Sample records for active magnesium chelatase

  1. The Barley Magnesium Chelatase 150-kD Subunit Is Not an Abscisic Acid Receptor1[OA

    PubMed Central

    Müller, André H.; Hansson, Mats

    2009-01-01

    Magnesium chelatase is the first unique enzyme of the chlorophyll biosynthetic pathway. It is composed of three gene products of which the largest is 150 kD. This protein was recently identified as an abscisic acid receptor in Arabidopsis (Arabidopsis thaliana). We have evaluated whether the barley (Hordeum vulgare) magnesium chelatase large subunit, XanF, could be a receptor for the phytohormone. The study involved analysis of recombinant magnesium chelatase protein as well as several induced chlorophyll-deficient magnesium chelatase mutants with defects identified at the gene and protein levels. Abscisic acid had no effect on magnesium chelatase activity and binding to the barley 150-kD protein could not be shown. Magnesium chelatase mutants showed a wild-type response in respect to postgermination growth and stomatal aperture. Our results question the function of the large magnesium chelatase subunit as an abscisic acid receptor. PMID:19176716

  2. Thioredoxin Redox Regulates ATPase Activity of Magnesium Chelatase CHLI Subunit and Modulates Redox-Mediated Signaling in Tetrapyrrole Biosynthesis and Homeostasis of Reactive Oxygen Species in Pea Plants1[C][W][OA

    PubMed Central

    Luo, Tao; Fan, Tingting; Liu, Yinan; Rothbart, Maxi; Yu, Jing; Zhou, Shuaixiang; Grimm, Bernhard; Luo, Meizhong

    2012-01-01

    The chloroplast thioredoxins (TRXs) function as messengers of redox signals from ferredoxin to target enzymes. In this work, we studied the regulatory impact of pea (Pisum sativum) TRX-F on the magnesium (Mg) chelatase CHLI subunit and the enzymatic activation of Mg chelatase in vitro and in vivo. In vitro, reduced TRX-F activated the ATPase activity of pea CHLI and enhanced the activity of Mg chelatase reconstituted from the three recombinant subunits CHLI, CHLD, and CHLH in combination with the regulator protein GENOMES UNCOUPLED4 (GUN4). Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that TRX-F physically interacts with CHLI but not with either of the other two subunits or GUN4. In vivo, virus-induced TRX-F gene silencing (VIGS-TRX-F) in pea plants did not result in an altered redox state of CHLI. However, simultaneous silencing of the pea TRX-F and TRX-M genes (VIGS-TRX-F/TRX-M) resulted in partially and fully oxidized CHLI in vivo. VIGS-TRX-F/TRX-M plants demonstrated a significant reduction in Mg chelatase activity and 5-aminolevulinic acid synthesizing capacity as well as reduced pigment content and lower photosynthetic capacity. These results suggest that, in vivo, TRX-M can compensate for a lack of TRX-F and that both TRXs act as important redox regulators of Mg chelatase. Furthermore, the silencing of TRX-F and TRX-M expression also affects gene expression in the tetrapyrrole biosynthesis pathway and leads to the accumulation of reactive oxygen species, which may also serve as an additional signal for the transcriptional regulation of photosynthesis-associated nuclear genes. PMID:22452855

  3. Nanomechanical and thermophoretic analyses of the nucleotide-dependent interactions between the AAA + subunits of magnesium chelatase

    DOE PAGES

    Adams, Nathan B. P.; Vasilev, Cvetelin; Brindley, Amanda A.; ...

    2016-04-30

    In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg 2+ ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA + proteins ChlI and ChlD, form a ChlID–MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of a ChlID–MgADP complex, mediated by the arginine finger and the sensor II domain on ChlD, is necessary for the assembly of the catalytically active ChlHID–MgATP complex. The N-terminal AAA + domain of ChlD is essential for complex formation, butmore » some stability is preserved in the absence of the C-terminal integrin domain of ChlD, particularly if the intervening polyproline linker region is retained. Single molecule force spectroscopy (SMFS) was used to determine the factors that stabilize formation of the ChlID–MgADP complex at the single molecule level; ChlD was attached to an atomic force microscope (AFM) probe in two different orientations, and the ChlI subunits were tethered to a silica surface; the probability of subunits interacting more than doubled in the presence of MgADP, and we show that the N-terminal AAA + domain of ChlD mediates this process, in agreement with the microscale thermophoresis data. Analysis of the unbinding data revealed a most probable interaction force of around 109 pN for formation of single ChlID–MgADP complexes. Finally, these experiments provide a quantitative basis for understanding the assembly and function of the Mg chelatase complex.« less

  4. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit.

    PubMed

    Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun

    2016-10-01

    The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

  5. GUN4-Porphyrin Complexes Bind the ChlH/GUN5 Subunit of Mg-Chelatase and Promote Chlorophyll Biosynthesis in Arabidopsis[W

    PubMed Central

    Adhikari, Neil D.; Froehlich, John E.; Strand, Deserah D.; Buck, Stephanie M.; Kramer, David M.; Larkin, Robert M.

    2011-01-01

    The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex. PMID:21467578

  6. A story of chelatase evolution: identification and characterization of a small 13-15-kDa "ancestral" cobaltochelatase (CbiXS) in the archaea.

    PubMed

    Brindley, Amanda A; Raux, Evelyne; Leech, Helen K; Schubert, Heidi L; Warren, Martin J

    2003-06-20

    The cobaltochelatase required for the synthesis of vitamin B12 (cobalamin) in the archaeal kingdom has been identified as CbiX through similarity searching with the CbiX from Bacillus megaterium. However, the CbiX proteins in the archaea are much shorter than the CbiX proteins found in eubacteria, typically containing less than half the number of amino acids in their primary structure. For this reason the shorter CbiX proteins have been termed CbiXS and the longer versions CbiXL. The CbiXS proteins from Methanosarcina barkeri and Methanobacter thermoautotrophicum were overproduced in Escherichia coli as recombinant proteins and characterized. Through complementation studies of a defined chelatase-deficient strain of E. coli and by direct in vitro assays the function of CbiXS as a sirohydrochlorin cobaltochelatase has been demonstrated. On the basis of sequence alignments and conserved active site residues we suggest that CbiXS may represent a primordial chelatase, giving rise to larger chelatases such as CbiXL, SirB, CbiK, and HemH through gene duplication and subsequent variation and selection. A classification scheme for chelatases is proposed.

  7. Color formation in nitrite-free dried hams as related to Zn-protoporphyrin IX and Zn-chelatase activity.

    PubMed

    Parolari, Giovanni; Benedini, Riccardo; Toscani, Tania

    2009-08-01

    The development of red pigment Zn-protoporphyrin IX (ZPP) in nitrite-free Parma hams was investigated in 5 leg muscles at several stages of processing and the activity of muscle Zn-chelatase was concurrently assayed for its potential role in ZPP formation. A steady increase of the pigment was observed throughout the manufacturing stages at mild temperatures while no development was observed during the prior cold resting phase. The enzyme was partly inactivated according to a muscle-dependent pattern, resulting in similar ZPP contents, hence color, in finished hams. It is concluded that enzyme-dependent synthesis of ZPP in nitrite-free dried hams contributes to color development, enabling muscles in dried hams to become more similar in redness than in green thighs. Therefore, checking raw meat for the enzyme content may be a means to control color formation in nitrite-free dry-cured meat derivatives.

  8. Phosphorylation of GENOMES UNCOUPLED 4 Alters Stimulation of Mg Chelatase Activity in Angiosperms1[OPEN

    PubMed Central

    Hochheuser, Caroline; Fufezan, Christian; Heinze, Laura

    2016-01-01

    GENOMES UNCOUPLED 4 (GUN4) is a positive regulator of light-dependent chlorophyll biosynthesis. GUN4 activates Mg chelatase (MgCh) that catalyzes the insertion of an Mg2+ ion into protoporphyrin IX. We show that Arabidopsis (Arabidopsis thaliana) GUN4 is phosphorylated at Ser 264 (S264), the penultimate amino acid residue at the C terminus. While GUN4 is preferentially phosphorylated in darkness, phosphorylation is reduced upon accumulation of Mg porphyrins. Expression of a phosphomimicking GUN4(S264D) results in an incomplete complementation of the white gun4-2 null mutant and a chlorotic phenotype comparable to gun4 knockdown mutants. Phosphorylated GUN4 has a reduced stimulatory effect on MgCh in vitro and in vivo but retains its protein stability and tetrapyrrole binding capacity. Analysis of GUN4 found in oxygenic photosynthetic organisms reveals the evolution of a C-terminal extension, which harbors the phosphorylation site of GUN4 expressed in angiosperms. Homologs of GUN4 from Synechocystis and Chlamydomonas lack the conserved phosphorylation site found in a C-terminal extension of angiosperm GUN4. Biochemical studies proved the importance of the C-terminal extension for MgCh stimulation and inactivation of GUN4 by phosphorylation in angiosperms. An additional mechanism regulating MgCh activity is proposed. In conjunction with the dark repression of 5-aminolevulinic acid synthesis, GUN4 phosphorylation minimizes the flow of intermediates into the Mg branch of the tetrapyrrole metabolic pathway for chlorophyll biosynthesis. PMID:27688621

  9. Hemin/G-quadruplex structure and activity alteration induced by magnesium cations.

    PubMed

    Kosman, J; Juskowiak, B

    2016-04-01

    The influence of metal cations on G-quadruplex structure and peroxidase-mimicking DNAzyme activity was investigated. Experiments revealed a significant role of magnesium ion, which in the presence of potassium cation influenced DNAzyme activity. This ability has been associated with alteration of G-quadruplex topology and consequently affinity to bind hemin molecule. It has been demonstrated that G-quadruplex based on PS2.M sequence under these conditions formed parallel topology, which exhibited lower activity than that observed in standard potassium-containing solution. On the other hand DNAzyme/magnesium ion system based on telomeric sequence, which did not undergo significant structural changes, exhibited higher peroxidase activity upon magnesium ion addition. In both cases, the stabilization effect of magnesium cations on G-quadruplex structure was observed. The mechanism of DNAzyme activity alteration by magnesium ion can be explained by its influence on the pKa value of DNAzyme. Magnesium ion decreased pKa for PS2.M based system but increased it for telomeric DNAzyme. Magnesium cation effect on G-quadruplex structure as well as DNAzyme activity is particularly important since this ion is one of the most common metal cations in biological samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation?

    PubMed

    Ter Braake, Anique D; Shanahan, Catherine M; de Baaij, Jeroen H F

    2017-08-01

    Over the last decade, an increasing number of studies report a close relationship between serum magnesium concentration and cardiovascular disease risk in the general population. In end-stage renal disease, an association was found between serum magnesium and survival. Hypomagnesemia was identified as a strong predictor for cardiovascular disease in these patients. A substantial body of in vitro and in vivo studies has identified a protective role for magnesium in vascular calcification. However, the precise mechanisms and its contribution to cardiovascular protection remain unclear. There are currently 2 leading hypotheses: first, magnesium may bind phosphate and delay calcium phosphate crystal growth in the circulation, thereby passively interfering with calcium phosphate deposition in the vessel wall. Second, magnesium may regulate vascular smooth muscle cell transdifferentiation toward an osteogenic phenotype by active cellular modulation of factors associated with calcification. Here, the data supporting these major hypotheses are reviewed. The literature supports both a passive inorganic phosphate-buffering role reducing hydroxyapatite formation and an active cell-mediated role, directly targeting vascular smooth muscle transdifferentiation. However, current evidence relies on basic experimental designs that are often insufficient to delineate the underlying mechanisms. The field requires more advanced experimental design, including determination of intracellular magnesium concentrations and the identification of the molecular players that regulate magnesium concentrations in vascular smooth muscle cells. © 2017 American Heart Association, Inc.

  11. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction

    PubMed Central

    Mochizuki, Nobuyoshi; Brusslan, Judy A.; Larkin, Robert; Nagatani, Akira; Chory, Joanne

    2001-01-01

    A plastid-derived signal plays an important role in the coordinated expression of both nuclear- and chloroplast-localized genes that encode photosynthesis-related proteins. Arabidopsis GUN (genomes uncoupled) loci have been identified as components of plastid-to-nucleus signal transduction. Unlike wild-type plants, gun mutants have nuclear Lhcb1 expression in the absence of chloroplast development. We observed a synergistic phenotype in some gun double-mutant combinations, suggesting there are at least two independent pathways in plastid-to-nucleus signal transduction. There is a reduction of chlorophyll accumulation in gun4 and gun5 mutant plants, and a gun4gun5 double mutant shows an albino phenotype. We cloned the GUN5 gene, which encodes the ChlH subunit of Mg-chelatase. We also show that gun2 and gun3 are alleles of the known photomorphogenic mutants, hy1 and hy2, which are required for phytochromobilin synthesis from heme. These findings suggest that certain perturbations of the tetrapyrrole biosynthetic pathway generate a signal from chloroplasts that causes transcriptional repression of nuclear genes encoding plastid-localized proteins. The comparison of mutant phenotypes of gun5 and another Mg-chelatase subunit (ChlI) mutant suggests a specific function for ChlH protein in the plastid-signaling pathway. PMID:11172074

  12. Phytochrome B Mediates the Regulation of Chlorophyll Biosynthesis through Transcriptional Regulation of ChlH and GUN4 in Rice Seedlings

    PubMed Central

    Kagawa, Takatoshi; Tanaka, Ayumi; Ueno, Osamu; Shimada, Hiroaki; Takano, Makoto

    2015-01-01

    Accurate regulation of chlorophyll synthesis is crucial for chloroplast formation during the greening process in angiosperms. In this study, we examined the role of phytochrome B (phyB) in the regulation of chlorophyll synthesis in rice seedlings (Oryza sativa L.) through the characterization of a pale-green phenotype observed in the phyB mutant grown under continuous red light (Rc) irradiation. Our results show that the Rc-induced chlorophyll accumulation can be divided into two components—a phyB-dependent and a phyB-independent component, and that the pale-green phenotype is caused by the absence of the phyB-dependent component. To elucidate the role of the missing component we established an Rc-induced greening experiment, the results of which revealed that several genes encoding proteins on the chlorophyll branch were repressed in the phyB mutant. Notable among them were ChlH and GUN4 genes, which encode subunit H and an activating factor of magnesium chelatase (Mg-chelatase), respectively, that were largely repressed in the mutant. Moreover, the kinetic profiles of chlorophyll precursors suggested that Mg-chelatase activity simultaneously decreased with the reduction in the transcript levels of ChlH and GUN4. These results suggest that phyB mediates the regulation of chlorophyll synthesis through transcriptional regulation of these two genes, whose products exert their action at the branching point of the chlorophyll biosynthesis pathway. Reduction of 5-aminolevulinic acid (5-ALA) synthesis could be detected in the mutant, but the kinetic profiles of chlorophyll precursors indicated that it was an event posterior to the reduction of the Mg-chelatase activity. It means that the repression of 5-ALA synthesis should not be a triggering event for the appearance of the pale-green phenotype. Instead, the repression of 5-ALA synthesis might be important for the subsequent stabilization of the pale-green phenotype for preventing excessive accumulation of hazardous

  13. Magnesium Excretion in C. elegans Requires the Activity of the GTL-2 TRPM Channel

    PubMed Central

    Teramoto, Takayuki; Sternick, Laura A.; Kage-Nakadai, Eriko; Sajjadi, Shirine; Siembida, Jakub; Mitani, Shohei; Iwasaki, Kouichi; Lambie, Eric J.

    2010-01-01

    Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the activities of the paralogous TRPM channel proteins, GON-2 and GTL-1. PMID:20221407

  14. Nanostructured magnesium oxide as cure activator for polychloroprene rubber.

    PubMed

    Kar, Sritama; Bhowmick, Anil K

    2009-05-01

    The aim of this research was to synthesize magnesium oxide nanoparticles and to use them as cure activator for polychloroprene rubber (CR). The effects of counterions of magnesium salts on the homogeneous phase precipitation reaction to control size, monodispersity, crystallinity, and morphology of Mg(OH)2 nanoparticles were also investigated. Magnesium oxide nanoparticles were synthesized by optimizing the calcination temperature of Mg(OH)2 nanoparticles. Finally, the MgO nanoparticles were dispersed in polychloroprene rubber (CR) solution along with zinc oxide (ZnO) powder. The influence of MgO nanoparticles on the mechanical, dynamic mechanical and thermal properties of the resulting nanocomposites was quantified. The modulus and strength of ZnO-cured polychloroprene rubber with 4% MgO nanoparticles appeared to be superior to those with ZnO particles or ZnO with rubber grade MgO particles. These composites were further characterized by transmission electron microscopy and infrared spectroscopy in order to understand the morphology of the resulting system and the load transfer mechanism.

  15. Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

    PubMed Central

    Montes de Oca, Addy; Guerrero, Fatima; Martinez-Moreno, Julio M.; Madueño, Juan A.; Herencia, Carmen; Peralta, Alan; Almaden, Yolanda; Lopez, Ignacio; Aguilera-Tejero, Escolastico; Gundlach, Kristina; Büchel, Janine; Peter, Mirjam E.; Passlick-Deetjen, Jutta; Rodriguez, Mariano; Muñoz-Castañeda, Juan R.

    2014-01-01

    Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro

  16. Magnesium sulfate reduces formalin-induced orofacial pain in rats with normal magnesium serum levels.

    PubMed

    Srebro, Dragana P; Vučković, Sonja M; Dožić, Ivan S; Dožić, Branko S; Savić Vujović, Katarina R; Milovanović, Aleksandar P; Karadžić, Branislav V; Prostran, Milica Š

    2018-02-01

    In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain. Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum. Magnesium sulfate administered subcutaneously (0.005-45mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity. Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. A Magnesium-Activated Carbon Hybrid Capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, HD; Shterenberg, I; Gofer, Y

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionicmore » complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.« less

  18. Magnesium sulfate provides neuroprotection in lipopolysaccharide-activated primary microglia by inhibiting NF-κB pathway.

    PubMed

    Gao, Feng; Ding, Baozhong; Zhou, Longan; Gao, Xueshan; Guo, Huiguang; Xu, Hong

    2013-10-01

    Magnesium sulfate has been used as an anticonvulsant in severe preeclamptic or eclamptic women prior to surgical trauma, but its effects on neuroinflammation is not well defined. In the present study, we investigated the neuroprotective effects of magnesium sulfate in lipopolysaccharide (LPS)-induced microglia and explored the underlying mechanism. Microglia was incubated with LPS in the presence or absence of various concentrations of magnesium sulfate, or L-type calcium channel activator BAY-K8644. The levels of inflammatory mediators, such as nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α, were measured using enzyme-linked immunosorbent assay. The expression of inducible nitric oxide synthase mRNA was detected by reverse-transcription polymerase chain reaction. Nuclear factor κB (NF-κB) activity in the nuclear extract of microglia was detected by NF-κB p50/p65 transcription factor assay kit. Magnesium sulfate at 5 and 10 mmol/L significantly inhibited the release of nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α, and the expression of inducible nitric oxide synthase mRNA in LPS-activated microglia. Furthermore, magnesium sulfate inhibited the translocation of NF-κB from the cytoplasm to the nucleus in a dose-dependent manner. Notably, these effects were significantly reversed by L-type calcium channel activator BAY-K8644. Magnesium sulfate protects microglia against LPS-induced release of inflammatory mediators, and these effects may be mediated by inhibiting L-type calcium channels and NF-κB signaling. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  20. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: identification of reaction by-products and pathways.

    PubMed

    Ileri, Burcu; Ayyildiz, Onder; Apaydin, Omer

    2015-07-15

    Zero-valent magnesium (Mg(0)) was activated by ultrasound (US) in an aim to promote its potential use in water treatment without pH control. In this context, nitrate reduction was studied at batch conditions using various doses of magnesium powder and ultrasound power. While neither ultrasound nor zero-valent magnesium alone was effective for reducing nitrate in water, their combination removed up to 90% of 50 mg/L NO3-N within 60 min. The rate of nitrate reduction by US/Mg(0) enhanced with increasing ultrasonic power and magnesium dose. Nitrogen gas (N2) and nitrite (NO2(-)) were detected as the major reduction by-products, while magnesium hydroxide Mg(OH)2 and hydroxide ions (OH(-)) were identified as the main oxidation products. The results from SEM-EDS measurements revealed that the surface oxide level decreased significantly when the samples of Mg(0) particles were exposed to ultrasonic treatment. The surface passivation of magnesium particles was successfully minimized by mechanical forces of ultrasound, which in turn paved the way to sustain the catalyst activity toward nitrate reduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  2. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  3. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidencemore » supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.« less

  4. Magnesium ions facilitate integrin alpha 2- and alpha 3-mediated proliferation and enhance alkaline phosphatase expression and activity in hBMSCs.

    PubMed

    Leem, Yea-Hyun; Lee, Kang-Sik; Kim, Jung-Hwa; Seok, Hyun-Kwang; Chang, Jae-Suk; Lee, Dong-Ho

    2016-10-01

    Magnesium metal and its alloys have been proposed as a novel class of bone implant biomaterials because of their biodegradability and mechanical properties. The purpose of this study was to determine whether magnesium ions, which are released abundantly from alloys, affect proliferation and differentiation of human bone marrow-derived stromal cells (hBMSCs). High levels of magnesium ions did not induce cytotoxicity in hBMSCs, but treatment with 2.5-10 mm magnesium ions for 48-72 h significantly increased hBMSC proliferation. The expression of integrins α2 and α3, but not β1, was upregulated compared with the control and shifted from α3 to α2 in hBMSCs treated with magnesium ions. Knockdown of integrins α2 and/or α3 significantly reduced magnesium-induced proliferation of hBMSCs. Magnesium exposure profoundly enhanced alkaline phosphatase (ALP) gene expression and activity even at a relatively low magnesium concentration (2.5 mm). Exposure to magnesium ions facilitated hBMSC proliferation via integrin α2 and α3 expression and partly promoted differentiation into osteoblasts via the alteration of ALP expression and activity. Accordingly, magnesium could be a useful biomaterial for orthopaedic applications such as bone implant biomaterials for repair and regeneration of bone defects in orthopaedic and dental fields. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Magnesium in atherosclerotic cardiovascular disease and sudden death.

    PubMed

    Singh, R B; Singh, V P; Cameron, E A

    1981-01-01

    Magnesium ions are important for maintaining the functional and structural integrity of the myocardium. Epidemiologic studies suggest that myocardial hypomagnecytia can predispose to sudden cardiac death and that hard water protective factor preventing heart attack could be magnesium. Recent studies show that infarcted portion of the myocardium has lowered magnesium content as compared to noninfarcted segment. Magnesium deficiency sensitises the myocardium to the toxic effect of various drugs, hypoxia etc. and magnesium administration is protective. The metabolic, biochemical and electrophysiologic effects of magnesium appear to be significant in treatment of myocardial ischaemia. Magnesium is a metal-coenzyme and activates adenosine-triphosphatase which may be inhibited by nonglucose fuels like lactate and free fatty acids. Magnesium deficiency may be responsible for the chronic electrical instability of the myocardium predisposing to sudden cardiac death. The acute precipitating stress dependent trigger which lie in the brain may also be related to magnesium. In addition to fast Na and Ca channels there could be a Mg-carrying transport system maintaining the electrical activity of the myocardium. There is sufficient evidence to suggest the use of magnesium salts against ischaemic heart disease and sudden cardiac death. Magnesium is cardioprotective and influences action potential duration, membrane potential and perhaps maintains the fast response. The therapeutic and prophylactic value of magnesium needs further assessment.

  6. Raman chemical mapping of magnesium stearate delivered by a punch-face lubrication system on the surface of placebo and active tablets.

    PubMed

    Šašiċ, Slobodan; Ojakovo, Peter; Warman, Martin; Sanghvi, Tapan

    2013-09-01

    Raman chemical mapping was used to determine the distribution of magnesium stearate, a lubricant, on the surface of tablets. The lubrication was carried out via a punch-face lubrication system with different spraying rates applied on placebo and active-containing tablets. Principal component analysis was used for decomposing the matrix of Raman mapping spectra. Some of the loadings associated with minuscule variation in the data significantly overlap with the Raman spectrum of magnesium stearate in placebo tablets and allow for imaging the domains of magnesium stearate via corresponding scores. Despite the negligible variation accounted for by respective principal components, the score images seem reliable as demonstrated through thresholding the one-dimensional representation and the spectra of the hot pixels that show a weak but perceivable magnesium stearate band at 1295 cm(-1). The same approach was applied on the active formulation, but no magnesium stearate was identified, presumably due to overwhelming concentration and spectral contribution of the active pharmaceutical ingredient.

  7. Correlation of magnesium intake with metabolic parameters, depression and physical activity in elderly type 2 diabetes patients: a cross-sectional study

    PubMed Central

    2012-01-01

    Background Type 2 diabetes mellitus is a major global public health problem in the worldwide and is increasing in aging populations. Magnesium intake may be one of the most important factors for diabetes prevention and management. Low magnesium intake may exacerbate metabolic abnormalities. In this study, the relationships of magnesium intake with metabolic parameters, depression and physical activity in elderly patients with type 2 diabetes were investigated. Methods This cross-sectional study involved 210 type 2 diabetes patients aged 65 years and above. Participants were interviewed to obtain information on lifestyle and 24-hour dietary recall. Assessment of depression was based on DSM-IV criteria. Clinical variables measured included anthropometric measurements, blood pressure, and biochemical determinations of blood and urine samples. Linear regression was applied to determine the relationships of magnesium intake with nutritional variables and metabolic parameters. Results Among all patients, 88.6% had magnesium intake which was less than the dietary reference intake, and 37.1% had hypomagnesaemia. Metabolic syndromes and depression were associated with lower magnesium intake (p < 0.05). A positive relationship was found between magnesium intake and HDL-cholesterol (p = 0.005). Magnesium intake was inversely correlated with triglyceride, waist circumference, body fat percent and body mass index (p < 0.005). After controlling confounding factor, HDL-cholesterol was significantly higher with increasing quartile of magnesium intake (p for trend = 0005). Waist circumference, body fat percentage, and body mass index were significantly lower with increase quartile of magnesium intake (p for trend < 0.001). The odds of depression, central obesity, high body fat percentage, and high body mass index were significantly lower with increasing quartile of magnesium intake (p for trend < 0.05). In addition, magnesium intake was related to high

  8. Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii : CHLI2 cannot substitute for CHLI1

    DOE PAGES

    Brzezowski, Pawel; Sharifi, Marina N.; Dent, Rachel M.; ...

    2016-01-25

    The oligomeric Mg chelatase (MgCh), consisting of the subunits CHLH, CHLI, and CHLD, is located at the central site of chlorophyll synthesis, but is also thought to have an additional function in regulatory feedback control of the tetrapyrrole biosynthesis pathway and in chloroplast retrograde signaling. In Arabidopsis thaliana and Chlamydomonas reinhardtii, two genes have been proposed to encode the CHLI subunit of MgCh. While the role of CHLI1 in A. thaliana MgCh has been substantially elucidated, different reports provide inconsistent results with regard to the function of CHLI2 in Mg chelation and retrograde signaling. In the present report, the possiblemore » functions of both isoforms were analyzed in C. reinhardtii. Knockout of the CHLI1 gene resulted in complete loss of MgCh activity, absence of chlorophyll, acute light sensitivity, and, as a consequence, down-regulation of tetrapyrrole biosynthesis and photosynthesis-associated nuclear genes. These observations indicate a phenotypical resemblance of chli1 to the chlh and chld C. reinhardtii mutants previously reported. The key role of CHLI1 for MgCh reaction in comparison with the second isoform was confirmed by the rescue of chli1 with genomic CHLI1. Because CHLI2 in C. reinhardtii shows lower expression than CHLI1, strains overexpressing CHLI2 were produced in the chli1 background. However, no complementation of the chli1 phenotype was observed. Silencing of CHLI2 in the wild-type background did not result in any changes in the accumulation of tetrapyrrole intermediates or of chlorophyll. The results suggest that, unlike in A. thaliana, changes in CHLI2 content observed in the present studies do not affect formation and activity of MgCh in C. reinhardtii.« less

  9. Intravenous magnesium sulfate with and without EDTA as a magnesium load test-is magnesium deficiency widespread?

    PubMed

    Waters, Robert S; Fernholz, Karen; Bryden, Noella A; Anderson, Richard A

    2008-09-01

    Serum/plasma measurements do not reflect magnesium deficits in clinical situations, and magnesium load tests are used as a more accurate method to identify magnesium deficiency in a variety of disease states as well as in subclinical conditions. The objective of this study was to determine if people are indeed magnesium deficient or if the apparent magnesium deficiency is due to the composition of the infusate used in the load test. Magnesium load tests were performed on seven patients using three different Mg solution infusions-a Mg-EDTA (ethylene diamine tetraacetic acid)-nutrient cocktail used in EDTA chelation therapy containing several components including vitamins and minerals, and the same cocktail without EDTA and an infusion of an identical amount of magnesium in normal saline solution. There was no significant difference in the amount of magnesium retained in the 24 h after infusion among the three infusates. All infusates resulted in very high magnesium retention compared to previous published magnesium load studies. Magnesium deficiency may be widespread, and the relationship of Mg deficiency to related diseases requires further study.

  10. Effects of extracellular magnesium on the differentiation and function of human osteoclasts.

    PubMed

    Wu, Lili; Luthringer, Bérengère J C; Feyerabend, Frank; Schilling, Arndt F; Willumeit, Regine

    2014-06-01

    Magnesium-based implants have been shown to influence the surrounding bone structure. In an attempt to partially reveal the cellular mechanisms involved in the remodelling of magnesium-based implants, the influence of increased extracellular magnesium content on human osteoclasts was studied. Peripheral blood mononuclear cells were driven towards an osteoclastogenesis pathway via stimulation with receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor for 28 days. Concomitantly, the cultures were exposed to variable magnesium concentrations (from either magnesium chloride or magnesium extracts). Osteoclast proliferation and differentiation were evaluated based on cell metabolic activity, total protein content, tartrate-resistant acid phosphatase activity, cathepsin K and calcitonin receptor immunocytochemistry, and cellular ability to form resorption pits. While magnesium chloride first enhanced and then opposed cell proliferation and differentiation in a concentration-dependent manner (peaking between 10 and 15mM magnesium chloride), magnesium extracts (with lower magnesium contents) appeared to decrease cell metabolic activity (≈50% decrease at day 28) while increasing osteoclast activity at a lower concentration (twofold higher). Together, the results indicated that (i) variations in the in vitro extracellular magnesium concentration affect osteoclast metabolism and (ii) magnesium extracts should be used preferentially in vitro to more closely mimic the in vivo environment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Magnesium Gluconate

    MedlinePlus

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  12. Sodium-dependent magnesium uptake by ferret red cells.

    PubMed Central

    Flatman, P W; Smith, L M

    1991-01-01

    1. Magnesium uptake can be measured in ferret red cells incubated in media containing more than 1 mM-magnesium. Uptake is substantially increased if the sodium concentration in the medium is reduced. 2. Magnesium uptake is half-maximally activated by 0.37 mM-external magnesium when the external sodium concentration is 5 mM. Increasing the external sodium concentration increases the magnesium concentration needed to activate the system. 3. Magnesium uptake is increased by reducing the external sodium concentration. Uptake is half-maximum at sodium concentrations of 17, 22 and 62 nM when the external magnesium concentrations are 2, 5 and 10 mM respectively. 4. Replacement of external sodium with choline does not affect the membrane potential of ferret red cells over a 45 min period. 5. Magnesium uptake from media containing 5 mM-sodium is inhibited by amiloride, quinidine and imipramine. It is not affected by ouabain or bumetanide. Vanadate stimulates magnesium uptake but has no effect on magnesium efflux. 6. When cell ATP content is reduced to 19 mumol (1 cell)-1 by incubating cells for 3 h with 2-deoxyglucose, magnesium uptake falls by 50% in the presence of 5 mM-sodium and is completely abolished in the presence of 145 mM-sodium. Some of the inhibition may be due to the increase in intracellular ionized magnesium concentration ([Mg2+]i) from 0.7 to 1.0 mM which occurs under these conditions. 7. Magnesium uptake can be driven against a substantial electrochemical gradient if the external sodium concentration is reduced sufficiently. 8. These findings are discussed in terms of several possible models for magnesium transport. It is concluded that the majority of magnesium uptake observed in low-sodium media is via sodium-magnesium antiport. A small portion of uptake is through a parallel leak pathway. It is believed that the antiport is responsible for maintaining [Mg2+]i below electrochemical equilibrium in these cells at physiological external sodium concentration

  13. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  14. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  15. Magnesium and Calcium in Isolated Cell Nuclei

    PubMed Central

    Naora, H.; Naora, H.; Mirsky, A. E.; Allfrey, V. G.

    1961-01-01

    The calcium and magnesium contents of thymus nuclei have been determined and the nuclear sites of attachment of these two elements have been studied. The nuclei used for these purposes were isolated in non-aqueous media and in sucrose solutions. Non-aqueous nuclei contain 0.024 per cent calcium and 0.115 per cent magnesium. Calcium and magnesium are held at different sites. The greater part of the magnesium is bound to DNA, probably to its phosphate groups. Evidence is presented that the magnesium atoms combined with the phosphate groups of DNA are also attached to mononucleotides. There is reason to believe that those DNA-phosphate groups to which magnesium is bound, less than 1/10th of the total, are metabolically active, while those to which histones are attached seem to be inactive. PMID:13727745

  16. Corrosion of Magnesium in Multimaterial System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Vineet V.; Agnew, Sean

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances andmore » Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.« less

  17. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    PubMed

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  18. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    PubMed

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  19. Magnesium and extinction of dinosaurs. Was magnesium deficit a major cause?

    PubMed

    Durlach, J

    1991-01-01

    Chinese researchers have recently demonstrated that, before the extinction of dinosaurs, there was an impressive lowering in the magnesium concentration of fossil dinosaur eggshell. The structural and functional importance of eggshell magnesium--mainly in the cone layer--for embryonic viability and hatchability of oviparous species supports the hypothesis that magnesium deficit may have had a direct role in dinosaur extinction. Conversely this low magnesium concentration seems a questionable marker of magnesium deficit. The natural forces involved in the extinction of dinosaurs are more likely to induce magnesium depletion than magnesium deficiency. These very interesting preliminary data call for further research.

  20. Daily magnesium intake and serum magnesium concentration among Japanese people.

    PubMed

    Akizawa, Yoriko; Koizumi, Sadayuki; Itokawa, Yoshinori; Ojima, Toshiyuki; Nakamura, Yosikazu; Tamura, Tarou; Kusaka, Yukinori

    2008-01-01

    The vitamins and minerals that are deficient in the daily diet of a normal adult remain unknown. To answer this question, we conducted a population survey focusing on the relationship between dietary magnesium intake and serum magnesium level. The subjects were 62 individuals from Fukui Prefecture who participated in the 1998 National Nutrition Survey. The survey investigated the physical status, nutritional status, and dietary data of the subjects. Holidays and special occasions were avoided, and a day when people are most likely to be on an ordinary diet was selected as the survey date. The mean (+/-standard deviation) daily magnesium intake was 322 (+/-132), 323 (+/-163), and 322 (+/-147) mg/day for men, women, and the entire group, respectively. The mean (+/-standard deviation) serum magnesium concentration was 20.69 (+/-2.83), 20.69 (+/-2.88), and 20.69 (+/-2.83) ppm for men, women, and the entire group, respectively. The distribution of serum magnesium concentration was normal. Dietary magnesium intake showed a log-normal distribution, which was then transformed by logarithmic conversion for examining the regression coefficients. The slope of the regression line between the serum magnesium concentration (Y ppm) and daily magnesium intake (X mg) was determined using the formula Y = 4.93 (log(10)X) + 8.49. The coefficient of correlation (r) was 0.29. A regression line (Y = 14.65X + 19.31) was observed between the daily intake of magnesium (Y mg) and serum magnesium concentration (X ppm). The coefficient of correlation was 0.28. The daily magnesium intake correlated with serum magnesium concentration, and a linear regression model between them was proposed.

  1. Daily Magnesium Intake and Serum Magnesium Concentration among Japanese People

    PubMed Central

    Akizawa, Yoriko; Koizumi, Sadayuki; Itokawa, Yoshinori; Ojima, Toshiyuki; Nakamura, Yosikazu; Tamura, Tarou; Kusaka, Yukinori

    2008-01-01

    Background The vitamins and minerals that are deficient in the daily diet of a normal adult remain unknown. To answer this question, we conducted a population survey focusing on the relationship between dietary magnesium intake and serum magnesium level. Methods The subjects were 62 individuals from Fukui Prefecture who participated in the 1998 National Nutrition Survey. The survey investigated the physical status, nutritional status, and dietary data of the subjects. Holidays and special occasions were avoided, and a day when people are most likely to be on an ordinary diet was selected as the survey date. Results The mean (±standard deviation) daily magnesium intake was 322 (±132), 323 (±163), and 322 (±147) mg/day for men, women, and the entire group, respectively. The mean (±standard deviation) serum magnesium concentration was 20.69 (±2.83), 20.69 (±2.88), and 20.69 (±2.83) ppm for men, women, and the entire group, respectively. The distribution of serum magnesium concentration was normal. Dietary magnesium intake showed a log-normal distribution, which was then transformed by logarithmic conversion for examining the regression coefficients. The slope of the regression line between the serum magnesium concentration (Y ppm) and daily magnesium intake (X mg) was determined using the formula Y = 4.93 (log10X) + 8.49. The coefficient of correlation (r) was 0.29. A regression line (Y = 14.65X + 19.31) was observed between the daily intake of magnesium (Y mg) and serum magnesium concentration (X ppm). The coefficient of correlation was 0.28. Conclusion The daily magnesium intake correlated with serum magnesium concentration, and a linear regression model between them was proposed. PMID:18635902

  2. Magnesium Induced Nucleophile Activation in the Guanylyltransferase mRNA Capping Enzyme

    PubMed Central

    Swift, Robert V.; Ong, Chau D.; Amaro, Rommie E.

    2012-01-01

    The messenger RNA guanylyltransferase, or mRNA capping enzyme, co-transcriptionally caps the 5′-end of nascent mRNA with GMP during the second in a set of three enzymatic reactions that result in the formation of an N7-methyl guanosine cap during mRNA maturation. The mRNA capping enzyme is characterized, in part, by a conserved lysine nucleophile that attacks the alpha-phosphorous atom of GTP, forming a lysine-GMP intermediate. Experiments have firmly established that magnesium is required for efficient intermediate formation, but have provided little insight into the requirement’s molecular origins. Using empirical and thermodynamic integration pKa estimates, along with conventional MD simulations, we show that magnesium binding likely activates the lysine nucleophile by increasing its acidity and by biasing the deprotonated nucleophile into conformations conducive to intermediate formation. These results provide additional functional understanding of an important enzyme in the mRNA transcript life cycle and allow functional analogies to be drawn that affect our understanding of the metal dependence of related superfamily members. PMID:23205906

  3. Super-formable pure magnesium at room temperature.

    PubMed

    Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; H J Davies, Chris; Birbilis, Nick

    2017-10-17

    Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.Replacing steel or aluminium vehicle parts with magnesium would result in reduced emissions, but shaping magnesium without cracking remains challenging. Here, the authors successfully extrude and roll textured magnesium into ductile foil at low temperatures by activating intra-granular mechanisms.

  4. Magnesium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of magnesium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for magnesium ( ...

  5. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  6. Effect of acute hyperinsulinemia on magnesium homeostasis in humans.

    PubMed

    Xu, Li Hao Richie; Maalouf, Naim M

    2017-02-01

    Insulin may influence magnesium homeostasis through multiple mechanisms. Acutely, it stimulates the shift of magnesium from plasma into red blood cells and platelets, and in vitro, it stimulates the activity of the TRPM6 channel, a key regulator of renal magnesium reabsorption. We investigated the impact of hyperinsulinemia on magnesium handling in participants with a wide range of insulin sensitivity. Forty-seven participants were recruited, including 34 nondiabetic controls and 13 with type 2 diabetes mellitus. After stabilization under fixed metabolic diet, participants underwent hyperinsulinemic-euglycemic clamp. Serum and urine samples were collected before and during hyperinsulinemia. Change in serum magnesium, urinary magnesium to creatinine (Mg 2 + :Cr) ratio, fractional excretion of urinary magnesium (FEMg 2 + ), and estimated transcellular shift of magnesium were compared before and during hyperinsulinemia. Hyperinsulinemia led to a small but statistically significant decrease in serum magnesium, and to a shift of magnesium into the intracellular compartment. Hyperinsulinemia did not significantly alter urinary magnesium to creatinine ratio or fractional excretion of urinary magnesium in the overall population, although a small but statistically significant decline in these parameters occurred in participants with diabetes. There was no significant correlation between change in fractional excretion of urinary magnesium and body mass index or insulin sensitivity measured as glucose disposal rate. In human participants, acute hyperinsulinemia stimulates the shift of magnesium into cells with minimal alteration in renal magnesium reabsorption, except in diabetic patients who experienced a small decline in fractional excretion of urinary magnesium. The magnitude of magnesium shift into the intracellular compartment in response to insulin does not correlate with that of insulin-stimulated glucose entry into cells. Copyright © 2016 John Wiley & Sons, Ltd.

  7. X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia disease: a combined immune deficiency with magnesium defect.

    PubMed

    Ravell, Juan; Chaigne-Delalande, Benjamin; Lenardo, Michael

    2014-12-01

    To describe the role of the magnesium transporter 1 (MAGT1) in the pathogenesis of 'X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia' (XMEN) disease and its clinical implications. The magnesium transporter protein MAGT1 participates in the intracellular magnesium ion (Mg) homeostasis and facilitates a transient Mg influx induced by the activation of the T-cell receptor. Loss-of-function mutations in MAGT1 cause an immunodeficiency named 'XMEN syndrome', characterized by CD4 lymphopenia, chronic EBV infection, and EBV-related lymphoproliferative disorders. Patients with XMEN disease have impaired T-cell activation and decreased cytolytic function of natural killer (NK) and CD8 T cells because of decreased expression of the NK stimulatory receptor 'natural-killer group 2, member D' (NKG2D). Patients may have defective specific antibody responses secondary to T cell dysfunction, but B cells have not been shown to be directly affected by mutations in MAGT1. XMEN disease has revealed a novel role for free intracellular magnesium in the immune system. Further understanding of the MAGT1 signaling pathway may lead to new diagnostic and therapeutic approaches.

  8. Magnesium in pregnancy.

    PubMed

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Magnesium and anaesthesia.

    PubMed

    Soave, P M; Conti, G; Costa, R; Arcangeli, A

    2009-08-01

    to review current knowledge concerning the use of magnesium in anesthesiology, the role of hypomagnesemia and hypermagnesemia in perioperative period, analyzing the cardiologic problems related to blood serum concentration changes of magnesium that can interesting in primis the anaesthesist in perioperative period. References were obtained from Pubmed (1995 to 2009). All categories of articles were selected, such as reviews, meta-analyses, s, clinical trials etc). Magnesium is a bivalent ion, like calcium, the fourth most common cation in the body, and the second most common intracellular cation after potassium. Magnesium deficiency has been demonstrated in 7-11% of the hospitalized patients and it has been found to coexist with other electrolyte disorders, particulary hypokalaemia or hypophosphatemia and, to a less extent, hyponatraemia and hypocalcaemia, in more than 40% of patients. Hypomagnesemia needs to be detected and corrected to prevent increased morbidity and mortality. Historically, magnesium sulphate has been proposed as a general anaesthetic. Magnesium reduces the catecholamine release during the stressful manouvres like intubation. Magnesium has also anti-nociceptive effects in animal and human models of pain by blocking the N-methyl-D-aspartate receptor and the associated ion channels and thus preventing central sensitization caused by peripheral nociceptive stimulation. So for some authors it reduces the need for intraoperative anesthetics and relaxant drugs and reduces the amount of morphine for the treatment of pospoperative pain. The use of magnesium is extended not only to general anaesthesia but also in loco-regional anaesthesia. The role of magnesium has been extensively studied in cardiology especially during myocardial infarction, arrhythmia and cardiac surgery. Recent studies show the important of magnesium to prevent the postoperative neurocognitive impairment during carotid endoarterectomy and its utility in treatment of severe asthma

  10. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  11. Magnesium status and the effect of magnesium supplementation in feline hypertrophic cardiomyopathy.

    PubMed

    Freeman, L M; Brown, D J; Smith, F W; Rush, J E

    1997-07-01

    Magnesium deficiency has been associated with the development of cardiovascular disease in several species. Cats may be predisposed to alterations in magnesium status because of recent changes in the composition of commercial feline diets. The purposes of this study were 1) to examine the dietary history of cats with hypertrophic cardiomyopathy (HCM), 2) to study magnesium status of cats with HCM compared to normal cats, and 3) to determine the effects of magnesium supplementation in cats with HCM. In part 1 of the study, diets of 65 cats with HCM were examined retrospectively. Forty of the 45 cats for which diets could be determined (89%) ate a diet designed to be magnesium-restricted and/or to produce an acidic urine. In part 2 of the study, 10 cats with HCM were compared to 10 healthy control cats for serum creatinine and magnesium; urine creatinine and magnesium, urine specific gravity and pH, and fractional excretion of magnesium. Urine creatinine and specific gravity were higher in control cats than in cats with HCM. No other differences were found between the 2 groups. In part 3, cats with HCM were supplemented with either 210 mg magnesium chloride (n = 15) or 210 mg lactose (n = 15) for 12 wk. No differences between the 2 groups were found for changes in either magnesium status or echocardiographic parameters. However, the 30 cats with HCM, as a group, did show significant improvements in measures of cardiac hypertrophy over the 12-week period. This was likely the result of treatment with other medications, rather than the magnesium supplementation. The results of this study suggest that cats with HCM are likely to be fed magnesium-restricted diets, but that they do not appear to have altered magnesium status compared to healthy controls.

  12. Magnesium: Nutrition and Homoeostasis.

    PubMed

    Vormann, Jürgen

    2016-01-01

    The essential mineral magnesium is involved in numerous physiological processes. Recommended dietary intake is often not met and a low magnesium status increases the risk for various diseases. Magnesium status is regulated by several magnesium transport systems either in cellular or paracellular pathways. Numerous drugs either interfere with magnesium absorption in the intestines or the reabsorption from primary urine in the kidney. Low magnesium status has been identified as a significant risk factor for several diseases, including type-2 diabetes, cardiovascular diseases, arrhythmias, as well as general muscular and neurological problems. Therefore, an adequate magnesium supply would be of special benefit to our overall health.

  13. Myth or Reality-Transdermal Magnesium?

    PubMed

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  14. Myth or Reality—Transdermal Magnesium?

    PubMed Central

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen

    2017-01-01

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract. PMID:28788060

  15. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    NASA Astrophysics Data System (ADS)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  16. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  17. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  18. Low magnesium level

    MedlinePlus

    ... in the body that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, symptoms of low magnesium may develop. Common causes of low magnesium include: Alcohol use Burns that affect a large area of ...

  19. Rapid recovery from major depression using magnesium treatment.

    PubMed

    Eby, George A; Eby, Karen L

    2006-01-01

    Major depression is a mood disorder characterized by a sense of inadequacy, despondency, decreased activity, pessimism, anhedonia and sadness where these symptoms severely disrupt and adversely affect the person's life, sometimes to such an extent that suicide is attempted or results. Antidepressant drugs are not always effective and some have been accused of causing an increased number of suicides particularly in young people. Magnesium deficiency is well known to produce neuropathologies. Only 16% of the magnesium found in whole wheat remains in refined flour, and magnesium has been removed from most drinking water supplies, setting a stage for human magnesium deficiency. Magnesium ions regulate calcium ion flow in neuronal calcium channels, helping to regulate neuronal nitric oxide production. In magnesium deficiency, neuronal requirements for magnesium may not be met, causing neuronal damage which could manifest as depression. Magnesium treatment is hypothesized to be effective in treating major depression resulting from intraneuronal magnesium deficits. These magnesium ion neuronal deficits may be induced by stress hormones, excessive dietary calcium as well as dietary deficiencies of magnesium. Case histories are presented showing rapid recovery (less than 7 days) from major depression using 125-300 mg of magnesium (as glycinate and taurinate) with each meal and at bedtime. Magnesium was found usually effective for treatment of depression in general use. Related and accompanying mental illnesses in these case histories including traumatic brain injury, headache, suicidal ideation, anxiety, irritability, insomnia, postpartum depression, cocaine, alcohol and tobacco abuse, hypersensitivity to calcium, short-term memory loss and IQ loss were also benefited. Dietary deficiencies of magnesium, coupled with excess calcium and stress may cause many cases of other related symptoms including agitation, anxiety, irritability, confusion, asthenia, sleeplessness

  20. Transport of Magnesium by a Bacterial Nramp-Related Gene

    PubMed Central

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  1. [Long-term HRV analysis shows stress reduction by magnesium intake].

    PubMed

    Wienecke, Elmar; Nolden, Claudia

    2016-12-01

    Mental pressure and stress represent an ever-increasing socio-political challenge. The heart rate variability (HRV) measurement, which has its origin in the cardiac function diagnosis, gives information on the neurovegetative activity. A low HRV shows an imbalance of the sympathetic and parasympathetic efferents and thus is an indicator of stress. A randomized, controlled, two-armed parallel study with 100 participants and a period of 90 days was performed. Main object of investigation was to what extent the mineral magnesium, which is also a high-quality natural calcium antagonist in cardiology, can influence the sympathovagal balance, when given in combination with a strength-endurance training. The effect on intracellular magnesium concentration was investigated as an additional parameter. In the group with daily supplementation of 400 mg of magnesium, HRV parameters clearly increased: pNN50 - an indicator of parasympathetic activity - increased. LF-HF ratio as well as stress index - low values for each represent a good balance of the vegetative nervous system - decreased. In the control group no positive changes in HRV parameters could be shown. Vagus activity, and thus the adaptive and regenerative capacity of the body, veritably increased by magnesium supplementation. No effect on the intracellular magnesium concentration could be shown in the study. The results of this study point out that persons with mental and physical stress can benefit from a daily intake of magnesium. This might lead to an improved physiological regulation of the sympathetic and parasympathetic efferents and, furthermore, prevent magnesium deficiency and diseases such as, for example, restlessness, irritability, lack of concentration, sleep disorder or depression.

  2. NMDA/glutamate mechanism of magnesium-induced anxiolytic-like behavior in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Wróbel, Andrzej; Fidecka, Sylwia; Nowak, Gabriel

    2008-01-01

    The anxiolytic-like activity of magnesium in mice during the elevated plus maze (EPM) has been demonstrated previously. In the present study, we examined the involvement of NMDA/glutamate receptor ligands on the magnesium effect on the EPM. We demonstrated that low, ineffective doses of NMDA antagonists (the competitive NMDA antagonist CGP 37849, 0.3 mg/kg; an antagonist of the glycineB sites, L-701,324, 1 mg/kg; a partial agonist of the glycineB sites, D-cycloserine, 2.5 mg/kg; and the non-competitive NMDA antagonist MK-801, 0.05 mg/kg) administered together with an ineffective dose of magnesium (10 mg/kg) evoked a significant increase in the percentage of time spent in the open arm of the maze (an index of anxiety). Moreover, magnesium-induced anxiolytic-like activity (20 mg/kg) was antagonized by D-serine (100 nmol/mouse), an agonist of glycineB site of the NMDA receptor complex. The present study demonstrates the involvement of the NMDA/glutamate pathway in the magnesium anxiolytic-like activity in the EPM in mice, and that this activity particularly involves the glycineB sites.

  3. The effects of magnesium on potassium transport in ferret red cells.

    PubMed Central

    Flatman, P W

    1988-01-01

    1. The magnesium dependence of net and isotopic (using 86Rb as tracer) potassium transport was measured in fed ferret red cells. Bumetanide (0.1 mM) was used to dissect total flux into two components: bumetanide sensitive and bumetanide resistant. 2. Increasing the external magnesium concentration from zero (added) to 2 mM stimulated bumetanide-sensitive uptake by 16% but inhibited the bumetanide-resistant component by about 20%. 3. Ionophore A23187 was used to control internal magnesium concentration. A23187 was usually present in the cells during measurement of isotopic fluxes but was washed away before measurement of net fluxes. The magnesium-buffering characteristics of fed ferret red cells were assessed during these experiments. The cytoplasm acts as a high-capacity, low-affinity magnesium buffer over most of the range. Some high-affinity binding was seen in the presence of A23187 and 2 mM-EDTA. 4. A23187 itself slightly inhibits bumetanide-sensitive potassium transport. 5. Bumetanide-sensitive potassium transport is strongly dependent on the concentration of internal ionized magnesium. Transport is 35% maximal at 10(-7) M and increases up to the maximal rate at 1.3 mM. Further increase in ionized magnesium concentration to 3.5 mM has no additional effect. The curve relating activity to magnesium concentration is steepest at the physiological magnesium concentration. The effects of changing magnesium concentration are fully reversible. 6. Reduction of internal ionized magnesium concentration to 10(-7) M with A23187 and EDTA approximately doubles bumetanide-resistant potassium transport. 7. Bumetanide-sensitive fluxes occur via the sodium-potassium-chloride co-transport system under the conditions used. Results described in this paper thus suggest that internal magnesium may be an important physiological controller of sodium-potassium-chloride co-transport activity. PMID:3137332

  4. Magnesium and the Athlete.

    PubMed

    Volpe, Stella Lucia

    2015-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation in the body. It is a required mineral that is involved in more than 300 metabolic reactions in the body. Magnesium helps maintain normal nerve and muscle function, heart rhythm (cardiac excitability), vasomotor tone, blood pressure, immune system, bone integrity, and blood glucose levels and promotes calcium absorption. Because of magnesium's role in energy production and storage, normal muscle function, and maintenance of blood glucose levels, it has been studied as an ergogenic aid for athletes. This article will cover the general roles of magnesium, magnesium requirements, and assessment of magnesium status as well as the dietary intake of magnesium and its effects on exercise performance. The research articles cited were limited from those published in 2003 through 2014.

  5. Magnesium replacement therapy.

    PubMed

    DiPalma, J R

    1990-07-01

    Magnesium is involved as a cofactor in many vital enzymatic reactions. It is also important in the maintenance of membrane electric potential. Diagnosis of magnesium disturbances must often be based on clinical judgment. Hypomagnesemia is frequently associated with hypokalemia and hypocalcemia; hypermagnesemia most often occurs in patients with acute or chronic renal failure. Hypomagnesemia presents as neuromuscular, central nervous system and cardiac abnormalities. Inadequate dietary intake of magnesium occurs in alcoholism, catabolic states and gastrointestinal diseases. Intravenous administration of magnesium can cause neuromuscular paralysis and cardiac arrhythmias.

  6. Nondestructive spot test method for magnesium and magnesium alloys

    NASA Technical Reports Server (NTRS)

    Wilson, M. L. (Inventor)

    1973-01-01

    A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.

  7. Magnesium Hydroxide

    MedlinePlus

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  8. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  9. Magnesium sulfate reduces EEG activity but is not neuroprotective after asphyxia in preterm fetal sheep.

    PubMed

    Galinsky, Robert; Draghi, Vittoria; Wassink, Guido; Davidson, Joanne O; Drury, Paul P; Lear, Christopher A; Gunn, Alistair J; Bennet, Laura

    2017-04-01

    Magnesium sulfate is now widely recommended for neuroprotection for preterm birth; however, this has been controversial because there is little evidence that magnesium sulfate is neuroprotective. Preterm fetal sheep (104 days gestation; term is 147 days) were randomly assigned to receive sham occlusion (n = 7), i.v. magnesium sulfate (n = 10) or saline (n = 8) starting 24 h before asphyxia until 24 h after asphyxia. Sheep were killed 72 h after asphyxia. Magnesium sulfate infusion reduced electroencephalograph power and fetal movements before asphyxia. Magnesium sulfate infusion did not affect electroencephalograph power during recovery, but was associated with marked reduction of the post-asphyxial seizure burden (mean ± SD: 34 ± 18 min vs. 107 ± 74 min, P < 0.05). Magnesium sulfate infusion did not affect subcortical neuronal loss. In the intragyral and periventricular white matter, magnesium sulfate was associated with reduced numbers of all (Olig-2+ve) oligodendrocytes in the intragyral (125 ± 23 vs. 163 ± 38 cells/field) and periventricular white matter (162 ± 39 vs. 209 ± 44 cells/field) compared to saline-treated controls ( P < 0.05), but no effect on microglial induction or astrogliosis. In conclusion, a clinically comparable dose of magnesium sulfate showed significant anticonvulsant effects after asphyxia in preterm fetal sheep, but did not reduce asphyxia-induced brain injury and exacerbated loss of oligodendrocytes.

  10. Magnesium sulfate reduces EEG activity but is not neuroprotective after asphyxia in preterm fetal sheep

    PubMed Central

    Galinsky, Robert; Draghi, Vittoria; Wassink, Guido; Davidson, Joanne O; Drury, Paul P; Lear, Christopher A; Gunn, Alistair J

    2016-01-01

    Magnesium sulfate is now widely recommended for neuroprotection for preterm birth; however, this has been controversial because there is little evidence that magnesium sulfate is neuroprotective. Preterm fetal sheep (104 days gestation; term is 147 days) were randomly assigned to receive sham occlusion (n = 7), i.v. magnesium sulfate (n = 10) or saline (n = 8) starting 24 h before asphyxia until 24 h after asphyxia. Sheep were killed 72 h after asphyxia. Magnesium sulfate infusion reduced electroencephalograph power and fetal movements before asphyxia. Magnesium sulfate infusion did not affect electroencephalograph power during recovery, but was associated with marked reduction of the post-asphyxial seizure burden (mean ± SD: 34 ± 18 min vs. 107 ± 74 min, P < 0.05). Magnesium sulfate infusion did not affect subcortical neuronal loss. In the intragyral and periventricular white matter, magnesium sulfate was associated with reduced numbers of all (Olig−2+ve) oligodendrocytes in the intragyral (125 ± 23 vs. 163 ± 38 cells/field) and periventricular white matter (162 ± 39 vs. 209 ± 44 cells/field) compared to saline-treated controls (P < 0.05), but no effect on microglial induction or astrogliosis. In conclusion, a clinically comparable dose of magnesium sulfate showed significant anticonvulsant effects after asphyxia in preterm fetal sheep, but did not reduce asphyxia-induced brain injury and exacerbated loss of oligodendrocytes. PMID:27317658

  11. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase: product inhibition, cooperativity, and magnesium activation.

    PubMed

    Hazra, Suratna; Henderson, J Nathan; Liles, Kevin; Hilton, Matthew T; Wachter, Rebekka M

    2015-10-02

    In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min(-1), the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg(2+)] in response to changes in available light. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Magnesium Metabolism and its Disorders

    PubMed Central

    Swaminathan, R

    2003-01-01

    Magnesium is the fourth most abundant cation in the body and plays an important physiological role in many of its functions. Magnesium balance is maintained by renal regulation of magnesium reabsorption. The exact mechanism of the renal regulation is not fully understood. Magnesium deficiency is a common problem in hospital patients, with a prevalence of about 10%. There are no readily available and easy methods to assess magnesium status. Serum magnesium and the magnesium tolerance test are the most widely used. Measurement of ionised magnesium may become more widely available with the availability of ion selective electrodes. Magnesium deficiency and hypomagnesaemia can result from a variety of causes including gastrointestinal and renal losses. Magnesium deficiency can cause a wide variety of features including hypocalcaemia, hypokalaemia and cardiac and neurological manifestations. Chronic low magnesium state has been associated with a number of chronic diseases including diabetes, hypertension, coronary heart disease, and osteoporosis. The use of magnesium as a therapeutic agent in asthma, myocardial infarction, and pre-eclampsia is also discussed. Hypermagnesaemia is less frequent than hypomagnesaemia and results from failure of excretion or increased intake. Hypermagnesaemia can lead to hypotension and other cardiovascular effects as well as neuromuscular manifestations. Causes and management of hypermagnesaemia are discussed. PMID:18568054

  13. Method for production of magnesium

    DOEpatents

    Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  14. Method for production of magnesium

    DOEpatents

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  15. Summary of "Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium"

    NASA Astrophysics Data System (ADS)

    Cole, Gerald S.

    This paper summarizes the monograph, "Magnesium Vision 2020. A North American Automotive Strategic Vision for Magnesium"1 prepared under the auspices of the United States Automotive Materials Partnership The objective was to understand the infrastructural and technical challenge that can increase the use of magnesium in the automotive industry. One hundred sixty three (163) Research and Technology Development Themes (RTDTs), or RTD projects were developed that addressed issues of corrosion, fastening, and processing-other-than-high pressure die casting to produce automotive magnesium parts. A major problem identified in the study is the limited ability of the current magnesium industrial infrastructure to supply RTD and implementation-ready automotive magnesium components. One solution is to create a magnesium cyber center wrhere globally networked experts would be able to innovate in process and product development, model metalworking and non-HPDC foundry processes, and integrate theoretical predictions/models of metallurgical structure with component function.

  16. Effects of a magnesium-free dialysate on magnesium metabolism during continuous ambulatory peritoneal dialysis.

    PubMed

    Shah, G M; Winer, R L; Cutler, R E; Arieff, A I; Goodman, W G; Lacher, J W; Schoenfeld, P Y; Coburn, J W; Horowitz, A M

    1987-10-01

    While the use of magnesium-containing compounds is usually contraindicated in dialysis patients, the risk of toxicity from hypermagnesemia can be reduced by lowering the magnesium concentration in dialysate. We examined the effects of a magnesium-free dialysate on both serum magnesium level and the peritoneal removal rate of magnesium over 12 weeks in 25 stable patients undergoing continuous ambulatory peritoneal dialysis (CAPD). After 2 weeks, the serum magnesium level decreased from 2.2 to 1.9 mg/dL (0.9 to 0.8 mmol/L) (P less than .02) and the peritoneal removal rate increased from 66 to 83 mg/d (2.8 to 3.5 mmol/d) (P less than .05), with both values remaining stable thereafter. There was a strong association between these parameters (r = -0.62, P less than .05), suggesting that the serum magnesium level decreased as a result of the initial increased peritoneal removal rate. For an additional 4-week period, a subgroup of nine patients received magnesium-containing, phosphate binding agents instead of those containing only aluminum. During this phase, serum inorganic phosphorus was well controlled. The serum magnesium level increased only from 1.8 to 2.5 mg/dL (0.7 to 1.0 mmol/L) (P less than .05), due in great part to the concomitant 41% rise in peritoneal magnesium removal from 91 to 128 mg/d (3.8 to 5.3 mmol/d) (P less than .05). No toxicity was noted during the entire 16-week study period, nor did serum calcium change. Thus, serum magnesium levels remained within an acceptable range as magnesium-containing phosphate binders were given through the use of magnesium-free peritoneal dialysate.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Magnesium sulphate attenuates arterial pressure increase during laparoscopic cholecystectomy.

    PubMed

    Jee, D; Lee, D; Yun, S; Lee, C

    2009-10-01

    Magnesium is well known to inhibit catecholamine release and attenuate vasopressin-stimulated vasoconstriction. We investigated whether i.v. magnesium sulphate attenuates the haemodynamic stress responses to pneumoperitoneum by changing neurohumoral responses during laparoscopic cholecystectomy. Thirty-two patients undergoing laparoscopic cholecystectomy were randomly assigned to two groups; a control group was given saline, and a magnesium group received magnesium sulphate 50 mg kg(-1) immediately before pneumoperitoneum. Arterial pressure, heart rate, serum magnesium, plasma renin activity (PRA), and catecholamine, cortisol, and vasopressin levels were measured. Systolic and diastolic arterial pressures were greater in the control group (P<0.05) than in the magnesium group at 10, 20, and 30 min post-pneumoperitoneum. Norepinephrine or epinephrine levels [pg ml(-1), mean (SD)] were higher in the control group than in the magnesium group at 5 [211 (37) vs 138 (18)] or 10 min [59 (19) vs 39 (9)] post-pneumoperitoneum, respectively (P<0.05). In the control group, vasopressin levels [pg ml(-1), mean (SD)] were higher compared with the magnesium group at 5 [64 (18) vs 35 (9), P<0.01] and 10 min [65 (18) vs 47 (11), P<0.05] post-pneumoperitoneum. There were no significant differences between the groups in PRA and cortisol levels. I.V. magnesium sulphate before pneumoperitoneum attenuates arterial pressure increases during laparoscopic cholecystectomy. This attenuation is apparently related to reductions in the release of catecholamine, vasopressin, or both.

  18. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  19. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  20. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  1. [Production and assessing release of imipramine and magnesium from tablets].

    PubMed

    Kasperek, Regina; Zimmer, Łukasz; Szalast-Pietrzak, Agnieszka; Marzec, Zbigniew; Poleszak, Ewa

    2014-01-01

    In the pharmaceutical technology there is a trend to produce tablets composed of several medicinal substances to increase therapeutic effect and reduce the frequency of drug administration. In the literature there are reports concerning pharmacological studies in which a potentiation of the effects has been observed after a co-administration of antidepressant imipramine and magnesium. Currently, there is no formulation on the market comprising imipramine and magnesium, therefore, it was decided to produce uncoated tablets. In order to prepare the tablets by direct compression, it was necessary to select suitable excipients. The aim of the study was to elaborate the composition and to prepare the tablets with imipramine and magnesium, as well as to assess the quality of the tablets by physical characteristics and by the release study of the active substances. In order to prepare the tablets, compositions of different polymers and other excipients were added. The tablets were produced by direct compression method in a tablet press. Physical properties of the obtained tablets and the release of the active substances into an acidic medium in a paddle apparatus were tested. The contents of imipramine and magnesium were determined by different methods: spectrophotometrically and atomic absorption spectrometry, respectively. The composition of excipients necessary to produce tablets comprising imipramine and magnesium was established. All of prepared tablets were in compliance with the pharmacopoeial requirements. The release tests showed that above 80% of imipramine was released within 20-35 min and 80-76% of magnesium up to 45 min from the composed tablets and one-ingredient tablets, respectively. The compositions of excipients for tablets consisting of imipramine and magnesium were presented. The active substances were released within 45 min in the acidic medium, and the administration of these substances in the composed tablets did not affect pharmaceutical

  2. Magnesium for Crashworthy Components

    NASA Astrophysics Data System (ADS)

    Abbott, T.; Easton, M.; Schmidt, R.

    Most applications of magnesium in automobiles are for nonstructural components. However, the light weight properties of magnesium make it attractive in structural applications where energy absorption in a crash is critical. Because most deformation in a crash occurs as bending rather than simple tension or compression, the advantages of magnesium are greater than anticipated simply from tensile strength to weight ratios. The increased thickness possible with magnesium strongly influences bending behavior and theoretical calculations suggest almost an order of magnitude greater energy absorption with magnesium compared to the same weight of steel. The strain rate sensitivity of steel is of concern for energy absorption. Mild steels exhibit a distinct yield point which increases with strain rate. At strain rates typical of vehicle impact, this can result in strain localization and poor energy absorption. Magnesium alloys with relatively low aluminum contents exhibit strain rate sensitivity, however, this is manifest as an increase in work hardening and tensile / yield ratio. This behavior suggests that the performance of magnesium alloys in terms of energy absorption actually improves at high strain rates.

  3. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Evidence for a hydroxide ion bridging two magnesium ions at the active site of the hammerhead ribozyme.

    PubMed Central

    Hermann, T; Auffinger, P; Scott, W G; Westhof, E

    1997-01-01

    In the presence of magnesium ions, cleavage by the hammerhead ribozyme RNA at a specific residue leads to 2'3'-cyclic phosphate and 5'-OH extremities. In the cleavage reaction an activated ribose 2'-hydroxyl group attacks its attached 3'-phosphate. Molecular dynamics simulations of the crystal structure of the hammerhead ribozyme, obtained after flash-freezing of crystals under conditions where the ribozyme is active, provide evidence that a mu-bridging OH-ion is located between two Mg2+ions close to the cleavable phosphate. Constrained simulations show further that a flip from the C3'- endo to the C2'- endo conformation of the ribose at the cleavable phosphate brings the 2'-hydroxyl in proximity to both the attacked phosphorous atom and the mu-bridging OH-ion. Thus, the simulations lead to a detailed new insight into the mechanism of hammerhead ribozyme cleavage where a mu-hydroxo bridged magnesium cluster, located on the deep groove side, provides an OH-ion that is able to activate the 2'-hydroxyl nucleophile after a minor and localized conformational change in the RNA. PMID:9254698

  5. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    PubMed

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    bioactivity. The chemical conversion coatings, which are formed through the reaction between the substrate and the environment, have attracted increasing attention owing to the relative low treatment temperature, favorable bonding to substrate and simple implementation process. 2. With the increasing of hydroxyapatite (HA) content, the crack width in the composite coatings and the thickness of the coatings exhibit obviously decreased. The reason is probably that when adding HA into the phytic acid solution, the amount of active hydroxyl groups in the phytic acid are reduced via forming the coordination bond between P-OH groups from phytic acid and P-OH groups from the surface of HA, thus decreasing the coating thickness and hydrogen formation, as well as avoiding coating cracking. 3. By adjusting the HA content to 45 wt.%, a dense and relatively smooth composite coating with ~1.4 μm thickness is obtained on magnesium alloy, and exhibits high corrosion resistance and good bioactivity when compared with the single phytic acid conversion coating.

  6. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...

  7. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No. 7782-0975...

  8. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  9. Innovative Vacuum Distillation for Magnesium Recycling

    NASA Astrophysics Data System (ADS)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  10. [Magnesium disorder in metabolic bone diseases].

    PubMed

    Ishii, Akira; Imanishi, Yasuo

    2012-08-01

    Magnesium is abundantly distributed among the body. The half of the magnesium exists in the bone. In addition, magnesium is the second most abundant intracellular cation in vertebrates and essential for maintaining physiological function of the cells. Epidemiologic studies have demonstrated that magnesium deficiency is a risk factor for osteoporosis. The mechanism of bone fragility caused by magnesium deficiency has been intensely studied using animal models of magnesium deficiency. Magnesium deficiency causes decreased osteoblastic function and increased number of osteoclasts. Magnesium deficiency also accelerates mineralization in bone. These observations suggest that disturbed bone metabolic turnover and mineralization causes bone fragility.

  11. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  12. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  13. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries

    DOE PAGES

    Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui; ...

    2017-08-24

    Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g -1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less

  14. The Association Between Calcium, Magnesium, and Ratio of Calcium/Magnesium in Seminal Plasma and Sperm Quality.

    PubMed

    Liang, Hong; Miao, Maohua; Chen, Jianping; Chen, Kanglian; Wu, Bin; Dai, Qi; Wang, Jian; Sun, Fei; Shi, Huijuan; Yuan, Wei

    2016-11-01

    The study aimed to examine the relationships between calcium, magnesium, and calcium/magnesium ratio in semen plasma and sperm quality. It was a cross-sectional study based on a program aiming at promoting the reproductive health in less-developed areas. A total of 515 men aged between 18 and 55 years provided semen specimens at family planning clinics in Sandu County, Guizhou Province, China. Total calcium and magnesium concentrations in semen plasma were measured with flame atomic absorption spectrometry. Sperm quality, including sperm motility and concentration, was evaluated by using a computer-assisted sperm analysis method. The medians of seminal plasma calcium, magnesium, and zinc concentrations were 9.61, 4.41, and 2.23 mmol/l, respectively. Calcium concentration and calcium/magnesium ratio were negatively associated with sperm concentrations (β = -0.47, P = 0.0123 for calcium; β = -0.25, P = 0.0393 for calcium/magnesium ratio) after adjusting for zinc and other covariates. In stratified analyses, the association between calcium and sperm concentrations only persisted among subjects with a calcium/magnesium ratio of ≤2.5 (β = -0.71, P = 0.0268). In the same stratum, magnesium was associated with increased sperm concentration (β = 0.73, P = 0.0386). Among subjects with a calcium/magnesium ratio of >2.5, neither calcium nor magnesium was associated with sperm concentration. In conclusion, total calcium and magnesium concentrations were associated with sperm concentration among subjects with a lower calcium/magnesium ratio. The calcium and magnesium ratio had a modifying effect on the associations of calcium and magnesium with sperm concentration.

  15. Corrosion in Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Akavipat, Sanay

    Magnesium and a magnesium alloy (AZ91C) have been ion implanted over a range of ions energies (50 to 150 keV) and doses (1 x 10('16) to 2 x 10('17) ions/cm('2)) to modify the corrosion properties of the metals. The corrosion tests were done by anodic polarization in chloride -free and chloride-containing aqueous solutions of a borated -boric acid with a pH of 9.3. Anodic polarization measurements showed that some implantations could greatly reduce the corrosion current densities at all impressed voltages and also increased slightly the pitting potential, which indicated the onset of the chloride attack. These improvements in corrosion resistance were caused by boron implantations into both types of samples. However, iron implantations were found to improve only the magnesium alloy. To study the corrosion in more detail, Scanning Auger Microprobe Spectrometer (SAM), Scanning Electron Microscope (SEM) with an X-ray Energy Spectrometry (XES) attachment, and Transmission Electron Microscope (TEM) measurements were used to analyze samples before, after, and at various corrosion stages. In both the unimplanted pure magnesium and AZ91C samples, anodic polarization results revealed that there were three active corrosion stages (Stages A, C, and E) and two passivating stages (Stages B and D). Examination of Stages A and B in both types of samples showed that only a mild, generalized corrosion had occurred. In Stage C of the TD samples, a pitting breakdown in the initial oxide film was observed. In Stage C of the AZ91C samples, galvanic and intergranular attack around the Mg(,17)Al(,12) intermetallic islands and along the matrix grain boundaries was observed. Stage D of both samples showed the formation of a thick, passivating oxygen containing, probably Mg(OH)(,2) film. In Stage E, this film was broken down by pits, which formed due to the presence of the chloride ions in both types of samples. Stages A through D of the unimplanted samples were not seen in the boron or iron

  16. Monolithic porous magnesium silicide.

    PubMed

    Hayati-Roodbari, N; Berger, R J F; Bernardi, J; Kinge, S; Hüsing, N; Elsaesser, M S

    2017-07-11

    Macroporous magnesium silicide monoliths were successfully prepared by a two-step synthesis procedure. The reaction of gaseous magnesium vapor with macro-/mesoporous silicon, which was generated from hierarchically organized meso-/macroporous silica by a magnesiothermic reduction reaction, resulted in monolithic magnesium silicide with a cellular, open macroporous structure. By adjusting the reaction conditions, such as experimental set-up, temperature and time, challenges namely loss of porosity or phase purity of Mg 2 Si were addressed and monolithic magnesium silicide with a cellular network builtup was obtained.

  17. Regulation by magnesium of potato tuber mitochondrial respiratory activities.

    PubMed

    Vicente, Joaquim A F; Madeira, Vítor M C; Vercesi, Anibal E

    2004-12-01

    Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and alpha-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or alpha-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of alpha-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike alpha-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.

  18. The impact of diets with different magnesium contents on magnesium and calcium in serum and tissues of the rat.

    PubMed

    Zimmermann, P; Weiss, U; Classen, H G; Wendt, B; Epple, A; Zollner, H; Temmel, W; Weger, M; Porta, S

    2000-07-14

    The impact of three different magnesium diets (70, 1,000 and 9,000 ppm) on total, ionized and bound magnesium as well as ionized calcium in serum and total calcium and magnesium in femoral bone, skeletal muscle, heart and liver of male Sprague-Dawley rats was investigated. The percentage of ionized serum magnesium was unproportionally high in rats fed a low magnesium (70 ppm) diet. Femoral magnesium was correlated with ionized and total serum magnesium. In contrast, there was generally no correlation between total serum magnesium and the magnesium fractions in skeletal muscle, heart and liver. In rats fed the magnesium deficient diet, total cardiac concentration of magnesium was even significantly increased along with total calcium content, while there were no effects on total muscle and liver magnesium. Within the single groups, ionized serum calcium was never proportional to dietary magnesium, but in all three magnesium diet groups together, it was inversely correlated with dietary magnesium. Moreover, ionized serum calcium was inversely correlated with both ionized and total serum magnesium. In all 3 groups together, the concentrations of total calcium and magnesium in heart and skeletal muscle were correlated, within the single groups correlation existed only in the 1000 ppm group. Magnesium influx via calcium channels during low magnesium intake has been seen in non cardiac tissues [35,36], but nothing similar is known about non selective channels for divalent cations in the heart [33]. Thus, magnesium uptake by cardiac cells along with calcium seems to be possible, especially at low intracellular magnesium concentrations, but is still poorly investigated. We suggest that the calcium-antagonistic effect of magnesium is related to the turnover rate of magnesium rather than to its tissue concentrations.

  19. Microstructure-Property Correlation in Magnesium-based Hydrogen Storage Systems: The Case for Ball-milled Magnesium Hydride Powder and Magnesium-based Multilayered Composites

    NASA Astrophysics Data System (ADS)

    Danaie, Mohsen

    The main focus of this thesis is the characterization of defects and microstructure in high-energy ball milled magnesium hydride powder and magnesium-based multilayered composites. Enhancement in kinetics of hydrogen cycling in magnesium can be achieved by applying severe plastic deformation. A literature survey reveals that, due to extreme instability of alpha-MgH 2 in transmission electron microscope (TEM), the physical parameters that researchers have studied are limited to particle size and grain size. By utilizing a cryogenic TEM sample holder, we extended the stability time of the hydride phase during TEM characterization. Milling for only 30 minutes resulted in a significant enhancement in desorption kinetics. A subsequent annealing cycle under pressurized hydrogen reverted the kinetics to its initial sluggish state. Cryo-TEM analysis of the milled hydride revealed that mechanical milling induces deformation twinning in the hydride microstructure. Milling did not alter the thermodynamics of desorption. Twins can enhance the kinetics by acting as preferential locations for the heterogeneous nucleation of metallic magnesium. We also looked at the phase transformation characteristics of desorption in MgH2. By using energy-filtered TEM, we investigated the morphology of the phases in a partially desorbed state. Our observations prove that desorption phase transformation in MgH2 is of "nucleation and growth" type, with a substantial energy barrier for nucleation. This is contrary to the generally assumed "core-shell" structure in most of the simulation models for this system. We also tested the hydrogen storage cycling behavior of bulk centimeter-scale Mg-Ti and Mg-SS multilayer composites synthesized by accumulative roll-bonding. Addition of either phase (Ti or SS) allows the reversible hydrogen sorption at 350°C, whereas identically roll-bonded pure magnesium cannot be absorbed. In the composites the first cycle of absorption (also called "activation

  20. Threshold to N-methyl-D-aspartate-induced seizures in mice undergoing chronic nutritional magnesium deprivation is lowered in a way partly responsive to acute magnesium and antioxidant administrations.

    PubMed

    Maurois, Pierre; Pages, Nicole; Bac, Pierre; German-Fattal, Michèle; Agnani, Geneviève; Delplanque, Bernadette; Durlach, Jean; Poupaert, Jacques; Vamecq, Joseph

    2009-02-01

    Magnesium deficiency may be induced by a diet impoverished in magnesium. This nutritional deficit promotes chronic inflammatory and oxidative stresses, hyperexcitability and, in mice, susceptibility to audiogenic seizures. Potentiation by low-magnesium concentrations of the opening of N-methyl-D-aspartate (NMDA) receptor/calcium channel in in vitro and ex vivo studies, and responsiveness to magnesium of in vivo brain injury states are now well established. By contrast, little or no specific attention has been, however, paid to the in vivo NMDA receptor function/excitability in magnesium deficiency. The present work reports for the first time that, in mice undergoing chronic nutritional deprivation in magnesium (35 v. 930 parts per million for 27 d in OF1 mice), NMDA-induced seizure threshold is significantly decreased (38 % of normal values). The attenuation in the drop of NMDA seizure threshold (percentage of reversal) was 58 and 20 % upon acute intraperitoneal administrations of magnesium chloride hexahydrate (28 mg magnesium/kg) and the antioxidant ebselen (20 mg/kg), respectively. In nutritionally magnesium-deprived animals, audiogenic seizures are completely prevented by these compound doses. Taken as a whole, our data emphasise that chronic magnesium deprivation in mice is a nutritional in vivo model for a lowered NMDA receptor activation threshold. This nutritional model responds remarkably to acute magnesium supply and moderately to acute antioxidant administration.

  1. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  2. Magnesium-based implants: a mini-review.

    PubMed

    Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit-Römer, Regine

    2014-01-01

    The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented.

  3. Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys

    NASA Astrophysics Data System (ADS)

    Nahhas, M. K.; Groh, S.

    2018-02-01

    In this study, the structure, the energetic, and the strength of a { 10 1 bar 1 } < 11 2 bar 0 > symmetric tilt grain boundary in magnesium and magnesium binary alloys were analyzed in the framework of (semi-)empirical potentials. Following a systematic investigation of the transferability and accuracy of the interatomic potentials, atomistic calculations of the grain boundary energy, the grain boundary sliding energy, and the grain boundary strength were performed in pure magnesium and in binary MgX alloys (X = Al, Ca, Gd, Li, Sn, Y, Ag, Nd, and Pb). The data gained in this study were analyzed to identify the most critical material parameters controlling the strength of the grain boundary, and their consequence on atomic shuffling motions occurring at the grain boundary. From the methodology perspective, the role of in-plane and out-of plane relaxation on the grain boundary sliding energy curves was investigated. In pure magnesium, the results showed that in-plane relaxation is critical in activating b2{ 10 1 bar 1 } twinning dislocation resulting in grain boundary migration. In the alloy systems, however, grain boundary migration was disabled as a consequence of the pinning of the grain boundary by segregated elements. Finally, while the grain boundary energy, the shape of the grain boundary sliding energy curves, and the grain boundary sliding energy are critical parameters controlling the grain boundary strength in pure magnesium, only the grain boundary energy and the segregation energy of the alloying elements at the grain boundary were identified as critical material parameters in the alloys system.

  4. Applications of magnesium sulfate in obstetrics and anesthesia.

    PubMed

    Barbosa, Fabiano Timbó; Barbosa, Luciano Timbó; Jucá, Mário Jorge; Cunha, Rafael Martins da

    2010-01-01

    Magnesium is predominantly an intracellular ion. Its blocking effects on NMDA receptors are responsible for the analgesic and sedative characteristics of this ion. The objective of this study was to review the physiology, pharmacology, and decreased plasma levels of magnesium, as well as its applications in obstetrics and anesthesia. Magnesium is an intracellular cation with multiple functions: it is a cofactor for enzymes of the glucose metabolism and those that participate in the degradation of nucleic acids, proteins, and fatty acids; it regulates the movements of transmembrane ions; and it intervenes in the activity of several enzymes. Critical patients have a tendency to develop hypomagnesemia, and the treatment consists in correcting the cause, whenever possible, and replacement of magnesium. A reduction in the minimum alveolar concentration (MAC) of inhalational agents in animals and the use of opioids in humans under anesthesia has been demonstrated. Magnesium sulfate has been used in obstetrics with good results, inhibiting premature labor and in the treatment of eclampsia-associated seizures. It is potentially analgesic and sedative, and could be used as adjuvant during general anesthesia, attenuating the blood pressure response to tracheal intubation and decreasing the need of anesthetics.

  5. Choline Magnesium Trisalicylate

    MedlinePlus

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis ... also used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal ...

  6. Ionized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients.

    PubMed

    Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin

    2017-09-01

    Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Blood compatibility of magnesium and its alloys.

    PubMed

    Feyerabend, Frank; Wendel, Hans-Peter; Mihailova, Boriana; Heidrich, Stefanie; Agha, Nezha Ahmad; Bismayer, Ulrich; Willumeit-Römer, Regine

    2015-10-01

    Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  8. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    USDA-ARS?s Scientific Manuscript database

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  9. Synthesis of magnesium diboride by magnesium vapor infiltration process (MVIP)

    DOEpatents

    Serquis, Adriana C.; Zhu, Yuntian T.; Mueller, Frederick M.; Peterson, Dean E.; Liao, Xiao Zhou

    2003-01-01

    A process of preparing superconducting magnesium diboride powder by heating an admixture of solid magnesium and amorphous boron powder or pellet under an inert atmosphere in a Mg:B ratio of greater than about 0.6:1 at temperatures and for time sufficient to form said superconducting magnesium diboride. The process can further include exposure to residual oxygen at high synthesis temperatures followed by slow cooling. In the cooling process oxygen atoms dissolved into MgB.sub.2 segregated to form nanometer-sized coherent Mg(B,O) precipitates in the MgB.sub.2 matrix, which can act as flux pinning centers.

  10. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane Electrolysis Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaofei Guan; Peter A. Zink; Uday B. Pal

    2012-01-01

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in themore » refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.« less

  11. Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo.

    PubMed

    Jiang, Hongfeng; Wang, Jingbo; Chen, Minfang; Liu, Debao

    2017-06-01

    To explore the biodegradable characteristics and biological properties, which could promote new bone formation, of MgF 2 coated magnesium alloy (Mg-3wt%Zn-0.5wt%Zr) in rabbits. Magnesium alloy with MgF 2 coating was made and the MgF 2 /Mg-Zn-Zr was implanted in the femoral condyle of rabbits. Twelve healthy adult Japanese white rabbits in weight of 2.8-3.2kg were averagely divided into A(Mg-Zn-Zr) group and B(MgF 2 /MgZn-Zr) group. Indexes such as microstructural evolution, SEM scan, X-ray, Micro-CT and mechanical properties were observed and detected at 1th day, 2th, 4th, 8th, 12th, 24th week after implantation. Low-density regions occurred around the cancellous bone, and the regions gradually expanded during the 12weeks after implantation. The implant was gradually absorbed from 12 to 24weeks. The density of surrounding cancellous bone increased compared with the 12th week data. The degradation rate of B group was lower than that of A group (P<0.01), while the density of the surrounding cancellous bone increased more evenly. In B group, SEM images after 12weeks showed the rich bone tissues on the alloy surface that were attached by active fibers. Micro-CT also presented alloy residue potholes on the surfaces of alloy combinated with bone tissues. Additionally, the trabecular bone had relatively integrated structures with surrounding cavities. MgF 2 can effectively decrease the degradation rate of Mg-Zn-Zr in vivo. Mg-Zn-Zr coated with MgF 2 can effectively inhibit the corrosion, and delay the release of magnesium ions. The biological properties of the coating itself presented good biocompatibility and bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  13. Magnesium deficiency: What is our status

    USDA-ARS?s Scientific Manuscript database

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  14. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Jin, Tony; He, Yiping

    2011-12-01

    The antibacterial activities of magnesium oxide nanoparticles (MgO NP) alone or in combination with other antimicrobials (nisin and ZnO NP) against Escherichia coli O157:H7 and Salmonella Stanley were investigated. The results show that MgO NP have strong bactericidal activity against the pathogens, achieving more than 7 log reductions in bacterial counts. The antibacterial activity of MgO NP increased as the concentrations of MgO increased. A synergistic effect of MgO in combination with nisin was observed as well. However, the addition of ZnO NP to MgO NP did not enhance the antibacterial activity of MgO against both pathogens. Scanning electron microscopy was used to characterize the morphological changes of E. coli O157:H7 before and after antimicrobial treatments. It was revealed that MgO NP treatments distort and damage the cell membrane, resulting in a leakage of intracellular contents and eventually the death of bacterial cells. These results suggest that MgO NP alone or in combination with nisin could potentially be used as an effective antibacterial agent to enhance food safety.

  15. Effects of Phosphorus Implantation on the Activation of Magnesium Doped in GaN

    NASA Astrophysics Data System (ADS)

    Liu, Kuan-Ting; Chang, Shoou-Jinn; Wu, Sean

    2009-08-01

    The effects of phosphorus implantation on the activation of magnesium doped in GaN at different dopant concentration ratios have been systematically investigated. Hall effect measurements show that P implantation improves the hole concentration, and that this improvement is dependent on P/Mg dopant concentration ratio and annealing conditions. This phenomenon is attributable to the reduction in self-compensation that results from the formation of deep donors and the enhanced Mg atom activation, which is in reasonable agreement with the optical properties observed by photoluminescence measurements. In addition, a new photoluminescence peak resulting from P-related transitions is also observed, evidently owing to the recombination of electrons from the shallow native donors with holes previously captured by isoelectronic P traps.

  16. Magnesium Isoglycyrrhizinate attenuates lipopolysaccharide-induced depressive-like behavior in mice.

    PubMed

    Jiang, Wenjiao; Chen, Qianying; Li, Peijin; Lu, Qianfeng; Pei, Xue; Sun, Yilin; Wang, Guangji; Hao, Kun

    2017-02-01

    Magnesium Isoglycyrrhizinate (MI) is a magnesium salt of 18α-GA stereoisomer which has been reported to exert hepatoprotective activity. The aim of the present study was to ascertain the underlying mechanisms behind the action of Magnesium Isoglycyrrhizinate on neuroinflammatation and oxidative stress in LPS-stimulated mice. Mice were pretreated with Magnesium Isoglycyrrhizinate (MI, 25, 50mg/kg) as well as fluoxetine (Flu, positive control, 20mg/kg) once daily for one week before intraperitoneal injection of LPS (0.83mg/kg). Pretreatments with MI and Flu significantly improved immobility time in tail suspension test (TST) and forced swim test (FST) as well as locomotor activity in open-field test (OFT). In addition, the levels of pro-inflammatory cytokines and oxidative stress in serum and hippocampus were also suppressed effectively by MI and Flu administrations. Western blot analysis showed the up-regulated levels of p-Jak3, p-STAT3, p-NF-κBp65, and p-IκBα in mice exposed to LPS, while different degrees of down-regulation in these expression were observed in MI (25, 50mg/kg) and Flu (20mg/kg) groups respectively. Taken together, our obtained results demonstrated that Magnesium Isoglycyrrhizinate (MI) exhibited an antidepressant-like effect in LPS-induced mice, which might be mediated by JAK/STAT/NF-κB signaling pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    NASA Technical Reports Server (NTRS)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  18. A Quick Reference on Magnesium.

    PubMed

    Bateman, Shane W

    2017-03-01

    This article serves as a quick reference on the distribution, handling, and supplementation of magnesium. It also lists the manifestations and causes of magnesium deficit and provides criteria for the diagnosis of a magnesium deficit. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material

    NASA Astrophysics Data System (ADS)

    Webb, C. J.

    2015-09-01

    Magnesium hydride remains an attractive hydrogen storage material due to the high hydrogen capacity and low cost of production. A high activation energy and poor kinetics at practical temperatures for the pure material have driven research into different additives to improve the sorption properties. This review details the development of catalytic additives and their effect on the activation energy, kinetics and thermodynamic properties of magnesium hydride.

  20. Relative association of Rubisco with manganese and magnesium as a regulatory mechanism in plants.

    PubMed

    Bloom, Arnold J; Kameritsch, Petra

    2017-12-01

    Rubisco, the enzyme that constitutes as much as half of the protein in a leaf, initiates either the photorespiratory pathway that supplies reductant for the assimilation of nitrate into amino acids or the C3 carbon fixation pathway that generates carbohydrates. The relative rates of these two pathways depend both on the relative extent to which O 2 and CO 2 occupies the active site of Rubisco and on whether manganese or magnesium is bound to the enzyme. This study quantified the activities of manganese and magnesium in isolated tobacco chloroplasts and the thermodynamics of binding of these metals to Rubisco purified from tobacco or a bacterium. In tobacco chloroplasts, manganese was less active than magnesium, but Rubisco purified from tobacco had a higher affinity for manganese. The activity of each metal in the chloroplast was similar in magnitude to the affinity of tobacco Rubisco for each. This indicates that, in tobacco chloroplasts, Rubisco associates almost equally with both metals and rapidly exchanges one metal for the other. Binding of magnesium was similar in Rubisco from tobacco and a bacterium, whereas binding of manganese differed greatly between the Rubisco from these species. Moreover, the ratio of leaf manganese to magnesium in C3 plants increased as atmospheric CO 2 increased. These results suggest that Rubisco has evolved to improve the energy transfers between photorespiration and nitrate assimilation and that plants regulate manganese and magnesium activities in the chloroplast to mitigate detrimental changes in their nitrogen/carbon balance as atmospheric CO 2 varies. © 2017 Scandinavian Plant Physiology Society.

  1. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key

  2. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... salt or by hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...

  3. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... is prepared as a white precipitate by the addition of sodium hydroxide to a water soluble magnesium... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...

  4. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is prepared as a white precipitate by the addition of sodium hydroxide to a water soluble magnesium... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...

  5. Improving halide-containing magnesium-ion electrolyte performance via sterically hindered alkoxide ligands

    NASA Astrophysics Data System (ADS)

    Nist-Lund, Carl A.; Herb, Jake T.; Arnold, Craig B.

    2017-09-01

    While homoleptic magnesium dialkoxides (MgR2, R = alkoxide) have shown promise as precursors for magnesium-ion electrolytes, the effect of ligand steric bulk on the performance of electrolytes based on these compounds is not fully understood. Increasing steric hindrance, studied via R groups with additional phenyl moieties, produces electrolytes with sequentially lower deposition overpotentials (less than -90 mV), higher purity Mg deposits (ca. 100% Mg), and lower overall cell impedances. The two largest alkoxide ligands show consistent cycling behavior and low stripping and plating overpotentials over 200 constant-current plating/stripping cycles. A deep-red visual change and the presence of large solubilized magnesium particulates above 450 nm in size is observed in an electrolyte containing magnesium bis(triphenylmethoxide) and aluminum chloride in contact with an abraded magnesium anode. Further morphological and impedance characterization show that this electrolyte system rapidly activates the magnesium metal anode surface to produce low overpotentials and, as such, is a candidate for further investigation.

  6. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications of the Food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium hydroxide. 184.1428 Section 184.1428 Food... Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS...

  7. Comparative study of antifibrotic activity of some magnesium-containing supplements on experimental liver toxicity. Molecular study.

    PubMed

    El-Tantawy, Walid Hamdy; Sabry, Dina; Abd Al Haleem, Ekram Nemr

    2017-01-01

    Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. This study aimed to investigate and compare the therapeutic efficacy of different magnesium (Mg)-containing supplements (formulations A, B, and C) on carbon tetrachloride (CCl 4 )-induced liver fibrosis in rats. Liver fibrosis was induced by intraperitoneal injection of rats with CCl 4 (1:1 in olive oil, 2 mL/kg, three times/week) for 4 weeks, and then rats were orally treated with different Mg-containing supplements (formulations A, B, and C) once daily for another one month. Liver fibrosis was quantified by evaluation of expressions of Collagen I, transforming growth factor β-1 (TGFβ1), platelet-derived growth factor-C (PDGF-C), nuclear factor kappa-β (NF-κβ), and measurement of hepatic collagen (hydroxyproline) level. Also, malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH) level, superoxide dismutase (SOD), and glutathione-S-transferase (GST) activities were estimated. CCl 4 administration significantly elevated expressions of the studied genes, hepatic hydroxyproline, MDA, and NO levels and caused depletion of GSH level, decreased SOD, and GST activities when compared with those of their corresponding control, p < 0.05. All magnesium supplements significantly inhibited expressions of the studied genes and attenuated the hepatic hydroxyproline level as compared with those of CCl 4 -treated group ; p < 0.05; for NF-κβ, the highest inhibition was by formulations B and C. Regarding Collagen I, TGFβ1, and hepatic hydroxyproline content, the highest inhibition was by Formulation C, and Formulation A revealed highest inhibition for PDGF-C. All magnesium supplements revealed normalization of oxidant and antioxidants parameters. Histopathological examination supports the biochemical and molecular findings. Mg supplements were effective in the treatment of hepatic CCl 4 -induced fibrosis

  8. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    NASA Astrophysics Data System (ADS)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  9. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap Through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    2012-03-11

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process ismore » employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.« less

  10. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... bulky white powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or...

  11. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4) occurs naturally as... a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate. Heating these...

  12. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... bulky white powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or...

  13. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... light magnesium oxide. Heating the salts under more rigorous conditions (1200 °C for 12 hours) produces...

  14. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... addition of sodium hydroxide to a water soluble magnesium salt or by hydration of reactive grades of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS Reg. No. 1309-42-8) occurs...

  15. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS Reg. No. 7786-30-3) is a... prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid solution and...

  16. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous...

  17. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous...

  18. Mineral resource of the month: magnesium

    USGS Publications Warehouse

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  19. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS...

  20. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... magnesium oxide. Heating the salts under more rigorous conditions (1200 °C for 12 hours) produces heavy...

  1. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS...

  2. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  3. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  4. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium carbonate. 184.1425 Section 184.1425... Listing of Specific Substances Affirmed as GRAS § 184.1425 Magnesium carbonate. (a) Magnesium carbonate (molecular formula approximately (MgCO3)4·Mg(OH)2·5H2O, CAS Reg. No. 39409-82-0) is also known as magnesium...

  5. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... Specific Substances Affirmed as GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by...

  6. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... Specific Substances Affirmed as GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by...

  7. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium carbonate. 184.1425 Section 184.1425... Listing of Specific Substances Affirmed as GRAS § 184.1425 Magnesium carbonate. (a) Magnesium carbonate (molecular formula approximately (MgCO3)4·Mg(OH)2·5H2O, CAS Reg. No. 39409-82-0) is also known as magnesium...

  8. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium carbonate. 184.1425 Section 184.1425... GRAS § 184.1425 Magnesium carbonate. (a) Magnesium carbonate (molecular formula approximately (MgCO3)4·Mg(OH)2·5H2O, CAS Reg. No. 39409-82-0) is also known as magnesium carbonate hydroxide. It is a white...

  9. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium carbonate. 184.1425 Section 184.1425... Listing of Specific Substances Affirmed as GRAS § 184.1425 Magnesium carbonate. (a) Magnesium carbonate (molecular formula approximately (MgCO3)4·Mg(OH)2·5H2O, CAS Reg. No. 39409-82-0) is also known as magnesium...

  10. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by the addition of an...

  11. Lightweight Heat Pipes Made from Magnesium

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  12. High magnesium mobility in ternary spinel chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan

    Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. Furthermore, the development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. We demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door formore » the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.« less

  13. High magnesium mobility in ternary spinel chalcogenides

    DOE PAGES

    Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan; ...

    2017-11-24

    Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. Furthermore, the development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. We demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door formore » the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.« less

  14. Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy.

    PubMed

    Ren, Yufu; Babaie, Elham; Lin, Boren; Bhaduri, Sarit B

    2017-08-18

    Due to the combination of many unique properties, magnesium alloys have been widely recognized as suitable metallic materials for fabricating degradable biomedical implants. However, the extremely high degradation kinetics of magnesium alloys in the physiological environment have hindered their clinical applications. This paper reports for the first time the use of a novel microwave-assisted coating process to deposit magnesium phosphate (MgP) coatings on the Mg alloy AZ31 and improve its in vitro corrosion resistance. Newberyite and trimagnesium phosphate hydrate (TMP) layers with distinct features were fabricated at various processing times and temperatures. Subsequently, the corrosion resistance, degradation behavior, bioactivity and cytocompatibility of the MgP coated AZ31 samples were investigated. The potentiodynamic polarization tests reveal that the corrosion current density of the AZ31 magnesium alloy in simulated body fluid (SBF) is significantly suppressed by the deposited MgP coatings. Additionally, it is seen that MgP coatings remarkably reduced the mass loss of the AZ31 alloy after immersion in SBF for two weeks and promoted precipitation of apatite particles. The high viability of preosteoblast cells cultured with extracts of coated samples indicates that the MgP coatings can improve the cytocompatibility of the AZ31 alloy. These attractive results suggest that MgP coatings, serving as the protective and bioactive layer, can enhance the corrosion resistance and biological response of magnesium alloys.

  15. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    DOEpatents

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  16. Nanostructured magnesium increases bone cell density.

    PubMed

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  17. Isotopically pure magnesium isotope-24 is prepared from magnesium-24 oxide

    NASA Technical Reports Server (NTRS)

    Chellew, N. R.; Schilb, J. D.; Steunenberg, R. K.

    1968-01-01

    Apparatus is used to prepare isotopically pure magnesium isotope-24, suitable for use in neutron scattering and polarization experiments. The apparatus permits thermal reduction of magnesium-24 oxide with aluminum and calcium oxide, and subsequent vaporization of the product metal in vacuum. It uses a resistance-heated furnace tube and cap assembly.

  18. The UK geochemical environment and cardiovascular diseases: magnesium in food and water.

    PubMed

    Davies, B E

    2015-06-01

    Cardiovascular diseases (CVDs) contribute approximately one-third to noncommunicable diseases in the UK. The central role of magnesium in CVDs (enzyme activity, cardiac signalling, etc.) is well established. Mortality and morbidity rates for CVDs may be inversely related to water hardness, suggesting a role for environmental magnesium. Published official and quasi-official data sources were evaluated to establish a model magnesium intake for a representative adult: standardised reference individual (SRI), standardised reference male (SRM) or standardised reference female (SRF). For typical dietary constituents, only tap water is probably locally derived and bottled water may not be. Fruits and vegetables are imported from many countries, while meat, dairy and cereal products represent a composite of UK source areas. Alcoholic beverages provide magnesium, there is doubt about its absorptive efficiency, and they are not locally derived. A simple model was devised to examine the effect of varying dietary contributions to total daily intake of magnesium. Omitting tap or bottled water, the combined intake, solid food plus alcoholic beverages, is 10.57 mmol Mg (84.5 % RNI) for the SRM and for the SRF, 8.10 mmol Mg (71.7 % RNI). Consumers drinking water derived from reservoirs or rivers, or supplementing it with the purest bottled water, improve their magnesium intake only slightly compared with water containing no magnesium. Choosing bottled water with high magnesium content when the public supply derives from rivers or reservoirs partially satisfies magnesium needs. Real improvement in SRI magnesium nutrition is seen only where water is hard. However, this conclusion cannot be validated until new measurement technologies for body magnesium become available.

  19. The Dynamic Flow and Failure Behavior of Magnesium and Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Eswar Prasad, K.; Li, B.; Dixit, N.; Shaffer, M.; Mathaudhu, S. N.; Ramesh, K. T.

    2014-01-01

    We review the dynamic behavior of magnesium alloys through a survey of the literature and a comparison with our own high-strain-rate experiments. We describe high-strain-rate experiments (at typical strain rates of 103 s-1) on polycrystalline pure magnesium as well as two magnesium alloys, AZ31B and ZK60. Both deformation and failure are considered. The observed behaviors are discussed in terms of the fundamental deformation and failure mechanisms in magnesium, considering the effects of grain size, strain rate, and crystallographic texture. A comparison of current results with the literature studies on these and other Mg alloys reveals that the crystallographic texture, grain size, and alloying elements continue to have a profound influence on the high-strain-rate deformation behavior. The available data set suggests that those materials loaded so as to initiate extension twinning have relatively rate-insensitive strengths up to strain rates of several thousand per second. In contrast, some rate dependence of the flow stress is observed for loading orientations in which the plastic flow is dominated by dislocation mechanisms.

  20. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    PubMed

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. © 2016 Wiley Periodicals, Inc.

  1. Genetics of hereditary disorders of magnesium homeostasis.

    PubMed

    Schlingmann, Karl P; Konrad, Martin; Seyberth, Hannsjörg W

    2004-01-01

    Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca(2+)/ Mg(2+) sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.

  2. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerst, S. M.; Brown, M. E., E-mail: sarah.horst@colorado.edu

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium,more » or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.« less

  3. Magnesium and diabetes mellitus: their relation.

    PubMed

    Sales, Cristiane Hermes; Pedrosa, Lucia de Fatima Campos

    2006-08-01

    The aim of this review was to elaborate a synthesis about the discussions on magnesium and diabetes mellitus, in the last 14 years. The magnesium deficiency has been associated with chronic diseases, amongst them, diabetes mellitus. Epidemiological studies had shown low levels of magnesium ingestion in the general population, as well as a relation between the ingestion of food rich in magnesium and the reduction of diabetes installation and its complications. Hypomagnesemia is frequently present in diabetic patients, however there is not an exact elucidation of the mechanism of magnesium deficiency in diabetes mellitus. On the other hand, in the presence of this illness, it is observed that inadequate metabolic control can affect the corporal concentrations of magnesium, developing hypomagnesemia, which may be still directly related with some micro and macrovascular complications observed in diabetes, as cardiovascular disease, retinopathy and neuropathy. This way, the chronic complications of diabetes can appear precociously. Based on this, the supplementation with magnesium has been suggested in patients with diabetes mellitus who have proven hypomagnesemia and the presence of its complications.

  4. Magnesium based degradable biomaterials: A review

    NASA Astrophysics Data System (ADS)

    Gu, Xue-Nan; Li, Shuang-Shuang; Li, Xiao-Ming; Fan, Yu-Bo

    2014-09-01

    Magnesium has been suggested as a revolutionary biodegradable metal for biomedical applications. The corrosion of magnesium, however, is too rapid to match the rates of tissue healing and, additionally, exhibits the localized corrosion mechanism. Thus it is necessary to control the corrosion behaviors of magnesium for their practical use. This paper comprehensively reviews the research progress on the development of representative magnesium based alloys, including Mg-Ca, Mg-Sr, Mg-Zn and Mg-REE alloy systems as well as the bulk metallic glass. The influence of alloying element on their microstructures, mechanical properties and corrosion behaviors is summarized. The mechanical and corrosion properties of wrought magnesium alloys are also discussed in comparison with those of cast alloys. Furthermore, this review also covers research carried out in the field of the degradable coatings on magnesium alloys for biomedical applications. Calcium phosphate and biodegradable polymer coatings are discussed based on different preparation techniques used. We also compare the effect of different coatings on the corrosion behaviors of magnesium alloys substrate.

  5. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

    NASA Astrophysics Data System (ADS)

    Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong

    2016-06-01

    The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

  6. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge

    PubMed Central

    Liu, R. L.; Hurley, M. F.; Kvryan, A.; Williams, G.; Scully, J. R.; Birbilis, N.

    2016-01-01

    The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes. PMID:27350286

  7. The unexpected discovery of the Mg(HMDS) 2 /MgCl 2 complex as a magnesium electrolyte for rechargeable magnesium batteries

    DOE PAGES

    Liao, Chen; Sa, Niya; Key, Baris; ...

    2015-02-02

    We developed a unique class of non-Grignard, aluminum-free magnesium electrolytes based on a simple mixture of magnesium compounds: magnesium hexamethyldisilazide (Mg(HMDS) 2) and magnesium chloride (MgCl 2).

  8. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    that during active corrosion of both Mg and Mg-Ti particles cells cultured with the particles are killed in a dose-dependent particle concentration fashion. Additionally, galvanically-coupled magnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis.

    PubMed

    Malpuech-Brugère, C; Rock, E; Astier, C; Nowacki, W; Mazur, A; Rayssiguier, Y

    1998-01-01

    The aim of this study was to assess the potential mechanism underlying the enhanced inflammatory processes during magnesium deficit. In this study, exacerbated response to live bacteria and platelet activating factors was shown in rats fed a magnesium-deficient diet. Peritoneal cells from these animals also showed enhanced superoxide anion production and calcium mobilising potency following in vitro stimulation. The latter effect occurred very early in the course of magnesium deficiency. These studies first showed that an abnormal calcium handling induced by extracellular magnesium depression in vivo may be at the origin of exacerbated inflammatory response.

  10. Low brain magnesium in migraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadan, N.M.; Halvorson, H.; Vande-Linde, A.

    1989-10-01

    Brain magnesium was measured in migraine patients and control subjects using in vivo 31-Phosphorus Nuclear Magnetic Resonance Spectroscopy. pMg and pH were calculated from the chemical shifts between Pi, PCr and ATP signals. Magnesium levels were low during a migraine attack without changes in pH. We hypothesize that low brain magnesium is an important factor in the mechanism of the migraine attack.

  11. Scaling-Up Solid Oxide Membrane Electrolysis Technology for Magnesium Production

    NASA Astrophysics Data System (ADS)

    Pati, Soobhankar; Powell, Adam; Tucker, Steve; Derezinski, Steve

    Metal Oxygen Separation Technologies, Inc. (MOxST) is actively developing Solid Oxide Membrane (SOM) electrolysis technology for production of magnesium directly from its oxide. The vital component of this technology is the oxygen ion-conducting solid zirconia electrolyte separating the molten flux (a mixture of salts and oxide) and the inert anode. The zirconia not only protects the anode from the flux but also prevents anode gas back-reaction, increasing the efficiency. This makes it possible to produce low-cost high-purity magnesium and high-purity oxygen as a byproduct with no direct greenhouse gas emissions. In this paper we discuss the design modifications made to address the scaling-up challenges, particularly for producing magnesium in liquid form. The key accomplishment to date is the successful development of a prototype capable of producing few kilograms of magnesium per day. We will also describe the prerequisite properties of an inert anode and suitable materials for the same.

  12. Magnesium-DNA interactions and the possible relation of magnesium to carcinogenesis. Irradiation and free radicals.

    PubMed

    Anastassopoulou, J; Theophanides, T

    2002-04-01

    Magnesium deficiency causes renal complications. The appearance of several diseases is related to its depletion in the human body. In radiotherapy, as well as in chemotherapy, especially in treatment of cancers with cis-platinum, hypomagnesaemia is observed. The site effects of chemotherapy that are due to hypomagnesaemia are decreased using Mg supplements. The role of magnesium in DNA stabilization is concentration dependent. At high concentrations there is an accumulation of Mg binding, which induces conformational changes leading to Z-DNA, while at low concentration there is deficiency and destabilization of DNA. The biological and clinical consequences of abnormal concentrations are DNA cleavage leading to diseases and cancer. Carcinogenesis and cell growth are also magnesium-ion concentration dependent. Several reports point out that the interaction of magnesium in the presence of other metal ions showed that there is synergism with Li and Mn, but there is magnesium antagonism in DNA binding with the essential metal ions in the order: Zn>Mg>Ca. In the case of toxic metals such as Cd, Ga and Ni there is also antagonism for DNA binding. It was found from radiolysis of deaerated aqueous solutions of the nucleoside 5'-guanosine monophosphate (5'-GMP) in the presence as well as in the absence of magnesium ions that, although the addition of hydroxyl radicals (*OH) has been increased by 2-fold, the opening of the imidazole ring of the guanine base was prevented. This effect was due to the binding of Mg2+ ions to N7 site of the molecule by stabilizing the five-member ring imitating cis-platinum. It was also observed using Fourier Transform Infrared spectroscopy, Raman spectroscopy and Fast Atom Bombardment mass spectrometry that *OH radicals subtract H atoms from the C1', C4' and C5' sites of the nucleotide. Irradiation of 5'-GMP in the presence of oxygen (2.5 x 10(-4) M) shows that magnesium is released from the complex. There is spectroscopic evidence that

  13. Knockdown of SLC41A1 magnesium transporter promotes mineralization and attenuates magnesium inhibition during osteogenesis of mesenchymal stromal cells.

    PubMed

    Tsao, Yu-Tzu; Shih, Ya-Yi; Liu, Yu-An; Liu, Yi-Shiuan; Lee, Oscar K

    2017-02-21

    Magnesium is essential for numerous physiological functions. Magnesium exists mostly in bone and the amount is dynamically regulated by skeletal remodeling. Accelerating bone mass loss occurs when magnesium intake is insufficient; whereas high magnesium could lead to mineralization defects. However, the underlying magnesium regulatory mechanisms remain elusive. In the present study, we investigated the effects of high extracellular magnesium concentration on osteogenic differentiation of mesenchymal stromal/stem cells (MSCs) and the role of magnesium transporter SLC41A1 in the mineralization process. Murine MSCs derived from the bone marrow of BALB/c mouse or commercially purchased human MSCs were treated with osteogenic induction medium containing 5.8 mM magnesium chloride and the osteogenic differentiation efficiency was compared with that of MSCs in normal differentiation medium containing 0.8 mM magnesium chloride by cell morphology, gene expression profile of osteogenic markers, and Alizarin Red staining. Slc41a1 gene knockdown in MSCs was performed by siRNA transfection using Lipofectamine RNAiMAX, and the differentiation efficiency of siRNA-treated MSCs was also assessed. High concentration of extracellular magnesium ion inhibited mineralization during osteogenic differentiation of MSCs. Early osteogenic marker genes including osterix, alkaline phosphatase, and type I collagen were significantly downregulated in MSCs under high concentration of magnesium, whereas late marker genes such as osteopontin, osteocalcin, and bone morphogenetic protein 2 were upregulated with statistical significance compared with those in normal differentiation medium containing 0.8 mM magnesium. siRNA treatment targeting SLC41A1 magnesium transporter, a member of the solute carrier family with a predominant Mg 2+ efflux system, accelerated the mineralization process and ameliorated the inhibition of mineralization caused by high concentration of magnesium. High concentration of

  14. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  15. Synthesis of superconducting magnesium diboride objects

    DOEpatents

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-08-15

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  16. Synthesis Of Superconducting Magnesium Diboride Objects.

    DOEpatents

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-07-08

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  17. [Magnesium and bronchopulmonary dysplasia].

    PubMed

    Fridman, Elena; Linder, Nehama

    2013-03-01

    Bronchopulmonary dysplasia (BPD) is a chronic lung disease that occurs in premature infants who have needed mechanical ventilation and oxygen therapy. BPD is defined as the presence of persistent respiratory symptoms, the need for supplemental oxygen to treat hypoxemia, and an abnormal chest radiograph at 36 weeks gestational age. Proinflammatory cytokines and altered angiogenic gene signaling impair prenatal and postnatal lung growth, resulting in BPD. Postnatal hyperoxia exposure further increases the production of cytotoxic free radicals, which cause lung injury and increase the levels of proinflammatory cytokines. Magnesium is the fourth most abundant metal in the body. It is commonly used for the treatment of preeclamsia, as well as for premature labor alleviation. Magnesium's role in BPD development is not clear. A significant association between high magnesium levels at birth and respiratory distress syndrome (RDS), pulmonary interstitial emphysema in the extremely low birth weight, respiratory failure, and later development BPD was found. Conversely, low magnesium intake is associated with lower lung functions, and hypomagnesemia was found in 16% of patients with acute pulmonary diseases. Magnesium is used for the treatment of asthmatic attacks. Magnesium deficiency in pregnant women is frequently seen due to low intake. Hypomagnesemia was also found among preterm neonates and respiratory distress syndrome (RDS). Experimental hypomagnesemia evokes an inflammatory response, and oxidative damage of tissues. These were accompanied by changes in gene expression mostly involved in regulation of cell cycle, apoptosis and remodeling, processes associated with BPD. It is rational to believe that hypomagnesemia can contribute to BPD pathogenesis.

  18. Magnesium in Prevention and Therapy

    PubMed Central

    Gröber, Uwe; Schmidt, Joachim; Kisters, Klaus

    2015-01-01

    Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP) metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, and attention deficit hyperactivity disorder (ADHD). PMID:26404370

  19. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  20. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  1. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  2. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  3. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  4. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  5. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  6. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  7. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use. This...

  8. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  9. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product. Magnesium...

  10. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  11. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use. This...

  12. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  13. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  14. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  15. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use. This...

  16. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use. This...

  17. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  18. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  19. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use. This...

  20. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  1. In vivo corrosion of four magnesium alloys and the associated bone response.

    PubMed

    Witte, F; Kaese, V; Haferkamp, H; Switzer, E; Meyer-Lindenberg, A; Wirth, C J; Windhagen, H

    2005-06-01

    Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone-implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. After 6 and 18 weeks, uncalcified sections were generated for histomorphologic analysis. The bone-implant interface was characterized in uncalcified sections by scanning electron microscopy (SEM), element mapping and X-ray diffraction. Results showed that metallic implants made of magnesium alloys degrade in vivo depending on the composition of the alloying elements. While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation.

  2. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  3. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  4. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  7. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  8. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of...

  9. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of...

  10. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of...

  11. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of...

  12. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of...

  13. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  14. Assessment of serum magnesium levels and its outcome in neonates of eclamptic mothers treated with low-dose magnesium sulfate regimen

    PubMed Central

    Das, Monalisa; Chaudhuri, Patralekha Ray; Mondal, Badal C.; Mitra, Sukumar; Bandyopadhyay, Debasmita; Pramanik, Sushobhan

    2015-01-01

    Objectives: Magnesium historically has been used for treatment and/or prevention of eclampsia. Considering the low body mass index of Indian women, a low-dose magnesium sulfate regime has been introduced by some authors. Increased blood levels of magnesium in neonates is associated with increased still birth, early neonatal death, birth asphyxia, bradycardia, hypotonia, gastrointestinal hypomotility. The objective of this study was to assess safety of low-dose magnesium sulfate regimen in neonates of eclamptic mothers treated with this regimen. Materials and Methods: This was a cross-sectional observational study of 100 eclampsia patients and their neonates. Loading dose and maintenance doses of magnesium sulfate were administered to patients by combination of intravenous and intramuscular routes. Maternal serum and cord blood magnesium levels were estimated. Neonatal outcome was assessed. Results: Bradycardia was observed in 18 (19.15%) of the neonates, 16 (17.02%) of the neonates were diagnosed with hypotonia. Pearson Correlation Coefficient showed Apgar scores decreased with increase in cord blood magnesium levels. Unpaired t-test showed lower Apgar scores with increasing dose of magnesium sulfate. The Chi-square/Fisher's exact test showed significant increase in hypotonia, birth asphyxia, intubation in delivery room, Neonatal Intensive Care Unit (NICU) care requirement, with increasing dose of magnesium sulfate. (P ≤ 0.05). Conclusion: Several neonatal complications are significantly related to increasing serum magnesium levels. Overall, the low-dose magnesium sulfate regimen was safe in the management of eclamptic mothers, without toxicity to their neonates. PMID:26600638

  15. Interstellar magnesium abundances

    NASA Technical Reports Server (NTRS)

    Murray, M. J.; Dufton, P. L.; Hibbert, A.; York, D. G.

    1984-01-01

    An improved evaluation of the Mg II 1240 A doublet oscillator strength is used in conjunction with recently published Copernicus observations to derive accurate Mg II column densities toward 74 stars. These imply an average of 40 percent of interstellar magnesium is in the gaseous phase. Magnesium depletion is examined as a function of various interstellar extinction and density parameters, and the results are briefly discussed in terms of current depletion theories.

  16. Metastable bcc mischmetal-magnesium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabariz, A.L.R.

    1989-02-01

    The bcc phase in the MM-Mg system can be metastably retained at room temperature for magnesium composition within the range 16 at.% - 20 at.%. The retention of a lower composition was restricted by quenching rate and at higher concentrations by intermetallic compound precipitation. The lattice parameter for the pure bcc mischmetal phase was determined by extrapolation. The value obtained (a/sub E/ = 4.131 /angstrom/) was in good agreement with the theoretical value (a/sub t/ = 4.156 /angstrom/). Magnetic susceptibility data suggested that bcc mischmetal-magnesium alloys underwent a change from paramagnetic to antiferromagnetic behavior on cooling at /approximately/20 K, independentmore » of magnesium composition. The value found for the magnetic effective moment per gram-atom-magnetic-rare earth of each bcc MM-Mg alloy examined (MM - 16 Mg, MM - 18 Mg and MM - 20 Mg) was found to be constant (p/sub eff/ approx. 1.62 ..mu../sub B/), independent of the magnesium composition. The observed Curie-Weiss temperature values decreasing with the magnesium content increasing were due to magnetic dilution. The equilibrium reaction bcc ..-->.. dhcp + MMMg presented an undercooling effect of /approximately/40/degree/C around the eutectoid composition (/approximately/17 at.% Mg). The sluggish character of this reaction was considered the strongest effect for the bcc structure retention in the mischmetal-magnesium system. 16 refs., 27 figs.« less

  17. Magnesium sulphate for preventing preterm birth in threatened preterm labour.

    PubMed

    Crowther, Caroline A; Brown, Julie; McKinlay, Christopher J D; Middleton, Philippa

    2014-08-15

    Magnesium sulphate has been used in some settings as a tocolytic agent to inhibit uterine activity in women in preterm labour with the aim of preventing preterm birth. To assess the effects of magnesium sulphate therapy given to women in threatened preterm labour with the aim of preventing preterm birth and its sequelae. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (last searched 31 January 2014). Randomised controlled trials of magnesium sulphate as the only tocolytic, administered by any route, compared with either placebo, no treatment or alternative tocolytic therapy (not magnesium sulphate) to women considered to be in preterm labour. At least two review authors assessed trial eligibility and risk of bias and undertook data extraction independently. The 37 included trials (total of 3571 women and over 3600 babies) were generally of moderate to high risk of bias. Antenatal magnesium sulphate was compared with either placebo, no treatment, or a range of alternative tocolytic agents.For the primary outcome of giving birth within 48 hours after trial entry, no significant differences were seen between women who received magnesium sulphate and women who did not (whether placebo/no alternative tocolytic drug, betamimetics, calcium channel blockers, cox inhibitors, prostaglandin inhibitors, or human chorionic gonadotropin) (19 trials, 1913 women). Similarly for the primary outcome of serious infant outcome, there were no significant differences between the infants exposed to magnesium sulphate and those not (whether placebo/no alternative tocolytic drug, betamimetics, calcium channel blockers, cox inhibitors, prostaglandin inhibitors, human chorionic gonadotropin or various tocolytic drugs) (18 trials; 2187 babies). No trials reported the outcome of extremely preterm birth. In the seven trials that reported serious maternal outcomes, no events were recorded.In the group treated with magnesium sulphate compared with women receiving

  18. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  19. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS Reg. No. 10034-99-8) occurs...

  20. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  1. Effect of magnesium complexation by fluoroquinolones on their antibacterial properties.

    PubMed Central

    Lecomte, S; Baron, M H; Chenon, M T; Coupry, C; Moreau, N J

    1994-01-01

    By using infrared and 19F nuclear magnetic resonance spectroscopies, we localized the binding site and measured the affinity of magnesium for six fluoroquinolones. It was proven that magnesium is situated between the ketone and the carboxylate groups. We determined the binding constants for the 1:1 Mg(2+)-drug complex in solution. Sparfloxacin and pefloxacin, with affinity constants (Ka) of (10.1 +/- 0.6) x 10(2) M-1 and (21 +/- 1) x 10(2) M-1, respectively, were the least and the most bound, respectively. The trend of the affinities of the assayed fluoroquinolones for magnesium was correlated with their antimicrobial activities against four bacteria and with their accumulation by these bacteria. The reference strain, Escherichia coli KL16, and two resistant mutants, NalA (gyrase mutation) and NalB (uptake defect), plus Staphylococcus aureus 209P were used. It appeared that, in every case, an impairment of accumulation is responsible for the increase in the MICs observed upon the addition of magnesium. Images PMID:7695267

  2. Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    NASA Astrophysics Data System (ADS)

    Pompa, Luis Enrique

    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.

  3. Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice

    PubMed Central

    Ryazanova, Lillia V.; Hu, Zhixian; Suzuki, Sayuri; Chubanov, Vladimir; Fleig, Andrea; Ryazanov, Alexey G.

    2014-01-01

    TRPM7 is an unusual bi-functional protein containing an ion channel covalently linked to a protein kinase domain. TRPM7 is implicated in regulating cellular and systemic magnesium homeostasis. While the biophysical properties of TRPM7 ion channel and its function are relatively well characterized, the function of the TRPM7 enzymatically active kinase domain is not understood yet. To investigate the physiological role of TRPM7 kinase activity, we constructed mice carrying an inactive TRPM7 kinase. We found that these mice were resistant to dietary magnesium deprivation, surviving three times longer than wild type mice; also they displayed decreased chemically induced allergic reaction. Interestingly, mutant mice have lower magnesium bone content compared to wild type mice when fed regular diet; unlike wild type mice, mutant mice placed on magnesium-depleted diet did not alter their bone magnesium content. Furthermore, mouse embryonic fibroblasts isolated from TRPM7 kinase-dead animals exhibited increased resistance to magnesium deprivation and oxidative stress. Finally, electrophysiological data revealed that the activity of the kinase-dead TRPM7 channel was not significantly altered. Together, our results suggest that TRPM7 kinase is a sensor of magnesium status and provides coordination of cellular and systemic responses to magnesium deprivation. PMID:25534891

  4. Effect of magnesium supplementation on depression status in depressed patients with magnesium deficiency: A randomized, double-blind, placebo-controlled trial.

    PubMed

    Rajizadeh, Afsaneh; Mozaffari-Khosravi, Hassan; Yassini-Ardakani, Mojtaba; Dehghani, Ali

    2017-03-01

    The aim of this study was to determine the effect of magnesium supplementation on the depression status of depressed patients suffering from magnesium deficiency. Sixty depressed people suffering from hypomagnesemia participated in this trial. The individuals were randomly categorized into two groups of 30 members; one receiving two 250-mg tablets of magnesium oxide (MG) daily and the other receiving placebo (PG) for 8 wk. The Beck Depression Inventory-II was conducted and the concentration of serum magnesium was measured. At the end of intervention, 88.5% of the MG and 48.1% of the PG (P = 0.002) had a normal level of magnesium. The mean changes of serum magnesium were significantly different across the two groups. After the intervention, the mean Beck score significantly declined. However, in the MG, this reduction was more significant than in the PG (P = 0.02), so that the mean changes in this group experienced 15.65 ± 8.9 reduction, but in the PG, it declined by 10.40 ± 7.9. Daily consumption of 500 mg magnesium oxide tablets for ≥8 wk by depressed patients suffering from magnesium deficiency leads to improvements in depression status and magnesium levels. Therefore, assessment of the magnesium serum and resolving this deficiency positively influence the treatment of depressed patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions.

    PubMed

    Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J

    2010-04-22

    Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.

  6. Intradermal administration of magnesium sulphate and magnesium chloride produces hypesthesia to mechanical but hyperalgesia to heat stimuli in humans

    PubMed Central

    Ushida, Takahiro; Iwatsu, Osamu; Shimo, Kazuhiro; Tetsunaga, Tomoko; Ikeuchi, Masahiko; Ikemoto, Tatsunori; Arai, Young-Chang P; Suetomi, Katsutoshi; Nishihara, Makoto

    2009-01-01

    Background Although magnesium ions (Mg2+) are known to display many similar features to other 2+ charged cations, they seem to have quite an important and unique role in biological settings, such as NMDA blocking effect. However, the role of Mg2+ in the neural transmission system has not been studied as sufficiently as calcium ions (Ca2+). To clarify the sensory effects of Mg2+ in peripheral nervous systems, sensory changes after intradermal injection of Mg2+ were studied in humans. Methods Magnesium sulphate, magnesium chloride and saline were injected into the skin of the anterior region of forearms in healthy volunteers and injection-induced irritating pain ("irritating pain", for short), tactile sensation, tactile pressure thresholds, pinch-pain changes and intolerable heat pain thresholds of the lesion were monitored. Results Flare formation was observed immediately after magnesium sulphate or magnesium chloride injection. We found that intradermal injections of magnesium sulphate and magnesium chloride transiently caused irritating pain, hypesthesia to noxious and innocuous mechanical stimulations, whereas secondary hyperalgesia due to mechanical stimuli was not observed. In contrast to mechanical stimuli, intolerable heat pain-evoking temperature was significantly decreased at the injection site. In addition to these results, spontaneous pain was immediately attenuated by local cooling. Conclusion Membrane-stabilizing effect and peripheral NMDA-blocking effect possibly produced magnesium-induced mechanical hypesthesia, and extracellular cation-induced sensitization of TRPV1 channels was thought to be the primary mechanism of magnesium-induced heat hyperalgesia. PMID:19715604

  7. Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner

    PubMed Central

    Peter, Mirjam E.; Sevinc Ok, Ebru; Celenk, Fatma Gul; Yilmaz, Mumtaz; Steppan, Sonja; Asci, Gulay; Ok, Ercan; Passlick-Deetjen, Jutta

    2012-01-01

    Background. Vascular calcification (VC), mainly due to elevated phosphate levels, is one major problem in patients suffering from chronic kidney disease. In clinical studies, an inverse relationship between serum magnesium and VC has been reported. However, there is only few information about the influence of magnesium on calcification on a cellular level available. Therefore, we investigated the effect of magnesium on calcification induced by β-glycerophosphate (BGP) in bovine vascular smooth muscle cells (BVSMCs). Methods. BVSMCs were incubated with calcification media for 14 days while simultaneously increasing the magnesium concentration. Calcium deposition, transdifferentiation of cells and apoptosis were measured applying quantification of calcium, von Kossa and Alizarin red staining, real-time reverse transcription–polymerase chain reaction and annexin V staining, respectively. Results. Calcium deposition in the cells dramatically increased with addition of BGP and could be mostly prevented by co-incubation with magnesium. Higher magnesium levels led to inhibition of BGP-induced alkaline phosphatase activity as well as to a decreased expression of genes associated with the process of transdifferentiation of BVSMCs into osteoblast-like cells. Furthermore, estimated calcium entry into the cells decreased with increasing magnesium concentrations in the media. In addition, higher magnesium concentrations prevented cell damage (apoptosis) induced by BGP as well as progression of already established calcification. Conclusions. Higher magnesium levels prevented BVSMC calcification, inhibited expression of osteogenic proteins, apoptosis and further progression of already established calcification. Thus, magnesium is influencing molecular processes associated with VC and may have the potential to play a role for VC also in clinical situations. PMID:21750166

  8. Acoustic Emission of Deformation Twinning in Magnesium.

    PubMed

    Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K T; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D; Molodov, Dmitri A; Kontsos, Antonios

    2016-08-06

    The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach.

  9. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites.

    PubMed

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg(+2) and Ca(+2) ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg(+2) and Ca(+2) ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg(+2), calcium magnesium phosphates (CMPs) which release Mg(+2) and Ca(+2), and hydroxyapatites (HAs) which release Ca(+2) were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg(+2) and Ca(+2) ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Magnesium for treating sickle cell disease.

    PubMed

    Than, Nan Nitra; Soe, Htoo Htoo Kyaw; Palaniappan, Senthil K; Abas, Adinegara Bl; De Franceschi, Lucia

    2017-04-14

    Sickle cell disease is an autosomal recessive inherited haemoglobinopathy which causes painful vaso-occlusive crises due to sickle red blood cell dehydration. Vaso-occlusive crises are common painful events responsible for a variety of clinical complications; overall mortality is increased and life expectancy decreased compared to the general population. Experimental studies suggest that intravenous magnesium has proven to be well-tolerated in individuals hospitalised for the immediate relief of acute (sudden onset) painful crisis and has the potential to decrease the length of hospital stay. Some in vitro studies and open studies of long-term oral magnesium showed promising effect on pain relief but failed to show its efficacy. The studies show that oral magnesium therapy may prevent sickle red blood cell dehydration and prevent recurrent painful episodes. There is a need to access evidence for the impact of oral and intravenous magnesium effect on frequency of pain, length of hospital stay and quality of life. To evaluate the effects of short-term intravenous magnesium on the length of hospital stay and quality of life in children and adults with sickle cell disease. To determine the effects of long-term oral magnesium therapy on the frequency of painful crises and the quality of life in children and adults with sickle cell disease. We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 01 December 2016.Date of last search of other resources (clinical trials registries): 29 March 2017. We searched for published and unpublished randomized controlled studies of oral or intravenous magnesium compared to placebo or no magnesium. Authors independently assessed the study quality and extracted the data using standard Cochrane methodologies. We

  11. Magnesium in cardioplegia: Is it necessary?

    PubMed Central

    Shakerinia, Tooraj; Ali, Idris M.; Sullivan, John A.P.

    1996-01-01

    Objective To study the effectiveness of magnesium in cardioplegic solution in preventing postoperative arrhythmias and perioperative ischemia. Design Randomized, control study. Setting The cardiovascular surgery division of a major referral centre for the maritime provinces of Canada. Patients Fifty patients scheduled to undergo coronary artery bypass who had a normal ejection fraction, normal preoperative serum magnesium level and no history of atrial or ventricular arrhythmia were randomized into two groups of 25 patients. One group received magnesium sulfate (15 mmol/L) in the cardioplegic solution (group 1), the other (control) group did not receive magnesium sulfate in the cardioplegic solution (group 2). Intervention Coronary artery bypass grafting during which myocardial protection was provided by intermittent cold blood cardioplegia. Outcome Measures Postoperative serum magnesium levels, cardiac-related death, infarction and arrhythmias. Results All group 2 patients had a lower postoperative serum magnesium level than group 1 patients. There were no cardiac-related deaths in either group. More group 2 patients had ischemic electrocardiographic changes than group 1 patients (p < 0.03). Non-Q-wave myocardial infarction occurred in two patients (one in each group). Eight patients in group 2 had atrial fibrillation compared with five patients in group 1. Ventricular ectopia occurred significantly (p < 0.01) more frequently in group 2 than in group 1. Conclusion The addition of magnesium to the cardioplegic solution is beneficial in reducing the incidence of perioperative ischemia and ventricular arrhythmia in patients who undergo coronary bypass grafting. PMID:8857989

  12. Rechargeable Magnesium Power Cells

    NASA Technical Reports Server (NTRS)

    Koch, Victor R.; Nanjundiah, Chenniah; Orsini, Michael

    1995-01-01

    Rechargeable power cells based on magnesium anodes developed as safer alternatives to high-energy-density cells like those based on lithium and sodium anodes. At cost of some reduction in energy density, magnesium-based cells safer because less susceptible to catastrophic meltdown followed by flames and venting of toxic fumes. Other advantages include ease of handling, machining, and disposal, and relatively low cost.

  13. Effect of transdermal magnesium cream on serum and urinary magnesium levels in humans: A pilot study.

    PubMed

    Kass, Lindsy; Rosanoff, Andrea; Tanner, Amy; Sullivan, Keith; McAuley, William; Plesset, Michael

    2017-01-01

    Oral magnesium supplementation is commonly used to support a low magnesium diet. This investigation set out to determine whether magnesium in a cream could be absorbed transdermally in humans to improve magnesium status. In this single blind, parallel designed pilot study, n = 25 participants (aged 34.3+/-14.8y, height 171.5+/-11cm, weight 75.9 +/-14 Kg) were randomly assigned to either a 56mg/day magnesium cream or placebo cream group for two weeks. Magnesium serum and 24hour urinary excretion were measured at baseline and at 14 days intervention. Food diaries were recorded for 8 days during this period. Mg test and placebo groups' serum and urinary Mg did not differ at baseline. After the Mg2+ cream intervention there was a clinically relevant increase in serum magnesium (0.82 to 0.89 mmol/l,p = 0.29) that was not seen in the placebo group (0.77 to 0.79 mmol/L), but was only statistically significant (p = 0.02)) in a subgroup of non-athletes. Magnesium urinary excretion increased from baseline slightly in the Mg2+ group but with no statistical significance (p = 0.48). The Mg2+ group showed an 8.54% increase in serum Mg2+ and a 9.1% increase in urinary Mg2+ while these figures for the placebo group were smaller, i.e. +2.6% for serum Mg2+ and -32% for urinary Mg2+. In the placebo group, both serum and urine concentrations showed no statistically significant change after the application of the placebo cream. No previous studies have looked at transdermal absorbency of Mg2+ in human subjects. In this pilot study, transdermal delivery of 56 mg Mg/day (a low dose compared with commercial transdermal Mg2+ products available) showed a larger percentage rise in both serum and urinary markers from pre to post intervention compared with subjects using the placebo cream, but statistical significance was achieved only for serum Mg2+ in a subgroup of non-athletes. Future studies should look at higher dosage of magnesium cream for longer durations. ISRCTN registry ID No. ISRTN

  14. Effect of transdermal magnesium cream on serum and urinary magnesium levels in humans: A pilot study

    PubMed Central

    Tanner, Amy; Sullivan, Keith; McAuley, William; Plesset, Michael

    2017-01-01

    Background Oral magnesium supplementation is commonly used to support a low magnesium diet. This investigation set out to determine whether magnesium in a cream could be absorbed transdermally in humans to improve magnesium status. Methods and findings In this single blind, parallel designed pilot study, n = 25 participants (aged 34.3+/-14.8y, height 171.5+/-11cm, weight 75.9 +/-14 Kg) were randomly assigned to either a 56mg/day magnesium cream or placebo cream group for two weeks. Magnesium serum and 24hour urinary excretion were measured at baseline and at 14 days intervention. Food diaries were recorded for 8 days during this period. Mg test and placebo groups’ serum and urinary Mg did not differ at baseline. After the Mg2+ cream intervention there was a clinically relevant increase in serum magnesium (0.82 to 0.89 mmol/l,p = 0.29) that was not seen in the placebo group (0.77 to 0.79 mmol/L), but was only statistically significant (p = 0.02)) in a subgroup of non-athletes. Magnesium urinary excretion increased from baseline slightly in the Mg2+ group but with no statistical significance (p = 0.48). The Mg2+ group showed an 8.54% increase in serum Mg2+ and a 9.1% increase in urinary Mg2+ while these figures for the placebo group were smaller, i.e. +2.6% for serum Mg2+ and -32% for urinary Mg2+. In the placebo group, both serum and urine concentrations showed no statistically significant change after the application of the placebo cream. Conclusion No previous studies have looked at transdermal absorbency of Mg2+ in human subjects. In this pilot study, transdermal delivery of 56 mg Mg/day (a low dose compared with commercial transdermal Mg2+ products available) showed a larger percentage rise in both serum and urinary markers from pre to post intervention compared with subjects using the placebo cream, but statistical significance was achieved only for serum Mg2+ in a subgroup of non-athletes. Future studies should look at higher dosage of magnesium cream for

  15. Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wire

    DOEpatents

    Suplinskas, Raymond J.; Finnemore, Douglas; Bud'ko, Serquei; Canfield, Paul

    2007-11-13

    A chemically doped boron coating is applied by chemical vapor deposition to a silicon carbide fiber and the coated fiber then is exposed to magnesium vapor to convert the doped boron to doped magnesium diboride and a resultant superconductor.

  16. Magnesium Alloys for Space Hardware Design

    NASA Technical Reports Server (NTRS)

    Aroh, Joseph

    2017-01-01

    There have been advances in magnesium alloy development that NASA has not taken into consideration for space hardware because of a lack of test data. Magnesium alloys offer excellent weight reduction, specific strength, and deep space radiation mitigation. Traditionally, magnesium has been perceived as having too poor of a flammability resistance and corrosion resistance to be used for flight. Recent developments in magnesium alloying has led to the formation of two alloys, WE43 and Elektron 21, which are self-extinguishing and significantly less flammable because of their composition. Likewise, an anodizing process called Tagnite was formulated to deter any concern with galvanic and saltwater corrosion. The Materials Science Branch at Kennedy Space Center is currently researching these new alloys and treatments to better understand how they behave in the harsh environment of space. Successful completion of the proposed testing should result in a more thorough understanding of modern aerospace materials and processes, and possibly the permission to use magnesium alloys in future NASA designs.

  17. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  18. [Magnesium sulphate in the treatment of ischemic-hypoxic neonatal encephalopathy].

    PubMed

    Kornacka, M K

    2001-01-01

    Hypoxic-ischaemic encephalopathy (HIE) remains one of the most important neurological complications in full and near full term newborns. During HIE glutamate and other excitatory neurotransmitters are released and progressive energy failure in brain is observed. Toxicity of glutamate plays the main role in brain injury. Glutamate activates the specific receptors that, in turn, mediate an overwhelming influx of calcium into the postsynaptic neuron. The pathological changes are located particularly in hippocampus. Magnesium sulfate has been used safely for years to treat preclampsia. The animal experimental evidence support a neuroprotective role for magnesium in HIE.

  19. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status?

    PubMed

    Rosanoff, Andrea; Dai, Qi; Shapses, Sue A

    2016-01-01

    Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2-2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. © 2016 American Society for Nutrition.

  20. High Dietary Magnesium Intake Is Associated with Low Insulin Resistance in the Newfoundland Population

    PubMed Central

    Shea, Jennifer; Wadden, Danny; Gulliver, Wayne; Randell, Edward; Vasdev, Sudesh; Sun, Guang

    2013-01-01

    Background Magnesium plays a role in glucose and insulin homeostasis and evidence suggests that magnesium intake is associated with insulin resistance (IR). However, data is inconsistent and most studies have not adequately controlled for critical confounding factors. Objective The study investigated the association between magnesium intake and IR in normal-weight (NW), overweight (OW) and obese (OB) along with pre- and post- menopausal women. Design A total of 2295 subjects (590 men and 1705 women) were recruited from the CODING study. Dietary magnesium intake was computed from the Willett Food Frequency Questionnaire (FFQ). Adiposity (NW, OW and OB) was classified by body fat percentage (%BF) measured by Dual-energy X-ray absorptiometry according to the Bray criteria. Multiple regression analyses were used to test adiposity-specific associations of dietary magnesium intake on insulin resistance adjusting for caloric intake, physical activity, medication use and menopausal status. Results Subjects with the highest intakes of dietary magnesium had the lowest levels of circulating insulin, HOMA-IR, and HOMA-ß and subjects with the lowest intake of dietary magnesium had the highest levels of these measures, suggesting a dose effect. Multiple regression analysis revealed a strong inverse association between dietary magnesium with IR. In addition, adiposity and menopausal status were found to be critical factors revealing that the association between dietary magnesium and IR was stronger in OW and OB along with Pre-menopausal women. Conclusion The results of this study indicate that higher dietary magnesium intake is strongly associated with the attenuation of insulin resistance and is more beneficial for overweight and obese individuals in the general population and pre-menopausal women. Moreover, the inverse correlation between insulin resistance and dietary magnesium intake is stronger when adjusting for %BF than BMI. PMID:23472169

  1. Nanostructured magnesium has fewer detrimental effects on osteoblast function.

    PubMed

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.

  2. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    PubMed Central

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  3. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner.

    PubMed

    Cross, Sarah N; Nelson, Rachel A; Potter, Julie A; Norwitz, Errol R; Abrahams, Vikki M

    2018-04-30

    Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO 4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO 4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO 4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO 4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO 4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO 4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Impact of intravenous magnesium infusion rate during ambulatory replacements on serum magnesium concentrations after allogeneic stem cell transplant.

    PubMed

    Snyder, Matthew; Shillingburg, Alexandra; Newton, Michael; Hamadani, Mehdi; Kanate, Abraham S; Craig, Michael; Cumpston, Aaron

    2016-10-01

    For an outpatient cancer center to operate efficiently, optimizing the use of chair time is essential. Allogeneic hematopoietic cell transplant (allo-HCT) recipients are seen frequently in this setting after hospital discharge and regularly for several months thereafter. Aggressive electrolyte replacement is commonly required in these patients, primarily due to renal wasting with calcineurin inhibitor use. Frequent intravenous (IV) magnesium repletion, requiring several hours of infusion time, is often needed in these patients to adequately manage their magnesium deficiencies. The purpose of this study is to explore the impact of extending the infusion rate of intravenous magnesium sulfate on the frequency and degree of IV magnesium replacements required in allo-HCT recipients. We conducted a retrospective study to compare two cohorts of patients administered IV magnesium sulfate at a rate of 4 g/1 h versus 4 g/2 h. A total of 103 continuous patients were assessed in two groups as cohort 1 at the 4 g/1 h rate and cohort 2 at the 4 g/2 h rate. Cohort 1 required less IV magnesium per outpatient visit (median 2.2 vs. 2.9 g/visit, P = 0.0211) and less total IV magnesium replacement through day +100 (median 68 vs. 85 g, P = 0.0479) than cohort 2. These data suggest that there is no apparent benefit of prolonging magnesium infusion from 1 to 2 h in our outpatient allo-HCT population.

  5. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells

    PubMed Central

    Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity. PMID:27327435

  6. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    PubMed

    Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  7. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  8. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  9. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  10. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  11. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  12. Wide Strip Casting Technology of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  13. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status?12

    PubMed Central

    Rosanoff, Andrea; Dai, Qi; Shapses, Sue A

    2016-01-01

    Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2–2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. PMID:26773013

  14. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte

    PubMed Central

    Sheha, E.

    2015-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967

  15. The underestimated problem of using serum magnesium measurements to exclude magnesium deficiency in adults; a health warning is needed for "normal" results.

    PubMed

    Ismail, Yasmin; Ismail, Abbas A; Ismail, Adel A A

    2010-03-01

    A major use of serum magnesium measurements in clinical practice is to identify patients with deficiency. However, numerous studies have shown that magnesium deficiency is common and may be present in over 10% of hospitalized patients, as well as in the general population. An important cause for under diagnosis of deficiency is that serum magnesium, the most commonly used test, can be normal despite negative body stores. This article focuses on the limitations of "normal" magnesium results and highlights the importance of lifestyle or "modus vivendi" as a pragmatic means of identifying those individuals potentially at risk for negative body magnesium stores. Researched peer reviewed articles on magnesium published between 1990 and 2008 in MEDLINE and EMBASE, using database keywords "magnesium, deficiency, diagnosis, treatment and hypomagnesaemia". Bibliographies of retrieved articles have been searched and followed. We have also performed a manual search of each individual issue in which most of these reports have appeared. In 183 peer reviewed studies published from 1990 to 2008, magnesium deficiency was associated with increased prevalence and risk in 11 major conditions. Similarly, in 68 studies performed over the same period, magnesium deficiency was found to predict adverse events and a decreased risk of pathology was noted when supplementation or treatment was instituted. The perception that "normal" serum magnesium excludes deficiency is common among clinicians. This perception is probably enforced by the common laboratory practice of highlighting only abnormal results. A health warning is therefore warranted regarding potential misuse of "normal" serum magnesium because restoration of magnesium stores in deficient patients is simple, tolerable, inexpensive and can be clinically beneficial.

  16. Forced-flow chromatographic determination of calcium and magnesium with continuous spectrophotometric detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, M.D.

    1977-12-01

    Modifications to the forced-flow chromatograph include a flow-through pH monitor to continuously monitor the pH of the final effluent and an active low-pass filter to eliminate noise in the spectrophotometric detector. All separations are performed using partially sulfonated XAD-2 as the ion exchanger. Elution of calcium and magnesium is accomplished using ammonium chloride and ethylenediammonium chloride solutions. Calcium and magnesium are detected by means of Arsenazo I and PAR-ZnEDTA color-forming reagents. Other metal ions are detected by means of PAR and Chromazurol S color-forming reagents. Calcium and magnesium distribution coefficients on partially sulfonated XAD-2 as functions of ammonium chloride andmore » ethylenediammonium chloride concentration are given together with distribution coefficients of other metal ions. Methods for the selective elution of interfering metal ions prior to the elution of calcium and magnesium are described. Beryllium and aluminum are selectively eluted with sulfosalicylic acid. Those elements forming anionic chloride complexes are selectively eluted with HCl-acetone. Nickel is selectively eluted with HCl-acetone-dimethylglyoxime. Synthetic samples containing calcium and magnesium, both alone and in combination with alkali metals, strontium, barium, beryllium, aluminum, transition metals, and rare earths, are analyzed. Hard water samples are analyzed for calcium and magnesium and the results compared to those obtained by EDTA titration, atomic absorption spectroscopy, and plasma emission spectroscopy. Several clinical serum samples are analyzed for calcium and magnesium and the results compared to those obtained by atomic absorption spectroscopy.« less

  17. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  18. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  19. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  20. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  1. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  2. Magnesium in obstetric anesthesia and intensive care.

    PubMed

    Kutlesic, Marija S; Kutlesic, Ranko M; Mostic-Ilic, Tatjana

    2017-02-01

    Magnesium, one of the essential elements in the human body, has numerous favorable effects that offer a variety of possibilities for its use in obstetric anesthesia and intensive care. Administered as a single intravenous bolus dose or a bolus followed by continuous infusion during surgery, magnesium attenuates stress response to endotracheal intubation, and reduces intraoperative anesthetic and postoperative analgesic requirements, while at the same time preserving favorable hemodynamics. Applied as part of an intrathecal or epidural anesthetic mixture, magnesium prolongs the duration of anesthesia and diminishes total postoperative analgesic consumption with no adverse maternal or neonatal effects. In obstetric intensive care, magnesium represents a first-choice medication in the treatment and prevention of eclamptic seizures. If used in recommended doses with close monitoring, magnesium is a safe and effective medication.

  3. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  4. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  5. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  6. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  7. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  8. Electrolytes for magnesium electrochemical cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  9. Magnesium Electrorefining in Non-Aqueous Electrolyte at Room Temperature

    NASA Astrophysics Data System (ADS)

    Kwon, Kyungjung; Park, Jesik; Kusumah, Priyandi; Dilasari, Bonita; Kim, Hansu; Lee, Churl Kyoung

    Magnesium, of which application is often limited by its poor corrosion resistance, is more vulnerable to corrosion with existence of metal impurities such as Fe. Therefore, for the refining and recycling of magnesium, high temperature electrolysis using molten salts has been frequently adopted. In this report, the purification of magnesium scrap by electrolysis at room temperature is investigated with non-aqueous electrolytes. An aprotic solvent of tetrahydrofuran (THF) was used as a solvent of the electrolyte. Magnesium scrap was used as anode materials and ethyl magnesium bromide (EtMgBr) was dissolved in THF for magnesium source. The purified magnesium can be uniformly electrodeposited on copper electrode under potentiostatic conditions. The deposits were confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis.

  10. High power rechargeable magnesium/iodine battery chemistry

    DOE PAGES

    Tian, Huajun; Gao, Tao; Li, Xiaogang; ...

    2017-01-10

    Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less

  11. High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Wei

    Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100

  12. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    PubMed

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  13. Microwave-induced electrostatic etching: generation of highly reactive magnesium for application in Grignard reagent formation.

    PubMed

    van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A

    2010-04-07

    A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.

  14. Magnesium degradation products: effects on tissue and human metabolism.

    PubMed

    Seitz, J-M; Eifler, R; Bach, Fr-W; Maier, H J

    2014-10-01

    Owing to their mechanical properties, metallic materials present a promising solution in the field of resorbable implants. The magnesium metabolism in humans differs depending on its introduction. The natural, oral administration of magnesium via, for example, food, essentially leads to an intracellular enrichment of Mg(2+) . In contrast, introducing magnesium-rich substances or implants into the tissue results in a different decomposition behavior. Here, exposing magnesium to artificial body electrolytes resulted in the formation of the following products: magnesium hydroxide, magnesium oxide, and magnesium chloride, as well as calcium and magnesium apatites. Moreover, it can be assumed that Mg(2+) , OH(-) ions, and gaseous hydrogen are also present and result from the reaction for magnesium in an aqueous environment. With the aid of physiological metabolic processes, the organism succeeds in either excreting the above mentioned products or integrating them into the natural metabolic process. Only a burst release of these products is to be considered a problem. A multitude of general tissue effects and responses from the Mg's degradation products is considered within this review, which is not targeting specific implant classes. Furthermore, common alloying elements of magnesium and their hazardous potential in vivo are taken into account. © 2013 Wiley Periodicals, Inc.

  15. Acoustic Emission of Deformation Twinning in Magnesium

    PubMed Central

    Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K. T.; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D.; Molodov, Dmitri A.; Kontsos, Antonios

    2016-01-01

    The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach. PMID:28773786

  16. Immunological Response to Biodegradable Magnesium Implants

    NASA Astrophysics Data System (ADS)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  17. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  18. Benefits of magnesium wheels for consumer cars

    NASA Astrophysics Data System (ADS)

    Frishfelds, Vilnis; Timuhins, Andrejs; Bethers, Uldis

    2018-05-01

    Advantages and disadvantages of magnesium wheels are considered based on a mechanical model of a car. Magnesium wheels are usually applied to racing cars as they provide slightly better strength/weight ratio than aluminum alloys. Do they provide notable benefits also for the everyday user when the car speeds do not exceed allowed speed limit? Distinct properties of magnesium rims are discussed. Apart from lighter weight of magnesium alloys, they are also good in dissipating the energy of vibrations. The role of energy dissipation in the rim of a wheel is estimated by a quarter car model. Improvements to safety by using the magnesium wheels are considered. Braking distance and responsiveness of the car is studied both with and without using an Anti Blocking System (ABS). Influence of rim weight on various handling parameters of the car is quantitatively tested.

  19. Magnesium in the gynecological practice: a literature review.

    PubMed

    Parazzini, Fabio; Di Martino, Mirella; Pellegrino, Paolo

    2017-02-01

    A growing amount of evidence suggests that magnesium deficiency may play an important role in several clinical conditions concerning women health such as premenstrual syndrome, dysmenorrhea, and postmenopausal symptoms. A number of studies highlighted a positive correlation between magnesium administration and relief or prevention of these symptoms, thus suggesting that magnesium supplementation may represent a viable treatment for these conditions. Despite this amount of evidence describing the efficacy of magnesium, few and un-systematize data are available about the pharmacological mechanism of this ion for these conditions. Herein, we review and systematize the available evidence about the use of oral magnesium supplementation in several gynecological conditions and discuss the pharmacological mechanisms that characterize these interventions. The picture that emerges indicates that magnesium supplementation is effective in the prevention of dysmenorrhea, premenstrual syndrome, and menstrual migraine and in the prevention of climacteric symptoms.

  20. Texture evolution during thermomechanical processing in rare earth free magnesium alloys

    NASA Astrophysics Data System (ADS)

    Miller, Victoria Mayne

    The use of wrought magnesium alloys is highly desirable for a wide range of applications where low component weight is desirable due to the high specific strength and stiffness the alloys can achieve. However, the implementation of wrought magnesium has been hindered by the limited room temperature formability which typically results from deformation processing. This work identifies opportunities for texture modification during thermomechanical processing of conventional (rare earth free) magnesium alloys via a combination of experimental investigation and polycrystal plasticity simulations. During deformation, it is observed that a homogeneous distribution of coarse intermetallic particles efficiently weakens deformation texture at all strain levels, while a highly inhomogeneous particle distribution is only effective at high strains. The particle deformation effects are complemented by the addition of alkaline earth solute, which modifies the relative deformation mode activity. During recrystallization, grains with basal orientations recrystallize more readily than off-basal grains, despite similar levels of internal misorientation. Dislocation substructure investigations revealed that this is a result of enhanced nucleation in the basal grains due to the dominance of prismatic slip. This dissertation identifies avenues to enhance the potential formability of magnesium alloys during thermomechanical processing by minimizing the evolved texture strength. The following are the identified key aspects of microstructural control: -Maintaining a fine grain size, likely via Zener pinning, to favorably modify deformation mode activity and homogenize deformation. -Developing a coarse, homogeneously distributed population of coarse intermetallic particles to promote a diffuse deformation texture. -Minimizing the activity of prismatic slip to retard the recrystallization of grains with basal orientations, allowing the development of a more diffuse recrystallization texture.

  1. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries

    NASA Astrophysics Data System (ADS)

    Schloffer, Daniel; Bozorgi, Salar; Sherstnev, Pavel; Lenardt, Christian; Gollas, Bernhard

    2017-11-01

    The fabrication of thin foils of magnesium for use as anode material in rechargeable magnesium ion batteries is described. In order to improve its workability, the magnesium was alloyed by melting metallurgy with zinc and/or gadolinium, producing saturated solid solutions. The material was extruded to thin foils and rolled to a thickness of approximately 100 μm. The electrochemical behavior of Mg-1.63 wt% Zn, Mg-1.55 wt% Gd and Mg-1.02 wt% Zn-1.01 wt% Gd was studied in (PhMgCl)2-AlCl3/THF electrolyte by cyclic voltammetry and galvanostatic cycling in symmetrical cells. Analysis of the current-potential curves in the Tafel region and the linear region close to the equilibrium potential show almost no effect of the alloying elements on the exchange current densities (5-45 μA/cm2) and the transfer coefficients. Chemical analyses of the alloy surfaces and the electrolyte demonstrate that the alloying elements not only dissolve with the magnesium during the anodic half-cycles, but also re-deposit during the cathodic half-cycles together with the magnesium and aluminum from the electrolyte. Given the negligible corrosion rate in aprotic electrolytes under such conditions, no adverse effects of alloying elements are expected for the performance of magnesium anodes in secondary batteries.

  2. The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants.

    PubMed

    Badar, Muhammad; Lünsdorf, Heinrich; Evertz, Florian; Rahim, Muhammad Imran; Glasmacher, Birgit; Hauser, Hansjörg; Mueller, Peter P

    2013-07-01

    Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Fracture healing using degradable magnesium fixation plates and screws.

    PubMed

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Magnesium intake, bone mineral density, and fractures: results from the Women's Health Initiative Observational Study1234

    PubMed Central

    Orchard, Tonya S; Larson, Joseph C; Alghothani, Nora; Bout-Tabaku, Sharon; Cauley, Jane A; Chen, Zhao; LaCroix, Andrea Z; Wactawski-Wende, Jean; Jackson, Rebecca D

    2014-01-01

    Background: Magnesium is a necessary component of bone, but its relation to osteoporotic fractures is unclear. Objective: We examined magnesium intake as a risk factor for osteoporotic fractures and altered bone mineral density (BMD). Design: This prospective cohort study included 73,684 postmenopausal women enrolled in the Women's Health Initiative Observational Study. Total daily magnesium intake was estimated from baseline food-frequency questionnaires plus supplements. Hip fractures were confirmed by a medical record review; other fractures were identified by self-report. A baseline BMD analysis was performed in 4778 participants. Results: Baseline hip BMD was 3% higher (P < 0.001), and whole-body BMD was 2% higher (P < 0.001), in women who consumed >422.5 compared with <206.5 mg Mg/d. However, the incidence and RR of hip and total fractures did not differ across quintiles of magnesium. In contrast, risk of lower-arm or wrist fractures increased with higher magnesium intake [multivariate-adjusted HRs of 1.15 (95% CI: 1.01, 1.32) and 1.23 (95% CI: 1.07, 1.42) for quintiles 4 and 5, respectively, compared with quintile 1; P-trend = 0.002]. In addition, women with the highest magnesium intakes were more physically active and at increased risk of falls [HR for quintile 4: 1.11 (95% CI: 1.06, 1.16); HR for quintile 5: 1.15 (95% CI: 1.10, 1.20); P-trend < 0.001]. Conclusions: Lower magnesium intake is associated with lower BMD of the hip and whole body, but this result does not translate into increased risk of fractures. A magnesium consumption slightly greater than the Recommended Dietary Allowance is associated with increased lower-arm and wrist fractures that are possibly related to more physical activity and falls. This trial was registered at clinicaltrials.gov as NCT00000611. PMID:24500155

  5. Magnesium/Calcium Competition at Excitable Membranes.

    ERIC Educational Resources Information Center

    Belzer, Bill; Fry, Panni

    1998-01-01

    Considers some consequences of altering intracellular calcium supply by magnesium concentration changes. Focuses on using this procedure as an exercise with allied health students as they witness therapeutic uses of magnesium and other calcium entry inhibitors. (DDR)

  6. Magnesium Oxide

    MedlinePlus

    ... used for different reasons. Some people use it as an antacid to relieve heartburn, sour stomach, or acid indigestion. Magnesium oxide also may be used as a laxative for short-term, rapid emptying of ...

  7. Contribution of activity to the circadian rhythm in excretion of magnesium and calcium.

    DOT National Transportation Integrated Search

    1968-03-01

    Eight subjects were maintained on a standard dietary regimen ingested every four hours for 120 hours. Measurements of the magnesium and calcium excretion in these subjects revealed a circadian periodicity with maximal levels of excretion for both ion...

  8. Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and meta-analysis of prospective cohort studies.

    PubMed

    Han, Hedong; Fang, Xin; Wei, Xin; Liu, Yuzhou; Jin, Zhicao; Chen, Qi; Fan, Zhongjie; Aaseth, Jan; Hiyoshi, Ayako; He, Jia; Cao, Yang

    2017-05-05

    The findings of prospective cohort studies are inconsistent regarding the association between dietary magnesium intake and serum magnesium concentration and the risk of hypertension. We aimed to review the evidence from prospective cohort studies and perform a dose-response meta-analysis to investigate the relationship between dietary magnesium intake and serum magnesium concentrations and the risk of hypertension. We searched systematically PubMed, EMBASE and the Cochrane Library databases from October 1951 through June 2016. Prospective cohort studies reporting effect estimates with 95% confidence intervals (CIs) for hypertension in more than two categories of dietary magnesium intake and/or serum magnesium concentrations were included. Random-effects models were used to combine the estimated effects. Nine articles (six on dietary magnesium intake, two on serum magnesium concentration and one on both) of ten cohort studies, including 20,119 cases of hypertension and 180,566 participates, were eligible for inclusion in the meta-analysis. We found an inverse association between dietary magnesium intake and the risk of hypertension [relative risk (RR) = 0.92; 95% CI: 0.86, 0.98] comparing the highest intake group with the lowest. A 100 mg/day increment in magnesium intake was associated with a 5% reduction in the risk of hypertension (RR = 0.95; 95% CI: 0.90, 1.00). The association of serum magnesium concentration with the risk of hypertension was marginally significant (RR = 0.91; 95% CI: 0.80, 1.02). Current evidence supports the inverse dose-response relationship between dietary magnesium intake and the risk of hypertension. However, the evidence about the relationship between serum magnesium concentration and hypertension is limited.

  9. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  10. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  11. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  12. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  13. Magnesium doping of boron nitride nanotubes

    DOEpatents

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  14. 40 CFR 461.60 - Applicability; description of the magnesium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries. ...

  15. 40 CFR 461.60 - Applicability; description of the magnesium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries. ...

  16. 40 CFR 461.60 - Applicability; description of the magnesium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries. ...

  17. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    PubMed

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design.

  18. 21 CFR 201.71 - Magnesium labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... disease [bullet] a magnesium-restricted diet”. The warnings in §§ 201.64(c), 201.70(c), 201.71(c), and 201...., a magnesium or potassium-restricted diet. 1 See § 201.66(b)(4) of this chapter for definition of...

  19. 21 CFR 201.71 - Magnesium labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... disease [bullet] a magnesium-restricted diet”. The warnings in §§ 201.64(c), 201.70(c), 201.71(c), and 201...., a magnesium or potassium-restricted diet. 1 See § 201.66(b)(4) of this chapter for definition of...

  20. 21 CFR 201.71 - Magnesium labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... disease [bullet] a magnesium-restricted diet”. The warnings in §§ 201.64(c), 201.70(c), 201.71(c), and 201...., a magnesium or potassium-restricted diet. 1 See § 201.66(b)(4) of this chapter for definition of...

  1. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  2. An Open and Shut Case: The Interaction of Magnesium with MST Enzymes

    PubMed Central

    2016-01-01

    The shikimate pathway of bacteria, fungi, and plants generates chorismate, which is drawn into biosynthetic pathways that form aromatic amino acids and other important metabolites, including folates, menaquinone, and siderophores. Many of the pathways initiated at this branch point transform chorismate using an MST enzyme. The MST enzymes (menaquinone, siderophore, and tryptophan biosynthetic enzymes) are structurally homologous and magnesium-dependent, and all perform similar chemical permutations to chorismate by nucleophilic addition (hydroxyl or amine) at the 2-position of the ring, inducing displacement of the 4-hydroxyl. The isomerase enzymes release isochorismate or aminodeoxychorismate as the product, while the synthase enzymes also have lyase activity that displaces pyruvate to form either salicylate or anthranilate. This has led to the hypothesis that the isomerase and lyase activities performed by the MST enzymes are functionally conserved. Here we have developed tailored pre-steady-state approaches to establish the kinetic mechanisms of the isochorismate and salicylate synthase enzymes of siderophore biosynthesis. Our data are centered on the role of magnesium ions, which inhibit the isochorismate synthase enzymes but not the salicylate synthase enzymes. Prior structural data have suggested that binding of the metal ion occludes access or egress of substrates. Our kinetic data indicate that for the production of isochorismate, a high magnesium ion concentration suppresses the rate of release of product, accounting for the observed inhibition and establishing the basis of the ordered-addition kinetic mechanism. Moreover, we show that isochorismate is channeled through the synthase reaction as an intermediate that is retained in the active site by the magnesium ion. Indeed, the lyase-active enzyme has 3 orders of magnitude higher affinity for the isochorismate complex relative to the chorismate complex. Apparent negative-feedback inhibition by ferrous

  3. Association between Magnesium Disorders and Hypocalcemia following Thyroidectomy.

    PubMed

    Nellis, Jason C; Tufano, Ralph P; Gourin, Christine G

    2016-09-01

    To identify factors associated with postoperative hypocalcemia after thyroid surgery and to understand the relationship among hypocalcemia, length of hospitalization, and costs of care. Retrospective database analysis. Discharge data from the Nationwide Inpatient Sample for 620,744 patients who underwent thyroid surgery from 2001 to 2010 were analyzed through cross-tabulations and multivariate regression modeling. Hypocalcemia, length of stay, and costs were examined as dependent variables. Secondary independent variables included magnesium and phosphate metabolism disorders, vitamin D deficiency, menopause, sex, extent of surgery, malignancy, and surgeon volume. Hypocalcemia was reported in 6% of patients and was significantly more common for the following variables: women, age <65 years, patients from the Northeast, total thyroidectomy ± neck dissection patients, low-volume surgical care, malignancy, recurrent laryngeal nerve injury, and patients with disorders of magnesium or phosphate metabolism (P < .001). Magnesium and phosphate disorders were present in <1% of patients. Magnesium disorders were significantly more likely for patients with hypocalcemia (7%; P < .001), and hypocalcemia was present in 52% of patients with magnesium disorders (P < .001). On multiple logistic regression analysis, the odds of hypocalcemia were greatest for patients with magnesium disorders (odds ratio, 12.71; 95% confidence interval, 8.59-18.82). This relationship was not attenuated by high-volume surgical care. Hypocalcemia and magnesium disorders were both associated with increased length of stay and costs, with a greater effect for magnesium disorders than for hypocalcemia (P < .001). Disorders of magnesium metabolism are an independent risk factor for postthyroidectomy hypocalcemia and are associated with significantly increased costs and length of stay. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  4. Magnesium-Based Corrosion Nano-Cells For Reductive Transformation Of Contaminants

    EPA Science Inventory

    Magnesium, with its potential to reduce a variety of aqueous contaminants, unique self-limiting corrosion behavior affording long active life times, natural abundance, low cost, and environmentally friendly nature, promises to be an effective technology. However, nanoparticles o...

  5. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  6. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  7. Improved biological performance of magnesium by micro-arc oxidation

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2014-01-01

    Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917

  8. The Effects of High Level Magnesium Dialysis/Substitution Fluid on Magnesium Homeostasis under Regional Citrate Anticoagulation in Critically Ill

    PubMed Central

    Los, Ferdinand; Brodska, Helena

    2016-01-01

    Background The requirements for magnesium (Mg) supplementation increase under regional citrate anticoagulation (RCA) because citrate acts by chelation of bivalent cations within the blood circuit. The level of magnesium in commercially available fluids for continuous renal replacement therapy (CRRT) may not be sufficient to prevent hypomagnesemia. Methods Patients (n = 45) on CRRT (2,000 ml/h, blood flow (Qb) 100 ml/min) with RCA modality (4% trisodium citrate) using calcium free fluid with 0.75 mmol/l of Mg with additional magnesium substitution were observed after switch to the calcium-free fluid with magnesium concentration of 1.50 mmol/l (n = 42) and no extra magnesium replenishment. All patients had renal indications for CRRT, were treated with the same devices, filters and the same postfilter ionized calcium endpoint (<0.4 mmol/l) of prefilter citrate dosage. Under the high level Mg fluid the Qb, dosages of citrate and CRRT were consequently escalated in 9h steps to test various settings. Results Median balance of Mg was -0.91 (-1.18 to -0.53) mmol/h with Mg 0.75 mmol/l and 0.2 (0.06–0.35) mmol/h when fluid with Mg 1.50 mmol/l was used. It was close to zero (0.02 (-0.12–0.18) mmol/h) with higher blood flow and dosage of citrate, increased again to 0.15 (-0.11–0.25) mmol/h with 3,000 ml/h of high magnesium containing fluid (p<0.001). The arterial levels of Mg were mildly increased after the change for high level magnesium containing fluid (p<0.01). Conclusions Compared to ordinary dialysis fluid the mildly hypermagnesemic fluid provided even balances and adequate levels within ordinary configurations of CRRT with RCA and without a need for extra magnesium replenishment. Trial Registration ClinicalTrials.gov Identifier: NCT01361581 PMID:27391902

  9. A review on magnesium alloys as biodegradable materials

    NASA Astrophysics Data System (ADS)

    Gu, Xue-Nan; Zheng, Yu-Feng

    2010-06-01

    Magnesium alloys attracted great attention as a new kind of degradable biomaterials. One research direction of biomedical magnesium alloys is based on the industrial magnesium alloys system, and another is the self-designed biomedical magnesium alloys from the viewpoint of biomaterials. The mechanical, biocorrosion properties and biocompatibilities of currently reported Mg alloys were summarized in the present paper, with the mechanical properties of bone tissue, the healing period postsurgery, the pathophysiology and toxicology of the alloying elements being discussed. The strategy in the future development of biomedical Mg alloys was proposed.

  10. Monomolecular Silane Coatings on Magnesium/Aluminium Fuels

    DTIC Science & Technology

    1991-07-01

    iii SUMMARY The aim of this project was to investigate the curing reaction between CTBN and magnesium/aluminium ailoy surfaces. A dispersion of...performing rheoloqacai experiments with these coated magnesium particles and CTBN . Surface analysis ot the alloys show a nigh percentage of magnesium...Rheoloq’cai analysis of these alloys dispersed 40% w/w in CTBN show increasing rates of change in viscosity with time for each alloy with increasing nominal

  11. Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling

    PubMed Central

    Pontier, Dominique; Albrieux, Catherine; Joyard, Jacques; Lagrange, Thierry; Block, Maryse

    2007-01-01

    Protoporphyrin IX is the last common intermediate between the haem and chlorophyll biosynthesis pathways. The addition of Mg directs this molecule toward chlorophyll biosynthesis. The first step downstream from the branchpoint is catalyzed by the Mg chelatase and is a highly regulated process. The corresponding product, Mg protoporphyrin IX, has been proposed to play an important role as a signaling molecule implicated in plastid-to-nucleus communication. In order to get more information on the chlorophyll biosynthesis pathway and on Mg protoporphyrin IX derivative functions, we have identified an Mg protoporphyrin IX methyltransferase (CHLM) knock-out mutant in Arabidopsis in which the mutation induces a blockage downstream from Mg protoporphyrin IX and an accumulation of this chlorophyll biosynthesis intermediate. Our results demonstrate that the CHLM gene is essential for the formation of chlorophyll and subsequently for the formation of photosystems I and II and cyt b6f complexes. Analysis of gene expression in the chlm mutant provides an independent indication that Mg protoporphyrin IX is a negative effector of nuclear photosynthetic gene expression, as previously reported. Moreover, it suggests the possible implication of Mg protoporphyrin IX methylester, the product of CHLM, in chloroplast-to-nucleus signaling. Finally, post-transcriptional up-regulation of the level of the CHLH subunit of the Mg chelatase has been detected in the chlm mutant and most likely corresponds to specific accumulation of this protein inside plastids. This result suggests that the CHLH subunit might play an important regulatory role when the chlorophyll biosynthetic pathway is disrupted at this particular step. PMID:17135235

  12. Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy

    PubMed Central

    Wang, Qian; Xie, Liping; He, Zhizhu; Di, Derui; Liu, Jing

    2012-01-01

    Background Recently, nanoparticles have been demonstrated to have tremendous merit in terms of improving the treatment specificity and thermal ablation effect on tumors. However, the potential toxicity and long-term side effects caused by the introduced nanoparticles and by expelling them out of the body following surgery remain a significant challenge. Here, we propose for the first time to directly adopt magnesium nanoparticles as the heating enhancer in laser thermal ablation to avoid these problems by making full use of the perfect biodegradable properties of this specific material. Methods To better understand the new nano “green” hyperthermia modality, we evaluated the effects of magnesium nanoparticles on the temperature transients inside the human body subject to laser interstitial heating. Further, we experimentally investigated the heating enhancement effects of magnesium nanoparticles on a group of biological samples: oil, egg white, egg yolk, in vitro pig tissues, and the in vivo hind leg of rabbit when subjected to laser irradiation. Results Both the theoretical simulations and experimental measurements demonstrated that the target tissues injected with magnesium nanoparticles reached much higher temperatures than tissues without magnesium nanoparticles. This revealed the enhancing behavior of the new nanohyperthermia method. Conclusion Given the unique features of magnesium nanoparticles – their complete biological safety and ability to enhance heating – which most other advanced metal nanoparticles do not possess, the use of magnesium nanoparticles in hyperthermia therapy offers an important “green” nanomedicine modality for treating tumors. This method has the potential to be used in clinics in the near future. PMID:22956872

  13. Biocorrosion rate and mechanism of metallic magnesium in model arterial environments

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick K.

    A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. Research done up to the onset of research contained in this dissertation, for the most part, failed to define realistic physiological corrosion mechanisms, and failed to correlate degradation rates between in vitro and in vivo environments. Six previously published works form the basis of this dissertation. The topics of these papers include (1) a method by which tensile testing may be applied to evaluate biomaterial degradation; (2) a suite of approaches that can be used to screen candidate absorbable magnesium biomaterials; (3) in vivo-in vitro environmental correlations based on mechanical behavior; (4) a similar correlation on the basis of penetration rate; (5) a mid-to-late stage physiological corrosion mechanism for magnesium in an arterial environment; and (6) the identification of corrosion products in degradable magnesium using transmission electron microscopy.

  14. Multi-functional magnesium alloys containing interstitial oxygen atoms

    PubMed Central

    Kang, H.; Choi, H. J.; Kang, S. W.; Shin, S. E.; Choi, G. S.; Bae, D. H.

    2016-01-01

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design. PMID:26976372

  15. Magnesium in Disease Prevention and Overall Health12

    PubMed Central

    Volpe, Stella Lucia

    2013-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation and has been recognized as a cofactor for >300 metabolic reactions in the body. Some of the processes in which magnesium is a cofactor include, but are not limited to, protein synthesis, cellular energy production and storage, reproduction, DNA and RNA synthesis, and stabilizing mitochondrial membranes. Magnesium also plays a critical role in nerve transmission, cardiac excitability, neuromuscular conduction, muscular contraction, vasomotor tone, blood pressure, and glucose and insulin metabolism. Because of magnesium’s many functions within the body, it plays a major role in disease prevention and overall health. Low levels of magnesium have been associated with a number of chronic diseases including migraine headaches, Alzheimer’s disease, cerebrovascular accident (stroke), hypertension, cardiovascular disease, and type 2 diabetes mellitus. Good food sources of magnesium include unrefined (whole) grains, spinach, nuts, legumes, and white potatoes (tubers). This review presents recent research in the areas of magnesium and chronic disease, with the goal of emphasizing magnesium’s role in disease prevention and overall health. PMID:23674807

  16. Intracellular magnesium detection by fluorescent indicators.

    PubMed

    Trapani, Valentina; Schweigel-Röntgen, Monika; Cittadini, Achille; Wolf, Federica I

    2012-01-01

    Magnesium is essential for a wide variety of biochemical reactions and physiological functions, but its regulatory mechanisms (both at the cellular and at the systemic level) are still poorly characterized. Not least among the reasons for this gap are the technical difficulties in sensing minor changes occurring over a high background concentration. Specific fluorescent indicators are highly sensitive tools for dynamic evaluation of intracellular magnesium concentration. We herein discuss the main criteria to consider when choosing a magnesium-specific fluorescent indicator and provide examples among commercial as well as developmental sensors. We focus on spectrofluorimetric approaches to quantify Mg(2+) concentration in cell or mitochondria suspensions, and on imaging techniques to detect intracellular magnesium distribution and fluxes by live microscopy, reporting a detailed description of standard protocols for each method. The general guidelines we provide should be applicable to specific issues by any researcher in the field. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Association of Cord Blood Magnesium Concentration and Neonatal Resuscitation

    PubMed Central

    Johnson, Lynn H.; Mapp, Delicia C.; Rouse, Dwight J.; Spong, Catherine Y.; Mercer, Brian M.; Leveno, Kenneth J.; Varner, Michael W.; Iams, Jay D.; Sorokin, Yoram; Ramin, Susan M.; Miodovnik, Menachem; O'Sullivan, Mary J.; Peaceman, Alan M.; Caritis, Steve N.

    2014-01-01

    Objective Assess the relationship between umbilical cord blood magnesium concentration and level of delivery room resuscitation received by neonates. Study design Secondary analysis of a controlled fetal neuroprotection trial that enrolled women at imminent risk for delivery between 24 and 31 weeks’ gestation and randomly allocated them to receive intravenous magnesium sulfate or placebo. The cohort included 1507 infants for whom total cord blood magnesium concentration and delivery room resuscitation information were available. Multivariable logistic regression was used to estimate the association between cord blood magnesium concentration and highest level of delivery room resuscitation, using the following hierarchy: none, oxygen only, bag-mask ventilation with oxygen, intubation or chest compressions. Results There was no relationship between cord blood magnesium and delivery room resuscitation (odds ratio [OR] 0.92 for each 1.0 mEq/L increase in magnesium; 95% confidence interval [CI]: 0.83-1.03). Maternal general anesthesia was associated with increased neonatal resuscitation (OR 2.51; 95% CI: 1.72-3.68). Each 1-week increase in gestational age at birth was associated with decreased neonatal resuscitation (OR 0.63; 95% CI: 0.60 – 0.66). Conclusion Cord blood magnesium concentration does not correlate with the level of delivery room resuscitation of infants exposed to magnesium sulfate for fetal neuroprotection. PMID:22056282

  18. Statistical Analysis on the Mechanical Properties of Magnesium Alloys

    PubMed Central

    Liu, Ruoyu; Jiang, Xianquan; Zhang, Hongju; Zhang, Dingfei; Wang, Jingfeng; Pan, Fusheng

    2017-01-01

    Knowledge of statistical characteristics of mechanical properties is very important for the practical application of structural materials. Unfortunately, the scatter characteristics of magnesium alloys for mechanical performance remain poorly understood until now. In this study, the mechanical reliability of magnesium alloys is systematically estimated using Weibull statistical analysis. Interestingly, the Weibull modulus, m, of strength for magnesium alloys is as high as that for aluminum and steels, confirming the very high reliability of magnesium alloys. The high predictability in the tensile strength of magnesium alloys represents the capability of preventing catastrophic premature failure during service, which is essential for safety and reliability assessment. PMID:29113116

  19. Impact of magnesium:calcium ratio on calcification of the aortic wall.

    PubMed

    Villa-Bellosta, Ricardo

    2017-01-01

    An inverse relationship between serum magnesium concentration and vascular calcification has been reported following observational clinical studies. Moreover, several studies have been suggesting a protective effect of magnesium on the vascular calcification. However, the exact mechanism remains elusive, and investigators have speculated among a myriad of potential actions. The effect of magnesium on calcification of the aortic wall is yet to be investigated. In the present study, the effects of magnesium and calcium on the metabolism of extracellular PPi, the main endogenous inhibitor of vascular calcification, were investigated in the rat aorta. Calcium and magnesium have antagonist effects on PPi hydrolysis in the aortic wall. Km and Ki values for PPi hydrolysis in rat aortic rings were 1.1 mmol/L magnesium and 32 μmol/L calcium, respectively, but ATP hydrolysis was not affected with calcium. Calcium deposition in the rat aortic wall dramatically increased when the magnesium concentration was increased (ratio of Mg:Ca = 1:1; 1.5 mmol/L calcium and 1.5 mmol/L magnesium) respect to low magnesium concentration (ratio Mg:Ca = 1:3, 1.5 mmol/L calcium and 0.75 mmol/L magnesium). Data from observational clinical studies showing that the serum magnesium concentration is inversely correlated with vascular calcification could be reinterpreted as a compensatory regulatory mechanism that reduces both PPi hydrolysis and vascular calcification. The impact of magnesium in vascular calcification in humans could be studied in association with calcium levels, for example, as the magnesium:calcium ratio.

  20. Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Zink, Peter A.; Pal, Uday B.; Powell, Adam C.

    2013-04-01

    Pure magnesium was recycled from partially oxidized 50.5 wt pct Mg-Al scrap alloy and AZ91 Mg alloy (9 wt pct Al, 1 wt pct Zn). Refining experiments were performed using a eutectic mixture of MgF2-CaF2 molten salt (flux). During the experiments, potentiodynamic scans were performed to determine the electrorefining potentials for magnesium dissolution and magnesium bubble nucleation in the flux. The measured electrorefining potential for magnesium bubble nucleation increased over time as the magnesium content inside the magnesium alloy decreased. Potentiostatic holds and electrochemical impedance spectroscopy were employed to measure the electronic and ionic resistances of the flux. The electronic resistivity of the flux varied inversely with the magnesium solubility. Up to 100 pct of the magnesium was refined from the Mg-Al scrap alloy by dissolving magnesium and its oxide into the flux followed by argon-assisted evaporation of dissolved magnesium and subsequently condensing the magnesium vapor. Solid oxide membrane electrolysis was also employed in the system to enable additional magnesium recovery from magnesium oxide in the partially oxidized Mg-Al scrap. In an experiment employing AZ91 Mg alloy, only the refining step was carried out. The calculated refining yield of magnesium from the AZ91 alloy was near 100 pct.

  1. The history of biodegradable magnesium implants: a review.

    PubMed

    Witte, Frank

    2010-05-01

    Today, more than 200years after the first production of metallic magnesium by Sir Humphry Davy in 1808, biodegradable magnesium-based metal implants are currently breaking the paradigm in biomaterial science to develop only highly corrosion resistant metals. This groundbreaking approach to temporary metallic implants is one of the latest developments in biomaterials science that is being rediscovered. It is a challenging topic, and several secrets still remain that might revolutionize various biomedical implants currently in clinical use. Magnesium alloys were investigated as implant materials long ago. A very early clinical report was given in 1878 by the physician Edward C. Huse. He used magnesium wires as ligature for bleeding vessels. Magnesium alloys for clinical use were explored during the last two centuries mainly by surgeons with various clinical backgrounds, such as cardiovascular, musculoskeletal and general surgery. Nearly all patients benefited from the treatment with magnesium implants. Although most patients experienced subcutaneous gas cavities caused by rapid implant corrosion, most patients had no pain and almost no infections were observed during the postoperative follow-up. This review critically summarizes the in vitro and in vivo knowledge and experience that has been reported on the use of magnesium and its alloys to advance the field of biodegradable metals. Copyright (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. A Case of a Magnesium Oxide Bezoar.

    PubMed

    Iwamuro, Masaya; Saito, Shunsuke; Yoshioka, Masao; Urata, Haruo; Ueda, Kumiko; Yamamoto, Kazuhide; Okada, Hiroyuki

    2018-06-06

    A 75-year-old Japanese woman presented with nausea and appetite loss. Computed tomography showed a radiopaque substance in the stomach. Esophagogastroduodenoscopy revealed bezoars in the stomach, which were endoscopically retrieved. The bezoars were mainly composed of magnesium and oxide. Although bezoar formation associated with magnesium oxide consumption is infrequently encountered, the present case indicates that pharmacobezoar should be considered among the differential diagnoses in patients who demonstrate a radiopaque mass in the digestive tract and have a history of magnesium oxide use.

  3. Use of magnesium as a drug in chronic kidney disease

    PubMed Central

    Wilkie, Martin

    2012-01-01

    From chronic kidney disease (CKD) Stage 4 onwards, phosphate binders are needed in many patients to prevent the development of hyperphosphataemia, which can result in disturbed bone and mineral metabolism, cardiovascular disease and secondary hyperparathyroidism. In this review, we re-examine the use of magnesium-containing phosphate binders for patients with CKD, particularly as their use circumvents problems such as calcium loading, aluminum toxicity and the high costs associated with other agents of this class. The use of magnesium hydroxide in the 1980s has been superseded by magnesium carbonate, as the hydroxide salt was associated with poor gastrointestinal tolerability, whereas studies with magnesium carbonate show much better gastrointestinal profiles. The use of combined magnesium- and calcium-based phosphate binder regimens allows a reduction in the calcium load, and magnesium and calcium regimen comparisons show that magnesium may be as effective a phosphate binder as calcium. A large well-designed trial has recently shown that a drug combining calcium acetate and magnesium carbonate was non-inferior in terms of lowering serum phosphate to sevelamer-HCl and had an equally good tolerability profile. Because of the high cost of sevelamer and lanthanum carbonate, the use of magnesium carbonate could be advantageous and drug acquisition cost savings would compensate for the cost of introducing routine magnesium monitoring, if this is thought to be necessary and not performed anyway. Moreover, given the potential cost savings, it may be time to re-investigate magnesium-containing phosphate binders for CKD patients with further well-designed clinical research using vascular end points. PMID:26069822

  4. [Adjuvants in modern anesthesia - magnesium].

    PubMed

    Picardi, Susanne; Lirk, Philipp; Blobner, Manfred; Schönherr, Marianne E; Hollmann, Markus W

    2015-06-01

    Magnesium plays a key role in many cellular functions and there is growing interest in its role in perioperative medicine. While experimental studies provided promising results for several disease states, clinical trials mainly gave conflicting results. This review article summarizes current knowledge on the homeostasis of magnesium as well as on its proposed indications and recommendations in the clinical setting. © Georg Thieme Verlag Stuttgart · New York.

  5. Easy access to nucleophilic boron through diborane to magnesium boryl metathesis

    NASA Astrophysics Data System (ADS)

    Pécharman, Anne-Frédérique; Colebatch, Annie L.; Hill, Michael S.; McMullin, Claire L.; Mahon, Mary F.; Weetman, Catherine

    2017-04-01

    Organoboranes are some of the most synthetically valuable and widely used intermediates in organic and pharmaceutical chemistry. Their synthesis, however, is limited by the behaviour of common boron starting materials as archetypal Lewis acids such that common routes to organoboranes rely on the reactivity of boron as an electrophile. While the realization of convenient sources of nucleophilic boryl anions would open up a wealth of opportunity for the development of new routes to organoboranes, the synthesis of current candidates is generally limited by a need for highly reducing reaction conditions. Here, we report a simple synthesis of a magnesium boryl through the heterolytic activation of the B-B bond of bis(pinacolato)diboron, which is achieved by treatment of an easily generated magnesium diboranate complex with 4-dimethylaminopyridine. The magnesium boryl is shown to act as an unambiguous nucleophile through its reactions with iodomethane, benzophenone and N,N'-di-isopropyl carbodiimide and by density functional theory.

  6. Quality of 4-hourly ejaculates--levels of calcium and magnesium.

    PubMed

    Valsa, J; Skandhan, K P; Gusani, P H; Sahab Khan, P; Amith, S

    2013-02-01

    A four-hourly ejaculation study was conducted in which eleven normal healthy subjects participated. Five of them discontinued after submitting three samples. One alone was present for submission at the end of 16 h (fifth ejaculate), which was his last submission. Physical exhaustion was the sole reason for all participants for their discontinuation from the study. The result showed a decrease in semen volume and sperm count from first to last ejaculate. The increase in motility was probably due to reduction in exposure time to sperm motility inhibitory factors. In general, total motile spermatozoa as well as actively motile spermatozoa progressively increased from first to last ejaculate at the cost of sluggish spermatozoa. A significant increase in seminal plasma calcium and magnesium was seen as well as a significant increase in magnesium inside the cell from the first to the fourth ejaculate. Considering the quality of semen, which was good in sperm count and excellent in motility, calcium and magnesium may be helpful in cleaning motility inhibitory factors of spermatozoa. © 2012 Blackwell Verlag GmbH.

  7. Successful magnesium sulfate tocolysis: is "weaning" the drug necessary?

    PubMed

    Lewis, D F; Bergstedt, S; Edwards, M S; Burlison, S; Gallaspy, J W; Brooks, G G; Adair, C D

    1997-10-01

    Magnesium sulfate is the most commonly used tocolytic agent for preterm labor. A common clinical practice is to slowly discontinue the drug (wean) after successful tocolysis. Our objective was to determine the necessity of this practice. A prospective, randomized clinical trial was performed from June 1993 to July 1996. After successful magnesium sulfate tocolysis, patients with preterm labor were randomized to two groups: stopping the drug abruptly (no weaning) or gradually weaning the drug (approximately 1 gm every 4 hours). Preterm labor was defined as documented cervical change with regular uterine contractions or regular uterine contractions with a cervix of 2 cm and 75% effacement. The primary outcome variable was the necessity to reinstitute magnesium sulfate therapy within 24 hours of discontinuation of successful tocolysis. One hundred forty-one patients completed the study. No patient in the no-wean group required retocolysis within 24 hours of magnesium discontinuation. However, eight patients in the wean group required retocolysis within 24 hours of magnesium discontinuation (p = 0.01). Significantly more patients in the wean group had retocolysis during pregnancy (3 vs 12, p = 0.03). Patients in the wean group were also in the labor and delivery unit longer and, as would be anticipated, received magnesium sulfate significantly longer. No differences in the neonatal outcomes were noted between the two groups. Seventy-seven percent of the patients in the study were delivered prematurely. This study demonstrated an increased need for retocolysis in the group weaned from magnesium sulfate. We also found that patients in the wean group had an increased labor and delivery time and a longer administration time of magnesium sulfate. Thus weaning magnesium sulfate increases health care cost. The practice of weaning magnesium sulfate does not appear beneficial.

  8. Magnesium flux during continuous venovenous haemodiafiltration with heparin and citrate anticoagulation.

    PubMed

    Brain, Matthew; Anderson, Mike; Parkes, Scott; Fowler, Peter

    2012-12-01

    To describe magnesium flux and serum concentrations in ICU patients receiving continuous venovenous haemodiafiltration (CVVHDF). Samples were collected from 22 CVVHDF circuits using citrate anticoagulation solutions (Prismocitrate 10/2 and Prism0cal) and from 26 circuits using Hemosol B0 and heparin anticoagulation. CVVHDF prescription, magnesium supplementation and anticoagulation choice was by the treating intensivist. We analysed 334 sample sets consisting of arterial, prefilter and postfilter blood and effluent. Magnesium loss was calculated from an equation for conservation of mass, and arterial magnesium concentration was described by an equation for exponential decay. Using flow rates typical of adults receiving CVVHDF, we determined a median half-life for arterial magnesium concentration to decay to a new steady state of 4.73 hours (interquartile range [IQR], 3.73-7.32 hours). Median arterial magnesium concentration was 0.88mmol/L (IQR, 0.83-0.97mmol/L) in the heparin group and 0.79mmol/L (IQR, 0.69-0.91mmol/L) in the citrate group. Arterial magnesium concentrations fell below the reference range regularly in the citrate group and, when low, there was magnesium flux from dialysate to patient. Magnesium loss was greater in patients receiving citrate. Exponential decline in magnesium concentrations was sufficiently rapid that subtherapeutic serum magnesium concentrations may occur well before detection when once-daily sampling was used. Measurements should be interpreted with regard to timing of magnesium infusions. We suggest that continuous renal replacement therapy fluids with higher magnesium concentrations be introduced in the critical care setting.

  9. Impact of magnesium:calcium ratio on calcification of the aortic wall

    PubMed Central

    2017-01-01

    Objective An inverse relationship between serum magnesium concentration and vascular calcification has been reported following observational clinical studies. Moreover, several studies have been suggesting a protective effect of magnesium on the vascular calcification. However, the exact mechanism remains elusive, and investigators have speculated among a myriad of potential actions. The effect of magnesium on calcification of the aortic wall is yet to be investigated. In the present study, the effects of magnesium and calcium on the metabolism of extracellular PPi, the main endogenous inhibitor of vascular calcification, were investigated in the rat aorta. Approach and results Calcium and magnesium have antagonist effects on PPi hydrolysis in the aortic wall. Km and Ki values for PPi hydrolysis in rat aortic rings were 1.1 mmol/L magnesium and 32 μmol/L calcium, respectively, but ATP hydrolysis was not affected with calcium. Calcium deposition in the rat aortic wall dramatically increased when the magnesium concentration was increased (ratio of Mg:Ca = 1:1; 1.5 mmol/L calcium and 1.5 mmol/L magnesium) respect to low magnesium concentration (ratio Mg:Ca = 1:3, 1.5 mmol/L calcium and 0.75 mmol/L magnesium). Conclusion Data from observational clinical studies showing that the serum magnesium concentration is inversely correlated with vascular calcification could be reinterpreted as a compensatory regulatory mechanism that reduces both PPi hydrolysis and vascular calcification. The impact of magnesium in vascular calcification in humans could be studied in association with calcium levels, for example, as the magnesium:calcium ratio. PMID:28570619

  10. Role of magnesium on the biomimetic deposition of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  11. Seawater desalination and serum magnesium concentrations in Israel.

    PubMed

    Koren, Gideon; Shlezinger, Meital; Katz, Rachel; Shalev, Varda; Amitai, Yona

    2017-04-01

    With increasing shortage of fresh water globally, more countries are consuming desalinated seawater (DSW). In Israel >50% of drinking water is now derived from DSW. Desalination removes magnesium, and hypomagnesaemia has been associated with increased cardiac morbidity and mortality. Presently the impact of consuming DSW on body magnesium status has not been established. We quantified changes in serum magnesium in a large population based study (n = 66,764), before and after desalination in regions consuming DSW and in regions where DSW has not been used. In the communities that switched to DSW in 2013, the mean serum magnesium was 2.065 ± 0.19 mg/dl before desalination and fell to 2.057 ± 0.19 mg/dl thereafter (p < 0.0001). In these communities 1.62% of subjects exhibited serum magnesium concentrations ≤1.6 mg/dl between 2010 and 2013. This proportion increased by 24% between 2010-2013 and 2015-2016 to 2.01% (p = 0.0019). In contrast, no such changes were recorded in the communities that did not consume DSW. Due to the emerging evidence of increased cardiac morbidity and mortality associated with hypomagnesaemia, it is vital to consider re-introduction of magnesium to DSW.

  12. Magnesium-based methods, systems, and devices

    DOEpatents

    Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum

    2017-12-12

    An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.

  13. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  14. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  15. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...

  16. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...

  17. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  18. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  19. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  20. Phase I study of magnesium pidolate in combination with hydroxycarbamide for children with sickle cell anaemia.

    PubMed

    Hankins, Jane S; Wynn, Lynn W; Brugnara, Carlo; Hillery, Cheryl A; Li, Chin-Shang; Wang, Winfred C

    2008-01-01

    In sickle cell anaemia, red cell dehydration increases intracellular HbS concentration and promotes sickling. Higher erythrocyte magnesium reduces water loss through negative regulation of membrane transporters. Hydroxycarbamide (also known as hydroxyurea) reduces sickling partly by increasing intracellular HbF. Combining drugs with distinct mechanisms could offer additive effects. A phase I trial combining oral magnesium pidolate and hydroxycarbamide was performed to estimate the maximum tolerated dose (MTD) and toxicity of magnesium. Cohorts of three children with HbSS, who were on a stable dose of hydroxycarbamide (median 28.5 mg/kg/d), received magnesium pidolate for 6 months beginning at 83 mg/kg/d. The dose was escalated by 50% for subsequent cohorts. Laboratory evaluations were performed at 0, 3, 6 and 9 months. Sixteen children (aged 4-12 years) participated. All four dose-limiting toxicities (grade III diarrhoea and abdominal pain) occurred within the first month of starting magnesium. Additionally, diarrhoea grades I (n = 1) and II (n = 3), and abdominal pain grade II (n = 3) occurred. Hydroxycarbamide dose reduction or interruption was not required. The MTD for magnesium pidolate used in combination with hydroxycarbamide was 125 mg/kg/d. KCl co-transporter activity declined after 3 months of magnesium pidolate (P = 0.02). A phase II study is needed to investigate the efficacy of this drug combination.

  1. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats

    PubMed Central

    Zhang, Yifeng; Xu, Jiankun; Ruan, Ye Chun; Yu, Mei Kuen; O’Laughlin, Micheal; Wise, Helen; Chen, Di; Tian, Li; Shi, Dufang; Wang, Jiali; Chen, Sihui; Feng, Jian Q; Chow, Dick Ho Kiu; Xie, Xinhui; Zheng, Lizhen; Huang, Le; Huang, Shuo; Leung, Kwoksui; Lu, Na; Zhao, Lan; Li, Huafang; Zhao, Dewei; Guo, Xia; Chan, Kaiming; Witte, Frank; Chan, Hsiao Chang; Zheng, Yufeng; Qin, Ling

    2017-01-01

    Orthopedic implants containing biodegradable magnesium have been used for fracture repair with considerable efficacy; however, the underlying mechanisms by which these implants improve fracture healing remain elusive. Here we show the formation of abundant new bone at peripheral cortical sites after intramedullary implantation of a pin containing ultrapure magnesium into the intact distal femur in rats. This response was accompanied by substantial increases of neuronal calcitonin gene-related polypeptide-α (CGRP) in both the peripheral cortex of the femur and the ipsilateral dorsal root ganglia (DRG). Surgical removal of the periosteum, capsaicin denervation of sensory nerves or knockdown in vivo of the CGRP-receptor-encoding genes Calcrl or Ramp1 substantially reversed the magnesium-induced osteogenesis that we observed in this model. Overexpression of these genes, however, enhanced magnesium-induced osteogenesis. We further found that an elevation of extracellular magnesium induces magnesium transporter 1 (MAGT1)-dependent and transient receptor potential cation channel, subfamily M, member 7 (TRPM7)-dependent magnesium entry, as well as an increase in intracellular adenosine triphosphate (ATP) and the accumulation of terminal synaptic vesicles in isolated rat DRG neurons. In isolated rat periosteum-derived stem cells, CGRP induces CALCRL-and RAMP1-dependent activation of cAMP-responsive element binding protein 1 (CREB1) and SP7 (also known as osterix), and thus enhances osteogenic differentiation of these stem cells. Furthermore, we have developed an innovative, magnesium-containing intramedullary nail that facilitates femur fracture repair in rats with ovariectomy-induced osteoporosis. Taken together, these findings reveal a previously undefined role of magnesium in promoting CGRP-mediated osteogenic differentiation, which suggests the therapeutic potential of this ion in orthopedics. PMID:27571347

  2. Activation of Magnesium Lignosulfonate and Kraft Lignin: Influence on the Properties of Phenolic Resin-Based Composites for Potential Applications in Abrasive Materials

    PubMed Central

    Klapiszewski, Lukasz; Jamrozik, Artur; Strzemiecka, Beata; Matykiewicz, Danuta; Voelkel, Adam; Jesionowski, Teofil

    2017-01-01

    Magnesium lignosulfonate and kraft lignin were activated by different oxidizing agents for use in phenolic resin composites used for the production of abrasive components. The physicochemical properties of the oxidized materials were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic mechanical-thermal analysis (DMTA) and inverse gas chromatography (IGC). The homogeneity of the model abrasive composites containing the studied products was assessed based on observations obtained using a scanning electron microscope (SEM). FTIR and XPS analysis of the oxidized products indicated that the activation process leads mainly to the formation of carbonyl groups. The IGC technique was used to assess changes in the surface energy and the acid–base properties of the studied biopolymers. The changes in the acid–base properties suggest that more groups acting as electron donors appear on the oxidized surface of the materials. DMTA studies showed that the model composites with 5% magnesium lignosulfonate oxidized by H2O2 had the best thermomechanical properties. Based on the results it was possible to propose a hypothetical mechanism of the oxidation of the natural polymers. The use of such oxidized products may improve the thermomechanical properties of abrasive articles. PMID:28594358

  3. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium... introductions of pollutants into publicly owned treatment works from the process operations of the magnesium...

  4. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium... introductions of pollutants into publicly owned treatment works from the process operations of the magnesium...

  5. Magnesium for neuroprophylaxis: fact or fiction?

    PubMed

    Cahill, Alison G; Caughey, Aaron B

    2009-06-01

    The use of magnesium for prevention of cerebral palsy in preterm infants has been a pressing clinical question for some time. This issue was recently brought to the forefront again after the completion of a large trial conducted by the Maternal-Fetal Medicine Units Network and published by Rouse et al in August, 2008 in the New England Journal of Medicine. After review of the complex body of literature on this topic, and the recent addition of this important piece of evidence, we discussed the "pros" and "cons" of the evidence-based use of magnesium for prevention of cerebral palsy at the annual meeting for the Society of Maternal-Fetal Medicine as a luncheon roundtable. The evidence currently available does not make the clinical decision of whether or not to use magnesium for the prevention of cerebral palsy as clear as we would hope. It appears that despite well-designed and executed studies on this critically important topic in obstetrics, the answer to the question of whether evidence-based medicine supports the use of magnesium for neuroprophylaxis in preterm infants remains unclear.

  6. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Mendes, Ana C; der Voort, Pascal Van; Dokupil, Agnieszka; Plis, Agnieszka; De Schamphelaere, Karel; Chronakis, Ioannis S; Pamuła, Elżbieta; Skirtach, Andre G

    2017-12-01

    Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO 3 ) has been successfully applied as a bone regeneration material, but hydrogel-CaCO 3 composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO 3 , Mg-enriched CaCO 3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO 3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. The Magnesium Industry Today…The Global Perspective

    NASA Astrophysics Data System (ADS)

    Patzer, Greg

    World demand for magnesium will show a decline in 2009. The outlook for 2010, which is guardedly optimistic, will be for a resumption of slow growth. The industry has seen marked changes in the sources of supply for primary and alloyed magnesium in recent years. Technological advances in magnesium continue at a strong pace as does interest in the material as a substitute for other light metals. The automotive segment remains the end-use area with the largest growth potential, if for no other reason than the size and quantity of the potential materials substitution applications. However, the shrinkage of that market, particularly in North America will have a definite impact on expectations for magnesium. The 3C market (computers, communications & consumer electronics) will continue to show above average growth. Other niche markets related to medical and construction industries also offer potential.

  8. Incidence, hemodynamic, and electrical characteristics of spreading depolarization in a swine model are affected by local but not by intravenous application of magnesium.

    PubMed

    Santos, Edgar; León, Fiorella; Silos, Humberto; Sanchez-Porras, Renan; Shuttleworth, C William; Unterberg, Andreas; Sakowitz, Oliver W

    2016-12-01

    The aim was to characterize the effects of magnesium sulfate, using i.v. bolus and local administration, using intrinsic signal imaging, and on electrocorticographic activity during the induction and propagation of spreading depolarizations in the gyrencephalic porcine brain. Local application of magnesium sulfate led to a complete inhibition of spreading depolarizations. One hour after washing out the topical magnesium sulfate, re-incidence of the spreading depolarizations was observed in 50% of the hemispheres. Those spreading depolarizations showed attenuation in hemodynamic characteristics and speed in intrinsic optical signal imaging. The electrical amplitude decreased through electrocorticographic activity. Intravenous magnesium therapy showed no significant effects on spreading depolarization incidence and characteristics. © The Author(s) 2016.

  9. The Impact of Magnesium Sulfate Therapy on Angiogenic Factors in Preeclampsia.

    PubMed

    Vadnais, Mary A; Rana, Sarosh; Quant, Hayley S; Salahuddin, Saira; Dodge, Laura E; Lim, Kee-Hak; Karumanchi, S Ananth; Hacker, Michele R

    2012-01-01

    OBJECTIVE: The objective was to evaluate whether intravenous magnesium sulfate (magnesium) alters levels of angiogenic factors in women with preeclampsia. STUDY DESIGN: This was a prospective cohort study comparing women with preeclampsia treated with magnesium for seizure prophylaxis to those who were not. Serum levels of angiogenic factors, soluble fms-like tyrosine kinase 1, soluble endoglin and placental growth factor, were measured at the time of diagnosis and approximately 24 hours later. Secondary analysis compared women receiving magnesium for preeclampsia to women receiving magnesium for preterm labor. Analysis of covariance was used to compare levels at 24 hours, adjusting for levels at enrollment and potential confounders. RESULTS: Angiogenic factor levels did not differ between preeclampsia groups with and without magnesium or between preeclampsia and preterm labor groups treated with magnesium (all P > 0.05). CONCLUSION: Magnesium likely decreases seizure risk in preeclampsia by a mechanism other than altering angiogenic factor levels.

  10. Magnesium in hypertension, cardiovascular disease, metabolic syndrome, and other conditions: a review.

    PubMed

    Champagne, Catherine M

    2008-01-01

    Magnesium plays a role in a number of chronic, disease-related conditions. This article reviews current pertinent literature on magnesium, focusing on hypertension and cardiovascular diseases and implications for relationships with diabetes and metabolic syndrome. A major role for magnesium is in the regulation of blood pressure. While data are not entirely consistent, it does appear that an inverse relationship between magnesium intake and blood pressure is strongest for magnesium obtained from food rather than that obtained via supplements. Hypertension associated with preeclampsia appears to be alleviated when magnesium is administered; in addition, women with adequate intakes of magnesium are less likely to be affected by preeclampsia than those with an inadequate intake. A role for magnesium in other cardiovascular diseases has been noted in that increased magnesium intake may improve serum lipid profiles. Dietary magnesium is also recommended to aid in the prevention of stroke and is important for skeletal growth and development. Magnesium may also play a role in the development of diabetes mellitus, obesity, and metabolic syndrome. There are data from some studies, such as the DASH and PREMIER studies, that suggest that lifestyle changes (including adequate magnesium intake) can benefit blood pressure control, promote weight loss, and improve chronic disease risk.

  11. Unraveling Recrystallization Mechanisms Governing Texture Development from Rare-Earth Element Additions to Magnesium

    NASA Astrophysics Data System (ADS)

    Imandoust, Aidin; Barrett, Christopher D.; Al-Samman, Talal; Tschopp, Mark A.; Essadiqi, Elhachmi; Hort, Norbert; El Kadiri, Haitham

    2018-03-01

    The origin of texture components often associated with rare-earth element (REE) additions in wrought magnesium alloys is a long-standing problem in magnesium technology. While their influence on the texture is unquestionable, it is not yet clear why certain texture components, such as < 11\\bar{2}1 > ||{extrusion}{direction}, are favored over other components typically observed in traditional magnesium alloys. The objective of this research is to identify the mechanisms accountable for these RE textures during early stages of recrystallization. Electron backscattered diffraction and transmission electron microscopy analyses reveal that REEs in zinc-containing magnesium alloys corroborate discontinuous dynamic recrystallization. REEs promote isotropic growth for all nuclei generated through the bulging mechanism. During nucleation, the effect of REEs on orientation selection was explained by the diversified activity of both < 10\\bar{1}0 > and [0001] Taylor axes in the same grain with a marked preference for [0001] rotations to occur first. During nuclei growth, no growth preference was observed when sufficient REEs are added in the zinc-containing magnesium alloys, instead isotropic nuclei growth across all grain orientations occurs. This phenomenon is attributed to REEs segregating to grain boundaries (GBs), in agreement with prior computational and theoretical results (Barrett et al., Scripta Mater 146:46-50, 2018) that show a more isotropic GB energy and mobility after segregation.

  12. The Impact of Magnesium Sulfate Therapy on Angiogenic Factors in Preeclampsia

    PubMed Central

    VADNAIS, Mary A.; RANA, Sarosh; QUANT, Hayley S.; SALAHUDDIN, Saira; DODGE, Laura E.; LIM, Kee-Hak; KARUMANCHI, S. Ananth; HACKER, Michele R.

    2011-01-01

    Objective The objective was to evaluate whether intravenous magnesium sulfate (magnesium) alters levels of angiogenic factors in women with preeclampsia. Study Design This was a prospective cohort study comparing women with preeclampsia treated with magnesium for seizure prophylaxis to those who were not. Serum levels of angiogenic factors, soluble fms-like tyrosine kinase 1, soluble endoglin and placental growth factor, were measured at the time of diagnosis and approximately 24 hours later. Secondary analysis compared women receiving magnesium for preeclampsia to women receiving magnesium for preterm labor. Analysis of covariance was used to compare levels at 24 hours, adjusting for levels at enrollment and potential confounders. Results Angiogenic factor levels did not differ between preeclampsia groups with and without magnesium or between preeclampsia and preterm labor groups treated with magnesium (all P > 0.05). Conclusion Magnesium likely decreases seizure risk in preeclampsia by a mechanism other than altering angiogenic factor levels. PMID:22247820

  13. Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan.

    PubMed

    Jiang, Ping-Li; Hou, Rui-Qing; Chen, Cheng-Dong; Sun, Lan; Dong, Shi-Gang; Pan, Jin-Shan; Lin, Chang-Jian

    2016-09-15

    To control the degradation rate of medical magnesium in body fluid environment, biocompatible films composed of Mussel Adhesive Protein (Mefp-1) and chitosan were electrodeposited on magnesium surface in cathodic constant current mode. The compositions and structures of the films were characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and infrared reflection absorption spectroscopy (IRAS). And the corrosion protection performance was investigated using electrochemical measurements and immersion tests in simulated body fluid (Hanks' solution). The results revealed that Mefp-1 and chitosan successfully adhered on the magnesium surface and formed a protective film. Compared with either single Mefp-1 or single chitosan film, the composite film of chitosan/Mefp-1/chitosan (CPC (chitosan/Mefp-1/chitosan)) exhibited lower corrosion current density, higher polarization resistance and more homogenous corrosion morphology and thus was able to effectively control the degradation rate of magnesium in simulated body environment. In addition, the active attachment and spreading of MC3T3-E1 cells on the CPC film coated magnesium indicated that the CPC film was significantly able to improve the biocompatibility of the medical magnesium. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Factors Underlying Bursting Behavior in a Network of Cultured Hippocampal Neurons Exposed to Zero Magnesium

    PubMed Central

    Mangan, Patrick S.; Kapur, Jaideep

    2010-01-01

    Factors contributing to reduced magnesium-induced neuronal action potential bursting were investigated in primary hippocampal cell culture at high and low culture density. In nominally zero external magnesium medium, pyramidal neurons from high-density cultures produced recurrent spontaneous action potential bursts superimposed on prolonged depolarizations. These bursts were partially attenuated by the NMDA receptor antagonist D-APV. Pharmacological analysis of miniature excitatory postsynaptic currents (EPSCs) revealed 2 components: one sensitive to D-APV and another to the AMPA receptor antagonist DNQX. The components were kinetically distinct. Participation of NMDA receptors in reduced magnesium-induced synaptic events was supported by the localization of the NR1 subunit of the NMDA receptor with the presynaptic vesicular protein synaptophysin. Presynaptically, zero magnesium induced a significant increase in EPSC frequency likely attributable to increased neuronal hyperexcitability induced by reduced membrane surface charge screening. Mean quantal content was significantly increased in zero magnesium. Cells from low-density cultures did not exhibit action potential bursting in zero magnesium but did show increased EPSC frequency. Low-density neurons had less synaptophysin immunofluorescence and fewer active synapses as determined by FM1-43 analysis. These results demonstrate that multiple factors are involved in network bursting. Increased probability of transmitter release presynaptically, enhanced NMDA receptor-mediated excitability postsynaptically, and extent of neuronal interconnectivity contribute to initiation and maintenance of elevated network excitability. PMID:14534286

  15. Graphene-magnesium nanocomposite: An advanced material for aerospace application

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sarkar, Jit

    2018-02-01

    This work focuses on the analytical study of mechanical and thermal properties of a nanocomposite that can be obtained by reinforcing graphene in magnesium. The estimated mechanical and thermal properties of graphene-magnesium nanocomposite are much higher than magnesium and other existing alloys used in aerospace materials. We also altered the weight percentage of graphene in the composite and observed mechanical and thermal properties of the composite increase with increase in concentration of graphene reinforcement. The Young’s modulus and thermal conductivity of graphene-magnesium nanocomposite are found to be ≥165 GPa and ≥175 W/mK, respectively. Nanocomposite material with desired properties for targeted applications can also be designed by our analytical modeling technique. This graphene-magnesium nanocomposite can be used for designing improved aerospace structure systems with enhanced properties.

  16. Brain glutamic acid decarboxylase-67kDa alterations induced by magnesium treatment in olfactory bulbectomy and chronic mild stress models in rats.

    PubMed

    Pochwat, Bartłomiej; Nowak, Gabriel; Szewczyk, Bernadeta

    2016-10-01

    The preclinical results indicate that magnesium, an N-methyl-d-aspartate receptor (NMDAR) blocker has anxiolytic and antidepressant-like activity. One of the mechanisms involved in these activities is modulation of glutamate, γ-aminobutyric acid (GABA) system. Based on this, the aim of the present study was to investigate the effect of magnesium on the level of glutamic acid decarboxylase-67kDa (GAD-67) in the different brain areas in the chronic mild stress (CMS) and olfactory bulbectomy (OB) models of depression in rats. Magnesium (15mg/kg) was administered intraperitonealy once daily for 14 days in the OB model and for 35 days in the CMS model. 24h after the last dose, the prefrontal cortex (PFC), hippocampus and amygdala were collected and the GAD-67 protein level was determined by the western blotting method. In the OB model, chronic magnesium treatment normalized decreased by OB protein level of GAD-67 in PFC. CMS did not influence the GAD-67 protein level, however magnesium increased GAD-67 protein expression in amygdala and PFC of stress rats when compared to vehicle-treated stress group. OB or CMS models as well as magnesium treatment did not affect GAD-67 protein level in the hippocampus. Obtained results indicate that the antidepressant-like activity of magnesium in CMS and OB models of depression is associated with an enhanced expression of GAD-67 in the PFC and amygdala. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Fluid Bed Dehydration of Magnesium Chloride

    NASA Astrophysics Data System (ADS)

    Adham, K.; Lee, C.; O'Keefe, K.

    Molten salt electrolysis of MgCl2 is commonly used for the production of magnesium metal. However, the electrolysis feed must be completely dry with minimum oxygen content. Therefore, complete dehydration of the MgCl2 brine or the hydrated prill is a required process, which is very challenging because of the ease of thermal degradation due to hydrolysis of magnesium chloride.

  18. Assessment of the Requirements for Magnesium Transporters in Bacillus subtilis

    PubMed Central

    Wakeman, Catherine A.; Goodson, Jonathan R.; Zacharia, Vineetha M.

    2014-01-01

    Magnesium is the most abundant divalent metal in cells and is required for many structural and enzymatic functions. For bacteria, at least three families of proteins function as magnesium transporters. In recent years, it has been shown that a subset of these transport proteins is regulated by magnesium-responsive genetic control elements. In this study, we investigated the cellular requirements for magnesium homeostasis in the model microorganism Bacillus subtilis. Putative magnesium transporter genes were mutationally disrupted, singly and in combination, in order to assess their general importance. Mutation of only one of these genes resulted in strong dependency on supplemental extracellular magnesium. Notably, this transporter gene, mgtE, is known to be under magnesium-responsive genetic regulatory control. This suggests that the identification of magnesium-responsive genetic mechanisms may generally denote primary transport proteins for bacteria. To investigate whether B. subtilis encodes yet additional classes of transport mechanisms, suppressor strains that permitted the growth of a transporter-defective mutant were identified. Several of these strains were sequenced to determine the genetic basis of the suppressor phenotypes. None of these mutations occurred in transport protein homologues; instead, they affected housekeeping functions, such as signal recognition particle components and ATP synthase machinery. From these aggregate data, we speculate that the mgtE protein provides the primary route of magnesium import in B. subtilis and that the other putative transport proteins are likely to be utilized for more-specialized growth conditions. PMID:24415722

  19. 40 CFR 461.60 - Applicability; description of the magnesium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies to...

  20. 40 CFR 461.60 - Applicability; description of the magnesium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies to...

  1. Magnesium in North America: A Changing Landscape

    NASA Astrophysics Data System (ADS)

    Slade, Susan

    The changing landscape of North American manufacturing in the context of global competition is impacting the market of all raw materials, including magnesium. Current automotive fuel economy legislation and pending legislation on the emissions of greenhouse gases are impacting magnesium's largest consuming industries, such as aluminum, automotive components, steel and transition metals. These industries are all considering innovative ways to efficiently incorporate the needed raw materials into their processes. The North American magnesium market differs from other regions based on maturity, supply streams, changing manufacturing capabilities and trade cases, combined with the transformation of North American manufacturing.

  2. Development of Thixomolded{reg_sign} magnesium products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, D.; Fan, R.; Kang, K.

    1995-10-01

    Thixomolding{reg_sign} is a racial new process which merges the technologies of die-casting and plastic injection molding for the net shape molding of magnesium based alloys. Properties of Thixomolded{reg_sign} magnesium alloys are discussed and compared with those of traditional die casting. Magnesium alloys are of great interest to automobile manufacturers because of the potential weight savings and corresponding energy savings due to increased fuel economy. For this reason, one of the first target markets for Thixomolded{reg_sign} products is the automotive industry. The use of Thixomolding{reg_sign} in the production of an automobile part is examined.

  3. Effect of Food Thickener on Dissolution and Laxative Activity of Magnesium Oxide Tablets in Mice.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Kato, Kazushige; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao

    2016-01-01

    The present study examined the dissolution of magnesium oxide (MgO) from MgO tablets placed in a food thickening agent (food thickener) and its effects on laxative activity. We prepared mixtures of MgO tablets suspended in an aqueous suspension and food thickeners in order to evaluate the dissolution of MgO. The results of the dissolution tests revealed that agar-based food thickeners did not affect the MgO dissolution. In contrast, some xanthan gum-based food-thickener products show dissolution rates with certain mixtures containing disintegrated MgO tablets suspended in a food thickener that decrease over time. However, other xanthan gum-based food-thickener products show dissolution rates that decrease immediately after mixing, regardless of the time they were allowed to stand. In order to investigate the laxative activity of MgO, we orally administered a mixture of MgO suspension and food thickener to mice and observed their bowel movements. The animal experiments showed that when agar-based food thickeners were used, the laxative activity of MgO was not affected, but it decreased when xanthan gum-based food thickeners were used.

  4. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    NASA Astrophysics Data System (ADS)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  5. Corrosion prevention of magnesium surfaces via surface conversion treatments using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin

    2016-09-06

    A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.

  6. A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium

    NASA Technical Reports Server (NTRS)

    Witzke, Walter R; Prok, George M; Walsh, Thomas J

    1954-01-01

    Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.

  7. Differential magnesium implant corrosion coat formation and contribution to bone bonding.

    PubMed

    Rahim, Muhammad Imran; Weizbauer, Andreas; Evertz, Florian; Hoffmann, Andrea; Rohde, Manfred; Glasmacher, Birgit; Windhagen, Henning; Gross, Gerhard; Seitz, Jan-Marten; Mueller, Peter P

    2017-03-01

    Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017. © 2016 Wiley Periodicals, Inc.

  8. Serum magnesium and the risk of prediabetes: a population-based cohort study.

    PubMed

    Kieboom, Brenda C T; Ligthart, Symen; Dehghan, Abbas; Kurstjens, Steef; de Baaij, Jeroen H F; Franco, Oscar H; Hofman, Albert; Zietse, Robert; Stricker, Bruno H; Hoorn, Ewout J

    2017-05-01

    Previous studies have found an association between serum magnesium and incident diabetes; however, this association may be due to reverse causation, whereby diabetes may induce urinary magnesium loss. In contrast, in prediabetes (defined as impaired fasting glucose), serum glucose levels are below the threshold for urinary magnesium wasting and, hence, unlikely to influence serum magnesium levels. Thus, to study the directionality of the association between serum magnesium levels and diabetes, we investigated its association with prediabetes. We also investigated whether magnesium-regulating genes influence diabetes risk through serum magnesium levels. Additionally, we quantified the effect of insulin resistance in the association between serum magnesium levels and diabetes risk. Within the population-based Rotterdam Study, we used Cox models, adjusted for age, sex, lifestyle factors, comorbidities, kidney function, serum levels of electrolytes and diuretic use, to study the association between serum magnesium and prediabetes/diabetes. In addition, we performed two mediation analyses: (1) to study if common genetic variation in eight magnesium-regulating genes influence diabetes risk through serum magnesium levels; and (2) to quantify the proportion of the effect of serum magnesium levels on diabetes that is mediated through insulin resistance (quantified by HOMA-IR). A total of 8555 participants (mean age, 64.7 years; median follow-up, 5.7 years) with normal glucose levels (mean ± SD: 5.46 ± 0.58 mmol/l) at baseline were included. A 0.1 mmol/l decrease in serum magnesium level was associated with an increase in diabetes risk (HR 1.18 [95% CI 1.04, 1.33]), confirming findings from previous studies. Of interest, a similar association was found between serum magnesium levels and prediabetes risk (HR 1.12 [95% CI 1.01, 1.25]). Genetic variation in CLDN19, CNNM2, FXYD2, SLC41A2, and TRPM6 significantly influenced diabetes risk (p < 0.05), and for CNNM

  9. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation.

    PubMed

    Feyerabend, Frank; Witte, Frank; Kammal, Michael; Willumeit, Regine

    2006-12-01

    The effect of unphysiologically high extracellular magnesium concentrations on chondrocytes, induced by the supplementation of magnesium sulfate, was studied using a 3-phase tissue engineering model. The experiments showed that chondrocyte proliferation and redifferentiation, on the gene and protein expression level, are enhanced. A negative influence was found during chondrogenesis where an inhibition of extracellular matrix formation was observed. In addition, a direct impact on chondrocyte metabolism, elevated magnesium concentrations also affected growth factor effectiveness by consecutive influences during chondrogenesis. All observations were dosage dependent. The results of this study indicate that magnesium may be a useful tool for cartilage tissue engineering.

  10. Magnesium and cardiovascular complications of chronic kidney disease.

    PubMed

    Massy, Ziad A; Drüeke, Tilman B

    2015-07-01

    Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). Abundant experimental evidence suggests a physiological role of magnesium in cardiovascular function, and clinical evidence suggests a role of the cation in cardiovascular disease in the general population. The role of magnesium in CKD-mineral and bone disorder, and in particular its impact on cardiovascular morbidity and mortality in patients with CKD, is however not well understood. Experimental studies have shown that magnesium inhibits vascular calcification, both by direct effects on the vessel wall and by indirect, systemic effects. Moreover, an increasing number of epidemiologic studies in patients with CKD have shown associations of serum magnesium levels with intermediate and hard outcomes, including vascular calcification, cardiovascular events and mortality. Intervention trials in these patients conducted to date have had small sample sizes and have been limited to the study of surrogate parameters, such as arterial stiffness, vascular calcification and atherosclerosis. Randomized controlled trials are clearly needed to determine the effects of magnesium supplementation on hard outcomes in patients with CKD.

  11. Carbothermal Production of Magnesium: Csiro's Magsonic™ Process

    NASA Astrophysics Data System (ADS)

    Prentice, Leon H.; Nagle, Michael W.; Barton, Timothy R. D.; Tassios, Steven; Kuan, Benny T.; Witt, Peter J.; Constanti-Carey, Keri K.

    Carbothermal production has been recognized as conceptually the simplest and cleanest route to magnesium metal, but has suffered from technical challenges of development and scale-up. Work by CSIRO has now successfully demonstrated the technology using supersonic quenching of magnesium vapor (the MagSonic™ Process). Key barriers to process development have been overcome: the experimental program has achieved sustained operation, no nozzle blockage, minimal reversion, and safe handling of pyrophoric powders. The laboratory equipment has been operated at industrially relevant magnesium vapor concentrations (>25% Mg) for multiple runs with no blockage. Novel computational fluid dynamics (CFD) modeling of the shock quenching and metal vapor condensation has informed nozzle design and is supported by experimental data. Reversion below 10% has been demonstrated, and magnesium successfully purified (>99.9%) from the collected powder. Safe operating procedures have been developed and demonstrated, minimizing the risk of powder explosion. The MagSonic™ Process is now ready to progress to significantly larger scale and continuous operation.

  12. Design Considerations for Developing Biodegradable Magnesium Implants

    NASA Astrophysics Data System (ADS)

    Brar, Harpreet S.; Keselowsky, Benjamin G.; Sarntinoranont, Malisa; Manuel, Michele V.

    The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. The complexity arises from the fact that biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and micro structure, and its effect on cellular behavior can be a difficult and time intensive process. A systems design approach driven by thermodynamics has the power to provide significant contributions in developing the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations and hurdles for developing new magnesium alloys for use as biodegradable implant materials [1].

  13. Magnesium Content of the Core: an Experimental Study

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Badro, J.; Auzende, A.; Siebert, J.; Gregoryanz, E.; Guignot, N.

    2006-12-01

    There is still a considerable debate about which light element among sulfur, silicon, oxygen, carbon or hydrogen should be in the core [Poirier, Phys. Earth Planet. Int., 85, 319, 1994]. The nature and distribution of these elements is a standing problem of prime importance, since it controls the freezing point depression at the inner core boundary. In addition to these candidates, new elements have been recently proposed as iron alloying constituants for the core, such as magnesium [Dubrovinskaia et al., Phys. Rev. Lett., 95, 245502, 2005]. We present series of experiments carried out on hot-pressed samples of iron and periclase in a laser-heated diamond-anvil cell, combined with in situ X-ray diffraction analysis and ATEM examination of recovered samples. We show that even at megabar pressures the amount of magnesium released in iron from the equilibrium with magnesium oxide is marginal. This finding is at odds with the 10 at% of magnesium found by Dubrovinskaia et al. [2005] in an iron alloy made from the reaction between iron and a metallic magnesium foil. Our observations suggest that magnesium is unlikely to be an important light element in the Earth's core. In addition, we provide structural data for iron to 130 GPa in excess of 3000 K with reliable pressure and temperature measurements, which enable us to propose a new thermal equation of state for iron at megabar pressures.

  14. Efficacy of a simethicone, activated charcoal and magnesium oxide combination (Carbosymag®) in functional dyspepsia: results of a general practice-based randomized trial.

    PubMed

    Coffin, Benoit; Bortolloti, Claude; Bourgeois, Odile; Denicourt, Luc

    2011-06-01

    A simethicone, activated charcoal and magnesium oxide combination (Carbosymag(®)) has been used for almost 20 years in functional dyspepsia, but there is limited scientific evidence of efficacy. We evaluated the efficacy of Carbosymag(®) in 18- to 49-year-old patients with functional dyspepsia. A total of 276 dyspeptic patients consulting a general practitioner and meeting the Rome III criteria were included in this prospective placebo-controlled study. Variations in overall and individual dyspeptic symptoms were evaluated after 1 month of treatment. At the end of the treatment period, overall dyspeptic symptom intensity was significantly lower in the Carbosymag(®) group (P=0.01). The intensity of post-prandial fullness, epigastric pain, epigastric burning and abdominal bloating was significantly reduced in the Carbosymag(®) group relative to the placebo group (P<0.05). The number need to treat to induce a 70-% decrease in overall dyspeptic symptoms by Carbosymag(®) was 7 (IC 95%: 4-32). A simethicone, activated charcoal and magnesium oxide combination (Carbosymag(®)) was significantly more effective than a placebo on overall symptom intensity in dyspeptic patients consulting a general practitioner. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Adam J.; Bartlett, Bart M., E-mail: bartmb@umich.edu

    2016-10-15

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg{sup 2+}), relative to lithium-ion (Li{sup +}) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg{sup 2+}, improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recentmore » advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.« less

  16. Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels

    PubMed Central

    van Rooij, Frank J. A.; Ehret, Georg B.; Boerwinkle, Eric; Felix, Janine F.; Leak, Tennille S.; Harris, Tamara B.; Yang, Qiong; Dehghan, Abbas; Aspelund, Thor; Katz, Ronit; Homuth, Georg; Kocher, Thomas; Rettig, Rainer; Ried, Janina S.; Gieger, Christian; Prucha, Hanna; Pfeufer, Arne; Meitinger, Thomas; Coresh, Josef; Hofman, Albert; Sarnak, Mark J.; Chen, Yii-Der Ida; Uitterlinden, André G.; Chakravarti, Aravinda; Psaty, Bruce M.; van Duijn, Cornelia M.; Kao, W. H. Linda; Witteman, Jacqueline C. M.; Gudnason, Vilmundur; Siscovick, David S.; Fox, Caroline S.; Köttgen, Anna

    2010-01-01

    Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using ∼2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p<5×10−8) or suggestive associations (p<4×10−7) were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding p<4×10−7. Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels. PMID:20700443

  17. Impurity characterization of magnesium diuranate using simultaneous TG-DTA-FTIR measurements

    NASA Astrophysics Data System (ADS)

    Raje, Naina; Ghonge, Darshana K.; Hemantha Rao, G. V. S.; Reddy, A. V. R.

    2013-05-01

    Current studies describe the application of simultaneous thermogravimetry-differential thermal analysis - evolved gas analysis techniques for the compositional characterization of magnesium diuranate (MDU) with respect to the impurities present in the matrix. The stoichiometric composition of MDU was identified as MgU2O7ṡ3H2O. Presence of carbonate and sulphate as impurities in the matrix was confirmed through the evolved gas analysis using Fourier Transformation Infrared Spectrometry detection. Carbon and magnesium hydroxide content present as impurities in magnesium diuranate have been determined quantitatively using TG and FTIR techniques and the results are in good agreement. Powder X-ray diffraction analysis of magnesium diuranate suggests the presence of magnesium hydroxide as impurity in the matrix. Also these studies confirm the formation of magnesium uranate, uranium sesquioxide and uranium dioxide above 1000 °C, due to the decomposition of magnesium diuranate.

  18. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study.

    PubMed

    Zhu, Xiangzhu; Shrubsole, Martha J; Ness, Reid M; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Jiang, Ming; Hou, Lifang; Kabagambe, Edmond K; Zhang, Bing; Smalley, Walter E; Edwards, Todd L; Giovannucci, Edward L; Zheng, Wei; Dai, Qi

    2016-10-01

    Some studies suggest that the calcium to magnesium ratio intakes modify the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence, and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. We conducted a two-phase study including 1336 cases and 2891 controls from the Tennessee Colorectal Polyp Study. In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (P for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥ 1000 mg/d) was significantly associated with 64% reduced adenoma risk (OR = 0.36 (95% CI : 0.18-0.74)) among those homozygous for the minor allele (TT genotype) (P for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found that highest magnesium intake was significantly associated with 27% reduced risk (OR = 0.73 (95% CI : 0.54-0.97)) of colorectal adenoma (P for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype, whereas magnesium intake was not linked to risk among those with the TT genotype. These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study

    PubMed Central

    Zhu, Xiangzhu; Shrubsole, Martha J.; Ness, Reid M.; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Ming, Jiang; Hou, Lifang; Kabagambe, Edmond K.; Zhang, Bing; Smalley, Walter E.; Edwards, Todd L.; Giovannucci, Edward L.; Zheng, Wei; Dai, Qi

    2016-01-01

    Background Some studies suggest that the calcium to magnesium ratio intakes modifies the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. Methods We conducted a two-phase study including 1,336 cases and 2,891 controls from the Tennessee Colorectal Polyp Study. Results In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (p for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥1000 mg/day) was significantly associated with 64% reduced adenoma risk (OR=0.36 (95% CI: 0.18–0.74)) among those homozygous for the minor allele (TT genotype) (p for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found highest magnesium intake was significantly associated with 27% reduced risk (OR=0.73 (95% CI: 0.54–0.97)) of colorectal adenoma (p for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype; whereas magnesium intake was not linked to risk among those with the TT genotype. Conclusions These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. PMID:26333203

  20. [SIGNIFICANCE OF MAGNESIUM IN PHISIOLOGY AND PATHOLOGY OF THE DIGESTIVE SYSTEM].

    PubMed

    Grigus, Ya I; Mikhaylova, O D; Gorbunov A Yu; Vakhrushev, Ya M

    2015-01-01

    The article describes the physiological role of magnesium in the human body and its importance for metabolic processes. The reasons for the development of magnesium deficiency and hypermagnesaemia and its clinical symptoms are shown. The specialties of magnesium metabolism disturbances in gastroenterological pathology are described. Particular attention paid to the correction of magnesium levels with deviations of its content in the organism.

  1. Distinct Modulations of Human Capsaicin Receptor by Protons and Magnesium through Different Domains*

    PubMed Central

    Wang, Shu; Poon, Kinning; Oswald, Robert E.; Chuang, Huai-hu

    2010-01-01

    The capsaicin receptor (TRPV1) is a nonselective cation channel that integrates multiple painful stimuli, including capsaicin, protons, and heat. Protons facilitate the capsaicin- and heat-induced currents by decreasing thermal threshold or increasing agonist potency for TRPV1 activation (Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. (1998) Neuron 21, 531–543). In the presence of saturating capsaicin, rat TRPV1 (rTRPV1) reaches full activation, with no further stimulation by protons. Human TRPV1 (hTRPV1), a species ortholog with high homology to rTRPV1, is potentiated by extracellular protons and magnesium, even at saturating capsaicin. We investigated the structural basis for protons and magnesium modulation of fully capsaicin-bound human receptors. By analysis of chimeric channels between hTRPV1 and rTRPV1, we found that transmembrane domain 1–4 (TM1–4) of TRPV1 determines whether protons can further open the fully capsaicin-bound receptors. Mutational analysis identified a titratable glutamate residue (Glu-536) in the linker between TM3 and TM4 critical for further stimulation of fully liganded hTRPV1. In contrast, hTRPV1 TM5–6 is required for magnesium augmentation of capsaicin efficacy. Our results demonstrate that capsaicin efficacy of hTRPV1 correlates with the extracellular ion milieu and unravel the relevant structural basis of modulation by protons and magnesium. PMID:20145248

  2. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida; from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties, and Rohm & Haas; and from magnesite in Nevada by Premier Chemicals. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  3. Preparation of aluminum-magnesium alloy from magnesium oxide in RECl3-KCl-MgCl2 electrolyte by molten salts electrolysis method

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua; Wu, Lin; Yang, Fengli; Li, Mingzhou; Hu, Xianwei; Wang, Zhaowen; Shi, Zhongning; Gao, Bingliang

    Aluminum-magnesium alloys were prepared from magnesium oxide by molten salt electrolysis method. 10w%RECl3-63.5w%KCl-23.5w%MgCl2-3w%MgO was taken as electrolyte. The results showed that RE could be attained in aluminum-magnesium alloy, and it was proved that the RE was reduced directly by aluminum. Magnesium in the alloy was produced by electrolysis on cathode. The content of RE in the alloy was about 0.8wt %-1.2wt%, and the content of Mg in the alloy was lwt%˜6wt% with electrolytic times. The highest current efficiency was 81.3% with 0.8A/cm2 current density. The process of electrolysis was controlled together by electrochemical polarization and concentration polarization.

  4. Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers.

    PubMed

    Cao, Yong; Miao, Jianyin; Liu, Guo; Luo, Zhen; Xia, Zumeng; Liu, Fei; Yao, Mingfei; Cao, Xiaoqiong; Sun, Shengwei; Lin, Yanyin; Lan, Yaqi; Xiao, Hang

    2017-03-22

    The ability of casein phosphopeptides (CPPs) to bind and transport minerals has been previously studied. However, the single bioactive peptides responsible for the effects of CPPs have not been identified. This study was to purify calcium-binding peptides from CPPs and to determine their effects on calcium and magnesium uptake by Caco-2 cell monolayers. Five monomer peptides designated P1 to P5 were isolated and the amino acid sequences were determined using LC-MS/MS. Compared with the CPP-free control, all five monomeric peptides exhibited significant enhancing effects on the uptake of calcium and magnesium (P < 0.05). Interestingly, when calcium and magnesium were presented simultaneously with P5, magnesium was taken up with priority over calcium in the Caco-2 cell monolayers. For example, at 180 min, the amount of transferred magnesium and calcium was 78.4 ± 0.95 μg/well and 2.56 ± 0.64 μg/well, respectively, showing a more than 30-fold difference in the amount of transport caused by P5. These results provide novel insight into the mineral transport activity of phosphopeptides obtained from casein.

  5. The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system.

    PubMed

    Anderson, Gregory G; Yahr, Timothy L; Lovewell, Rustin R; O'Toole, George A

    2010-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes.

  6. Therapeutic effect of magnesium sulphate on carbon monoxide toxicity-mediated brain lipid peroxidation.

    PubMed

    Yavuz, Y; Mollaoglu, H; Yürümez, Y; Ucok, K; Duran, L; Tünay, K; Akgün, L

    2013-02-01

    Carbon monoxide (CO) toxicity primarily results from cellular hypoxia caused by impedance of oxygen delivery. Studies show that CO may cause brain lipid peroxidation and leukocyte-mediated inflammatory changes in the brain. The aim of this study was to investigate whether magnesium sulphate could prevent or diminish brain lipid peroxidation caused by carbon monoxide toxicity in rats. Fourty rats were divided into five groups of 8 rats each. Group l was not received any agent during the experiment. Group 2 was inhaled CO gas followed by intraperitoneally normal saline 30 minutes (min) later. Group 3 was inhaled CO gas followed by 100 mg/kg magnesium sulphate intraperitoneally 30 min later. Group 2 and Group 3 rats was undergone laparotomy and craniotomy while still under anesthesia at 6 hour, and tissue sample was obtained from the cerebrum. Group 4 was inhaled CO gas followed by intraperitoneally normal saline 30 min later. Group 5 was inhaled CO gas followed by 100 mg/kg magnesium sulphate intraperitoneally 30 min later. Group 4 and Group 5 rats was undergone laparotomy and craniotomy while still under anesthesia at 24 hour, and tissue sample was obtained from the cerebrum. Nitric oxide levels were no significantly different between all groups. Malonyldialdehyde levels increased in intoxication group (group 2) and decreased in treatment group (group 3). Activities of superoxide dismutase decreased in intoxication group (group 2) and increased in treatment group (group 3). Activities of catalase increased in intoxication group (group 2) and decreased in treatment group (group 3). Activities of glutathione peroxidase (GSH-Px) decreased in intoxication group (group 4) and increased in treatment group (group 5). CO poisoning caused significant damage, detected within the first 6 hours. Due to antioxidant enzymes, especially GSH-Px activity reaching the top level within 24th hours, significant oxidative damage was not observed. The protective effect against oxidative

  7. Addition of senna improves quality of colonoscopy preparation with magnesium citrate.

    PubMed

    Vradelis, Stergios; Kalaitzakis, Evangelos; Sharifi, Yalda; Buchel, Otto; Keshav, Satish; Chapman, Roger W; Braden, Barbara

    2009-04-14

    To prospectively investigate the effectiveness and patient's tolerance of two low-cost bowel cleansing preparation protocols based on magnesium citrate only or the combination of magnesium citrate and senna. A total of 342 patients who were referred for colonoscopy underwent a colon cleansing protocol with magnesium citrate alone (n = 160) or magnesium citrate and senna granules (n = 182). The colonoscopist rated the overall efficacy of colon cleansing using an established score on a 4-point scale. Patients were questioned before undergoing colonoscopy for side effects and symptoms during bowel preparation. The percentage of procedures rescheduled because of insufficient colon cleansing was 7% in the magnesium citrate group and 4% in the magnesium citrate/senna group (P = 0.44). Adequate visualization of the colonic mucosa was rated superior under the citramag/senna regimen (P = 0.004). Both regimens were well tolerated, and did not significantly differ in the occurrence of nausea, bloating or headache. However, abdominal cramps were observed more often under the senna protocol (29.2%) compared to the magnesium citrate only protocol (9.9%, P < 0.0003). The addition of senna to the bowel preparation protocol with magnesium citrate significantly improves the cleansing outcome.

  8. Magnesium in diet

    MedlinePlus

    ... 23115811 . Mason JB. Vitamins, trace minerals, and other micronutrients. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 218. National Institutes of Health. Magnesium: fact sheet for health professionals. Updated February ...

  9. Dietary and Plasma Magnesium and Risk of Coronary Heart Disease Among Women

    PubMed Central

    Chiuve, Stephanie E.; Sun, Qi; Curhan, Gary C.; Taylor, Eric N.; Spiegelman, Donna; Willett, Walter C.; Manson, JoAnn E.; Rexrode, Kathryn M.; Albert, Christine M.

    2013-01-01

    Background Magnesium is associated with lower risk of sudden cardiac death, possibly through antiarrhythmic mechanisms. Magnesium influences endothelial function, inflammation, blood pressure, and diabetes, but a direct relation with coronary heart disease (CHD) risk has not been established. Methods and Results We prospectively examined the association between dietary and plasma magnesium and risk of CHD among women in the Nurses' Health Study. The association for magnesium intake was examined among 86 323 women free of disease in 1980. Information on magnesium intake and lifestyle factors was ascertained every 2 to 4 years through questionnaires. Through 2008, 3614 cases of CHD (2511 nonfatal/1103 fatal) were documented. For plasma magnesium, we conducted a nested case–control analysis, with 458 cases of incident CHD (400 nonfatal/58 fatal) matched to controls (1:1) on age, smoking, fasting status, and date of blood sampling. Higher magnesium intake was not associated with lower risk of total CHD (P‐linear trend=0.12) or nonfatal CHD (P‐linear trend=0.88) in multivariable models. However, magnesium intake was inversely associated with risk of fatal CHD. The RR comparing quintile 5 to quintile 1 of magnesium intake was 0.61 (95% CI, 0.45 to 0.84; P‐linear trend=0.003). The association between magnesium intake and risk of fatal CHD appeared to be mediated partially by hypertension. Plasma magnesium levels above 2.0 mg/dL were associated with lower risk of CHD, although not independent of other cardiovascular biomarkers (RR, 0.67; 95% CI, 0.44 to 1.04). Conclusions Dietary and plasma magnesium were not associated with total CHD incidence in this population of women. Dietary magnesium intake was inversely associated with fatal CHD, which may be mediated in part by hypertension. PMID:23537810

  10. Magnesium sulphate for treatment of tetanus in adults.

    PubMed

    Mathew, P J; Samra, T; Wig, J

    2010-01-01

    There are reports that suggest that magnesium sulphate alone may control muscle spasms thereby avoiding sedation and mechanical ventilation in tetanus, but this has not been confirmed. We examined the efficacy and safety of intravenous magnesium sulphate for control of rigidity and spasms in adults with tetanus. A prospective clinical study of intravenous magnesium sulphate was carried out over a period of two years in a tertiary care teaching hospital. In addition to human tetanus immunoglobulin and parenteral antibiotics, patients with tetanus received magnesium sulphate 70 mg/kg intravenously followed by infusion. The infusion was increased by 0.5 g/hour every six hours until cessation of spasms or abolishment of patellar tendon jerk. The primary outcome measure was efficacy determined by control of spasms. Secondary outcomes included frequency of autonomic instability, duration of ventilatory support, hospital stay and mortality. Thirty-three patients were enrolled. At presentation, the incidence of severity of tetanus was as follows: Grade I: 5 (15%), Grade II: 13 (39%), Grade III: 14 (42%) and Grade IV: 1 (3%). Rigidity and mild spasms were controlled with magnesium therapy alone in six patients; all were Grades I or II. Additional sedatives were required in severe forms of tetanus. The average duration of ventilatory support was 18.3 +/- 16.0 days and the overall mortality was 22.9%. Asymptomatic hypocalcaemia was a universal finding. Magnesium sulphate therapy alone may not be efficacious for the treatment of severe tetanus.

  11. Central nervous system magnesium deficiency.

    PubMed

    Langley, W F; Mann, D

    1991-03-01

    The central nervous system concentration of magnesium (Mg++) appears to have a critical level below which neurologic dysfunction occurs. Observations presented suggest that the interchange of the Mg++ ion between the cerebrospinal fluid, extracellular fluid, and bone is more rapid and dynamic than is usually believed. This is especially so when the hypertrophied parathyroid gland is associated with significant skeletal depletion of Mg++ as judged by history rather than serum level. Magnesium, much like calcium, has a large presence in bone and has a negative feedback relationship with the parathyroid gland. A decline in central nervous system Mg++ may occur when the skeletal buffer system orchestrated largely by the parathyroid glands is activated by an increase in serum calcium. Observations in veterinary medicine and obstetrics suggest that the transfer of Mg++ from the extracellular fluid into bone during mineralization processes may be extensive. If the inhibition of the hypertrophied parathyroid gland is prolonged and the skeletal depletion of Mg++ extreme, serious neurologic symptoms, including seizures, coma, and death, may occur. Noise, excitement, and bodily contact appear to precipitate neurologic symptoms in Mg+(+)-deficient human subjects as it has been documented to occur in Mg+(+)-deficient experimental animals. The similarity of the acute central nervous system demyelinating syndromes with reactive central nervous system Mg++ deficiency is reviewed.

  12. Media calcification, low erythrocyte magnesium, altered plasma magnesium, and calcium homeostasis following grafting of the thoracic aorta to the infrarenal aorta in the rat--differential preventive effects of long-term oral magnesium supplementation alone and in combination with alkali.

    PubMed

    Schwille, P O; Schmiedl, A; Schwille, R; Brunner, P; Kissler, H; Cesnjevar, R; Gepp, H

    2003-03-01

    Calcifications in arterial media are clinically well documented, but the role played by magnesium in pathophysiology and therapy is uncertain. To clarify this, an animal model in which the juxtacardial aorta was grafted to the infrarenal aorta, and the subsequent calcifications in the media of the graft and their response to oral supplementation with three magnesium-containing and alkalinizing preparations was investigated. Groups of highly inbred rats were formed as follows: sham-operation (Sham, n = 12), aorta transplantation (ATx, n = 12), ATx + magnesium citrate (MgC, n = 12), ATx + MgC + potassium citrate (MgCPC, n = 12), ATx + MgC + MgCPC (MgCPCSB, n = 12). At 84 (+/-2) days after ATx with or without treatment the following observations were made: (1) weight gain and general status were normal; (2) ATx rats developed massive media calcification, mineral accumulation in the graft, decreased erythrocyte magnesium and plasma parathyroid hormone, and increased plasma ionized magnesium and calcium, and uric acid; (3) Mg-treated rats developed variable degrees of metabolic alkalosis, but only MgCPCSB supplementation prevented calcifications. Additional findings after ATx alone were: imbalance in endothelin and nitric oxide production, the mineral deposited in media was poorly crystallized calcium phosphate, calcium exchange between plasma and graft, and bone resorption were unchanged. The superior anti-calcification effect of MgCPCSB was characterized by complete restoration of normal extracellular mineral homeostasis and uric acid, but sub-optimal normalization of erythrocyte magnesium. It was concluded that in the rat: (1) ATx causes loss of cellular magnesium, excess of extracellular magnesium and calcium in the presence of apparently unchanged bone resorption, and increased uricemia; (2) ATx facilitates enhanced influx of calcium into vascular tissue, leading to calcium phosphate deposition in the media; (3) ATx-induced calcification is prevented by dietary

  13. Process for converting magnesium fluoride to calcium fluoride

    DOEpatents

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  14. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis

    PubMed Central

    DiNicolantonio, James J; Wilson, William

    2018-01-01

    Because serum magnesium does not reflect intracellular magnesium, the latter making up more than 99% of total body magnesium, most cases of magnesium deficiency are undiagnosed. Furthermore, because of chronic diseases, medications, decreases in food crop magnesium contents, and the availability of refined and processed foods, the vast majority of people in modern societies are at risk for magnesium deficiency. Certain individuals will need to supplement with magnesium in order to prevent suboptimal magnesium deficiency, especially if trying to obtain an optimal magnesium status to prevent chronic disease. Subclinical magnesium deficiency increases the risk of numerous types of cardiovascular disease, costs nations around the world an incalculable amount of healthcare costs and suffering, and should be considered a public health crisis. That an easy, cost-effective strategy exists to prevent and treat subclinical magnesium deficiency should provide an urgent call to action. PMID:29387426

  15. Investigation of Tin as a Constituent of Inorganic Coatings for Magnesium Alloys

    DTIC Science & Technology

    1975-05-01

    WORDS (Continue on revete side if neceeeary and identify by block number) Inorganic Coatings Coatings for Magnesium Tin Magnesium Corrosion PR suaJEC...stannous pyrophosphate 10 grams dextrine water to one (1) liter (1) White, E.L. and F.W. Fink Corrosion protection of Magnesium and Magnesium alloys

  16. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  17. Advanced Conversion Coatings for Magnesium alloys

    NASA Astrophysics Data System (ADS)

    Nibhanupudi, Syam; Manavbasi, Alp

    Magnesium and its alloys have excellent physical and mechanical properties due to their high strength-to-weight ratio and are ideal for various applications in automotive, aerospace and defense sectors. However, Mg alloys are also highly susceptible to corrosion under harsh environments. Owing to this carcinogenicity as well as environmental impact of hexavalent chromium fueled by stringent environmental regulations, an environmentally green alternative to the carcinogenic hexavalent chromium coatings on magnesium is due.

  18. Chemical conversion coating for protecting magnesium alloys from corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds asmore » self-healing moieties to defect sites, thus providing active corrosion protection.« less

  19. Magnesium ions and opioid agonists in vincristine-induced neuropathy.

    PubMed

    Bujalska, Magdalena; Makulska-Nowak, Helena; Gumułka, Stanisław W

    2009-01-01

    Neuropathic pain is difficult to treat. Classic analgesics (i.e., opioid receptor agonists) usually possess low activity. Therefore other agents such as antidepressants, anticonvulsants, and corticosteroids are used. It is commonly known that NMDA antagonists increase analgesic activity of opioids. Unfortunately, clinical use of NMDA antagonists is limited because of the relatively frequent occurrence of adverse effects e.g., memory impairment, psychomimetic effects, ataxia and motor in-coordination. Magnesium ions (Mg(2+)) are NMDA receptor blockers in physiological conditions. Therefore, in this study the effect of opioid receptor agonists and the influence of Mg(2+) on the action of opioid agonists in vincristine-induced hyperalgesia were examined. Opioid agonists such as morphine (5 mg/kg, ip), and fentanyl (0.0625 mg/kg, ip), as well as the partial agonist buprenorphine (0.075 mg/kg, ip) administered alone on 5 consecutives days did not modify the hyperalgesia in vincristine rats. In contrast, pretreatment with a low dose of magnesium sulfate (30 mg/kg, ip) resulted in a progressive increase of the analgesic action of all three investigated opioids. After discontinuation of drug administration, the effect persisted for several days.

  20. Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Baofei; Huang, Jinhua; Feng, Zhenxing

    2016-05-09

    Two anthraquinone-based polymers aiming at improving the capacity and voltage of magnesium ion batteries, were synthesized and characterized. The excellent battery cycling performance was demonstrated with the electrolyte consisting of magnesium bis(hexamethyldisilazide) and magnesium chloride.

  1. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  2. Magnesium Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  3. Influence of Magnesium Ion Substitution on Structural and Thermal Behavior of Nanodimensional Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Batra, Uma; Kapoor, Seema; Sharma, Sonia

    2013-06-01

    Hydroxyapatite (HA), incorporating small amount of magnesium, shows attractive biological performance in terms of improved bone metabolism, osteoblast and osteoclast activity, and bone in-growth. This article reports a systematic investigation on the influence of magnesium (Mg) substitution on structural and thermal behavior of nanodimensional HA. HA and Mg-substituted HA nanopowders were synthesized through sol-gel route. The morphology and size of nanopowders were characterized by transmission electron microscopy. The BET surface area was evaluated from N2 adsorption isotherms. Structural analysis and thermal behavior were investigated by means of Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetry, and differential thermal analysis. As-synthesized powders consisted of flake-like agglomerates of HA and calcium-deficient HA. The incorporation of magnesium in HA resulted in decrease of crystallite size, crystallinity, and lattice parameters a and c and increase in BET surface area. β-tricalcium phosphate formation occured at lower calcination temperature in Mg-substituted HA than HA.

  4. Addition of senna improves quality of colonoscopy preparation with magnesium citrate

    PubMed Central

    Vradelis, Stergios; Kalaitzakis, Evangelos; Sharifi, Yalda; Buchel, Otto; Keshav, Satish; Chapman, Roger W; Braden, Barbara

    2009-01-01

    AIM: To prospectively investigate the effectiveness and patient’s tolerance of two low-cost bowel cleansing preparation protocols based on magnesium citrate only or the combination of magnesium citrate and senna. METHODS: A total of 342 patients who were referred for colonoscopy underwent a colon cleansing protocol with magnesium citrate alone (n = 160) or magnesium citrate and senna granules (n = 182). The colonoscopist rated the overall efficacy of colon cleansing using an established score on a 4-point scale. Patients were questioned before undergoing colonoscopy for side effects and symptoms during bowel preparation. RESULTS: The percentage of procedures rescheduled because of insufficient colon cleansing was 7% in the magnesium citrate group and 4% in the magnesium citrate/senna group (P = 0.44). Adequate visualization of the colonic mucosa was rated superior under the citramag/senna regimen (P = 0.004). Both regimens were well tolerated, and did not significantly differ in the occurrence of nausea, bloating or headache. However, abdominal cramps were observed more often under the senna protocol (29.2%) compared to the magnesium citrate only protocol (9.9%, P < 0.0003). CONCLUSION: The addition of senna to the bowel preparation protocol with magnesium citrate significantly improves the cleansing outcome. PMID:19360920

  5. Extraction of magnesium from calcined dolomite ore using hydrochloric acid leaching

    NASA Astrophysics Data System (ADS)

    Royani, Ahmad; Sulistiyono, Eko; Prasetiyo, Agus Budi; Subagja, Rudi

    2018-05-01

    Magnesium is widely used in varieties industrial sector. Dolomite is one source of magnesium besides seawater. The extraction of magnesium from dolomite ores can be done by leaching process. In this work, the dolomite leaching to extract magnesium by hydrochloric acid was investigated. The leaching experiments were performed in a spherical glass batch reactor having a capacity of 1000 ml. The effects of the stirring speed, acid concentration, reaction temperature and liquid-solid ratio for each reaction time of 1; 2; and 3 h on the Mg leaching have been evaluated. 5 ml of solution sample were collected from the leached solutions, then it was filtered prior to analysis by ICP OES. The experimental results show that the magnesium extraction increases along with the increase of acid concentration, liquid-solid ratio and temperature. The optimum conditions for magnesium extraction were achieved at temperature 75 °C, extraction time 3 h, the HCl concentration of 2 M, the liquid-solid ratio 20 ml/g and stirring speed of 400 rpm. At this condition 98, 82 % of magnesium were extracted from dolomite. The conclusion obtained from this leaching process is that the magnesium can be extracted from dolomite by using hydrochloric acid solutions.

  6. Oral Application of Magnesium-L-Threonate Attenuates Vincristine-induced Allodynia and Hyperalgesia by Normalization of Tumor Necrosis Factor-α/Nuclear Factor-κB Signaling.

    PubMed

    Xu, Ting; Li, Dai; Zhou, Xin; Ouyang, Han-Dong; Zhou, Li-Jun; Zhou, Hang; Zhang, Hong-Mei; Wei, Xu-Hong; Liu, Guosong; Liu, Xian-Guo

    2017-06-01

    Antineoplastic agents, including vincristine, often induce neuropathic pain and magnesium deficiency clinically, but the causal link between them has not been determined. No drug is available for treating this form of neuropathic pain. Injection of vincristine (0.1 mg · kg · day, intraperitoneally, for 10 days) was used to induce nociceptive sensitization, which was accessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Magnesium-L- threonate was administered through drinking water (604 mg · kg · day). Extracellular and intracellular free Mg were measured by Calmagite chromometry and flow cytometry. Molecular biologic and electrophysiologic experiments were performed to expose the underlying mechanisms. Vincristine injection induced allodynia and hyperalgesia (n = 12), activated tumor necrosis factor-α/nuclear factor-κB signaling, and reduced free Mg in cerebrospinal fluid by 21.7 ± 6.3% (mean ± SD; n = 13) and in dorsal root ganglion neurons by 27 ± 6% (n = 11). Reducing Mg activated tumor necrosis factor-α/nuclear factor-κB signaling in cultured dorsal root ganglion neurons. Oral application of magnesium-L-threonate prevented magnesium deficiency and attenuated both activation of tumor necrosis factor-α/nuclear factor-κB signaling and nociceptive sensitization (n = 12). Mechanistically, vincristine induced long-term potentiation at C-fiber synapses, up-regulated N-methyl-D-aspartate receptor type 2B subunit of N-methyl-D-aspartate receptor, and led to peptidergic C-fiber sprouting in spinal dorsal horn (n = 6 each). The vincristine-induced pathologic plasticity was blocked by intrathecal injection of nuclear factor-κB inhibitor (n = 6), mimicked by tumor necrosis factor-α, and substantially prevented by oral magnesium-L-threonate (n = 5). Vincristine may activate tumor necrosis factor-α/nuclear factor-κB pathway by reduction of intracellular magnesium, leading to spinal pathologic plasticity and

  7. Fractionation of canine serum magnesium.

    PubMed

    Schenck, Patricia A

    2005-06-01

    Serum total magnesium (tMg) consists of 3 fractions: ionized magnesium (iMg), protein-bound magnesium (pbMg), and complexed magnesium (cMg). Serum iMg may be measured by an ion-selective electrode, but determination of pbMg and cMg has not been attempted in dogs. The objectives of this study were to assess the validity of a micropartition system to fractionate serum tMg and to establish reference intervals for pbMg, cMg, and iMg in clinically normal dogs using this method. Serum samples from 10 clinically healthy dogs were fractionated using a micropartition system (Centrifree YM-30, Amicon Corp, Lexington, MA, USA). Serum tMg and iMg were measured in whole serum, and tMg was also measured in the ultrafiltrate. Concentration of cMg was obtained by the subtraction of iMg from tMg concentrations of the ultrafiltrate. Protein-bound Mg was calculated by subtracting the tMg concentration of the ultrafiltrate from the tMg concentration of whole serum. Results for pbMg and cMg using the micropartition system showed good reproducibility. Determination of tMg and iMg had acceptable inter- and intra-assay precision. Concentrations of iMg, cMg, and pbMg were 0.50 +/- 0.05 mmol/L, 0.05 +/- 0.04 mmol/L, and 0.24 +/- 0.04 mmol/L, representing 63%, 6%, and 31% of the tMg concentration, respectively. The micropartition system was a reproducible means to accurately assess cMg and pbMg concentrations in dogs.

  8. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42.

    PubMed

    Lu, Ping; Cao, Lu; Liu, Yin; Xu, Xinhua; Wu, Xiangfeng

    2011-01-01

    Magnesium alloys may potentially be applied as biodegradable metallic materials in cardiovascular stent. However, the high corrosion rate hinders its clinical application. In this study, a new approach was adopted to control the corrosion rate by fabricating a biocompatible micro-arc oxidation/poly-L-lactic acid (MAO/PLLA) composite coating on the magnesium alloy WE42 substrate and the biocompatibility of the modified samples was investigated. The scanning electronic microscope (SEM) images were used to demonstrate the morphology of the samples before and after being submerged in hanks solution for 4 weeks. The degradation was evaluated through the magnesium ions release rate and electrochemical impedance spectroscopy (EIS) test. The biocompatibility of the samples was demonstrated by coagulation time and hemolysis behavior. The result shows that the poly-L-lactic acid (PLLA) effectively improved the corrosion resistance by sealing the microcracks and microholes on the surface of the MAO coating. The modified samples had good compatibility. © 2010 Wiley Periodicals, Inc.

  9. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  10. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep

    USDA-ARS?s Scientific Manuscript database

    Low magnesium status has been associated with numerous conditions characterized as having a chronic inflammatory stress component. Some animal findings indicate that a moderate magnesium deficiency, similar to which apparently commonly occurs in humans, may enhance inflammatory or oxidative stress i...

  11. Magnesium, hemostasis, and outcomes in patients with intracerebral hemorrhage.

    PubMed

    Liotta, Eric M; Prabhakaran, Shyam; Sangha, Rajbeer S; Bush, Robin A; Long, Alan E; Trevick, Stephen A; Potts, Matthew B; Jahromi, Babak S; Kim, Minjee; Manno, Edward M; Sorond, Farzaneh A; Naidech, Andrew M; Maas, Matthew B

    2017-08-22

    We tested the hypothesis that admission serum magnesium levels are associated with hematoma volume, hematoma growth, and functional outcomes in patients with intracerebral hemorrhage (ICH). Patients presenting with spontaneous ICH were enrolled in an observational cohort study that prospectively collected demographic, clinical, laboratory, radiographic, and outcome data. We performed univariate and adjusted multivariate analyses to assess for associations between serum magnesium levels and initial hematoma volume, final hematoma volume, and in-hospital hematoma growth as radiographic measures of hemostasis, and functional outcome measured by the modified Rankin Scale (mRS) at 3 months. We included 290 patients for analysis. Admission serum magnesium was 2.0 ± 0.3 mg/dL. Lower admission magnesium levels were associated with larger initial hematoma volumes on univariate ( p = 0.02), parsimoniously adjusted ( p = 0.002), and fully adjusted models ( p = 0.006), as well as greater hematoma growth ( p = 0.004, p = 0.005, and p = 0.008, respectively) and larger final hematoma volumes ( p = 0.02, p = 0.001, and p = 0.002, respectively). Lower admission magnesium level was associated with worse functional outcomes at 3 months (i.e., higher mRS; odds ratio 0.14, 95% confidence interval 0.03-0.64, p = 0.011) after adjustment for age, admission Glasgow Coma Scale score, initial hematoma volume, time from symptom onset to initial CT, and hematoma growth, with evidence that the effect of magnesium is mediated through hematoma growth. These data support the hypothesis that magnesium exerts a clinically meaningful influence on hemostasis in patients with ICH. © 2017 American Academy of Neurology.

  12. Effect of magnesium on arrhythmia incidence in patients undergoing coronary artery bypass grafting.

    PubMed

    Mohammadzadeh, Alireza; Towfighi, Farshad; Jafari, Naser

    2018-06-01

    Cardiac arrhythmia after coronary artery bypass grafting (CABG) surgery is a common complication of cardiac surgery. The effect of serum magnesium, hypomagnesaemia treatment and prophylactic administration of magnesium in the development and prevention of arrhythmias is controversial and there are many different ideas. This study evaluates the therapeutic effects of magnesium in cardiac arrhythmia after CABG surgery. The clinical trial enrolled 250 patients who underwent CABG. Based on the initial serum levels of magnesium, patients were divided into two groups: hypomagnesium and normomagnesium. Based on bioethics committee requirements, patients in the hypo-magnesium group received magnesium treatments until they attained normal magnesium blood levels. Both groups underwent CABG with normal blood levels of magnesium. After surgery, each group was randomly divided into two subgroups: one subgroup received a bolus dose of magnesium sulphate (30 mg/kg in 5 min) and the other subgroup received a placebo. Subgroups were under observation in the intensive care unit for 3 days and arrhythmias were recorded. Data from all four subgroups were analysed statistically and interpreted. The results of this study showed that the occurrence of arrhythmia was not significantly different among subgroups (P > 0.05). There was no significant relationship between blood levels of magnesium and arrhythmia during the 3 days post-surgery (P > 0.05). The results of this study showed that magnesium sulphate administration did not significantly improve the incidence of arrhythmias in hypo- and normo-magnesium patients after CABG. There was no significant correlation between post-operative serum levels of magnesium and arrhythmia during 3 days. © 2017 Royal Australasian College of Surgeons.

  13. Ionized magnesium in the planetary nebula NGC 7027

    NASA Technical Reports Server (NTRS)

    Evans, N. J., II; Natta, A.; Russell, R. W.; Wyant, J.; Beckwith, S.

    1984-01-01

    Observations of NGC 7027 are presented for six ionic lines: Mg(+3) (4.48 microns), Mg(+4) (5.61 microns), H(0) (4.05 and 7.46 microns), Ne(+5) (7.64 microns), and Ar(+5) (4.53 microns). The magnesium lines are consistent with the measurements of Russell, Soifer, and Willner (1977), and the hydrogen lines are consistent with the line strengths predicted from the radio flux. Upper limits were obtained for the neon and argon lines. The abundance of magnesium in the central part of the nebula is highly uncertain because the fine-structure collision strengths are poorly known. The strong gradient of magnesium abundance from the inner to the outer portions of the nebula derived by Pequignot and Stasinska (1980) could be an artifact of this uncertainty. A brief analysis of the effective stellar temperature derived from the magnesium line ratios is given.

  14. Magnesium Reduces Hepatic Lipid Accumulation in Yellow Catfish (Pelteobagrus fulvidraco) and Modulates Lipogenesis and Lipolysis via PPARA, JAK-STAT, and AMPK Pathways in Hepatocytes.

    PubMed

    Wei, Chuan-Chuan; Wu, Kun; Gao, Yan; Zhang, Li-Han; Li, Dan-Dan; Luo, Zhi

    2017-06-01

    Background: Magnesium influences hepatic lipid deposition in vertebrates, but the underlying mechanism is unknown. Objective: We used yellow catfish and their isolated hepatocytes to test the hypothesis that magnesium influences lipid deposition by modulating lipogenesis and lipolysis. Methods: Juvenile yellow catfish (mean ± SEM weight: 3.43 ± 0.02 g, 3 mo old, mixed sex) were fed a 0.14- (low), 0.87- (intermediate) or 2.11- (high) g Mg/kg diet for 56 d. Primary hepatocytes were incubated for 48 h in control or MgSO 4 -containing medium with or without 2-h pretreatment with an inhibitor (AG490, GW6471, or Compound C). Growth performance, cell viability, triglyceride (TG) concentrations, and expression of enzymes and genes involved in lipid metabolism were measured. Results: Compared with fish fed low magnesium, those fed intermediate or high magnesium had lower hepatic lipids (18%, 22%) and 6-phosphogluconate dehydrogenase (6PGD; 3.7%, 3.8%) and malic enzyme (ME; 35%, 48%) activities and greater mRNA levels of the lipolytic genes adipose triacylglyceride lipase ( atgl ; 82% and 1.7-fold) and peroxisome proliferator-activated receptor ( ppara ; 18% and 1.0-fold), respectively ( P < 0.05). Relative mRNA levels of AMP-activated protein kinase ( ampk ) a1 , ampka2 , ampkb1 , ampkb2 , ampkg1a , ampkg1b , Janus kinase (jak) 2a , jak2b, and signal transducers and activators of transcription ( stat ) 3 in fish fed high magnesium were higher (24% to 3.1-fold, P < 0.05) than in those fed low or intermediate magnesium. Compared with cells incubated with MgSO 4 alone, those incubated with MgSO 4 and pretreated with AG490, GW6471, or Compound C had greater TG concentrations (42%, 31%, or 56%), g6pd (98%, 59%, or 51%), 6pgd (68%, 73%, or 32%) mRNA expression, and activities of G6PD (35%, 45%, or 16%) and ME (1.5-fold, 1.3-fold, or 13%), and reduced upregulation (61%, 25%, or 45%) of the lipolytic gene, atgl ( P < 0.05). Conclusions: Magnesium reduced hepatic lipid

  15. A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes

    NASA Astrophysics Data System (ADS)

    Aurbach, D.; Gofer, Y.; Schechter, A.; Chusid, O.; Gizbar, H.; Cohen, Y.; Moshkovich, M.; Turgeman, R.

    This paper describes briefly the difference between reversible lithium and magnesium electrodes. In the case of lithium, the active metal is always covered by surface films. Li dissolution-deposition is reversible only when the surface films contain elastomers and are flexible. Hence, they can accommodate the morphological changes of the electrode during the electrochemical processes without breaking down. In an ideal situation, lithium is deposited beneath the surface films, while being constantly protected in a way that prevents reactions between freshly deposited lithium and solution species. In contrast to lithium, magnesium electrodes are reversible only in solutions where surface film free conditions exist. Mg does not react with ethers, and thus, in ethereal solutions of Grignard reagents (RMgX, where R=alkyl, aryl, X=halide) and complexes of the following type: Mg(AlX 4- nR n' R n″ ') 2, R and R'=alkyl groups, X=halide, A=Al, 0< n<4 and n'+ n''= n, magnesium electrodes behave reversibly. However, it should be noted that the above stoichiometry of the Mg salts does not reflect the true structure of the active ions in solutions. Mg deposition does not occur via electron transfer to simply solvated Mg 2+ ions. The behavior of Mg electrodes in these solutions is discussed in light of studies by EQCM, EIS, FTIR, XPS, STM and standard electrochemical techniques.

  16. Disulfide-Bridged (Mo3S11) Cluster Polymer: Molecular Dynamics and Application as Electrode Material for a Rechargeable Magnesium Battery.

    PubMed

    Truong, Quang Duc; Kempaiah Devaraju, Murukanahally; Nguyen, Duc N; Gambe, Yoshiyuki; Nayuki, Keiichiro; Sasaki, Yoshikazu; Tran, Phong D; Honma, Itaru

    2016-09-14

    Exploring novel electrode materials is critical for the development of a next-generation rechargeable magnesium battery with high volumetric capacity. Here, we showed that a distinct amorphous molybdenum sulfide, being a coordination polymer of disulfide-bridged (Mo3S11) clusters, has great potential as a rechargeable magnesium battery cathode. This material provided good reversible capacity, attributed to its unique structure with high flexibility and capability of deformation upon Mg insertion. Free-terminal disulfide moiety may act as the active site for reversible insertion and extraction of magnesium.

  17. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    PubMed Central

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  18. Serum and saliva magnesium in postmenopausal women with xerostomia.

    PubMed

    Agha-Hosseini, F; Mirzaii-Dizgah, I

    2012-10-01

    The aim of this study was to investigate serum, stimulated and unstimulated salivary magnesium in postmenopausal women with xerostomia. A case-control study was carried out on 60 selected postmenopausal women aged 41-77 years with or without xerostomia (30 as cases with xerostomia and 30 as controls without xerostomia), conducted at the Clinic of Oral Medicine, Tehran University of Medical Sciences. Unstimulated and paraffin-stimulated saliva samples were obtained by expectoration. Magnesium concentration was determined by the spectrophotometer method. Statistical analysis was carried out using Student's t-test. The mean serum concentration, but not stimulated and unstimulated whole saliva magnesium concentrations, was significantly higher in the cases than in the controls. Serum magnesium level appears to be associated with xerostomia in menopause.

  19. Magnesium enhances opioid-induced analgesia - What we have learnt in the past decades?

    PubMed

    Bujalska-Zadrożny, Magdalena; Tatarkiewicz, Jan; Kulik, Kamila; Filip, Małgorzata; Naruszewicz, Marek

    2017-03-01

    Opioids are increasingly used in alleviating pain, including cancer-related pain and postoperative pain. Unfortunately, the development of tolerance, the resistance of neuropathic pain on opioid analgesia or other undesirable effects may limit their utility. In order to reduce opioid doses, and thereby to avoid the risk of side effects and sudden deaths due to overdosing, attempts have been made to introduce co-analgesics. Due to an increasing amount of data concerning a potential enhance of opioid analgesia by the physiological antagonist of N-methyl-d-aspartate receptors, magnesium ions (Mg 2+ ), a concomitant use of such a combination seems to be interesting from a clinical point of view. Therefore, the aim of this review is to provide an analysis of existing preclinical and clinical studies in the context of the benefits of using this combination in clinical practice. A potential mechanism of magnesium - opioid interaction is also suggested. The potential influence of Mg on opioid adverse/side effects as well as conclusions on the safety of combined administration of magnesium and opioid drugs were also summarized. Data from animal studies indicate that magnesium increases opioid analgesia in chronic (e.g., neuropathic, inflammatory) as well as acute pain. In clinical trials, most authors confirmed that magnesium reduces opioid consumption and alleviates postoperative pain scores while not increasing the risk of side effects after opioids. However, more clinical studies are needed concerning an influence of Mg on opioid activity in other difficult to treat types of pain, especially neuropathic and inflammatory. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Security assessment of magnesium alloys used as biodegradable implant material.

    PubMed

    Sun, X; Cao, Z Y; Liu, J G; Feng, C

    2015-01-01

    The security risk of magnesium alloys used as biodegradable implant material was evaluated in this study. Dose-response assessment was conducted by using toxicological data from authoritative public health agencies (World Health Organization) and assuming 1~3 years of uniform corrosion. Through modification calculation, the tolerable corrosion rate of biodegradable magnesium alloys in vivo was proposed, which theoretically ensured the bio-safety of the degradation products. The tolerable limits corresponding to various component elements in magnesium alloys were considered separately, although there are deficits in the toxicological data of some component elements. The influence of corrosion on the strength of magnesium alloys was evaluated, which would contribute to the rationally utilization of magnesium alloys as degradable implant materials. This study illustrates that not only toxicological calculations but also mechanical performance should be taken into consideration when developing novel degradable metallic implant.

  1. Light-weight titanium magnesium alloys by vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward-Close, C.M.; Lu, G.; Bagnall, K.E.

    A novel range of Ti-Mg alloys were produced by a high rate evaporation and vapor quenching route. Magnesium is virtually insoluble in titanium under equilibrium conditions, and this alloy combination is not possible by conventional ingot metallurgy due to the high vapor pressure of magnesium, which boils at atmospheric pressure below the melting point of titanium. X-ray diffraction data showed that at least 27 wt% magnesium was retained in solid solution. Each 1 wt% addition of magnesium reduced the alloy density by approximately 1%. For the more dilute alloys (< 10 wt%) heat treatment in air or in vacuum upmore » to 700 C was accompanied by a very substantial increase in hardness, which could not be explained in terms of oxygen absorption by the titanium lattice. A Ti-9Mg alloy has been studied by transmission electron microscopy using electron energy loss (PEELS) and energy dispersive X-ray techniques. After hot-pressing, particles in the 2--20 nm range, and others at about 100 nm diameter were found within the grains and in the grain boundaries respectively. These particles were identified as magnesium. Controlled oxidation led to the formation of MgO particles, and an increase in hardness by a factor of 2.3.« less

  2. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...

  3. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...

  4. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...

  5. Precipitation and Hardening in Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  6. Some Structural Properties of the Mixed Lead-Magnesium Hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Kaaroud, K.; Ben Moussa, S.; Brigui, N.; Badraoui, B.

    2018-02-01

    Lead-magnesium hydroxyapatite solid solutions Pb(10- x)Mg x (PO4)6(OH)2 have been prepared via a hydrothermal process. They were characterized by X-ray powder diffraction, Transmission Electron Microscopy (TEM), chemical and IR spectroscopic analyses. The results of the structural refinement indicated that the limits of lead-magnesium solid solutions ( x ≤ 1.5), a regular decrease of the lattice constant a and a preferential magnesium distribution in site S(I). Through the progressive replacement of Pb2+ ( r = 0.133 nm) by the smaller cation Mg2+ ( r = 0.072 nm), all interatomic distances decrease in accordance with the decrease of the cell parameters. According to what could be expected from the coordinance of the metallic sites S(I) (hexacoordination) and S(II) (heptacoordination), the small magnesium cation preferentially occupies the four sites S(I). The results of the TEM analysis confirm the presence of magnesium in the starting solution and reveals the decrease in the average size of crystals. The IR spectra show the presence of the absorption bands characteristic for the apatite structure.

  7. Preparation and characterization of magnesium borate for special glass

    NASA Astrophysics Data System (ADS)

    Dou, Lishuang; Zhong, Jianchu; Wang, Hongzhi

    2010-05-01

    Magnesium borate with a variety of B2O3/MgO molar ratios, which can be applied for special glass, has been prepared through the reaction of light-burned magnesia with boric acid by a hydrothermal method. The effects of the B2O3/MgO molar ratio of raw materials, reaction time, temperature and liquid to solid ratio (ml g-1) on the synthetic product are investigated. The XRD and TG-DTG analyses indicate that the prepared magnesium borate is a mixture of magnesium hexaborate hydrate and ascharite. The results show that high B2O3/MgO molar ratios of raw materials and low reaction liquid-solid ratios favour the product with a high B2O3/MgO molar ratio and vice versa. There exists free MgO in the product when the reaction temperature is below 140 °C or the reaction time is not enough, because of the incomplete reaction of magnesium oxide with boric acid. The process of fractional crystallization for the magnesium borate mixture is also discussed.

  8. The Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Transcription of the Type III Secretion System▿ †

    PubMed Central

    Anderson, Gregory G.; Yahr, Timothy L.; Lovewell, Rustin R.; O'Toole, George A.

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes. PMID:20028803

  9. The influence of magnesium supplementation on concentrations of chosen bioelements and toxic metals in adult human hair. Magnesium and chosen bioelements in hair.

    PubMed

    Kozielec, Tadeusz; Sałacka, Anna; Karakiewicz, Beata

    2004-09-01

    The basic functions of bioelements in biological systems is widely known. Depletion of bioelements and excess of toxic elements lead to impairment of metabolism in the living organism. The existence of magnesium deficiencies in the adult and pediatric populations may cause increased accumulation of toxic metals including lead and cadmium. Prevention of adverse effects of toxic metals may include supplementation with some bioelements and vitamins. The aim of this study was to evaluate the influence of magnesium supplementation on concentrations of chosen bioelements and toxic metals in hair in the adult human population. The research was performed on 124 individuals (53 males and 71 females aged 19-72 years), inhabitants of the city of Szczecin. The concentrations of magnesium, zinc, copper, lead and cadmium were studied in hair. Measurements were performed using the inversion volt-amperometry method with application of an EDD-Tribo PC ETP volt-amperometer. Finally, the supplementation study enrolled 65 individuals with an increased concentration of lead. The studied individuals were divided into two groups: one treated group that enrolled 50 patients who were supplemented with magnesium and the control group that enrolled 15 persons receiving placebo. Finally, supplementation was completed by 32 individuals from the treated group and 10 individuals from the control group. Supplementation was performed using Slow-Mag-B6 preparation at the total daily dose of five tablets divided into 2-3 doses. One tablet contains 535 mg of magnesium chloride i.e. 64 mg of magnesium ions (5.26 mEgMg2) and 5 mg of vitamin B6. Supplementation was performed for a period of 3 months. The remaining individuals did not complete the supplementation due to various reasons; however, none of them resulted from the poor tolerance of the preparation or its adverse events. The results achieved underwent statistical analysis. The results of the study revealed a positive influence of

  10. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  11. Serum magnesium is associated with the risk of dementia.

    PubMed

    Kieboom, Brenda C T; Licher, Silvan; Wolters, Frank J; Ikram, M Kamran; Hoorn, Ewout J; Zietse, Robert; Stricker, Bruno H; Ikram, M Arfan

    2017-10-17

    To determine if serum magnesium levels are associated with the risk of all-cause dementia and Alzheimer disease. Within the prospective population-based Rotterdam Study, we measured serum magnesium levels in 9,569 participants, free from dementia at baseline (1997-2008). Participants were subsequently followed up for incident dementia, determined according to the DSM-III-R criteria, until January 1, 2015. We used Cox proportional hazard regression models to associate quintiles of serum magnesium with incident all-cause dementia. We used the third quintile as a reference group and adjusted for age, sex, Rotterdam Study cohort, educational level, cardiovascular risk factors, kidney function, comorbidities, other electrolytes, and diuretic use. Our study population had a mean age of 64.9 years and 56.6% were women. During a median follow-up of 7.8 years, 823 participants were diagnosed with all-cause dementia. Both low serum magnesium levels (≤0.79 mmol/L) and high serum magnesium levels (≥0.90 mmol/L) were associated with an increased risk of dementia (hazard ratio [HR] 1.32, 95% confidence interval [CI] 1.02-1.69, and HR 1.30, 95% CI 1.02-1.67, respectively). Both low and high serum magnesium levels are associated with an increased risk of all-cause dementia. Our results warrant replication in other population-based studies. © 2017 American Academy of Neurology.

  12. [Prenatal treatment with magnesium sulphate: Initial clinical outcomes in pre-term infants less than 29 weeks and correlation with neonatal magnesium levels].

    PubMed

    García Alonso, Laura; Pumarada Prieto, Marcelino; González Colmenero, Eva; Concheiro Guisán, Ana; Suárez Albo, María; Durán Fernández-Feijoo, Cristina; González Durán, Luisa; Fernández Lorenzo, José Ramón

    2017-03-01

    Antenatal magnesium sulphate (MgSO4) administration has shown to be effective in minimising cerebral palsy and severe motor dysfunction at the age of 2 years. The aim of this study is to analyse the initial clinical outcome of preterm neonates less than 29 weeks who have received prenatal MgSO 4 , as well as to determine the relationship between the magnesium dose delivered to the mother and the magnesium concentration in the neonates. A prospective cohort study was conducted on neonates of less than 29 weeks gestation admitted to the Neonatal Intensive Care Unit (NICU) of Hospital Universitario de Vigo from December 2012 to July 2015. Comparative analysis was performed on the perinatal outcomes, neonatal morbidity, mortality, and magnesium levels between the groups of neonates exposed to magnesium sulphate and the control group. A total of 42 neonates were included in the study. The mothers of 28 of them had received MgSO4 as a neuroprotective agent. Statistical significance was obtained in the mortality variable. There were no significant differences in the rest of studied variables. There was a significant correlation between the full dose of MgSO4 received by the mother and the levels of magnesium in the neonate in the first 24hours of life (r 2 0.436; P<.001). A lower mortality was observed in the group that had been exposed to MgS04. No significant side effects were found as a result of administering of MgS04. The MgS04 dose received by mother has a linear relationship with the magnesium levels obtained in neonates. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean

    PubMed Central

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-01-01

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications. PMID:20007788

  14. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean.

    PubMed

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-12-29

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications.

  15. Magnesium Intake Is Inversely Associated With Coronary Artery Calcification

    PubMed Central

    Hruby, Adela; O'Donnell, Christopher J.; Jacques, Paul F.; Meigs, James B.; Hoffmann, Udo; McKeown, Nicola M.

    2014-01-01

    OBJECTIVES The aim of this study was to examine whether magnesium intake is associated with coronary artery calcification (CAC) and abdominal aortic calcification (AAC). BACKGROUND Animal and cell studies suggest that magnesium may prevent calcification within atherosclerotic plaques underlying cardiovascular disease. Little is known about the association of magnesium intake and atherosclerotic calcification in humans. METHODS We examined cross-sectional associations of self-reported total (dietary and supplemental) magnesium intake estimated by food frequency questionnaire with CAC and AAC in participants of the Framingham Heart Study who were free of cardiovascular disease and underwent Multi-Detector Computed Tomography (MDCT) of the heart and abdomen (n = 2,695; age: 53 ± 11 years), using multivariate-adjusted Tobit regression. CAC and AAC were quantified using modified Agatston scores (AS). Models were adjusted for age, sex, body mass index, smoking status, systolic blood pressure, fasting insulin, total-to-high-density lipoprotein cholesterol ratio, use of hormone replacement therapy (women only), menopausal status (women only), treatment for hyperlipidemia, hypertension, cardiovascular disease prevention, or diabetes, as well as self-reported intake of calcium, vitamins D and K, saturated fat, fiber, alcohol, and energy. Secondary analyses included logistic regressions of CAC and AAC outcomes as cut-points (AS >0 and AS ≥90th percentile for age and sex), as well as sex-stratified analyses. RESULTS In fully adjusted models, a 50-mg/day increment in self-reported total magnesium intake was associated with 22% lower CAC (p < 0.001) and 12% lower AAC (p = 0.07). Consistent with these observations, the odds of having any CAC were 58% lower (p trend: <0.001) and any AAC were 34% lower (p trend: 0.01), in those with the highest compared to those with the lowest magnesium intake. Stronger inverse associations were observed in women than in men. CONCLUSIONS In

  16. Intra- and extracellular magnesium levels and atheromatosis in haemodialysis patients.

    PubMed

    Tzanakis, Ioannis; Virvidakis, Kyriakos; Tsomi, Aggeliki; Mantakas, Emmanouel; Girousis, Nikolaos; Karefyllakis, Nektarios; Papadaki, Antonia; Kallivretakis, Nikolaos; Mountokalakis, Theodoros

    2004-06-01

    Traditional risk factors do not adequately explain the high prevalence of cardiovascular disease in patients with chronic renal insufficiency. Currently, there is a lot of evidence that hypomagnesaemia may play a significant role in the pathogenesis of cardiovascular diseases in general population. The aim of this study was to test the hypothesis that magnesium status in haemodialysis patients is related to the degree of atheromatosis of carotid arteries, as assessed by B-mode ultrasound. Intima-media thickness of both common carotids was assessed by B-mode ultrasound in 93 stable chronic haemodialysis patients and in 182 age- and sex-matched healthy controls. Intracellular magnesium as well as serum magnesium levels were obtained in the haemodialysis patients. Intracellular magnesium was estimated by determination of this ion in isolated peripheral lymphocytes. Haemodialysis patients had also a significantly higher mean common carotid intima-media thickness than controls (0.87+/-0.16 vs 0.76+/-0.13 mm, p < 0.001). Multivariate analysis revealed that in haemodialysis patients both serum magnesium and intracellular magnesium were negatively associated with common carotid intima-media thickness (p = 0.001 and p = 0.003 respectively). Significant associations between the age of the haemodialysis patients, the existence of diabetes mellitus as well as the serum calcium x serum phosphate product with common carotid intima-media thickness of haemodialysis patients were also observed. A strong negative association of both extracellular and intracellular magnesium with common carotid intima-media thickness exists in haemodialysis patients. The above finding suggests that magnesium may play an important protective role in the development and/or acceleration of arterial atherosclerosis in patients with chronic renal insufficiency.

  17. Preparation of magnesium metal matrix composites by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  18. 76 FR 11813 - Magnesium From China and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... and Russia Determinations On the basis of the record \\1\\ developed in the subject five-year reviews... antidumping duty order on magnesium from Russia would not be likely to lead to continuation or recurrence of... contained in USITC Publication 4214 (February 2011), entitled Magnesium from China and Russia: Investigation...

  19. Magnetization Analysis of Magnesium Boride Wires

    NASA Astrophysics Data System (ADS)

    Cave, J. R.; Zhu, W.

    2006-03-01

    Cycled applied field magnetization curves contain a wealth of information on critical current density and flux pinning that is not commonly exploited. Detailed magnetization data for magnesium boride wire cores have been analyzed for critical state model consistency. The iron-sheathed silicon nitride doped magnesium boride wires were prepared from pure magnesium and boron powders with nano-scale silicon nitride additions (MgB2-x(Si3N4)x/7 with x = 0 - 0.4). A subsequent short annealing heat treatment, 800 degrees C and of 1 hour duration in Argon, was applied to create the desired phase. Magnetization critical current densities were up to ˜340 kA/cm2 at 5K and 1T. Major and minor loop analysis will be described, for field sweeps up to 3 tesla at fixed temperatures and for temperature sweeps from 5K to 45K in fixed fields, with respect to parameters describing the critical state model.

  20. Research on A3 steel corrosion behavior of basic magnesium sulfate cement

    NASA Astrophysics Data System (ADS)

    Xing, Sainan; Wu, Chengyou; Yu, Hongfa; Jiang, Ningshan; Zhang, Wuyu

    2017-11-01

    In this paper, Tafel polarization technique is used to study the corrosion behavior of A3 steel basic magnesium sulfate, and then analyzing the ratio of raw materials cement, nitrites rust inhibitor and wet-dry cycle of basic magnesium sulfate corrosion of reinforced influence, and the steel corrosion behavior of basic magnesium sulfate compared with magnesium oxychloride cement and Portland cement. The results show that: the higher MgO/MgSO4 mole ratio will reduce the corrosion rate of steel; Too high and too low H2O/MgSO4 mole ratio may speed up the reinforcement corrosion effect; Adding a small amount of nitrite rust and corrosion inhibitor, not only can obviously reduce the alkali type magnesium sulfate in the early hydration of cement steel bar corrosion rate, but also can significantly reduce dry-wet circulation under the action of alkali type magnesium sulfate cement corrosion of reinforcement effect. Basic magnesium sulfate cement has excellent ability to protect reinforced, its long-term corrosion of reinforcement effect and was equal to that of Portland cement. Basic magnesium sulfate corrosion of reinforced is far below the level in the MOC in the case.

  1. Deformation behaviour of a new magnesium ternary alloy

    NASA Astrophysics Data System (ADS)

    Guglielmi, P.; Kaya, A. Arslan; Sorgente, D.; Palumbo, G.

    2018-05-01

    Magnesium based alloys are yet to fill a greater niche especially in the automotive and aeronautical industry. In fact, such alloys have a big weight saving potential, together with good damping characteristics. However, nowadays about 90% of Magnesium products are produced by casting, mainly using two alloy systems, namely Mg-Al-Zn (AZ91D) and Mg-Al (AM50, AM60). Now the emphasis, especially after having achieved considerable success in creep resistance and understanding of the deformation behaviour of Magnesium, has been shifted towards wrought alloys; AZ31, in this case, is the most popular. In this work a multi-element Magnesium alloy, developed to improve the deformation capacity of such a lightweight material, has been investigated and compared to a commercial AZ31B. The possibility of adopting such a multi-element Magnesium alloy for manufacturing components via unconventional sheet forming (such as superplastic forming, warm hydroforming, incremental forming) has been proved in the present work focusing the attention on the superplastic field. Free inflation tests were thus conducted at 450°C setting constant pressure to investigate the superplastic behaviour (in terms of dome height and strain rate sensitivity index) of both the multi-element Magnesium alloy (Mg-2Zn-Ce) and the commercial one (AZ31B). To enhance information on the thickness distribution and investigate the microstructure evolution, metallographic analyses on the samples used to carry out free inflation tests were also performed. The developed ternary alloy manifested quite a good deformation behaviour (high strain rate sensitivity index), even being tested in the as cast condition; in addition a limited grain coarsening was observed in the specimens after deformation.

  2. Impact of sodium caseinate concentration and location on magnesium release from multiple W/O/W emulsions.

    PubMed

    Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Anton, Marc; Leal-Calderon, Fernando

    2010-06-15

    Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.

  3. Magnesium Status and Its Association with Oxidative Stress in Obese Women.

    PubMed

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; da Silva Dias, Thaline Milany; de Assis, Régina Célia; Colli, Célia; do Nascimento Marreiro, Dilina

    2017-02-01

    The aim of this study was to assess the relationship between magnesium status and oxidative stress in obese and nonobese women. This cross-sectional study included 83 women, aged between 20 and 50 years, who were divided into two groups: the obese group (n = 31) and the control group (n = 52). The control group was age-matched with the obese group. Magnesium intake was monitored using 3-day food records and NutWin software version 1.5. The plasma and erythrocyte magnesium concentrations were determined by flame atomic absorption spectrophotometry. Plasma levels of thiobarbituric acid reactive substances (TBARS) were determined as biomarkers for lipid peroxidation and therefore of oxidative stress. The mean values of the magnesium content in the diet were found to be lower than those recommended, though there was no significant difference between groups (p > 0.05). The mean concentrations of plasma and erythrocyte magnesium were within the normal range, with no significant difference between groups (p > 0.05). The mean concentration of plasma TBARS was higher in obese woman, and the difference between the groups was statistically different (p < 0.05). There was a positive correlation between erythrocyte magnesium and plasma TBARS in the obese group (p = 0.021). Obese patients ingest low dietary magnesium content, which does not seem to affect the plasma and erythrocyte concentrations of the mineral. The study showed a negative correlation between erythrocyte magnesium concentrations and plasma TBARS, suggesting the influence of magnesium status on the parameters of oxidative stress in obese women.

  4. Fogging technique used to coat magnesium with plastic

    NASA Technical Reports Server (NTRS)

    Mroz, T. S.

    1967-01-01

    Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.

  5. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    PubMed

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  6. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line

    NASA Astrophysics Data System (ADS)

    Majeed, Shahnaz; Danish, Mohammed; Muhadi, Nur Farisyah Bahriah Binti

    2018-06-01

    The study focussed on the synthesis of magnesium oxide (MgO) nanoparticles from an aqueous extract of Penicillium species isolated from soil. A suitable amount of magnesium nitrate (MgNO3) was mixed with the aqueous extract of Penicillium. Then the colour of the solution changed due to the formation of MgO nanoparticles. These nascent formed MgO nanoparticles were further confirmed by using UV spectrophotometry which showed the maximum absorption at 215 nm indicating the formation of MgO nanoparticles. Fourier transform infrared spectroscopy (FTIR) was used to find the possible functional groups and proteins involving the stabilization of MgO nanoparticles. Transmission electron microscopy (TEM) study revealed the size, the shape as well as the dispersity of the prepared MgO nanoparticles and showed that they were well dispersed around 12–24 nm (scale 200 nm). The anticancer activity against A-549 cell line of these green synthesized MgO nanoparticles was evaluated. The result showed good anticancer effect after 24 h of incubation. Nevertheless these MgO nanoparticles showed less effect on normal Vero cells. Further apoptotic study clearly displayed the effect of MgO nanoparticles on cancer cells. The effect was observed through chromatin condensation by forming apoptotic bodies using propidium iodide, acridine orange and ethidium bromide (AO/EB) staining technique. The DNA was isolated to confirm the DNA damage; the observation clearly showed DNA damage when compared with DNA ladder.

  7. Investigations of magnesium, histamine and immunoglobulins dynamics in acute urticaria.

    PubMed

    Mureşan, D; Oană, A; Nicolae, I; Alecu, M; Moşescu, L; Benea, V; Flueraş, M

    1990-01-01

    In 42 urticaria patients, magnesium, histamine and IgE were dosed. Magnesium, IgE and histamine variations were followed in urticaria evolution, during acute phase and clinical remission. We noticed magnesium, histamine, IgE values variations depending on disease evolution and applied therapeutic scheme. Therefore: At disease starting point, histamine presented 3.5 times higher values than the normal ones. The value decreases following a curve which tends to reach normal values during clinical remission. At disease starting point, magnesium presented values under the inferior limit of the normal, 0.5 m mol/L respectively, as a mean. The value increases towards the normal limit during clinical remission. Immunoglobulins E follow a similar curve to histamine one, presenting 1,250 U/L values at the starting point, that, under medication, influence decrease between normal limits (800 U/L), during clinical remission. Analyzing the variations of biochemical parameters, the authors emphasize magnesium substitution treatment in urticaria.

  8. Local and systemic tolerability of magnesium sulphate for tocolysis.

    PubMed

    Zygmunt, M; Heilmann, L; Berg, C; Wallwiener, D; Grischke, E; Münstedt, K; Spindler, A; Lang, U

    2003-04-25

    An open-label, randomised, parallel-group, study was conducted in three study centres in women with premature labor and indication for a single agent intravenous tocolysis therapy with magnesium sulphate. The aim of this study was to examine the local and general tolerability and side-effects of magnesium sulphate for tocolysis. Furthermore, we tested the tolerability of a ready-for-use magnesium solution. No measurements of efficacy were performed during this study. Initially, patients received a loading dose of 4.0 g magnesium sulphate administered over 30 min. Thereafter, a continuous intravenous infusion of 1-2 g magnesium sulphate per hour up to 21 days was given. Venous score (Maddox), vital signs, adverse events as well as general tolerability (assessed by investigator and patients) and blood parameters were assessed. We showed good local and systemic tolerability of high dose magnesium sulphate for tocolysis. Only seven patients (15%) were withdrawn from the study prematurely due to minor adverse events. Potential serious complications of MgSO(4) such as respiratory arrest or clinically relevant respiratory depression were not observed. The most frequently reported local adverse events were injection site pain, itching, erythema, swelling, induration and palpable venous cord. The most common systemic adverse events considered to be possibly related to the study drugs involved the nervous system (dizziness) followed by the digestive system (nausea, constipation). Systolic and diastolic blood pressure changed only slightly during the treatment. Respiratory rate and body temperature remained stable also. Toxic magnesium levels (>2.5 mmol/l) were not observed. The assessment of the clinical investigators with regard to tolerability was very good or good in 72.5% of the patients. The introduction of the ready-to-use solution has the advantage of eliminating the need to mix the solution prior to administration. This means a lower risk of overdose and

  9. Mechanistic origin and prediction of enhanced ductility in magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wu, Zhaoxuan; Ahmad, Rasool; Yin, Binglun; Sandlöbes, Stefanie; Curtin, W. A.

    2018-01-01

    Development of ductile magnesium alloys is key to their use in reducing the weight of vehicles and other applications. Wu et al. tackle this issue by determining the underlying mechanisms in unprocessed magnesium alloys. Dilute amounts of solutes enhanced certain ductility-improving mechanisms over ones that cause brittle fracture. From this, the authors developed a theory that may be helpful for screening the large number of potential magnesium alloy compositions.

  10. Structural Studies on Cytosolic Domain of Magnesium Transporter MgtE from Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragumani, S.; Sauder, J; Burley, S

    2009-01-01

    Magnesium (Mg{sup 2+}) is an essential element for growth and maintenance of living cells. It acts as a cofactor for many enzymes and is also essential for stability of the plasma membrane. There are two distinct classes of magnesium transporters identified in bacteria that convey Mg{sup 2+} from periplasm to cytoplasm [ATPase-dependent (MgtA and MgtB) and constitutively active (CorA and MgtE)]. Previously published work on Mg{sup 2+} transporters yielded structures of full length MgtE from Thermus thermophilus, determined at 3.5 {angstrom} resolution, and its cytoplasmic domain with and without bond Mg{sup 2+} determined at 2.3 and 3.9 {angstrom} resolution, respectively.more » Here, they report the crystal structure of the Mg{sup 2+} bound form of the cytosolic portion of MgtE (residues 6-262) from Enterococcus faecalis at 2.2 {angstrom} resolution. The present structure and magnesium bound cytosolic domain structure from T. thermophilus (PDB ID: 2YVY) are structurally similar. Three magnesium binding sites are common to both MgtE full length and the present structure. Their work revealed an additional Mg{sup 2+} binding site in the E. faecalis structure. In this report, they discuss the functional significance of Mg{sup 2+} binding sites in the cytosolic domains of MgtE transporters.« less

  11. The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics/Molecular Mechanics Simulations

    PubMed Central

    Rudack, Till; Xia, Fei; Schlitter, Jürgen; Kötting, Carsten; Gerwert, Klaus

    2012-01-01

    The coordination of the magnesium ion in proteins by triphosphates plays an important role in catalytic hydrolysis of GTP or ATP, either in signal transduction or energy conversion. For example, in Ras the magnesium ion contributes to the catalysis of GTP hydrolysis. The cleavage of GTP to GDP and Pi in Ras switches off cellular signaling. We analyzed GTP hydrolysis in water, Ras, and Ras·Ras-GTPase-activating protein using quantum mechanics/molecular mechanics simulations. By comparison of the theoretical IR-difference spectra for magnesium ion coordinated triphosphate to experimental ones, the simulations are validated. We elucidated thereby how the magnesium ion contributes to catalysis. It provides a temporary storage for the electrons taken from the triphosphate and it returns them after bond cleavage and Pi release back to the diphosphate. Furthermore, the Ras·Mg2+ complex forces the triphosphate into a stretched conformation in which the β- and γ-phosphates are coordinated in a bidentate manner. In this conformation, the triphosphate elongates the bond, which has to be cleaved during hydrolysis. Furthermore, the γ-phosphate adopts a more planar structure, driving the conformation of the molecule closer to the hydrolysis transition state. GTPase-activating protein enhances these changes in GTP conformation and charge distribution via the intruding arginine finger. PMID:22853907

  12. Dietary raw versus retrograded resistant starch enhances apparent but not true magnesium absorption in rats.

    PubMed

    Heijnen, M L; van den Berg, G J; Beynen, A C

    1996-09-01

    Dietary raw (RS2) vs. retrograded resistant starch (RS3) raises apparent magnesium absorption in rats. The mechanism proposed is that RS2 enhances magnesium avaibility for absorption; it does this by increasing ileal solubility of magnesium due to a reduction in pH as a consequence of RS2 fermentation in the gut. The mechanism implies that dietary RS2 vs. RS3 would raise true magnesium absorption and stimulate reabsorption of endogenous magnesium, leading to a lower fecal excretion of endogenous magnesium. Dietary lactulose vs. glucose raises apparent magnesium absorption, and the mechanism proposed is similar to that for the stimulatory effect of RS2 vs. RS3. Thus, we measured in rats fed RS3, RS2, glucose or lactulose true magnesium absorption on the basis of the retention of the orally and intraperitoneally administered radiotracer 28Mg. Feeding rats RS2 instead of RS3 significantly enhanced apparent but not true magnesium absorption, because RS2 lowered fecal excretion of endogenous magnesium. When compared with dietary glucose, lactulose significantly raised both apparent and true magnesium absorption, but did not affect fecal excretion of endogenous magnesium. It is suggested that the proposed mechanism by which RS2 and lactulose would enhance magnesium absorption is disproved by the present data.

  13. Evidence that intracellular magnesium is present in cells at a regulatory concentration for protein synthesis.

    PubMed Central

    Terasaki, M; Rubin, H

    1985-01-01

    When extracellular magnesium is reduced by a factor of 50 (from 1.0 to 0.02 mM), the total intracellular magnesium of a spontaneously transformed clone of 3T3 cells decreases by 30-50%. Protein synthesis rates in these cells were measured as the intracellular magnesium decreased. Protein synthesis rates and magnesium content were found to decrease in parallel with each other. At 3 hr, a decrease to 84% of control values of magnesium content was accompanied by a decrease to 85% of control values of leucine incorporation rates. A larger inhibition had occurred by 12 hr, when the magnesium had decreased to 67% and leucine incorporation rates had decreased to 57%. When magnesium was restored to magnesium-deprived cells, both magnesium content and leucine incorporation increased about 2-fold by 1 hr. In the experiments reported here, initial small changes in magnesium content are associated with changes in protein synthesis rates. This strongly suggests that magnesium is present at a regulatory rather than excess concentration for protein synthesis. The results are consistent with a role for intracellular magnesium in the regulation of protein synthesis and support the hypothesis that magnesium has a central role in the regulation of metabolism and growth. PMID:2997785

  14. Magnesium and metabolic syndrome: The role of magnesium in health and disease

    USDA-ARS?s Scientific Manuscript database

    Metabolic syndrome is a constellation of conditions associated with elevated risk of diabetes and cardiovascular disease. Magnesium, the fourth most abundant cation in the human body and required in over 300 enzymatic reactions, has been shown in experimental, observational, and clinical studies to ...

  15. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    USDA-ARS?s Scientific Manuscript database

    ALDH2 catalyzes oxidation of toxic aldehydes to their corresponding carboxylic acids. Magnesium ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements have monitored the blue shift of the NADH fluorescence spectrum to elucidate the extent of...

  16. A Comparison of the Greenhouse Impacts of Magnesium Produced By Electrolytic and Pidgeon Processes

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Subramania; Koltun, Paul

    With a focus on the global warming impact, this paper deals with the cradle-to-gate life cycle study of the following two practical production systems for producing magnesium ingots: (i) Magnesite ore is processed using the Australian Magnesium process to produce anhydrous magnesium chloride, which is then electrolysed to produce magnesium; and (ii) Dolomite ore is calcined to produce magnesium oxide, which is then thermally reduced with ferrosilicon using the Pidgeon process, based on the current practice used in China for magnesium production

  17. Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fialkovskii, R.V.; Romanyutina, L.V.; Korbut, L.F.

    Overbased sulfonate additives are widely used to improve the service properties of motor oils. This paper describes the preparation of an overbased magnesium sulfonate additive from MSG-8 oil and an investigation of its functional properties. In experiments, the solution of ammonium sulfate, fat diluted with I-20A oil to a 38% concentration, was heated and stirred continuously in the presence of water and excess magnesium oxide for a period of 4 h at 80-120/degree/C while stripping out the liberated ammonia with nitrogen. The resulting oil solution of magnesium sulfonate was dissolved in toluene. The toluene solution after cleanup was held undermore » vacuum to remove the solvent; the residue was an oil solution of overbased magnesium sulfonate. Their properties are tabulated. Comparative data are shown in Table 1 for a calcium sulfonate additive synthesized from the same intermediate (ammonium sulfate), using calcium hydroxide as the base. Test results on M-11 oil containing 5% of the magnesium or calcium additive are listed. It is shown that the magnesium additive gave better results from the calcium additive at the same concentration in terms of oxidation stability, corrosion properties, detergency, and dispersancy. 9 refs.« less

  18. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis; Barbosa, Lucía

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with thosemore » obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.« less

  19. Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium.

    PubMed

    Saha, Partha; Roy, Mangal; Datta, Moni Kanchan; Lee, Boeun; Kumta, Prashant N

    2015-12-01

    Magnesium is a new class of biodegradable metals potentially suitable for bone fracture fixation due to its suitable mechanical properties, high degradability and biocompatibility. However, rapid corrosion and loss in mechanical strength under physiological conditions render it unsuitable for load-bearing applications. In the present study, grain refinement was implemented to control bio-corrosion demonstrating improved in vitro bioactivity of magnesium. Pure commercial magnesium was grain refined using different amounts of zirconium (0.25 and 1.0 wt.%). Corrosion behavior was studied by potentiodynamic polarization (PDP) and mass loss immersion tests demonstrating corrosion rate decrease with grain size reduction. In vitro biocompatibility tests conducted by MC3T3-E1 pre-osteoblast cells and measured by DNA quantification demonstrate significant increase in cell proliferation for Mg-1 wt.% Zr at day 5. Similarly, alkaline phosphatase (ALP) activity was higher for grain refined Mg. Alloys were also tested for ability to support osteoclast differentiation using RAW264.7 monocytes with receptor activator of nuclear factor kappa-β ligand (RANKL) supplemented cell culture. Osteoclast differentiation process was observed to be severely restricted for smaller grained Mg. Overall, the results indicate grain refinement to be useful not only for improving corrosion resistance of Mg implants for bone fixation devices but also potentially modulate bone regeneration around the implant. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A facile magnesium-containing calcium carbonate biomaterial as potential bone graft.

    PubMed

    He, Fupo; Zhang, Jing; Tian, Xiumei; Wu, Shanghua; Chen, Xiaoming

    2015-12-01

    The calcium carbonate is the main composition of coral which has been widely used as bone graft in clinic. Herein, we readily prepared novel magnesium-containing calcium carbonate biomaterials (MCCs) under the low-temperature conditions based on the dissolution-recrystallization reaction between unstable amorphous calcium carbonate (ACC) and metastable vaterite-type calcium carbonate with water involved. The content of magnesium in MCCs was tailored by adjusting the proportion of ACC starting material that was prepared using magnesium as stabilizer. The phase composition of MCCs with various amounts of magnesium was composed of one, two or three kinds of calcium carbonates (calcite, aragonite, and/or magnesian calcite). The different MCCs differed in topography. The in vitro degradation of MCCs accelerated with increasing amount of introduced magnesium. The MCCs with a certain amount of magnesium not only acquired higher compressive strength, but also promoted in vitro cell proliferation and osteogenic differentiation. Taken together, the facile MCCs shed light on their potential as bone graft. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of magnesium sulphate on postoperative coagulation, measured by rotational thromboelastometry (ROTEM(®)).

    PubMed

    Na, H S; Chung, Y H; Hwang, J W; Do, S H

    2012-08-01

    We investigated the effects of magnesium sulphate on blood coagulation profiles using rotational thromboelastometry in gynaecological patients undergoing pelviscopic surgery. Patients were randomly allocated to the magnesium group (n = 20) or control group (n = 20). The magnesium group received magnesium sulphate (50 mg.kg(-1) followed by continuous infusion of 15 mg.kg(-1).h(-1)), whereas the control group received the same volume of isotonic saline according to the same methods. Mean (SD) postoperative serum magnesium levels were 1.58 (0.17) mmol.l(-1) in the magnesium group compared with 0.98 (0.06) mmol.l(-1) in the control group (p < 0.001). Postoperative clotting time, clot formation time, α-angle and maximum clot firmness of INTEM, and clot formation time, α-angle, and maximum clot firmness of EXTEM were significantly different between the two groups (p < 0.05). Intra-operative infusion of magnesium sulphate seems to attenuate postoperative hypercoagulability by maintaining magnesium levels at the upper limit of the normal range. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  2. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro-nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  3. Magnesium in drinking water - a case for prevention?

    PubMed

    Rylander, Ragnar

    2014-03-01

    Studies in many countries have demonstrated a relationship between drinking water mineral content and the risk of death in cardiovascular disease (CVD). Particularly strong relationships have been found for magnesium and it has been suggested that magnesium be added to drinking water. The aim of this article is to evaluate the validity of this suggestion by reviewing information on possible causative agents. Major epidemiological studies on the drinking water content of calcium, magnesium, and hardness were analysed regarding exposure specificity, confounding factors, dose-response relationships and biological plausibility. Intervention experiments were analysed. The risk of death in CVD was related to the content of Ca, Mg and HCO(3-). The data demonstrate that Ca and Mg need to be considered together, and that HCO(3-) could play a role by intervening with the body acid load. There is no evidence to justify the addition of magnesium only to drinking water for preventive purposes. The data suggest that Ca and Mg could be administered together but no data are available regarding the relative proportions for an optimal effect.

  4. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2001-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, in the water, and in the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium from extraction through its uses with particular emphasis on recycling. In 1998, the recycling rate for magnesium was estimated to be 33 percent?almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from diecasting operations. The principal source of old scrap was recycled aluminum beverage cans.

  5. Magnesium sulfate in pediatric anesthesia: the Super Adjuvant.

    PubMed

    Eizaga Rebollar, Ramón; García Palacios, María V; Morales Guerrero, Javier; Torres, Luis M

    2017-05-01

    Magnesium is an essential chemical element in all organisms, intervening in most cellular enzymatic reactions; thus, its importance in homeostasis and as a therapeutic tool in highly challenging patients such as pediatrics. The primary purpose of this paper was to review the role of magnesium sulfate as an adjuvant drug in pediatric anesthesia. This compound already has the scientific backing in certain aspects such as analgesia or muscle relaxation, but only theoretical or empirical backing in others such as organ protection or inflammation, where it seems to be promising. The multitude of potential applications in pediatric anesthesia, its high safety, and low cost make magnesium sulfate could be considered a Super Adjuvant. © 2017 John Wiley & Sons Ltd.

  6. Bone mineral density, serum albumin and serum magnesium.

    PubMed

    Saito, Noboru; Tabata, Naoto; Saito, Saburou; Andou, Yoshihisa; Onaga, Yukiko; Iwamitsu, Akihiro; Sakamoto, Morihide; Hori, Tuyoshi; Sayama, Harumi; Kawakita, Toshiko

    2004-12-01

    This study explores clinical and laboratory abnormalities that contribute to the prevalence of bone fractures in frail and control elderly patients, to ascertain factors that relate to bone strength and fragility. Patients were selected as free from renal failure and not taking supplements or medications that affect their magnesium status, and categorized according to their underlying diseases, sex and age, and evaluated by tests of bone strength. Findings, differentiating elderly patients on the basis of their magnesium, calcium, serum albumin, body mass, bone mineral density and their fracture occurrence were tabulated. Evidence is presented of low magnesium and albumin serum levels, especially in women with low bone density, as well as of low calcium and trace minerals.

  7. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    NASA Astrophysics Data System (ADS)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack

  8. EFFECTS OF MAGNESIUM PEMOLINE UPON HUMAN LEARNING, MEMORY, AND PERFORMANCE TESTS.

    ERIC Educational Resources Information Center

    SMITH, RONALD G.

    THIS STUDY WAS CONDUCTED DURING 1966 TO DETERMINE THE EFFECTS OF MAGNESIUM PEMOLINE (A COMBINATION OF 2-IMINO-5-PHENYL-4-OXAZOLIDINONE AND MAGNESIUM HYDROXIDE) ON A VARIETY OF HUMAN LEARNING, MEMORY, AND PERFORMANCE TASKS. MAGNESIUM PEMOLINE (25 OR 37.5 MG) OR A PLACEBO WAS ADMINISTERED ORALLY ON A DOUBLE-BLIND BASIS TO INTELLIGENCE-MATCHED GROUPS…

  9. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    NASA Technical Reports Server (NTRS)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  10. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide surface...

  11. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide surface...

  12. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy.

    PubMed

    Pan, Chang-Jiang; Hou, Yu; Wang, Ya-Nan; Gao, Fei; Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren

    2016-10-01

    Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the

  13. Coating Systems for Biodegradable Magnesium Applications

    NASA Astrophysics Data System (ADS)

    Seitz, Jan-Marten; Eifler, Rainer; Vaughan, Matthew; Seal, Chris; Hyland, Margaret; Maier, Hans Jürgen

    Current research for degradable magnesium implants has shown a multitude of potential applications for these materials. Within various studies, the research focuses especially on Mg alloys' biocompatibility and also its mechanical and corrosive behaviour in in vitro/in vivo environments. In particular, the corrosive properties of Mg alloys often remain problematic, showing either a rapid or a burst degradation, limiting their applicability. Besides changing the alloy, a magnesium implant's initial corrosion properties can be improved and controllable by means of applied coatings. In general, a multitude of coating solutions (e.g. on basis of phosphates or degradable polymers) are already available for permanent implants. If these are applicable to Mg, the next step requires that they delay corrosion and inhibit burst corrosion. In this study, the applicability and corrosion-delaying properties of PLA and MgF2 coatings on the magnesium alloy LANd442, respecting their singular and combined application, is shown. By means of corrosion tests in a simulated body fluid the use of combined coatings was proven to be advantageous regarding longevity and toughness of the coating system.

  14. Heated Hydro-Mechanical Deep Drawing of Magnesium Sheet Metal

    NASA Astrophysics Data System (ADS)

    Kurz, Gerrit

    In order to reduce fuel consumption efforts have been made to decrease the weight of automobile constructions by increasing the use of lightweight materials. In this field of application magnesium alloys are important because of their low density. A promising alternative to large surfaced and thin die casting parts has been found in construction parts that are manufactured by sheet metal forming of magnesium. Magnesium alloys show a limited formability at room temperature. A considerable improvement of formability can be achieved by heating the material. Formability increases above a temperature of approximately T = 225 °C.

  15. The role of magnesium as an adjuvant during general anaesthesia.

    PubMed

    Gupta, K; Vohra, V; Sood, J

    2006-11-01

    Magnesium sulphate is used extensively in the treatment of eclampsia, and is also used to treat refractory arrhythmias, asthma, myocardial ischaemia and acute respiratory failure. We studied the interaction between magnesium sulphate and the anaesthetic agents propofol, rocuronium bromide and fentanyl citrate. This randomised, double blind study was conducted in 50 patients. The magnesium group A (n = 25) received 30 mg x kg(-1) magnesium sulphate before induction of anaesthesia and 10 mg x kg(-1) continuously intra-operatively until the end of surgery. Group B (n = 25) received the same volume of isotonic saline. Propofol, rocuronium and fentanyl infusions were started and the patients lungs' were ventilated with 33% oxygen in nitrous oxide. Anaesthetic depth was maintained at a bispectral index value of between 40 and 60. Muscle relaxation was maintained at a train-of-four count of 1 throughout surgery using neuromuscular monitoring. The fentanyl infusion was titrated to haemodynamic variables: heart rate and blood pressure. We concluded that magnesium sulphate has anaesthetic, analgesic and muscle relaxation effects and significantly reduces the drug requirements of propofol, rocuronium and fentanyl during anaesthesia.

  16. Effects of calcium and magnesium on strontium distribution coefficients

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  17. Magnesium Bisamide-Mediated Halogen Dance of Bromothiophenes.

    PubMed

    Yamane, Yoshiki; Sunahara, Kazuhiro; Okano, Kentaro; Mori, Atsunori

    2018-03-16

    A magnesium bisamide-mediated halogen dance of bromothiophenes is described. The thienylmagnesium species generated in situ is more stable than the corresponding thienyllithium species, which was applied to trap the transient anion species with several electrophiles, such as allyl iodide, phenyl isocyanate, and tributylstannyl chloride. The utility of the magnesium bisamide-mediated halogen dance is useful in the concise synthesis of a medicinally advantageous compound via a one-pot, ester-directed halogen dance/Negishi cross coupling.

  18. Identification of a Mg2+-sensitive ORF in the 5′-leader of TRPM7 magnesium channel mRNA

    PubMed Central

    Nikonorova, Inna A.; Kornakov, Nikolay V.; Dmitriev, Sergey E.; Vassilenko, Konstantin S.; Ryazanov, Alexey G.

    2014-01-01

    TRPM7 is an essential and ubiquitous channel-kinase regulating cellular influx of Mg2+. Although TRPM7 mRNA is highly abundant, very small amount of the protein is detected in cells, suggesting post-transcriptional regulation of trpm7 gene expression. We found that TRPM7 mRNA 5′-leader contains two evolutionarily conserved upstream open reading frames that act together to drastically inhibit translation of the TRPM7 reading frame at high magnesium levels and ensure its optimal translation at low magnesium levels, when the activity of the channel-kinase is most required. The study provides the first example of magnesium channel synthesis being controlled by Mg2+ in higher eukaryotes. PMID:25326319

  19. Eosinophilic hepatitis after ingestion of choline magnesium trisalicylate.

    PubMed

    Nadkarni, M M; Peller, C A; Retig, J

    1992-01-01

    Choline magnesium trisalicylate is a non-acetylated salicylate used widely as a nonsteroidal anti-inflammatory drug. Although mild transient hepatotoxicity associated with aspirin and other salicylates has been well documented, most commonly with high-dose treatment for rheumatologic disorders 112), we report a case of severe hypersensitivity hepatitis with striking tissue and peripheral eosinophilia after ingestion of choline magnesium trisalicylate.

  20. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2002-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, the water, and the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium in the United States from extraction through its uses with particular emphasis on recycling. In 1998, the recycling efficiency for magnesium was estimated to be 33 percent--almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from die-casting operations. The principal source of old scrap was recycled aluminum beverage cans.

  1. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  2. NREL Research Overcomes Major Technical Obstacles in Magnesium-Metal

    Science.gov Websites

    Chunmei Ban are co-authors of the Nature Chemistry white paper, "An Artificial Interphase Enables corresponding author of the paper, "An Artificial Interphase Enables Reversible Magnesium Chemistry in an artificial solid-electrolyte interphase from polyacrylonitrile and magnesium-ion salt that

  3. Different magnesium release profiles from W/O/W emulsions based on crystallized oils.

    PubMed

    Herzi, Sameh; Essafi, Wafa

    2018-01-01

    Water-in-oil-in-water (W/O/W) double emulsions based on crystallized oils were prepared and the release kinetics of magnesium ions from the internal to the external aqueous phase was investigated at T=4°C, for different crystallized lipophilic matrices. All the emulsions were formulated using the same surface-active species, namely polyglycerol polyricinoleate (oil-soluble) and sodium caseinate (water-soluble). The external aqueous phase was a lactose or glucose solution at approximately the same osmotic pressure as that of the inner droplets, in order to avoid osmotic water transfer phenomena. We investigated two types of crystallized lipophilic systems: one based on blends of cocoa butter and miglyol oil, exploring a solid fat content from 0 to 90% and the other system based on milk fat fractions for which the solid fat content varies between 54 and 86%. For double emulsions based on cocoa butter/miglyol oil, the rate of magnesium release was gradually lowered by increasing the % of fat crystals i.e. cocoa butter, in agreement with a diffusion/permeation mechanism. However for double emulsions based on milk fat fractions, the rate of magnesium release was independent of the % of fat crystals and remains the one at t=0. This difference in diffusion patterns, although the solid content is of the same order, suggests a different distribution of fat crystals within the double globules: a continuous fat network acting as a physical barrier for the diffusion of magnesium for double emulsions based on cocoa butter/miglyol oil and double globule/water interfacial distribution for milk fat fractions based double emulsions, through the formation of a crystalline shell allowing an effective protection of the double globules against diffusion of magnesium to the external aqueous phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Magnesium fluoride recovery method

    DOEpatents

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  5. Magnesium and the Risk of Cardiovascular Events: A Meta-Analysis of Prospective Cohort Studies

    PubMed Central

    Hao, Yongqiang; Li, Huiwu; Tang, Tingting; Wang, Hao; Yan, Weili; Dai, Kerong

    2013-01-01

    Background Prospective studies that have examined the association between dietary magnesium intake and serum magnesium concentrations and the risk of cardiovascular disease (CVD) events have reported conflicting findings. We undertook a meta-analysis to evaluate the association between dietary magnesium intake and serum magnesium concentrations and the risk of total CVD events. Methodology/Principal Findings We performed systematic searches on MEDLINE, EMBASE, and OVID up to February 1, 2012 without limits. Categorical, linear, and nonlinear, dose-response, heterogeneity, publication bias, subgroup, and meta-regression analysis were performed. The analysis included 532,979 participants from 19 studies (11 studies on dietary magnesium intake, 6 studies on serum magnesium concentrations, and 2 studies on both) with 19,926 CVD events. The pooled relative risks of total CVD events for the highest vs. lowest category of dietary magnesium intake and serum magnesium concentrations were 0.85 (95% confidence interval 0.78 to 0.92) and 0.77 (0.66 to 0.87), respectively. In linear dose-response analysis, only serum magnesium concentrations ranging from 1.44 to 1.8 mEq/L were significantly associated with total CVD events risk (0.91, 0.85 to 0.97) per 0.1 mEq/L (Pnonlinearity = 0.465). However, significant inverse associations emerged in nonlinear models for dietary magnesium intake (Pnonlinearity = 0.024). The greatest risk reduction occurred when intake increased from 150 to 400 mg/d. There was no evidence of publication bias. Conclusions/Significance There is a statistically significant nonlinear inverse association between dietary magnesium intake and total CVD events risk. Serum magnesium concentrations are linearly and inversely associated with the risk of total CVD events. PMID:23520480

  6. [High-dose magnesium sulfate in the treatment of aconite poisoning].

    PubMed

    Clara, A; Rauch, S; Überbacher, C A; Felgenhauer, N; Drüge, G

    2015-05-01

    This article reports the case of a 62-year-old male patient who ingested the roots of Monkshood (Aconitum napellus) and white hellebore (Veratrum album) dissolved in alcohol with a suicidal intention and suffered cardiotoxic and neurotoxic symptoms. After contacting the Poison Information Centre ventricular arrhythmia was treated with high-dose magnesium sulphate as the only antiarrhythmic agent and subsequently a stable sinus rhythm could be established after approximately 3 h. Aconitum napellus is considered the most poisonous plant in Europe and it is found in gardens, the Alps and the Highlands. Poisoning is mainly caused by the alkaloid aconite that leads to persistent opening and activation of voltage-dependent sodium channels resulting in severe cardiac and neurological toxicity. As no specific antidote is known so far, poisoning is associated with a high mortality. The therapy with high-dose magnesium sulphate is based on in vitro and animal experiments as well as limited clinical case reports.

  7. Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media.

    PubMed

    Christensen, David G; Orr, James S; Rao, Christopher V; Wolfe, Alan J

    2017-03-15

    Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth. IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to be

  8. Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media

    PubMed Central

    Christensen, David G.; Orr, James S.; Rao, Christopher V.

    2017-01-01

    ABSTRACT Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth. IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to

  9. Magnesium Intake, Quality of Carbohydrates, and Risk of Type 2 Diabetes: Results From Three U.S. Cohorts.

    PubMed

    Hruby, Adela; Guasch-Ferré, Marta; Bhupathiraju, Shilpa N; Manson, JoAnn E; Willett, Walter C; McKeown, Nicola M; Hu, Frank B

    2017-12-01

    Magnesium intake is inversely associated with risk of type 2 diabetes in many observational studies, but few have assessed this association in the context of the carbohydrate quality of the diet. We hypothesized that higher magnesium intake is associated with lower risk of type 2 diabetes, especially in the context of a poor carbohydrate-quality diet characterized by low cereal fiber or high glycemic index (GI) or glycemic load (GL). In the Nurses' Health Study (NHS; 1984-2012, n = 69,176), NHS2 (1991-2013, n = 91,471), and the Health Professionals' Follow-Up Study (1986-2012, n = 42,096), dietary intake was assessed from food frequency questionnaires every 4 years. Type 2 diabetes was ascertained by biennial and supplementary questionnaires. We calculated multivariate hazard ratios (HRs) of magnesium intake and incident diabetes, adjusted for age, BMI, family history of diabetes, physical activity, smoking, hypertension, hypercholesterolemia, GL, energy intake, alcohol, cereal fiber, polyunsaturated fats, trans fatty acids, and processed meat, and we considered the joint associations of magnesium and carbohydrate quality on diabetes risk. We documented 17,130 incident cases of type 2 diabetes over 28 years of follow-up. In pooled analyses across the three cohorts, those with the highest magnesium intake had 15% lower risk of type 2 diabetes compared with those with the lowest intake (pooled multivariate HR in quintile 5 vs. 1: 0.85 [95% CI 0.80-0.91], P < 0.0001). Higher magnesium intake was more strongly associated with lower risk of type 2 diabetes among participants with high GI or low cereal fiber than among those with low GI or high cereal fiber (both P interaction <0.001). Higher magnesium intake is associated with lower risk of type 2 diabetes, especially in the context of lower carbohydrate-quality diets. © 2017 by the American Diabetes Association.

  10. The Importance of Magnesium in the Human Body: A Systematic Literature Review.

    PubMed

    Glasdam, Sidsel-Marie; Glasdam, Stinne; Peters, Günther H

    2016-01-01

    Magnesium, the second and fourth most abundant cation in the intracellular compartment and whole body, respectively, is of great physiologic importance. Magnesium exists as bound and free ionized forms depending on temperature, pH, ionic strength, and competing ions. Free magnesium participates in many biochemical processes and is most commonly measured by ion-selective electrode. This analytical approach is problematic because complete selectivity is not possible due to competition with other ions, i.e., calcium, and pH interference. Unfortunately, many studies have focused on measurement of total magnesium rather than its free bioactive form making it difficult to correlate to disease states. This systematic literature review presents current analytical challenges in obtaining accurate and reproducible test results for magnesium. © 2016 Elsevier Inc. All rights reserved.

  11. 21 CFR 201.312 - Magnesium sulfate heptahydrate; label declaration on drug products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Magnesium sulfate heptahydrate; label declaration... Drug Products § 201.312 Magnesium sulfate heptahydrate; label declaration on drug products. Magnesium sulfate heptahydrate should be listed on the label of a drug product as epsom salt, which is its common or...

  12. 21 CFR 201.312 - Magnesium sulfate heptahydrate; label declaration on drug products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Magnesium sulfate heptahydrate; label declaration... Drug Products § 201.312 Magnesium sulfate heptahydrate; label declaration on drug products. Magnesium sulfate heptahydrate should be listed on the label of a drug product as epsom salt, which is its common or...

  13. 21 CFR 201.312 - Magnesium sulfate heptahydrate; label declaration on drug products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Magnesium sulfate heptahydrate; label declaration... Drug Products § 201.312 Magnesium sulfate heptahydrate; label declaration on drug products. Magnesium sulfate heptahydrate should be listed on the label of a drug product as epsom salt, which is its common or...

  14. 21 CFR 201.312 - Magnesium sulfate heptahydrate; label declaration on drug products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Magnesium sulfate heptahydrate; label declaration... Drug Products § 201.312 Magnesium sulfate heptahydrate; label declaration on drug products. Magnesium sulfate heptahydrate should be listed on the label of a drug product as epsom salt, which is its common or...

  15. 21 CFR 201.312 - Magnesium sulfate heptahydrate; label declaration on drug products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Magnesium sulfate heptahydrate; label declaration... Drug Products § 201.312 Magnesium sulfate heptahydrate; label declaration on drug products. Magnesium sulfate heptahydrate should be listed on the label of a drug product as epsom salt, which is its common or...

  16. Surface modification of biodegradable magnesium and its alloys for biomedical applications

    PubMed Central

    Tian, Peng; Liu, Xuanyong

    2015-01-01

    Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization. PMID:26816637

  17. Influence of Magnesium Alloy Degradation on Undifferentiated Human Cells.

    PubMed

    Cecchinato, Francesca; Agha, Nezha Ahmad; Martinez-Sanchez, Adela Helvia; Luthringer, Berengere Julie Christine; Feyerabend, Frank; Jimbo, Ryo; Willumeit-Römer, Regine; Wennerberg, Ann

    2015-01-01

    Magnesium alloys are of particular interest in medical science since they provide compatible mechanical properties with those of the cortical bone and, depending on the alloying elements, they have the capability to tailor the degradation rate in physiological conditions, providing alternative bioresorbable materials for bone applications. The present study investigates the in vitro short-term response of human undifferentiated cells on three magnesium alloys and high-purity magnesium (Mg). The degradation parameters of magnesium-silver (Mg2Ag), magnesium-gadolinium (Mg10Gd) and magnesium-rare-earth (Mg4Y3RE) alloys were analysed after 1, 2, and 3 days of incubation in cell culture medium under cell culture condition. Changes in cell viability and cell adhesion were evaluated by culturing human umbilical cord perivascular cells on corroded Mg materials to examine how the degradation influences the cellular development. The pH and osmolality of the medium increased with increasing degradation rate and it was found to be most pronounced for Mg4Y3RE alloy. The biological observations showed that HUCPV exhibited a more homogeneous cell growth on Mg alloys compared to high-purity Mg, where they showed a clustered morphology. Moreover, cells exhibited a slightly higher density on Mg2Ag and Mg10Gd in comparison to Mg4Y3RE, due to the lower alkalinisation and osmolality of the incubation medium. However, cells grown on Mg10Gd and Mg4Y3RE generated more developed and healthy cellular structures that allowed them to better adhere to the surface. This can be attributable to a more stable and homogeneous degradation of the outer surface with respect to the incubation time.

  18. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have strong antibacterial activities against several important foodborne pathogens. Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. Th...

  19. The Role of Magnesium in Post-thyroidectomy Hypocalcemia.

    PubMed

    Cherian, Anish Jacob; Gowri, Mahasampath; Ramakant, Pooja; Paul, Thomas V; Abraham, Deepak Thomas; Paul, Mazhuvanchary Jacob

    2016-04-01

    The purpose of this study was to determine the prevalence of hypomagnesemia in patients undergoing thyroidectomy and evaluate the relationship of hypomagnesemia with transient and severe hypocalcemia. This was a prospective observational study of 50 patients undergoing thyroidectomy. Blood samples were collected pre- and postoperatively for calcium, albumin, magnesium, phosphorous and parathormone (PTH). Signs, symptoms of hypocalcemia and volume of intravenous fluids used perioperatively were documented. The statistical analysis was performed using STATA I/C 10.1. Preoperatively, twelve patients (24 %) had hypomagnesemia and one (2 %) hypocalcemia. On the first postoperative day, hypomagnesemia was seen in 70 % and hypocalcemia in 30 %. A similar trend was observed in the fall and rise of postoperative calcium and magnesium values (p = 0.41). Severe hypocalcemia was present in three patients (6 %). All three patients had a very low postoperative PTH (<2 pg/ml). Among them, two patients (66 %) had hypomagnesemia and their hypocalcemia responded to intravenous magnesium correction. Significant risk factors for postoperative hypocalcemia include a higher volume of fluid used perioperatively and low postoperative PTH (<8 pg/ml) (p = 0.01 and 0.03, respectively). Preoperative hypomagnesemia (24 %) was prevalent in this cohort of patients. Postoperative hypomagnesemia is a common event (70 %) following total thyroidectomy, and magnesium levels tend to mimic the calcium levels postoperatively. The cause of hypocalcemia post-thyroidectomy in this study is mainly a factor of parathyroid function and fluid status. Severe hypocalcemia is a rare event, and hypomagnesemia is associated in the majority of these patients. The role of magnesium correction to alleviate severe hypocalcemia needs to be further studied.

  20. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    DOE PAGES

    Garcia del Real, Pablo; Maher, Kate; Kluge, Tobias; ...

    2016-08-19

    Here, magnesium carbonate minerals produced by reaction of H 2O–CO 2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including deposition of ore-grade, massive-vein cryptocrystalline magnesite; formation of hydrous magnesium carbonates in weathering environments; and metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO 2 into magnesium carbonates in these settings is difficult because the fluids are usually notmore » preserved.« less