched structure could be beneficial in realizing the LCM structure embedded highmore » efficiency solar cells.« less

  15. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.

    PubMed

    Abdelhafiz, Ali; Vitale, Adam; Joiner, Corey; Vogel, Eric; Alamgir, Faisal M

    2015-03-25

    In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.

  16. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  17. Thermo-Elastic Triangular Sandwich Element for the Complete Stress Field Based on a Single-Layer Theory

    NASA Technical Reports Server (NTRS)

    Das, M.; Barut, A.; Madenci, E.; Ambur, D. R.

    2004-01-01

    This study presents a new triangular finite element for modeling thick sandwich panels, subjected to thermo-mechanical loading, based on a {3,2}-order single-layer plate theory. A hybrid energy functional is employed in the derivation of the element because of a C interelement continuity requirement. The single-layer theory is based on five weighted-average field variables arising from the cubic and quadratic representations of the in-plane and transverse displacement fields, respectively. The variations of temperature and distributed loading acting on the top and bottom surfaces are non-uniform. The temperature varies linearly through the thickness.

  18. Galactosylated electrospun membranes for hepatocyte sandwich culture.

    PubMed

    Chien, Hsiu-Wen; Lai, Juin-Yih; Tsai, Wei-Bor

    2014-04-01

    In this work, we developed a galactocylated electrospun polyurethane membrane for sandwich culture of hepatocyte sandwich culture. The electrospun fibrous membranes were bio-functionalized with galactose molecules by a UV-crosslinked layer-by-layer polyelectrolyte multilayer deposition technique. The galactosylated electrospun membranes were employed as a top support membrane for the sandwich culture of HepG2/C3A cells on a collagen substrate. Our results demonstrate that HepG2/C3A cells covered by the galactosylated PU membranes form multi-cellular aggregates and lead to improved albumin secretion ability compared to the control membranes (unmodified PU or poly(ethylene imine)-modified PU). Our study reveals the potential of galactosylated electrospun membranes in the application of liver tissue engineering and the regeneration of liver-tissue substitutes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo

    2016-03-01

    In order to improve the reliability of TFT, an Al2O3 insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al2O3 layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V o2+ toward the interface between the gate insulator and the semiconductor. The inserted Al2O3 triple layer exhibits a noticeably low turn on voltage shift of -0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm2/V ṡ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.

  20. Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.

    PubMed

    Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong

    2018-04-01

    The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.

  1. Two-port connecting-layer-based sandwiched grating by a polarization-independent design.

    PubMed

    Li, Hongtao; Wang, Bo

    2017-05-02

    In this paper, a two-port connecting-layer-based sandwiched beam splitter grating with polarization-independent property is reported and designed. Such the grating can separate the transmission polarized light into two diffraction orders with equal energies, which can realize the nearly 50/50 output with good uniformity. For the given wavelength of 800 nm and period of 780 nm, a simplified modal method can design a optimal duty cycle and the estimation value of the grating depth can be calculated based on it. In order to obtain the precise grating parameters, a rigorous coupled-wave analysis can be employed to optimize grating parameters by seeking for the precise grating depth and the thickness of connecting layer. Based on the optimized design, a high-efficiency two-port output grating with the wideband performances can be gained. Even more important, diffraction efficiencies are calculated by using two analytical methods, which are proved to be coincided well with each other. Therefore, the grating is significant for practical optical photonic element in engineering.

  2. High performance sandwich structured Si thin film anodes with LiPON coating

    NASA Astrophysics Data System (ADS)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  3. High performance sandwich structured Si thin film anodes with LiPON coating

    NASA Astrophysics Data System (ADS)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-06-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  4. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    NASA Astrophysics Data System (ADS)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  5. An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structures

    PubMed Central

    Jedari Salami, S.; Sadighi, M.; Shakeri, M.; Moeinfar, M.

    2013-01-01

    The effects of adding an extra layer within a sandwich panel and two different core types in top and bottom cores on low velocity impact loadings are studied experimentally in this paper. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Low velocity impact tests were carried out by drop hammer testing machine to the clamped multilayer sandwich panels with expanded polypropylene (EPP) and polyurethane rigid (PUR) in the top and bottom cores. Local displacement of the top core, contact force and deflection of the sandwich panel were obtained for different locations of the internal sheet; meanwhile the EPP and PUR were used in the top and bottom cores alternatively. It was found that the core material type has made significant role in improving the sandwich panel's behavior compared with the effect of extra layer location. PMID:24453804

  6. Analysis of syntactic foam – GFRP sandwich composites for flexural loads

    NASA Astrophysics Data System (ADS)

    Paul, Daniel; Velmurugan, R.; Jayaganthan, R.; Gupta, N. K.; Manzhirov, A. V.

    2018-04-01

    The use of glass microballoon (GMB) — epoxy syntactic foams as a sandwich core material is studied. The skins and foam core are fabricated and joined instantaneously unlike the procedures followed in the previous studies. Each successive layer of the sandwich is fabricated when the previous layer is in a semi-gelled state. These sandwich samples are characterized for their properties under flexural loading. The failure modes and mechanical properties are carefully investigated. The change in fabrication technique results in a significant increase in the load bearing pattern of the sandwich. In earlier studies, debonding was found to occur prematurely since the bonding between the skins and core is the weakest plane. Using the current technique, core cracking occurs first, followed by skin fiber breaking and debonding happens at the end. This ensures that the load carrying phase of the structure is extended considerably. The sandwich is also analytically studied using Reddy’s higher order shear deformation theory. A higher order theory is selected as the sandwich can no longer be considered as a thin beam and thus shear effects also need to be considered in addition to bending effects.

  7. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo, E-mail: bsbae@kaist.ac.kr

    In order to improve the reliability of TFT, an Al{sub 2}O{sub 3} insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al{sub 2}O{sub 3} layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V {sub o}{sup 2+} toward the interface between the gate insulator and the semiconductor. The inserted Al{sub 2}O{sub 3} triple layer exhibits amore » noticeably low turn on voltage shift of −0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm{sup 2}/V ⋅ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.« less

  8. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Qingrui; Teng, Jie; Zou, Guodong; Peng, Qiuming; Du, Qing; Jiao, Tifeng; Xiang, Jianyong

    2016-03-01

    Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater applications, respectively. Such efficient sequestration is ascribed to the formation of a unique nano-ferric oxide morphology. The ultrafine nano-Fe2O3 particles can intercalate into the interior layers of MXene, widening the layer distance, and stimulating the available overlapping activated layers; while the efficient phosphate removal can be achieved by the strong complexation onto the embedded magnetic nano-Fe3O4 with a unique sandwich-structure as well as the stimulated Ti-O terminal within MXene. Apart from the fact that this approach suggests a complementary means for environmental remediation, it opens a new trajectory to achieve the functionalization of MXene.Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater

  9. Experimental formability analysis of bondal sandwich sheet

    NASA Astrophysics Data System (ADS)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  10. Wire and Packing Tape Sandwiches

    ERIC Educational Resources Information Center

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  11. Temperature Effects on the Impact Behavior of Fiberglass and Fiberglass/Kevlar Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Halvorsen, Aaron; Salehi-Khojn, Amin; Mahinfalah, Mohammad; Nakhaei-Jazar, Reza

    2006-11-01

    Impact tests were performed on sandwich composites with Fiberglass and Fiberglass/Kevlar face sheets subjected to varied temperatures. A number of specimens were tested at -50 to 120 °C temperature range and at 20, 30, and 45 J low velocity energy levels. Impact properties of the sandwich composites that were evaluated include maximum normal and shear stresses, maximum energy absorption, non-dimensional parameters (AEMP, PI, and RD), and compression after impact strength. Composite specimens tested have a urethane foam filled honeycomb center sandwiched between a variation of four layered Fiberglass and Kevlar/Fiberglass face sheets in a thermoset polymer epoxy matrix. Results showed that the impact performance of these sandwich composites changed over the range of temperature considered and with the addition of a Kevlar layer.

  12. Sound transmission loss of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the

  13. Distinctive electrical properties in sandwich-structured Al2O3/low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min

    2016-02-01

    The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.

  14. Shear properties evaluation of a truss core of sandwich beams

    NASA Astrophysics Data System (ADS)

    Wesolowski, M.; Ludewicz, J.; Domski, J.; Zakrzewski, M.

    2017-10-01

    The open-cell cores of sandwich structures are locally bonded to the face layers by means of adhesive resin. The sandwich structures composed of different parent materials such as carbon fibre composites (laminated face layers) and metallic core (aluminium truss core) brings the need to closely analyse their adhesive connections which strength is dominated by the shear stress. The presented work considers sandwich beams subjected to the static tests in the 3-point bending with the purpose of estimation of shear properties of the truss core. The main concern is dedicated to the out-of plane shear modulus and ultimate shear stress of the aluminium truss core. The loading of the beam is provided by a static machine. For the all beams the force - deflection history is extracted by means of non-contact optical deflection measurement using PONTOS system. The mode of failure is identified for each beam with the corresponding applied force. A flexural rigidity of the sandwich beams is also discussed based on force - displacement plots.

  15. Effect of Different Concentration of Sodium Hydroxide [NaOH] on Kenaf Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Aziz, M.; Halim, Z.; Othman, M.

    2018-01-01

    Sandwich panels are structures that made of three layers, low-density core inserted in between thin skin layers. This structures allow the achievement of excellent mechanical performance with low weight, thus this characteristic fulfil requirement to be use in aircraft application. In recent time, sandwich structures have been studied due to it has multifunction properties and lightweight. The aim of this study is to fabricate a composite sandwich structures with biodegradable material for face sheet [skin] where the fibre being treat with different concentration of sodium hydroxide [NaOH] with 10 and 20 hours of soaking time. Kenaf fibre [treated] reinforced epoxy will be used as skins and Nomex honeycomb is chosen to perform as core for this sandwich composite structure. The mechanical properties that are evaluated such as flexural strength and impact energy of kenaf fibre-reinforced epoxy sandwich structures. For flexural test, the optimum flexural strength is 13.4 MPa and impact strength is 18.3 J.

  16. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  17. Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie

    2018-06-01

    The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.

  18. Targeted synthesis of novel hierarchical sandwiched NiO/C arrays as high-efficiency lithium ion batteries anode

    NASA Astrophysics Data System (ADS)

    Feng, Yangyang; Zhang, Huijuan; Li, Wenxiang; Fang, Ling; Wang, Yu

    2016-01-01

    In this contribution, the novel 2D sandwich-like NiO/C arrays on Ti foil are successfully designed and fabricated for the first time via simple and controllable hydrothermal process. In this strategy, we use green glucose as carbon source and ultrathin Ni(OH)2 nanosheet arrays as precursor for NiO nanoparticles and sacrificial templates for coupled graphitized carbon layers. This advanced sandwiched composite can not only provide large surface area for numerous active sites and continuous contact between active materials and electrolyte, but also protect the active nanoparticles from aggregation, pulverization and peeling off from conductive substrates. Furthermore, the porous structure derived from lots of substances loss under high-temperature calcinations can effectively buffer possible volume expansion and facilitate ion transfer. In this article, sandwiched NiO/C arrays, utilized as anode for LIBs, demonstrated high specific capacity (∼1458 mAh g-1 at 500 mA g-1) and excellent rate performance and cyclablity (∼95.7% retention after 300 cycles).

  19. Enhanced spin-valve giant magneto-resistance in non-exchange biased sandwich films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, M; Cerjan, C; Law, B

    2000-02-17

    A large giant magnetoresistance (GMR) value of 7.5% has been measured in simple NiFeCo(1)/Cu/NiFeCo(2) sandwich films grown on a 30 {angstrom} Cr seed layer. This spin-valve GMR effect is consistent with the differential switching of the two NiFeCo layers due to an enhanced coercivity of the NiFeCo(1) layer grown on the Cr seed layer. A change in growth texture of the NiFeCo(1) layer from fcc (111) to bcc (110) crystallographic orientation leads to an increase in magnetic anisotropy and an enhancement in coercivity. The GMR value increases to 8.7% when a thin CoFe interfacial enhancing layer is incorporated. Further enhancementmore » in GMR values up to 14% is seen in the sandwich films by nano-oxide layer formation. The specular reflection at oxide/magnetic layer interface further extends the mean free path of spin-polarized electrons.« less

  20. Behavior of sandwich panels in a fire

    NASA Astrophysics Data System (ADS)

    Chelekova, Eugenia

    2018-03-01

    For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.

  1. C@SiNW/TiO2 Core-Shell Nanoarrays with Sandwiched Carbon Passivation Layer as High Efficiency Photoelectrode for Water Splitting

    PubMed Central

    Devarapalli, Rami Reddy; Debgupta, Joyashish; Pillai, Vijayamohanan K.; Shelke, Manjusha V.

    2014-01-01

    One-dimensional heterostructure nanoarrays are efficiently promising as high performance electrodes for photo electrochemical (PEC) water splitting applications, wherein it is highly desirable for the electrode to have a broad light absorption, efficient charge separation and redox properties as well as defect free surface with high area suitable for fast interfacial charge transfer. We present highly active and unique photoelectrode for solar H2 production, consisting of silicon nanowires (SiNWs)/TiO2 core-shell structures. SiNWs are passivated to reduce defect sites and protected against oxidation in air or water by forming very thin carbon layer sandwiched between SiNW and TiO2 surfaces. This carbon layer decreases recombination rates and also enhances the interfacial charge transfer between the silicon and TiO2. A systematic investigation of the role of SiNW length and TiO2 thickness on photocurrent reveals enhanced photocurrent density up to 5.97 mA/cm2 at 1.0 V vs.NHE by using C@SiNW/TiO2 nanoarrays with photo electrochemical efficiency of 1.17%. PMID:24810865

  2. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    PubMed

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of

  3. A room temperature strategy towards enhanced performance and bias stability of oxide thin film transistor with a sandwich structure channel layer

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Ning, Honglong; Zheng, Zeke; Zhang, Hongke; Fang, Zhiqiang; Yao, Rihui; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao; Lu, Xubing

    2017-04-01

    Thermal annealing is a conventional and effective way to improve the bias stress stability of oxide thin film transistors (TFT) on solid substrates. However, it is still a challenge for enhancing the bias stress stability of oxide TFTs on flexible substrates by high-temperature post-treatment due to the thermal sensitivity of flexible substrates. Here, a room temperature strategy is presented towards enhanced performance and bias stability of oxide TFTs by intentionally engineering a sandwich structure channel layer consisting of a superlattice with aluminum doped zinc oxide (AZO) and Al2O3 thin films. The Al2O3/AZO/Al2O3-TFTs not only exhibit a saturation mobility of 9.27 cm2 V-1 s-1 and a linear mobility of 11.38 cm2 V-1 s-1 but also demonstrate a better bias stress stability than AZO/Al2O3-TFT. Moreover, the underlying mechanism of this enhanced electrical performance of TFTs with a sandwich structure channel layer is that the bottom Al2O3 thin films can obviously improve the crystalline phase of AZO films while decreasing electrical trapping centers and adsorption sites for undesirable molecules such as water and oxygen.

  4. Theoretical prediction on corrugated sandwich panels under bending loads

    NASA Astrophysics Data System (ADS)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  5. Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Avery, John L., III; Sankar, Bhavani V.

    1998-01-01

    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.

  6. Iron layer-dependent surface-enhanced raman scattering of hierarchical nanocap arrays

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Sun, Huanhuan; Zhao, Yue; Gao, Renxian; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Hua, Zhong; Yang, Jinghai

    2017-11-01

    In this report, we fabricated the multi-layer Ag/Fe/Ag sandwich cap-shaped films on monolayer non-closed packed (ncp) polystyrene colloidal particle (PSCP) templates through a layer-by-layer (LBL) depositing method. This research focused on the surface-enhanced Raman scattering (SERS) effect of the thickness of the deposited Fe film which was controlled by the sputtering time. The SERS intensities were increased firstly, and then decreased as the thickness of Fe layer grows gradually, which is attributed to the charge transition from the Fermi level of the Ag NPs to Fe layer. The use of multi-layer Ag/Fe/Ag sandwich cap-shaped films enables us to evaluate the contribution of surface plasmon resonance and charge distribution between Ag and Fe to SERS enhancement. Our work introduced a novel system (Ag/Fe/Ag) for high performance SERS and extended the SERS application of Fe. Furthermore, we have designed the Ag/Fe/Ag SERS-active substrate as the immunoassay chip for quantitative determination of AFP-L3 which is the biomarker of hepatocellular carcinoma (HCC). The proposed research demonstrates that the SERS substrates with Ag/Fe/Ag sandwich cap-shaped arrays have a high sensitivity for bioassay.

  7. Twistable and Stretchable Sandwich Structured Fiber for Wearable Sensors and Supercapacitors.

    PubMed

    Choi, Changsoon; Lee, Jae Myeong; Kim, Shi Hyeong; Kim, Seon Jeong; Di, Jiangtao; Baughman, Ray H

    2016-12-14

    Twistable and stretchable fiber-based electrochemical devices having high performance are needed for future applications, including emerging wearable electronics. Weavable fiber redox supercapacitors and strain sensors are here introduced, which comprise a dielectric layer sandwiched between functionalized buckled carbon nanotube electrodes. On the macroscopic scale, the sandwiched core rubber of the fiber acts as a dielectric layer for capacitive strain sensing and as an elastomeric substrate that prevents electrical shorting and irreversible structural changes during severe mechanical deformations. On the microscopic scale, the buckled CNT electrodes effectively absorb tensile or shear stresses, providing an essentially constant electrical conductance. Consequently, the sandwich fibers provide the dual functions of (1) strain sensing, by generating approximately 115.7% and 26% capacitance changes during stretching (200%) and giant twist (1700 rad·m -1 or 270 turns·m -1 ), respectively, and (2) electrochemical energy storage, providing high linear and areal capacitances (2.38 mF·cm -1 and 11.88 mF·cm -2 ) and retention of more than 95% of initial energy storage capability under large mechanical deformations.

  8. Composite panels based on woven sandwich-fabric preforms

    NASA Astrophysics Data System (ADS)

    van Vuure, Aart Willem

    attention was paid to a special application in the field of structural damping, where sandwich-fabric panels could be used as spacer in a constrained layer application. The vibrations and damping were modelled with the help of finite elements.

  9. Brillouin light scattering on Fe/Cr/Fe thin-film sandwiches

    NASA Astrophysics Data System (ADS)

    Kabos, P.; Patton, C. E.; Dima, M. O.; Church, D. B.; Stamps, R. L.; Camley, R. E.

    1994-04-01

    The aim of this work is to perform Brillouin light scattering measurements of the field and wave-vector dependencies of the frequencies of the fundamental magnetic excitations in Fe/Cr/Fe thin film sandwiches with antiferromagnetically coupled magnetic layers, correlate these results with magnetization versus field data on such films, and compare the observed dependencies with theory for low-wave number spin-wave modes in sandwich films. The measurements were made for the in-plane static magnetic field H along the crystallographic and directions, with the in-plane wave vector k always perpendicular to H.

  10. Voltage-induced switching dynamics based on an AZO/VO2/AZO sandwiched structure

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Li, Yi; Fang, Baoying; Wang, Xiaohua; Liu, Zhimin; Zhang, Jiao; Li, Zhengpeng; Huang, Yaqin; Pei, Jiangheng

    2017-11-01

    A vanadium dioxide (VO2) thin film was prepared on an Al-doped ZnO (AZO) conductive glass substrate by DC magnetron sputtering and a post-annealing process. The AZO/VO2/AZO sandwiched structure was fabricated on the VO2/AZO composite film using photolithography and a chemical etching process. The composition, microstructure and optical properties of the VO2/AZO composite film were tested. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. When the voltage was applied on both of the transparent conductive layers of the AZO/VO2/AZO sandwiched structure, an abrupt change in the current was observed at different temperatures. The temperature dependence of I-V characteristic curves for the AZO/VO2/AZO sandwiched structure was analyzed. The phase transition voltage value is 7.5 V at 20 °C and decreases with increasing temperature.

  11. Sound-proof Sandwich Panel Design via Metamaterial Concept

    NASA Astrophysics Data System (ADS)

    Sui, Ni

    the core material maintains the mechanical property and yields a sound transmission loss that is consistently greater than 50 dB at low frequencies. Furthermore, the absorption property of the proposed honeycomb sandwich panel was experimentally studied. The honeycomb sandwich panel shows an excellent sound absorbing performance at high frequencies by using reinforced glass fiber without adding too much mass. The effect of the panel size and the stiffness of the grid-like frame effect of the honeycomb sandwich structures on sound transmission are discussed lastly. For the second sound-proof sandwich panel design, each unit cell of the sandwich panel is replaced by a Helmholtz resonator by perforating a small hole on the top face sheet. A perfect sound absorber sandwich panel with coupled Helmholtz resonators is proposed by two types: single identical Helmholtz resonator in each unit cell and dual Helmholtz resonators with different orifices, arranged in each cell arranged periodically. The soundproof sandwich panel is modelled as a panel embedded in rigid panel and assumed as a semiinfinite space with hard boundary condition. The net/mutual impedance model is first proposed and derived by solving Kirchhoff-Helmholtz integral by using the Green's function. The thermal-viscous energy dissipation at the thermal boundary layer dominates the total energy consumed. Two types of perfect sound absorber sandwich panel are designed in the last part. Two theoretical methods: the average energy and the equivalent surface impedance method are used to predict sound absorption performance. The geometry for perfect sound absorber sandwich panel at a target frequency can be obtained when the all the Helmholtz resonators are at resonance and the surface impedance of the sandwich panel matches the air impedance. The bandwidth for the identical sandwich panel mainly depends on the neck radius. The absorptive property of the dual Helmholtz resonators type of sandwich panel is studied by

  12. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.

    2015-08-01

    The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.

  13. Multilayered sandwich-like architecture containing large-scale faceted Al–Cu–Fe quasicrystal grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Dongxia; He, Zhanbing, E-mail: hezhanbing@ustb.edu.cn

    Faceted quasicrystals are structurally special compared with traditional crystals. Although the application of faceted quasicrystals has been expected, wide-scale application has not occurred owing to the limited exposure of the facets. Using a facile method of heat treatment, we synthesize a multilayered sandwich-like structure with each layer composed of large-scale pentagonal-dodecahedra of Al–Cu–Fe quasicrystals. Moreover, there are channels between the adjacent Al–Cu–Fe layers that serve to increase the exposure of the facets of quasicrystals. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction are used to characterize the multilayered architecture, and the generation mechanisms of this special structure are alsomore » discussed. - Highlights: • A multilayered sandwich-like structure is produced by a facile method. • Each layer is covered by large-scale faceted Al–Cu–Fe quasicrystals. • There are channels between the adjacent Al–Cu–Fe layers.« less

  14. Stiff, Strong Splice For A Composite Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Schmaling, D.

    1991-01-01

    New type of splice for composite sandwich structure reduces peak shear stress in structure. Layers of alternating fiber orientation interposed between thin ears in adhesive joint. Developed for structural joint in spar of helicopter rotor blade, increases precision of control over thickness of adhesive at joint. Joint easy to make, requires no additional pieces, and adds little weight.

  15. Sound transmission analysis of partially treated MR fluid-based sandwich panels using finite element method

    NASA Astrophysics Data System (ADS)

    Hemmatian, M.; Sedaghati, R.

    2017-04-01

    This study aims at developing a finite element model to predict the sound transmission loss (STL) of a multilayer panel partially treated with a Magnetorheological (MR) fluid core layer. MR fluids are smart materials with promising controllable rheological characteristics in which the application of an external magnetic field instantly changes their rheological properties. Partial treatment of sandwich panels with MR fluid core layer provides an opportunity to change stiffness and damping of the structure without significantly increasing the mass. The STL of a finite sandwich panel partially treated with MR fluid is modeled using the finite element (FE) method. Circular sandwich panels with clamped boundary condition and elastic face sheets in which the core layer is segmented circumferentially is considered. The MR fluid core layer is considered as a viscoelastic material with complex shear modulus with the magnetic field and frequency dependent storage and loss moduli. Neglecting the effect of the panel's vibration on the pressure forcing function, the work done by the acoustic pressure is expressed as a function of the blocked pressure in order to calculate the force vector in the equation of the motion of the panel. The governing finite element equation of motion of the MR sandwich panel is then developed to predict the transverse vibration of the panel which can then be utilized to obtain the radiated sound using Green's function. The developed model is used to conduct a systematic parametric study on the effect of different locations of MR fluid treatment on the natural frequencies and the STL.

  16. Impact-damaged graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, D.

    1993-01-01

    The results of a study of the effects of impact damage on compression-loaded trapezoidal-corrugation sandwich and semi-sandwich graphite-thermoplastic panels are presented. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered in this study. Panels were designed, fabricated and tested. The panels were made using the manufacturing process of thermoforming, a less-commonly used technique for fabricating composite parts. Experimental results for unimpacted control panels and panels subjected to impact damage prior to loading are presented. Little work can be found in the literature about these configurations of thermoformed panels.

  17. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  18. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    PubMed Central

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-01-01

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment. PMID:28824130

  19. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    PubMed

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g 31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  20. Improvement Noise Insulation Performance of Polycarbonate Pane using Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shen, Min; Nagamura, Kazuteru; Nakagawa, Noritoshi; Okamura, Masaharu

    Polycarbonate (PC) laminates offer the possibility of designing strong and light weight panes application in automobile. However, the noise insulation performance of PC pane is worse than glass pane because of its high rate of stiffness to low weight. In this work, a new ultra-thin(less than 10mm) sandwich pane is proposed to obtain high transmission loss(TL). The sandwich structure consists of two thin laminates plates of the same PC material and a thin lightweight damping core bonded between those plates. Then TL is predicted using decoupled equations representing symmetric and anti-symmetric motions for a sandwich PC pane. The effects of various structural and material parameters on noise insulation performance are investigated with numerical examples. Numerical results show that the shear rigidity has evident effect on coincidence frequency and proposed structure has better noise insulation properties than single layer PC pane of equivalent thickness.

  1. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering

    PubMed Central

    Wang, Limin; Zhao, Liang; Detamore, Michael S.

    2013-01-01

    Cell sources and tissue integration between cartilage and bone regions are critical to successful osteochondral regeneration. In this study, human umbilical cord mesenchymal stromal cells (hUCMSCs), derived from Wharton’s jelly, were introduced to the field of osteochondral tissue engineering and a new strategy for osteochondral integration was developed by sandwiching a layer of cells between chondrogenic and osteogenic constructs before suturing them together. Specifically, hUCMSCs were cultured in biodegradable poly-l-lactic acid scaffolds for 3 weeks in either chondrogenic or osteogenic medium to differentiate cells toward cartilage or bone lineages, respectively. A highly concentrated cell solution containing undifferentiated hUCMSCs was pasted onto the surface of the bone layer at week 3 and the two layers were then sutured together to form an osteochondral composite for another 3 week culture period. Chondrogenic and osteogenic differentiation was initiated during the first 3 weeks, as evidenced by the expression of type II collagen and runt-related transcription factor 2 genes, respectively, and continued with the increase of extracellular matrix during the last 3 weeks. Histological and immunohistochemical staining, such as for glycosaminoglycans, type I collagen and calcium, revealed better integration and transition of these matrices between two layers in the composite group containing sandwiched cells compared to other control composites. These results suggest that hUCMSCs may be a suitable cell source for osteochondral regeneration, and the strategy of sandwiching cells between two layers may facilitate scaffold and tissue integration. PMID:21953869

  2. Buckling delamination of the circular sandwich plate with piezoelectric face and elastic core layers under rotationally symmetric external pressure

    NASA Astrophysics Data System (ADS)

    Akbarov, Surkay D.; Cafarova, Fazile I.; Yahnioglu, Nazmiye

    2017-02-01

    The axisymmetric buckling delamination of the piezoelectric circular sandwich plate with piezoelectric face and elastic (metal) core layers around the interface penny-shaped cracks is investigated. The case is considered where short-circuit conditions with respect to the electrical potential on the upper and lower and also lateral surfaces of face layers are satisfied. It is assumed that the edge surfaces of the cracks have an infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field equations and relations of electro-elasticity for piezoelectric materials. Solution to the considered nonlinear problem is reduced to solution of the series boundary value problems derived by applying the linearization procedure with respect to small imperfection of the sought values. Numerical results reveal the effect of piezoelectricity as well as geometrical and material parameters on the critical values are determined numerically by employing finite element method (FEM).

  3. Superporous agarose--reticulated vitreous carbon electrodes for electrochemical sandwich bioassays.

    PubMed

    Rao, Ashwin K; Creager, Stephen E

    2008-11-03

    We report on the use of flow-through electrodes fabricated from a composite of superporous agarose (SPA) and reticulated vitreous carbon (RVC) for carrying out sandwich bioassays via a model sandwich assay scheme. The flow-through design of the SPA-RVC electrodes allows for ease in solution handling with the use of micropipettors while allowing sandwich assays to be performed on the SPA matrix inside the RVC. A sandwich bioassay was devised for detecting biotinylated bovine serum albumin (b-BSA) as a proof-of-concept scheme to demonstrate applicability of SPA-RVC electrodes to carry out sandwich assays. In this bioassay scheme, SPA-RVC electrodes with avidin molecules immobilized on the SPA matrix were incubated with low quantities of b-BSA followed by incubation with avidinylated alkaline phosphatase (av-ALP). This construct creates a sandwich bioassay whereby b-BSA is sandwiched between the two avidin complexes. Av-ALP labels captured on the bound b-BSA catalytically hydrolyze conversion of 4-aminophenylphosphate (PAPP) to electrochemically active 4-aminophenol (PAP) which is then voltammetrically detected inside the RVC. The lower concentration detection limit for b-BSA was 0.32+/-0.1 ng mL(-1) and the absolute detection limit was 32+/-10 pg. Non-specific binding of av-ALP enzyme labels onto the avidin-activated SPA-RVC electrodes was low. Catalytic generation of PAP by non-specifically bound av-ALP occurs at a rate less than 2% of that for PAP generation by av-ALP in [(SPA-av)-(b-BSA-b)-(av-ALP)] sandwich constructs.

  4. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species

    PubMed Central

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P. R.

    2015-01-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young’s moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956

  5. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species.

    PubMed

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P R

    2015-05-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Modeling and stabilization results for a charge or current-actuated active constrained layer (ACL) beam model with the electrostatic assumption

    NASA Astrophysics Data System (ADS)

    Özer, Ahmet Özkan

    2016-04-01

    An infinite dimensional model for a three-layer active constrained layer (ACL) beam model, consisting of a piezoelectric elastic layer at the top and an elastic host layer at the bottom constraining a viscoelastic layer in the middle, is obtained for clamped-free boundary conditions by using a thorough variational approach. The Rao-Nakra thin compliant layer approximation is adopted to model the sandwich structure, and the electrostatic approach (magnetic effects are ignored) is assumed for the piezoelectric layer. Instead of the voltage actuation of the piezoelectric layer, the piezoelectric layer is proposed to be activated by a charge (or current) source. We show that, the closed-loop system with all mechanical feedback is shown to be uniformly exponentially stable. Our result is the outcome of the compact perturbation argument and a unique continuation result for the spectral problem which relies on the multipliers method. Finally, the modeling methodology of the paper is generalized to the multilayer ACL beams, and the uniform exponential stabilizability result is established analogously.

  7. Preparation of Ultrahigh Molecular Weight Polyethylene/Graphene Nanocomposite In situ Polymerization via Spherical and Sandwich Structure Graphene/Sio2 Support

    NASA Astrophysics Data System (ADS)

    Su, Enqi; Gao, Wensheng; Hu, Xinjun; Zhang, Caicai; Zhu, Bochao; Jia, Junji; Huang, Anping; Bai, Yongxiao

    2018-04-01

    Reduced graphene oxide/SiO2 (RGO/SiO2) serving as a novel spherical support for Ziegler-Natta (Z-N) catalyst is reported. The surface and interior of the support has a porous architecture formed by RGO/SiO2 sandwich structure. The sandwich structure is like a brick wall coated with a graphene layer of concreted as skeleton which could withstand external pressures and endow the structure with higher support stabilities. After loading the Z-N catalyst, the active components anchor on the surface and internal pores of the supports. When the ethylene molecules meet the active centers, the molecular chains grow from the surface and internal catalytic sites in a regular and well-organized way. And the process of the nascent molecular chains filled in the sandwich structure polymerization could ensure the graphene disperse uniformly in the polymer matrix. Compared with traditional methods, the porous spherical graphene support of this strategy has far more advantages and could maintain an intrinsic graphene performance in the nanocomposites.

  8. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong

    2015-12-01

    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  9. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    PubMed Central

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  10. Lightweight Metal/Polymer/Metal Sandwich Composites for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Ferrari, Federico

    Sandwich composites are becoming increasingly popular in the automotive sector as they are lightweight and facilitate noise attenuation. However, given that sandwich composites are relatively new in the sector, there are questions as to whether they can effectively replace monolithic metals and damping patches without compromising mechanical performance. Quiet Aluminum RTM, a sandwich composite produced by Material Sciences Corporation (MSC), employs as skins two aluminum alloys that are common in automotive manufacturing: 5754-O and 6061-T4. The current study examines and compares the mechanical properties of Quiet AluminumRTM with the main Fiat Chrysler Automobiles (FCA) requirements for laminates with non-structural loads. The adhesion mechanism between the layers of the sandwich composites received was examined through: T-Peel test, roughness measurements and metallographic cross sectioning technique. The current study then employed tensile tests with different treatments applied to the sandwich materials, a Self-Piercing Riveting (SPR) joining evaluation, and hardness tests on the core section of the aluminum skins. The samples, which presented rolling mill-finish surface roughness Ra range of 0.46-0.56 micro m, met the FCA adhesion requirements with adhesive failure mode even after the paint bake-cycle simulation (20 min at 185 °C) and the hardening treatment applied on the sandwich with AA6061-T4 skin (1 h at 200 °C). The tensile properties, computed simulating stamping process (2% pre-applied strain), the paint-bake cycle and the hardening treatment were comparable to the monolithic ones. Finally, SPR technique, evaluated through lap shear test and macro-graphic measurements, successfully joined Quiet AluminumRTM samples (1.06 mm thickness) with structural High Strength Low Alloy steel (HSLA,1.8 mm thickness and 340 MPa minimum yield strength).

  11. 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores

    NASA Astrophysics Data System (ADS)

    Brischetto, Salvatore; Ferro, Carlo Giovanni; Torre, Roberto; Maggiore, Paolo

    2018-04-01

    Desktop 3D FDM (Fused Deposition Modelling) printers are usually employed for the production of nonstructural objects. In recent years, the present authors tried to use this technology also to produce structural elements employed in the construction of small UAVs (Unmanned Aerial Vehicles). Mechanical stresses are not excessive for small multirotor UAVs. Therefore, the FDM technique combined with polymers, such as the ABS (Acrylonitrile Butadiene Styrene) and the PLA(Poly Lactic Acid), can be successfully employed to produce structural components. The present new work is devoted to the production and preliminary structural analysis of sandwich configurations. These new lamination schemes could lead to an important weight reduction without significant decreases of mechanical properties. Therefore, it could be possible, for the designed application (e.g., a multifunctional small UAV produced via FDM), to have stiffener and lighter structures easy to be manufactured with a low-cost 3D printer. The new sandwich specimens here proposed are PLA sandwich specimens embedding a PLA honeycomb core produced by means of the same extruder, multilayered specimens with ABS external layers and an internal homogeneous PLA core using different extruders for the two materials, sandwich specimens with external ABS skins and an internal PLA honeycomb core using different extruders for the two materials, and sandwich specimens where two different extruders have been employed for PLA material used for skins and for the internal honeycomb core. For all the proposed configurations, a detailed description of the production activity is given.Moreover, several preliminary results about three-point bending tests, different mechanical behaviors and relative delamination problems for each sandwich configuration will be discussed in depth.

  12. High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Koch, L. C.; Pagel, L. L.

    1978-01-01

    The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.

  13. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.

    PubMed

    Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan

    2015-07-01

    Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.

  14. Antiferromagnetic exchange and magnetoresistance enhancement in ultrathin Co-Re sandwiches

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.

    1992-10-01

    Co-Re ultrathin sandwiches were prepared that show antiferromagnetic coupling and enhanced saturation magnetoresistance for Re spacer thicknesses below 9 Å. A field of 2.5 kOe is needed to saturate the antiferromagnetically coupled Co layers. These results are similar to those found in Co-Re superlattices.

  15. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers

    PubMed Central

    Kim, Yeonho; Kim, Sang Jin; Cho, Sung-Pyo; Hong, Byung Hee; Jang, Du-Jeon

    2015-01-01

    Ultraviolet (UV) light photodetectors constructed from solely inorganic semiconductors still remain unsatisfactory because of their low electrical performances. To overcome this limitation, the hybridization is one of the key approaches that have been recently adopted to enhance the photocurrent. High-performance UV photodetectors showing stable on-off switching and excellent spectral selectivity have been fabricated based on the hybrid structure of solution-grown ZnS nanobelts and CVD-grown graphene. Sandwiched structures and multilayer stacking strategies have been applied to expand effective junction between graphene and photoactive ZnS nanobelts. A multiply sandwich-structured photodetector of graphene/ZnS has shown a photocurrent of 0.115 mA under illumination of 1.2 mWcm−2 in air at a bias of 1.0 V, which is higher 107 times than literature values. The multiple-sandwich structure of UV-light sensors with graphene having high conductivity, flexibility, and impermeability is suggested to be beneficial for the facile fabrication of UV photodetectors with extremely efficient performances. PMID:26197784

  16. Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism.

    PubMed

    Harris, Joseph A; Wu, Chien-Te; Woldorff, Marty G

    2011-06-07

    It is generally agreed that considerable amounts of low-level sensory processing of visual stimuli can occur without conscious awareness. On the other hand, the degree of higher level visual processing that occurs in the absence of awareness is as yet unclear. Here, event-related potential (ERP) measures of brain activity were recorded during a sandwich-masking paradigm, a commonly used approach for attenuating conscious awareness of visual stimulus content. In particular, the present study used a combination of ERP activation contrasts to track both early sensory-processing ERP components and face-specific N170 ERP activations, in trials with versus without awareness. The electrophysiological measures revealed that the sandwich masking abolished the early face-specific N170 neural response (peaking at ~170 ms post-stimulus), an effect that paralleled the abolition of awareness of face versus non-face image content. Furthermore, however, the masking appeared to render a strong attenuation of earlier feedforward visual sensory-processing signals. This early attenuation presumably resulted in insufficient information being fed into the higher level visual system pathways specific to object category processing, thus leading to unawareness of the visual object content. These results support a coupling of visual awareness and neural indices of face processing, while also demonstrating an early low-level mechanism of interference in sandwich masking.

  17. Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel

    NASA Astrophysics Data System (ADS)

    Qun, Xie; Shuai, Wang; Chun, Liu

    2018-03-01

    A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.

  18. High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.

    2011-01-01

    High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.

  19. Influence of reinforcement type on the mechanical behavior and fire response of hybrid composites and sandwich structures

    NASA Astrophysics Data System (ADS)

    Giancaspro, James William

    Lightweight composites and structural sandwich panels are commonly used in marine and aerospace applications. Using carbon, glass, and a host of other high strength fiber types, a broad range of laminate composites and sandwich panels can be developed. Hybrid composites can be constructed by laminating multiple layers of varying fiber types while sandwich panels are manufactured by laminating rigid fiber facings onto a lightweight core. However, the lack of fire resistance of the polymers used for the fabrication remains a very important problem. The research presented in this dissertation deals with an inorganic matrix (Geopolymer) that can be used to manufacture laminate composites and sandwich panels that are resistant up to 1000°C. This dissertation deals with the influence of fiber type on the mechanical behavior and the fire response of hybrid composites and sandwich structures manufactured using this resin. The results are categorized into the following distinct studies. (i) High strength carbon fibers were combined with low cost E-glass fibers to obtain hybrid laminate composites that are both economical and strong. The E-glass fabrics were used as a core while the carbon fibers were placed on the tension face and on both tension and compression faces. (ii) Structural sandwich beams were developed by laminating various types of reinforcement onto the tension and compression faces of balsa wood cores. The flexural behavior of the beams was then analyzed and compared to beams reinforced with organic composite. The effect of core density was evaluated using oak beams reinforced with inorganic composite. (iii) To measure the fire response, balsa wood sandwich panels were manufactured using a thin layer of a fire-resistant paste to serve for fire protection. Seventeen sandwich panels were fabricated and tested to measure the heat release rates and smoke-generating characteristics. The results indicate that Geopolymer can be effectively used to fabricate both

  20. An analytical and experimental investigation of sandwich composites subjected to low-velocity impact

    NASA Astrophysics Data System (ADS)

    Anderson, Todd Alan

    1999-12-01

    This study involves an experimental and analytical investigation of low-velocity impact phenomenon in sandwich composite structures. The analytical solution of a three-dimensional finite-geometry multi-layer specially orthotropic panel subjected to static and transient transverse loading cases is presented. The governing equations of the static and dynamic formulations are derived from Reissner's functional and solved by enforcing the continuity of traction and displacement components between adjacent layers. For the dynamic loading case, the governing equations are solved by applying Fourier or Laplace transformation in time. Additionally, the static solution is extended to solve the contact problem between the sandwich laminate and a rigid sphere. An iterative method is employed to determine the sphere's unknown contact area and pressure distribution. A failure criterion is then applied to the sandwich laminate's stress and strain field to predict impact damage. The analytical accuracy of the present study is verified through comparisons with finite element models, other analyses, and through experimentation. Low-velocity impact tests were conducted to characterize the type and extent of the damage observed in a variety of sandwich configurations with graphite/epoxy face sheets and foam or honeycomb cores. Correlation of the residual indentation and cross-sectional views of the impacted specimens provides a criterion for the extent of damage. Quasi-static indentation tests are also performed and show excellent agreement when compared with the analytical predictions. Finally, piezoelectric polyvinylidene fluoride (PVF2) film sensors are found to be effective in detecting low-velocity impact.

  1. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    NASA Astrophysics Data System (ADS)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  2. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    DOEpatents

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  3. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection.

    PubMed

    Gu, Xuefang; Yan, Yuerong; Jiang, Guoqing; Adkins, Jason; Shi, Jian; Jiang, Guomin; Tian, Shu

    2014-03-01

    A simple and sensitive method, based on surface-enhanced Raman scattering (SERS), for immunoassay and label-free protein detection is reported. A series of bowl-shaped silver cavity arrays were fabricated by electrodeposition using a self-assembled polystyrene spheres template. The reflection spectra of these cavity arrays were recorded as a function of film thickness, and then correlated with SERS enhancement using sodium thiophenolate as the probe molecule. The results reveal that SERS enhancement can be maximized when the frequency of both the incident laser and the Raman scattering approach the frequency of the localized surface plasmon resonance. The optimized array was then used as the bottom layer of a silver nanoparticle-protein-bowl-shaped silver cavity array sandwich. The second layer of silver was introduced by the interactions between the proteins in the middle layer of the sandwich architecture and silver nanoparticles. Human IgG bound to the surface of this microcavity array can retain its recognition function. With the Raman reporter molecules labeled on the antibody, a detection limit down to 0.1 ng mL(-1) for human IgG is easily achieved. Furthermore, the SERS spectra of label-free proteins (catalase, cytochrome C, avidin and lysozyme) from the assembled sandwich have excellent reproducibility and high quality. The results reveal that the proposed approach has potential for use in qualitative and quantitative detection of biomolecules.

  4. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films

    PubMed Central

    Yano, Kazuyoshi; Iwasaki, Akira

    2016-01-01

    A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection. PMID:28029144

  5. A charge carrier transport model for donor-acceptor blend layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less

  6. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein

    DOE PAGES

    Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; ...

    2015-05-01

    Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is amore » paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.« less

  7. [Sb{sub 4}Au{sub 4}Sb{sub 4}]{sup 2−}: A designer all-metal aromatic sandwich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Wen-Juan; You, Xue-Rui; Guo, Jin-Chang

    We report on the computational design of an all-metal aromatic sandwich, [Sb{sub 4}Au{sub 4}Sb{sub 4}]{sup 2−}. The triple-layered, square-prismatic sandwich complex is the global minimum of the system from Coalescence Kick and Minima Hopping structural searches. Following a standard, qualitative chemical bonding analysis via canonical molecular orbitals, the sandwich complex can be formally described as [Sb{sub 4}]{sup +}[Au{sub 4}]{sup 4−}[Sb{sub 4}]{sup +}, showing ionic bonding characters with electron transfers in between the Sb{sub 4}/Au{sub 4}/Sb{sub 4} layers. For an in-depth understanding of the system, one needs to go beyond the above picture. Significant Sb → Au donation and Sb ←more » Au back-donation occur, redistributing electrons from the Sb{sub 4}/Au{sub 4}/Sb{sub 4} layers to the interlayer Sb–Au–Sb edges, which effectively lead to four Sb–Au–Sb three-center two-electron bonds. The complex is a system with 30 valence electrons, excluding the Sb 5s and Au 5d lone-pairs. The two [Sb{sub 4}]{sup +} ligands constitute an unusual three-fold (π and σ) aromatic system with all 22 electrons being delocalized. An energy gap of ∼1.6 eV is predicted for this all-metal sandwich. The complex is a rare example for rational design of cluster compounds and invites forth-coming synthetic efforts.« less

  8. Flexible freestanding sandwich type ZnO/rGO/ZnO electrode for wearable supercapacitor

    NASA Astrophysics Data System (ADS)

    Ghorbani, Mina; Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2017-10-01

    The development of flexible supercapacitors with high energy and power density as one of the main components of wearable electronics is in an enormous interest. In this report, a unique flexible electrode based on freestanding sandwich type ZnO/rGO/ZnO paper is fabricated by a simple low cost sol-gel method for utilizing in flexible supercapacitor. ZnO layers are deposited on both sides of rGO paper which is prepared by a modified Hummer's method and evaporation induced assembly. The uniform and densely packed ZnO layers are formed on graphene oxide paper and the paper is simultaneously reduced. Structural analysis reveals the formation of ZnO thin films on both sides of rGO nanosheets, which leads to the sandwich architecture. Also, the effect of ZnO sol-gel process parameters on microstructure of sandwich paper are investigated and the most suitable condition for highest supercapacity performance is the solvent of 1-PrOH, stabilizer of TeA, sol concentration of 0.2 M, deposition speed of 30 mm min-1, and 10 deposited layers. The results of electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry confirm that the incorporation of ZnO improves the capacitive performance of rGO electrode. Moreover, ZnO/rGO/ZnO flexible electrode exhibits suitable capacitance value of 60.63 F g-1 at scan rate of 5 mV/s.

  9. LiFePO4 nanoparticles enveloped in freestanding sandwich-like graphitized carbon sheets as enhanced remarkable lithium-ion battery cathode.

    PubMed

    Zhang, Yan; Zhang, Huijuan; Li, Xiao; Xu, Haitao; Wang, Yu

    2016-04-15

    A novel nanostructure where LiFePO4 nanoparticles are enveloped in sandwich-like carbon sheets as an enhanced cathode in lithium-ion batteries has successfully been synthesized for the first time. Compared to previous carbon-based nanocomposites, the achieved sandwich-like LiFePO4 nanocomposites exhibit totally different architecture, in which LiFePO4 nanoparticles are tightly entrapped between two carbon layers, instead of being anchored on the carbon sheet surfaces. In other words, the achieved sandwich-like LiFePO4 nanocomposite carbon layers are actually freestanding and can be operated and separated from each other. This is a great breakthrough in the design and synthesis of carbon-based functional materials. The obtained sandwich-like LiFePO4 nanocomposites present excellent electrochemical performance, which is rationally ascribed to the superb and unique structure and architecture. Of particular note is that the freestanding sandwich-like LiFePO4 nanocomposites exhibit enhanced cyclability and rate capability. At a high current density of 0.1 A g(-1), a stable specific capacity of approximately 168.5 mAh g(-1) can be delivered over 1000 cycles, and when the charge-discharge rates increase to 0.6, 2, 5 and 10 A g(-1), the specific capacities still survive at 149, 129, 114 and 91 mAh g(-1), respectively. Meanwhile, the sandwiched nanocomposite demonstrates a significantly improved low-temperature electrochemical energy storage performance. With respect to the excellent Li storage performance, and facility and reliability of production, the freestanding sandwich-like LiFePO4 nanocomposites are reasonably believed to have a great potential for multiple electrochemical energy storage applications.

  10. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2016-03-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  11. Cone calorimeter testing of foam core sandwich panels treated with intumescent paper underneath the veneer (FRV)

    Treesearch

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling

    2017-01-01

    Surfaces of novel foam core sandwich panels were adhered with intumescent fire‐retardant paper underneath the veneers (FRV) to improve their flammability properties. The panels were evaluated by means of cone calorimeter test (ASTM E 1354). Variables tested were different surface layer treatments, adhesives used for veneering, surface layer thicknesses, and processing...

  12. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers

    PubMed Central

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-01-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o. PMID:26846891

  13. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers.

    PubMed

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-02-05

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180(°).

  14. Nonlinear optical effects in a three-nanolayer metal sandwich assembly

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir I.

    2018-04-01

    We report spectral properties and frequency summing that induce superemission (SE) in sandwich structures built of Co nanolayers. We found that separate Co films with a layer thickness of 8.1, 9.2, and 11.3 nm have discrete absorption spectra, originating in transverse quantum confinement in such thin metal films. The surface plasmon resonance in this system should appear at energies over 50 000 cm-1, with its longer-wavelength tail easily observable. All of the nanolayers studied also presented discrete emission spectra, with the emission bands strongly overlapping due to large bandwidths (1500-2300 cm-1). The emission decay is described by a single-exponential function with the lifetime of 103±5 ns. Similarly, the sandwich assembly with three Co nanolayers separated by two BN nanolayers also has discrete lines in its absorption spectrum. The spectrum of the assembly is a superposition of the respective spectra of the individual Co layers. We report that the assembly can sum the pumping radiation photons, producing photons with a higher energy. This excitation summing/exciton joining effect, discovered in sandwich film systems, is reported for the first time. Exiting the two outside Co nanolayers at specific frequencies, the Co nanolayer in the middle produces the sum frequency. We identified this emission as SE, with a bandwidth of only 179±5 cm-1. This superemission band appeared with the rise time of 36±3 ns and disappeared with 73±5 ns decay time, with the estimated SE quantum yield of 0.063. We analyzed the energy transfer by the exchange mechanism in detail, although a contribution of the electric dipole-dipole mechanism could not be excluded.

  15. A first principles approach to magnetic and optical properties in single-layer graphene sandwiched between boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Das, Ritwika; Chowdhury, Suman; Jana, Debnarayan

    2015-07-01

    The dependence of the stability of single-layer graphene (SLG) sandwiched between hexagonal boron nitride bilayers (h-BN) has been described and investigated for different types of stacking in order to provide the fingerprint of the stacking order which affects the optical properties of such trilayer systems. Considering the four stacking models AAA-, AAB-, ABA-, and ABC-type stacking, the static dielectric functions (in case of parallel polarizations) for AAB-type stacking possesses maximum values, and minimum values are noticed for AAA. However, AAA-type stacking structures contribute the maximum magnetic moment while vanishing magnetic moments are observed for ABA and ABC stacking. The observed optical anisotropy and magnetic properties of these trilayer heterostructures (h-BN/SLG/h-BN) can be understood from the crystallographic stacking order and inherent crystal lattice symmetry. These optical and magnetic results suggest that the h-BN/SLG/h-BN could provide a viable route to graphene-based opto-electronic and spintronic devices.

  16. Bioinspired metal-cell wall-metal sandwich structure on an individual bacterial cell scaffold.

    PubMed

    Zhang, Xiaoliang; Yu, Mei; Liu, Jianhua; Li, Songmei

    2012-08-25

    Pd nanoparticles were introduced to individual Bacillus cells and dispersedly anchored on both the inside and outside of the cell walls. The anchored nanoparticles served as "seeds" to drive the formation of double metallic layers forming a metal-cell wall-metal sandwich structure at the single-cell level.

  17. Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1-4) cluster toppings and fillings: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Huang, Zhongjia; Wang, Xiao; Zhang, Hongyu; Li, Taohai; Wu, Zhaolong; Luo, Youhua; Cao, Wei

    2016-01-01

    The inorganic layered crystal (ILC) MoS2 in low dimensions is considered as one of the most promising and efficient semiconductors. To enable the magnetism and keep intrinsic crystal structures, we carried out a first-principles study of the magnetic and semiconductive monolayer MoS2 adsorbed with the Mnn (n = 1-4) clusters, and bilayer MoS2 intercalated with the same clusters. Geometric optimizations of the Mnn@MoS2 systems show the complexes prefer to have Mnn@MoS2(M) pizza and Mnn@MoS2(B) sandwich forms in the mono- and bi-layered cases, respectively. Introductions of the clusters will enhance complex stabilities, while bonds and charge transfers are found between external Mn clusters and the S atoms in the hosts. The pizzas have medium magnetic moments of 3, 6, 9, 4 μB and sandwiches of 3, 2, 3, 2 μB following the manganese numbers. The pizzas and sandwiches are semiconductors, but with narrower bandgaps compared to their corresponding pristine hosts. Direct bandgaps were found in the Mnn@MoS2(M) (n = 1,4) pizzas, and excitingly in the Mn1@MoS2(B) sandwich. Combining functional clusters to the layered hosts, the present work shows a novel material manipulation strategy to boost semiconductive ILCs applications in magnetics.

  18. Development and Evaluation of Stitched Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)

    2001-01-01

    This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.

  19. Reconstruction of chest wall using a two-layer prolene mesh and bone cement sandwich.

    PubMed

    Aghajanzadeh, Manouchehr; Alavi, Ali; Aghajanzadeh, Gilda; Ebrahimi, Hannan; Jahromi, Sina Khajeh; Massahnia, Sara

    2015-02-01

    Wide surgical resection is the most effective treatment for the vast majority of chest wall tumors. This study evaluated the clinical success of chest wall reconstruction using a Prolene mesh and bone cement prosthetic sandwich. The records of all patients undergoing chest wall resection and reconstruction were reviewed. Surgical indications, the location and size of the chest wall defect, diaphragm resection, pulmonary performance, postoperative complications, and survival of each patient were recorded. From 1998 to 2008, 43 patients (27 male, 16 female; mean age of 48 years) underwent surgery in our department to treat malignant chest wall tumors: chondrosarcoma (23), osteosarcoma (8), spindle cell sarcoma (6), Ewing's sarcoma (2), and others (4). Nine sternectomies and 34 antero-lateral and postero-lateral chest wall resections were performed. Postoperatively, nine patients experienced respiratory complications, and one patient died because of respiratory failure. The overall 4-year survival rate was 60 %. Chest wall reconstruction using a Prolene mesh and bone cement prosthetic sandwich is a safe and effective surgical procedure for major chest wall defects.

  20. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    PubMed

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lu, J.-C.; Liao, W.-H.; Tung, Y.-C.

    2012-07-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research.

  2. Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees.

    PubMed

    Arun, S; Kanagaraj, S

    2016-06-01

    A socket plays a vital role in giving the comfort to the amputees. However, the accumulation of heat inside the socket and its weight led to increase their metabolic cost. Hence, an attempt was made to increase the performance of the epoxy based sandwich composites to be used for the socket by reinforcing multiwalled carbon nanotubes (MWCNT), which was varied from 0.1 to 0.5wt%. It was homogeneously dispersed in epoxy to obtain the desired properties, where the enhancement of thermal conductivity, compressive strength and modulus of epoxy was observed to be 76.7%, 62.6% and 20.2%, respectively at 0.3wt% of MWCNT concentration beyond which the mechanical properties were found to be decreased. Hence, the epoxy, E-glass plain fabric, 2-10 layers of stockinet and 0.3wt% of MWCNT were used to prepare the sandwich composites. The flexural strength and thermal conductivity of 0.3wt% of MWCNT reinforced sandwich composites were found to be improved by 11.38±1.5% and 29.8±1.3% for the 4-10 layers and up to 10 layers of stockinet, respectively compared to unreinforced sandwich composites, which helped to reduce the weight of the socket and decrease the heat accumulation inside the socket. Thus, it is suggested to be explored for the application of socket in trans-femoral amputees to increase their comfort level by decreasing the metabolic cost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Enhancing Photocatalytic Activity on (MnO@TNTAs):Mn2+ with a Hierarchical Sandwich-Like Nanostructure via a Two-Step Procedure

    NASA Astrophysics Data System (ADS)

    Kong, Junhan; Zhang, Wei; Zhang, Yubo; Xia, Minghao; Wu, Xiuling; Wang, Yongqian

    2018-02-01

    Several semiconductor nanomaterial devices are increasingly being applied in a variety of fields, especially in the treating of environmental pollutants. We have fabricated (MnO@TNTAs):Mn2+ with sandwich-like nanostructures composed of TiO2 nanotube arrays (TNTAs), Mn-doped TNTAs and MnO. The experimental procedure was a two-step synthesis: first, using anodic oxidation methods and then hydrothermal methods. We carried out many characterizations of the "sandwiches" in the nanoscale. From the field emission scanning electron microscopy images we found nanofibers lying on the highly-ordered nanotube arrays. The diameter of the nanotubes was about 50 nm but the size of the nanofibers varied. Energy dispersive spectroscopy demonstrated that the nanofibers contained a manganese element and x-ray diffraction patterns showed the peak of the manganosite phase. From ultraviolet-visible light spectra, it was found that the nanostructures had strong absorption activities under both ultraviolet and visible light radiation, while pure TNTAs had absorption only under ultraviolet light. The photodegradation experiments proved that the sandwich-like nanostructures had an excellent photocatalytic activity (92.5% after 240 min), which was a great improvement compared with pure TNTAs. In this way, the structures as a device at the nanoscale have a huge potential in controlling environmental pollution.

  4. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    PubMed

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  5. Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes.

    PubMed

    Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge

    2016-02-10

    It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs.

  6. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    NASA Technical Reports Server (NTRS)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  7. Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure

    NASA Astrophysics Data System (ADS)

    Fan, Benhui; Liu, Yu; He, Delong; Bai, Jinbo

    2018-01-01

    Sandwich-structured composites of polydimethylsiloxane/carbon nanotube (PDMS/CNT) bulk between two neat PDMS thin films with different thicknesses are prepared by the spin-coating method. Taking advantage of CNT's percolation behavior, the composite keeps relatively high dielectric constant (ɛ' = 40) at a low frequency (at 100 Hz). Meanwhile, due to the existence of PDMS isolated out-layers which limits the conductivity of the composite, the composite maintains an extremely low dielectric loss (tan δ = 0.01) (at 100 Hz). Moreover, the same matrix of the out-layer and bulk can achieve excellent interfacial adhesion, and the thickness of the coating layer can be controlled by a multi-cycle way. Then, based on the experimental results, the calculation combining the percolation theory and core-shell model is used to analyze the thickness effect of the coating layer on ɛ'. The obtained relationship between the ɛ' of the composite and the thickness of the coating layer can help to optimize the sandwich structure in order to obtain the adjustable ɛ' and the extremely low tan δ.

  8. Sandwiched polymer fibre in fibrin matrices for the dictation of endothelial cells undergoing angiogenesis

    NASA Astrophysics Data System (ADS)

    Sukmana, I.; Djuansjah, J. R. P.

    2013-04-01

    We present here a three-dimensional (3D) sandwich system made by poly(ethylene terephthalate) (PET) fibre and fibrin extracellular matrix (ECM) for endothelial cell dictation and angiogenesis guidance. In this three-dimensional system, Human Umbilical Vein Endothelial cells (HUVECs) were firstly cultured for 2 (two) days to cover the PET fibre before sandwiched in two layer fibrin gel containing HUVECs. After 4 (four) days of culture, cel-to-cel connection, tube-like structure and multi-cellular lumen formation were then assessed and validated. Phase contrast and fluorescence imaging using an inverted microscope were used to determine cell-to-cell and cell-ECM interactions. Laser scanning confocal microscopy and histological techniques were used to confirm the development of tube-like structure and multi-cellular lumen formation. This study shows that polymer fibres sandwiched in fibrin gel can be used to dictate endothelial cells undergoing angiogenesis with potential application in cancer and cardiovascular study and tissue engineering vascularisation.

  9. Slotted rectangular waveguide with dielectric sandwich structure inside

    NASA Astrophysics Data System (ADS)

    Abdullin, R. R.; Sokolov, R. I.

    2018-03-01

    This paper continues the series of works devoted to the investigation of leaky-wave antenna based on layered rectangular waveguide with periodic transverse slots in broad face. Previously developed wavenumber calculation technique has been adapted for analysis of slotted sandwich waveguide with three layers at least. The paper provides the numerical results of velocity factor dependencies for partially filled slotted rectangular waveguide containing a dielectric slab in the middle position inside or an air gap between two dielectric slabs. Additionally, dispersion properties are also considered for multilayer waveguide with linear laws combinations of thickness and permittivity. This allows recognizing the trends to develop new prospective antennas with complex patterns of tilt angle change. All numerical results obtained are confirmed with the in-situ measurements of transmission coefficient phase.

  10. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries.

    PubMed

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-05

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.

  11. Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer

    NASA Astrophysics Data System (ADS)

    Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun

    2015-10-01

    Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.

  12. Manifestation of the shape-memory effect in polyetherurethane cellular plastics, fabric composites, and sandwich structures under microgravity

    NASA Astrophysics Data System (ADS)

    Babaevskii, P. G.; Kozlov, N. A.; Agapov, I. G.; Reznichenko, G. M.; Churilo, N. V.; Churilo, I. V.

    2016-09-01

    The results of experiments that were performed to test the feasibility of creating sandwich structures (consisting of thin-layer sheaths of polymer composites and a cellular polymer core) with the shapememory effect as models of the transformable components of space structures have been given. The data obtained indicate that samples of sandwich structures under microgravity conditions on board the International Space Station have recovered their shape to almost the same degree as under terrestrial conditions, which makes it possible to recommend them for creating components of transformable space structures on their basis.

  13. A Study on Flexural Properties of Sandwich Structures with Fiber/Metal Laminate Face Sheets

    NASA Astrophysics Data System (ADS)

    Dariushi, S.; Sadighi, M.

    2013-10-01

    In this work, a new family of sandwich structures with fiber metal laminate (FML) faces is investigated. FMLs have benefits over both metal and fiber reinforced composites. To investigate the bending properties of sandwich beams with FML faces and compare with similar sandwich beams with fibrous composite faces, 6 groups of specimen with different layer arrangements were made and tested. Results show that FML faces have good resistance against transverse local loads and minimize stress concentration and local deformations of skin and core under the loading tip. In addition, FML faces have a good integrity even after plateau region of foam cores and prevent from catastrophic failures, which cannot be seen in fibrous composite faces. Also, FML faces are lighter than metal faces and have better connection with foam cores. Sandwich beams with FML faces have a larger elastic region because of simultaneous deformation of top and bottom faces and larger failure strain thanks to good durability of FMLs. A geometrical nonlinear classical theory is used to predict force-deflection behavior. In this model an explicit formula between symmetrical sandwich beams deflections and applied force which can be useful for designers, is derived. Good agreement is obtained between the analytical predictions and experimental results. Also, analytical results are compared with small deformation solution in a parametric study, and the effects of geometric parameters on difference between linear and nonlinear results are discussed.

  14. Sandwich Panels Evaluated With Ultrasonic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.

    2004-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment systems for next-generation engines. The bond strength between the core and face sheets is critical in maintaining the structural integrity of the sandwich structure. To improve the inspection and production of these systems, researchers at the NASA Glenn Research Center are using nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, to evaluate the brazing quality between the face plates and the metallic foam core. The capabilities and limitations of a swept-frequency approach to ultrasonic spectroscopy were evaluated with respect to these sandwich structures. This report discusses results from three regions of a sandwich panel representing different levels of brazing quality between the outer face plates and a metallic foam core. Each region was investigated with ultrasonic spectroscopy. Then, on the basis of the NDE results, three shear specimens sectioned from the sandwich panel to contain each of these regions were mechanically tested.

  15. Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration

    NASA Astrophysics Data System (ADS)

    Li, Yi; Liu, Qi; Cai, Jing; Li, Yun; Shi, Yi; Wang, Xizhang; Hu, Zheng

    2014-06-01

    This study investigates the remarkable reduction in the threshold voltage (VT) of pentacene-based thin film transistors with pentacene/copper phthalocyanine (CuPc) sandwich configuration. This reduction is accompanied by increased mobility and lowered sub-threshold slope (S). Sandwich devices coated with a 5 nm layer of CuPc layer are compared with conventional top-contact devices, and results indicate that VT decreased significantly from -20.4 V to -0.2 V, that mobility increased from 0.18 cm2/Vs to 0.51 cm2/Vs, and that S was reduced from 4.1 V/dec to 2.9 V/dec. However, the on/off current ratio remains at 105. This enhanced performance could be attributed to the reduction in charge trap density by the incorporated CuPc layer. Results suggest that this method is simple and effectively generates pentacene-based organic thin film transistors with high mobility and low VT.

  16. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylosemore » and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).« less

  17. Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal beta-sandwich in substrate specificity and enzymatic activity.

    PubMed

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam

    2010-07-02

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an alpha-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1-->4 bond and making a new 1-->6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-A resolution. MtbGlgBWT contains four domains: N1 beta-sandwich, N2 beta-sandwich, a central (beta/alpha)(8) domain that houses the catalytic site, and a C-terminal beta-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) MtbDelta108GlgB protein. The N1 beta-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 beta-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and MtbDelta108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1-->4 bond breakage) and isomerization (1-->6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and MtbDelta108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (ECDelta112GlgB).

  18. Heterojunction photodetector based on graphene oxide sandwiched between ITO and p-Si

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Tajdidzadeh, M.; Thandavan, T. M. K.

    2018-02-01

    The drop casting method is utilized on indium tin oxide (ITO)-coated glass in order to prepare a sandwiched ITO/graphene oxide (ITO/GO) with silicon dioxide/p-type silicon (SiO2/p-Si) heterojunction photodetector. The partially sandwiched GO layer with SiO2/p-Si substrate exhibits dual characteristics as it showed good sensitivity towards the illumination of infrared (IR) laser at wavelength of 974 nm. Excellent photoconduction is also observed for current-voltage (I-V) characteristics at various laser powers. An external quantum efficiency greater than 1 for a direct current bias voltage of 0 and 3 V reveals significant photoresponsivity of the photodetector at various laser frequency modulation at 1, 5 and 9 Hz. The rise times are found to be 75, 72 and 70 μs for 1, 5 and 9 Hz while high fall times 455, 448 and 426 are measured for the respective frequency modulation. The fabricated ITO/GO-SiO2/p-Si sandwiched heterojunction photodetector can be considered as a good candidate for applications in the IR regions that do not require a high-speed response.

  19. Experimental study on the seismic performance of new sandwich masonry walls

    NASA Astrophysics Data System (ADS)

    Xiao, Jianzhuang; Pu, Jie; Hu, Yongzhong

    2013-03-01

    Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer. New types of sandwich walls are continually being introduced in research and applications, and due to their unique bond patterns, experimental studies have been performed to investigate their mechanical properties, especially with regard to their seismic performance. In this study, three new types of sandwich masonry wall have been designed, and cyclic lateral loading tests were carried out on five specimens. The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks, and the failure patterns were considerably influenced by the aspect ratio. Analysis was undertaken on the seismic response of the new walls, which included ductility, stiffness degradation and energy dissipation capacity, and no obvious difference was observed between the seismic performance of the new walls and traditional walls. Comparisons were made between the experimental results and the calculated results of the shear capacity. It is concluded that the formulas in the two Chinese codes (GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls, and the formula in GB 50011 tends to be more conservative.

  20. Impact and Blast Resistance of Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.

    Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.

  1. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  2. Magnetoelectric effect in a sandwich structure of gallium arsenide–nickel–tin–nickel

    NASA Astrophysics Data System (ADS)

    Galichyan, T. A.; Filippov, D. A.; Tihonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-04-01

    The results of investigation of the magnetoelectric effect in a nickel-tin-nickel sandwich structure obtained by galvanic deposition of gallium arsenide on a substrate are presented. The technology of constructing such structures is described and the experimental results of the frequency dependence of the effect are presented. It is shown that the use of tin as an intermediate layer reduces the mechanical stresses resulting from the incommensurability of the phases, which permits obtaining qualitative structures with the nickel thickness of about 70 μm. The resulting structures exhibit good adhesion between the layers and have a high quality factor.

  3. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Bozkurt, Akif Goktug; Buyukgoz, Guluzar Gorkem; Soforoglu, Mehmet; Tamer, Ugur; Suludere, Zekiye; Boyaci, Ismail Hakki

    2018-04-01

    In this study, a sandwich immunoassay method utilizing enzymatic activity of alkaline phosphatase (ALP) on 5-bromo-4-chloro-3-indolyl phosphate (BCIP) for Escherichia coli (E. coli) detection was developed using surface enhanced Raman spectroscopy (SERS). For this purpose, spherical magnetic gold coated core-shell nanoparticles (MNPs-Au) and rod shape gold nanoparticles (Au-NRs) were synthesized and modified for immunomagnetic separation (IMS) of E. coli from the solution. In order to specify the developed method to ALP activity, Au-NRs were labeled with this enzyme. After successful construction of the immunoassay, BCIP substrate was added to produce the SERS-active product; 5-bromo-4-chloro-3-indole (BCI). A good linearity (R2 = 0.992) was established between the specific SERS intensity of BCI at 600 cm- 1 and logarithmic E. coli concentration in the range of 1.7 × 101-1.7 × 106 cfu mL- 1. LOD and LOQ values were also calculated and found to be 10 cfu mL- 1 and 30 cfu mL- 1, respectively.

  4. Detection of Interfacial Debonding in a Rubber-Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers.

    PubMed

    Feng, Qian; Kong, Qingzhao; Jiang, Jian; Liang, Yabin; Song, Gangbing

    2017-09-01

    Rubber-steel-layered structures are used in many engineering applications. Laminated rubber-steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber-steel-layered structures. Interfacial debonding in rubber-steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber-steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel-rubber debonding. When the rubber-steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber-steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber-steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber-steel debonding failure in real time. The active sensing

  5. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite

    NASA Astrophysics Data System (ADS)

    Wang, Tianyue; Chen, Jiewei; Wu, Gaoxiang; Song, Dandan; Li, Meicheng

    2017-01-01

    Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures: sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells. Project supported by the National High-Tech R&D Program of China (No. 2015AA034601), the National Natural Science Foundation of China (Nos. 91333122, 61204064, 51202067, 51372082, 51402106, 11504107), the Ph.D. Programs Foundation of Ministry of Education of China (Nos. 20120036120006, 20130036110012), the Par-Eu Scholars Program, and the Fundamental Research Funds for the Central Universities.

  6. Comparison between clinical and audiological results of tympanoplasty with modified sandwich technique and underlay technique.

    PubMed

    Nemade, Sanjana Vijay; Shinde, Kiran Jaywant; Naik, Chetana Shivadas; Qadri, Haris

    Surgical repair of the tympanic membrane, termed a type one tympanoplasty is a tried and tested treatment modality. Overlay or underlay technique of tympanoplasty is common. Sandwich tympanoplasty is the combined overlay and underlay grafting of tympanic membrane. To describe and evaluate the modified sandwich graft (mediolateral graft) tympanoplasty using temporalis fascia and areolar fascia. To compare the clinical and audiological outcome of modified sandwich tympanoplasty with underlay tympanoplasty. A total of 88 patients of chronic otitis media were studied. 48 patients (Group A) underwent type one tympanoplasty with modified sandwich graft. Temporalis fascia was underlaid and the areolar fascia was overlaid. 48 patients (Group B) underwent type one tympanoplasty with underlay technique. We assessed the healing and hearing results. Successful graft take up was accomplished in 47 patients (97.9%) in Group A and in 40 patients (83.3%) Group B. The average Air-Bone gap closure achieved in Group A was 24.4±1.7dB while in Group B; it was 22.5±3.5dB. Statistically significant difference was found in graft healing rate. Difference in hearing improvement was not statistically significant. Double layered graft with drum-malleus as a 'meat' of sandwich maintains a perfect balance between sufficient stability and adequate acoustic sensitivity. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Double-HE-Layer Detonation-Confinement Sandwich Tests: The Effect of Slow-Layer Density

    NASA Astrophysics Data System (ADS)

    Hill, Larry

    2013-06-01

    Over a period of several years, we have explored the phenomenon in which slabs of high explosives (HEs) with differing detonation speeds are joined along one of their faces. Both are initiated (usually by a line-wave generator) at one edge. If there were no coupling between the layers, the detonation in the fast HE would outrun that in the slow HE. In reality, the detonation in the fast HE transmits an oblique shock into the slow HE, the phase speed of which is equal to the speed of the fast HE. This has one of two effects depending on the particulars. First, the oblique shock transmitted to the slow HE can pre-shock and deaden it, extinguishing the detonation in the slow HE. Second, the oblique shock can transversely initiate the slow layer, pulling its detonation along at the fast HE speed. When the second occurs, it does so at the ``penalty'' of a nominally dead layer, which forms in the slow HE adjacent to the material interface. We present the results of tests in which the fast layer was 3-mm-thick PBX 9501 (95 wt% HMX), and the slow layer was 8-mm-thick PBX 9502 (95 wt% TATB). The purpose was to observe the effect of slow layer density on the ``dead'' layer thickness. Very little effect was observed across the nominal PBX 9502 density range, 1.885-1.895 g/cc.

  8. Absolute activity measurements with the windowless 4π-CsI(Tl)-sandwich spectrometer

    NASA Astrophysics Data System (ADS)

    Denecke, B.

    1994-01-01

    The windowless 4π-CsI(Tl)-sandwich spectrometer consists of two scintillation crystals sandwiching radioactive sources deposited on thin plastic foils. This configuration has a solid angle very close to 4π sr. The detectors are sensitive to charged particles with energies > 15 keV and measure photons of 15-200 keV with a probability > 98%. Disintegration rates of samples of radionuclides with complex decay modes can be determined directly from the measured count rates with uncertainties below 0.3%. Radionuclide solutions of 57Co, 109Cd, 125I, 152Eu and 192Ir were standardised, partly in the framework of international comparisons. A detailed description of the spectrometer and the measurement procedure is given.

  9. Development and Mechanical Behavior of FML/Aluminium Foam Sandwiches

    NASA Astrophysics Data System (ADS)

    Baştürk, S. B.; Tanoğlu, M.

    2013-10-01

    In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 °C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures.

  10. Secondary ion emission from phosphatidic acid sandwich films under atomic and molecular primary ion bombardment

    NASA Astrophysics Data System (ADS)

    Stapel, D.; Benninghoven, A.

    2001-11-01

    Secondary ion yields increase considerably when changing from atomic to molecular primary ions. Since secondary ion emission from deeper layers could result in a pronounced yield increase, the secondary ion emission depth of molecular fragments was investigated. A phosphatidic acid Langmuir-Blodgett (LB) sandwich system was applied. The well-defined layer structure of the applied sample allows the assignment of different depths of origin to the selected fragment ions. At least 93% of the detected characteristic molecular fragment ions originate from the first and second layers. This holds true for all applied atomic and molecular primary ions.

  11. Plasmonic Enhancement of Raman Scattering for Metal-Analyte Sandwich Configuration

    NASA Astrophysics Data System (ADS)

    Kulakovich, O. S.; Shabunya-Klyachkovskaya, E. V.; Matsukovich, A. S.; Trotsiuk, L. L.; Gaponenko, S. V.

    2016-11-01

    The effect of the mutual positions of plasmonic gold fi lms and a layer of analyte (malachite green and mitoxantrone molecules) on surface-enhanced Raman scattering (SERS) was investigated. When the excitation emission in the plasmon resonance region (531 nm and 632.8 nm) was used the SERS intensity of the analyte in a sandwich configuration was up to five times higher compared with the "analyte under gold film" arrangement and up to 60 times higher than for the "analyte on gold fi lm" case.

  12. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: towards the high detection limit and Raman quantitative measurements.

    PubMed

    Elashnikov, R; Mares, D; Podzimek, T; Švorčík, V; Lyutakov, O

    2017-08-07

    A smart plasmonic sensor, comprising a layer of a stimuli-responsive polymer sandwiched between two gold layers, is reported. As a stimuli-responsive material, a monolayer of poly(N-isopropylacrylamide) (PNIPAm) crosslinked globules is used. A quasi-periodic structure of the top gold layer facilitates efficient excitation and serves as a support for plasmon excitation and propagation. The intermediate layer of PNIPAm efficiently entraps targeted molecules from solutions. The sensor structure was optimized for efficient light focusing in the "active" PNIPAm layer. The optimization was based on the time-resolved finite-element simulations, which take into account the thickness of gold layers, size of PNIPAm globules and Raman excitation wavelength (780 nm). The prepared structures were characterized using SEM, AFM, UV-Vis refractometry and goniometry. Additional AFM scans were performed in water at two temperatures corresponding to the collapsed and swollen PNIPAm states. The Raman measurements demonstrate a high detection limit and perfect reproducibility of the Raman scattering signal for the prepared sensor. In addition, the use of created SERS structures for the detection of relevant molecules in the medical, biological and safety fields was demonstrated.

  13. High-Quality AZO/Au/AZO Sandwich Film with Ultralow Optical Loss and Resistivity for Transparent Flexible Electrodes.

    PubMed

    Zhou, Hua; Xie, Jing; Mai, Manfang; Wang, Jing; Shen, Xiangqian; Wang, Shuying; Zhang, Lihua; Kisslinger, Kim; Wang, Hui-Qiong; Zhang, Jinxing; Li, Yu; Deng, Junhong; Ke, Shanming; Zeng, Xierong

    2018-05-09

    Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.

  14. Buckling Analysis of Angle-ply Composite and Sandwich Plates by Combination of Geometric Stiffness Matrix

    NASA Astrophysics Data System (ADS)

    Zhen, Wu; Wanji, Chen

    2007-05-01

    Buckling response of angle-ply laminated composite and sandwich plates are analyzed using the global-local higher order theory with combination of geometric stiffness matrix in this paper. This global-local theory completely fulfills the free surface conditions and the displacement and stress continuity conditions at interfaces. Moreover, the number of unknowns in this theory is independent of the number of layers in the laminate. Based on this global-local theory, a three-noded triangular element satisfying C1 continuity conditions has also been proposed. The bending part of this element is constructed from the concept of DKT element. In order to improve the accuracy of the analysis, a method of modified geometric stiffness matrix has been introduced. Numerical results show that the present theory not only computes accurately the buckling response of general laminated composite plates but also predicts the critical buckling loads of soft-core sandwiches. However, the global higher-order theories as well as first order theories might encounter some difficulties and overestimate the critical buckling loads for soft-core sandwich plates.

  15. High-efficiency perovskite solar cells prepared by using a sandwich structure MAI-PbI2-MAI precursor film.

    PubMed

    Zhang, Xuhui; Ye, Jiajiu; Zhu, Liangzheng; Zheng, Haiying; Liu, Guozhen; Liu, Xuepeng; Duan, Bin; Pan, Xu; Dai, Songyuan

    2017-04-06

    Two-step deposition has been widely used in the perovskite layer preparation for perovskite solar cells due to its attractive morphology controllability. However, the limited diffusivity of CH 3 NH 3 I (MAI) might cause some PbI 2 to remain in the perovskite film. The residual PbI 2 in the perovskite film would lead to inferior performance of devices, such as, low power conversion efficiency (PCE), poor reproducibility and weak air stability. In this work, we developed a sandwich structure MAI-PbI 2 -MAI precursor film to prepare a PbI 2 -free CH 3 NH 3 PbI 3 perovskite film. In comparison to the two-step approach, the MAI-PbI 2 -MAI precursor film with a typical sandwich structure formed a uniform and pinhole-free perovskite film without any PbI 2 residue, which could significantly improve the performance of the devices. Moreover, the bottom MAI layer of the MAI-PbI 2 -MAI precursor film could improve the interfacial contact of the porous TiO 2 layer, leading to the promotion of the charge transfer and reduction of the recombination rate. Therefore, the devices fabricated from the sandwich structure MAI-PbI 2 -MAI precursor films showed dramatic improvements of open-circuit voltage (V oc ), short-circuit current density (J sc ), fill factor (FF) and PCE. As a result, a promising PCE of 17.8% with good long-term air stability was achieved for the MAI-PbI 2 -MAI precursor film based PSC, which is better than that prepared by a two-step approach.

  16. The development of optimal lightweight truss-core sandwich panels

    NASA Astrophysics Data System (ADS)

    Langhorst, Benjamin Robert

    Sandwich structures effectively provide lightweight stiffness and strength by sandwiching a low-density core between stiff face sheets. The performance of lightweight truss-core sandwich panels is enhanced through the design of novel truss arrangements and the development of methods by which the panels may be optimized. An introduction to sandwich panels is presented along with an overview of previous research of truss-core sandwich panels. Three alternative truss arrangements are developed and their corresponding advantages, disadvantages, and optimization routines are discussed. Finally, performance is investigated by theoretical and numerical methods, and it is shown that the relative structural efficiency of alternative truss cores varies with panel weight and load-carrying capacity. Discrete truss core sandwich panels can be designed to serve bending applications more efficiently than traditional pyramidal truss arrangements at low panel weights and load capacities. Additionally, discrete-truss cores permit the design of heterogeneous cores, which feature unit cells that vary in geometry throughout the panel according to the internal loads present at each unit cell's location. A discrete-truss core panel may be selectively strengthened to more efficiently support bending loads. Future research is proposed and additional areas for lightweight sandwich panel development are explained.

  17. Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure.

    PubMed

    Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G

    2015-05-01

    Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  19. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  20. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  1. Detection of Interfacial Debonding in a Rubber–Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers

    PubMed Central

    Feng, Qian; Jiang, Jian; Liang, Yabin; Song, Gangbing

    2017-01-01

    Rubber–steel-layered structures are used in many engineering applications. Laminated rubber–steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber–steel-layered structures. Interfacial debonding in rubber–steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber–steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel–rubber debonding. When the rubber–steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber–steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber–steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber–steel debonding failure in real time. The

  2. A phloem sandwich allowing attack and colonization by bark beetles (Coleoptera: Scolytidae) and associates

    Treesearch

    Andrew D. Taylor; Jane L. Hayes; John C. Moser

    1992-01-01

    Much of the life cycles of bark beetles and their associates are spent under the bark of the host tree and are impossible to observe under completely natural conditions. To observe the behavior and development of insects in the phloem layer, phloem sandwiches have been developed, in which a piece of bark and phloem is removed from a live tree and pressed against a...

  3. Sandwich enzyme-linked immunosorbent assay for naringin.

    PubMed

    Qu, Huihua; Wang, Xueqian; Qu, Baoping; Kong, Hui; Zhang, Yue; Shan, Wenchao; Cheng, Jinjun; Wang, Qingguo; Zhao, Yan

    2016-01-15

    Among the currently used immunoassay techniques, sandwich ELISA exhibits higher specificity, lower cross-reactivity, and a wider working range compared to the corresponding competitive assays. However, it is difficult to obtain a pair of antibodies that can simultaneously bind to two epitopes of a molecule with a molecular weight of less than 1000 Da. Naringin (Nar) is a flavonoid with a molecular mass of 580 Da. The main aim of this study was to develop a sandwich ELISA for detecting Nar. Two hybridomas secreting anti-Nar monoclonal antibodies (mAbs) were produced by fusing splenocytes from a mouse immunised against Nar-bovine serum albumin (BSA) conjugated with a hypoxanthine-aminopterin-thymidine (HAT)-sensitive mouse myeloma cell line; a sandwich ELISA for detecting Nar was developed using these two well-characterised anti-Nar mAbs. The performance of the sandwich assay was further evaluated by limit of detection (LOD), limit of quantification (LOQ), recovery, and interference analyses. A dose-response curve to Nar was obtained with an LOD of 6.78 ng mL(-1) and an LOQ of 13.47 ng mL(-1). The inter-assay and intra-assay coefficients of variation were 4.32% and 7.48%, respectively. The recovery rate of Nar from concentrated Fructus aurantii granules was 83.63%. A high correlation was obtained between HPLC and sandwich ELISA. These results demonstrate that the sandwich ELISA method has higher specificity for Nar than indirect competitive ELISA. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Controllable Preparation of Ultrathin Sandwich-Like Membrane with Porous Organic Framework and Graphene Oxide for Molecular Filtration

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanzhi; Xu, Danyun; Zhao, Qingshan; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-10-01

    Porous organic frameworks (POFs) based membranes have potential applications in molecular filtration, despite the lack of a corresponding study. This study reports an interesting strategy to get processable POFs dispersion and a novel ultrathin sandwich-like membrane design. It was accidentally found that the hydrophobic N-rich Schiff based POFs agglomerates could react with lithium-ethylamine and formed stable dispersion in water. By successively filtrating the obtained POFs dispersion and graphene oxide (GO), we successfully prepared ultrathin sandwich-like hybrid membranes with layered structure, which showed significantly improved separation efficiency in molecular filtration of organic dyes. This study may provide a universal way to the preparation of processable POFs and their hybrid membranes with GO.

  5. Analysis on spectra of hydroacoustic field in sonar cavity of the sandwich elastic wall structure

    NASA Astrophysics Data System (ADS)

    Xuetao, W.; Rui, H.; Weike, W.

    2017-09-01

    In this paper, the characteristics of the mechanical self - noise in sonar array cavity are studied by using the elastic flatbed - filled rectangular cavity parameterization model. Firstly, the analytic derivation of the vibration differential equation of the single layer, sandwich elastic wall plate structure and internal fluid coupling is carried out, and the modal method is used to solve it. Finally, the spectral characteristics of the acoustic field of rectangular cavity of different elastic wallboard materials are simulated and analyzed, which provides a theoretical reference for the prediction and control of sonar mechanical self-noise. In this paper, the sandwich board as control inside the dome background noise of a potential means were discussed, the dome background noise of qualitative prediction analysis and control has important theoretical significance.

  6. Adhesion characterization and defect sizing of sandwich honeycomb composites.

    PubMed

    Ndiaye, Elhadji Barra; Maréchal, Pierre; Duflo, Hugues

    2015-09-01

    Defects may appear in composite structures during their life cycle. A 10MHz 128 elements phased array transducer was investigated to characterize join bonds and defects in sandwich honeycomb composite structures. An adequate focal law throughout the composite skin gives the ultrasonic dispersive properties of the composite skin and glue layer behind. The resulting B-scan cartographies allow characterizing locally the honeycomb adhesion. Experimental measurements are compared in good agreement with the Debye Series Method (DSM). In the processed C-scan image, flaws are detectable and measurable, localized both in the scanning plane and in the thickness of the composite skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Transient response of an active nonlinear sandwich piezolaminated plate

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2017-04-01

    In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.

  8. Conjoined Cochlear Models:. the Twamp and the Sandwich

    NASA Astrophysics Data System (ADS)

    Hubbard, Allyn

    2009-02-01

    A new model of the cochlea is created by joining parts of the traveling-wave amplifier (TWAMP) and the Sandwich models. The lossy, untuned traveling-wave line of the TWAMP is retained, but the TWAMP's tuned traveling-wave line is replaced by the Sandwich's traveling-wave line that represents the reticular lamina (RL) and scala tympani. The model combines stereocilliary forces, which act between the tectorial membrane (TM) and RL, with somatic outer hair cell forces that power the Sandwich.

  9. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  10. Optimisation of multi-layer rotationally moulded foamed structures

    NASA Astrophysics Data System (ADS)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4

  11. Natural melanin composites by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  12. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that includes transverse shear effects and damage tolerance considerations. This method is incorporated into an optimization program called SANDOP (SANDwich OPtimization). SANDOP is used in the present study to design optimized composite sandwich cover panels for transport aircraft wing applications as a demonstration of its capabilities. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to identical constraints. Results indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and plus or minus 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density.

  13. Viewpoints of working sandwich generation women and occupational therapists on role balance strategies.

    PubMed

    Evans, Kiah L; Girdler, Sonya J; Falkmer, Torbjorn; Richmond, Janet E; Wagman, Petra; Millsteed, Jeannine; Falkmer, Marita

    2017-09-01

    Occupational therapists need to be cognizant of evidence-based role balance advice and strategies that women with multigenerational caring responsibilities can implement independently or with minimal assistance, as role balance may not be the primary goal during many encounters with this population. Hence, this study aimed to identify the viewpoints on the most helpful role balance strategies for working sandwich generation women, both from their own perspectives and from the perspective of occupational therapists. This was achieved through a Q methodology study, where 54 statements were based on findings from interviews, sandwich generation literature and occupational therapy literature. In total, 31 working sandwich generation women and 42 occupational therapists completed the Q sort through either online or paper administration. The data were analysed using factor analysis with varimax rotation and were interpreted through collaboration with experts in the field. The findings revealed similarities between working sandwich generation women and occupational therapists, particularly in terms of advocating strategies related to sleep, rest and seeking practical assistance from support networks. Differences were also present, with working sandwich generation women viewpoints tending to emphasize strategies related to coping with a busy lifestyle attending to multiple responsibilities. In contrast, occupational therapy viewpoints prioritized strategies related to the occupational therapy process, such as goal setting, activity focused interventions, monitoring progress and facilitating sustainable outcomes.

  14. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less

  15. Composite Sandwich Structures for Shock Mitigation and Energy Absorption

    DTIC Science & Technology

    2016-06-28

    analysis of the blast performance of foam -core, composite sandwich panels was that on a per unit areal weight density basis, lighter and more crushable... foam cores offered greater blast resistance and energy absorption than the heavier and stronger foam cores. This was found to be the case even on an...absolute weight basis for cuNed sandwich panels and panels subjected to underwater blast. 15. SUBJECT TERMS composite; foam -core sandwich; blast

  16. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  17. Process engineering of polynanomeric layered and infused composites

    NASA Astrophysics Data System (ADS)

    Williams, Ebonee Porche Marie

    As the application of advanced polymeric composites expands, the continued adaptation of traditional as well as the incorporation and/or implementation of new technologies continue to be at the core of development for engineers. One of these traditional technologies is honeycomb sandwich composites. This technology has been around for more than fifty years and there have been minimal alterations to the materials used to produce the parts and the process used to manufacture the structures. This is where the depth of this work focused. Traditional honeycomb core dip resin systems were modified to incorporate nano scale fillers. This adaptation is one of the defining aspects of polynanomeric systems, the concept of which is that modifications of the nano scale in a polymer system create nano layered structures that emulate the properties of both the polymer and the nano filler, a nano composite. The modified resin systems were characterized to investigate morphology, thermal and mechanical properties as well as electrical characteristics. It was observed that the nano altered resin system exhibited increased mechanical, 50 to 60%, and thermal properties, burn temperatures extended by 30°C, while also demonstrating improved electrical properties. These were significant results given that the main applications of honeycomb sandwich structures are on the interior of aircrafts. These results could open the door to some new applications of the modified resin system. This work also implemented a new processing technique to produce honeycomb sandwich structures. The technique was Vacuum Assisted Resin Transfer Molding, VARTM, which has gained interest over the last decade due to the reduced up front cost to initiate production, the ease of processing, and the overall health benefits. This process was successfully performed to produce sandwich structures by incorporating a permeable scrim layer at the core face sheet interface. This was the first successful production of

  18. Sandwich Structure Risk Reduction in Support of the Payload Adapter Fitting

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Jackson, J. R.; Guin, W. E.

    2018-01-01

    Reducing risk for utilizing honeycomb sandwich structure for the Space Launch System payload adapter fitting includes determining what parameters need to be tested for damage tolerance to ensure a safe structure. Specimen size and boundary conditions are the most practical parameters to use in damage tolerance inspection. The effect of impact over core splices and foreign object debris between the facesheet and core is assessed. Effects of enhanced damage tolerance by applying an outer layer of carbon fiber woven cloth is examined. A simple repair technique for barely visible impact damage that restores all compression strength is presented.

  19. Rashba sandwiches with topological superconducting phases

    NASA Astrophysics Data System (ADS)

    Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena

    2018-05-01

    We introduce a versatile heterostructure harboring various topological superconducting phases characterized by the presence of helical, chiral, or unidirectional edge states. Changing parameters, such as an effective Zeeman field or chemical potential, one can tune between these three topological phases in the same setup. Our model relies only on conventional nontopological ingredients. The bilayer setup consists of an s -wave superconductor sandwiched between two two-dimensional electron gas layers with strong Rashba spin-orbit interaction. The interplay between two different pairing mechanisms, proximity induced direct and crossed Andreev superconducting pairings, gives rise to multiple topological phases. In particular, helical edge states occur if crossed Andreev superconducting pairing is dominant. In addition, an in-plane Zeeman field leads to a two-dimensional gapless topological phase with unidirectional edge states, which were previously predicted to exist only in noncentrosymmetric superconductors. If the Zeeman field is tilted out of the plane, the system is in a topological phase hosting chiral edge states.

  20. Minimum weight structural sandwich

    Treesearch

    Edward W. Kuenzi

    1965-01-01

    This note presents theoretical analyses for determination of dimensions of structural sandwich of minimum weight that will have certain stiffness and load-carrying capabilities. Included is a brief discussion of the resultant minimum weight configurations.

  1. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  2. Static and dynamic response of a sandwich structure under axial compression

    NASA Astrophysics Data System (ADS)

    Ji, Wooseok

    This thesis is concerned with a combined experimental and theoretical investigation of the static and dynamic response of an axially compressed sandwich structure. For the static response problem of sandwich structures, a two-dimensional mechanical model is developed to predict the global and local buckling of a sandwich beam, using classical elasticity. The face sheet and the core are assumed as linear elastic orthotropic continua in a state of planar deformation. General buckling deformation modes (periodic and non-periodic) of the sandwich beam are considered. On the basis of the model developed here, validation and accuracy of several previous theories are discussed for different geometric and material properties of a sandwich beam. The appropriate incremental stress and conjugate incremental finite strain measure for the instability problem of the sandwich beam, and the corresponding constitutive model are addressed. The formulation used in the commercial finite element package is discussed in relation to the formulation adopted in the theoretical derivation. The Dynamic response problem of a sandwich structure subjected to axial impact by a falling mass is also investigated. The dynamic counterpart of the celebrated Euler buckling problem is formulated first and solved by considering the case of a slender column that is impacted by a falling mass. A new notion, that of the time to buckle, "t*" is introduced, which is the corresponding critical quantity analogous to the critical load in static Euler buckling. The dynamic bifurcation buckling analysis is extended to thick sandwich structures using an elastic foundation model. A comprehensive set of impact test results of sandwich columns with various configurations are presented. Failure mechanisms and the temporal history of how a sandwich column responds to axial impact are discussed through the experimental results. The experimental results are compared against analytical dynamic buckling studies and finite

  3. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer.

    PubMed

    Wang, Qingkai; Chen, Yu; Miao, Lili; Jiang, Guobao; Chen, Shuqing; Liu, Jun; Fu, Xiquan; Zhao, Chujun; Zhang, Han

    2015-03-23

    Topological insulators have been theoretically predicted as promising candidates for broadband photonics devices due to its large bulk band gap states in association with the spin-momentum-locked mass-less Dirac edge/surface states. Unlike the bulk counterpart, few-layer topological insulators possess some intrinsic optical advantages, such as low optical loss, low saturation intensity and high concentration of surface state. Herein, we use a solvothermal method to prepare few-layer Bi₂Te₃ flakes. By sandwiching few-layer Bi₂Te₃ flakes with polymethyl methacrylate (PMMA) polymer, a novel light modulation device had been successfully fabricated with high chemical and thermal stabilities as well as excellent mechanical durability, originating from the contribution of PMMA acting as buffer layers that counteract excessive mechanical bending within the fragile Bi₂Te₃ flakes. The incorporation of the as-fabricated PMMA-TI-PMMA as saturable absorber, which could bear long-term mechanical loadings, into the fiber laser cavity generated the stable dissipative soliton mode-locking with a 3-dB spectral bandwidth up to 51.62 nm and tunable wavelength range of 22 nm. Our work provides a new way of fabricating PMMA-TI-PMMA sandwiched composite structure as saturable absorber with promising applications for laser operation.

  4. Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate

    NASA Astrophysics Data System (ADS)

    Mehar, Kulmani; Panda, Subrata Kumar

    2018-03-01

    In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.

  5. Development, testing, and numerical modeling of a foam sandwich biocomposite

    NASA Astrophysics Data System (ADS)

    Chachra, Ricky

    This study develops a novel sandwich composite material using plant based materials for potential use in nonstructural building applications. The face sheets comprise woven hemp fabric and a sap based epoxy, while the core comprises castor oil based foam with waste rice hulls as reinforcement. Mechanical properties of the individual materials are tested in uniaxial compression and tension for the foam and hemp, respectively. The sandwich composite is tested in 3 point bending. Flexural results are compared to a finite element model developed in the commercial software Abaqus, and the validated model is then used to investigate alternate sandwich geometries. Sandwich model responses are compared to existing standards for nonstructural building panels, showing that the novel material is roughly half the strength of equally thick drywall. When space limitations are not an issue, a double thickness sandwich biocomposite is found to be a structurally acceptable replacement for standard gypsum drywall.

  6. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  7. Sandwich-structured C/C-SiC composites fabricated by electromagnetic-coupling chemical vapor infiltration.

    PubMed

    Hu, Chenglong; Hong, Wenhu; Xu, Xiaojing; Tang, Sufang; Du, Shanyi; Cheng, Hui-Ming

    2017-10-13

    Carbon fiber (CF) reinforced carbon-silicon carbide (C/C-SiC) composites are one of the most promising lightweight materials for re-entry thermal protection, rocket nozzles and brake discs applications. In this paper, a novel sandwich-structured C/C-SiC composite, containing two exterior C/SiC layers, two gradient C/C-SiC layers and a C/C core, has been designed and fabricated by two-step electromagnetic-coupling chemical vapor infiltration (E-CVI) for a 20-hour deposition time. The cross-section morphologies, interface microstructures and SiC-matrix growth characteristics and compositions of the composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. Microstructure characterization indicates that the SiC growth includes an initial amorphous SiC zone, a gradual crystallization of SiC and grow-up of nano-crystal, and a columnar grain region. The sandwich structure, rapid deposition rate and growth characteristics are attributed to the formation of thermal gradient and the establishment of electromagnetic field in the E-CVI process. The composite possesses low density of 1.84 g/cm 3 , high flexural strength of 325 MPa, and low linear ablation rate of 0.38 μm/s under exposure to 5-cycle oxyacetylene flame for 1000 s at ~1700 °C.

  8. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses.

    PubMed

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-03-01

    A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced

  9. Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials

    NASA Astrophysics Data System (ADS)

    Castaings, Michel; Hosten, Bernard

    2003-05-01

    The propagation of Lamb-like waves in sandwich plates made of anisotropic and viscoelastic material layers is studied. A semi-analytical model is described and used for predicting the dispersion curves (phase velocity, energy velocity, and complex wave-number) and the through-thickness distribution fields (displacement, stress, and energy flow). Guided modes propagating along a test-sandwich plate are shown to be quite different than classical Lamb modes, because this structure does not have the mirror symmetry, contrary to most of composite material plates. Moreover, the viscoelastic material properties imply complex roots of the dispersion equation to be found that lead to connections between some of the dispersion curves, meaning that some of the modes get coupled together. Gradual variation from zero to nominal values of the imaginary parts of the viscoelastic moduli shows that the mode coupling depends on the level of material viscoelasticity, except for one particular case where this phenomenon exists whether the medium is viscoelastic or not. The model is used to quantify the sensitivity of both the dispersion curves and the through-thickness mode shapes to the level of material viscoelasticity, and to physically explain the mode-coupling phenomenon. Finite element software is also used to confirm results obtained for the purely elastic structure. Finally, experiments are made using ultrasonic, air-coupled transducers for generating and detecting guided modes in the test-sandwich structure. The mode-coupling phenomenon is then confirmed, and the potential of the air-coupled system for developing single-sided, contactless, NDT applications of such structures is discussed.

  10. Thermally Sprayed High Temperature Sandwich Structures: Physical Properties and Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Salavati, Saeid

    Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades due to their unique physical and mechanical properties. One of the potential applications of open pore metallic foam core sandwich structures is in heat exchangers. An investigation of sandwich structures fabricated from materials suitable for application at high temperatures and in corrosive environments was undertaken in this project. A novel method for fabrication of metallic foam core sandwich structures is thermal spray deposition of the faces on the prepared surfaces of the metallic foam substrate. The objective of the current study was to optimize the twin wire arc spray process parameters for the deposition of alloy 625 faces with controllable porosity content on the nickel foam substrate, and to characterize the physical and mechanical properties of the sandwich structure. The experimental investigations consisted of microstructural evaluation of the skin material and the foam substrate, investigation of the effect of alloying on the mechanical and thermal properties of the nickel foam, optimization of the grit-blasting and arc spray processes, observation of mechanical properties of the alloy 625 deposit by tensile testing and evaluation of the overall mechanical properties of the sandwich structure under flexural loading condition. The optimization of arc spraying process parameters allowed deposition of alloy 625 faces with a porosity of less than 4% for heat exchanger applications. Modification of the arc spraying process by co-deposition of polyester powder enabled 20% porosity to be obtained in the deposited faces for heat shield applications with film cooling. The effects of nickel foam alloying and heat treatment on the flexural rigidity of the sandwich structures were investigated and compared with as-received foam and as-fabricated sandwich structures. Available analytical models were employed to describe the effect of

  11. Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg).

    PubMed

    Kim, Jinwoon; Oh, Seo Yeong; Shukla, Shruti; Hong, Seok Bok; Heo, Nam Su; Bajpai, Vivek K; Chun, Hyang Sook; Jo, Cheon-Ho; Choi, Bong Gill; Huh, Yun Suk; Han, Young-Kyu

    2018-06-01

    This study aimed to develop a more sensitive method for the detection of hepatitis B surface antigen (HBsAg) using heteroassembled gold nanoparticles (AuNPs). A single layered localized surface plasmon resonance (LSPR) chip format was developed with antigen-antibody reaction-based detection symmetry using AuNPs, which detected HBsAg at 10 pg/mL. To further improve the detection limit, a modified detection format was fabricated by fixing a secondary antibody (to form a heteroassembled sandwich format) to the AuNP monolayer, which enhanced the detection sensitivity by about 100 times. The developed heteroassembled AuNPs sandwich-immunoassay LSPR chip format was able to detect as little as 100 fg/mL of HBsAg within 10-15 min. In addition, the heteroassembled AuNPs sandwich-immunoassay LSPR chip format did not show any non-specific binding to other tested antigens, including alpha fetoprotein (AFP), C-reactive protein (CRP), and prostate-specific antigen (PSA). These findings confirm that the proposed detection strategy of heteroassembled AuNPs sandwich-immunoassay LSPR chip format may provide a new platform for early diagnosis of various human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Analytical study of sandwich structures using Euler-Bernoulli beam equation

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.

    2017-01-01

    This paper presents an analytical study of sandwich structures. In this study, the Euler-Bernoulli beam equation is solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements and longitudinal stresses for each particular material in the sandwich structure.

  13. Sandwich mapping of schistosomiasis risk in Anhui Province, China.

    PubMed

    Hu, Yi; Bergquist, Robert; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Li, Rui; Sun, Liqian; Xia, Congcong; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu

    2015-06-03

    Schistosomiasis mapping using data obtained from parasitological surveys is frequently used in planning and evaluation of disease control strategies. The available geostatistical approaches are, however, subject to the assumption of stationarity, a stochastic process whose joint probability distribution does not change when shifted in time. As this is impractical for large areas, we introduce here the sandwich method, the basic idea of which is to divide the study area (with its attributes) into homogeneous subareas and estimate the values for the reporting units using spatial stratified sampling. The sandwich method was applied to map the county-level prevalence of schistosomiasis japonica in Anhui Province, China based on parasitological data collected from sample villages and land use data. We first mapped the county-level prevalence using the sandwich method, then compared our findings with block Kriging. The sandwich estimates ranged from 0.17 to 0.21% with a lower level of uncertainty, while the Kriging estimates varied from 0 to 0.97% with a higher level of uncertainty, indicating that the former is more smoothed and stable compared to latter. Aside from various forms of reporting units, the sandwich method has the particular merit of simple model assumption coupled with full utilization of sample data. It performs well when a disease presents stratified heterogeneity over space.

  14. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  15. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates

    PubMed Central

    Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao

    2016-01-01

    We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme. PMID:27383027

  16. Non-linear vibrations of sandwich viscoelastic shells

    NASA Astrophysics Data System (ADS)

    Benchouaf, Lahcen; Boutyour, El Hassan; Daya, El Mostafa; Potier-Ferry, Michel

    2018-04-01

    This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.

  17. External mean flow influence on sound transmission through finite clamped double-wall sandwich panels

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Catalan, Jean-Cédric

    2017-09-01

    This paper studies the influence of an external mean flow on the sound transmission through finite clamped double-wall sandwich panels lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials and various configurations of coupling the poroelastic layer to the facing plates are considered. The clamped boundary of finite panels are dealt with by the modal superposition theory and the weighted residual (Garlekin) method, leading to a matrix equation solution for the sound transmission loss (STL) through the structure. The theoretical model is validated against existing theories of infinite sandwich panels with and without an external flow. The numerical results of a single incident wave show that the external mean flow has significant effects on the STL which are coupled with the clamped boundary effect dominating in the low-frequency range. The external mean flow also influences considerably the limiting incidence angle of the panel system and the effect of the incidence angle on the STL. However, the influences of the azimuthal angle and the external flow orientation are negligible.

  18. Ballistic vs. diffusive heat transfer across nanoscopic films of layered crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Meng; Keblinski, Pawel, E-mail: keblip@rpi.edu

    2014-04-14

    We use non-equilibrium molecular dynamics to study the heat transfer mechanism across sandwich interfacial structures of Si/n-atomic-layers/Si, with 1 ≤ n ≤ 20 and atomic layers composed of WSe{sub 2} and/or graphene. In the case of WSe{sub 2} sheets, we observe that the thermal resistance of the sandwich structure is increasing almost linearly with the number of WSe{sub 2} sheets, n, indicating a diffusive phonon transport mechanism. By contrast in the case of n graphene layers, the interfacial thermal resistance is more or less independent on the number of layers for 1 ≤ n ≤ 10, and is associated with ballistic phonon transport mechanism. We attribute the diffusivemore » heat transfer mechanism across WSe{sub 2} sheets to abundant low frequency and low group velocity optical modes that carry most of the heat across the interface. By contrast, in graphene, acoustic modes dominate the thermal transport across the interface and render a ballistic heat flow mechanism.« less

  19. Free vibration Analysis of Sandwich Plates with cutout

    NASA Astrophysics Data System (ADS)

    Mishra, N.; Basa, B.; Sarangi, S. K.

    2016-09-01

    This paper presents the free vibration analysis of sandwich plates with cutouts. Cutouts are inevitable in structural applications and the presence of these cutouts in the structures greatly influences their dynamic characteristics. A finite element model has been developed here using the ANSYS 15.0 software to study the free vibration characteristics of sandwich plates in the presence of cutouts. Shell 281 element, an 8-noded element with six degrees of freedom suited for analyzing thin to moderately thick structures is considered in the development of the model. Block Lanczose method is adopted to extract the mode shapes to obtain the natural frequency corresponding to free vibration of the plate. The effects of parametric variation on the natural frequency of the sandwich plates with cutout are studied and results are presented.

  20. Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car

    NASA Astrophysics Data System (ADS)

    Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.

    2017-01-01

    Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.

  1. Theoretical study on the dispersion curves of Lamb waves in piezoelectric-semiconductor sandwich plates GaAs-FGPM-AlAs: Legendre polynomial series expansion

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar

    2017-06-01

    In this paper, the propagation of the Lamb waves in the GaAs-FGPM-AlAs sandwich plate is studied. Based on the orthogonal function, Legendre polynomial series expansion is applied along the thickness direction to obtain the Lamb dispersion curves. The convergence and accuracy of this polynomial method are discussed. In addition, the influences of the volume fraction p and thickness hFGPM of the FGPM middle layer on the Lamb dispersion curves are developed. The numerical results also show differences between the characteristics of Lamb dispersion curves in the sandwich plate for various gradient coefficients of the FGPM middle layer. In fact, if the volume fraction p increases the phase velocity will increases and the number of modes will decreases at a given frequency range. All the developments performed in this paper were implemented in Matlab software. The corresponding results presented in this work may have important applications in several industry areas and developing novel acoustic devices such as sensors, electromechanical transducers, actuators and filters.

  2. Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor.

    PubMed

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-03-23

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm(-1)), light weight (1 mg cm(-2)) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.

  3. Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-03-01

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm-1), light weight (1 mg cm-2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.

  4. Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor

    PubMed Central

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-01-01

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm−1), light weight (1 mg cm−2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics. PMID:25797022

  5. A simple model for the prediction of the discrete stiffness states of a homogeneous electrostatically tunable multi-layer beam

    NASA Astrophysics Data System (ADS)

    Bergamini, A.; Christen, R.; Motavalli, M.

    2007-04-01

    The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to

  6. Multi-Functional Sandwich Composites for Spacecraft Applications: An Initial Assessment

    NASA Technical Reports Server (NTRS)

    Adams, Daniel O.; Webb, Nicholas Jason; Yarger, Cody B.; Hunter, Abigail; Oborn, Kelli D.

    2007-01-01

    Current spacecraft implement relatively uncoupled material and structural systems to address a variety of design requirements, including structural integrity, damage tolerance, radiation protection, debris shielding and thermal insulation. This investigation provided an initial assessment of multi-functional sandwich composites to integrate these diverse requirements. The need for radiation shielding was addressed through the selection of polymeric constituents with high hydrogen content. To provide increased damage tolerance and debris shielding, manufacturing techniques were developed to incorporate transverse stitching reinforcement, internal layers, and a self-healing ionomer membrane. To assess the effects of a space environment, thermal expansion behavior of the candidate foam materials was investigated under a vacuum and increasing temperature. Finally, a thermal expansion model was developed for foam under vacuum conditions and its predictive capability assessed.

  7. Thermal-Diode Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Basiulis, A.

    1986-01-01

    Thermal diode sandwich panel transfers heat in one direction, but when heat load reversed, switches off and acts as thermal insulator. Proposed to control temperature in spacecraft and in supersonic missiles to protect internal electronics. In combination with conventional heat pipes, used in solar panels and other heat-sensitive systems.

  8. Salads, Sandwiches and Desserts.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on salads, sandwiches, and desserts is designed to provide Marine food service personnel with a general background in the proper techniques for the preparation of these items. Introductory materials include specific information for MCI students and a…

  9. Damage Tolerance of Sandwich Plates With Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.

    2001-01-01

    A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.

  10. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    NASA Astrophysics Data System (ADS)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  11. Buckling analysis of curved composite sandwich panels subjected to inplane loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1993-01-01

    Composite sandwich structures are being considered for primary structure in aircraft such as subsonic and high speed civil transports. The response of sandwich structures must be understood and predictable to use such structures effectively. Buckling is one of the most important response mechanisms of sandwich structures. A simple buckling analysis is derived for sandwich structures. This analysis is limited to flat, rectangular sandwich panels loaded by uniaxial compression (N(sub x)) and having simply supported edges. In most aerospace applications, however, the structure's geometry, boundary conditions, and loading are usually very complex. Thus, a general capability for analyzing the buckling behavior of sandwich structures is needed. The present paper describes and evaluates an improved buckling analysis for cylindrically curved composite sandwich panels. This analysis includes orthotropic facesheets and first-order transverse shearing effects. Both simple support and clamped boundary conditions are also included in the analysis. The panels can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by direct application of Galerkin's method. The accuracy of the present analysis is verified by comparing results with those obtained from finite element analysis for a variety of geometries, loads, and boundary conditions. The limitations of the present analysis are investigated, in particular those related to the shallow shell assumptions in the governing equations. Finally, the computational efficiency of the present analysis is considered.

  12. Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure.

    PubMed

    Yu, Liang; Zhang, Yatao; Zhang, Bing; Liu, Jindun

    2014-04-11

    A sandwich-like antibacterial reagent (Ag/HNTs/rGO) was constructed through the direct growth of silver nanoparticles on the surface graphene-based HNTs nanosheets. Herein, various nanomaterials were combined by adhesion effect of DOPA after self-polymerization. Ag/HNTs/rGO possess enhanced antibacterial ability against E. coli and S. aureus compared with individual silver nanoparticles, rGO nanosheets or their nanocomposites.

  13. Structure of oxides prepared by decomposition of layered double Mg–Al and Ni–Al hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepanova, Svetlana V.; Novosibirsk State University, Novosibirsk; Leont’eva, Natalya N., E-mail: n_n_leonteva@list.ru

    2015-05-15

    Abstracts: Thermal decomposition of Mg–Al and Ni–Al layered double hydroxides LDH at temperatures lower than 800 °C leads to the formation of oxides with different structures. Mg–Al oxide has a very defective structure and consists of octahedral layers as in periclase MgO and mixed octahedral–tetrahedral layers as in spinel MgAl{sub 2}O{sub 4}. Mixed Ni–Al oxide has a sandwich-like structure, consisting of a core with Al-doped NiO-like structure and some surface layers with spinel NiAl{sub 2}O{sub 4} structure epitaxial connected with the core. Suggested models were verified by simulation of X-ray diffraction patterns using DIFFaX code, as well as HRTEM, IR-,more » UV-spectroscopies, and XPS. - Graphical abstract: In the Mg–Al layered double hydroxide Al{sup 3+} ions migrate into interlayers during decomposition. The Mg–Al oxide represents sequence of octahedral and octahedral–tetrahedral spinel layers with vacancies. The Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers as a result of migration of Al{sup 3+} ions on the surface. The models explain the presence and absence of “memory effect” for the Mg–Al and Ni–Al oxides, respectively. - Highlights: • We study products of Mg(Ni)–Al LDH decomposition by calcination at 500(400)–800 °C. • In Mg–Al/Ni–Al LDH Al ions migrate into interlayers/on the surface during decomposition. • Mg–Al oxide represents sequence of periclase- and spinel-like layers with vacancies. • Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers. • The models explain the presence/absence of “memory effect” for Mg–Al/Ni–Al oxides.« less

  14. Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.

    2003-01-01

    The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.

  15. Self-stressed sandwich bridge decks.

    DOT National Transportation Integrated Search

    1971-01-01

    Proposed is an entirely new type of bridge deck, consisting of an unreinforced lightweight concrete slab made of expanding cement sandwiched between two thin plates of steel. The expanding core serves to prestress the panel. Laboratory tests were con...

  16. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  17. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  18. Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kang, Hui; Shi, Jie; Liu, Liyan; Shan, Mingjing; Xu, Zhiwei; Li, Nan; Li, Jing; Lv, Hanming; Qian, Xiaoming; Zhao, Lihuan

    2018-01-01

    To tune interlayer spacing, regulate water channel and improve stability of composite membrane, graphene oxide (GO) and oxidized carbon nanotubes (OCNTs) were assembled alternately to form sandwich morphology on a polyacrylonitrile substrate by layer-by-layer self-assembly technique. Polyelectrolyte played a part in cross-linking between GO and OCNTs. The effects about concentration ratio of GO and OCNTs on nanofiltration performance were investigated in detail. The composite membrane was used for dye rejection. When composite membrane with concentration ratio of GO and OCNTs was 10:1, water flux and rejection rate for methyl blue reached 21.71 L/(m2 h) and 99.3%, respectively. Meanwhile, this composite membrane had higher flux compared with reported literatures in which rejection also reached up to 99%. When concentration ratio of composite membranes about GO and OCNTs were 10:1 and 15:1, dye rejection for methyl blue remained 99.3% and 99.6% respectively after operating time of 50 h. Irreversible fouling ratio of composite membrane in a concentration ratio of 10:1 was only 4.4%, indicating that composite membrane had excellent antifouling performance for Bovine Serum Albumin. It was speculated that proper distribution of OCNTs in the sandwich morphology formed proper support points and water channels which benefited for a more stable performance.

  19. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  20. (CaO)(FeSe): A layered wide-gap oxychalcogenide semiconductor

    DOE PAGES

    Han, Fei; Wang, Di; Malliakas, Christos D.; ...

    2015-07-20

    A new iron-oxychalcogenide (CaO)(FeSe) was obtained which crystallizes in the orthorhombic space group Pnma (No. 62) with a = 5.9175(12) Å, b = 3.8797(8) Å, c = 13.170(3) Å. The unique structure of (CaO)(FeSe) is built up of a quasi-two-dimensional network of corrugated infinite layers of corner-shared FeSe 2O 2 tetrahedra that extend in the ab-plane. The FeSe 2O 2 layers stack along the c-axis with Ca 2+ cations sandwiched between the layers. Optical spectroscopy and resistivity measurements reveal semiconducting behavior with an indirect optical band gap of around 1.8 eV and an activation energy of 0.19(1) eV. Furthermore, electronicmore » band structure calculations at the density function level predict a magnetic configuration as ground state and confirm the presence of an indirect wide gap in (CaO)(FeSe).« less

  1. Enhanced Antibacterial Activity of Silver Nanoparticles/Halloysite Nanotubes/Graphene Nanocomposites with Sandwich-Like Structure

    PubMed Central

    Yu, Liang; Zhang, Yatao; Zhang, Bing; Liu, Jindun

    2014-01-01

    A sandwich-like antibacterial reagent (Ag/HNTs/rGO) was constructed through the direct growth of silver nanoparticles on the surface graphene-based HNTs nanosheets. Herein, various nanomaterials were combined by adhesion effect of DOPA after self-polymerization. Ag/HNTs/rGO posses enhanced antibacterial ability against E. coli and S. aureus compared with individual silver nanoparticles, rGO nanosheets or their nanocomposites. PMID:24722502

  2. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    NASA Astrophysics Data System (ADS)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  3. Three-point bending of honeycomb sandwich beams with facesheet perforations

    NASA Astrophysics Data System (ADS)

    Su, Pengbo; Han, Bin; Zhao, Zhongnan; Zhang, Qiancheng; Lu, Tian Jian

    2017-12-01

    A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under three-point bending, both analytically and numerically. Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet (perforation ratio). While for large-scale engineering applications like the decks of cargo vehicles and transportation ships, the perforations are needed to facilitate the fabrication process (e.g., laser welding) as well as service maintenance, it is demonstrated that these perforations, when properly designed, can also enhance the resistance of the sandwich to bending. For illustration, fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs. Further, the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes: (1) bending failure, i.e., yielding of beam cross-section and buckling of top facesheet caused by bending moment; (2) shear failure, i.e., yielding and buckling of core webs due to shear forcing. The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios. As the perforation ratio is increased, the load of shear failure increases due to thickening core webs, while that of bending failure decreases due to the weakening bottom facesheet. Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal, leading to significantly enhanced failure load (up to 60% increase) relative to that of a non-perforated sandwich beam with equal mass.

  4. Development of monoclonal antibody-based sandwich ELISA for detection of dextran.

    PubMed

    Wang, Sheng-Yu; Li, Zhe; Wang, Xian-Jiang; Lv, Sha; Yang, Yun; Zeng, Lian-Qiang; Luo, Fang-Hong; Yan, Jiang-Hua; Liang, Da-Feng

    2014-10-01

    Dextran as anti-nutritional factor is usually a result of bacteria activity and has associated serial problems during the process stream in the sugar industry and in medical therapy. A sensitive method is expected to detect dextran quantitatively. Here we generated four monoclonal antibodies (MAbs) against dextran using dextran T40 conjugated with bovine serum albumin (BSA) as immunogen in our lab following hybridoma protocol. Through pairwise, an MAb named D24 was determined to be conjugated with horseradish peroxidase (HRP) and was used in the establishment of a sensitive sandwich enzyme-linked immunosorbent assay (ELISA) method for determination of dextran, in which MAb D9 was chosen as a capture antibody. The detection limit and working scope of the developed sandwich ELISA method were 3.9 ng/mL and 7.8-500 ng/mL with a correlation coefficient of 0.9909. In addition, the cross-reaction assay demonstrated that the method possessed high specificity with no significant cross-reaction with dextran-related substances, and the recovery rate ranged from 96.35 to 102.00%, with coefficient of variation ranging from 1.58 to 6.94%. These results indicated that we developed a detection system of MAb-based sandwich ELISA to measure dextran and this system should be a potential tool to determine dextran levels.

  5. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  6. Practical Instruction in Tissue Culture and Cytogenetics for Sandwich Students.

    ERIC Educational Resources Information Center

    Williams, D. C.; Bishun, N. P.

    1973-01-01

    Describes the training and practical techniques taught to students involved in a sandwich course at the Tissue Culture and Cytogenetics Unit of the Marie Curie Memorial Foundation, Surrey, England. Students spend a minimum of six months involved in the sandwich course before returning to university for a final academic year. (JR)

  7. An efficient finite element with layerwise mechanics for smart piezoelectric composite and sandwich shallow shells

    NASA Astrophysics Data System (ADS)

    Yasin, M. Yaqoob; Kapuria, S.

    2014-01-01

    In this work, we present a new efficient four-node finite element for shallow multilayered piezoelectric shells, considering layerwise mechanics and electromechanical coupling. The laminate mechanics is based on the zigzag theory that has only seven kinematic degrees of freedom per node. The normal deformation of the piezoelectric layers under the electric field is accounted for without introducing any additional deflection variables. A consistent quadratic variation of the electric potential across the piezoelectric layers with the provision of satisfying the equipotential condition of electroded surfaces is adopted. The performance of the new element is demonstrated for the static response under mechanical and electric potential loads, and for free vibration response of smart shells under different boundary conditions. The predictions are found to be very close to the three dimensional piezoelasticity solutions for hybrid shells made of not only single-material composite substrates, but also sandwich substrates with a soft core for which the equivalent single layer (ESL) theories perform very badly.

  8. Multi-objective optimal design of sandwich panels using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow

    2017-10-01

    In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.

  9. Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1993-01-01

    Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.

  10. Employment of a metal microgrid as a front electrode in a sandwich-structured photodetector.

    PubMed

    Zhang, Junying; Cai, Chao; Pan, Feng; Hao, Weichang; Zhang, Weiwei; Wang, Tianmin

    2009-07-01

    A highly UV-transparent metal microgrid was prepared and employed as the front electrode in a sandwich-structured ultraviolet (UV) photodetector using TiO(2) thin film as the semiconductor layer. The photo-generated charger carriers travel a shorter distance before reaching the electrodes in comparison with a photodetector using large-spaced interdigitated metal electrodes (where distance between fingers is several to tens of micrometers) on the surface of the semiconductor film. This photodetector responds to UV light irradiation, and the photocurrent intensity increases linearly with the irradiation intensity below 0.2 mW/cm(2).

  11. Triplex molecular layers with nonlinear nanomechanical response

    NASA Astrophysics Data System (ADS)

    Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.

    2002-06-01

    The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.

  12. An Analysis of Nondestructive Evaluation Techniques for Polymer Matrix Composite Sandwich Materials

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Roberts, Gary D.; Binienda, Wieslaw K.; Zheng, Diahua; Averbeck, Timothy; Roth, Donald J.; Jeanneau, Philippe

    2006-01-01

    Structural sandwich materials composed of triaxially braided polymer matrix composite material face sheets sandwiching a foam core are being utilized for applications including aerospace components and recreational equipment. Since full scale components are being made from these sandwich materials, it is necessary to develop proper inspection practices for their manufacture and in-field use. Specifically, nondestructive evaluation (NDE) techniques need to be investigated for analysis of components made from these materials. Hockey blades made from sandwich materials and a flat sandwich sample were examined with multiple NDE techniques including thermographic, radiographic, and shearographic methods to investigate damage induced in the blades and flat panel components. Hockey blades used during actual play and a flat polymer matrix composite sandwich sample with damage inserted into the foam core were investigated with each technique. NDE images from the samples were presented and discussed. Structural elements within each blade were observed with radiographic imaging. Damaged regions and some structural elements of the hockey blades were identified with thermographic imaging. Structural elements, damaged regions, and other material variations were detected in the hockey blades with shearography. Each technique s advantages and disadvantages were considered in making recommendations for inspection of components made from these types of materials.

  13. Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2016-01-01

    Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.

  14. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material

  15. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  16. BMI Sandwich Wing Box Analysis and Test

    NASA Technical Reports Server (NTRS)

    Palm, Tod; Mahler, Mary; Shah, Chandu; Rouse, Marshall; Bush, Harold; Wu, Chauncey; Small, William J.

    2000-01-01

    A composite sandwich single bay wing box test article was developed by Northrop Grumman and tested recently at NASA Langley Research Center. The objectives for the wing box development effort were to provide a demonstration article for manufacturing scale up of structural concepts related to a high speed transport wing, and to validate the structural performance of the design. The box concept consisted of highly loaded composite sandwich wing skins, with moderately loaded composite sandwich spars. The dimensions of the box were chosen to represent a single bay of the main wing box, with a spar spacing of 30 inches, height of 20 inches constant depth, and length of 64 inches. The bismaleimide facesheet laminates and titanium honeycomb core chosen for this task are high temperature materials able to sustain a 300F service temperature. The completed test article is shown in Figure 1. The tests at NASA Langley demonstrated the structures ability to sustain axial tension and compression loads in excess of 20,000 lb/in, and to maintain integrity in the thermal environment. Test procedures, analysis failure predictions, and test results are presented.

  17. The sandwich technique for repair of pectus carinatum and excavatum/carinatum complex.

    PubMed

    Park, Hyung Joo; Kim, Kyung Soo

    2016-09-01

    Simple external compression of pectus carinatum seems to have its limitations, particularly the repair of asymmetric pectus carinatum or excavatum/carinatum complex. We devised the sandwich technique (press-molding) to remodel the entire chest wall. The purpose of this study is to introduce the sandwich technique and appraise the early results. Between January 2007 and January 2016, 523 consecutive patients with pectus carinatum and its variants were analyzed retrospectively. No patients were excluded during the study period. The sandwich 1 and 2 techniques using the internal and external pectus bars were for pectus carinatum repair. Modified techniques using the external string and the internal bar were to treat the lower costal flare (the flare-buster) and focal protuberances (the magic string) in pectus excavatum repair. Statistical analyses were carried out using paired and unpaired t -test or Wilcoxon signed rank tests. The sandwich repair with the external and internal bars was applied to 58 pectus carinatum patients: seven symmetric (12.1%), 14 asymmetric (24.1%), and 37 carinatum-excavatum complex (63.8%). After pectus excavatum repair, 426 patients had the flare-buster and 39 patients received the magic string. The sandwich 1 technique achieved near-complete resolution of carinatum in 52 patients (86.2%). The sandwich 2 technique accomplished almost symmetric configuration with no residual carinatum in all six cases. The sandwich technique using the external and internal bars seems to be effective in treating asymmetric pectus carinatum and complex excavatum/carinatum deformities. The flare-buster and the magic string effectively relieve the costal flare and focal protuberances in pectus excavatum repair.

  18. Functional expression and regulation of drug transporters in monolayer- and sandwich-cultured mouse hepatocytes.

    PubMed

    Noel, Gregory; Le Vee, Marc; Moreau, Amélie; Stieger, Bruno; Parmentier, Yannick; Fardel, Olivier

    2013-04-11

    Primary hepatocyte cultures are now considered as convenient models for in vitro analyzing liver drug transport. However, if primary human and rat hepatocytes have been well-characterized with respect to drug transporter expression and regulation, much less is known for primary mouse hepatocytes. The present study was therefore designed to gain insights about this point. The profile of sinusoidal and canalicular drug transporter mRNA expression in short time (4h)-cultured mouse hepatocytes was found to be highly correlated with that of freshly isolated hepatocytes; by contrast, those of counterparts cultured for a longer time (until 4 days) either in monolayer configurations on plastic or collagen or in sandwich configuration with matrigel were profoundly altered: uptake drug transporters such as Oct1, Oatps and Oat2 were thus down-regulated, whereas most of efflux transporters such as Mdr1a/b, Mrp3, Mrp4 and Bcrp were induced. Moreover, short time-cultured hepatocytes exhibited the highest levels of sinusoidal influx transporter activities. Transporter-mediated drug secretion into canalicular networks was however only observed in sandwich-cultured hepatocytes. Mouse hepatocytes cultured either in monolayer or sandwich configurations were finally shown to exhibit up-regulation of referent transporters in response to exposure to prototypical activators of the drug sensing receptors pregnane X receptor, aryl hydrocarbon receptor or constitutive androstane receptor. Taken together, these data demonstrate the feasibility of using primary mouse hepatocytes for investigating potential interactions of xenobiotics with hepatic transporter activity or regulation, provided that adequate culture conditions are retained. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Behavior of composite sandwich panels with several core designs at different impact velocities

    NASA Astrophysics Data System (ADS)

    Jiga, Gabriel; Stamin, Ştefan; Dinu, Gabriela

    2018-02-01

    A sandwich composite represents a special class of composite materials that is manufactured by bonding two thin but stiff faces to a low density and low strength but thick core. The distance between the skins given by the core increases the flexural modulus of the panel with a low mass increase, producing an efficient structure able to resist at flexural and buckling loads. The strength of sandwich panels depends on the size of the panel, skins material and number or density of the cells within it. Sandwich composites are used widely in several industries, such as aerospace, automotive, medical and leisure industries. The behavior of composite sandwich panels with different core designs under different impact velocities are analyzed in this paper by numerical simulations performed on sandwich panels. The modeling was done in ANSYS and the analysis was performed through LS-DYNA.

  20. Damage tolerance of a composite sandwich with interleaved foam core

    NASA Astrophysics Data System (ADS)

    Ishai, Ori; Hiel, Clement

    A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.

  1. Damage tolerance of a composite sandwich with interleaved foam core

    NASA Technical Reports Server (NTRS)

    Ishai, Ori; Hiel, Clement

    1992-01-01

    A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.

  2. Experimental and simulation of split semi-torus key in PVC foam core to improve the debonding resistance of composite sandwich panel

    NASA Astrophysics Data System (ADS)

    Juliyana, M.; Santhana Krishnan, R.

    2018-02-01

    The sandwich composite panels consisting of facesheet and core material are used as a primary structural member for aerospace, civil and marine areas due to its high stiffness to weight ratio. But the debonding nature of facesheet from the foam core under shear loading conditions leads to failure of the composite structure. To inhibit the debonding, an innovative methodology of introducing semi-torus key is used in the present study. The polyvinyl chloride foam core(PVC) is grooved and filled with semi-torus shaped chopped strand prepregs which are sandwiched between alternate layers of woven roven(WR) and chopped strand mat(CSM) skins by vacuum infusion process. The sandwich panel manufactured with semi-torus keys is evaluated regarding experimental and numerical simulations under shear loading conditions. The present innovative concept delays the debonding between face-sheet and foam core with enhancement the shear load carrying capability as the initial stiffness is higher than the conventional model. Also, the shear behaviour of the proposed concept is in good agreement with experimental results. The split semi-torus keys sustain the shear failure resulting in resistance to debonding capability.

  3. The development and evaluation of advanced Kevlar sandwich structure for application to rotorcraft airframes

    NASA Astrophysics Data System (ADS)

    Minguet, Pierre; Llorente, Steven; Fay, Russell

    1991-05-01

    The results of an evaluation of DuPont Kevlar-based material systems in sandwich structure designed for rotorcraft primary airframe structure are presented in this report. The focus of this work has been to evaluate the durability and compression strength of thin-gage Kevlar sandwich panels and investigate means of improvement. It was found that sandwich panels made with Kevlar 149 fibers can be as strong as Kevlar 49 structures but have reduced compression stiffness properties at typical operating strain levels. Thermal cycling was found to affect permeability but not strength in thin facesheet sandwich structure. Any increased permeability can be prevented with the use of an interleaf or surfacing plies. The surfacing plies investigated also had a beneficial effect on sandwich strength due to their stabilizing effect on the facesheet in compression. Finally, a previously developed model was used to analyze the residual strength of a sandwich panel after impact damage.

  4. Cross Cell Sandwich Core

    NASA Technical Reports Server (NTRS)

    Ford, Donald B. (Inventor)

    2004-01-01

    A sandwich core comprises two faceplates separated by a plurality of cells. The cells are comprised of walls positioned at oblique angles relative to a perpendicular axis extending through the faceplates. The walls preferably form open cells and are constructed from open cells and are constructed from rows of ribbons. The walls may be obliquely angled relative to more than one plane extending through the perpendicular axis.

  5. Natural cork agglomerate employed as an environmentally friendly solution for quiet sandwich composites.

    PubMed

    Sargianis, James; Kim, Hyung-ick; Suhr, Jonghwan

    2012-01-01

    Carbon fiber-synthetic foam core sandwich composites are widely used for many structural applications due to their superior mechanical performance and low weight. Unfortunately these structures typically have very poor acoustic performance. There is increasingly growing demand in mitigating this noise issue in sandwich composite structures. This study shows that marrying carbon fiber composites with natural cork in a sandwich structure provides a synergistic effect yielding a noise-free sandwich composite structure without the sacrifice of mechanical performance or weight. Moreover the cork-core sandwich composites boast a 250% improvement in damping performance, providing increased durability and lifetime operation. Additionally as the world seeks environmentally friendly materials, the harvesting of cork is a natural, renewable process which reduces subsequent carbon footprints. Such a transition from synthetic foam cores to natural cork cores could provide unprecedented improvements in acoustic and vibrational performance in applications such as aircraft cabins or wind turbine blades.

  6. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose.

    PubMed

    Meher, Sumanta Kumar; Rao, G Ranga

    2013-03-07

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu(2)(OH)(2)CO(3) possesses monomodal channel-type pores with largely improved surface area (~43 m(2) g(-1)) and pore volume (0.163 cm(3) g(-1)). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM(-1) cm(-2) and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose

  7. The sandwich technique for repair of pectus carinatum and excavatum/carinatum complex

    PubMed Central

    Kim, Kyung Soo

    2016-01-01

    Background Simple external compression of pectus carinatum seems to have its limitations, particularly the repair of asymmetric pectus carinatum or excavatum/carinatum complex. We devised the sandwich technique (press-molding) to remodel the entire chest wall. The purpose of this study is to introduce the sandwich technique and appraise the early results. Methods Between January 2007 and January 2016, 523 consecutive patients with pectus carinatum and its variants were analyzed retrospectively. No patients were excluded during the study period. The sandwich 1 and 2 techniques using the internal and external pectus bars were for pectus carinatum repair. Modified techniques using the external string and the internal bar were to treat the lower costal flare (the flare-buster) and focal protuberances (the magic string) in pectus excavatum repair. Statistical analyses were carried out using paired and unpaired t-test or Wilcoxon signed rank tests. Results The sandwich repair with the external and internal bars was applied to 58 pectus carinatum patients: seven symmetric (12.1%), 14 asymmetric (24.1%), and 37 carinatum-excavatum complex (63.8%). After pectus excavatum repair, 426 patients had the flare-buster and 39 patients received the magic string. The sandwich 1 technique achieved near-complete resolution of carinatum in 52 patients (86.2%). The sandwich 2 technique accomplished almost symmetric configuration with no residual carinatum in all six cases. Conclusions The sandwich technique using the external and internal bars seems to be effective in treating asymmetric pectus carinatum and complex excavatum/carinatum deformities. The flare-buster and the magic string effectively relieve the costal flare and focal protuberances in pectus excavatum repair. PMID:27747176

  8. Damage Detection and Impact Testing on Laminated and Sandwich Composite Panels

    NASA Technical Reports Server (NTRS)

    Hughes, Derke R.; Craft, William J.; Schulz, Mark J.; Naser, Ahmad S.; Martin, William N.

    1998-01-01

    This research investigates health monitoring of sandwich shell composites to determine if the Transmittance Functions (TF) are effective in determining the present of damage. The health monitoring test was conducted on the sandwich plates before and after low velocity impacts using the health monitoring technique given in TFs are a NDE (Nondestructive Evaluation) technique that utilizes the ratios of cross-spectrums to auto-spectrums between two response points on the sandwich composites. The test for transmittance was conducted on the same density foam core throughout the experiment. The test specimens were 17.8 cm by 25.4 cm in dimension. The external sheets (face sheets) were created from graphite/epoxy laminate with dimension of 1.58 mm thick. The polymethacrylide (Rohacell) foam core was 12.7 mm thick. These samples experienced a transformation in the TF that was considered the low velocity impact damage. The low velocity damage was observed in the TFs for the sandwich composites.

  9. Experimental evaluation of two 36 inch by 47 inch graphite/epoxy sandwich shear webs

    NASA Technical Reports Server (NTRS)

    Bush, H. G.

    1975-01-01

    The design is described and test of two large (36 in. x 47 in.) graphite/epoxy sandwich shear webs. One sandwich web was designed to exhibit strength failure of the facings at a shear load of 7638 lbs/in., which is a characteristic loading for the space shuttle orbiter main engine thrust beam structure. The second sandwich web was designed to exhibit general instability failure at a shear load of 5000 lbs/in., to identify problem areas of stability critical sandwich webs and to assess the adequacy of contemporary analysis techniques.

  10. Sandwiched Rényi divergence satisfies data processing inequality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beigi, Salman

    2013-12-15

    Sandwiched (quantum) α-Rényi divergence has been recently defined in the independent works of Wilde et al. [“Strong converse for the classical capacity of entanglement-breaking channels,” preprint http://arxiv.org/abs/arXiv:1306.1586 (2013)] and Müller-Lennert et al. [“On quantum Rényi entropies: a new definition, some properties and several conjectures,” preprint http://arxiv.org/abs/arXiv:1306.3142v1 (2013)]. This new quantum divergence has already found applications in quantum information theory. Here we further investigate properties of this new quantum divergence. In particular, we show that sandwiched α-Rényi divergence satisfies the data processing inequality for all values of α > 1. Moreover we prove that α-Holevo information, a variant of Holevo informationmore » defined in terms of sandwiched α-Rényi divergence, is super-additive. Our results are based on Hölder's inequality, the Riesz-Thorin theorem and ideas from the theory of complex interpolation. We also employ Sion's minimax theorem.« less

  11. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  12. Low-Velocity Impact Response of Sandwich Beams with Functionally Graded Core

    NASA Technical Reports Server (NTRS)

    Apetre, N. A.; Sankar, B. V.; Ambur, D. R.

    2006-01-01

    The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young's modulus is represented by a polynomial in the thickness coordinate, but the Poisson's ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel - the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of thc beam with graded core Increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load arc reduced considerably due to grading of thc core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.

  13. Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue

    2017-12-01

    The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.

  14. Hospital-acquired listeriosis associated with sandwiches in the UK: a cause for concern.

    PubMed

    Little, C L; Amar, C F L; Awofisayo, A; Grant, K A

    2012-09-01

    Hospital-acquired outbreaks of listeriosis are not commonly reported but remain a significant public health problem. To raise awareness of listeriosis outbreaks that have occurred in hospitals and describe actions that can be taken to minimize the risk of foodborne listeriosis to vulnerable patients. Foodborne outbreaks and incidents of Listeria monocytogenes reported to the Health Protection Agency national surveillance systems were investigated and those linked to hospitals were extracted. The data were analysed to identify the outbreak/incident setting, the food vehicle, outbreak contributory factors and origin of problem. Most (8/11, 73%) foodborne outbreaks of listeriosis that occurred in the UK between 1999 and 2011 were associated with sandwiches purchased from or provided in hospitals. Recurrently in the outbreaks the infecting subtype of L. monocytogenes was detected in supplied prepacked sandwiches and sandwich manufacturing environments. In five of the outbreaks breaches in cold chain controls of food also occurred at hospital level. The outbreaks highlight the potential for sandwiches contaminated with L. monocytogenes to cause severe infection in vulnerable people. Control of L. monocytogenes in sandwich manufacturing and within hospitals is essential to minimize the potential for consumption of this bacterium at levels hazardous to health. Manufacturers supplying sandwiches to hospitals should aim to ensure absence of L. monocytogenes in sandwiches at the point of production and hospital-documented food safety management systems should ensure the integrity of the food cold chain. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Dynamics of active layer in wooded palsas of northern Quebec

    NASA Astrophysics Data System (ADS)

    Jean, Mélanie; Payette, Serge

    2014-02-01

    Palsas are organic or mineral soil mounds having a permafrost core. Palsas are widespread in the circumpolar discontinuous permafrost zone. The annual dynamics and evolution of the active layer, which is the uppermost layer over the permafrost table and subjected to the annual freeze-thaw cycle, are influenced by organic layer thickness, snow depth, vegetation type, topography and exposure. This study examines the influence of vegetation types, with an emphasis on forest cover, on active layer dynamics of palsas in the Boniface River watershed (57°45‧ N, 76°00‧ W). In this area, palsas are often colonized by black spruce trees (Picea mariana (Mill.) B.S.P.). Thaw depth and active layer thickness were monitored on 11 wooded or non-wooded mineral and organic palsas in 2009, 2010 and 2011. Snow depth, organic layer thickness, and vegetation types were assessed. The mapping of a palsa covered by various vegetation types and a large range of organic layer thickness were used to identify the factors influencing the spatial patterns of thaw depth and active layer. The active layer was thinner and the thaw rate slower in wooded palsas, whereas it was the opposite in more exposed sites such as forest openings, shrubs and bare ground. Thicker organic layers were associated with thinner active layers and slower thaw rates. Snow depth was not an important factor influencing active layer dynamics. The topography of the mapped palsa was uneven, and the environmental factors such as organic layer, snow depth, and vegetation types were heterogeneously distributed. These factors explain a part of the spatial variation of the active layer. Over the 3-year long study, the area of one studied palsa decreased by 70%. In a context of widespread permafrost decay, increasing our understanding of factors that influence the dynamics of wooded and non-wooded palsas and understanding of the role of vegetation cover will help to define the response of discontinuous permafrost landforms

  16. Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications

    NASA Technical Reports Server (NTRS)

    Tan, Seng

    2012-01-01

    Microcellular nanocomposite foams and sandwich structures have been created to have excellent electrical conductivity and radiation-resistant properties using a new method that does not involve or release any toxicity. The nanocomposite structures have been scaled up in size to 12 X 12 in. (30 X 30 cm) for components fabrication. These sandwich materials were fabricated mainly from PE, CNF, and carbon fibers. Test results indicate that they have very good compression and compression-after-impact properties, excellent electrical conductivity, and superior space environment durability. Compression tests show that 1000 ESH (equivalent Sun hours) of UV exposure has no effect on the structural properties of the sandwich structures. The structures are considerably lighter than aluminum alloy (= 36 percent lighter), which translates to 36 percent weight savings of the electronic enclosure and its housing. The good mechanical properties of the materials may enable the electronic housing to be fabricated with a thinner structure that further reduces the weight. There was no difficulty in machining the sandwich specimens into electronic enclosure housing.

  17. Long-term outcomes of sandwich ventral hernia repair paired with hybrid vacuum-assisted closure.

    PubMed

    Hicks, Caitlin W; Poruk, Katherine E; Baltodano, Pablo A; Soares, Kevin C; Azoury, Said C; Cooney, Carisa M; Cornell, Peter; Eckhauser, Frederic E

    2016-08-01

    Sandwich ventral hernia repair (SVHR) may reduce ventral hernia recurrence rates, although with an increased risk of surgical site occurrences (SSOs) and surgical site infections (SSIs). Previously, we found that a modified negative pressure wound therapy (hybrid vacuum-assisted closure [HVAC]) system reduced SSOs and SSIs after ventral hernia repair. We aimed to describe our outcomes after SVHR paired with HVAC closure. We conducted a 4-y retrospective review of all complex SVHRs (biologic mesh underlay and synthetic mesh overlay) with HVAC closure performed at our institution by a single surgeon. All patients had fascial defects that could not be reapproximated primarily using anterior component separation. Descriptive statistics were used to report the incidence of postoperative complications and hernia recurrence. A total of 60 patients (59.3 ± 11.4 y, 58.3% male, 75% American Society of Anesthesiologists class ≥3) with complex ventral hernias being underwent sandwich repair with HVAC closure. Major postoperative morbidity (Dindo-Clavien class ≥3) occurred in 14 (23.3%) patients, but incidence of SSO (n = 13, 21.7%) and SSI (n = 4, 6.7%) was low compared with historical reports. Median follow-up time for all patients was 12 mo (interquartile range 5.8-26.5 mo). Hernia recurrence occurred in eight patients (13.3%) after a median time of 20.6 months (interquartile range 16.4- 25.4 months). Use of a dual layer sandwich repair for complex abdominal wall reconstruction is associated with low rates of hernia recurrence at 1 year postoperatively. The addition of the HVAC closure system may reduce the risk of SSOs and SSIs previously reported with this technique and deserves consideration in future prospective studies assessing optimization of ventral hernia repair approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  19. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    NASA Astrophysics Data System (ADS)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  20. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  1. Tunable Bragg filters with a phase transition material defect layer

    DOE PAGES

    Wang, Xi; Gong, Zilun; Dong, Kaichen; ...

    2016-01-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  2. Tunable Bragg filters with a phase transition material defect layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xi; Gong, Zilun; Dong, Kaichen

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  3. Approaches to Design and Evaluation of Sandwich Composites

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Raju, I. S. (Technical Monitor); Ambur, D. (Technical Monitor)

    2001-01-01

    This report describes research during the period June 15, 1997 to October 31, 2000. This grant yielded a low cast manufacturing of composite sandwich structures technology and characterization interfacial and subinterfacial cracks in foam core sandwich panels. The manufacturing technology is called the vacuum assisted resin transfer (VARTM). The VARTM is suitable for processing composite materials both at ambient and elevated temperatures and of unlimited component size. This technology has been successfully transferred to a small business fiber preform manufacturing company 3TEX located in Cary, North Carolina. The grant also supported one Ph.D, one M.S and a number of under graduate students, and nine publications and Presentations.

  4. Sandwich holospeckle interferometry for three-dimensional displacement determination

    NASA Astrophysics Data System (ADS)

    Wu, X. P.; Chiang, F. P.

    1986-06-01

    A sandwich holospecklegram (SH) technique with flexible sensitivity is presented for performing both in-plane and out-of-plane displacement measurements of objects. An object beam from a laser is directed onto a part-mirror onto which the object image is also directed and produces interference in the beam. The beam is redirected to fall, with a reference beam, onto photographic and speckle plates with their emulsion sides against one another, ergo, the sandwich. Reconstruction methods are delineated and illustrated with an SH of a crack in an aluminum alloy plate undergoing a three-point bending test. The crack is noted to occur in a region only 2 mm across.

  5. Mechanical and thermal buckling analysis of sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1993-01-01

    By using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system, combined load (mechanical or thermal load) buckling equations are established for orthotropic rectangular sandwich panels supported under four different edge conditions. Two-dimensional buckling interaction curves and three dimensional buckling interaction surfaces are constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide easy comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. Thermal buckling curves of the sandwich panels also are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory. In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear effect, the buckling loads could be overpredicted considerably. Clamping of the edges could greatly increase buckling strength more in compression than in shear.

  6. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank

    NASA Astrophysics Data System (ADS)

    Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.

    2012-12-01

    -life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.

  7. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  8. Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Aiello, R. A.; Murthy, P. L. N.

    1986-01-01

    Several computational levels of progressive sophistication/simplification are described to computationally simulate composite sandwich hygral, thermal, and structural behavior. The computational levels of sophistication include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive and the composite faces; (2) three-dimensional finite element modeling of the honeycomb assumed to be an equivalent continuous, homogeneous medium, the adhesive and the composite faces; (3) laminate theory simulation where the honeycomb (metal or composite) is assumed to consist of plies with equivalent properties; and (4) derivations of approximate, simplified equations for thermal and mechanical properties by simulating the honeycomb as an equivalent homogeneous medium. The approximate equations are combined with composite hygrothermomechanical and laminate theories to provide a simple and effective computational procedure for simulating the thermomechanical/thermostructural behavior of fiber composite sandwich structures.

  9. Applications of thin-film sandwich crystallization platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axford, Danny, E-mail: danny.axford@diamond.ac.uk; Aller, Pierre; Sanchez-Weatherby, Juan

    2016-03-24

    Crystallization via sandwiches of thin polymer films is presented and discussed. Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal samplemore » intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.« less

  10. Development of lightweight graphite/polyimide sandwich panels.

    NASA Technical Reports Server (NTRS)

    Poesch, J. G.

    1972-01-01

    Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  11. Elastic and plastic buckling of simply supported solid-core sandwich plates in compression

    NASA Technical Reports Server (NTRS)

    Seide, Paul; Stowell, Elbridge Z

    1950-01-01

    A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.

  12. A Phloem Sandwich Unit for Observing Bark Beetles, Associated Predators, and Parasites

    Treesearch

    Donald N. Kim; Mitchel C. Miller

    1981-01-01

    This paper describes a phloem sandwich that allows observation of parent beetles, their brood, and associates within the inner bark, and permits observation of predator and parasite behavior on the bark surface. The construction of the unit permits the introduction of multiple pairs of beetles into a single sandwich.

  13. Mode I Toughness Measurements of Core/Facesheet Bonds in Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Ratcliffe, James G.

    2006-01-01

    Composite sandwich structures will be used in many future applications in aerospace, marine and offshore industries due to the fact that the strength and stiffness to mass ratios surpass any other structural type. Sandwich structure also offers advantages over traditional stiffened panels such as ease of manufacturing and repair. During the last three decades, sandwich structure has been used extensively for secondary structure in aircraft (fuselage floors, rudders and radome structure). Sandwich structure is also used as primary structure in rotorcraft, the most common example being the trailing edge of rotor blades. As with other types of composite construction, sandwich structure exhibits several types of failure mode such as facesheet wrinkling, core crushing and sandwich buckling. Facesheet/core debonding has also been observed in the marine and aerospace industry. During this failure mode, peel stresses applied to an existing facesheet/core debond or an interface low in toughness, results in the facesheet being peeled from the core material, possibly leading to a significant loss in structural integrity of the sandwich panel. In an incident during a test on a liquid hydrogen fuel tank of the X-33 prototype vehicle, the outer graphite/epoxy facesheet and honeycomb core became debonded from the inner facesheet along significant areas, leading to failure of the tank. As a consequence of the accident; significant efforts were made to characterize the toughness of the facesheet/core bond. Currently, the only standardized method available for assessing the quality of the facesheet/core interface is the climbing drum peel test (ASTM D1781). During this test a sandwich beam is removed from a panel and the lip of one of the facesheets is attached to a drum, as shown in Fig. 1. The drum is then rotated along the sandwich beam, causing the facesheet to peel from the core. This method has two major drawbacks. First, it is not possible to obtain quantitative fracture data

  14. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and facesheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  15. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  16. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. Fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a strength reduction of 10 percent due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  17. Quantum mechanical design and structures of hexanuclear sandwich complex and its multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 1-3).

    PubMed

    Wang, Shu-Jian; Li, Ying; Wu, Di; Wang, Yin-Feng; Li, Zhi-Ru

    2012-09-13

    By means of density functional theory, a hexanuclear sandwich complex [18]annulene-Li6-[18]annulene which consists of a central Li6 hexagon ring and large face-capping ligands, [18]annulene, is designed and investigated. The large interaction energy and HOMO-LUMO gap suggest that this novel charge-separated complex is highly stable and may be experimentally synthesized. In addition, the stability found in the [18]annulene-Li6-[18]annulene complex extends to multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 2-3). The energy gain upon addition of a [18]annulene-Li6 unit to (Li6)n-1([18]annulene)n is pretty large (96.97-98.22 kcal/mol), indicating that even larger multideckers will also be very stable. Similar to ferrocene, such a hexanuclear sandwich complex could be considered as a versatile building block to find potential applications in different areas of chemistry, such as nanoscience and material science.

  18. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  19. Buckling Design and Imperfection Sensitivity of Sandwich Composite Launch-Vehicle Shell Structures

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Sleight, David W.; Myers, David E.; Waters, W. Allen, Jr.; Chunchu, Prasad B.; Lovejoy, Andrew W.; Hilburger, Mark W.

    2016-01-01

    Composite materials are increasingly being considered and used for launch-vehicle structures. For shell structures, such as interstages, skirts, and shrouds, honeycomb-core sandwich composites are often selected for their structural efficiency. Therefore, it is becoming increasingly important to understand the structural response, including buckling, of sandwich composite shell structures. Additionally, small geometric imperfections can significantly influence the buckling response, including considerably reducing the buckling load, of shell structures. Thus, both the response of the theoretically perfect structure and the buckling imperfection sensitivity must be considered during the design of such structures. To address the latter, empirically derived design factors, called buckling knockdown factors (KDFs), were developed by NASA in the 1960s to account for this buckling imperfection sensitivity during design. However, most of the test-article designs used in the development of these recommendations are not relevant to modern launch-vehicle constructions and material systems, and in particular, no composite test articles were considered. Herein, a two-part study on composite sandwich shells to (1) examine the relationship between the buckling knockdown factor and the areal mass of optimized designs, and (2) to interrogate the imperfection sensitivity of those optimized designs is presented. Four structures from recent NASA launch-vehicle development activities are considered. First, designs optimized for both strength and stability were generated for each of these structures using design optimization software and a range of buckling knockdown factors; it was found that the designed areal masses varied by between 6.1% and 19.6% over knockdown factors ranging from 0.6 to 0.9. Next, the buckling imperfection sensitivity of the optimized designs is explored using nonlinear finite-element analysis and the as-measured shape of a large-scale composite cylindrical

  20. Noise transmission by viscoelastic sandwich panels

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1977-01-01

    An analytical study on low frequency noise transmission into rectangular enclosures by viscoelastic sandwich panels is presented. Soft compressible cores with dilatational modes and hard incompressible cores with dilatational modes neglected are considered as limiting cases of core stiffness. It is reported that these panels can effect significant noise reduction.

  1. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice.

    PubMed

    Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro

    2016-06-20

    Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.

  2. Microstructure of the combustion zone: Thin-binder AP-polymer sandwiches

    NASA Technical Reports Server (NTRS)

    Price, E. W.; Panyam, R. R.; Sigman, R. K.

    1980-01-01

    Experimental results are summarized for systematic quench-burning tests on ammonium perchlorate-HC binder sandwiches with binder thicknesses in the range 10 - 150 microns. Tests included three binders (polysulfide, polybutadiene-acrylonitrile, and hydroxy terminated polybutadiene), and pressures from 1.4 to 14 MPa. In addition, deflagration limits were determined in terms of binder thickness and pressure. Results are discussed in terms of a qualitative theory of sandwich burning consolidated from various sources. Some aspects of the observed results are explained only speculatively.

  3. Detection of Penicillinase in Milk by Sandwich ELISA Based Polyclonal and Monoclonal Antibody.

    PubMed

    Zhao, Yinli; Li, Guoxi

    2016-01-01

    A sandwich ELISA has been developed using polyclonal and monoclonal antibody for the determination of penicillinase in milk. For this purpose, specific polyclonal and monoclonal antibodies against penicillinase were generated and characterized. Using penicillinase standards prepared from 1-128 ng/mL, the method indicated that the detection limit of the sandwich ELISA, as measured in an ELISA plate reader, was as low as 0.86 ng/mL of penicillinase. For determine the accuracy, raw milk containing 2, 8, 32, and 64 ng/mL of penicillinase were tested by sandwich ELISA. Recoveries were from 93-97.5%, and the coefficient of variation [CV (%)] were from 5.55-8.38%. For interassay reproducibility, recoveries were from 89.5-95.1%, the coefficient of variation [CV (%)] were from 5.26-9.58%. This sandwich ELISA provides a useful screening method for quantitative detection of penicillinase in milk.

  4. Study on voids of epoxy matrix composites sandwich structure parts

    NASA Astrophysics Data System (ADS)

    He, Simin; Wen, Youyi; Yu, Wenjun; Liu, Hong; Yue, Cheng; Bao, Jing

    2017-03-01

    Void is the most common tiny defect of composite materials. Porosity is closely related to composite structure property. The voids forming behaviour in the composites sandwich structural parts with the carbon fiber reinforced epoxy resin skins was researched by adjusting the manufacturing process parameters. The composites laminate with different porosities were prepared with the different process parameter. The ultrasonic non-destructive measurement method for the porosity was developed and verified through microscopic examination. The analysis results show that compaction pressure during the manufacturing process had influence on the porosity in the laminate area. Increasing the compaction pressure and compaction time will reduce the porosity of the laminates. The bond-line between honeycomb core and carbon fiber reinforced epoxy resin skins were also analyzed through microscopic examination. The mechanical properties of sandwich structure composites were studied. The optimization process parameters and porosity ultrasonic measurement method for composites sandwich structure have been applied to the production of the composite parts.

  5. Directed Vertical Diffusion of Photovoltaic Active Layer Components into Porous ZnO-Based Cathode Buffer Layers.

    PubMed

    Kang, Jia-Jhen; Yang, Tsung-Yu; Lan, Yi-Kang; Wu, Wei-Ru; Su, Chun-Jen; Weng, Shih-Chang; Yamada, Norifumi L; Su, An-Chung; Jeng, U-Ser

    2018-04-01

    Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC 71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC 71 BM more than that of the polymer. The deeper penetration of PC 71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Colloidal quantum dot active layers for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Pagan, Jennifer G.; Stokes, Edward B.; Patel, Kinnari; Burkhart, Casey C.; Ahrens, Michael T.; Barletta, Philip T.; O'Steen, Mark

    2006-07-01

    In this paper the preliminary results of incorporating a novel active layer into a GaN light emitting diode (LED) are discussed. Integration of colloidal CdSe quantum dots into a GaN LED active layer is demonstrated. Properties of p-type Mg doped overgrowth GaN are examined via circular transmission line method (CTLM). Effects on surface roughness due to the active layer incorporation are examined using atomic force microscopy (AFM). Electroluminescence of LED test structures is reported, and an ideality factor of n = 1.6 is demonstrated.

  7. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry)more » are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.« less

  8. Two-Dimensional Porous Sandwich-Like C/Si-Graphene-Si/C Nanosheets for Superior Lithium Storage.

    PubMed

    Yao, Weiqi; Chen, Jie; Zhan, Liang; Wang, Yanli; Yang, Shubin

    2017-11-15

    A novel two-dimensional porous sandwich-like Si/carbon nanosheet is designed and successfully fabricated as an anode for superior lithium storage, where a porous Si nanofilm grows on the two sides of reduced graphene oxide (rGO) and is then coated with a carbon layer (denoted as C/Si-rGO-Si/C). The coexistence of micropores and mesopores in C/Si-rGO-Si/C nanosheets offers a rapid Li + diffusion rate, and the porous Si provides a short pathway for electric transportation. Meanwhile, the coated carbon layer not only can promote to form a stable SEI layer, but also can improve the electric conductivity of nanoscale Si coupled with rGO. Thus, the unique nanostructures offer the resultant C/Si-rGO-Si/C electrode with high reversible capacity (1187 mA h g -1 after 200 cycles at 0.2 A g -1 ), excellent cycle stability (894 mA h g -1 after 1000 cycles at 1 A g -1 ), and high rate capability (694 mA h g -1 at 5 A g -1 , 447 mA h g -1 at 10 A g -1 ).

  9. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  10. Tuning and Switching a Plasmonic Quantum Dot "Sandwich" in a Nematic Line Defect.

    PubMed

    Mundoor, Haridas; Sheetah, Ghadah H; Park, Sungoh; Ackerman, Paul J; Smalyukh, Ivan I; van de Lagemaat, Jao

    2018-03-27

    We study the quantum-mechanical effects arising in a single semiconductor core/shell quantum dot (QD) controllably sandwiched between two plasmonic nanorods. Control over the position and the "sandwich" confinement structure is achieved by the use of a linear-trap liquid crystal (LC) line defect and laser tweezers that "push" the sandwich together. This arrangement allows for the study of exciton-plasmon interactions in a single structure, unaltered by ensemble effects or the complexity of dielectric interfaces. We demonstrate the effect of plasmonic confinement on the photon antibunching behavior of the QD and its luminescence lifetime. The QD behaves as a single emitter when nanorods are far away from the QD but shows possible multiexciton emission and a significantly decreased lifetime when tightly confined in a plasmonic "sandwich". These findings demonstrate that LC defects, combined with laser tweezers, enable a versatile platform to study plasmonic coupling phenomena in a nanoscale laboratory, where all elements can be arranged almost at will.

  11. Social media to supplement point-of-care ultrasound courses: the "sandwich e-learning" approach. A randomized trial.

    PubMed

    Hempel, Dorothea; Haunhorst, Stephanie; Sinnathurai, Sivajini; Seibel, Armin; Recker, Florian; Heringer, Frank; Michels, Guido; Breitkreutz, Raoul

    2016-12-01

    Point-of-care ultrasound (POC-US) is gaining importance in almost all specialties. E-learning has been used to teach theoretical knowledge and pattern recognition. As social media are universally available, they can be utilized for educational purposes. We wanted to evaluate the utility of the sandwich e-learning approach defined as a pre-course e-learning and a post-course learning activity using Facebook after a one-day point-of-care ultrasound (POC-US) course and its effect on the retention of knowledge. A total of 62 medial students were recruited for this study and randomly assigned to one of four groups. All groups received an identical hands-on training and performed several tests during the study period. The hands-on training was performed in groups of five students per instructor with the students scanning each other. Group 1 had access to pre-course e-learning, but not to post-course e-learning. Instead of a pre-course e-learning, group 2 listened to presentations at the day of the course (classroom teaching) and had access to the post-course learning activity using Facebook. Group 3 had access to both pre- and post-course e-learning (sandwich e-learning) activities, while group 4 listened classroom presentations only (classroom teaching only). Therefore only groups 2 and 3 had access to post-course learning via Facebook by joining a secured group. Posts containing ultrasound pictures and videos were published to this group. The students were asked to "like" the posts to monitor attendance. Knowledge retention was assessed 6 weeks after the course. After 6 weeks, group 3 achieved comparable results when compared to group 2 (82.2 % + -8.2 vs. 84.3 + -8.02) (p = 0.3). Students who participated in the post-course activity were more satisfied with the overall course than students without post-course learning (5.5 vs. 5.3 on a range from 1 to 6). In this study, the sandwich e-learning approach led to equal rates of knowledge retention compared to

  12. Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.

    1978-01-01

    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).

  13. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores

    NASA Astrophysics Data System (ADS)

    Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu

    2018-06-01

    The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.

  14. Experimental study of the fracture toughness of a ceramic/ceramic-matrix composite sandwich structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Z.; Taya, M.; Dunn, M.L.

    A hybrid experimental-numerical approach has been used to measure the fracture resistance of a sandwich structure consisting of a 304 stainless steel/partially stabilized zirconia ceramic-matrix composite crack-arresting layer embedded in a partially stabilized zirconia ceramic specimen. The mode 1 fracture toughness increases significantly when the crack propagates from the ceramic into the ceramic-matrix composite region. The increased toughening due to the stainless steel particles is explained reasonably well by a toughening model based on processing-induced thermal residual stresses. In addition, several experimental modifications were made to the chevron-notch wedge-loaded double cantilever beam specimen to overcome numerous problems encountered in generatingmore » a precrack in the small, brittle specimens used in this study.« less

  15. TEMPO/viologen electrochemical heterojunction for diffusion-controlled redox mediation: a highly rectifying bilayer-sandwiched device based on cross-reaction at the interface between dissimilar redox polymers.

    PubMed

    Tokue, Hiroshi; Oyaizu, Kenichi; Sukegawa, Takashi; Nishide, Hiroyuki

    2014-03-26

    A couple of totally reversible redox-active molecules, which are different in redox potentials, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and viologen (V(2+)), were employed to give rise to a rectified redox conduction effect. Single-layer and bilayer devices were fabricated using polymers containing these sites as pendant groups per repeating unit. The devices were obtained by sandwiching the redox polymer layer(s) with indium tin oxide (ITO)/glass and Pt foil electrodes. Electrochemical measurements of the single-layer device composed of polynorbornene-bearing TEMPO (PTNB) exhibited a diffusion-limited current-voltage response based on the TEMPO(+)/TEMPO exchange reaction, which was almost equivalent to a redox gradient through the PTNB layer depending upon the thickness. The bilayer device gave rise to the current rectification because of the thermodynamically favored cross-reaction between TEMPO(+) and V(+) at the polymer/polymer interface. A current-voltage response obtained for the bilayer device demonstrated a two-step diffusion-limited current behavior as a result of the concurrent V(2+)/V(+) and V(+)/V(0) exchange reactions according to the voltage and suggested that the charge transport process through the device was most likely to be rate-determined by a redox gradient in the polymer layer. Current collection experiments revealed a charge transport balance throughout the device, as a result of the electrochemical stability and robustness of the polymers in both redox states.

  16. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells.

    PubMed

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid

    2017-06-15

    Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH 2 ) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN) 6 3-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10 5 cells/mL and 1.0×10 5 -6.0×10 6 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation.

    PubMed

    Wang, An-Liang; Xu, Han; Feng, Jin-Xian; Ding, Liang-Xin; Tong, Ye-Xiang; Li, Gao-Ren

    2013-07-24

    Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.

  18. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration.

    PubMed

    Wei, Xiaoyuan; Yang, Yuan; Yao, Wenqing; Zhang, Lei

    2017-09-30

    Sandwiched piezoelectric transducers are widely used, especially in high power applications. For more convenient analysis and design, a PSpice lossy model of sandwiched piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the one-dimensional wave and transmission line theories. With the proposed model, the resonance and antiresonance frequencies are obtained, and it is shown that the simulations and measurements have good consistency. For the purpose of further verification the accuracy and application of the PSpice model, a pitch-catch setup and an experimental platform are built. They include two sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are 20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient analysis are performed. Compared with the measured results, it is shown that the simulated results have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched piezoelectric transducer is more conveniently applied to combine with other circuits such as driving circuits, filters, amplifiers, and so on.

  19. A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Cook, Geoffrey M.

    1997-01-01

    A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.

  20. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    NASA Technical Reports Server (NTRS)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  1. Dynamic Failure of Sandwich Beams With Fluid-Structure Interaction Under Impact Loading

    DTIC Science & Technology

    2010-12-01

    constructed using vacuum assisted transfer molding , with a 6.35 mm balsa core and symmetrical plain weave 6 oz E-glass skins. The experiment...consisted of three phases. First, using three- point bending, strain rate characteristics were examined both in air and under water. After establishing...understanding of sandwich composite characteristics subjected to underwater impact. 15. NUMBER OF PAGES 57 14. SUBJECT TERMS Sandwich Composite, Low

  2. Biocide squirting from an elastomeric tri-layer film.

    PubMed

    Sonntag, Philippe; Hoerner, Pierre; Cheymol, André; Argy, Gilles; Riess, Gérard; Reiter, Günter

    2004-05-01

    Protective layers typically act in a passive way by simply separating two sides. Protection is only efficient as long as the layers are intact. If a high level of protection has to be achieved by thin layers, complementary measures need to be in place to ensure safety, even after breakage of the layer-an important issue in medical applications. Here, we present a novel approach for integrating a biocide liquid into a protective film (about 300-500 microm thick), which guarantees that a sufficient amount of biocide is rapidly released when the film is punctured. The film is composed of a middle layer, containing the liquid in droplet-like compartments, sandwiched between two elastomeric boundary layers. When the film is punctured, the liquid squirts out of the middle layer. A theoretical model was used to determine the size and density of droplets that are necessary to ensure a sufficient quantity of biocide is expelled from an adequately elastic matrix to provide protection at the site of damage. We demonstrate the utility of this approach for the fabrication of surgical gloves.

  3. Development of a monoclonal antibody-based sandwich-type enzyme-linked immunosorbent assay (ELISA) for detection of abrin in food samples.

    PubMed

    Zhou, Yu; Tian, Xiang-Li; Li, Yan-Song; Pan, Feng-Guang; Zhang, Yuan-Yuan; Zhang, Jun-Hui; Wang, Xin-Rui; Ren, Hong-Lin; Lu, Shi-Ying; Li, Zhao-Hui; Liu, Zeng-Shan; Chen, Qi-Jun; Liu, Jing-Qiu

    2012-12-15

    Abrin is a plant toxin, which can be easily isolated from the seeds of Abrus precatorius. It may be used as a biological warfare agent. In order to detect abrin in food samples, a two-layer sandwich format enzyme-linked immunosorbent assay based on the monoclonal antibody (mAb) (as capture antibody) and rabbit polyclonal serum (as detecting antibody) was developed and applied for the determination of abrin in some food matrices. The linear range of the mAb was 1-100 μg L(-1) with a detection limit of 0.5 μg L(-1) for abrin in phosphate buffered saline (PBS). The recoveries of abrin from sausage, beer and milk samples ranged 97.5-98.6%, 95.8-98.4% and 94.8-9.6%, respectively, with a coefficient of variation (CV) of 3.7% or less. The newly developed sandwich ELISA using the mAb appears to be a reliable and useful method for detection of abrin in sausage, beer and milk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression is investigated. Material properties of sandwich panel constituents (adhesive and facings) were determined from flatwise tension and sandwich beam flexure tests. An adhesive bond study resulted in the selection of a suitable cure cycle for FM 34 polyimide film adhesive and, a bonding technique using a liquid cell edge version of that adhesive resulted in considerable mass savings. Tensile and compressive material properties of the facings, quasiisotropic, symmetric, laminates (0, +45,90,-45)s of Celion/PMR-15, were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) usng the sandwich beam flexure test method. Results indicate the Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 1006.5 sq cm. 156 sq in., had quasiisotropic symmetric facings (0, + or - 45,90)s and a glass/polyimide honeycomb core (HRH-327-3/8-4).

  5. Understanding Successful Sandwich Placements: A Bourdieusian Approach

    ERIC Educational Resources Information Center

    Clark, Martyn; Zukas, Miriam

    2016-01-01

    Sandwich placements and other integrated work and study schemes are increasingly advocated as a key means by which universities can promote students' employability. However, there is little understanding of how successful placements work in terms of facilitating learning and development. Drawing on three longitudinal case studies of students who…

  6. Veterans' informal caregivers in the "sandwich generation": a systematic review toward a resilience model.

    PubMed

    Smith-Osborne, Alexa; Felderhoff, Brandi

    2014-01-01

    Social work theory advanced the formulation of the construct of the sandwich generation to apply to the emerging generational cohort of caregivers, most often middle-aged women, who were caring for maturing children and aging parents simultaneously. This systematic review extends that focus by synthesizing the literature on sandwich generation caregivers for the general aging population with dementia and for veterans with dementia and polytrauma. It develops potential protective mechanisms based on empirical literature to support an intervention resilience model for social work practitioners. This theoretical model addresses adaptive coping of sandwich- generation families facing ongoing challenges related to caregiving demands.

  7. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double

  8. Thermostructural Behavior of a Hypersonic Aircraft Sandwich Panel Subjected to Heating on One Side

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1997-01-01

    Thermostructural analysis was performed on a heated titanium honeycomb-core sandwich panel. The sandwich panel was supported at its four edges with spar-like substructures that acted as heat sinks, which are generally not considered in the classical analysis. One side of the panel was heated to high temperature to simulate aerodynamic heating during hypersonic flight. Two types of surface heating were considered: (1) flat-temperature profile, which ignores the effect of edge heat sinks, and (2) dome-shaped-temperature profile, which approximates the actual surface temperature distribution associated with the existence of edge heat sinks. The finite-element method was used to calculate the deformation field and thermal stress distributions in the face sheets and core of the sandwich panel. The detailed thermal stress distributions in the sandwich panel are presented, and critical stress regions are identified. The study shows how the magnitudes of those critical stresses and their locations change with different heating and edge conditions. This technical report presents comprehensive, three-dimensional graphical displays of thermal stress distributions in every part of a titanium honeycomb-core sandwich panel subjected to hypersonic heating on one side. The plots offer quick visualization of the structural response of the panel and are very useful for hot structures designers to identify the critical stress regions.

  9. Flutter suppression of plates using passive constrained viscoelastic layers

    NASA Astrophysics Data System (ADS)

    Cunha-Filho, A. G.; de Lima, A. M. G.; Donadon, M. V.; Leão, L. S.

    2016-10-01

    Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.

  10. Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2009-01-01

    Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.

  11. Expanding the "Active Layer": Discussion of Church and Haschenburger (2017) What is the "Active Layer"? Water Resources Research 53, 5-10, Doi:10.1002/2016WR019675

    NASA Astrophysics Data System (ADS)

    Ashmore, Peter; Peirce, Sarah; Leduc, Pauline

    2018-03-01

    Church and Haschenburger (2017, https://doi.org/10.1002/2016WR019675) make helpful distinctions around the issue of defining the active layer, with which we agree. We propose expanding discussion and definition of the "active layer" in fluvial bedload transport to include the concept of the "morphological active layer." This is particularly applicable to laterally unstable rivers (such as braided rivers) in which progressive morphological change over short time periods is the process by which much of the bedload transport occurs. The morphological active layer is also distinguished by variable lateral and longitudinal extent continuity over a range of flows and transport intensity. We suggest that the issue of forms of active layer raised by Church and Haschenburger opens up an important discussion on the nature of bedload transport in relation to river morpho-dynamics over the range of river types.

  12. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    NASA Astrophysics Data System (ADS)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  13. Effect of Alveolar Segmental Sandwich Osteotomy on Alveolar Height: A Preliminary Study.

    PubMed

    Mehta, Karan S; Prasad, Kavitha; Shetty, Vibha; Ranganath, Krishnappa; Lalitha, R M; Dexith, Jayashree; Munoyath, Sejal K; Kumar, Vineeth

    2017-12-01

    Bone loss following extraction is maximum in horizontal dimension. Height is also reduced which is pronounced on the buccal aspect. Various surgical procedures are available to correct the bone volume viz. GBR, onlay bone grafting, alveolar distraction and sandwich osteotomy. Sandwich osteotomy has been found to increase the vertical alveolar bone height successfully. The objective of the study was to assess the effect of alveolar segmental sandwich osteotomy on alveolar height and crestal width. A prospective study was undertaken from December 2012 to August 2014. Seven patients with 12 implant sites with a mean age of 36 years were recruited. All seven patients with 12 implant sites underwent alveolar segmental sandwich osteotomy and interpositional bone grafting. Alveolar bone height was assessed radiographically preoperatively, immediate post-op, and at 3 months post-op. Alveolar bone width was assessed radiographically preoperatively and at 3 months post-op. Statistical significance was inferred at p  < 0.05. The mean vertical augmentation at immediate post-op was 6.58 mm ( p  = 0.001). The vertical augmentation that was achieved 3 months post-op was a mean of 3.75 mm which was statistically significant ( p  = 0.004). The change in alveolar height from immediate post-op to 3 month post-op was a mean 1.69 mm. The mean change in alveolar crestal width at 3 months was a mean of -0.29 mm ( p  = 0.57). Sandwich osteotomy can be used as an alternative technique to increase alveolar bone height prior to implant placement. Moderate alveolar deficiency can be predictably corrected by this technique.

  14. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration

    PubMed Central

    Wei, Xiaoyuan; Yang, Yuan; Yao, Wenqing; Zhang, Lei

    2017-01-01

    Sandwiched piezoelectric transducers are widely used, especially in high power applications. For more convenient analysis and design, a PSpice lossy model of sandwiched piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the one-dimensional wave and transmission line theories. With the proposed model, the resonance and antiresonance frequencies are obtained, and it is shown that the simulations and measurements have good consistency. For the purpose of further verification the accuracy and application of the PSpice model, a pitch-catch setup and an experimental platform are built. They include two sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are 20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient analysis are performed. Compared with the measured results, it is shown that the simulated results have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched piezoelectric transducer is more conveniently applied to combine with other circuits such as driving circuits, filters, amplifiers, and so on. PMID:28973996

  15. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; DiSciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C(sup 0)-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite element approximations thus provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  16. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; Di Sciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C0-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite elements provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  17. Mechanical and thermal buckling analysis of rectangular sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    The combined load (mechanical or thermal load) buckling equations were established for orthotropic rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide overall comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. In addition, thermal buckling curves of these sandwich panels are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory.

  18. Metal/dielectric/metal sandwich film for broadband reflection reduction

    PubMed Central

    Jen, Yi-Jun; Lakhtakia, Akhlesh; Lin, Meng-Jie; Wang, Wei-Hao; Wu, Huang-Ming; Liao, Hung-Sheng

    2013-01-01

    A film comprising randomly distributed metal/dielectric/metal sandwich nanopillars with a distribution of cross-sectional diameters, displayed extremely low reflectance over the blue-to-red regime, when coated on glass and illuminated normally. When it is illuminated by normally incident light, this sandwich film (SWF) has a low extinction coefficient, its phase thickness is close to a negative wavelength in the blue-to-red spectral regime, and it provides weakly dispersive forward and backward impedances, so that reflected waves from the two faces of the SWF interfere destructively. Broadband reflection-reduction, over a wide range of incidence angles and regardless of the polarization state of the incident light, was observed when the SWF was deposited on polished silicon. PMID:23591704

  19. On the balancing of structural and acoustic performance of a sandwich panel based on topology, property, and size optimization

    NASA Astrophysics Data System (ADS)

    Cameron, Christopher J.; Lind Nordgren, Eleonora; Wennhage, Per; Göransson, Peter

    2014-06-01

    Balancing structural and acoustic performance of a multi-layered sandwich panel is a formidable undertaking. Frequently the gains achieved in terms of reduced weight, still meeting the structural design requirements, are lost by the changes necessary to regain acceptable acoustic performance. To alleviate this, a design method for a multifunctional load bearing vehicle body panel is proposed which attempts to achieve a balance between structural and acoustic performance. The approach is based on numerical modelling of the structural and acoustic behaviour in a combined topology, size, and property optimization in order to achieve a three dimensional optimal distribution of structural and acoustic foam materials within the bounding surfaces of a sandwich panel. In particular the effects of the coupling between one of the bounding surface face sheets and acoustic foam are examined for its impact on both the structural and acoustic overall performance of the panel. The results suggest a potential in introducing an air gap between the acoustic foam parts and one of the face sheets, provided that the structural design constraints are met without prejudicing the layout of the different foam types.

  20. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling behavior of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression was investigated. Material properties of adhesive and facings were determined from flatwise tension and sandwich beam flexure tests. Tensile and compressive material properties of the facings were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) using the sandwich beam flexure test method. Results indicate that Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 30.5 X 33.0 cm (12 x 13 in.), had quasi-isotropic symmetric facings and a glass/polyimide honeycomb core. Core thicknesses varied and three panels of each thickness were tested in edgewise compression at room temperature to investigate failure modes and corresponding buckling formulas. Specimens 0.635 cm (0.25 in.) thick failed by overall buckling at loads close to the analytically predicted buckling load; all other panels failed by face wrinkling. Results of the winkling tests indicate that several buckling formulas were unconservative and therefore not suitable for design purposes; recommended wrinkling equations are presented.

  1. Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)

    2016-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  2. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility.

    PubMed

    Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D

    2010-01-19

    The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.

  3. Simple single-emitting layer hybrid white organic light emitting with high color stability

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  4. Sandwich ELISA Microarrays: Generating Reliable and Reproducible Assays for High-Throughput Screens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Rachel M.; Varnum, Susan M.; Zangar, Richard C.

    The sandwich ELISA microarray is a powerful screening tool in biomarker discovery and validation due to its ability to simultaneously probe for multiple proteins in a miniaturized assay. The technical challenges of generating and processing the arrays are numerous. However, careful attention to possible pitfalls in the development of your antibody microarray assay can overcome these challenges. In this chapter, we describe in detail the steps that are involved in generating a reliable and reproducible sandwich ELISA microarray assay.

  5. Bismaleimide resins for flame resistant honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H. D.

    1978-01-01

    Bismaleimide resins are prime candidates for nonflammable aircraft interior panels. Three resin types with different structures and processing characteristics were formulated. Resin M 751 was used to fabricate 100 kg of glass fabric prepregs which were used for the preparation of face sheets for honeycomb sandwich panels. Prepreg characteristics and curing cycles for laminate fabrication are provided. In order to advance beyond the current solvent resin technology for fibre and fabric impregnation, a hot melt solvent-less resin system was prepared and characterized. Preliminary tests were performed to develop a wet bonding process for the fabrication of advanced sandwich honeycomb panels by use of polybismaleimide glass fabric face sheets and polybismaleimide Nomex honeycomb core. B-stage material was used for both the core and the face sheet, providing flatwise tensile properties equivalent to those obtained by the state-of-the-art 3-step process which includes an epoxy adhesive resin.

  6. Experimental investigation of fiberglass sandwich composite bending behaviour after severe aging condition

    NASA Astrophysics Data System (ADS)

    Gambaro, Carla; Lertora, Enrico; Mandolfino, Chiara

    2016-10-01

    Fiber Reinforced Polymer (FRP) sandwich panels are increasing their application as structural and non-structural components in all kinds of construction. By varying the material and thickness of core and face sheets, it is possible to obtain sandwich structures with different properties and performance. In particular, their advantages as lightweight and high mechanical properties make them extremely suitable for the transport industry. One of the most critical aspects regarding composite materials for engineering application is their performance after hygrothermal aging. The panels used in this study are composed of low density core, made by thermosetting resin foam with microspheres and glass fibers rolled until obtaining the required thickness, and two face sheets of the same material but realized in high density. In this study, the authors focused on the bending behaviour of this kind of sandwich panel, as received and after severe aging cycles.

  7. Pulsed thermography detection of water and hydraulic oil intrusion in the honeycomb sandwich structure composite

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-bin; Zhang, Cun-lin; Wu, Nai-ming

    2011-08-01

    Water and hydraulic oil intrusion inside honeycomb sandwich Structure Composite during service has been linked to in-flight failure in some aircraft. There is an ongoing effort to develop nondestructive testing methods to detect the presence of water and hydraulic oil within the sandwich panels. Pulsed thermography(PT) represents an attractive approach in that it is sensitive to the change of thermal properties. Using a flash lamp PT, testing can be applied directly to the surface of the panel. The viability of PT is demonstrated through laboratory imaging of both water and hydraulic oil within sandwich panels. The detection of water and hydraulic oil intrusion using a one-sided flash lamp PT is presented. It is shown that simple detection, as well as spatial localization of water and hydraulic oil within sandwich panels, and assign the quantity of water and hydraulic oil is possible.

  8. Size Effects in Impact Damage of Composite Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Jackson, Wade

    2003-01-01

    Panel size has a large effect on the impact response and resultant damage level of honeycomb sandwich panels. It has been observed during impact testing that panels of the same design but different panel sizes will show large differences in damage when impacted with the same impact energy. To study this effect, a test program was conducted with instrumented impact testing of three different sizes of sandwich panels to obtain data on panel response and residual damage. In concert with the test program. a closed form analysis method was developed that incorporates the effects of damage on the impact response. This analysis method will predict both the impact response and the residual damage of a simply-supported sandwich panel impacted at any position on the panel. The damage is incorporated by the use of an experimental load-indentation curve obtained for the face-sheet/honeycomb and indentor combination under study. This curve inherently includes the damage response and can be obtained quasi-statically from a rigidly-backed specimen or a specimen with any support conditions. Good correlation has been obtained between the test data and the analysis results for the maximum force and residual indentation. The predictions can be improved by using a dynamic indentation curve. Analyses have also been done using the MSC/DYTRAN finite element code.

  9. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    PubMed

    Kaneko, Ai; Sankai, Yoshiyuki

    2014-01-01

    The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4) cells/mL (8.9×10(3) cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).

  10. Vibration Characteristics Determined for Stainless Steel Sandwich Panels With a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Min, James B.; Raj, Sai V.; Lerch, Bradley A.; Holland, Frederic A., Jr.

    2004-01-01

    The goal of this project at the NASA Glenn Research Center is to provide fan materials that are safer, weigh less, and cost less than the currently used titanium alloy or polymer matrix composite fans. The proposed material system is a sandwich fan construction made up of thin solid face sheets and a lightweight metal foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by the foam layer. The resulting structure has a high stiffness and lighter weight in comparison to the solid facesheet material alone. The face sheets carry the applied in-plane and bending loads (ref. 1). The metal foam core must resist the transverse shear and transverse normal loads, as well as keep the facings supported and working as a single unit. Metal foams have ranges of mechanical properties, such as light weight, impact resistance, and vibration suppression (ref. 2), which makes them more suitable for use in lightweight fan structures. Metal foams have been available for decades (refs. 3 and 4), but the difficulties in the original processes and high costs have prevented their widespread use. However, advances in production techniques and cost reduction have created a new interest in this class of materials (ref. 5). The material chosen for the face sheet and the metal foam for this study was the aerospace-grade stainless steel 17-4PH. This steel was chosen because of its attractive mechanical properties and the ease with which it can be made through the powder metallurgy process (ref. 6). The advantages of a metal foam core, in comparison to a typical honeycomb core, are material isotropy and the ease of forming complex geometries, such as fan blades. A section of a 17-4PH sandwich structure is shown in the following photograph. Part of process of designing any blade is to determine the natural frequencies of the particular blade shape. A designer needs to predict the resonance frequencies of a new blade design to properly identify a useful

  11. Extremely low-frequency Lamb wave band gaps in a sandwich phononic crystal thin plate

    NASA Astrophysics Data System (ADS)

    Shen, Li; Wu, Jiu Hui; Liu, Zhangyi; Fu, Gang

    2015-11-01

    In this paper, a kind of sandwich phononic crystal (PC) plate with silicon rubber scatterers embedded in polymethyl methacrylate (PMMA) matrix is proposed to demonstrate its low-frequency Lamb wave band gap (BG) characteristics. The dispersion relationship and the displacement vector fields of the basic slab modes and the locally resonant modes are investigated to show the BG formation mechanism. The anti-symmetric Lamb wave BG is further studied due to its important function in reducing vibration. The analysis on the BG characteristics of the PC through changing their geometrical parameters is performed. By optimizing the structure, a sandwich PC plate with a thickness of only 3 mm and a lower boundary (as low as 23.9 Hz) of the first anti-symmetric BG is designed. Finally, sound insulation experiment on a sandwich PC plate with the thickness of only 2.5 mm is conducted, showing satisfactory noise reduction effect in the frequency range of the anti-symmetric Lamb BG. Therefore, this kind of sandwich PC plate has potential applications in controlling vibration and noise in low-frequency ranges.

  12. Detection of entrapped moisture in honeycomb sandwich structures

    NASA Technical Reports Server (NTRS)

    Hallmark, W. B.

    1967-01-01

    Thermal neutron moisture detection system detects entrapped moisture in intercellular areas of bonded honeycomb sandwich structures. A radium/beryllium fast neutron source bombards a specimen. The emitted thermal neutrons from the target nucleus are detected and counted by a boron trifluoride thermal neutron detector.

  13. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    DOT National Transportation Integrated Search

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) : sandwich materials for various transportation construction applications, with particular emphasis : on highway bridge decks in cold regions, were developed and teste...

  14. Open-Mode Debonding Analysis of Curved Sandwich Panels Subjected to Heating and Cryogenic Cooling on Opposite Faces

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1999-01-01

    Increasing use of curved sandwich panels as aerospace structure components makes it vital to fully understand their thermostructural behavior and identify key factors affecting the open-mode debonding failure. Open-mode debonding analysis is performed on a family of curved honeycomb-core sandwich panels with different radii of curvature. The curved sandwich panels are either simply supported or clamped, and are subjected to uniform heating on the convex side and uniform cryogenic cooling on the concave side. The finite-element method was used to study the effects of panel curvature and boundary condition on the open-mode stress (radial tensile stress) and displacement fields in the curved sandwich panels. The critical stress point, where potential debonding failure could initiate, was found to be at the midspan (or outer span) of the inner bonding interface between the sandwich core and face sheet on the concave side, depending on the boundary condition and panel curvature. Open-mode stress increases with increasing panel curvature, reaching a maximum value at certain high curvature, and then decreases slightly as the panel curvature continues to increase and approach that of quarter circle. Changing the boundary condition from simply supported to clamped reduces the magnitudes of open-mode stresses and the associated sandwich core depth stretching.

  15. Visual distraction and visuo-spatial memory: a sandwich effect.

    PubMed

    Tremblay, Sébastien; Nicholls, Alastair P; Parmentier, Fabrice B R; Jones, Dylan M

    2005-01-01

    The functional characteristics of visuo-spatial serial memory and its sensitivity to irrelevant visual information are examined in the present study, through the investigation of the sandwich effect (e.g., Hitch, 1975). The memory task was one of serial recall for the position of a sequence of seven spatially and temporally separated dots. The presence of irrelevant dots interpolated with to-be-remembered dots affected performance over most serial positions (Experiment 1) but that effect was significantly reduced when the interpolated dots were distinct from the to-be-remembered dots by colour and shape (Experiment 2). Parallels are made between verbal and spatial serial memory, and the reduction of the sandwich effect is discussed in terms of the contribution of perceptual organisation and attentional factors in short-term memory.

  16. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  17. Buckling coefficients for simply supported and camped flat, rectangular sandwich panels under edgewise compression

    Treesearch

    Edward W. Kuenzi; Charles B. Norris; Paul M. Jenkinson

    1964-01-01

    “This report presents curves of coefficients and formulas for use in calculating the buckling of flat panels of sandwich construction under edgewise compressive loads. The curves were derived for sandwich panels having one facing of either of two orthotropic materials, the other facing of an isotropic material; both facings of orthotropic material; both facings of...

  18. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.

    PubMed

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP-PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP-PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering.

  19. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds

    PubMed Central

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite–polyetheretherketone (HAP–PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP–PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP–PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering. PMID:27555770

  20. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    DOT National Transportation Integrated Search

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) sandwich materials for various transportation construction applications, with particular emphasis on highway bridge decks in cold regions, were developed and tested. T...

  1. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  2. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Wang, Xuandong; Ye, Jun; Xue, Ximei; Zhang, Fangrong; Zhang, Huicong; Hou, Xuemei; Liu, Xiaolong; Zhang, Yun

    2018-03-01

    Drug resistance of bacteria has become a global health problem, as it makes conventional antibiotics less efficient. It is urgently needed to explore novel antibacterial materials and develop effective treatment strategies to overcome the drug resistance of antibiotics. Herein, we successfully synthesized silver decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets (rGO/MSN/Ag) as a novel antibacterial material through facile method. The rGO and Ag nanoparticles can be reduced in the reaction system without adding any other reductants. In addition, the rGO/MSN/Ag showed higher photothermal conversion capacity due to the modification of silver nanoparticles and exhibited excellent antibacterial activities against Pseudomonas putida, Escherichia coli and Rhodococcus at relatively low dosages, which was confirmed by the minimum inhibitory concentration (MIC) test. Meanwhile, the E. coli with a high concentration was selected for exposure using an 808 nm laser, and the antibacterial effect was obviously enhanced by the near-infrared irradiation induced photothermal effect. Moreover, the hepatocyte LO2 were used for the cytotoxicity evaluation, and the rGO/MSN/Ag showed low toxicity and were without detectable cytotoxicity at the antimicrobial dose. As the prepared rGO/MSN/Ag nanosheets have the advantages of low-cost and high antibacterial activity, they might be of promising and useful antibacterial agents for different applications.

  3. Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.

    2007-01-01

    A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.

  4. Mechanical behavior of Kenaf/Epoxy corrugated sandwich structures

    NASA Astrophysics Data System (ADS)

    Bakhori, S.; Hassan, M. Z.; Daud, Y.; Sarip, S.; Rahman, N.; Ismail, Z.; Aziz, S. A.

    2015-12-01

    This study presents the response of kenaf/epoxy corrugated sandwich structure during quasi-static test. Force-displacements curves have been deducted to determine the deformation pattern and collapse behavior of the structure. Kenaf/epoxy sandwich structures skins fabricated by using hand layup technique and the corrugated core were moulded by using steel mould. Different thicknesses of corrugated core web with two sizes of kenaf fibers were used. The corrugated core is then bonded with the skins by using poly-epoxy resin and has been cut into different number of cells. The specimens then tested under tensile and compression at different constant speeds until the specimens fully crushed. Tensile tests data showed the structure can be considered brittle when it breaking point strain, ε less than 0.025. In compression test, the specimens fail due to dominated by stress concentration that initiated by prior cracks. Also, the specimens with more number of cells and thicker core web have higher strength and the ability to absorb higher energy.

  5. Development of a Quantitative Sandwich Enzyme-Linked Immunosorbent Assay for Detecting the MPT64 Antigen of Mycobacterium tuberculosis

    PubMed Central

    Ji, Mijung; Cho, Byungki; Cho, Young Shik; Park, Song-Yong; Cho, Sang-Nae

    2014-01-01

    Purpose Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M. tuberculosis, an antigen marker of the M. tuberculosis complex, was developed. Materials and Methods The MPT64 protein was expressed, and anti-MPT64 monoclonal antibodies were prepared. A sandwich ELISA was established using recombinant MPT64 protein and anti-MPT64 monoclonal antibodies. The sandwich MPT64 ELISA was evaluated using reference and clinical mycobacterial strains. Results The sandwich MPT64 ELISA detected MPT64 protein from 2.1 ng/mL to 250 ng/mL (equivalent to 1.7×104 CFU/mL and 2.0×106 CFU/mL). All 389 clinical M. tuberculosis isolates tested positive in the sandwich MPT64 ELISA (sensitivity, 100%), and the assay showed no cross reactivity to any tested nontuberculous mycobacterial strain (specificity, 100%). Conclusion The sandwich MPT64 ELISA is a highly sensitive and quantitative test for MPT64 protein, which can identify M. tuberculosis. PMID:24719143

  6. Development of a quantitative sandwich enzyme-linked immunosorbent assay for detecting the MPT64 antigen of Mycobacterium tuberculosis.

    PubMed

    Ji, Mijung; Cho, Byungki; Cho, Young Shik; Park, Song-Yong; Cho, Sang-Nae; Jeon, Bo-Young; Yoon, Byoung-Su

    2014-05-01

    Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M. tuberculosis, an antigen marker of the M. tuberculosis complex, was developed. The MPT64 protein was expressed, and anti-MPT64 monoclonal antibodies were prepared. A sandwich ELISA was established using recombinant MPT64 protein and anti-MPT64 monoclonal antibodies. The sandwich MPT64 ELISA was evaluated using reference and clinical mycobacterial strains. The sandwich MPT64 ELISA detected MPT64 protein from 2.1 ng/mL to 250 ng/mL (equivalent to 1.7×10⁴ CFU/mL and 2.0×10⁶ CFU/mL). All 389 clinical M. tuberculosis isolates tested positive in the sandwich MPT64 ELISA (sensitivity, 100%), and the assay showed no cross reactivity to any tested nontuberculous mycobacterial strain (specificity, 100%). The sandwich MPT64 ELISA is a highly sensitive and quantitative test for MPT64 protein, which can identify M. tuberculosis.

  7. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection.

    PubMed

    Ocaña, Cristina; Hayat, Akhtar; Mishra, Rupesh; Vasilescu, Alina; del Valle, Manel; Marty, Jean-Louis

    2015-06-21

    In this paper, we have reported a novel electrochemical aptamer-antibody based sandwich biosensor for the detection of lysozyme. In the sensing strategy, an anti-lysozyme aptamer was immobilized onto the carbon electrode surface by covalent binding via diazonium salt chemistry. After incubating with a target protein (lysozyme), a biotinylated antibody was used to complete the sandwich format. The subsequent additions of avidin-alkaline phosphatase as an enzyme label, and a 1-naphthyl phosphate substrate (1-NPP) allowed us to determine the concentration of lysozyme (Lys) via Differential Pulse Voltammetry (DPV) of the generated enzyme reaction product, 1-naphthol. Using this strategy, a wide detection range from 5 fM to 5 nM was obtained for a target lysozyme, with a detection limit of 4.3 fM. The control experiments were carried out by using bovine serum albumin (BSA), cytochrome c and casein. The results showed that the proposed biosensor had good specificity, stability and reproducibility for lysozyme analysis. In addition, the biosensor was applied for detecting lysozyme in spiked wine samples, and very good recovery rates were obtained in the range from 95.2 to 102.0% for lysozyme detection. This implies that the proposed sandwich biosensor is a promising analytical tool for the analysis of lysozyme in real samples.

  8. Vibration control of multiferroic fibrous composite plates using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Kattimani, S. C.; Ray, M. C.

    2018-06-01

    Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.

  9. Qualitative and quantitative detection of T7 bacteriophages using paper based sandwich ELISA.

    PubMed

    Khan, Mohidus Samad; Pande, Tripti; van de Ven, Theo G M

    2015-08-01

    Viruses cause many infectious diseases and consequently epidemic health threats. Paper based diagnostics and filters can offer attractive options for detecting and deactivating pathogens. However, due to their infectious characteristics, virus detection using paper diagnostics is more challenging compared to the detection of bacteria, enzymes, DNA or antigens. The major objective of this study was to prepare reliable, degradable and low cost paper diagnostics to detect viruses, without using sophisticated optical or microfluidic analytical instruments. T7 bacteriophage was used as a model virus. A paper based sandwich ELISA technique was developed to detect and quantify the T7 phages in solution. The paper based sandwich ELISA detected T7 phage concentrations as low as 100 pfu/mL to as high as 10(9) pfu/mL. The compatibility of paper based sandwich ELISA with the conventional titre count was tested using T7 phage solutions of unknown concentrations. The paper based sandwich ELISA technique is faster and economical compared to the traditional detection techniques. Therefore, with proper calibration and right reagents, and by following the biosafety regulations, the paper based technique can be said to be compatible and economical to the sophisticated laboratory diagnostic techniques applied to detect pathogenic viruses and other microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Analyses for Debonding of Stitched Composite Sandwich Structures Using Improved Constitutive Models

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Sleight, D. W.; Krishnamurthy, T.; Raju, I. S.

    2001-01-01

    A fracture mechanics analysis based on strain energy release rates is used to study the effect of stitching in bonded sandwich beam configurations. Finite elements are used to model the configurations. The stitches were modeled as discrete nonlinear spring elements with a compliance determined by experiment. The constitutive models were developed using the results of flatwise tension tests from sandwich material rather than monolithic material. The analyses show that increasing stitch stiffness, stitch density and debond length decrease strain energy release rates for a fixed applied load.

  11. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    DOT National Transportation Integrated Search

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  12. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer.

    PubMed

    Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells.

  13. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer

    PubMed Central

    Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  14. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    PubMed

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  15. Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene

    DOE PAGES

    Han, Meng; Yuan, Pengyu; Liu, Jing; ...

    2017-09-22

    We report the thermal conductance induced by few-layered graphene (G) sandwiched between β-phase tungsten (β-W) films of 15, 30 and 40 nm thickness. Our differential characterization is able to distinguish the thermal conductance of β-W film and β-W/G interface. The cross-plane thermal conductivity (k) of β-W films is determined at 1.69~2.41 Wm -1K -1 which is much smaller than that of α-phase tungsten (174 Wm -1K -1). This small value is consistent with the large electrical resistivity reported for β-W in literatures and in this work. The β-W/β-W and β-W/G interface thermal conductance (GW/W and GW/G) are characterized and comparedmore » using multilayered β-W films with and without sandwiched graphene layers. The average GW/W is found to be at 280 MW m -2K -1. GW/G features strong variation from sample to sample, and has a lower-limit of 84 MW m -2K -1, taking into consideration of the uncertainties. This is attributed to possible graphene structure damage and variation during graphene transfer and W sputtering. The difference between G2W/G and GW/W uncovers the finite thermal resistance induced by the graphene layer. Compared with up-to-date reported graphene interface thermal conductance, the β-W/G interface is at the high end in terms of local energy coupling.« less

  16. Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Meng; Yuan, Pengyu; Liu, Jing

    We report the thermal conductance induced by few-layered graphene (G) sandwiched between β-phase tungsten (β-W) films of 15, 30 and 40 nm thickness. Our differential characterization is able to distinguish the thermal conductance of β-W film and β-W/G interface. The cross-plane thermal conductivity (k) of β-W films is determined at 1.69~2.41 Wm -1K -1 which is much smaller than that of α-phase tungsten (174 Wm -1K -1). This small value is consistent with the large electrical resistivity reported for β-W in literatures and in this work. The β-W/β-W and β-W/G interface thermal conductance (GW/W and GW/G) are characterized and comparedmore » using multilayered β-W films with and without sandwiched graphene layers. The average GW/W is found to be at 280 MW m -2K -1. GW/G features strong variation from sample to sample, and has a lower-limit of 84 MW m -2K -1, taking into consideration of the uncertainties. This is attributed to possible graphene structure damage and variation during graphene transfer and W sputtering. The difference between G2W/G and GW/W uncovers the finite thermal resistance induced by the graphene layer. Compared with up-to-date reported graphene interface thermal conductance, the β-W/G interface is at the high end in terms of local energy coupling.« less

  17. Enhanced electrochemical performance from 3DG/LiFePO4/G sandwich cathode material

    NASA Astrophysics Data System (ADS)

    Du, Yahui; Tang, Yufeng; Chang, Chengkang

    2017-08-01

    In this paper, we have successfully synthesized a three dimensional graphene/LiFePO4/graphene (3DG/LFP/G) sandwich composite by an in-situ hydrothermal method, in which chemical vapor deposited 3D graphene acts as the high conductivity supporting framework, while the LiFePO4 nanoparticles are anchored onto the 3D graphene framework covered by graphene sheets. XRD and SEM results confirmed the formation of the 3DG/LFP/G sandwich composite. Cyclic Voltammetry curve of the sandwich composite shows sharper redox peaks and reduced voltage separation when compared to the reference electrodes, suggesting high specific capacity and good rate performance. Further charge/discharge measurements presented high capacity of 164 mAh g-1 at 0.2 C and 124 mAh g-1 at 10 C (75.7% of its initial capacity) for the sandwich composite, with capacity retention of 95.7% after 100 cycles, implying potential application in lithium ion battery at high rates. The EIS investigation suggests that both the electronic conductivity and the Li ion diffusion are promoted by the underlined 3D graphene framework, which is regarded as the reason for the enhanced electrochemical performance.

  18. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    NASA Astrophysics Data System (ADS)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  19. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  20. Killing bacteria within biofilms by sustained release of tetracycline from triple-layered electrospun micro/nanofibre matrices of polycaprolactone and poly(ethylene-co-vinyl acetate).

    PubMed

    Alhusein, Nour; De Bank, Paul A; Blagbrough, Ian S; Bolhuis, Albert

    2013-12-01

    We report the controlled release of the antibiotic tetracycline (tet) HCl from a triple-layered electrospun matrix consisting of a central layer of poly(ethylene-co-vinyl acetate (PEVA) sandwiched between outer layers of poly-ε-caprolactone (PCL). These micro/nanofibre layers with tet successfully encapsulated (essentially quantitatively at 3 and 5 % w/w) in each layer, efficiently inhibited the growth of a panel of bacteria, including clinical isolates, as shown by a modified Kirby-Bauer disc assay. Furthermore, they demonstrated high biological activity in increasingly complex models of biofilm formation (models that are moving closer to the situation in a wound) by stopping biofilm formation, by killing preformed biofilms and killing mature, dense biofilm colonies of Staphylococcus aureus MRSA252. Tet is clinically useful with potential applications in wound healing and especially in complicated skin and skin-structure infections; electrospinning provides good encapsulation efficiency of tet within PCL/PEVA/PCL polymers in micro/nanofibre layers which display sustained antibiotic release in formulations that are anti-biofilm.

  1. Room-temperature isolation of V(benzene)2 sandwich clusters via soft-landing into n-alkanethiol self-assembled monolayers.

    PubMed

    Nagaoka, Shuhei; Matsumoto, Takeshi; Okada, Eiji; Mitsui, Masaaki; Nakajima, Atsushi

    2006-08-17

    The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.

  2. Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Wang, Likun; Qin, Lei

    2018-06-01

    A theoretical model was developed to investigate the performance of 1-3 piezoelectric composites with a sandwich polymer. Effective parameters, such as the electromechanical coupling factor, longitudinal velocity, and characteristic acoustic impedance of the piezocomposite, were predicted using the developed model. The influences of volume fractions and components of the polymer phase on the effective parameters of the piezoelectric composite were studied. The theoretical model was verified experimentally. The proposed model can reproduce the effective parameters of 1-3 piezoelectric composites with a sandwich polymer in the thickness mode. The measured electromechanical coupling factor was improved by more than 9.8% over the PZT/resin 1-3 piezoelectric composite.

  3. Experimental investigation on the dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loadings

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).

  4. Measured Two-Dimensional Ice-Wedge Polygon Thermal and Active Layer Dynamics

    NASA Astrophysics Data System (ADS)

    Cable, W.; Romanovsky, V. E.; Busey, R.

    2016-12-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. To investigate the effect of microtopographic caused variation in surface conditions on the ground thermal regime, we established temperature transects, composed of five vertical array thermistor probes (VATP), across four different development stages of ice-wedge polygons near Barrow, Alaska. Each VATP had 16 thermistors from the surface to a depth of 1.5 m, for a total of 80 temperature measurements per polygon. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-centered polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT) and latest freezeback dates. While the centers of high-centered polygons, with thinner snow cover and a dryer active layer, had the lowest MAGT, earliest freezeback dates, and shallowest active layer. Refreezing of the active layer initiated at nearly the same time for all locations and polygons however, we found large differences in the proportion of downward versus upward freezing and the length of time required to complete the refreezing process between polygon types and locations. Using our four polygon stages as a space for time substitution, we conclude that ice-wedge degradation resulting in surface subsidence and trough deepening can lead to overall drying of the active layer and increased skewedness of snow

  5. Composite Sandwich Technologies Lighten Components

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Leveraging its private resources with several Small Business Innovation Research (SBIR) contracts with both NASA and the U.S. Department of Defense, WebCore Technologies LLC, of Miamisburg, Ohio, developed a fiber-reinforced foam sandwich panel it calls TYCOR that can be used for a wide variety of industrial and consumer applications. Testing at Glenn Research Center?s Ballistic Impact Facility demonstrated that the technology was able to exhibit excellent damage localization and stiffness during impact. The patented and trademarked material has found use in many demanding applications, including marine, ground transportation, mobile shelters, bridges, and most notably, wind turbines.

  6. Facesheet Wrinkling in Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Ley, Robert P.; Lin, Weichuan; Mbanefo, Uy

    1999-01-01

    The purpose of this paper is to provide a concise summary of the state-of-the-art for the analysis of the facesheet wrinkling mode of failure in sandwich structures. This document is not an exhaustive review of the published research related to facesheet wrinkling. Instead, a smaller number of key papers are reviewed in order to provide designers and analysts with a working understanding of the state-of-the-art. Designers and analysts should use this survey to guide their judgement when deciding which one of a wide variety of available facesheet wrinkling design formulas is applicable to a specific design problem.

  7. Sandwich consumption by adults in the U.S., What We Eat in America, NHANES 2009-2012

    USDA-ARS?s Scientific Manuscript database

    Although sandwiches are a staple of the American diet, little is known about their consumption and their contributions to dietary intakes of energy, nutrients, and food components. In this report, the definition of “sandwich” includes not only sandwiches represented in the dietary data by a single ...

  8. Behavior of sandwich panels subjected to bending fatigue, axial compression loading and in-plane bending

    NASA Astrophysics Data System (ADS)

    Mathieson, Haley Aaron

    This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels

  9. Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.

    2012-01-01

    Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.

  10. Transmission Loss and Absorption of Corrugated Core Sandwich Panels With Embedded Resonators

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.; Zalewski, Bart F.; Rosenthal, Bruce N.

    2014-01-01

    The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m × 2.438 m panels with embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard processing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements. Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of structure to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel construction, which is typically sized to meet static load requirements. Absorption and transmission loss performance improvements attributed to opening the inlets were apparent for some configurations and inconclusive for others.

  11. Experimental Study of the Bending Properties and Deformation Analysis of Web-Reinforced Composite Sandwich Floor Slabs with Four Simply Supported Edges.

    PubMed

    Qi, Yujun; Fang, Hai; Liu, Weiqing

    2016-01-01

    Web-reinforced composite sandwich panels exhibit good mechanical properties in one-way bending, but few studies have investigated their flexural behavior and deformation calculation methods under conditions of four simply supported edges. This paper studies the bending performance of and deformation calculation methods for two-way web-reinforced composite sandwich panels with different web spacing and heights. Polyurethane foam, two-way orthogonal glass-fiber woven cloth and unsaturated resin were used as raw materials in this study. Vacuum infusion molding was used to prepare an ordinary composite sandwich panel and 5 web-reinforced composite sandwich panels with different spacing and web heights. The panels were subjected to two-way panel bending tests with simple support for all four edges. The mechanical properties of these sandwich panels during the elastic stage were determined by applying uniformly distributed loads. The non-linear mechanical characteristics and failure modes were obtained under centrally concentrated loading. Finally, simulations of the sandwich panels, which used the mechanical model established herein, were used to deduce the formulae for the deflection deformation for this type of sandwich panel. The experimental results show that webs can significantly improve the limit bearing capacity and flexural rigidity of sandwich panels, with smaller web spacing producing a stronger effect. When the web spacing is 75 mm, the limit bearing capacity is 4.63 times that of an ordinary sandwich panel. The deduced deflection calculation formulae provide values that agree well with the measurements (maximum error <15%). The results that are obtained herein can provide a foundation for the structural design of this type of panel.

  12. Enhanced interface perpendicular magnetic anisotropy in electrodeposited Co/Au(111) layers

    NASA Astrophysics Data System (ADS)

    Cagnon, L.; Devolder, T.; Cortes, R.; Morrone, A.; Schmidt, J. E.; Chappert, C.; Allongue, P.

    2001-03-01

    This work investigates the structure and interface perpendicular magnetic anisotropy (PMA) of electrodeposited Cu/Co/Au(111) sandwiches with variable Co thickness [2-20 monolayers (ML's)]. In optimum deposition conditions, polar magneto-optical Kerr effect measurements show that the axis of easy magnetization is perpendicular to the layers for thicknesses below ca. 7.2 ML's. This value is among the best ever reported for the Cu/Co/Au(111) structure. While extended x-ray-absorption fine structure indicates that layers are hcp, in situ STM imaging suggests that magnetoelastic effects contribute significantly to PMA. The correlation observed between the strength of PMA and film structure is discussed in details.

  13. Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films

    NASA Astrophysics Data System (ADS)

    Al Garni, S. E.; Qasrawi, A. F.

    In the current study, we attempted to explore the effects of the Indium nanosandwiching on the mechanical and optical properties of the physically evaporated ZnSe thin films by means of X-ray diffractions and ultraviolet spectrophotometry techniques. While the thickness of each layer of ZnSe was fixed at 1.0 μm, the thickness of the nanosandwiched Indium thin films was varied in the range of 25-100 nm. It was observed that the as grown ZnSe films exhibits cubic and hexagonal nature of crystallization as those of the ZnSe powders before the film deposition. The cubic phases weighs ∼70% of the structure. The analysis of this phases revealed that there is a systematic variation process presented by the decreasing of; the lattice constant, compressing strain, stress, stacking faults and dislocation intensity and increasing grain size resulted from increasing the Indium layer thickness in the range of 50-100 nm. In addition, the nanosandwiching of Indium between two layers of ZnSe is observed to enhance the absorbability of the ZnSe. Particularly, at incident photon energy of 2.38 eV the absorbability of the ZnSe films which are sandwiched with 100 nm Indium is increased by 13.8 times. Moreover, increasing the thickness of the Indium layer shrinks the optical energy band gap. These systematic variations in mechanical and optical properties are assigned to the better recrystallization process that is associated with Indium insertion which in turn allows total internal energy redistribution in the ZnSe films through the enlargement of grains.

  14. Novel electric double-layer capacitor with a coaxial fiber structure.

    PubMed

    Chen, Xuli; Qiu, Longbin; Ren, Jing; Guan, Guozhen; Lin, Huijuan; Zhang, Zhitao; Chen, Peining; Wang, Yonggang; Peng, Huisheng

    2013-11-26

    A coaxial electric double-layer capacitor fiber is developed from the aligned carbon nanotube fiber and sheet, which functions as two electrodes with a polymer gel sandwiched between them. The unique coaxial structure enables a rapid transportation of ions between the two electrodes with a high electrochemical performance. These energy storage fibers are also flexible and stretchable, and can be woven into and widely used for electronic textiles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analytical modeling of a sandwiched plate piezoelectric transformer-based acoustic-electric transmission channel.

    PubMed

    Lawry, Tristan J; Wilt, Kyle R; Scarton, Henry A; Saulnier, Gary J

    2012-11-01

    The linear propagation of electromagnetic and dilatational waves through a sandwiched plate piezoelectric transformer (SPPT)-based acoustic-electric transmission channel is modeled using the transfer matrix method with mixed-domain two-port ABCD parameters. This SPPT structure is of great interest because it has been explored in recent years as a mechanism for wireless transmission of electrical signals through solid metallic barriers using ultrasound. The model we present is developed to allow for accurate channel performance prediction while greatly reducing the computational complexity associated with 2- and 3-dimensional finite element analysis. As a result, the model primarily considers 1-dimensional wave propagation; however, approximate solutions for higher-dimensional phenomena (e.g., diffraction in the SPPT's metallic core layer) are also incorporated. The model is then assessed by comparing it to the measured wideband frequency response of a physical SPPT-based channel from our previous work. Very strong agreement between the modeled and measured data is observed, confirming the accuracy and utility of the presented model.

  16. Low Velocity Blunt Impact on Lightweight Composite Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Chan, Monica Kar

    There is an increased desire to incorporate more composite sandwich structures into modern aircrafts. Because in-service aircrafts routinely experience impact damage during maintenance due to ground vehicle collision, dropped equipment, or foreign object damage (FOD) impact, it is necessary to understand their impact characteristics, particularly when blunt impact sources create internal damage with little or no external visibility. The objective of this investigation is to explore damage formation in lightweight composite sandwich panels due to low-velocity impacts of variable tip radius and energy level. The correlation between barely visible external dent formation and internal core damage was explored as a function of impact tip radius. A pendulum impactor was used to impact composite sandwich panels having honeycomb core while held in a 165 mm square window fixture. The panels were impacted by hardened steel tips with radii of 12.7, 25.4, 50.8, and 76.2 mm at energy levels ranging from 2 to 14 J. Experimental data showed little dependence of external dent depth on tip radius at very low energies of 2 to 6 J, and thus, there was also little variation in visibility due to tip radius. Four modes of internal core damage were identified. Internal damage span and depth were dependent on impact tip radius. Damage depth was also radius-dependent, but stabilized at constant depth independent of kinetic energy. Internal damage span increased with increasing impact energy, but not with increasing tip radius, suggesting a relationship between maximum damage tip radius with core density/size.

  17. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  18. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes.

    PubMed

    Liu, Jinyun; Li, Nan; Goodman, Matthew D; Zhang, Hui Gang; Epstein, Eric S; Huang, Bo; Pan, Zeng; Kim, Jinwoo; Choi, Jun Hee; Huang, Xingjiu; Liu, Jinhuai; Hsia, K Jimmy; Dillon, Shen J; Braun, Paul V

    2015-02-24

    Stability and high energy densities are essential qualities for emerging battery electrodes. Because of its high specific capacity, silicon has been considered a promising anode candidate. However, the several-fold volume changes during lithiation and delithiation leads to fractures and continuous formation of an unstable solid-electrolyte interphase (SEI) layer, resulting in rapid capacity decay. Here, we present a carbon-silicon-carbon (C@Si@C) nanotube sandwich structure that addresses the mechanical and chemical stability issues commonly associated with Si anodes. The C@Si@C nanotube array exhibits a capacity of ∼2200 mAh g(-1) (∼750 mAh cm(-3)), which significantly exceeds that of a commercial graphite anode, and a nearly constant Coulombic efficiency of ∼98% over 60 cycles. In addition, the C@Si@C nanotube array gives much better capacity and structure stability compared to the Si nanotubes without carbon coatings, the ZnO@C@Si@C nanorods, a Si thin film on Ni foam, and C@Si and Si@C nanotubes. In situ SEM during cycling shows that the tubes expand both inward and outward upon lithiation, as well as elongate, and then revert back to their initial size and shape after delithiation, suggesting stability during volume changes. The mechanical modeling indicates the overall plastic strain in a nanotube is much less than in a nanorod, which may significantly reduce low-cycle fatigue. The sandwich-structured nanotube design is quite general, and may serve as a guide for many emerging anode and cathode systems.

  19. Plasmon and exciton superconductivity mechanisms in layered structures

    NASA Technical Reports Server (NTRS)

    Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.

    1977-01-01

    Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.

  20. Buckling analysis of SMA bonded sandwich structure – using FEM

    NASA Astrophysics Data System (ADS)

    Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.

    2018-03-01

    Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.

  1. A {3,2}-Order Bending Theory for Laminated Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Cook, Geoffrey M.; Tessler, Alexander

    1998-01-01

    A higher-order bending theory is derived for laminated composite and sandwich beams thus extending the recent {1,2}-order theory to include third-order axial effect without introducing additional kinematic variables. The present theory is of order {3,2} and includes both transverse shear and transverse normal deformations. A closed-form solution to the cylindrical bending problem is derived and compared with the corresponding exact elasticity solution. The numerical comparisons are focused on the most challenging material systems and beam aspect ratios which include moderate-to-thick unsymmetric composite and sandwich laminates. Advantages and limitations of the theory are discussed.

  2. Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics.

    PubMed

    Rey, Elizabeth G; O'Dell, Dakota; Mehta, Saurabh; Erickson, David

    2017-05-02

    The quantification of analyte concentrations using lateral flow assays is a low-cost and user-friendly alternative to traditional lab-based assays. However, sandwich-type immunoassays are often limited by the high-dose hook effect, which causes falsely low results when analytes are present at very high concentrations. In this paper, we present a reaction kinetics-based technique that solves this problem, significantly increasing the dynamic range of these devices. With the use of a traditional sandwich lateral flow immunoassay, a portable imaging device, and a mobile interface, we demonstrate the technique by quantifying C-reactive protein concentrations in human serum over a large portion of the physiological range. The technique could be applied to any hook effect-limited sandwich lateral flow assay and has a high level of accuracy even in the hook effect range.

  3. Strain mapping in single-layer two-dimensional crystals via Raman activity

    NASA Astrophysics Data System (ADS)

    Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R. T.; Sahin, H.

    2018-03-01

    By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono- and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X =S , Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.

  4. Repair of bony lateral skull base defects equal to or larger than 10 mm by extracorporeally sewed unit-sandwich graft.

    PubMed

    Indorewala, Shabbir; Nemade, Gaurav; Indorewala, Abuzar; Mahajan, Gauri

    2018-06-23

    To see effectiveness of the senior author's repair technique for repair of large (equal to or larger than 10 mm) bony lateral skull base defects. Retrospective. Secondary/tertiary care center. We performed retrospective review of 9 surgeries done in our institution between January 2010 and December 2013 for repair of large lateral bony skull base defects. We defined skull base defects extra-cranially and repaired them intra-cranially. We made an extracorporeal sandwich of autologous fascia-bone-fascia (fascia lata and nasal septal bone) and sewed it together to make it into a unit-sandwich graft. This extracorporeally sewed unit-sandwich graft was then inserted to close the large skull base defects either via (1) a cranial slit-window, or (2) the skull base defect itself. Since skull base is bony, bony repair is preferred. Bone plates that are easily available for skull base repair are calvarial and nasal septal bone. Occasionally, harvest of split calvarial bone carries risk of major complications. We preferred nasal septal bone. Harvesting of septal bone even in children using a posterior incision should not disturb the cartilage growth centers. All nine patients were operated by this technique. We had four patients with cerebrospinal fluid leak, and five patients with brain herniation. All these patients had complete reversal of herniation of cranial contents and cessation of cerebrospinal fluid leak. On imaging, in 6 cases the bone graft remained in original intended position after 12 months of surgery. The bone graft was not identifiable in 3 cases. The senior author's technique using autologous multi-layered graft is simple to master, repeatable and very effective.

  5. The curved kinetic boundary layer of active matter.

    PubMed

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  6. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  7. Two New Sandwich-Type Polyoxomolybdates Functionalized with Diphosphonates: Efficient and Selective Oxidation of Sulfides to Sulfones

    PubMed Central

    Sun, Xiaopeng; Hu, Feng; Wan, Rong; Singh, Vikram; Ma, Pengtao; Wang, Jingping

    2017-01-01

    Two sandwich-type polyoxomolybdates Na8[MO2{Mo2O5(O3PCH3C(O)PO3)}2] (M = Ni2+ (1); Co2+ (2)) were synthesized by one-pot reaction of Na2HPMo12O40·14H2O, 1-hydroxy ethidene diphosphonic acid (HEDP=HOC(CH3)(PO3H2)2), and (1) NiCl2/CoCl2 (2). Compounds 1 and 2 were characterized by single crystal X-ray analysis, X-ray powder diffraction (XRPD), IR spectroscopy, 31P NMR spectra, UV-vis spectroscopy, and thermogravimetric analyses (TGA). Structural analysis reveals that 1 and 2 exhibit similar centrosymmetric structure, which consists of one transition metal (TM) ion sandwiched by two same subunits {Mo2O5(O3PCH3C(O)PO3)}. The clusters 1 and 2 show efficient catalytic activities for oxidation of thioanisole. Moreover, they are catalytically selective for oxidizing thioanisole. Both resuable polyoxomolybdates 1 and 2 catalysts show good thermo- and hydrolytic stability. It is noted that compound 1 shows outstanding catalytic activity for oxidation of various sulfides to corresponding sulfones with 93–100% selectivity at 97–100% conversion in one hour under mild conditions, which is potentially valuable to the removal of organic sulfides. PMID:29027947

  8. Experimental Study of the Bending Properties and Deformation Analysis of Web-Reinforced Composite Sandwich Floor Slabs with Four Simply Supported Edges

    PubMed Central

    Qi, Yujun; Fang, Hai; Liu, Weiqing

    2016-01-01

    Web-reinforced composite sandwich panels exhibit good mechanical properties in one-way bending, but few studies have investigated their flexural behavior and deformation calculation methods under conditions of four simply supported edges. This paper studies the bending performance of and deformation calculation methods for two-way web-reinforced composite sandwich panels with different web spacing and heights. Polyurethane foam, two-way orthogonal glass-fiber woven cloth and unsaturated resin were used as raw materials in this study. Vacuum infusion molding was used to prepare an ordinary composite sandwich panel and 5 web-reinforced composite sandwich panels with different spacing and web heights. The panels were subjected to two-way panel bending tests with simple support for all four edges. The mechanical properties of these sandwich panels during the elastic stage were determined by applying uniformly distributed loads. The non-linear mechanical characteristics and failure modes were obtained under centrally concentrated loading. Finally, simulations of the sandwich panels, which used the mechanical model established herein, were used to deduce the formulae for the deflection deformation for this type of sandwich panel. The experimental results show that webs can significantly improve the limit bearing capacity and flexural rigidity of sandwich panels, with smaller web spacing producing a stronger effect. When the web spacing is 75 mm, the limit bearing capacity is 4.63 times that of an ordinary sandwich panel. The deduced deflection calculation formulae provide values that agree well with the measurements (maximum error <15%). The results that are obtained herein can provide a foundation for the structural design of this type of panel. PMID:26871435

  9. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.

    PubMed

    Forrest, Scott R; Elmore, Bill B; Palmer, James D

    2005-01-01

    Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.

  10. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  11. Monitoring of the active layer at Kapp Linne', SVALBARD 1972-2002

    NASA Astrophysics Data System (ADS)

    Akerman, J.

    2003-04-01

    The active layer has been monitored at ten sites in the vicinity of Kapp Linné, (78o03'42" 13o37'07") Svalbard during the period 1972 - 2002. The ten sites differ in elevation, distance from the sea, vegetation cover, substrate and active periglacial processes. From 1994 the International permafrost Association "CALM" standard grids, with measurement within 100x100m squares, has been applied. Microclimate and soil temperatures have been monitored by data logger covering levels form 2 m above to 7m below the ground. The macroclimate is covered by complete data series from the nearby weather station at Kapp Linne’, covering the period 1912 to 2002. A number of periglacial processes, especially slope processes, are monitored parallel with the active layer. The mean active layer for the sites varies between 1,13m and 0,43m. The deepest active layer is found in the exposed, well drained raised beach ridges and the shallowest in the bogs. The interannual variability during the observation period do not correlate well with the MAAT but better with the summer climate, June - August mean or DDT. The data clearly illustrate colder summers during the period 1972 to 1983 and after that steadily increasing summer temperatures. The active layer follows the same general pattern with good correlations. There are several surface indications as a response to the deepening active layer especially in the bogs. Thermokarst scars appear frequently and a majority of the palsa like mounds and pounus have disappeared. A drastic change in the vegetation on the bogs has also occurred, from dry heath to wet Carex vegetation. In summary the observations from Kapp Linne’ are; 1. A clear trend towards milder summers, 2. A clear trend towards deeper active layers, 3. All sites show a similar pattern, 4. The bogs are getting strikingly wetter, 5. Mounds in the bog sites are disappearing, 6. The slow slope processes are getting accelerated, 7. Thermokarst depressions and scars are appearing in

  12. Nurse managers and the sandwich support model.

    PubMed

    Chisengantambu, Christine; Robinson, Guy M; Evans, Nina

    2018-03-01

    To explore the interplay between the work of nurse managers and the support they receive and provide. Support is the cornerstone of management practices and is pivotal in employees feeling committed to an organisation. Support for nurse managers is integral to effective health sector management; its characteristics merit more attention. The experiences of 15 nurse managers in rural health institutions in South Australia were explored using structured interviews, observation and document review. Effective decision making requires adequate support, which influences the perceptions and performance of nurse managers, creating an environment in which they feel appreciated and valued. An ideal support system is proposed, the "sandwich support model," to promote effective functioning and desirable patient outcomes via support "from above" and "from below." The need to support nurse managers effectively is crucial to how they function. The sandwich support model can improve management practices, more effectively assisting nurse managers. Organisations should revisit and strengthen support processes for nurse managers to maximize efficiencies. This paper contributes to understanding the importance of supporting nurse managers, identifying the processes used and the type of support offered. It highlights challenges and issues affecting support practices within the health sector. © 2017 John Wiley & Sons Ltd.

  13. Precast concrete sandwich panels subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Runge, Matthew W.

    Precast concrete sandwich panels are a relatively new product in the construction industry. The design of these panels incorporates properties that allow for great resilience against temperature fluctuation as well as the very rapid and precise construction of facilities. The concrete sandwich panels investigated in this study represent the second generation of an ongoing research and development project. This second generation of panels have been engineered to construct midsized commercial buildings up to three stories in height as well as residential dwellings. The panels consist of a double-tee structural wythe, a foam core and a fascia wythe, joined by shear connectors. Structures constructed from these panels may be subjected to extreme loading including the effects of seismic and blast loading in addition to wind. The aim of this work was to investigate the behaviour of this particular sandwich panel when subjected to structural impact events. The experimental program consisted of fourteen concrete sandwich panels, five of which were considered full-sized specimens (2700 mm X 1200mm X 270 mm) and nine half-sized specimens (2700mm X 600mm X 270 mm) The panels were subjected to impact loads from a pendulum impact hammer where the total energy applied to the panels was varied by changing the mass of the hammer. The applied loads, displacements, accelerations, and strains at the mid-span of the panel as well as the reaction point forces were monitored during the impact. The behaviour of the panels was determined primarily from the experimental results. The applied loads at low energy levels that caused little to no residual deflection as well as the applied loads at high energy levels that represent catastrophic events and thus caused immediate failure were determined from an impact on the structural and the fascia wythes. Applied loads at intermediate energy levels representing extreme events were also used to determine whether or not the panels could withstand

  14. Polarized edge emission from GaN-based light-emitting diodes sandwiched by dielectric/metal hybrid reflectors

    NASA Astrophysics Data System (ADS)

    Yan, L. J.; Sheu, J. K.; Huang, F. W.; Lee, M. L.

    2010-12-01

    Edge-emitting c-plane GaN/sapphire-based light-emitting diodes (LEDs) sandwiched by two dielectric/metal hybrid reflectors on both sapphire and GaN surfaces were studied to determine their light emission polarization. The hybrid reflectors comprised dielectric multiple thin films and a metal layer. The metal layers of Au or Ag used in this study were designed to enhance the polarization ratio from S-polarization (transverse electric wave, TE) to P-polarization (transverse magnetic wave, TM). The two sets of optimized dielectric multi thin films served as matching layers for wide-angle incident light on both sapphire and GaN surfaces. To determine which reflector scheme would achieve a higher polarization ratio, simulations of the reflectance at the hybrid reflectors on sapphire (or GaN) interface were performed before the fabrication of experimental LEDs. Compared with conventional c-plane InGaN/GaN/sapphire LEDs without dielectric/metal hybrid reflectors, the experimental LEDs exhibited higher polarization ratio (ITE-max/ITM-max) with r=2.174 (˜3.37 dB) at a wavelength of 460 nm. In contrast, the original polarized light (without dielectric/metal hybrid reflectors) was partially contributed (r=1.398) by C-HH or C-LH (C band to the heavy-hole sub-band or C band to the crystal-field split-off sub-band) transitions along the a-plane or m-plane direction.

  15. Modification of the Sandwich Estimator in Generalized Estimating Equations with Correlated Binary Outcomes in Rare Event and Small Sample Settings

    PubMed Central

    Rogers, Paul; Stoner, Julie

    2016-01-01

    Regression models for correlated binary outcomes are commonly fit using a Generalized Estimating Equations (GEE) methodology. GEE uses the Liang and Zeger sandwich estimator to produce unbiased standard error estimators for regression coefficients in large sample settings even when the covariance structure is misspecified. The sandwich estimator performs optimally in balanced designs when the number of participants is large, and there are few repeated measurements. The sandwich estimator is not without drawbacks; its asymptotic properties do not hold in small sample settings. In these situations, the sandwich estimator is biased downwards, underestimating the variances. In this project, a modified form for the sandwich estimator is proposed to correct this deficiency. The performance of this new sandwich estimator is compared to the traditional Liang and Zeger estimator as well as alternative forms proposed by Morel, Pan and Mancl and DeRouen. The performance of each estimator was assessed with 95% coverage probabilities for the regression coefficient estimators using simulated data under various combinations of sample sizes and outcome prevalence values with an Independence (IND), Autoregressive (AR) and Compound Symmetry (CS) correlation structure. This research is motivated by investigations involving rare-event outcomes in aviation data. PMID:26998504

  16. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    NASA Astrophysics Data System (ADS)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  17. Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity.

    PubMed

    Anjana, J; Mohandas, Annapoorna; Seethalakshmy, S; Suresh, Maneesha K; Menon, Riju; Biswas, Raja; Jayakumar, R

    2018-04-15

    Chronic diabetic wounds is characterised by increased microbial contamination and overproduction of matrix metalloproteases that would degrade the extracellular matrix. A bi-layer bandage was developed, that promotes the inhibition of microbial infections and matrix metalloprotease (MMPs) activity. Bi-layer bandage containing benzalkonium chloride loaded gelatin nanoparticles (BZK GNPs) in chitosan-Hyaluronic acid (HA) as a bottom layer and sodium alendronate containing chitosan as top layer was developed. We hypothesized that the chitosan-gelatin top layer with sodium alendronate could inhibit the MMPs activity, whereas the chitosan-HA bottom layer with BZK GNPs (240±66nm) would enable the elimination of microbes. The porosity, swelling and degradation nature of the prepared Bi-layered bandage was studied. The bottom layer could degrade within 4days whereas the top layer remained upto 7days. The antimicrobial activity of the BZK NPs loaded bandage was determined using normal and clinical strains. Gelatin zymography shows that the proteolytic activity of MMP was inhibited by the bandage. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Design, Simulation and Fabrication of A MEMS-based Double-layer Spiral Planar Inductor with Patterned Permalloy as Magnetic Layers

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaomin; Cheng, Ping; Chen, Mingming; Ding, Guifu

    2018-03-01

    There have been significant efforts to boost the inductance value by adopting the sandwich structures using permalloy magnetic shielding layers. However, this structure will introduce high ac conductor losses and high eddy currents. In order to solve these problems, patterned permalloy can solve this problem effectively. According to the simulation results based on the application of finite element method in the frequency domain, the optimum permalloy pattern is which the blank of the permalloy are perpendicular to the coil inside. The double-layer planar inductor has a size of l5×1.5×0.1mm consisted of 13-turn spiral Cu coil for each layer and a 20μm-thick patterned permalloy magnetic shielding layer. The inductor shows a higher inductance than the traditional planar inductor. The patterned permalloy made the inductor more stable in high frequency than the none-patterned. And the inductor has an inductance of 1.3μH and quality factor of 2.8 at 1.5MHz, with an inductance per unit of 578nH/mm2, which is much higher than that in the reported literatures.

  19. First record of a banded Sandwich Tern (Thalasseus sandvicensis) moving from England to the United States

    USGS Publications Warehouse

    Spendelow, Jeffrey A.

    2015-01-01

    A Sandwich Tern (Thalasseus sandvicensis sandvicensis) banded as a chick in 2002 at Coquet Island off the northeast coast of Great Britain was observed at two locations on Cape Cod, Massachusetts, USA, in August and September 2013. This is the first record of a banded Sandwich Tern from the United Kingdom being observed in the United States.

  20. A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

    DOE PAGES

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; ...

    2015-08-29

    The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical abuse induced short circuit. Here in this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneous coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describemore » the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cell under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Lastly, numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.« less

  1. A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.

    The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical abuse induced short circuit. Here in this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneous coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describemore » the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cell under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Lastly, numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.« less

  2. Theoretical prediction of sandwiched two-dimensional phosphide binary compound sheets with tunable bandgaps and anisotropic physical properties

    NASA Astrophysics Data System (ADS)

    Zhang, C. Y.; Yu, M.

    2018-03-01

    Atomic layers of GaP and InP binary compounds with unique anisotropic structural, electronic and mechanical properties have been predicted from first-principle molecular dynamics simulations. These new members of the phosphide binary compound family stabilize to a sandwiched two-dimensional (2D) crystalline structure with orthorhombic lattice symmetry and high buckling of 2.14 Å-2.46 Å. Their vibration modes are similar to those of phosphorene with six Raman active modes ranging from ˜80 cm-1 to 400 cm-1. The speeds of sound in their phonon dispersions reflect anisotropy in their elastic constants, which was further confirmed by their strong directional dependence of Young’s moduli and effective nonlinear elastic moduli. They show wide bandgap semiconductor behavior with fundamental bandgaps of 2.89 eV for GaP and 2.59 eV for InP, respectively, even wider than their bulk counterparts. Such bandgaps were found to be tunable under strain. In particular, a direct-indirect bandgap transition was found under certain strains along zigzag or biaxial orientations, reflecting their promising applications in strain-induced bandgap engineering in nanoelectronics and photovoltaics. Feasible pathways to realize these novel 2D phosphide compounds are also proposed.

  3. Ultra-tiny ZnMn2O4 nanoparticles encapsulated in sandwich-like carbon nanosheets for high-performance supercapacitors.

    PubMed

    Guan, Yongxin; Feng, Yangyang; Mu, Yanping; Fang, Ling; Zhang, Huijuan; Wang, Yu

    2016-11-25

    Known as an excellent energy storage material, ZnMn 2 O 4 has a wide range of applications in supercapacitors. In this report, a special sandwich-like structure of ZnMn 2 O 4 /C has been first designed and synthesized via a simple hydrothermal method and subsequent calcinations. The designed special sandwich-like structure can benefit ion exchange and remit the probable volume changes during a mass of electrochemical reactions. Furthermore, the porous carbon nanosheets, derived from low-cost glucose, can effectively increase ion flux. Therefore, the novel sandwich-like ZnMn 2 O 4 nanoparticles encapsulated in carbon nanosheets can undoubtedly demonstrate an exceptional electrochemical performance for SCs. In this work, the composite material with porous sandwich-like structure exhibits excellent cyclic stability for 5000 cycles (∼5% loss) and high specific capacitance of 1786 F g -1 .

  4. Ultra-tiny ZnMn2O4 nanoparticles encapsulated in sandwich-like carbon nanosheets for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Guan, Yongxin; Feng, Yangyang; Mu, Yanping; Fang, Ling; Zhang, Huijuan; Wang, Yu

    2016-11-01

    Known as an excellent energy storage material, ZnMn2O4 has a wide range of applications in supercapacitors. In this report, a special sandwich-like structure of ZnMn2O4/C has been first designed and synthesized via a simple hydrothermal method and subsequent calcinations. The designed special sandwich-like structure can benefit ion exchange and remit the probable volume changes during a mass of electrochemical reactions. Furthermore, the porous carbon nanosheets, derived from low-cost glucose, can effectively increase ion flux. Therefore, the novel sandwich-like ZnMn2O4 nanoparticles encapsulated in carbon nanosheets can undoubtedly demonstrate an exceptional electrochemical performance for SCs. In this work, the composite material with porous sandwich-like structure exhibits excellent cyclic stability for 5000 cycles (˜5% loss) and high specific capacitance of 1786 F g-1.

  5. Seasonal and Solar Activity Variations of f3 Layer and StF-4 F-Layer Quadruple Stratification) Near the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Tardelli, A.; Fagundes, P. R.; Pezzopane, M.; Kavutarapu, V.

    2016-12-01

    The ionospheric F-layer shape and electron density peak variations depend on local time, latitude, longitude, season, solar cycle, geomagnetic activity, and electrodynamic conditions. In particular, the equatorial and low latitude F-layer may change its shape and peak height in a few minutes due to electric fields induced by propagation of medium-scale traveling ionospheric disturbances (MSTIDs) or thermospheric - ionospheric coupling. This F-layer electrodynamics feature characterizing the low latitudes is one of the most remarkable ionospheric physics research field. The study of multiple-stratification of the F-layer has the initial records in the mid of the 20th century. Since then, many studies were focused on F3 layer. The diurnal, seasonal and solar activity variations of the F3 layer characteristics have been investigated by several researchers. Recently, investigations on multiple-stratifications of F-layer received an important boost after the quadruple stratification (StF-4) was observed at Palmas (10.3°S, 48.3°W; dip latitude 5.5°S - near equatorial region), Brazil (Tardelli & Fagundes, JGR, 2015). This study present the latest findings related with the seasonal and solar activity characteristics of the F3 layer and StF-4 near the equatorial region during the period from 2002 to 2006. A significant connection between StF-4 and F3 layer has been noticed, since the StF-4 is always preceded and followed by an F3 layer appearance. However, the F3 layer and StF-4 present different seasonal and solar cycle variations. At a near equatorial station Palmas, the F3 layer shows the maximum and minimum occurrence during summer and winter seasons respectively. On the contrary, the StF-4 presents the maximum and minimum occurrence during winter and summer seasons respectively. While the F3 layer occurrence is not affected by solar cycle, the StF-4 appearance is instead more frequent during High Solar Activity (HSA).

  6. The Sandwich Generation Diner: Development of a Web-Based Health Intervention for Intergenerational Caregivers

    PubMed Central

    George, Nika; MacDougall, Megan

    2016-01-01

    Background Women are disproportionately likely to assist aging family members; approximately 53 million in the United States are involved with the health care of aging parents, in-laws, or other relatives. The busy schedules of “sandwich generation” women who care for older relatives require accessible and flexible health education, including Web-based approaches. Objective This paper describes the development and implementation of a Web-based health education intervention, The Sandwich Generation Diner, as a tool for intergenerational caregivers of older adults with physical and cognitive impairments. Methods We used Bartholomew’s Intervention Mapping (IM) process to develop our theory-based health education program. Bandura’s (1997) self-efficacy theory provided the overarching theoretical model. Results The Sandwich Generation Diner website features four modules that address specific health care concerns. Our research involves randomly assigning caregiver participants to one of two experimental conditions that are identical in the type of information provided, but vary significantly in the presentation. In addition to structured Web-based assessments, specific website usage data are recorded. Conclusions The Sandwich Generation Diner was developed to address some of the informational and self-efficacy needs of intergenerational female caregivers. The next step is to demonstrate that this intervention is: (1) attractive and effective with families assisting older adults, and (2) feasible to embed within routine home health services for older adults. PMID:27269632

  7. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  8. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  9. Impact damage in aircraft composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Mordasky, Matthew D.

    An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the

  10. The degree of π electron delocalization and the formation of 3D-extensible sandwich structures.

    PubMed

    Wang, Xiang; Wang, Qiang; Yuan, Caixia; Zhao, Xue-Feng; Li, Jia-Jia; Li, Debao; Wu, Yan-Bo; Wang, Xiaotai

    2016-04-28

    DFT B3LYP/6-31G(d) calculations were performed to examine the feasibility of graphene-like C42H18 and starbenzene C6(BeH)6 (SBz) polymers as ligands of 3D-extensible sandwich compounds (3D-ESCs) with uninterrupted sandwich arrays. The results revealed that sandwich compounds with three or more C42H18 ligands were not feasible. The possible reason may be the localization of π electrons on certain C6 hexagons due to π-metal interactions, which makes the whole ligand lose its electronic structure basis (higher degree of π electron delocalization) to maintain the planar structure. For comparison, with the aid of benzene (Bz) molecules, the SBz polymers can be feasible ligands for designing 3D-ESCs because the C-Be interactions in individual SBz are largely ionic, which will deter the π electrons on one C6 ring from connecting to those on neighbouring C6 rings. This means that high degree of π electron delocalization is not necessary for maintaining the planarity of SBz polymers. Such a locally delocalized π electron structure is desirable for the ligands of 3D-ESCs. Remarkably, the formation of a sandwich compound with SBz is thermodynamically more favourable than that found for bis(Bz)chromium. The assembly of 3D-ESCs is largely exothermic, which will facilitate future experimental synthesis. The different variation trends on the HOMO-LUMO gaps in different directions (relative to the sandwich axes) suggest that they can be developed to form directional conductors or semiconductors, which may be useful in the production of electronic devices.

  11. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    PubMed Central

    Parma, Y. R.; Chacana, P. A.; Lucchesi, P. M. A.; Rogé, A.; Granobles Velandia, C. V.; Krüger, A.; Parma, A. E.; Fernández-Miyakawa, M. E.

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-Stx2B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933, and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 115 ng/ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for two strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli. PMID:22919675

  12. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  13. Shedding light on the bonding, photophysical and magnetotropic properties of triangular Pt3 complexes and their "open-face" TlPt3 half-sandwiches.

    PubMed

    Tsipis, Athanassios C; Gkekas, George N

    2013-02-14

    The molecular and electronic structures, stabilities, bonding features, magnetotropic and spectroscopic properties of the triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters and their [(μ(3)-Tl)Pt(3)(μ(2)-L)(3)(L')(3)](+) (L = CO, SnR(2), SnH(2), SiR(2), SiH(2), CH(3)CN, PH(2), C(6)F(5), SO(2) or HCN and L' = CO, PH(3), CH(3)CN, C(6)F(5), HCN) half-sandwiches have been studied by means of density functional theory (DFT) calculations. It is found that the optimized Pt-Pt intermetallic distances in the clusters are well below the sum of the van der Waals radii of the two Pt metal atoms (3.44 Å). The triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters trap a thallium(I) cation forming stable "open face" half-sandwiches. The distance between Tl(I) and the centroids of the Pt(3) rings in the half-sandwiches is calculated to be within the range 2.52-2.86 Å. Energy decomposition analysis (EDA) calculations using a dispersion corrected B3LYP-D functional reveal that the interaction of Tl(I) with the Pt(3) ring in the half-sandwiches is dominated by the interplay of electrostatic and orbital interactions with a small contribution from dispersion forces as well. In addition, charge decomposition analysis (CDA) calculations indicate strong donor-acceptor interactions between Tl(I) and the rings. The estimated proton affinities (PAs) of the triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters illustrate their relatively strong π-basic character. Furthermore, an excellent linear relationship between the PAs of the Pt(3)(μ(2)-L)(3)(L')(3) clusters and the bond dissociation energies (D(0)) of the [(μ(3)-Tl)Pt(3)(μ(2)-L)(3)(L')(3)](+) half-sandwiches was established. The magnetotropicity of these systems was studied by calculating the NICS(zz)-scan profiles. The spectroscopic properties of the triangular Pt(3) clusters and their TlPt(3) half-sandwiches were studied by means of TDDFT calculations. The simulated absorption spectra are dominated by strong absorption bands in the UV region. The

  14. Polymer based organic solar cells using ink-jet printed active layers

    NASA Astrophysics Data System (ADS)

    Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J.

    2008-01-01

    Ink-jet printing is used to deposit polymer:fullerene blends suitable as active layer for organic solar cells. We show that merging of separately deposited ink droplets into a continuous, pinhole-free organic thin film results from a balance between ink viscosity and surface wetting, whereas for certain of the studied solutions clear coffee drop effect occurs for single droplets; this can be minimized for larger printed areas, yielding smooth layers with minimal surface roughness. Resulting organic films are used as active layer for solar cells with power conversion efficiency of 1.4% under simulated AM1.5 solar illumination.

  15. Impact damage detection in sandwich composite structures using Lamb waves and laser vibrometry

    NASA Astrophysics Data System (ADS)

    Lamboul, B.; Passilly, B.; Roche, J.-M.; Osmont, D.

    2013-01-01

    This experimental study explores the feasibility of impact damage detection in composite sandwich structures using Lamb wave excitation and signals acquired with a laser Doppler vibrometer. Energy maps are computed from the transient velocity wave fields and used to highlight defect areas in impacted coupons of foam core and honeycomb core sandwich materials. The technique performs well for the detection of barely visible damage in this type of material, and is shown to be robust in the presence of wave reverberation. Defect extent information is not always readily retrieved from the obtained defect signatures, which depend on the wave - defect interaction mechanisms.

  16. Antifuse with a single silicon-rich silicon nitride insulating layer

    DOEpatents

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0layer. The SiN.sub.X layer thickness can also be made sufficiently large so that Poole-Frenkel emission will be the primary electrical conduction mechanism in the antifuse. Different types of electrodes are disclosed including electrodes formed of titanium silicide, aluminum and silicon. Arrays of antifuses can also be formed.

  17. Vibroacoustic Characterization of Corrugated-Core and Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Allen, Albert; Schiller, Noah

    2016-01-01

    The vibroacoustic characteristics of two candidate launch vehicle fairing structures, corrugated- core and honeycomb-core sandwich designs, were studied. The study of these structures has been motivated by recent risk reduction efforts focused on mitigating high noise levels within the payload bays of large launch vehicles during launch. The corrugated-core sandwich concept is of particular interest as a dual purpose structure due to its ability to harbor resonant noise control systems without appreciably adding mass or taking up additional volume. Specifically, modal information, wavelength dispersion, and damping were determined from a series of vibrometer measurements and subsequent analysis procedures carried out on two test panels. Numerical and analytical modeling techniques were also used to assess assumed material properties and to further illuminate underlying structural dynamic aspects. Results from the tests and analyses described herein may serve as a reference for additional vibroacoustic studies involving these or similar structures.

  18. Mechanical analysis of confectioning flaw of refractory alloy honeycomb sandwich structure

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Kong, Xianghao; Shi, Liping; Li, Mingwei

    2009-03-01

    Thermal protection system is one of the key technology of reusable launch vehicle (RLV). After C/C and ceramic-matrix composite used in space orbiter, one new-typed thermal protection systems (TPS)-ARMOR TPS is coming forth. ARMOR TPS is means adaptable, robust, metallic, operable, reusable TPS. The ARMOR TPS has many advantages, for example: fixing easily, longer life, good properties, short time of maintenance and service. The ARMOR TPS is one of important candidate structure of RLV. ARMOR thermal protection system in foreign countries for reusable launch vehicle is used instead of the traditional ceramic-matrix composite thermal protection system and C/C thermal protection system. Also the constituent feature of ARMOR thermal protection system is much better than the traditional TPS. In comparison with traditional TPS, the ARMOR TPS will be the best selection for all kinds of RLV. So the ARMOR thermal protection system will be used in aviation and spaceflight field more and more widely because of its much better performance. ARMOR TPS panel is above the whole ARMOR TPS, and the metal honeycomb sandwich structure is the surface of the ARMOR TPS panel. So the metal honeycomb sandwich structure plays an important role in the ARMOR TPS, while it bears the flight dynamic pressure and stands against the flight dynamic calefaction. The metal honeycomb sandwich structure is made using the technique of the whole braze welding. In the course of the vacuum high temperature braze welding, its surface will appear concave. The reasons which lead to the shortage are summarized and discussed. The difference of thermal expansion coefficient and pressure between the core and the panels may be the chief reasons. This paper will analyze the mechanics behavior of metal honeycomb sandwich structure in the course of the vacuum high temperature braze welding, then make sure the reasons and get a way to solve it. Haynes214 is a good material of face sheet at present. γ - TiAl and

  19. Development of lightweight graphite/polyimide sandwich panels, phases 3, 4 and 5

    NASA Technical Reports Server (NTRS)

    Merlette, J. B.

    1972-01-01

    Work performed in the last three phases of the program included: (1) face sheet processing; (2) honeycomb core manufacture; (3) face sheet-to-core bonding development; and (4) sandwich panel fabrication and testing. Resin cure studies were a major portion of this effort since processing problems traced to the polyimide matrix resin had to be resolved before quality core and face sheets could be fabricated. Honeycomb core fabrication and testing were conducted by Hexcel Corporation. A total of four graphite/polyimide resin composite cores were fabricated, tested, and reported. Two sandwich panels weighing .48 and .58 lb/sq ft, respectively were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  20. Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices.

    PubMed

    Chandran, Hrisheekesh Thachoth; Ng, Tsz-Wai; Foo, Yishu; Li, Ho-Wa; Qing, Jian; Liu, Xiao-Ke; Chan, Chiu-Yee; Wong, Fu-Lung; Zapien, Juan Antonio; Tsang, Sai-Wing; Lo, Ming-Fai; Lee, Chun-Sing

    2017-06-01

    High performance organic photovoltaic devices typically rely on type-II P/N junctions for assisting exciton dissociation. Heremans and co-workers recently reported a high efficiency device with a third organic layer which is spatially separated from the active P/N junction; but still contributes to the carrier generation by passing its energy to the P/N junction via a long-range exciton energy transfer mechanism. In this study the authors show that there is an additional mechanism contributing to the high efficiency. Some bipolar materials (e.g., subnaphthalocyanine chloride (SubNc) and subphthalocyanine chloride (SubPc)) are observed to generate free carriers much more effectively than typical organic semiconductors upon photoexcitation. Single-layer devices with SubNc or SubPc sandwiched between two electrodes can give power conversion efficiencies 30 times higher than those of reported single-layer devices. In addition, internal quantum efficiencies (IQEs) of bilayer devices with opposite stacking sequences (i.e., SubNc/SubPc vs SubPc/SubNc) are found to be the sum of IQEs of single layer devices. These results confirm that SubNc and SubPc can directly generate free carriers upon photoexcitation without assistance from a P/N junction. These allow them to be stacked onto each other with reversible sequence or simply stacking onto another P/N junction and contribute to the photocarrier generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modular container assembled from fiber reinforced thermoplastic sandwich panels

    DOEpatents

    Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman

    2007-12-25

    An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

  2. Sequential versus "sandwich" sequencing of adjuvant chemoradiation for the treatment of stage III uterine endometrioid adenocarcinoma.

    PubMed

    Lu, Sharon M; Chang-Halpenny, Christine; Hwang-Graziano, Julie

    2015-04-01

    To compare the efficacy and tolerance of adjuvant chemotherapy and radiotherapy delivered in sequential (chemotherapy followed by radiation) versus "sandwich" fashion (chemotherapy, interval radiation, and remaining chemotherapy) after surgery in patients with FIGO stage III uterine endometrioid adenocarcinoma. From 2004 to 2011, we identified 51 patients treated at our institution fitting the above criteria. All patients received surgical staging followed by adjuvant chemoradiation (external-beam radiation therapy (EBRT) with or without high-dose rate (HDR) vaginal brachytherapy (VB)). Of these, 73% and 27% of patients received their adjuvant therapy in sequential and sandwich fashion, respectively. There were no significant differences in clinical or pathologic factors between patients treated with either regimen. Thirty-nine (76%) patients had stage IIIC disease. The majority of patients received 6 cycles of paclitaxel with carboplatin or cisplatin. Median EBRT dose was 45 Gy and 54% of patients received HDR VB boost (median dose 21 Gy). There were no significant differences in the estimated 5-year overall survival, local progression-free survival, and distant metastasis-free survival between the sequential and sandwich groups: 87% vs. 77% (p=0.37), 89% vs. 100% (p=0.21), and 78% vs. 85% (p=0.79), respectively. No grade 3-4 genitourinary or gastrointestinal toxicities were reported in either group. There was a trend towards higher incidence of grade 3-4 hematologic toxicity in the sandwich group. Adjuvant chemoradiation for FIGO stage III endometrioid uterine cancer given in either sequential or sandwich fashion appears to offer equally excellent early clinical outcomes and acceptably low toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 13.1 Foot Diameter Fluted-Core Sandwich Composite Test Article

    NASA Image and Video Library

    2013-09-26

    White light shape and measurement of a 13.1 Foot diameter fluted-core sandwich composite test article designed by LaRC and fabricated by Boeing Under Space Act Agreement SAA1-737, Annex 14. to be tested in LaRC's combined Loads Testing System (COLTS).

  4. 13.1 Foot Diameter Fluted-Core Sandwich Composite Test Article

    NASA Image and Video Library

    2013-09-25

    White light shape and measurement of a 13.1 Foot diameter fluted-core sandwich composite test article designed by LaRC and fabricated by Boeing Under Space Act Agreement SAA1-737, Annex 14. to be tested in LaRC's combined Loads Testing System (COLTS).

  5. Low-velocity impact tests on fibrous composite sandwich structures

    NASA Technical Reports Server (NTRS)

    Sharma, A. V.

    1981-01-01

    The effect of low-velocity projectile impact on the load-carrying ability of the composite sandwich structural components is investigated experimentally, the impact simulating the damage caused by runway debris and the accidental dropping of hand tools during servicing on secondary aircraft structures made with composites. The sandwich-type beam specimens were fabricated with graphite/epoxy face sheets, aluminum honeycomb core, and a steel (back) plate. A four-point beam-loading apparatus was used, and the ultimate strength, ultimate strain, and residual strength of the composites were determined. A faired curve is presented indicating the lower bound of the failure threshold for each of the laminate configurations tested in compression and tension as a function of the projectile impact energy. It is shown that strength degradation due to impact is dependent on the laminate configuration and the fiber/matrix combination. The laminates having more angle plies near the impact surface and unidirectional plies elsewhere seem to show extensive interply and intraply fiber delaminations at failure relative to the laminates with a cross-ply on the impact surface.

  6. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  7. Response of Composite Fuselage Sandwich Side Panels Subjected to Internal Pressure and Axial Tension

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.; Dopker, Bernard; Shah, Bharat

    1998-01-01

    The results from an experimental and analytical study of two composite sandwich fuselage side panels for a transport aircraft are presented. Each panel has two window cutouts and three frames and utilizes a distinctly different structural concept. These panels have been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on both panels. One of the sandwich panels was tested with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. A damage tolerance study was conducted on the two-frame panel by cutting a notch in the panel that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. Both the sandwich panel designs successfully satisfied all desired load requirements in the experimental part of the study, and experimental results from the two-frame panel with and without damage are fully explained by the analytical results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in. wide frame spacing to further reduce aircraft fuselage structural weight.

  8. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  9. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility

    PubMed Central

    Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E.; Schief, William R.; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D.

    2009-01-01

    The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded β-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate—and structurally plastic—layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated β-sandwich and providing for conformational diversity used in immune evasion. A “layered” gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a β-sandwich clamp maintains gp120–gp41 interaction and regulates gp41 transitions. PMID:20080564

  10. Modelling of active layer thickness evolution on James Ross Island in 2006-2015

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Uxa, Tomáš

    2017-04-01

    Antarctic Peninsula region has been considered as one of the most rapidly warming areas on the Earth. However, the recent studies (Turner et al., 2016; Oliva et al., 2017) showed that significant air temperature cooling began around 2000 and has continued until present days. The climate cooling led to reduction of active layer thickness in several parts of Antarctic Peninsula region during decade 2006-2015, but the information about spatiotemporal variability of active layer thickness across the region remains largely incoherent due to lack of active layer temperature data from deeper profiles. Valuable insights into active layer thickness evolution in Antarctic Peninsula region can be, however, provided by thermal modelling techniques. These have been widely used to study the active layer dynamics in different regions of Arctic since 1990s. By contrast, they have been employed much less in Antarctica. In this study, we present our first results from two equilibrium models, the Stefan and Kudryavtsev equations, that were applied to calculate the annual active layer thickness based on ground temperature data from depth of 5 cm on one site on James Ross Island, Eastern Antarctic Peninsula, in period 2006/07 to 2014/15. Study site (Abernethy Flats) is located in the central part of the major ice-free area of James Ross Island called Ulu Peninsula. Monitoring of air temperature 2 m above ground surface and ground temperature in 50 cm profile began on January 2006. The profile was extended under the permafrost table down to 75 cm in February 2012, which allowed precise determination of active layer thickness, defined as a depth of 0°C isotherm, in period 2012 to 2015. The active layer thickness in the entire observation period was reconstructed using the Stefan and Kudryavtsev models, which were driven by ground temperature data from depth of 5 cm and physical parameters of the ground obtained by laboratory analyses (moisture content and bulk density) and calculations

  11. Deformation behavior of welded steel sandwich panels under quasi-static loading

    DOT National Transportation Integrated Search

    2011-03-01

    This report describes engineering studies that were conducted to examine the deformation behavior of flat, welded steel sandwich panels under two quasi-static loading conditions: (1) uniaxial compression; and (2) bending with an indenter. Testing and...

  12. Classification of permafrost active layer depth from remotely sensed and topographic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peddle, D.R.; Franklin, S.E.

    1993-04-01

    The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to thismore » study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth.« less

  13. Fluid Structure Interaction Effect on Sandwich Composite Structures

    DTIC Science & Technology

    2011-09-01

    far back as ancient Egyptian times in the use of straw and bricks, or more recently in the last century with the use of steel rebar in concrete ...construction of sandwich composites; however, this particular material was selected for its uniform pattern and translucent qualities after it is wetted out...excellent fire retardant and corrosion resistant qualities making it a natural selection for shipboard applications. The same translucent qualities

  14. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  15. Free-edge effects in a cylindrical sandwich panel with a flexible core and laminated composite face sheets

    NASA Astrophysics Data System (ADS)

    Afshin, M.; Sadighi, M.; Shakeri, M.

    2010-12-01

    In the present study, the static response of cylindrical sandwich panels with a flexible core is investigated. The face sheets are considered as composite laminates with a cross-ply lay-up and the core as a flexible elastic medium. The flexibility of the low-strength core leads to high stress concentrations in terms of peeling stresses between the face sheets and the core at edges of the sandwich panel. To take into account the compressibility of the core and to determine the free-edge stresses of sandwich structures accurately, the Reddy layerwise theory (LWT) is used in this paper. The paper outlines the mathematical formulation, along with a numerical study, of a cylindrical sandwich panel with two simply supported and two free edges under a transverse load. The formulation includes the derivation of field equations along with boundary conditions. A Levy-type solution procedure is performed to determine the distributions of stresses and strains. In the numerical study, first a comparison is made with results from the commercial finite-element software ANSYS to verify the LWT results. Finally, a parametric study is conducted, and the effect caused by varying different parameters, such as the radii of curvature and the core to face sheet thickness ratio, on the results are investigated. The results obtained demonstrate a good agreement between LWT and FEM solutions and show increasing interlaminar stresses in the free edge of the sandwich panel

  16. Microbiological quality of take-away cooked rice and chicken sandwiches: effectiveness of food hygiene training of the management.

    PubMed

    Little, C L; Barnes, J; Mitchell, R T

    2002-12-01

    During August 2001 a microbiological study of ready-to-eat cooked rice from take-aways and of chicken sandwiches made on the premises from sandwich bars was undertaken. The intention was to identify risk factors in the production, storage and handling of cooked rice and sandwiches, and to establish their effect on microbiological quality. Examination of cooked rice revealed that the majority of samples (87%; 442 of 508) were of satisfactory/acceptable microbiological quality; 50 (10%) were unsatisfactory, and 16 (3%) were of unacceptable quality due to Bacillus cereus and/or other Bacillus spp in excess of 10(5) cfu/g. The microbiological quality of cooked rice was associated with cuisine type (p < 0.00001), rice type (p < 0.01), cooking (p < 0.01), serving methods (p < 0.00001), and management food hygiene training (p < 0.01). Examination of chicken sandwiches found that most (75%; 335 of 449) were of satisfactory/acceptable microbiological quality and 114 (25%) were unsatisfactory. Acceptable microbiological quality of sandwiches was associated with sandwich bars that had hazard analysis in place (p < 0.05). Smaller businesses, as indicated by Local Authority Inspectors' Consumer at Risk scores, were more likely to have samples classified as unsatisfactory or unacceptable compared to larger businesses (p < 0.001). The majority (90%) of premises had hand-washing facilities accessible and available for use, although only over half (55%) were correctly used as judged by the sampling officer. Where the manager of the premises had received some form of food hygiene training, food safety procedures such as the hazard analysis system were more likely to be in place (p < 0.0001).

  17. The dynamic properties of sandwich structures based on metal-ceramic foams.

    DOT National Transportation Integrated Search

    2014-01-01

    The present research program has studied the fracture properties of closed pore metal-ceramic foams for their potential applications as core systems in sandwich structures. The composite foams were created at Fireline, Inc. (Youngstown, OH) using the...

  18. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-26

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  19. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  20. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  1. Effect of low-dose gamma irradiation on Staphylococcus aureus and product packaging in ready-to-eat ham and cheese sandwiches.

    PubMed

    Lamb, Jennifer L; Gogley, Jennifer M; Thompson, M Jasmine; Solis, Daniel R; Sen, Sumit

    2002-11-01

    Staphylococcus aureus is a common pathogen that causes foodborne illness. Traditional methods for controlling S. aureus do not address postprocess contamination. Low-dose gamma irradiation is effective in reducing pathogens in a variety of foods and may be effective in reducing S. aureus in ready-to-eat foods. The effects of gamma irradiation on product packaging should also be considered. The objective of this study was to determine the effects of gamna irradiation on product packaging and on S. aureus in ready-to-eat ham and cheese sandwiches. The effects of refrigerated storage on irradiated and nonirradiated sandwiches were also investigated. Ham and cheese sandwiches were inoculated with 10(6) or 10(7) CFU of S. aureus per g, frozen, irradiated, and analyzed by a standard plate count method. D10-values, the amount of irradiation needed to elicit a 1-log10 reduction of bacteria, were calculated. In addition, irradiated sandwiches were analyzed after 1, 13, 27, and 39 days of storage at 4 degrees C. The integrity of postirradiated packaging material was analyzed using Fourier transform infrared (FTIR) spectroscopy. Two experiments yielded D10-values of 0.62 and 0.63. During refrigerated storage, sandwiches irradiated with 5.9 kGy showed no S. aureus growth at any time; sandwiches irradiated with 3.85 kGy showed a 6.18-log reduction in S. aureus after 13 days; and nonirradiated sandwiches showed a 0.53-log increase in S. aureus after 39 days. FTIR spectroscopy showed that the label side and the bulge side were composed of polyethylene terephthalate and nylon 6, respectively. No significant change in the packaging due to irradiation was detected. In this study, low-dose gamma irradiation was shown to be an effective method for reducing S. aureus in ready-to-eat ham and cheese sandwiches and proved to be more efficacious than refrigeration alone. Additionally, package integrity was not adversely affected by gamma irradiation.

  2. Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Lee, Ju Hwan; Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr

    2016-09-05

    Thin ion-beam (IB)-spurted dimethyl sulfate/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (DMS/PEDOT:PSS) layers with improved electro-optic performance are presented for aligning liquid crystals. IB spurting is effective for enhancing the conductivity of such layers, as well as the anchoring energy of the liquid crystals sandwiched between them. Compared with a commercial twisted-nematic cell assembled with polyimide alignment layers, the same cell assembled with 3.0-keV IB-spurted DMS/PEDOT:PSS alignment layers shows a 38% faster switching and a 93% lower residual direct current. The improved electro-optic performance here is likely due to the enhanced electric field effect and the charge-releasing ability of thin IB-spurted DMS/PEDOT:PSS layers.

  3. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    PubMed Central

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  4. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers.

    PubMed

    Inaba, Shusei; Vohra, Varun

    2017-05-09

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED-EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows.

  5. FaceSheet Push-off Tests to Determine Composite Sandwich Toughness at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Herring, Helen M.

    2001-01-01

    A new novel test method, associated analysis, and experimental procedures are developed to investigate the toughness of the facesheet-to-core interface of a sandwich material at cryogenic temperatures. The test method is designed to simulate the failure mode associated with facesheet debonding from high levels of gas pressure in the sandwich core. The effects of specimen orientation are considered, and the results of toughness measurements are presented. Comparisons are made between room and liquid nitrogen (-196 C) test temperatures. It was determined that the test method is insensitive to specimen facesheet orientation and strain energy release rate increases with a decrease in the test temperature.

  6. Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry

    NASA Astrophysics Data System (ADS)

    Chakravadhanula, V. S. K.; Elbahri, M.; Schürmann, U.; Takele, H.; Greve, H.; Zaporojtchenko, V.; Faupel, F.

    2008-06-01

    We report a strategy to achieve a material showing equal intensity double plasmon resonance (EIDPR) based on sandwich geometry. We studied the interaction between localized plasmon resonances associated with different metal clusters (Au/Ag) on Teflon AF (TAF) in sandwich geometry. Engineering the EIDPR was done by tailoring the amount of Au/Ag and changing the TAF thickness. The samples were investigated by transmission electron microscopy (TEM) and UV-visible spectroscopy. Interestingly, and in agreement with the dipole-surface interaction, the critical barrier thickness for an optimum EIDPR was observed at 3.3 nm. The results clearly show a plasmon sequence effect and visualize the role of plasmon decay.

  7. Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, III, Stanley S. (Inventor); Lundgren, Eric C. (Inventor)

    2014-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  8. Air-coupled piezoelectric transducers with active polypropylene foam matching layers.

    PubMed

    Gómez Alvarez-Arenas, Tomás E

    2013-05-10

    This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1-3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl). These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the l/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range.

  9. Deformation behavior of welded steel sandwich panels under quasi-static loading

    DOT National Transportation Integrated Search

    2011-03-16

    This paper summarizes basic research (i.e., testing and analysis) : conducted to examine the deformation behavior of flat-welded : steel sandwich panels under two types of quasi-static loading: : (1) uniaxial compression; and (2) bending through an i...

  10. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  11. Sizing Single Cantilever Beam Specimens for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2010-01-01

    This technical publication details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. Following an examination of previously developed tests and a recent evaluation of a selection of these methods, a single cantilever beam (SCB) specimen was identified as being a promising candidate for establishing such a standardized test procedure. The objective of the work described here was to begin development of a protocol for conducting a SCB test that will render the procedure suitable for standardization. To this end, a sizing methodology was developed to ensure appropriate SCB specimen dimensions are selected for a given sandwich system. Application of this method to actual sandwich systems yielded SCB specimen dimensions that would be practical for use. This study resulted in the development of a practical SCB specimen sizing method, which should be well-suited for incorporation into a standardized testing protocol.

  12. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus.

    PubMed

    Abbaspour, Abdolkarim; Norouz-Sarvestani, Fatemeh; Noori, Abolhassan; Soltani, Noushin

    2015-06-15

    Staphylococcus aureus (S. aureus) is one of the most important human pathogens and causes numerous illnesses. In this study, we report a sensitive and highly selective dual-aptamer-based sandwich immunosensor for the detection of S. aureus. In this bioassay system, a biotinylated primary anti-S.aureus aptamer was immobilized on streptavidin coated magnetic beads (MB), which serves as a capture probe. A secondary anti-S.aureus aptamer was conjugated to silver nanoparticles (Apt-AgNP) that sensitively reports the detection of the target. In the presence of target bacterium, an Apt/S.aureus/apt-AgNP sandwich complex is formed on the MB surface and the electrochemical signal of AgNPs followed through anodic stripping voltammetry. The proposed sandwich assay benefits from advantageous of a sandwich assay for increased specificity, MB as carriers of affinity ligands for solution-phase recognition and fast magnetic separation, AgNPs for signal amplification, and an electrochemical stripping voltammetry read-out as a simple and sensitive detection. The electrochemical immunosensor shows an extended dynamic range from 10 to 1×10(6) cfu/mL with a low detection limit of 1.0 cfu/mL (S/N=3). Furthermore, the possible interference of other analog bacteria was studied. To assess the general applicability of this sensor, we investigated the quantification of S. aureus in real water samples. The results were compared to the experimental results obtained from a plate counting method, which demonstrated an acceptable consistency. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Analysis of signals propagating in a phononic crystal PZT layer deposited on a silicon substrate.

    PubMed

    Hladky-Hennion, Anne-Christine; Vasseur, Jérôme; Dubus, Bertrand; Morvan, Bruno; Wilkie-Chancellier, Nicolas; Martinez, Loïc

    2013-12-01

    The design of a stop-band filter constituted by a periodically patterned lead zirconate titanate (PZT) layer, polarized along its thickness, deposited on a silicon substrate and sandwiched between interdigitated electrodes for emission/reception of guided elastic waves, is investigated. The filter characteristics are theoretically evaluated by using finite element simulations: dispersion curves of a patterned PZT layer with a specific pattern geometry deposited on a silicon substrate present an absolute stop band. The whole structure is modeled with realistic conditions, including appropriate interdigitated electrodes to propagate a guided mode in the piezoelectric layer. A robust method for signal analysis based on the Gabor transform is applied to treat transmitted signals; extract attenuation, group delays, and wave number variations versus frequency; and identify stop-band filter characteristics.

  14. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, Richard M.

    1995-01-01

    A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.

  15. Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM.

    PubMed

    Wang, Hailong; Qian, Kang; Wang, Kang; Bian, Yongzhong; Jiang, Jianzhuang; Gao, Song

    2011-09-14

    Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized. This journal is © The Royal Society of Chemistry 2011

  16. The Cobalt cyclo‐P4 Sandwich Complex and Its Role in the Formation of Polyphosphorus Compounds

    PubMed Central

    Dielmann, Fabian; Timoshkin, Alexey; Piesch, Martin; Balázs, Gábor

    2017-01-01

    Abstract A synthetic approach to the sandwich complex [Cp′′′Co(η4‐P4)] (2) containing a cyclo‐P4 ligand as an end‐deck was developed. Complex 2 is the missing homologue in the series of first‐row cyclo‐Pn sandwich complexes, and shows a unique tendency to dimerize in solution to form two isomeric P8 complexes [(Cp′′′Co)2(μ,η4:η2:η1‐P8)] (3 and 4). Reactivity studies indicate that 2 and 3 react with further [Cp′′′Co] fragments to give [(Cp′′′Co)2(μ,η2:η2‐P2)2] (5) and [(Cp′′′Co)3P8] (6), respectively. Furthermore, complexes 2, 3, and 4 thermally decompose forming 5, 6, and the P12 complex [(Cp′′′Co)3P12] (7). DFT calculations on the P4 activation process suggest a η3‐P4 Co complex as the key intermediate in the synthesis of 2 as well as in the formation of larger polyphosphorus complexes via a unique oligomerization pathway. PMID:28078794

  17. Mineralization Induction of Gingival Fibroblasts and Construction of a Sandwich Tissue-Engineered Complex for Repairing Periodontal Defects

    PubMed Central

    Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng

    2018-01-01

    Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454

  18. Dynamics of Active Layer Depth across Alaskan Tundra Ecosystems

    NASA Astrophysics Data System (ADS)

    Ma, C.; Zhang, X.; Song, X.; Xu, X.

    2016-12-01

    The thickness of the active layer, near-surface layer of Earth material above permafrost undergoing seasonal freezing and thawing, is of considerable importance in high-latitude environments because most physical, chemical, and biological processes in the permafrost region take place within it. The dynamics of active layer thickness (ALT) result from a combination of various factors including heat transfer, soil water content, soil texture, root density, stem density, moss layer thickness, organic layer thickness, etc. However, the magnitude and controls of ALT in the permafrost region remain uncertain. The purpose of this study is to improve our understanding of the dynamics of ALT across Alaskan tundra ecosystems and their controls at multiple scales, ranging from plots to entire Alaska. This study compiled a comprehensive dataset of ALT at site and regional scales across the Alaskan tundra ecosystems, and further analyzed ALT dynamics and their hierarchical controls. We found that air temperature played a predominant role on the seasonality of ALT, regulated by other physical and chemical factors including soil texture, moisture, and root density. The structural equation modeling (SEM) analysis confirmed the predominant role of physical controls (dominated by heat and soil properties), followed by chemical and biological factors. Then a simple empirical model was developed to reconstruct the ALT across the Alaska. The comparisons against field observational data show that the method used in this study is robust; the reconstructed time-series ALT across Alaska provides a valuable dataset source for understanding ALT and validating large-scale ecosystem models.

  19. Modelling and Vibration Control of Beams with Partially Debonded Active Constrained Layer Damping Patch

    NASA Astrophysics Data System (ADS)

    SUN, D.; TONG, L.

    2002-05-01

    A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.

  20. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Zhang, Ting-Jun; Li, Shu-Sun

    2003-01-01

    The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.

  1. Protecting peroxidase activity of multilayer enzyme-polyion films using outer catalase layers.

    PubMed

    Lu, Haiyun; Rusling, James F; Hu, Naifei

    2007-12-27

    Films constructed layer-by-layer on electrodes with architecture {protein/hyaluronic acid (HA)}n containing myoglobin (Mb) or horseradish peroxidase (HRP) were protected against protein damage by H2O2 by using outer catalase layers. Peroxidase activity for substrate oxidation requires activation by H2O2, but {protein/HA}n films without outer catalase layers are damaged slowly and irreversibly by H2O2. The rate and extent of damage were decreased dramatically by adding outer catalase layers to decompose H2O2. Comparative studies suggest that protection results from catalase decomposing a fraction of the H2O2 as it enters the film, rather than by an in-film diffusion barrier. The outer catalase layers controlled the rate of H2O2 entry into inner regions of the film, and they biased the system to favor electrocatalytic peroxide reduction over enzyme damage. Catalase-protected {protein/HA}n films had an increased linear concentration range for H2O2 detection. This approach offers an effective way to protect biosensors from damage by H2O2.

  2. A new approach for quantitative analysis of L-phenylalanine using a novel semi-sandwich immunometric assay.

    PubMed

    Kubota, Kazuyuki; Mizukoshi, Toshimi; Miyano, Hiroshi

    2013-10-01

    Here, we describe a novel method for L-phenylalanine analysis using a sandwich-type immunometric assay approach for use as a new method for amino acid analysis. To overcome difficulties of the preparation of high-affinity and selectivity monoclonal antibodies against L-phenylalanine and the inability to use sandwich-type immunometric assays due to their small molecular weight, three procedures were examined. First, amino groups of L-phenylalanine were modified by "N-Fmoc-L-cysteine" (FC) residues and the derivative (FC-Phe) was used as a hapten. Immunization of mice with bovine serum albumin/FC-Phe conjugate successfully yielded specific monoclonal anti-FC-Phe antibodies. Second, a new derivatization reagent, "biotin linker conjugate of FC-Phe N-succinimidyl ester" (FC(Biotin)-NHS), was synthesized to convert L-phenylalanine to FC-(Biotin)-Phe as a hapten structure. The biotin moiety linked to the thiol group of cysteine formed a second binding site for streptavidin/horseradish peroxidase (HRP) conjugates for optical detection. Third, a new semi-sandwich-type immunometric assay was established using pre-derivatized L-phenylalanine, the monoclonal anti-FC-Phe antibody, and streptavidin/HRP conjugate (without second antibody). Using the new "semi-sandwich" immunometric assay system, a detection limit of 35 nM (60 amol per analysis) and a detection range of 0.1-20 μM were attained using a standard L-phenylalanine solution. Rat plasma samples were analyzed to test reliability. Intra-day assay precision was within 6% of the coefficient of variation; inter-day variation was 0.1%. The recovery rates were from 92.4 to 123.7%. This is the first report of the quantitative determination of L-phenylalanine using a reliable semi-sandwich immunometric assay approach and will be applicable to the quantitative determination of other amino acids.

  3. Design of Fiber Reinforced Foam Sandwich Panels for Large Ares V Structural Applications

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.; Hopkins, Dale A.

    2010-01-01

    The preliminary design of three major structural components within NASA's Ares V heavy lift vehicle using a novel fiber reinforced foam composite sandwich panel concept is presented. The Ares V payload shroud, interstage, and core intertank are designed for minimum mass using this panel concept, which consists of integral composite webs separated by structural foam between two composite facesheets. The HyperSizer structural sizing software, in conjunction with NASTRAN finite element analyses, is used. However, since HyperSizer does not currently include a panel concept for fiber reinforced foam, the sizing was performed using two separate approaches. In the first, the panel core is treated as an effective (homogenized) material, whose properties are provided by the vendor. In the second approach, the panel is treated as a blade stiffened sandwich panel, with the mass of the foam added after completion of the panel sizing. Details of the sizing for each of the three Ares V components are given, and it is demonstrated that the two panel sizing approaches are in reasonable agreement for thinner panel designs, but as the panel thickness increases, the blade stiffened sandwich panel approach yields heavier panel designs. This is due to the effects of local buckling, which are not considered in the effective core property approach.

  4. Surface-enhanced Raman scattering of a Ag/oligo(phenyleneethynylene)/Ag sandwich.

    PubMed

    Fletcher, Melissa; Alexson, D M; Prokes, Sharka; Glembocki, Orest; Vivoni, Alberto; Hosten, Charles

    2011-02-01

    α,ω-Dithiols are a useful class of compounds in molecular electronics because of their ability to easily adsorb to two metal surfaces, producing a molecular junction. We have prepared Ag nanosphere/oligo(phenyleneethynylene)/Ag sol (AgNS/OPE/Ag sol) and Ag nanowire/oligo(phenyleneethynylene)/Ag sol (AgNW/OPE/Ag sol) sandwiches to simulate the architecture of a molecular electronic device. This was achieved by self-assembly of OPE on the silver nanosurface, deprotection of the terminal sulfur, and deposition of Ag sol atop the monolayer. These sandwiches were then characterized by surface-enhanced Raman scattering (SERS) spectroscopy. The resulting spectra were compared to the bulk spectrum of the dimer and to the Ag nanosurface/OPE SERS spectra. The intensities of the SERS spectra in both systems exhibit a strong dependence on Ag deposition time and the results are also suggestive of intense interparticle coupling of the electromagnetic fields in both the AgNW/OPE/Ag and the AgNS/OPE/Ag systems. Three previously unobserved bands (1219, 1234, 2037 cm(-1)) arose in the SER spectra of the sandwiches and their presence is attributed to the strong enhancement of the electromagnetic field which is predicted from the COSMOL computational package. The 544 cm(-1) disulfide bond which is observed in the spectrum of solid OPE but is absent in the AgNS/OPE/Ag and AgNW/OPE/Ag spectra is indicative of chemisorption of OPE to the nanoparticles through oxidative dissociation of the disulfide bond. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, R.M.

    1995-08-01

    A new pattern for cellular core material used in sandwich type structural materials is disclosed. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes. 3 figs.

  6. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    PubMed

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  7. A novel sandwich-type traveling wave piezoelectric tracked mobile system.

    PubMed

    Wang, Liang; Shu, Chengyou; Zhang, Quan; Jin, Jiamei

    2017-03-01

    In this paper, a novel sandwich-type traveling wave piezoelectric tracked mobile system was proposed, designed, fabricated and experimentally investigated. The proposed system exhibits the advantages of simple structure, high mechanical integration, lack of electromagnetic interference, and lack of lubrication requirement, and hence shows potential application to robotic rovers for planetary exploration. The tracked mobile system is comprised of a sandwich actuating mechanism and a metal track. The actuating mechanism includes a sandwich piezoelectric transducer and two annular parts symmetrically placed at either end of the transducer, while the metal track is tensioned along the outer surfaces of the annular parts. Traveling waves with the same rotational direction are generated in the two annular parts, producing the microscopic elliptical motions of the surface particles on the annular parts. In this situation, if the pre-load is applied properly, the metal track can be driven by friction force to achieve bidirectional movement. At first, the finite element method was adopted to conduct the modal analysis and harmonic response analysis of the actuating mechanism, and the vibration characteristics were measured to confirm the operating principle. Then the optimal driving frequency of the system prototype, namely 35.1kHz, was measured by frequency sensitivity experiments. At last, the mechanical motion characteristics of the prototype were investigated experimentally. The results show that the average motion speeds of the prototype in dual directions were as 72mm/s and 61.5mm/s under the excitation voltage of 500V RMS , respectively. The optimal loading weights of the prototype in bi-directions were 0.32kg and 0.24kg with a maximum speed of 59.5mm/s and 61.67mm/s at the driving voltage of 300V RMS , respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Additive-manufactured sandwich lattice structures: A numerical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut

    2017-10-01

    The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.

  9. X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov,A.

    The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less

  10. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.

    PubMed

    Liu, Yan-Ling; Wang, Xiao-Mao; Yang, Hong-Wei; Xie, Yuefeng F

    2018-06-01

    Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  12. Immunodiagnosis of fascioliasis using sandwich enzyme-linked immunosorbent assay for detection of Fasciola gigantica paramyosin antigen

    PubMed Central

    Abou-Elhakam, Hany Mohamed Adel; Bauomy, Ibraheem Rabia; El Deeb, Somaya Osman; El Amir, Azza Mohamed

    2013-01-01

    Background: Many immunological techniques have been developed over years using the different Fasciola antigens for diagnosis of parasitic infection and to replace the parasitological techniques, which are time consuming and usually lack sensitivity and reproducibility. Materials and Methods: In this study, Fasciola gigantica paramyosin (Pmy) antigen was early detected in cattle sera using sandwich enzyme-linked immunosorbent assay (ELISA), to evaluate the Pmy antigen performance in diagnosis. This work was conducted on 135 cattle blood samples, which were classified according to parasitological investigation into, healthy control (30), fascioliasis (75), and other parasites (30) groups. Results: The sensitivity of Sandwich ELISA was 97.33%, and the specificity was 95%, in comparison with parasitological examination, which recorded 66.66% sensitivity and 100% specificity, respectively. Conclusions: It was clear that the native F. gigantica Pmy is considered as a powerful antigen in early immunodiagnosis of fascioliasis, using a highly sensitive and specific sandwich ELISA technique. PMID:23961441

  13. Proteomic Characterization of Primary Mouse Hepatocytes in Collagen Monolayer and Sandwich Culture.

    PubMed

    Orsini, Malina; Sperber, Saskia; Noor, Fozia; Hoffmann, Esther; Weber, Susanne N; Hall, Rabea A; Lammert, Frank; Heinzle, Elmar

    2018-01-01

    Dedifferentiation of primary hepatocytes in vitro makes their application in long-term studies difficult. Embedding hepatocytes in a sandwich of extracellular matrix is reported to delay the dedifferentiation process to some extent. In this study, we compared the intracellular proteome of primary mouse hepatocytes (PMH) in conventional monolayer cultures (ML) to collagen sandwich culture (SW) after 1 day and 5 days of cultivation. Quantitative proteome analysis of PMH showed no differences between collagen SW and ML cultures after 1 day. Glycolysis and gluconeogenesis were strongly affected by long-term cultivation in both ML and SW cultures. Interestingly, culture conditions had no effect on cellular lipid metabolism. After 5 days, PMH in collagen SW and ML cultures exhibit characteristic indications of oxidative stress. However, in the SW culture the defense system against oxidative stress is significantly up-regulated to deal with this, whereas in the ML culture a down-regulation of these important enzymes takes place. Regarding the multiple effects of ROS and oxidative stress in cells, we conclude that the down-regulation of these enzymes seem to play a role in the loss of hepatic function observed in the ML cultivation. In addition, enzymes of the urea cycle were clearly down-regulated in ML culture. Proteomics confirms lack in oxidative stress defense mechanisms as the major characteristic of hepatocytes in monolayer cultures compared to sandwich cultures. J. Cell. Biochem. 119: 447-454, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Buccinator sandwich pushback: a new technique for treatment of secondary velopharyngeal incompetence.

    PubMed

    Hill, C; Hayden, C; Riaz, M; Leonard, A G

    2004-05-01

    A small percentage of patients have inadequate velopharyngeal closure, or secondary velopharyngeal incompetence, following primary palatoplasty. Use of the buccinator musculomucosal flap has been described for primary palate repair with lengthening, but its use in secondary palate lengthening for the correction of insufficient velopharyngeal closure has not been described. This study presents the results of a series of patients who had correction of secondary velopharyngeal incompetence using bilateral buccinator musculomucosal flaps used as a sandwich. In this prospective study between 1995 and 1998, a group of 16 patients with insufficient velopharyngeal closure as determined by speech assessment and videoradiography were selected. Nasopharyngoscopy was carried out in addition in a number of cases. Case selection was a result of these investigations and clinical examination in which the major factor in velopharyngeal insufficiency was determined to be short palatal length. The patients underwent palate lengthening using bilateral buccinator musculomucosal flaps as a sandwich. All patients were assessed 6 months postoperatively. The operative technique, postoperative course, and recorded postoperative complications including partial/total flap necrosis and residual velopharyngeal insufficiency were evaluated. Preoperative and postoperative speech samples were rated by an independent speech therapist. Ninety-three percent (15 of 16) had a significant improvement in velopharyngeal insufficiency, and 14 patients had no hypernasality postoperatively. Both cases of persistent mild hypernasality had had a recognized postoperative complication. The sandwich pushback technique for the correction of persistent velopharyngeal incompetence was successful in achieving good speech results.

  15. Innovative use of wood-plastic-composites (WPC) as a core material in the sandwich injection molding process

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Martin, Yannick

    2016-03-01

    The demand for materials based on renewable raw materials has risen steadily in recent years. With society's increasing interest for climate protection and sustainability, natural-based materials such as wood-plastic-composites (WPC) have gained market share thanks to their positive reputation. Due to advantages over unreinforced plastics such as cost reduction and weight savings it is possible to use WPC in a wide area of application. Additionally, an increase in mechanical properties such as rigidity and strength is achieved by the fibers compared to unreinforced polymers. The combination of plastic and wood combines the positive properties of both components in an innovative material. Despite the many positive properties of wood-plastic-composite, there are also negative characteristics that prevent the use of WPC in many product areas, such as automotive interiors. In particular, increased water intake, which may result in swelling of near-surface particles, increased odor emissions, poor surface textures and distortion of the components are unacceptable for many applications. The sandwich injection molding process can improve this situation by eliminating the negative properties of WPC by enclosing it with a pure polymer. In this case, a layered structure of skin and core material is produced, wherein the core component is completely enclosed by the skin component. The suitability of WPC as the core component in the sandwich injection molding has not yet been investigated. In this study the possibilities and limitations of the use of WPC are presented. The consideration of different fiber types, fiber contents, skin materials and its effect on the filling behavior are the focus of the presented analysis.

  16. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  17. Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate

    NASA Astrophysics Data System (ADS)

    Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.

    2015-10-01

    This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.

  18. Transmission loss optimization in acoustic sandwich panels

    NASA Astrophysics Data System (ADS)

    Makris, S. E.; Dym, C. L.; MacGregor Smith, J.

    1986-06-01

    Considering the sound transmission loss (TL) of a sandwich panel as the single objective, different optimization techniques are examined and a sophisticated computer program is used to find the optimum TL. Also, for one of the possible case studies such as core optimization, closed-form expressions are given between TL and the core-design variables for different sets of skins. The significance of these functional relationships lies in the fact that the panel designer can bypass the necessity of using a sophisticated software package in order to assess explicitly the dependence of the TL on core thickness and density.

  19. Thin Sheet Modeling for the Seismogenic Crust of Western North America: How Strong is the top Slice of "Sandwich Bread" Above the "Jelly"?

    NASA Astrophysics Data System (ADS)

    Klein, E. C.; Holt, W. E.; Flesch, L. M.; Haines, A. J.

    2006-12-01

    The "jelly sandwich" and "crème brûlée" models divides continental lithosphere into distinct rheological layers. Dynamic models from thin sheet approximations provide estimates of the total strength of the lithosphere, but only to a thickness governed by the degree of mechanical coupling between rheological layers. If either the "jelly sandwich" or the "crème brûlée" model of the lithosphere is appropriate for the diffuse plate boundary zone setting of western North America, we expect a sharp contrast or decoupling between the strong upper crust ("bread") layer overlying the weak lower crustal ("jelly") layer. We examine the strength of the upper crust with and without strength contribution from the lower crust using thin sheet modeling methodologies. We use seismically defined densities to constrain vertical integrals of vertical stress (GPE) within the crust. Neglecting stresses due to flexure as well as shear stresses at the base of the crustal layer, lateral differences in GPE within the layer, are balanced solely by gradients in horizontal deviatoric stress [Flesch et al., 2001, 2006]. We solve the force-balance equations for the minimum deviatoric stress field associated with gradients of GPE. This deviatoric stress field calibrates the magnitude of deviatoric stresses within the seismogenic layer. We then solve for stress field boundary conditions associated with the stress field contributions from sources outside the modeled region that together with the minimum solution from GPE differences provide a best match with stress field indicators within western North America. In order to infer appropriate stress field indicators we develop a long-term kinematic strain rate and velocity field model. Where we use this strain rate field we assume that the relationship between deviatoric stress directions and kinematic strain rate directions is isotropic. In our calculations the seismogenic layer extends from the surface to either a uniform depth below sea

  20. Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer

    NASA Astrophysics Data System (ADS)

    Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra

    2017-05-01

    Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.

  1. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  2. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    PubMed

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  3. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    PubMed

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Material damage modeling and detection in a thin metallic sheet and sandwich panel using passive acoustic transmission

    NASA Astrophysics Data System (ADS)

    Jiang, Hao

    A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this

  5. Application of welded steel sandwich panels for tank car shell impact protection.

    DOT National Transportation Integrated Search

    2013-04-01

    This report describes research conducted to examine the application of sandwich structure technology to provide protection against the threat of an indenter striking the side or shell of a tank car in the event of an accident. This research was condu...

  6. Application of welded steel sandwich panels for tank car shell impact protection

    DOT National Transportation Integrated Search

    2013-04-30

    This report describes research conducted to examine the application of sandwich structure technology to provide protection against the threat of an indenter striking the side or shell of a tank car in the event of an accident. This research was condu...

  7. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Sebastian, Alexis

    2015-05-01

    This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.

  8. Compression After Impact on Honeycomb Core Sandwich Panels with Thin Facesheets, Part 2: Analysis

    NASA Technical Reports Server (NTRS)

    Mcquigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2012-01-01

    A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part 2, the subject of the current paper, is focused on the analysis, which corresponds to the CAI testings described in Part 1. Of interest, are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of materials, which were identical with the exception of the density of the honeycomb core, were tested in Part 1. The results highlighted the need for analysis methods which taken into account multiple failure modes. A finite element model (FEM) is developed here, in Part 2. A commercial implementation of the Multicontinuum Failure Theory (MCT) for progressive failure analysis (PFA) in composite laminates, Helius:MCT, is included in this model. The inclusion of PFA in the present model provided a new, unique ability to account for multiple failure modes. In addition, significant impact damage detail is included in the model. A sensitivity study, used to assess the effect of each damage parameter on overall analysis results, is included in an appendix. Analysis results are compared to the experimental results for each of the 32 CAI sandwich panel specimens tested to failure. The failure of each specimen is predicted using the high-fidelity, physicsbased analysis model developed here, and the results highlight key improvements in the understanding of honeycomb core sandwich panel CAI failure. Finally, a parametric study highlights the strength benefits compared to mass penalty for various core densities.

  9. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    PubMed

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-08

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

  10. Composite passive damping struts for large precision structures

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1993-01-01

    In the field of viscoelastic dampers, a new strut design comprises a viscoelastic material sandwiched between multiple layers, some of which layers bear and dampen load force. In one embodiment, the layers are composite plies of opposing orientation. In another embodiment, the strut utilizes a viscoelastic layer sandwiched between V-shaped composite plies. In a third embodiment, a viscoelastic layer is sandwiched between sine-shaped plies. Strut strength is equal to or greater than conventional aluminum struts due to the unique high interlaminar shear ply design.

  11. Tuning emission color of electroluminescence from two organic interfacial exciplexes by modulating the thickness of middle gadolinium complex layer

    NASA Astrophysics Data System (ADS)

    Li, Mingtao; Li, Wenlian; Chen, Lili; Kong, Zhiguo; Chu, Bei; Li, Bin; Hu, Zhizhi; Zhang, Zhiqiang

    2006-02-01

    Electroluminescent colors of organic light-emitting diodes (OLEDs) can be tuned by modulating the thickness of gadolinium (Gd) complex layer sandwiched between an electron-transporting layer (ETL) and a hole-transporting layer (HTL). The emission colors, which originate from the two interfacial exciplexes simultaneously, can be tuned from green to orange by increasing the thickness of the Gd-complex layer. The atom force microscope images have proved that there are many gaps in the thinner Gd-complex layers. Therefore, besides the exciplex formation between Gd complex and HTL, the exciplex between ETL and HTL is also formed. The results demonstrate that a simple way of color tuning can be realized by inserting a thin layer of color tuning material between HTL with lower ionization potentials and ETL with higher electron affinities. Moreover, photovoltaic device and white OLED based on the two exciplexes are also discussed.

  12. Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes

    DOE PAGES

    Suna, Yuki; Fujita, Etsuko; Ertem, Mehmed Z.; ...

    2014-11-12

    Proton-responsive half-sandwich Cp*Ir(III) complexes possessing a bipyridine ligand with two hydroxy groups at the 3,3'-, 4,4'-, 5,5'- or 6,6'-positions (3DHBP, 4DHBP, 5DHBP, or 6DHBP) were systematically investigated. UV-vis titration data provided average pK a values of the hydroxy groups on the ligands. Both hydroxy groups were found to deprotonate in the pH 4.6–5.6 range for the 4–6DHBP complexes. One of the hydroxy groups of the 3DHBP complex exhibited the low pK a value of < 0.4 because the deprotonation is facilitated by the strong intramolecular hydrogen bond formed between the generated oxyanion and the remaining hydroxy group, which in turnmore » leads to an elevated pK a value of ~13.6 for the second deprotonation step. The crystal structures of the 4– and 6DHBP complexes obtained from basic aqueous solutions revealed their deprotonated forms. The intramolecular hydrogen bond in the 3DHBP complex was also observed in the crystal structures. The catalytic activities of these complexes in aqueous phase reactions, at appropriate pH, for hydrogenation of carbon dioxide (pH 8.5), dehydrogenation of formic acid (pH 1.8), transfer hydrogenation reactions using formic acid/formate as a hydrogen source (pH 7.2 and 2.6) were investigated to compare the positional effects of the hydroxy groups. The 4– and 6DHBP complexes exhibited remarkably enhanced catalytic activities under basic conditions because of the resonance effect of the strong electrondonating oxyanions, whereas the 5DHBP complex exhibited negligible activity despite the presence of electron-donating groups. The 3DHBP complex exhibited relatively high catalytic activity at low pH owing to the one strong electron-donating oxyanion group stabilized by the intramolecular hydrogen bond. DFT calculations were employed to study the mechanism of CO₂ hydrogenation by the 4DHBP and 6DHBP complexes, and comparison of the activation free energies of the H₂ heterolysis and CO₂ insertion steps

  13. Comparison of local stiffness of composite honeycomb sandwich structures measured by tap test and mechanical test

    NASA Astrophysics Data System (ADS)

    Peters, John J.; Nielsen, Zachary A.; Hsu, David K.

    2001-04-01

    This paper shows that the local spring stiffness of composite honeycomb sandwiches, such as those used in aircraft flight control structures, can be obtained with a tap test. A simple spring model is invoked for converting the time of contact measured in a tap test to the local stiffness. The validity of the model is verified using test results obtained on aircraft components. The stiffness obtained from the tap test is compared with that measured in a static loading test. Good agreements are obtained for a variety of composite sandwiches with and without defects.

  14. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Feng; Zhang, Min-Gang; Zhang, Ke-Wei; Zhang, Hai-Jie; Xu, Xiao-Hong; Chai, Yue-Sheng

    2016-11-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. Program supported by the National Natural Science Foundation of China (Grant No. 51305290), the Higher Education Technical Innovation Project of Shanxi Province, China (Grant No. 2013133), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals of Shanxi Province, China (Grant No. 2015003), and the Program for the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  15. Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2018-06-01

    The thermal stability of spectrally selective few-layer metallo-dielectric structures is evaluated to analyze their potential as absorber and emitter materials in solar thermophotovoltaic (STPV) systems. High-efficiency (e.g., STPV) systems require materials with spectrally selective properties, especially at high temperatures (>1273 K). Aiming to develop such materials for high-temperature applications, we propose a few-layer structure composed of a refractory metal (i.e., Mo) nanometric film sandwiched between the layers of a dielectric material (i.e., hafnium oxide, HfO2) deposited on a Mo bulk substrate. In vacuum conditions (<5 × 10-2 Pa), the few-layer structure shows thermal stability at 1423 K for at least 1 h. At 1473 K, the spectral selectivity was degraded. This could have been caused by the oxidation of the Mo thin film by the residual oxygen through the grain boundaries of the upper HfO2 layer. This experiment showed the potential stability of few-layer structures for applications working at temperatures greater than 1273 K as well as the degradation mechanism of the few-layer structure. This characteristic is expected to help improve the thermal stability in few-layer structures further.

  16. Finite element based stability-constrained weight minimization of sandwich composite ducts for airship applications

    NASA Astrophysics Data System (ADS)

    Khode, Urmi B.

    High Altitude Long Endurance (HALE) airships are platform of interest due to their persistent observation and persistent communication capabilities. A novel HALE airship design configuration incorporates a composite sandwich propulsive hull duct between the front and the back of the hull for significant drag reduction via blown wake effects. The sandwich composite shell duct is subjected to hull pressure on its outer walls and flow suction on its inner walls which result in in-plane wall compressive stress, which may cause duct buckling. An approach based upon finite element stability analysis combined with a ply layup and foam thickness determination weight minimization search algorithm is utilized. Its goal is to achieve an optimized solution for the configuration of the sandwich composite as a solution to a constrained minimum weight design problem, for which the shell duct remains stable with a prescribed margin of safety under prescribed loading. The stability analysis methodology is first verified by comparing published analytical results for a number of simple cylindrical shell configurations with FEM counterpart solutions obtained using the commercially available code ABAQUS. Results show that the approach is effective in identifying minimum weight composite duct configurations for a number of representative combinations of duct geometry, composite material and foam properties, and propulsive duct applied pressure loading.

  17. Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.

    2018-01-01

    Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.

  18. Measuring Moisture Levels in Graphite Epoxy Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2011-01-01

    Graphite epoxy composite (GEC) materials are used in the construction of rocket fairings, nose cones, interstage adapters, and heat shields due to their high strength and light weight. However, they absorb moisture depending on the environmental conditions they are exposed to prior to launch. Too much moisture absorption can become a problem when temperature and pressure changes experienced during launch cause the water to vaporize. The rapid state change of the water can result in structural failure of the material. In addition, heat and moisture combine to weaken GEC structures. Diffusion models that predict the total accumulated moisture content based on the environmental conditions are one accepted method of determining if the material strength has been reduced to an unacceptable level. However, there currently doesn t exist any field measurement technique to estimate the actual moisture content of a composite structure. A multi-layer diffusion model was constructed with Mathematica to predict moisture absorption and desorption from the GEC sandwich structure. This model is used in conjunction with relative humidity/temperature sensors both on the inside and outside of the material to determine the moisture levels in the structure. Because the core materials have much higher diffusivity than the face sheets, a single relative humidity measurement will accurately reflect the moisture levels in the core. When combined with an external relative humidity measurement, the model can be used to determine the moisture levels in the face sheets. Since diffusion is temperaturedependent, the temperature measurements are used to determine the diffusivity of the face sheets for the model computations.

  19. Immunodiagnostic monoclonal antibody-based sandwich ELISA of fasciolosis by detection of Fasciola gigantica circulating fatty acid binding protein.

    PubMed

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-09-01

    Up to now, parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Hence, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. In the present study, a monoclonal antibody (MoAb) against recombinant Fasciola gigantica fatty acid binding protein (rFgFABP) has been produced. As well, a reliable sandwich enzyme-linked immunosorbent assay (sandwich ELISA) has been developed for the detection of circulating FABP in the sera of mice experimentally and cattle naturally infected with F. gigantica. MoAb 3A3 and biotinylated rabbit anti-recombinant FABP antibody were selected due to their high reactivities and specificities. The lower detection limit of sandwich ELISA was 5 pg mL-1, and no cross-reaction with other parasite antigens was observed. This assay could detect F. gigantica infection from day 1 post infection. In experimental mice, the sensitivity, specificity and accuracy of this assay were 93·3, 100 and 98·2%, while in natural cattle they were 96·7, 100 and 99·1%. Hence, this sandwich ELISA method showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica.

  20. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    PubMed

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  1. Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.

    2017-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.

  2. An Investigation into the Application of Generalized Differential Quadrature Method to Bending Analysis of Composite Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Ghassemi, Aazam; Yazdani, Mostafa; Hedayati, Mohamad

    2017-12-01

    In this work, based on the First Order Shear Deformation Theory (FSDT), an attempt is made to explore the applicability and accuracy of the Generalized Differential Quadrature Method (GDQM) for bending analysis of composite sandwich plates under static loading. Comparative studies of the bending behavior of composite sandwich plates are made between two types of boundary conditions for different cases. The effects of fiber orientation, ratio of thickness to length of the plate, the ratio of thickness of core to thickness of the face sheet are studied on the transverse displacement and moment resultants. As shown in this study, the role of the core thickness in deformation of these plates can be reversed by the stiffness of the core in comparison with sheets. The obtained graphs give very good results due to optimum design of sandwich plates. In Comparison with existing solutions, fast convergent rates and high accuracy results can be achieved by the GDQ method.

  3. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    NASA Astrophysics Data System (ADS)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  4. The impact of within and between role experiences on role balance outcomes for working Sandwich Generation Women.

    PubMed

    Evans, Kiah L; Millsteed, Jeannine; Richmond, Janet E; Falkmer, Marita; Falkmer, Torbjorn; Girdler, Sonya J

    2018-03-15

    Women combining paid employment with dual caring responsibilities for children and aging parents, otherwise known as the sandwich generation, experience both benefits and costs related to role participation and quality of life. However, previous literature is inconclusive regarding the impact of this role combination on role balance. In the context of these mixed findings on role balance for working sandwich generation women, this study aimed to explore how within role characteristics and between role interactions are related to role balance for these women. This aim was achieved through the use of a questionnaire administered to 18 Australian working sandwich generation women. Data were analyzed using descriptive statistics and correlation coefficients, with findings suggesting the women studied tended to experience neither role balance or role imbalance. Within-role characteristics, particularly within the mother and family member roles, were related to role balance. In addition, between-role conflict and role interactions involving either the home maintainer or family member roles had the greatest impact on role balance.

  5. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  6. 3D customized and flexible tactile sensor using a piezoelectric nanofiber mat and sandwich-molded elastomer sheets

    NASA Astrophysics Data System (ADS)

    Bit Lee, Han; Kim, Young Won; Yoon, Jonghun; Lee, Nak Kyu; Park, Suk-Hee

    2017-04-01

    We developed a skin-conformal flexible sensor in which three-dimensional (3D) free-form elastomeric sheets were harmoniously integrated with a piezoelectric nanofiber mat. The elastomeric sheets were produced by polydimethylsiloxane (PDMS) molding via using a 3D printed mold assembly, which was adaptively designed from 3D scanned skin surface geometry. The mold assembly, fabricated using a multi-material 3D printer, was composed of a pair of upper/lower mold parts and an interconnecting hinge, with material properties are characterized by different flexibilities. As a result of appropriate deformabilites of the upper mold part and hinge, the skin-conformal PDMS structures were successfully sandwich molded and demolded with good repeatability. An electrospun poly(vinylidene fluoride trifluoroethylene) nanofiber mat was prepared as the piezoelectric active layer and integrated with the 3D elastomeric parts. We confirmed that the highly responsive sensing performances of the 3D integrated sensor were identical to those of a flat sensor in terms of sensitivity and the linearity of the input-output relationship. The close 3D conformal skin contact of the flexible sensor enabled discernable perception of various scales of physical stimuli, such as tactile force and even minute skin deformation caused by the tester’s pulse. Collectively from the 3D scanning design to the practical application, our achievements can potentially meet the needs of tailored human interfaces in the field of wearable devices and human-like robots.

  7. Facile Synthesis of Three-Dimensional Sandwiched MnO2@GCs@MnO2 Hybrid Nanostructured Electrode for Electrochemical Capacitors.

    PubMed

    Jian, Xian; Liu, Shiyu; Gao, Yuqi; Zhang, Wanli; He, Weidong; Mahmood, Asif; M Subramaniyam, Chandrasekar; Wang, Xiaolin; Mahmood, Nasir; Dou, Shi Xue

    2017-06-07

    Designable control over the morphology and structure of active materials is highly desirable for achieving high-performance devices. Here, we develop a facile microwave-assisted synthesis to decorate MnO 2 nanocrystals on three-dimensional (3D) graphite-like capsules (GCs) to obtain sandwich nanostructures (3D MnO 2 @GCs@MnO 2 ) as electrode materials for electrochemical capacitors (ECs). A templated growth of the 3D GCs was carried out via catalytic chemical vapor deposition and MnO 2 was decorated on the exterior and interior surfaces of the GC walls through microwave irradiation to build an engineered architecture with robust structural and morphological stability. The unique sandwiched architecture has a large interfacial surface area, and allows for rapid electrolyte diffusion through its hollow/open framework and fast electronic motion via the carbon backbone. Furthermore, the tough and rigid nature of GCs provides the necessary structural stability, and the strong synergy between MnO 2 and GCs leads to high electrochemical activity in both neutral (265.1 F/g at 0.5 A/g) and alkaline (390 F/g at 0.5 A/g) electrolytes. The developed hybrid exhibits stable capacitance up to 6000 cycles in 1 M Na 2 SO 4 . The hybrid is a potential candidate for future ECs and the present study opens up an effective avenue to design hybrid materials for various applications.

  8. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio

    2010-07-01

    In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

  9. Radioimmunoassays and 2-site immunoradiometric "sandwich" assays: basic principles.

    PubMed

    Rodbard, D

    1988-10-01

    The "sandwich" or noncompetitive reagent-excess, 2-site immunoradiometric assay (2-site IRMA), ELISA, USERIA, and related techniques, have several advantages compared with the traditional or competitive radioimmunoassays. IRMAs can provide improved sensitivity and specificity. However, IRMAs present some practical problems with nonspecific binding, increased consumption of antibody, biphasic dose response curve, (high dose hook effect), and may require special techniques for dose response curve analysis. We anticipate considerable growth in the popularity and importance of 2-site IRMA.

  10. Pulled from all sides: The sandwich generation at work.

    PubMed

    O'Sullivan, Ann

    2015-01-01

    Employees who are members of the "sandwich generation", those who are raising children and assisting older adult family members, are a population at risk for issues related to physical and emotional health, balancing work and family responsibilities, and taking care of themselves. This commentary examines their situation and challenges, some of the potential negative effects of these compounded stressors, and recommends strategies that employers, families, and the individuals themselves can use to create a sustainable work/caregiving situation.

  11. Voc enhancement of a solar cell with doped Li+-PbS as the active layer

    NASA Astrophysics Data System (ADS)

    Chávez Portillo, M.; Alvarado Pulido, J.; Gallardo Hernández, S.; Soto Cruz, B. S.; Alcántara Iniesta, S.; Gutiérrez Pérez, R.; Portillo Moreno, O.

    2018-06-01

    In this report, we investigate the fabrication of solar cells obtained by chemical bath technique, based on CdS as window layer and PbS and PbS-Li+-doped as the active layer. We report open-circuit-voltage Voc values of ∼392 meV for PbS and ∼630 meV for PbSLi+-doped, a remarkable enhanced in the open circuit voltage is shown for solar cells with doped active layer. Li+ ion passivate the dangling bonds in PbS-metal layer interface in consequence reducing the recombination centers.

  12. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  13. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE PAGES

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  14. Improved electrical properties of atomic layer deposited tin disulfide at low temperatures using ZrO2 layer

    NASA Astrophysics Data System (ADS)

    Lee, Juhyun; Lee, Jeongsu; Ham, Giyul; Shin, Seokyoon; Park, Joohyun; Choi, Hyeongsu; Lee, Seungjin; Kim, Juyoung; Sul, Onejae; Lee, Seungbeck; Jeon, Hyeongtag

    2017-02-01

    We report the effect of zirconium oxide (ZrO2) layers on the electrical characteristics of multilayered tin disulfide (SnS2) formed by atomic layer deposition (ALD) at low temperatures. SnS2 is a two-dimensional (2D) layered material which exhibits a promising electrical characteristics as a channel material for field-effect transistors (FETs) because of its high mobility, good on/off ratio and low temperature processability. In order to apply these 2D materials to large-scale and flexible electronics, it is essential to develop processes that are compatible with current electronic device manufacturing technology which should be conducted at low temperatures. Here, we deposited a crystalline SnS2 at 150 °C using ALD, and we then annealed at 300 °C. X-ray diffraction (XRD) and Raman spectroscopy measurements before and after the annealing showed that SnS2 had a hexagonal (001) peak at 14.9° and A1g mode at 313 cm-1. The annealed SnS2 exhibited clearly a layered structure confirmed by the high resolution transmission electron microscope (HRTEM) images. Back-gate FETs with SnS2 channel sandwiched by top and bottom ZrO2 on p++Si/SiO2 substrate were suggested to improve electrical characteristics. We used a bottom ZrO2 layer to increase adhesion between the channel and the substrate and a top ZrO2 layer to improve contact property, passivate surface, and protect from process-induced damages to the channel. ZTZ (ZrO2/SnS2/ZrO2) FETs showed improved electrical characteristics with an on/off ratio of from 0.39×103 to 6.39×103 and a mobility of from 0.0076 cm2/Vs to 0.06 cm2/Vs.

  15. Sound transmission through finite lightweight multilayered structures with thin air layers.

    PubMed

    Dijckmans, A; Vermeir, G; Lauriks, W

    2010-12-01

    The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics.

  16. Immunodiagnosis of Fasciola gigantica Infection Using Monoclonal Antibody-Based Sandwich ELISA and Immunochromatographic Assay for Detection of Circulating Cathepsin L1 Protease

    PubMed Central

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-01-01

    Background Tropical fasciolosis caused by Fasciola gigantica infection is one of the major diseases infecting ruminants in the tropical regions of Africa and Asia including Thailand. Parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Therefore, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. Methods In this study, we have produced a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1 (rFgCatL1), and developed both sandwich enzyme-linked immunosorbent assay (sandwich ELISA) and immunochromatographic (IC) test for rapid detection of circulating cathepsin L1 protease (CatL1) in the sera from mice experimentally and cattle naturally infected with Fasciola gigantica. MoAb 4E3 and biotinylated rabbit anti-recombinant CatL1 antibody were selected due to their high reactivities and specificities. Results The lower detection limits of sandwich ELISA and IC test were 3 pg/ml and 0.256 ng/ml, respectively. Sandwich ELISA and IC test could detect F. gigantica infection from day 1 to 35 post infection. In experimental mice, the sensitivity, specificity and accuracy were 95%, 100% and 98.6% (for sandwich ELISA), and 93%, 100% and 98.2% (for IC test), while in natural cattle they were 98.3%, 100% and 99.5% (for sandwich ELISA), and 96.7%, 100% and 99.1% (for IC test). Conclusions These two assay methods showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica. PMID:26731402

  17. Immunodiagnosis of Fasciola gigantica Infection Using Monoclonal Antibody-Based Sandwich ELISA and Immunochromatographic Assay for Detection of Circulating Cathepsin L1 Protease.

    PubMed

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-01-01

    Tropical fasciolosis caused by Fasciola gigantica infection is one of the major diseases infecting ruminants in the tropical regions of Africa and Asia including Thailand. Parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Therefore, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. In this study, we have produced a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1 (rFgCatL1), and developed both sandwich enzyme-linked immunosorbent assay (sandwich ELISA) and immunochromatographic (IC) test for rapid detection of circulating cathepsin L1 protease (CatL1) in the sera from mice experimentally and cattle naturally infected with Fasciola gigantica. MoAb 4E3 and biotinylated rabbit anti-recombinant CatL1 antibody were selected due to their high reactivities and specificities. The lower detection limits of sandwich ELISA and IC test were 3 pg/ml and 0.256 ng/ml, respectively. Sandwich ELISA and IC test could detect F. gigantica infection from day 1 to 35 post infection. In experimental mice, the sensitivity, specificity and accuracy were 95%, 100% and 98.6% (for sandwich ELISA), and 93%, 100% and 98.2% (for IC test), while in natural cattle they were 98.3%, 100% and 99.5% (for sandwich ELISA), and 96.7%, 100% and 99.1% (for IC test). These two assay methods showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica.

  18. [A New Simple Technique for Producing Labeled Monoclonal Antibodies for Antibody Pair Screening in Sandwich-ELISA].

    PubMed

    Zaripov, M M; Afanasieva, G V; Glukhova, X A; Trizna, Y A; Glukhov, A S; Beletsky, I P; Prusakova, O V

    2015-01-01

    A simple and fast method for obtaining biotin-labeled monoclonal antibodies was developed usingcontent of hybridoma culture supernatant sufficient to select antibody pairs in sandwich ELISA. The method consists in chemical biotinylation of antigen-bound antibodies in a well of ELISA plate. Using as an example target Vaccinia virus A27L protein it was shown that the yield of biotinylated reactant is enough to set comprehensive sandwich ELISA for a moderate size panel of up to 25 monoclonal antibodies with an aim to determine candidate pairs. The technique is a cheap and effective solution since it avoids obtaining preparative amounts of antibodies.

  19. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when

  20. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard

    USGS Publications Warehouse

    Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.

    2002-01-01

    Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.