Sample records for active matrix backplanes

  1. Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Chanley, Charles; Dodd, Sonia R.; Roush, Jared; Schmidt, John; Srdanov, Gordana; Stevenson, Matthew; Wessel, Ralf; Innocenzo, Jeffrey; Yu, Gang; O'Regan, Marie B.; MacDonald, W. A.; Eveson, R.; Long, Ke; Gleskova, Helena; Wagner, Sigurd; Sturm, James C.

    2003-09-01

    Flexible displays fabricated using plastic substrates have a potential for being very thin, light weight, highly rugged with greatly minimized propensity for breakage, roll-to-roll manufacturing and lower cost. The emerging OLED display media offers the advantage of being a solid state and rugged structure for flexible displays in addition to the many potential advantages of an AM OLED over the currently dominant AM LCD. The current high level of interest in flexible displays is facilitating the development of the required enabling technologies which include development of plastic substrates, low temperature active matrix device and backplane fabrication, and display packaging. In the following we will first discuss our development efforts in the PEN based plastic substrates, active matrix backplane technology, low temperature (150°C) a-Si TFT devices and an AM OLED test chip used for evaluating various candidate designs. We will then describe the design, fabrication and successful evaluation and demonstration of a 64x64 pixel AM OLED test display using a-Si TFT backplane fabricated at 150°C on the flexible plastic substrate.

  2. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  3. Area laser crystallized LTPS TFTs with implanted contacts for active matrix OLED displays

    NASA Astrophysics Data System (ADS)

    Persidis, Efstathios; Baur, Holger; Pieralisi, Fabio; Schalberger, Patrick; Fruehauf, Norbert

    2008-03-01

    We have developed a four mask low temperature poly-Si (LTPS) TFT process for p- and n-channel devices. Our PECVD deposited amorphous silicon is recrystallized to polycrystalline silicon with single area excimer laser crystallization while formation of drain and source is carried out with self aligned ion beam implantation. We have investigated implantation parameters, suitability of various metallizations as well as laser activation and annealing procedures. To prove the potential capability of our devices, which are suitable for conventional and inverted OLEDs alike, we have produced several functional active matrix backplanes implementing different pixel circuits. Our active matrix backplane process has been customized to drive small molecules as well as polymers, regardless if top or bottom emitting.

  4. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors.

    PubMed

    Cao, Xuan; Lau, Christian; Liu, Yihang; Wu, Fanqi; Gui, Hui; Liu, Qingzhou; Ma, Yuqiang; Wan, Haochuan; Amer, Moh R; Zhou, Chongwu

    2016-11-22

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors. Our fully printed backplane shows high electrical performance with mobility of 3.92 ± 1.08 cm 2 V -1 s -1 , on-off current ratio I on /I off ∼ 10 4 , and good uniformity. The printed backplane was then monolithically integrated with an array of printed electrochromic pixels, resulting in an entirely screen-printed active-matrix electrochromic display (AMECD) with good switching characteristics, facile manufacturing, and long-term stability. Overall, our fully screen-printed AMECD is promising for the mass production of large-area and low-cost flexible displays for applications such as disposable tags, medical electronics, and smart home appliances.

  5. Adaptable, modular, multi-purpose space vehicle backplane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin

    An adaptable, modular, multi-purpose (AMM) space vehicle backplane may accommodate boards and components for various missions. The AMM backplane may provide a common hardware interface and common board-to-board communications. Components, connectors, test points, and sensors may be embedded directly into the backplane to provide additional functionality, diagnostics, and system access. Other space vehicle sections may plug directly into the backplane.

  6. PLC backplane analyzer for field forensics and intrusion detection

    DOEpatents

    Mulder, John; Schwartz, Moses Daniel; Berg, Michael; Van Houten, Jonathan Roger; Urrea, Jorge Mario; King, Michael Aaron; Clements, Abraham Anthony; Trent, Jason; Depoy, Jennifer M; Jacob, Joshua

    2015-05-12

    The various technologies presented herein relate to the determination of unexpected and/or malicious activity occurring between components communicatively coupled across a backplane. Control data, etc., can be intercepted at a backplane where the backplane facilitates communication between a controller and at least one device in an automation process. During interception of the control data, etc., a copy of the control data can be made, e.g., the original control data can be replicated to generate a copy of the original control data. The original control data can continue on to its destination, while the control data copy can be forwarded to an analyzer system to determine whether the control data contains a data anomaly. The content of the copy of the control data can be compared with a previously captured baseline data content, where the baseline data can be captured for a same operational state as the subsequently captured control data.

  7. A microdisplay-based HUD for automotive applications: Backplane design, planarization, and optical implementation

    NASA Astrophysics Data System (ADS)

    Schuck, Miller Harry

    Automotive head-up displays require compact, bright, and inexpensive imaging systems. In this thesis, a compact head-up display (HUD) utilizing liquid-crystal-on-silicon microdisplay technology is presented from concept to implementation. The thesis comprises three primary areas of HUD research: the specification, design and implementation of a compact HUD optical system, the development of a wafer planarization process to enhance reflective device brightness and light immunity and the design, fabrication and testing of an inexpensive 640 x 512 pixel active matrix backplane intended to meet the HUD requirements. The thesis addresses the HUD problem at three levels, the systems level, the device level, and the materials level. At the systems level, the optical design of an automotive HUD must meet several competing requirements, including high image brightness, compact packaging, video-rate performance, and low cost. An optical system design which meets the competing requirements has been developed utilizing a fully-reconfigurable reflective microdisplay. The design consists of two optical stages, the first a projector stage which magnifies the display, and a second stage which forms the virtual image eventually seen by the driver. A key component of the optical system is a diffraction grating/field lens which forms a large viewing eyebox while reducing the optical system complexity. Image quality biocular disparity and luminous efficacy were analyzed and results of the optical implementation are presented. At the device level, the automotive HUD requires a reconfigurable, video-rate, high resolution image source for applications such as navigation and night vision. The design of a 640 x 512 pixel active matrix backplane which meets the requirements of the HUD is described. The backplane was designed to produce digital field sequential color images at video rates utilizing fast switching liquid crystal as the modulation layer. The design methodology is discussed

  8. Fully optical backplane system using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seung-Ho; Lee, Woo-Jin; Han, Sang-Pil; Kim, Jin-Tae; Choi, Chun-Ki; Shin, Kyung-Up; Yoon, Keun Byoung; Jeong, Myung-Yung; Park, Hyo Hoon

    2005-10-01

    A fully optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by an optical slot. We report a 10 Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of the optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB, 3) Optical slot and plug for high-density (channel pitch : 500 um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data between transmitter/receiver processing boards and backplane boards. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The transmitter/receiver processing boards are designed as plug types, and can be easily plugged-in and -out at an optical backplane board. The optical backplane boards are prepared by employing the lamination processes for conventional electrical PCBs. A practical optical backplane system was implemented with two processing boards and an optical backplane. As connection components between the transmitter/receiver processing boards and backplane board, optical slots made of a 90°-bending structure-embedded optical plug was used. A 10 Gb/s data link was successfully demonstrated. The bit error rate (BER) was determined and is 5.6×10 -9(@10Gb/s) and the BER of 8 Gb/s is < 10 -12.

  9. Serial Back-Plane Technologies in Advanced Avionics Architectures

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2005-01-01

    Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.

  10. Optical backplane interconnect switch for data processors and computers

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  11. Backplane photonic interconnect modules with optical jumpers

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio

    2005-03-01

    Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.

  12. Silicon thin-film transistor backplanes on flexible substrates

    NASA Astrophysics Data System (ADS)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  13. Fly-By-Light/Power-By-Wire Fault-Tolerant Fiber-Optic Backplane

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2002-01-01

    The design and development of a fault-tolerant fiber-optic backplane to demonstrate feasibility of such architecture is presented. The simulation results of test cases on the backplane in the advent of induced faults are presented, and the fault recovery capability of the architecture is demonstrated. The architecture was designed, developed, and implemented using the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL). The architecture was synthesized and implemented in hardware using Field Programmable Gate Arrays (FPGA) on multiple prototype boards.

  14. Flexible active-matrix displays and shift registers based on solution-processed organic transistors.

    PubMed

    Gelinck, Gerwin H; Huitema, H Edzer A; van Veenendaal, Erik; Cantatore, Eugenio; Schrijnemakers, Laurens; van der Putten, Jan B P H; Geuns, Tom C T; Beenhakkers, Monique; Giesbers, Jacobus B; Huisman, Bart-Hendrik; Meijer, Eduard J; Benito, Estrella Mena; Touwslager, Fred J; Marsman, Albert W; van Rens, Bas J E; de Leeuw, Dago M

    2004-02-01

    At present, flexible displays are an important focus of research. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-microm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'.

  15. Amorphous silicon thin film transistor active-matrix organic light-emitting diode displays fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan A.

    Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.

  16. An optimized routing algorithm for the automated assembly of standard multimode ribbon fibers in a full-mesh optical backplane

    NASA Astrophysics Data System (ADS)

    Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene

    2018-03-01

    In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.

  17. All solution processed organic thin film transistor-backplane with printing technology for electrophoretic display

    USGS Publications Warehouse

    Lee, Myung W.; Song, C.K.

    2012-01-01

    In this study, solution processes were developed for backplane using an organic thin film transistor (OTFT) as a driving device for an electrophoretic display (EPD) panel. The processes covered not only the key device of OTFTs but also interlayer and pixel electrodes. The various materials and printing processes were adopted to achieve the requirements of devices and functioning layers. The performance of OTFT of the backplane was sufficient to drive EPD sheet by producing a mobility of 0.12 cm2/v x sec and on/off current ratio of 10(5).

  18. Threshold-Voltage-Shift Compensation and Suppression Method Using Hydrogenated Amorphous Silicon Thin-Film Transistors for Large Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Oh, Kyonghwan; Kwon, Oh-Kyong

    2012-03-01

    A threshold-voltage-shift compensation and suppression method for active matrix organic light-emitting diode (AMOLED) displays fabricated using a hydrogenated amorphous silicon thin-film transistor (TFT) backplane is proposed. The proposed method compensates for the threshold voltage variation of TFTs due to different threshold voltage shifts during emission time and extends the lifetime of the AMOLED panel. Measurement results show that the error range of emission current is from -1.1 to +1.7% when the threshold voltage of TFTs varies from 1.2 to 3.0 V.

  19. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin.

    PubMed

    Takei, Kuniharu; Takahashi, Toshitake; Ho, Johnny C; Ko, Hyunhyub; Gillies, Andrew G; Leu, Paul W; Fearing, Ronald S; Javey, Ali

    2010-10-01

    Large-scale integration of high-performance electronic components on mechanically flexible substrates may enable new applications in electronics, sensing and energy. Over the past several years, tremendous progress in the printing and transfer of single-crystalline, inorganic micro- and nanostructures on plastic substrates has been achieved through various process schemes. For instance, contact printing of parallel arrays of semiconductor nanowires (NWs) has been explored as a versatile route to enable fabrication of high-performance, bendable transistors and sensors. However, truly macroscale integration of ordered NW circuitry has not yet been demonstrated, with the largest-scale active systems being of the order of 1 cm(2) (refs 11,15). This limitation is in part due to assembly- and processing-related obstacles, although larger-scale integration has been demonstrated for randomly oriented NWs (ref. 16). Driven by this challenge, here we demonstrate macroscale (7×7 cm(2)) integration of parallel NW arrays as the active-matrix backplane of a flexible pressure-sensor array (18×19 pixels). The integrated sensor array effectively functions as an artificial electronic skin, capable of monitoring applied pressure profiles with high spatial resolution. The active-matrix circuitry operates at a low operating voltage of less than 5 V and exhibits superb mechanical robustness and reliability, without performance degradation on bending to small radii of curvature (2.5 mm) for over 2,000 bending cycles. This work presents the largest integration of ordered NW-array active components, and demonstrates a model platform for future integration of nanomaterials for practical applications.

  20. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor.

    PubMed

    Choi, Minwoo; Park, Yong Ju; Sharma, Bhupendra K; Bae, Sa-Rang; Kim, Soo Young; Ahn, Jong-Hyun

    2018-04-01

    Atomically thin molybdenum disulfide (MoS 2 ) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS 2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high- k dielectric Al 2 O 3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated.

  1. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor

    PubMed Central

    Park, Yong Ju

    2018-01-01

    Atomically thin molybdenum disulfide (MoS2) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high-k dielectric Al2O3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated. PMID:29713686

  2. Defect Analysis of Roll-to-Roll SAIL Manufactured Flexible Display Backplanes

    DTIC Science & Technology

    2011-01-01

    tenting defect through the SAIL process Figure 5: Flexible backplane electrical tester Figure 6: R2R optical inspection system Figure 7: TEM of TFT ...Analysis of Roll-to-Roll SAIL Manufactured Flexible Display...Marcia Almanza-Workman, Robert A. Garcia, HanJun Kim, Ohseung Kwon, Frank Jeffrey HP Laboratories HPL-2011-35 SAIL, flexible displays, roll-to-roll HP

  3. Pixel structures to compensate nonuniform threshold voltage and mobility of polycrystalline silicon thin-film transistors using subthreshold current for large-size active matrix organic light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Na, Jun-Seok; Kwon, Oh-Kyong

    2014-01-01

    We propose pixel structures for large-size and high-resolution active matrix organic light-emitting diode (AMOLED) displays using a polycrystalline silicon (poly-Si) thin-film transistor (TFT) backplane. The proposed pixel structures compensate the variations of the threshold voltage and mobility of the driving TFT using the subthreshold current. The simulated results show that the emission current error of the proposed pixel structure B ranges from -2.25 to 2.02 least significant bit (LSB) when the variations of the threshold voltage and mobility of the driving TFT are ±0.5 V and ±10%, respectively.

  4. 78 FR 46613 - Amphenol Backplane Systems, Nashua, New Hampshire; Notice of Affirmative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,598] Amphenol Backplane Systems, Nashua, New Hampshire; Notice of Affirmative Determination Regarding Application for.... Conclusion After careful review of the application, I conclude that the claim is of sufficient weight to...

  5. Solution-processed single-wall carbon nanotube transistor arrays for wearable display backplanes

    NASA Astrophysics Data System (ADS)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-01-01

    In this paper, we demonstrate solution-processed single-wall carbon nanotube thin-film transistor (SWCNT-TFT) arrays with polymeric gate dielectrics on the polymeric substrates for wearable display backplanes, which can be directly attached to the human body. The optimized SWCNT-TFTs without any buffer layer on flexible substrates exhibit a linear field-effect mobility of 1.5cm2/V-s and a threshold voltage of around 0V. The statistical plot of the key device metrics extracted from 35 SWCNT-TFTs which were fabricated in different batches at different times conclusively support that we successfully demonstrated high-performance solution-processed SWCNT-TFT arrays which demand excellent uniformity in the device performance. We also investigate the operational stability of wearable SWCNT-TFT arrays against an applied strain of up to 40%, which is the essential for a harsh degree of strain on human body. We believe that the demonstration of flexible SWCNT-TFT arrays which were fabricated by all solution-process except the deposition of metal electrodes at process temperature below 130oC can open up new routes for wearable display backplanes.

  6. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  7. 78 FR 70580 - Amphenol Backplane Systems, Including On-Site Leased Workers From Technical Needs and National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Systems, Including On-Site Leased Workers From Technical Needs and National Engineering, Nashua, New... to the production of electrical connectors and backplane assemblies. The subject worker group includes on-site leased workers from Technical Needs and National Engineering. Workers of the subject firm...

  8. CWDM for very-short-reach and optical-backplane interconnections

    NASA Astrophysics Data System (ADS)

    Laha, Michael J.

    2002-06-01

    Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.

  9. Comparative study of signalling methods for high-speed backplane transceiver

    NASA Astrophysics Data System (ADS)

    Wu, Kejun

    2017-11-01

    A combined analysis of transient simulation and statistical method is proposed for comparative study of signalling methods applied to high-speed backplane transceivers. This method enables fast and accurate signal-to-noise ratio and symbol error rate estimation of a serial link based on a four-dimension design space, including channel characteristics, noise scenarios, equalisation schemes, and signalling methods. The proposed combined analysis method chooses an efficient sampling size for performance evaluation. A comparative study of non-return-to-zero (NRZ), PAM-4, and four-phase shifted sinusoid symbol (PSS-4) using parameterised behaviour-level simulation shows PAM-4 and PSS-4 has substantial advantages over conventional NRZ in most of the cases. A comparison between PAM-4 and PSS-4 shows PAM-4 gets significant bit error rate degradation when noise level is enhanced.

  10. Design and implementation of a modulator-based free-space optical backplane for multiprocessor applications

    NASA Astrophysics Data System (ADS)

    Kirk, Andrew G.; Plant, David V.; Szymanski, Ted H.; Vranesic, Zvonko G.; Tooley, Frank A. P.; Rolston, David R.; Ayliffe, Michael H.; Lacroix, Frederic K.; Robertson, Brian; Bernier, Eric; Brosseau, Daniel F.

    2003-05-01

    Design and implementation of a free-space optical backplane for multiprocessor applications is presented. The system is designed to interconnect four multiprocessor nodes that communicate by using multiplexed 32-bit packets. Each multiprocessor node is electrically connected to an optoelectronic VLSI chip which implements the hyperplane interconnection architecture. The chips each contain 256 optical transmitters (implemented as dual-rail multiple quantum-well modulators) and 256 optical receivers. A rigid free-space microoptical interconnection system that interconnects the transceiver chips in a 512-channel unidirectional ring is implemented. Full design, implementation, and operational details are provided.

  11. Design and implementation of a modulator-based free-space optical backplane for multiprocessor applications.

    PubMed

    Kirk, Andrew G; Plant, David V; Szymanski, Ted H; Vranesic, Zvonko G; Tooley, Frank A P; Rolston, David R; Ayliffe, Michael H; Lacroix, Frederic K; Robertson, Brian; Bernier, Eric; Brosseau, Daniel F

    2003-05-10

    Design and implementation of a free-space optical backplane for multiprocessor applications is presented. The system is designed to interconnect four multiprocessor nodes that communicate by using multiplexed 32-bit packets. Each multiprocessor node is electrically connected to an optoelectronic VLSI chip which implements the hyperplane interconnection architecture. The chips each contain 256 optical transmitters (implemented as dual-rail multiple quantum-well modulators) and 256 optical receivers. A rigid free-space microoptical interconnection system that interconnects the transceiver chips in a 512-channel unidirectional ring is implemented. Full design, implementation, and operational details are provided.

  12. SHI(EL)DS: A Novel Hardware-Based Security Backplane to Enhance Security with Minimal Impact to System Operation

    DTIC Science & Technology

    2008-03-01

    executables. The current roadblock to detecting Type I Malware consistantly is the practice of legitimate software , such as antivirus programs, using this... Software Security Systems . . 31 3.2.2 Advantages of Hardware . . . . . . . . . . . . . 32 3.2.3 Trustworthiness of Information . . . . . . . . . 33...Towards a Hardware Security Backplane . . . . . . . . . 42 IV. Review of State of the Art Computer Security Solutions . . . . . 46 4.1 Software

  13. Pentacene-based organic thin film transistors, integrated circuits, and active matrix displays on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Sheraw, Christopher Duncan

    2003-10-01

    Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as

  14. Flexible phosphorescent OLEDs on metal foil for military and commercial applications

    NASA Astrophysics Data System (ADS)

    Chwang, Anna; Lu, JengPing; Shih, Chinwen; Tung, Yeh-Jiun; Hewitt, Richard; Hack, Michael; Ho, Jackson; Brown, Julie

    2005-05-01

    We report recent advances in the development of low power consumption, emissive, flexible active matrix displays through integration of top emitting phosphorescent OLED (T-PHOLED) and poly-Si TFT backplane technologies. The displays are fabricated on flexible stainless steel foil. The T-PHOLEDs are based on UDC phosphorescent OLED technology, and the backplane is based on PARC's Excimer Laser Annealed (ELA) poly-Si TFT process. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.

  15. Flexible AMOLED backplane using pentacene TFT

    NASA Astrophysics Data System (ADS)

    Song, Chung Kun; Ryu, Gi Seong

    2005-01-01

    In this paper we fabricated a panel consisting of an array of organic TFTs (OTFT) and organic LEDs (OLED) in order to demonstrate the possible application of OTFTs to flexible active matrix OLED (AMOLED). The panel was composed of 64×64 pixels on 4 inch size PET substrate in which each pixel had one OTFT integrated with one green OLED. The panel successfully demonstrated to display some letters and pictures by emitting green light with luminance of 20 cd/m2 at 6 V, which was controlled by the gate voltage of OTFT. In addition we also developed fabrication processes for pentacene TFT with PVP gate on PET substrate. The OTFTs produced the maximum mobility of 1.2 cm2/V"sec and on/off current ratio of 2×106.

  16. Matrix metalloproteinase 2 (MMP-2) levels are increased in active acromegaly patients.

    PubMed

    Karci, Alper Cagri; Canturk, Zeynep; Tarkun, Ilhan; Cetinarslan, Berrin

    2017-07-01

    During follow-up of acromegaly patients, there is a discordance rate of 30% between the measurements of growth hormone and insulin-like growth factor-1 levels. Further tests are required to determine disease activity in patients with discordant results. This study was planned to investigate an association of serum levels of matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B with disease activity in acromegaly patients. In this study, 64 acromegaly patients followed in our clinic were divided into two groups according to the 2010 consensus criteria for cure of acromegaly as patients with active disease (n = 24) and patients with controlled disease (n = 40). Serum matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B levels were measured by the enzyme-linked immunosorbent assay method. The mean serum matrix metalloproteinase-2 level was significantly higher in the active acromegaly patients than in the controlled acromegaly patients (150.1 ± 54.5 ng/mL vs. 100.2 ± 44.6 ng/mL; p < 0.0001). There was no significant difference between the active and controlled acromegaly patients regarding serum matrix metalloproteinase-9 and cathepsin B levels (p = 0.205 and p = 0.598, respectively). Serum matrix metalloproteinase-2 levels of 118.3 ng/mL and higher had a sensitivity of 75% and a specificity of 77.5% in determining active disease. The risk of active acromegaly was 3.3 fold higher in the patients with a matrix metalloproteinase-2 level of >118.3 ng/mL than in the patients with a matrix metalloproteinase-2 level of <118.3 ng/mL. In this study, serum matrix metalloproteinase-2 level is increased in the active acromegaly patients and a threshold value in determining active disease was defined for serum matrix metalloproteinase-2 level. This study is the first to compare acromegaly patients having active or controlled disease in terms of matrix metalloproteinase-2 and matrix metalloproteinase-9

  17. Organic Light Emitting Devices and Materials Integrated with Active Matrix Backplanes for Flexible Displays

    DTIC Science & Technology

    2006-11-01

    fabricated. Of the molecules, the fac- Ir(dfppy)(dfppz)2 compound had the blue-est emission with the highest quantum efficiency . Phosphorescent...phosphorescent lifetimes, high quantum efficiencies and good stability. The emission color can be readily tuned from blue/green to red by judicious... electroluminescent efficiency as a function of current density plotted against the luminance. Fig. 3 Illustration of an

  18. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Jolley, Scott T. (Inventor); Buhrow, Jerry W. (Inventor); Li, Wenyan (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  19. Amorphous Silicon: Flexible Backplane and Display Application

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  20. New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hoon; Park, Sang-Geun; Jeon, Jae-Hong; Goh, Joon-chul; Huh, Jong-moo; Choi, Joonhoo; Chung, Kyuha; Han, Min-Koo

    2007-03-01

    We propose and fabricate a new hydrogenated amorphous silicon (a-Si:H) thin-film transistor (TFT) pixel employing a fraction time annealing (FTA), which can supply a negative gate bias during a fraction time of each frame rather than the entire whole frame, in order to improve the organic light emitting diode (OLED) current stability for an active matrix (AM) OLED. When an electrical bias for an initial reference current of 2 μA at 60 °C is applied to an FTA-driven pixel more than 100 h and the temperature is increased up to 60 °C rather than room temperature, the OLED current is reduced by 22% in the FTA-driven pixel, whereas it is reduced by 53% in a conventional pixel. The current stability of the proposed pixel is improved, because the applied negative bias can suppress the threshold voltage degradation of the a-Si:H TFT itself, which may be attributed to hole trapping into SiNx. The proposed fraction time annealing method can successfully suppress Vth shift of the a-Si:H TFT itself due to hole trapping into SiNx induced by negative gate bias annealing.

  1. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  2. Matrix-specific protein kinase A signaling regulates p21 activated kinase activation by flow in endothelial cells

    PubMed Central

    Funk, Steven Daniel; Yurdagul, Arif; Green, Jonette M.; Jhaveri, Krishna A.; Schwartz, Martin Alexander; Orr, A. Wayne

    2010-01-01

    Rationale Atherosclerosis is initiated by blood flow patterns that activate inflammatory pathways in endothelial cells. Activation of inflammatory signaling by fluid shear stress is highly dependent on the composition of the subendothelial extracellular matrix. The basement membrane proteins laminin and collagen found in normal vessels suppress flow-induced p21 activated kinase (PAK) and NF-κB activation. By contrast, the provisional matrix proteins fibronectin and fibrinogen found in wounded or inflamed vessels support flow-induced PAK and NF-κB activation. PAK mediates both flow-induced permeability and matrix-specific activation of NF-κB. Objective To elucidate the mechanisms regulating matrix-specific PAK activation. Methods and Results We now show that matrix composition does not affect the upstream pathway by which flow activates PAK (integrin activation, Rac). Instead basement membrane proteins enhance flow-induced protein kinase A (PKA) activation, which suppresses PAK. Inhibiting PKA restored flow-induced PAK and NF-κB activation in cells on basement membrane proteins, whereas stimulating PKA inhibited flow-induced activation of inflammatory signaling in cells on fibronectin. PKA suppressed inflammatory signaling through PAK inhibition. Activating PKA by injection of the PGI2 analog iloprost reduced PAK activation and inflammatory gene expression at sites of disturbed flow in vivo, whereas inhibiting PKA by PKI injection enhanced PAK activation and inflammatory gene expression. Inhibiting PAK prevented the enhancement of inflammatory gene expression by PKI. Conclusions Basement membrane proteins inhibit inflammatory signaling in endothelial cells via PKA-dependent inhibition of PAK. PMID:20224042

  3. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  4. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy.

    PubMed

    Matsuura, N; Zhao, W; Huang, Z; Rowlands, J A

    1999-05-01

    Active matrix array technology has made possible the concept of flat panel imaging systems for radiography. In the conventional approach a thin-film circuit built on glass contains the necessary switching components (thin-film transistors or TFTs) to readout an image formed in either a phosphor or photoconductor layer. Extension of this concept to real time imaging--fluoroscopy--has had problems due to the very low noise required. A new design strategy for fluoroscopic active matrix flat panel detectors has therefore been investigated theoretically. In this approach, the active matrix has integrated thin-film amplifiers and readout electronics at each pixel and is called the amplified pixel detector array (APDA). Each amplified pixel consists of three thin-film transistors: an amplifier, a readout, and a reset TFT. The performance of the APDA approach compared to the conventional active matrix was investigated for two semiconductors commonly used to construct active matrix arrays--hydrogenated amorphous silicon and polycrystalline silicon. The results showed that with amplification close to the pixel, the noise from the external charge preamplifiers becomes insignificant. The thermal and flicker noise of the readout and the amplifying TFTs at the pixel become the dominant sources of noise. The magnitude of these noise sources is strongly dependent on the TFT geometry and its fabrication process. Both of these could be optimized to make the APDA active matrix operate at lower noise levels than is possible with the conventional approach. However, the APDA cannot be made to operate ideally (i.e., have noise limited only by the amount of radiation used) at the lowest exposure rate required in medical fluoroscopy.

  5. Low-power SXGA active matrix OLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2009-05-01

    This paper presents the design and first evaluation of a full-color 1280×3×1024 pixel, active matrix organic light emitting diode (AMOLED) microdisplay that operates at a low power of 200mW under typical operating conditions of 35fL, and offers a precision 30-bit RGB digital interface in a compact size (0.78-inch diagonal active area). The new system architecture developed by eMagin for the SXGA microdisplay, based on a separate FPGA driver and AMOLED display chip, offers several benefits, including better power efficiency, cost-effectiveness, more features for improved performance, and increased system flexibility.

  6. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    PubMed

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Kinematic matrix theory and universalities in self-propellers and active swimmers.

    PubMed

    Nourhani, Amir; Lammert, Paul E; Borhan, Ali; Crespi, Vincent H

    2014-06-01

    We describe an efficient and parsimonious matrix-based theory for studying the ensemble behavior of self-propellers and active swimmers, such as nanomotors or motile bacteria, that are typically studied by differential-equation-based Langevin or Fokker-Planck formalisms. The kinematic effects for elementary processes of motion are incorporated into a matrix, called the "kinematrix," from which we immediately obtain correlators and the mean and variance of angular and position variables (and thus effective diffusivity) by simple matrix algebra. The kinematrix formalism enables us recast the behaviors of a diverse range of self-propellers into a unified form, revealing universalities in their ensemble behavior in terms of new emergent time scales. Active fluctuations and hydrodynamic interactions can be expressed as an additive composition of separate self-propellers.

  8. Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix

    NASA Astrophysics Data System (ADS)

    Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.

    2006-01-01

    Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.

  9. ASTM and VAMAS activities in titanium matrix composites test methods development

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.

    1994-01-01

    Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.

  10. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  11. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors.

    PubMed

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-11

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this 'electrical activation', the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  12. Immobilization of mercury and zinc in an alkali-activated slag matrix.

    PubMed

    Qian, Guangren; Sun, Darren Delai; Tay, Joo Hwa

    2003-07-04

    The behavior of heavy metals mercury and zinc immobilized in an alkali-activated slag (AAS) matrix has been evaluated using physical property tests, pore structure analysis and XRD, TG-DTG, FTIR and TCLP analysis. Low concentrations (0.5%) of mercury and zinc ions had only a slight affect on compressive strength, pore structure and hydration of AAS matrixes. The addition of 2% Hg ions to the AAS matrix resulted in a reduction in early compressive strength but no negative effects were noticed after 28 days of hydration. Meanwhile, 2% Hg ions can be effectively immobilized in the AAS matrix with the leachate meeting the USEPA TCLP mercury limit. For a 2% Zn-doped AAS matrix, the hydration of the AAS paste was greatly retarded and the zinc concentration in the leachate from this matrix was higher than 5mg/l even at 28 days. Based on these results, we conclude that the physical encapsulation and chemical fixation mechanisms were likely to be responsible for the immobilization of Hg ions in the AAS matrix while only chemical fixation mechanisms were responsible for the immobilization of Zn ions in the AAS matrix.

  13. Matrix metalloproteases and PAR1 activation

    PubMed Central

    Austin, Karyn M.; Covic, Lidija

    2013-01-01

    Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis. PMID:23086754

  14. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  16. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    PubMed Central

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-01-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully. PMID:27725695

  17. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  18. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  19. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-09-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics.

  20. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    PubMed Central

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-01-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239

  1. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix.

    PubMed

    Jessen, Tammy N; Jessen, Jason R

    2017-12-15

    Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    PubMed

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of

  3. Simultaneous Detection of Metalloprotease Activities in Complex Biological Samples Using the PrAMA (Proteolytic Activity Matrix Assay) Method.

    PubMed

    Conrad, Catharina; Miller, Miles A; Bartsch, Jörg W; Schlomann, Uwe; Lauffenburger, Douglas A

    2017-01-01

    Proteolytic Activity Matrix Analysis (PrAMA) is a method for simultaneously determining the activities of specific Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) in complex biological samples. In mixtures of unknown proteases, PrAMA infers selective metalloproteinase activities by using a panel of moderately specific FRET-based polypeptide protease substrates in parallel, typically monitored by a plate-reader in a 96-well format. Fluorescence measurements are then quantitatively compared to a standard table of catalytic efficiencies measured from purified mixtures of individual metalloproteinases and FRET substrates. Computational inference of specific activities is performed with an easily used Matlab program, which is provided herein. Thus, we describe PrAMA as a combined experimental and mathematical approach to determine real-time metalloproteinase activities, which has previously been applied to live-cell cultures, cellular lysates, cell culture supernatants, and body fluids from patients.

  4. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  5. High Matrix Metalloproteinase Activity is a Hallmark of Periapical Granulomas

    PubMed Central

    de Paula e Silva, Francisco Wanderley Garcia; D'Silva, Nisha J.; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine

    2009-01-01

    Introduction Inability to distinguish periapical cysts from granulomas prior to performing root canal treatment leads to uncertainty in treatment outcomes, because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Methods Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Since matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed using one-way ANOVA followed by Tukey test. Results We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the matrix metalloproteinase (MMP) family. Compared to cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs), in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared to cysts. Conclusion Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas, unlike periapical cysts. PMID:19720222

  6. Amorphous silicon thin-film transistor active-matrix for reflective cholesteric liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Nahm, Jeong-Yeop

    Reflective cholesteric liquid crystal displays (Ch-LCDs) have advantages, such as, high brightness, low power consumption, and wide viewing angle, since they do not need any polarizer, color filter, and backlight. Furthermore, due to their bistability Ch-LCDs can retain their images virtually forever without additional power consumption. But conventional passive-matrix addressing of Ch-LCDs allows only a slow image updating speed. Active-matrix addressing should allow fast image updating or video-rate operation. However, because the threshold voltage of cholesteric, liquid crystal is high (>20V), the switching devices for active-matrix addressing should satisfy required characteristics even under high bias conditions. In order to investigate the applicability of hydrogenated amorphous silicon thin film transistors (a-Si:H TFTs) for the switching devices of active-matrix (AM) Ch-LCDs, the characteristics of conventional and gate offset high voltage a-Si:H TTFs were examined under high bias conditions. And it was concluded that high OFF-current of conventional a-Si:H TFTs and low ON-current of gate offset high voltage a-Si:H TFTs were main problems for reflective AM Ch-LCD applications. In order to improve the TFT characteristics under high bias conditions, we propose two new a-Si:H TFT structures called gate planarized (GP) and buried field plate (BFP) high voltage a-Si:H TFTs. Firstly, in the GP a-Si:H TFTs, we used a thick spin-coated benzocyclobutene (BCB) layer beneath a thin hydrogenated amorphous silicon nitride (a-SiNx:H) layer for gate insulator. The GP a-Si:H TFT showed normal TFT characteristic up to VGS = VDS = ˜100 V without any device failure. But TFT ON-current of GP a-Si:H TFT was reduced due to the introduction of the thick low dielectric BCB layer. Secondly, in the BFP a-Si:H TFT, an offset region and a buried field plate were introduced between the drain/source and gate electrodes to reduce the electric field in the pinch-off region. For this BFP

  7. Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions

    PubMed Central

    Schweizer, Kenneth S.

    2017-01-01

    We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a “slaved” or “constraint release” fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically

  8. Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2017-05-01

    We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a "slaved" or "constraint release" fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically

  9. Understanding the Relationship between Red Wine Matrix, Tannin Activity, and Sensory Properties.

    PubMed

    Watrelot, Aude A; Byrnes, Nadia K; Heymann, Hildegarde; Kennedy, James A

    2016-11-30

    One major red wine mouthfeel characteristic, astringency, is derived from grape-extracted tannins and is considered to be a result of interaction with salivary proteins and the oral mucosa. To improve our understanding of the role that the enthalpy of interaction of tannin with a hydrophobic surface (tannin activity) has in astringency perception, a chromatographic method was used to determine the tannin concentration and activity of 34 Cabernet Sauvignon wines, as well as sensory analysis done on 13 of those wines. In addition, astringency-relevant matrix parameters (pH, titratable acidity, ethanol, glucose, and fructose) were measured across all wines. Tannin activity was not significantly correlated with any matrix variables, and the perception of drying and grippy was not correlated with tannin concentration and activity. However, ethanol content was well related to mouthfeel attributes and appeared to drive perceived drying. Although fructose and glucose content were well correlated, they did not drive the perception of sweetness, which is explained by the well-known mixture suppression effect.

  10. Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*

    PubMed Central

    Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon

    2013-01-01

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495

  11. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein.

    PubMed

    Barbolina, Maria V; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D; Penzes, Peter; Ravosa, Matthew J; Stack, M Sharon

    2013-01-04

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.

  12. Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity.

    PubMed

    Anjana, J; Mohandas, Annapoorna; Seethalakshmy, S; Suresh, Maneesha K; Menon, Riju; Biswas, Raja; Jayakumar, R

    2018-04-15

    Chronic diabetic wounds is characterised by increased microbial contamination and overproduction of matrix metalloproteases that would degrade the extracellular matrix. A bi-layer bandage was developed, that promotes the inhibition of microbial infections and matrix metalloprotease (MMPs) activity. Bi-layer bandage containing benzalkonium chloride loaded gelatin nanoparticles (BZK GNPs) in chitosan-Hyaluronic acid (HA) as a bottom layer and sodium alendronate containing chitosan as top layer was developed. We hypothesized that the chitosan-gelatin top layer with sodium alendronate could inhibit the MMPs activity, whereas the chitosan-HA bottom layer with BZK GNPs (240±66nm) would enable the elimination of microbes. The porosity, swelling and degradation nature of the prepared Bi-layered bandage was studied. The bottom layer could degrade within 4days whereas the top layer remained upto 7days. The antimicrobial activity of the BZK NPs loaded bandage was determined using normal and clinical strains. Gelatin zymography shows that the proteolytic activity of MMP was inhibited by the bandage. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors.

    PubMed

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-21

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m×n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm(2) V(-1) s(-1), low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 × 5 electrode array connected to a 2 × 5 IGZO thin film transistor array with the semiconductor channel width of 50 μm and mobility of 6.3 cm(2) V(-1) s(-1). Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  14. Consumption of a durable termite bait matrix by subterranean termites (Isoptera: Rhinotermitidae) and resulting insecticidal activity.

    PubMed

    Hamm, Ronda L; DeMark, Joseph J; Chin-Heady, Eva; Tolley, Mike P

    2013-04-01

    A novel durable termite bait was developed to enable continuous bait availability and lengthen the monitoring interval to 1 year. Laboratory studies were conducted to determine the palatability and insecticidal activity of this bait to Reticulitermes flavipes (Kollar), R. virginicus (Banks), R. hesperus Banks, Coptotermes formosanus Shiraki and Heterotermes aureus (Synder). Consumption of the blank durable bait matrix was significantly higher than consumption of a blank preferred textured cellulose matrix (PTC) by R. virginicus, R. flavipes and C. formosanus. R. flavipes, R. hesperus and H. aureus consumed significantly more durable bait than PTC when both contained the active ingredient noviflumuron. All bait treatments resulted in significant mortality relative to the untreated controls. Survivorship of R. virginicus, C. formosanus and H. aureus was 2% or less and not significantly different between the durable bait and PTC treatments containing noviflumuron. The durable bait matrix lagged behind the PTC matrix in mortality over time for all species tested except H. aureus. The durable bait was highly palatable and effective in inducing mortality to R. flavipes, R. virginicus, R. hesperus, C. formosanus and H. aureus in the laboratory. This unique bait matrix will be available to termites continuously and allows for an annual monitoring interval. The durability of this bait matrix is unprecedented, allowing for bait to remain active for years and thus providing continuous structural protection. © 2012 Society of Chemical Industry.

  15. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  16. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  17. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    PubMed

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Luminance compensation for AMOLED displays using integrated MIS sensors

    NASA Astrophysics Data System (ADS)

    Vygranenko, Yuri; Fernandes, Miguel; Louro, Paula; Vieira, Manuela

    2017-05-01

    Active-matrix organic light-emitting diodes (AMOLEDs) are ideal for future TV applications due to their ability to faithfully reproduce real images. However, pixel luminance can be affected by instability of driver TFTs and aging effect in OLEDs. This paper reports on a pixel driver utilizing a metal-insulator-semiconductor (MIS) sensor for luminance control of the OLED element. In the proposed pixel architecture for bottom-emission AMOLEDs, the embedded MIS sensor shares the same layer stack with back-channel etched a Si:H TFTs to maintain the fabrication simplicity. The pixel design for a large-area HD display is presented. The external electronics performs image processing to modify incoming video using correction parameters for each pixel in the backplane, and also sensor data processing to update the correction parameters. The luminance adjusting algorithm is based on realistic models for pixel circuit elements to predict the relation between the programming voltage and OLED luminance. SPICE modeling of the sensing part of the backplane is performed to demonstrate its feasibility. Details on the pixel circuit functionality including the sensing and programming operations are also discussed.

  19. Responsibility modulates pain-matrix activation elicited by the expressions of others in pain

    PubMed Central

    Cui, Fang; Abdelgabar, Abdel-Rahman; Keysers, Christian; Gazzola, Valeria

    2015-01-01

    Here we examine whether brain responses to dynamic facial expressions of pain are influenced by our responsibility for the observed pain. Participants played a flanker task with a confederate. Whenever either erred, the confederate was seen to receive a noxious shock. Using functional magnetic resonance imaging, we found that regions of the functionally localized pain-matrix of the participants (the anterior insula in particular) were activated most strongly when seeing the confederate receive a noxious shock when only the participant had erred (and hence had full responsibility). When both or only the confederate had erred (i.e. participant's shared or no responsibility), significantly weaker vicarious pain-matrix activations were measured. PMID:25800210

  20. Activation of peroxisome proliferator-activated receptor δ inhibits angiotensin II-induced activation of matrix metalloproteinase-2 in vascular smooth muscle cells.

    PubMed

    Ham, Sun Ah; Lee, Hanna; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Paek, Kyung Shin; Do, Jeong Tae; Park, Chankyu; Oh, Jae-Wook; Kim, Jin-Hoi; Han, Chang Woo; Seo, Han Geuk

    2014-01-01

    We investigated the role of peroxisome proliferator-activated receptor (PPAR) δ on angiotensin (Ang) II-induced activation of matrix metalloproteinase (MMP)-2 in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, attenuated Ang II-induced activation of MMP-2 in a concentration-dependent manner. GW501516 also inhibited the generation of reactive oxygen species in VSMCs treated with Ang II. A marked increase in the mRNA levels of tissue inhibitor of metalloproteinase (TIMP)-2 and -3, endogenous antagonists of MMPs, was also observed in GW501516-treated VSMCs. These effects were markedly reduced in the presence of siRNAs against PPARδ, indicating that the effects of GW501516 are PPARδ dependent. Among the protein kinases inhibited by GW501516, suppression of phosphatidylinositol 3-kinase/Akt signaling was shown to have the greatest effect on activation of MMP-2 in VSMCs treated with Ang II. Concomitantly, GW501516-mediated inhibition of MMP-2 activation in VSMCs treated with Ang II was associated with the suppression of cell migration to levels approaching those in cells not exposed to Ang II. Thus, activation of PPARδ confers resistance to Ang II-induced degradation of the extracellular matrix by upregulating expression of its endogenous inhibitor TIMP and thereby modulating cellular responses to Ang II in vascular cells. © 2014 S. Karger AG, Basel.

  1. Pesticide-exposure Matrix helps identify active ingredients in pesticides used in past years

    Cancer.gov

    Pesticide-exposure Matrix was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years

  2. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  3. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity.

    PubMed

    Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos

    2016-07-01

    Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity.

  4. Collagen degradation and preservation of MMP-8 activity in human dentine matrix after demineralization.

    PubMed

    Hedenbjörk-Lager, Anders; Hamberg, Kristina; Pääkkönen, Virve; Tjäderhane, Leo; Ericson, Dan

    2016-08-01

    Dental caries is a process driven by acids produced by oral microorganisms followed by degradation of the dentine collagen matrix by proteolytic enzymes. Matrix metalloproteinases (MMPs) have been suggested to contribute to caries by degrading collagen. The aim of this study was to develop a method for generating demineralized dentine matrix substrate (DDM) maintaining MMP-8 bioactivity and no interference with later assays. Such a substrate would allow study of the effects of various treatments on MMP-8 activity and collagen degradation in demineralized dentine. Human dentine was powderized in a tissue grinder and frozen (-80°C). The powder was demineralized in dialysis tubes, using EDTA or acetic acid. The demineralized dentine matrix (DDM) was harvested and analyzed for collagen content using SDS-PAGE. The DDM was subsequently suspended in PBS or TESCA buffer. Protein, MMP-8 (ELISA) and collagen (HYP) was analyzed directly or after 1 wk. EDTA or acid demineralization of dentine using dialysis yielded a substrate rich in collagen coupled with preserved MMP-8 activity. Collagen degraded in room temperature, assessed by higher HYP amounts in the soluble fraction of DDM after one wk, indicating that the methods used preserved active DDM-components after the demineralization process. The presented demineralization methods both provided insoluble DDM substrates suitable for further intervention studies. However, it was found that the substrates differed depending on the demineralization method and buffers used. This needs further study to find an optimal technique for generating DDM with retained proteins as well as enzymatic bioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High matrix metalloproteinase activity is a hallmark of periapical granulomas.

    PubMed

    de Paula-Silva, Francisco Wanderley Garcia; D'Silva, Nisha J; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine

    2009-09-01

    The inability to distinguish periapical cysts from granulomas before performing root canal treatment leads to uncertainty in treatment outcomes because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Because matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed by using one-way analysis of variance followed by the Tukey test. We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the MMP family. Compared with cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs) in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared with cysts. Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas unlike periapical cysts.

  6. PPAR{gamma} agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong-Ryong; Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, Taegu; Kim, Hahn-Young

    2009-02-27

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation withmore » pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.« less

  7. Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels.

    PubMed

    Kobayashi, Tetsu; Kim, HuiJung; Liu, Xiangde; Sugiura, Hisatoshi; Kohyama, Tadashi; Fang, Qiuhong; Wen, Fu-Qiang; Abe, Shinji; Wang, Xingqi; Atkinson, Jeffrey J; Shipley, James M; Senior, Robert M; Rennard, Stephen I

    2014-06-01

    Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-β1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-β1 and reduced several TGF-β1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-β1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-β1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts. Copyright © 2014 the American Physiological Society.

  8. The Exopolysaccharide Matrix

    PubMed Central

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  9. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins.

    PubMed

    Lord, Megan S; Cheng, Bill; McCarthy, Simon J; Jung, MoonSun; Whitelock, John M

    2011-10-01

    Chitosan has been shown to promote initial wound closure events to prevent blood loss. Platelet adhesion and activation are crucial early events in these processes after traumatic bleeding leading to thrombus formation. Platelet adhesion to chitosan was found to be enhanced in the presence of adsorbed plasma and extracellular matrix proteins and was found to be primarily mediated by α(IIb)β(3) integrins, while α(2)β(1) integrins were found to be involved in platelet adhesion to collagen and perlecan. Platelets were found to be activated by chitosan, as shown by an increase in the expression of α(IIb)β(3) integrins and P-selectin, while the extent of activation was modulated by the presence of proteins including perlecan and fibrinogen. Collagen-coated chitosan was found to activate platelets to the same extent as either chitosan or collagen alone. These data support the role of plasma and extracellular matrix proteins in promoting chitosan mediated platelet adhesion and activation supporting the hypothesis that chitosan promotes wound healing via these interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Lung Matrix Metalloproteinase Activation following Partial Hepatic Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Ferrigno, Andrea; Rizzo, Vittoria; Tarantola, Eleonora

    2014-01-01

    Purpose. Warm hepatic ischemia-reperfusion (I/R) injury can lead to multiorgan dysfunction. The aim of the present study was to investigate whether acute liver I/R does affect the function and/or structure of remote organs such as lung, kidney, and heart via modulation of extracellular matrix remodelling. Methods. Male Sprague-Dawley rats were subjected to 30 min partial hepatic ischemia by clamping the hepatic artery and the portal vein. After a 60 min reperfusion, liver, lung, kidney, and heart biopsies and blood samples were collected. Serum hepatic enzymes, creatinine, urea, Troponin I and TNF-alpha, and tissue matrix metalloproteinases (MMP-2, MMP-9), myeloperoxidase (MPO), malondialdehyde (MDA), and morphology were monitored. Results. Serum levels of hepatic enzymes and TNF-alpha were concomitantly increased during hepatic I/R. An increase in hepatic MMP-2 and MMP-9 activities was substantiated by tissue morphology alterations. Notably, acute hepatic I/R affect the lung inasmuch as MMP-9 activity and MPO levels were increased. No difference in MMPs and MPO was observed in kidney and heart. Conclusions. Although the underlying mechanism needs further investigation, this is the first study in which the MMP activation in a distant organ is reported; this event is probably TNF-alpha-mediated and the lung appears as the first remote organ to be involved in hepatic I/R injury. PMID:24592193

  11. Drosophila Perlecan Regulates Intestinal Stem Cell Activity via Cell-Matrix Attachment

    PubMed Central

    You, Jia; Zhang, Yan; Li, Zhouhua; Lou, Zhefeng; Jin, Longjin; Lin, Xinhua

    2014-01-01

    Summary Stem cells require specialized local microenvironments, termed niches, for normal retention, proliferation, and multipotency. Niches are composed of cells together with their associated extracellular matrix (ECM). Currently, the roles of ECM in regulating niche functions are poorly understood. Here, we demonstrate that Perlecan (Pcan), a highly conserved ECM component, controls intestinal stem cell (ISC) activities and ISC-ECM attachment in Drosophila adult posterior midgut. Loss of Pcan from ISCs, but not other surrounding cells, causes ISCs to detach from underlying ECM, lose their identity, and fail to proliferate. These defects are not a result of a loss of epidermal growth factor receptor (EGFR) or Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity but partially depend on integrin signaling activity. We propose that Pcan secreted by ISCs confers niche properties to the adjacent ECM that is required for ISC maintenance of stem cell identity, activity, and anchorage to the niche. PMID:24936464

  12. Residual matrix from different separation techniques impacts exosome biological activity.

    PubMed

    Paolini, Lucia; Zendrini, Andrea; Di Noto, Giuseppe; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-03-24

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales.

  13. Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture.

    PubMed

    Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping

    2017-12-22

    Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).

  14. Heterogeneity of serum activities of matrix metalloproteinases in chronic endometritis.

    PubMed

    Sukhikh, G T; Soboleva, G M; Silantyeva, E S; Shagerbieva, E A; Serov, V N

    2007-04-01

    Matrix metalloproteinases belong to the key molecules of tissue remodeling involved in physiological and pathological processes of the female reproductive system. Adequate levels of their expression in the endometrium are essential for effective implantation and uneventful pregnancy. Chronic inflammatory process in the endometrium is associated with low tissue expression of metalloproteinase-9. Histologically verified chronic endometritis is associated with low serum activities of metalloproteinases 2 and 9, which are restored after combined etiotropic therapy. We measured serum levels of metalloproteinases in patients with chronic endometritis concomitant with sterility and its changes during the first days after magnetotherapy.

  15. Matrix remodeling maintains ESC self-renewal by activating Stat3

    PubMed Central

    Przybyla, Laralynne M.; Theunissen, Thorold W.; Jaenisch, Rudolf; Voldman, Joel

    2013-01-01

    While a variety of natural and synthetic matrices have been used to influence embryonic stem cell (ESC) self-renewal or differentiation, and ESCs also deposit a rich matrix of their own, the mechanisms behind how extracellular matrix affects cell fate are largely unexplored. The ESC matrix is continuously remodeled by matrix metalloproteinases (MMPs), a process that we find is enhanced by the presence of mouse embryonic fibroblast feeders in a paracrine manner. Matrix remodeling by MMPs aids in the self-renewal of ESCs, as inhibition of MMPs inhibits the ability of ESCs to self-renew. We also find that addition of the interstitial collagenase MMP1 is sufficient to maintain long-term LIF-independent mESC self-renewal in a dose-dependent manner. This remarkable ability is due to the presence of endogenously produced self-renewal-inducing signals, including the LIF-family ligand CNTF, that are normally trapped within the ECM and become exposed upon MMP-induced matrix remodeling to signal through JAK and Stat3. These results uncover a new role for feeder cells in maintaining self-renewal and show that mESCs normally produce sufficient levels of autocrine-acting pro-self-renewal ligands. PMID:23404867

  16. The effect of tomatine on metastasis related matrix metalloproteinase (MMP) activities in breast cancer cell model.

    PubMed

    Yelken, Besra Özmen; Balcı, Tuğçe; Süslüer, Sunde Yılmaz; Kayabaşı, Çağla; Avcı, Çığır Biray; Kırmızıbayrak, Petek Ballar; Gündüz, Cumhur

    2017-09-05

    Breast cancer is one of the most common malignancies in women and metastasis is the cause of morbidity and mortality in patients. In the development of metastasis, the matrix metalloproteinase (MMP) family has a very important role in tumor development. MMP-2 and MMP-9 work together for extracellular matrix (ECM) cleavage to increase migration. Tomatine is a secondary metabolite that has a natural defense role against plants, fungi, viruses and bacteria that are synthesized from tomato. In additıon, tomatine is also known that it breaks down the cell membrane and is a strong inhibitor in human cancer cells. In this study, it was aimed to evaluate the effect of tomatine on cytotoxicity, apoptosis and matrix metalloproteinase inhibition in MCF-7 cell lines. Human breast cancer cell line (MCF-7) was used as a cell line. In MCF-7 cells, the IC 50 dose of tomatine was determined to be 7.07μM. According to the control cells, apoptosis increased 3.4 fold in 48thh. Activation of MMP-2, MMP-9 and MMP-9\\NGAL has been shown to decrease significantly in cells treated with tomatine by gelatin zymography compared to the control. As a result, matrix metalloproteinase activity and cell proliferation were suppressed by tomatine and this may provide support in treatment methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis.

    PubMed

    Garratt, Luke W; Sutanto, Erika N; Ling, Kak-Ming; Looi, Kevin; Iosifidis, Thomas; Martinovich, Kelly M; Shaw, Nicole C; Kicic-Starcevich, Elizabeth; Knight, Darryl A; Ranganathan, Sarath; Stick, Stephen M; Kicic, Anthony

    2015-08-01

    Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis.Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis.A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis.Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease. Copyright ©ERS 2015.

  18. S-nitrosoglutathione prevents blood-brain barrier disruption associated with increased matrix metalloproteinase-9 activity in experimental diabetes.

    PubMed

    Aggarwal, Aanchal; Khera, Alka; Singh, Inderjit; Sandhir, Rajat

    2015-03-01

    Hyperglycemia is known to induce microvascular complications, thereby altering blood-brain barrier (BBB) permeability. This study investigated the role of matrix metalloproteinases (MMPs) and their endogenous inhibitors in increased BBB permeability and evaluated the protective effect of S-nitrosoglutathione (GSNO) in diabetes. Diabetes was induced in mice by intraperitoneal injection of streptozotocin (40 mg/kg body weight) for 5 days and GSNO was administered orally (100 μg/kg body weight) daily for 8 weeks after the induction of diabetes. A significant decline in cognitive functions was observed in diabetic mice assessed by Morris water maze test. Increased permeability to different molecular size tracers accompanied by edema and ion imbalance was observed in cortex and hippocampus of diabetic mice. Furthermore, activity of both pro and active MMP-9 was found to be significantly elevated in diabetic animals. Increased in situ gelatinase activity was observed in tissue sections and isolated microvessels from diabetic mice brain. The increase in activity of MMP-9 was attributed to increased mRNA and protein expression in diabetic mice. In addition, a significant decrease in mRNA and protein expression of tissue inhibitor of matrix metalloproteinase-1 was also observed in diabetic animals. However, GSNO supplementation to diabetic animals was able to abridge MMP-9 activation as well as tissue inhibitor of matrix metalloproteinase-1 levels, restoring BBB integrity and also improving learning and memory. Our findings clearly suggest that GSNO could prevent hyperglycemia-induced disruption of BBB by suppressing MMP-9 activity. © 2014 International Society for Neurochemistry.

  19. BIOCHEMICAL AND ULTRASTRUCTURAL PROPERTIES OF A MITOCHONDRIAL INNER MEMBRANE FRACTION DEFICIENT IN OUTER MEMBRANE AND MATRIX ACTIVITIES

    PubMed Central

    Chan, T. L.; Greenawalt, John W.; Pedersen, Peter L.

    1970-01-01

    Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol. PMID:4254678

  20. Active matrix-based collection of airborne analytes: an analyte recording chip providing exposure history and finger print.

    PubMed

    Fang, Jun; Park, Se-Chul; Schlag, Leslie; Stauden, Thomas; Pezoldt, Jörg; Jacobs, Heiko O

    2014-12-03

    In the field of sensors that target the detection of airborne analytes, Corona/lens-based-collection provides a new path to achieve a high sensitivity. An active-matrix-based analyte collection approach referred to as "airborne analyte memory chip/recorder" is demonstrated, which takes and stores airborne analytes in a matrix to provide an exposure history for off-site analysis. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Jeong, Jong Han; Lee, Hun Jung; Ahn, Tae Kyung; Shin, Hyun Soo; Park, Jin-Seong; Jeong, Jae Kyeong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-05-01

    The authors report on the fabrication of thin film transistors (TFTs), which use an amorphous indium gallium zinc oxide (a-IGZO) channel, by rf sputtering at room temperature and for which the channel length and width are patterned by photolithography and dry etching. To prevent plasma damage to the active channel, a 100-nm-thick SiOx layer deposited by plasma enhanced chemical vapor deposition was adopted as an etch stopper structure. The a-IGZO TFT (W /L=10μm/50μm) fabricated on glass exhibited a high field-effect mobility of 35.8cm2/Vs, a subthreshold gate swing value of 0.59V/decade, a thrseshold voltage of 5.9V, and an Ion/off ratio of 4.9×106, which is acceptable for use as the switching transistor of an active-matrix TFT backplane.

  2. Matrix metalloproteinase expression and activity in trophoblast-decidual tissues at organogenesis in CF-1 mouse.

    PubMed

    Fontana, Vanina; Coll, Tamara A; Sobarzo, Cristian M A; Tito, Leticia Perez; Calvo, Juan Carlos; Cebral, Elisa

    2012-10-01

    During early placentation, matrix metalloproteinases (MMPs) play important roles in decidualization, trophoblast migration, invasion, angiogenesis, vascularization and extracellular matrix (ECM) remodeling of the endometrium. The aim of our study was to analyze the localization, distribution and differential expression of MMP-2 and -9 in the organogenic implantation site and to evaluate in vivo and in vitro decidual MMP-2 and -9 activities on day 10 of gestation in CF-1 mouse. Whole extracts for Western blotting of organogenic E10-decidua expressed MMP-2 and -9 isoforms. MMP-2 immunoreactivity was found in a granular and discrete pattern in ECM of mesometrial decidua (MD) near maternal blood vessels and slightly in non-decidualized endometrium (NDE). Immunoexpression of MMP-9 was also detected in NDE, in cytoplasm of decidual cells and ECM of vascular MD, in trophoblastic area and in growing antimesometrial deciduum. Gelatin zymography showed that MMP-9 activity was significantly lower in CM compared to the active form of direct (not cultured) and cultured decidua. The decidual active MMP-9 was significantly higher than the active MMP-2. These results show differential localization, protein expression and enzymatic activation of MMPs, suggesting specific roles for MMP-2 and MMP-9 in decidual and trophoblast tissues related to organogenic ECM remodeling and vascularization during early establishment of mouse placentation.

  3. Pixel electronic noise as a function of position in an active matrix flat panel imaging array

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Mohammad Y.; Wu, Dali; Karim, Karim S.

    2010-04-01

    We present an analysis of output referred pixel electronic noise as a function of position in the active matrix array for both active and passive pixel architectures. Three different noise sources for Active Pixel Sensor (APS) arrays are considered: readout period noise, reset period noise and leakage current noise of the reset TFT during readout. For the state-of-the-art Passive Pixel Sensor (PPS) array, the readout noise of the TFT switch is considered. Measured noise results are obtained by modeling the array connections with RC ladders on a small in-house fabricated prototype. The results indicate that the pixels in the rows located in the middle part of the array have less random electronic noise at the output of the off-panel charge amplifier compared to the ones in rows at the two edges of the array. These results can help optimize for clearer images as well as help define the region-of-interest with the best signal-to-noise ratio in an active matrix digital flat panel imaging array.

  4. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    PubMed

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  5. [Procedure for Latrodectus reproduction in the laboratory setting and the preparation of the first Russian matrix from its venom to manufacture homeopathic remedies with antiparasitic activity].

    PubMed

    Streliaeva, A V; Gasparian, E R; Polzikov, V V; Sagieva, A T; Lazareva, N B; Kurilov, D V; Chebyshev, N V; Sadykov, V M; Zuev, S S; Shcheglova, T A

    2012-01-01

    The investigation was undertaken to study the biology and ecology of Latrodectus, the possibilities of its importation to Russia from other countries, to breed Latrodectus in the laboratory setting, and to design the first homeopathic matrix of Latrodectus to manufacture homeopathic remedies. The authors were the first to devise a method for Latrodectus breeding in the laboratory setting of Moscow and its vicinities. The Latrodectus bred in the laboratory is suitable to manufacture drugs and in captivity they do not lose its biological activity. The authors were the first to prepare a homeopathic Latrodectus matrix for homeopathic medicines, by using the new Russian extragent petroleum. Chromatography mass spectrometry was used to identify more than a hundred chemical compounds in the Russian petroleum. The biological activity of the petroleum Latrodectus matrix for the manufacture of homeopathic remedies was highly competitive with that of the traditional Latrodectus venom matrix made using ethyl alcohol. The homeopathic Latrodectus matrix made using glycerol lost its biological activity because of glycerol. The biological activity of homeopathic matrixes made from Latrodectus inhabiting the USA, Uzbekistan, and the south of Russia and from that bred in the laboratory was studied. The homeopathic matrix made from the Latrodectus living in the Samarkand Region, Republic of Uzbekistan, has the highest biological activity.

  6. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders.

    PubMed

    Murakami, Kohei; Maeda, Shingo; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-07-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes.

  7. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  8. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  9. Fault-tolerant processing system

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L. (Inventor)

    1996-01-01

    A fault-tolerant, fiber optic interconnect, or backplane, which serves as a via for data transfer between modules. Fault tolerance algorithms are embedded in the backplane by dividing the backplane into a read bus and a write bus and placing a redundancy management unit (RMU) between the read bus and the write bus so that all data transmitted by the write bus is subjected to the fault tolerance algorithms before the data is passed for distribution to the read bus. The RMU provides both backplane control and fault tolerance.

  10. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.

    PubMed

    Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    2018-03-14

    Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

  11. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders

    PubMed Central

    MURAKAMI, Kohei; MAEDA, Shingo; YONEZAWA, Tomohiro; MATSUKI, Naoaki

    2016-01-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes. PMID:26902805

  12. Flexible amorphous silicon PIN diode x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David

    2013-05-01

    A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.

  13. Unique activation of matrix metalloproteinase-9 within human liver metastasis from colorectal cancer.

    PubMed Central

    Zeng, Z. S.; Guillem, J. G.

    1998-01-01

    Experimental in vitro and animal data support an important role for matrix metalloproteinases (MMPs) in cancer invasion and metastasis via proteolytic degradation of the extracellular matrix (ECM). Our previous data have shown that MMP-9 mRNA is localized to the interface between liver metastasis and normal liver tissue, indicating that MMP-9 may play an important role in liver metastasis formation. In the present study, we analysed the cellular enzymatic expression of MMP-9 in 18 human colorectal cancer (CRC) liver metastasis specimens by enzyme-linked immunosorbent assay (ELISA) and zymography. ELISA analysis reveals that the latent form of MMP-9 is present in both liver metastasis and paired adjacent normal liver tissue. The mean level of the latent form of MMP-9 is 580+/-270 ng per mg total tissue protein (mean+/-s.e.) in liver metastasis vs 220+/-90 in normal liver tissue. However, this difference is not significantly different (P = 0.26). Using gelatin zymography, the 92-kDa band representative of the latent form is present in both liver metastasis and normal liver tissue. However, the 82 kDa band, representative of the active form of MMP-9, was seen only in liver metastasis. This was confirmed by Western blot analysis. Our observation of the unique presence of the active form of MMP-9 within liver metastasis suggests that proMMP-9 activation may be a pivotal event during CRC liver metastasis formation. Images Figure 3 Figure 4 PMID:9703281

  14. Uridine 5′-Triphosphate Promotes In Vitro Schwannoma Cell Migration through Matrix Metalloproteinase-2 Activation

    PubMed Central

    Martiañez, Tania; Segura, Mònica; Figueiro-Silva, Joana; Grijota-Martinez, Carmen; Trullas, Ramón; Casals, Núria

    2014-01-01

    In response to peripheral nerve injury, Schwann cells adopt a migratory phenotype and modify the extracellular matrix to make it permissive for cell migration and axonal re-growth. Uridine 5′-triphosphate (UTP) and other nucleotides are released during nerve injury and activate purinergic receptors expressed on the Schwann cell surface, but little is known about the involvement of purine signalling in wound healing. We studied the effect of UTP on Schwannoma cell migration and wound closure and the intracellular signaling pathways involved. We found that UTP treatment induced Schwannoma cell migration through activation of P2Y2 receptors and through the increase of extracellular matrix metalloproteinase-2 (MMP-2) activation and expression. Knockdown P2Y2 receptor or MMP-2 expression greatly reduced wound closure and MMP-2 activation induced by UTP. MMP-2 activation evoked by injury or UTP was also mediated by phosphorylation of all 3 major mitogen-activated protein kinases (MAPKs): JNK, ERK1/2, and p38. Inhibition of these MAPK pathways decreased both MMP-2 activation and cell migration. Interestingly, MAPK phosphorylation evoked by UTP exhibited a biphasic pattern, with an early transient phosphorylation 5 min after treatment, and a late and sustained phosphorylation that appeared at 6 h and lasted up to 24 h. Inhibition of MMP-2 activity selectively blocked the late, but not the transient, phase of MAPK activation. These results suggest that MMP-2 activation and late MAPK phosphorylation are part of a positive feedback mechanism to maintain the migratory phenotype for wound healing. In conclusion, our findings show that treatment with UTP stimulates in vitro Schwannoma cell migration and wound repair through a MMP-2-dependent mechanism via P2Y2 receptors and MAPK pathway activation. PMID:24905332

  15. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    PubMed

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  16. Atypical protein kinase C activity is required for extracellular matrix degradation and invasion by Src-transformed cells.

    PubMed

    Rodriguez, Elena M; Dunham, Elizabeth E; Martin, G Steven

    2009-10-01

    Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix. Copyright 2009 Wiley-Liss, Inc.

  17. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages.

    PubMed

    Rodríguez-Roque, María Janeth; de Ancos, Begoña; Sánchez-Vega, Rogelio; Sánchez-Moreno, Concepción; Cano, M Pilar; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2016-01-01

    The biological activity of carotenoids depends on their bioaccessibility and solubilization in the gastrointestinal tract. These compounds are poorly dispersed in the aqueous media of the digestive tract due to their lipophilic nature. Thus, it is important to analyze the extent to which some factors, such as the food matrix and food processing, may improve their bioaccessibility. Beverages formulated with a blend of fruit juices and water (WB), milk (MB) or soymilk (SB) were treated by high-intensity pulsed electric fields (HIPEF) (35 kV cm(-1) with 4 μs bipolar pulses at 200 Hz for 1800 μs), high-pressure processing (HPP) (400 MPa at 40 °C for 5 min) or thermal treatment (TT) (90 °C for 1 min) in order to evaluate the influence of food matrix and processing on the bioaccessibility of carotenoids and on the lipophilic antioxidant activity (LAA). The bioaccessibility of these compounds diminished after applying any treatment (HIPEF, HPP and TT), with the exception of cis-violaxanthin + neoxanthin, which increased by 79% in HIPEF and HPP beverages. The lowest carotenoid bioaccessibility was always obtained in TT beverages (losses up to 63%). MB was the best food matrix for improving the bioaccessibility of carotenoids, as well as the LAA. The results demonstrate that treatment and food matrix modulated the bioaccessibility of carotenoids as well as the lipophilic antioxidant potential of beverages. Additionally, HIPEF and HPP could be considered as promising technologies to obtain highly nutritional and functional beverages.

  18. Functional Activity of Matrix Metalloproteinases 2 and 9 in Tears of Patients With Glaucoma.

    PubMed

    Sahay, Prity; Rao, Aparna; Padhy, Debananda; Sarangi, Sarada; Das, Gopinath; Reddy, Mamatha M; Modak, Rahul

    2017-05-01

    To evaluate the differential expression of tear matrix metalloproteinases (MMP) 2 and 9 in of patients with various forms of glaucoma. Tear samples were collected with a Schirmer's strip from 148 eyes of 113 patients (medically naïve patients with primary open-angle [POAG] or angle closure glaucoma [PACG] and those with pseudoexfoliation syndrome [PXF] or glaucoma [PXG]). These were compared to patients undergoing cataract surgery (controls) for this cross-sectional study. Functional activities of tear MMP-9 and MMP-2 were analyzed by gelatin zymography. Tenon's capsules (n = 15) were harvested from the inferior quadrant in those undergoing cataract surgery and protein expression of MMP-9 was analyzed by immunohistochemistry (IHC). Hydrogen peroxide (H2O2) stress-induced effects on in vitro activities of MMP-9 in human trabecular meshwork (HTM) cells were analyzed. The MMP-9 activity in tears was increased significantly in POAG, (n = 27), PACG (n = 24), and PXF (n = 40) eyes compared to controls (n = 35), and was increased significantly in eyes with glaucoma compared to moderate/severe glaucoma (P < 0.001). The MMP-9 expression was significantly lower in PXG (n = 22) eyes. Immunohistochemistry of Tenon's capsule revealed increased expression of MMP-9 in primary glaucoma eyes. Increased MMP-9 activity was seen in in vitro by gelatin zymography and was confirmed by Western and immunofluorescent assay on HTM upon 800 and 1000 μM H2O2-induced stress for 2 to 3 hours with approximately 80% cell death. Increased tear MMP-9 activity in early glaucoma and pseudoexfoliation syndrome suggesting activation of extracellular matrix (ECM) degradation can be used as a tear-based predictive biomarker. Decreased expression in advanced stages suggests exhaustion of the degradation response.

  19. Matrix Metalloproteinases in Non-Neoplastic Disorders

    PubMed Central

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  20. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia.

    PubMed

    Moshal, Karni S; Tipparaju, Srinivas M; Vacek, Thomas P; Kumar, Munish; Singh, Mahavir; Frank, Iluiana E; Patibandla, Phani K; Tyagi, Neetu; Rai, Jayesh; Metreveli, Naira; Rodriguez, Walter E; Tseng, Michael T; Tyagi, Suresh C

    2008-08-01

    Cardiomyocyte N-methyl-d-aspartate receptor-1 (NMDA-R1) activation induces mitochondrial dysfunction. Matrix metalloproteinase protease (MMP) induction is a negative regulator of mitochondrial function. Elevated levels of homocysteine [hyperhomocysteinemia (HHCY)] activate latent MMPs and causes myocardial contractile abnormalities. HHCY is associated with mitochondrial dysfunction. We tested the hypothesis that HHCY activates myocyte mitochondrial MMP (mtMMP), induces mitochondrial permeability transition (MPT), and causes contractile dysfunction by agonizing NMDA-R1. The C57BL/6J mice were administered homocystinemia (1.8 g/l) in drinking water to induce HHCY. NMDA-R1 expression was detected by Western blot and confocal microscopy. Localization of MMP-9 in the mitochondria was determined using confocal microscopy. Ultrastructural analysis of the isolated myocyte was determined by electron microscopy. Mitochondrial permeability was measured by a decrease in light absorbance at 540 nm using the spectrophotometer. The effect of MK-801 (NMDA-R1 inhibitor), GM-6001 (MMP inhibitor), and cyclosporine A (MPT inhibitor) on myocyte contractility and calcium transients was evaluated using the IonOptix video edge track detection system and fura 2-AM. Our results demonstrate that HHCY activated the mtMMP-9 and caused MPT by agonizing NMDA-R1. A significant decrease in percent cell shortening, maximal rate of contraction (-dL/dt), and maximal rate of relaxation (+dL/dt) was observed in HHCY. The decay of calcium transient amplitude was faster in the wild type compared with HHCY. Furthermore, the HHCY-induced decrease in percent cell shortening, -dL/dt, and +dL/dt was attenuated in the mice treated with MK-801, GM-6001, and cyclosporin A. We conclude that HHCY activates mtMMP-9 and induces MPT, leading to myocyte mechanical dysfunction by agonizing NMDA-R1.

  1. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    PubMed Central

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  2. Molecular Imaging of Activated Matrix Metalloproteinases in Vascular Remodeling

    PubMed Central

    Zhang, Jiasheng; Nie, Lei; Razavian, Mahmoud; Ahmed, Masood; Dobrucki, Lawrence W.; Asadi, Abolfazl; Edwards, D. Scott; Azure, Michael; Sinusas, Albert J.; Sadeghi, Mehran M.

    2008-01-01

    Background Matrix metalloproteinase (MMP) activation plays a key role in vascular remodeling. RP782 is a novel 111In –labeled tracer with specificity for activated MMPs. We hypothesized that RP782 can detect injury-induced vascular remodeling in vivo. Methods and Results Left common carotid artery injury was induced using a guide wire in apolipoprotein E-/- mice. Sham surgery was performed on the contralateral artery, which served as control for imaging experiments. Carotid wire injury led to significant hyperplasia and expansive remodeling over a period of 4 weeks. MMP activity detected by in-situ zymography, increased in response to injury and was maximal by 3-4 weeks after injury. RP782 (11.1 MBq) was injected intravenously to apolipoprotein E-/- mice at 1, 2, 3, and 4 weeks after left carotid injury. MicroSPECT imaging was performed at 2 hours and was followed by CT angiography to localize the carotid arteries. In vivo images revealed focal uptake of RP782 in the injured carotid artery at 2, 3 and 4 weeks. Increased tracer uptake in the injured artery was confirmed by quantitative autoradiography. Pretreatment with 50-fold excess non-labeled tracer significantly reduced RP782 uptake in injured carotids, demonstrating uptake specificity. Weekly changes in the vessel wall area closely paralleled and correlated with RP782 uptake (Spearman r=0.95, p=0.001). Conclusions Injury-induced MMP activation in the vessel wall can be detected by RP782 microSPECT/CT imaging in vivo. RP782 uptake tracks the hyperplastic process in vascular remodeling, and provides an opportunity to track the remodeling process in vivo. PMID:18936327

  3. Taiwanese native plants inhibit matrix metalloproteinase-9 activity after ultraviolet B irradiation.

    PubMed

    Lee, Yueh-Lun; Lee, Mei-Hsien; Chang, Hsiu-Ju; Huang, Po-Yuan; Huang, I-Jen; Cheng, Kur-Ta; Leu, Sy-Jye

    2009-03-06

    Medicinal plants have long been used as a source of therapeutic agents. They are thought to be important anti-aging ingredients in prophylactic medicines. The aim of this study was to screen extracts from Taiwanese plant materials for phenolic contents and measure the corresponding matrix metalloproteinase-9 (MMP-9) activity. We extracted biological ingredients from eight plants native to Taiwan (Alnus formosana, Diospyros discolor, Eriobotrya deflex, Machilus japonica, Pyrrosia polydactylis, Pyrus taiwanensis, Vitis adstricta, Vitis thunbergii). Total phenolic content was measured using the Folin-Ciocalteu method. MMP-9 activities were measured by gelatin zymography. The extracted yields of plants ranged from 3.7 % to 16.9 %. The total phenolic contents ranged from 25.4 to 36.8 mg GAE/g dry material. All of these extracts (except Vitis adstricta Hance) were shown to inhibit MMP-9 activity of WS-1 cell after ultraviolet B irradiation. These findings suggest that total phenolic content may influence MMP-9 activity and that some of the plants with higher phenolic content exhibited various biological activities that could serve as potent inhibitors of the ageing process in the skin. This property might be useful in the production of cosmetics.

  4. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    PubMed

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling.

    PubMed

    Li, Y Y; McTiernan, C F; Feldman, A M

    2000-05-01

    Myocardial fibrosis due to maladaptive extracellular matrix remodeling contributes to dysfunction of the failing heart. Further elucidation of the mechanism by which myocardial fibrosis and dilatation can be prevented or even reversed remains of great interest as a potential means to limit myocardial remodeling and dysfunction. Matrix metalloproteinases (MMPs) are the driving force behind extracellular matrix degradation during remodeling and are increased in the failing human heart. MMPs are regulated by a variety of growth factors, cytokines, and matrix fragments such as matrikines. In the present report, we discuss the regulation of MMPs, the role of MMPs in the development of cardiac fibrosis, and the modulation of MMP activity using gene transfer and knockout technologies. We also present recent findings from our laboratory on the regulation of the extracellular MMP inducer (EMMPRIN), MMPs, and transforming growth factor-beta(1) in the failing human heart before and after left ventricular assist device support, as well as the possibility of preventing ventricular fibrosis using different anti-MMP strategies. Several studies suggest that such modulation of MMP activity can alter ventricular remodeling, myocardial dysfunction, and the progression of heart failure. It is therefore suggested that the interplay of MMPs and their regulators is important in the development of the heart failure phenotype, and myocardial fibrosis in heart failure may be modified by modulating MMP activity.

  6. Active Matrix OLED Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  7. Improved power transfer to wearable systems through stretchable magnetic composites

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Bedair, S. S.

    2016-05-01

    The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.

  8. Ultrasound-responsive gene-activated matrices for osteogenic gene therapy using matrix-assisted sonoporation.

    PubMed

    Nomikou, N; Feichtinger, G A; Saha, S; Nuernberger, S; Heimel, P; Redl, H; McHale, A P

    2018-01-01

    Gene-activated matrix (GAM)-based therapeutics for tissue regeneration are limited by efficacy, the lack of spatiotemporal control and availability of target cells, all of which impact negatively on their translation to the clinic. Here, an advanced ultrasound-responsive GAM is described containing target cells that facilitates matrix-assisted sonoporation (MAS) to induce osteogenic differentiation. Ultrasound-responsive GAMs consisting of fibrin/collagen hybrid-matrices containing microbubbles, bone morphogenetic protein BMP2/7 coexpression plasmids together with C2C12 cells were treated with ultrasound either in vitro or following parenteral intramuscular implantation in vivo. Using direct measurement for alkaline phosphatase activity, von Kossa staining and immunohistochemical analysis for osteocalcin expression, MAS-stimulated osteogenic differentiation was confirmed in the GAMs in vitro 7 days after treatment with ultrasound. At day 30 post-treatment with ultrasound, ectopic osteogenic differentiation was confirmed in vivo using X-ray microcomputed tomography and histological analysis. Osteogenic differentiation was indicated by the presence of ectopic bone structures in all animals treated with MAS. In addition, bone volumes in this group were statistically greater than those in the control groups. This novel approach of incorporating a MAS capability into GAMs could be exploited to facilitate ex vivo gene transfer with subsequent surgical implantation or alternatively provide a minimally invasive means of stimulating in situ transgene delivery for osteoinductive gene-based therapies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Simulation of sparse matrix array designs

    NASA Astrophysics Data System (ADS)

    Boehm, Rainer; Heckel, Thomas

    2018-04-01

    Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.

  10. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity.

    PubMed

    Grass, G Daniel; Toole, Bryan P

    2015-11-24

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. © 2016 Authors.

  11. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity

    PubMed Central

    Grass, G. Daniel; Toole, Bryan P.

    2015-01-01

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. PMID:26604323

  12. Matrix Metalloproteinase 9 Displays a Particular Time Response to Acute Stress: Variation in Its Levels and Activity Distribution in Rat Hippocampus.

    PubMed

    Aguayo, Felipe I; Pacheco, Aníbal A; García-Rojo, Gonzalo J; Pizarro-Bauerle, Javier A; Doberti, Ana V; Tejos, Macarena; García-Pérez, María A; Rojas, Paulina S; Fiedler, Jenny L

    2018-05-16

    A single stress exposure facilitates memory formation through neuroplastic processes that reshape excitatory synapses in the hippocampus, probably requiring changes in extracellular matrix components. We tested the hypothesis that matrix metalloproteinase 9 (MMP-9), an enzyme that degrades components of extracellular matrix and synaptic proteins such as β-dystroglycan (β-DG 43 ), changes their activity and distribution in rat hippocampus during the acute stress response. After 2.5 h of restraint stress, we found (i) increased MMP-9 levels and potential activity in whole hippocampal extracts, accompanied by β-DG 43 cleavage, and (ii) a significant enhancement of MMP-9 immunoreactivity in dendritic fields such as stratum radiatum and the molecular layer of hippocampus. After 24 h of stress, we found that (i) MMP-9 net activity rises at somatic field, i.e., stratum pyramidale and granule cell layers, and also at synaptic field, mainly stratum radiatum and the molecular layer of hippocampus, and (ii) hippocampal synaptoneurosome fractions are enriched with MMP-9, without variation of its potential enzymatic activity, in accordance with the constant level of cleaved β-DG 43 . These findings indicate that stress triggers a peculiar timing response in the MMP-9 levels, net activity, and subcellular distribution in the hippocampus, suggesting its involvement in the processing of substrates during the stress response.

  13. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  14. Matrix tablets for sustained release of repaglinide: Preparation, pharmacokinetics and hypoglycemic activity in beagle dogs.

    PubMed

    He, Wei; Wu, Mengmeng; Huang, Shiqing; Yin, Lifang

    2015-01-15

    Repaglinide (RG) is an efficient antihyperglycemic drug; however, due to its short half-life, patients are required to take the marketed products several times a day, which compromises the therapeutic effects. The present study was conducted to develop a hydrophilic sustained release matrix tablet for RG with the aims of prolonging its action time, reducing the required administration times and side effects and improving patient adherence. The matrix tablets were fabricated by a direct compression method, the optimized formulation for which was obtained by screening the factors that affected the drug release. Moreover, studies of the pharmacokinetics and hypoglycemic activity as measured by glucose assay kits were performed in dogs. Sustained drug releases profiles over 10h and a reduced influence of medium pHs on release were achieved with the optimized formulation; moreover, the in vivo performance of extended release formulation was also examined, and better absorption, a one-fold decrease in Cmax, a two-fold increase of Tmax and a prolonged hypoglycemic effect compared to the marketed product were observed. In conclusion, sustained RG release and prolonged action were observed with present matrix tablets, which therefore provide a promising formulation for T2D patients who require long-term treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Plasma Membrane Factor XIIIA Transglutaminase Activity Regulates Osteoblast Matrix Secretion and Deposition by Affecting Microtubule Dynamics

    PubMed Central

    Al-Jallad, Hadil F.; Myneni, Vamsee D.; Piercy-Kotb, Sarah A.; Chabot, Nicolas; Mulani, Amina; Keillor, Jeffrey W.; Kaartinen, Mari T.

    2011-01-01

    Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to ‘block –and-track’ enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics. PMID:21283799

  16. Matrix completion by deep matrix factorization.

    PubMed

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nuclear localization of matrix metalloproteinases.

    PubMed

    Mannello, Ferdinando; Medda, Virginia

    2012-03-01

    Matrix metalloproteinases (MMPs) were originally identified as matrixin proteases that act in the extracellular matrix. Recent works have uncovered nontraditional roles for MMPs in the extracellular space as well as in the cytosol and nucleus. There is strong evidence that subspecialized and compartmentalized matrixins participate in many physiological and pathological cellular processes, in which they can act as both degradative and regulatory proteases. In this review, we discuss the transcriptional and translational control of matrixin expression, their regulation of intracellular sorting, and the structural basis of activation and inhibition. In particular, we highlight the emerging roles of various matrixin forms in diseases. The activity of matrix metalloproteinases is regulated at several levels, including enzyme activation, inhibition, complex formation and compartmentalization. Most MMPs are secreted and have their function in the extracellular environment. MMPs are also found inside cells, both in the nucleus, cytosol and organelles. The role of intracellular located MMPs is still poorly understood, although recent studies have unraveled some of their functions. The localization, activation and activity of MMPs are regulated by their interactions with other proteins, proteoglycan core proteins and / or their glycosaminoglycan chains, as well as other molecules. Complexes formed between MMPs and various molecules may also include interactions with noncatalytic sites. Such exosites are regions involved in substrate processing, localized outside the active site, and are potential binding sites of specific MMP inhibitors. Knowledge about regulation of MMP activity is essential for understanding various physiological processes and pathogenesis of diseases, as well as for the development of new MMP targeting drugs. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Interference by the activated sludge matrix on the analysis of soluble microbial products in wastewater.

    PubMed

    Potvin, Christopher M; Zhou, Hongde

    2011-11-01

    The objective of this study was to demonstrate the effects of complex matrix effects caused by chemical materials on the analysis of key soluble microbial products (SMP) including proteins, humics, carbohydrates, and polysaccharides in activated sludge samples. Emphasis was placed on comparison of the commonly used standard curve technique with standard addition (SA), a technique that differs in that the analytical responses are measured for sample solutions spiked with known quantities of analytes. The results showed that using SA provided a great improvement in compensating for SMP recovery and thus improving measurement accuracy by correcting for matrix effects. Analyte recovery was found to be highly dependent on sample dilution, and changed due to extraction techniques, storage conditions and sample composition. Storage of sample extracts by freezing changed SMP concentrations dramatically, as did storage at 4°C for as little as 1d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, James F

    2008-06-01

    Today there exists only one FDA-approved treatment for ischemic stroke; i.e., the serine protease tissue-type plasminogen activator (tPA). In the aftermath of the failed stroke clinical trials with the nitrone spin trap/radical scavenger, NXY-059, a number of articles raised the question: are we doing the right thing? Is the animal research truly translational in identifying new agents for stroke treatment? This review summarizes the current state of affairs with plasminogen activators in thrombolytic therapy. In addition to therapeutic value, potential side effects of tPA also exist that aggravate stroke injury and offset the benefits provided by reperfusion of the occluded artery. Thus, combinational options (ultrasound alone or with microspheres/nanobubbles, mechanical dissociation of clot, activated protein C (APC), plasminogen activator inhibitor-1 (PAI-1), neuroserpin and CDP-choline) that could offset tPA toxic side effects and improve efficacy are also discussed here. Desmoteplase, a plasminogen activator derived from the saliva of Desmodus rotundus vampire bat, antagonizes vascular tPA-induced neurotoxicity by competitively binding to low-density lipoprotein related-receptors (LPR) at the blood-brain barrier (BBB) interface, minimizing the tPA uptake into brain parenchyma. tPA can also activate matrix metalloproteinases (MMPs), a family of endopeptidases comprised of 24 mammalian enzymes that primarily catalyze the turnover and degradation of the extracellular matrix (ECM). MMPs have been implicated in BBB breakdown and neuronal injury in the early times after stroke, but also contribute to vascular remodeling, angiogenesis, neurogenesis and axonal regeneration during the later repair phase after stroke. tPA, directly or by activation of MMP-9, could have beneficial effects on recovery after stroke by promoting neurovascular repair through vascular endothelial growth factor (VEGF). However, any treatment regimen directed at MMPs must consider their

  20. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    PubMed

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  1. Analytical Model of Water Flow in Coal with Active Matrix

    NASA Astrophysics Data System (ADS)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  2. Matrix and Tensor Completion on a Human Activity Recognition Framework.

    PubMed

    Savvaki, Sofia; Tsagkatakis, Grigorios; Panousopoulou, Athanasia; Tsakalides, Panagiotis

    2017-11-01

    Sensor-based activity recognition is encountered in innumerable applications of the arena of pervasive healthcare and plays a crucial role in biomedical research. Nonetheless, the frequent situation of unobserved measurements impairs the ability of machine learning algorithms to efficiently extract context from raw streams of data. In this paper, we study the problem of accurate estimation of missing multimodal inertial data and we propose a classification framework that considers the reconstruction of subsampled data during the test phase. We introduce the concept of forming the available data streams into low-rank two-dimensional (2-D) and 3-D Hankel structures, and we exploit data redundancies using sophisticated imputation techniques, namely matrix and tensor completion. Moreover, we examine the impact of reconstruction on the classification performance by experimenting with several state-of-the-art classifiers. The system is evaluated with respect to different data structuring scenarios, the volume of data available for reconstruction, and various levels of missing values per device. Finally, the tradeoff between subsampling accuracy and energy conservation in wearable platforms is examined. Our analysis relies on two public datasets containing inertial data, which extend to numerous activities, multiple sensing parameters, and body locations. The results highlight that robust classification accuracy can be achieved through recovery, even for extremely subsampled data streams.

  3. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.

    PubMed

    Lee, Yi-Hsuan; Wu, Hsi-Chin; Yeh, Chia-Wei; Kuan, Chen-Hsiang; Liao, Han-Tsung; Hsu, Horng-Chaung; Tsai, Jui-Che; Sun, Jui-Sheng; Wang, Tzu-Wei

    2017-11-01

    The development of osteochondral tissue engineering is an important issue for the treatment of traumatic injury or aging associated joint disease. However, the different compositions and mechanical properties of cartilage and subchondral bone show the complexity of this tissue interface, making it challenging for the design and fabrication of osteochondral graft substitute. In this study, a bilayer scaffold is developed to promote the regeneration of osteochondral tissue within a single integrated construct. It has the capacity to serve as a gene delivery platform to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. For the subchondral bone layer, the bone matrix with organic (type I collagen, Col) and inorganic (hydroxyapatite, Hap) composite scaffold has been developed through mineralization of hydroxyapatite nanocrystals oriented growth on collagen fibrils. We also prepare multi-shell nanoparticles in different layers with a calcium phosphate core and DNA/calcium phosphate shells conjugated with polyethyleneimine to act as non-viral vectors for delivery of plasmid DNA encoding BMP2 and TGF-β3, respectively. Microbial transglutaminase is used as a cross-linking agent to crosslink the bilayer scaffold. The ability of this scaffold to act as a gene-activated matrix is demonstrated with successful transfection efficiency. The results show that the sustained release of plasmids from gene-activated matrix can promote prolonged transgene expression and stimulate hMSCs differentiation into osteogenic and chondrogenic lineages by spatial and temporal control within the bilayer composite scaffold. This improved delivery method may enhance the functionalized composite graft to accelerate healing process for osteochondral tissue regeneration. In this study, a gene-activated matrix (GAM) to promote the growth of both cartilage and subchondral bone within a single integrated construct is developed. It has the

  4. PKA-induced receptor activator of NF-kappaB ligand (RANKL) expression in vascular cells mediates osteoclastogenesis but not matrix calcification.

    PubMed

    Tseng, Wendy; Graham, Lucia S; Geng, Yifan; Reddy, Aneela; Lu, Jinxiu; Effros, Rita B; Demer, Linda; Tintut, Yin

    2010-09-24

    Vascular calcification is a predictor of cardiovascular mortality and is prevalent in patients with atherosclerosis and chronic renal disease. It resembles skeletal osteogenesis, and many bone cells as well as bone-related factors involved in both formation and resorption have been localized in calcified arteries. Previously, we showed that aortic medial cells undergo osteoblastic differentiation and matrix calcification both spontaneously and in response to PKA agonists. The PKA signaling pathway is also involved in regulating bone resorption in skeletal tissue by stimulating osteoblast-production of osteoclast regulating cytokines, including receptor-activator of nuclear κB ligand (RANKL) and interleukins. Therefore, we investigated whether PKA activators regulate osteoclastogenesis in aortic smooth muscle cells (SMC). Treatment of murine SMC with the PKA agonist forskolin stimulated RANKL expression at both mRNA and protein levels. Forskolin also stimulated expression of interleukin-6 but not osteoprotegerin (OPG), an inhibitor of RANKL. Consistent with these results, osteoclastic differentiation was induced when monocytic preosteoclasts (RAW264.7) were cocultured with forskolin-treated aortic SMC. Oxidized phospholipids also slightly induced RANKL expression in T lymphocytes, another potential source of RANKL in the vasculature. Because previous studies have shown that RANKL treatment alone induces matrix calcification of valvular and vascular cells, we next examined whether RANKL mediates forskolin-induced matrix calcification by aortic SMC. RANKL inhibition with OPG had little or no effect on osteoblastic differentiation and matrix calcification of aortic SMC. These findings suggest that, as in skeletal tissues, PKA activation induces bone resorptive factors in the vasculature and that aortic SMC calcification specifically induced by PKA, is not mediated by RANKL.

  5. Chromium liquid waste inertization in an inorganic alkali activated matrix: leaching and NMR multinuclear approach.

    PubMed

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-04-09

    A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days

  6. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma.

    PubMed

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma.

  7. Institutional and matrix support and its relationship with primary healthcare

    PubMed Central

    dos Santos, Alaneir de Fátima; Machado, Antônio Thomaz Gonzaga da Matta; dos Reis, Clarice Magalhães Rodrigues; Abreu, Daisy Maria Xavier; de Araújo, Lucas Henrique Lobato; Rodrigues, Simone Cristina; de Lima, Ângela Maria de Lourdes Dayrell; Jorge, Alzira de Oliveira; Fonseca, Délcio

    2015-01-01

    OBJECTIVE To analyze whether the level of institutional and matrix support is associated with better certification of primary healthcare teams. METHODS In this cross-sectional study, we evaluated two kinds of primary healthcare support – 14,489 teams received institutional support and 14,306 teams received matrix support. Logistic regression models were applied. In the institutional support model, the independent variable was “level of support” (as calculated by the sum of supporting activities for both modalities). In the matrix support model, in turn, the independent variables were the supporting activities. The multivariate analysis has considered variables with p < 0.20. The model was adjusted by the Hosmer-Lemeshow test. RESULTS The teams had institutional and matrix supporting activities (84.0% and 85.0%), respectively, with 55.0% of them performing between six and eight activities. For the institutional support, we have observed 1.96 and 3.77 chances for teams who had medium and high levels of support to have very good or good certification, respectively. For the matrix support, the chances of their having very good or good certification were 1.79 and 3.29, respectively. Regarding to the association between institutional support activities and the certification, the very good or good certification was positively associated with self-assessment (OR = 1.95), permanent education (OR = 1.43), shared evaluation (OR = 1.40), and supervision and evaluation of indicators (OR = 1.37). In regards to the matrix support, the very good or good certification was positively associated with permanent education (OR = 1.50), interventions in the territory (OR = 1.30), and discussion in the work processes (OR = 1.23). CONCLUSIONS In Brazil, supporting activities are being incorporated in primary healthcare, and there is an association between the level of support, both matrix and institutional, and the certification result. PMID:26274872

  8. Histone Deacetylase 3 Suppresses Erk Phosphorylation and Matrix Metalloproteinase (Mmp)-13 Activity in Chondrocytes

    PubMed Central

    Carpio, Lomeli R.; Bradley, Elizabeth W.; Westendorf, Jennifer J.

    2017-01-01

    Histone deacetylase inhibitors are emerging therapies for many diseases including cancers and neurological disorders; however, these drugs are teratogens to the developing skeleton. Hdac3 is essential for proper endochondral ossification as its deletion in chondrocytes increases cytokine signaling and the expression of matrix remodeling enzymes. Here we explored the mechanism by which Hdac3 controls Mmp13 expression in chondrocytes. In Hdac3-depleted chondrocytes, Erk1/2 as well as its downstream substrate, Runx2, were hyperphosphorylated as a result of decreased expression and activity of the Erk1/2 specific phosphatase, Dusp6. Erk1/2 kinase inhibitors and Dusp6 adenoviruses reduced Mmp13 expression and partially rescued matrix production in Hdac3-deficient chondrocytes. Postnatal chondrocyte-specific deletion of Hdac3 with an inducible Col2a1-Cre caused premature production of pErk1/2 and Mmp13 in the growth plate. Thus, Hdac3 controls the temporal and spatial expression of tissue-remodeling genes in chondrocytes to ensure proper endochondral ossification during development. PMID:27662443

  9. A marketing matrix for health care organizations.

    PubMed

    Weaver, F J; Gombeski, W R; Fay, G W; Eversman, J J; Cowan-Gascoigne, C

    1986-06-01

    Irrespective of the formal marketing structure successful marketing for health care organizations requires the input on many people. Detailed here is the Marketing Matrix used at the Cleveland Clinic Foundation in Cleveland, Ohio. This Matrix is both a philosophy and a tool for clarifying and focusing the organization's marketing activities.

  10. Microstructure and Mechanical Behaviors of Titanium Matrix Composites Containing In Situ Whiskers Synthesized via Plasma Activated Sintering.

    PubMed

    Sun, Yi; Zhang, Jian; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2018-04-02

    In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants for in situ reactions, respectively. The influence of the sintering process and the crystallography type of boron on the microstructure and mechanical properties of composites were studied and compared. The densities were evaluated using Archimedes' principle. The microstructure and mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine, and a Vickers hardness tester. The prepared composite material showed a high density and excellent comprehensive performance under the PAS condition of 20 MPa at 1000 °C for 3 min. Amorphous boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline boron combining well with the titanium matrix at 1100 °C. The composite samples with a relative density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa, and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous boron was increased by 7.64% and 15.50%, respectively.

  11. Microstructure and Mechanical Behaviors of Titanium Matrix Composites Containing In Situ Whiskers Synthesized via Plasma Activated Sintering

    PubMed Central

    Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2018-01-01

    In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants for in situ reactions, respectively. The influence of the sintering process and the crystallography type of boron on the microstructure and mechanical properties of composites were studied and compared. The densities were evaluated using Archimedes’ principle. The microstructure and mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine, and a Vickers hardness tester. The prepared composite material showed a high density and excellent comprehensive performance under the PAS condition of 20 MPa at 1000 °C for 3 min. Amorphous boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline boron combining well with the titanium matrix at 1100 °C. The composite samples with a relative density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa, and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous boron was increased by 7.64% and 15.50%, respectively. PMID:29614842

  12. Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. I. A New Adaptive Interaction Matrix Algorithm

    NASA Astrophysics Data System (ADS)

    Mazoyer, J.; Pueyo, L.; N'Diaye, M.; Fogarty, K.; Zimmerman, N.; Leboulleux, L.; St. Laurent, K. E.; Soummer, R.; Shaklan, S.; Norman, C.

    2018-01-01

    Future searches for bio-markers on habitable exoplanets will rely on telescope instruments that achieve extremely high contrast at small planet-to-star angular separations. Coronagraphy is a promising starlight suppression technique, providing excellent contrast and throughput for off-axis sources on clear apertures. However, the complexity of space- and ground-based telescope apertures goes on increasing over time, owing to the combination of primary mirror segmentation, the secondary mirror, and its support structures. These discontinuities in the telescope aperture limit the coronagraph performance. In this paper, we present ACAD-OSM, a novel active method to correct for the diffractive effects of aperture discontinuities in the final image plane of a coronagraph. Active methods use one or several deformable mirrors that are controlled with an interaction matrix to correct for the aberrations in the pupil. However, they are often limited by the amount of aberrations introduced by aperture discontinuities. This algorithm relies on the recalibration of the interaction matrix during the correction process to overcome this limitation. We first describe the ACAD-OSM technique and compare it to the previous active methods for the correction of aperture discontinuities. We then show its performance in terms of contrast and off-axis throughput for static aperture discontinuities (segmentation, struts) and for some aberrations evolving over the life of the instrument (residual phase aberrations, artifacts in the aperture, misalignments in the coronagraph design). This technique can now obtain the Earth-like planet detection threshold of {10}10 contrast on any given aperture over at least a 10% spectral bandwidth, with several coronagraph designs.

  13. Effects of autophagy and endocytosis on the activity of matrix metalloproteinase‑2 in human renal proximal tubular cells under hypoxia.

    PubMed

    Yu, Wenmin; Wang, Zhi; Li, Yiping; Liu, Lei; Liu, Jing; Ding, Fenggan; Zhang, Xiaoyi; Cheng, Zhengyuan; Chen, Pingsheng

    2017-05-01

    Tubulointerstitial fibrosis is characterized by tubular atrophy with basement membrane thickening and accumulation of interstitial extracellular matrix (ECM). A decrease in the activity of matrix metalloproteinase‑2 (MMP‑2) may promote this process. Although proximal tubular cells are sensitive to oxygen deprivation, whether cellular autophagy or endocytosis induced by hypoxia can alter the activity of MMP‑2 remains to be elucidated. The aim of the present study was to investigate whether autophagy and endocytosis induced by hypoxia can have an effect on the activity of MMP‑2 in HK‑2 cells. The investigations involved exposing the HK‑2 cell line to an autophagy inhibitor, 3‑MA, or an endocytotic inhibitor, filipin. The mRNA expression of MMP‑2 was elevated in the hypoxic milieu. Furthermore, it was found that filipin increased the activity of MMP‑2 under hypoxia. These results suggested that autophagy and endocytosis were potential mediators for the altered expression of MMP‑2, and endocytosis was a potential target for regulating the activity of MMP‑2. These data suggested that hypoxia may be an important pro‑fibrogenic stimulus, which acts in part via endocytosis.

  14. Molecular Imaging of Matrix Metalloproteinase Activation to Predict Murine Aneurysm Expansion in vivo

    PubMed Central

    Razavian, Mahmoud; Zhang, Jiasheng; Nie, Lei; Tavakoli, Sina; Razavian, Niema; Dobrucki, Lawrence W.; Sinusas, Albert J.; Edwards, D. Scott; Azure, Michael; Sadeghi, Mehran M.

    2010-01-01

    Rupture and dissection are major causes of morbidity and mortality in arterial aneurysm and occur more frequently in rapidly expanding aneurysms. Current imaging modalities provide little information on aneurysm beyond size. MMP activation plays a key role in the pathogenesis of aneurysm. We investigated whether imaging matrix metalloproteinase (MMP) activation in aneurysm helps predict its propensity to expansion. Methods and Results Using a model of carotid aneurysm in apolipoprotein E−/− mice we demonstrate that several MMPs are expressed with distinct temporal patterns in aneurysm. Radiotracers with specificity for activated MMPs were used to detect and quantify MMP activation by microSPECT/CT imaging in vivo. Significant focal uptake was observed in aneurysmal carotid arteries, peaking at 4 weeks after aneurysm induction. Tracer uptake was confirmed by autoradiography and gamma-well counting, and specificity was demonstrated using excess unlabeled precursor and a specific MMP inhibitor. In a group of animals imaged serially at 2 and 4 weeks after aneurysm induction, MMP tracer uptake at 2 weeks correlated well with the vessel area assessed by histology at 4 weeks. Conclusions Molecular imaging of MMP activation is a useful experimental, and potentially clinical, tool to non-invasively predict an aneurysm’s propensity to expansion in vivo. PMID:20554725

  15. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma

    PubMed Central

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  16. Physical activity of children: a global matrix of grades comparing 15 countries.

    PubMed

    Tremblay, Mark S; Gray, Casey E; Akinroye, Kingsley; Harrington, Dierdre M; Katzmarzyk, Peter T; Lambert, Estelle V; Liukkonen, Jarmo; Maddison, Ralph; Ocansey, Reginald T; Onywera, Vincent O; Prista, Antonio; Reilly, John J; Rodríguez Martínez, María Pilar; Sarmiento Duenas, Olga L; Standage, Martyn; Tomkinson, Grant

    2014-05-01

    The Active Healthy Kids Canada (AHKC) Report Card on Physical Activity for Children and Youth has been effective in powering the movement to get kids moving by influencing priorities, policies, and practice in Canada. The AHKC Report Card process was replicated in 14 additional countries from 5 continents using 9 common indicators (Overall Physical Activity, Organized Sport Participation, Active Play, Active Transportation, Sedentary Behavior, Family and Peers, School, Community and Built Environment, and Government Strategies and Investments), a harmonized process and a standardized grading framework. The 15 Report Cards were presented at the Global Summit on the Physical Activity of Children in Toronto on May 20, 2014. The consolidated findings are summarized here in the form of a global matrix of grades. There is a large spread in grades across countries for most indicators. Countries that lead in certain indicators lag in others. Overall, the grades for indicators of physical activity (PA) around the world are low/poor. Many countries have insufficient information to assign a grade, particularly for the Active Play and Family and Peers indicators. Grades for Sedentary Behaviors are, in general, better in low income countries. The Community and Built Environment indicator received high grades in high income countries and notably lower grades in low income countries. There was a pattern of higher PA and lower sedentary behavior in countries reporting poorer infrastructure, and lower PA and higher sedentary behavior in countries reporting better infrastructure, which presents an interesting paradox. Many surveillance and research gaps and weaknesses were apparent. International cooperation and cross-fertilization is encouraged to tackle existing challenges, understand underlying mechanisms, derive innovative solutions, and overcome the expanding childhood inactivity crisis.

  17. Antimicrobial and antioxidant activities of Cichorium intybus root extract using orthogonal matrix design.

    PubMed

    Liu, Haitao; Wang, Quanzhen; Liu, Yuyan; Chen, Guo; Cui, Jian

    2013-02-01

    Solvent, impregnation time, sonication repetitions, and ultrasonic power were important factors in the process of ultrasound-assisted extraction from chicory (Cichorium intybus) root, while there were no studies about optimizing these 4 factors for extract yield, total phenolic content (TPC), antioxidant, antibacterial, and antifungal activity of the extracts using orthogonal matrix design. The present research demonstrated that the solvent composition played a significant role in the improving extract yield, TPC, antioxidant, and antibacterial activities. The other 3 factors had inequable effect on different purposes, ultrasonic power could improve TPC and antioxidant activity, but long time of extraction lowered antioxidant activity. The TPC increased from 22.34 to 27.87 mg GAE (gallic acid equivalents)/100 g (dry extracts) with increasing solvent polarity. The half inhibition concentration (IC(50,) μg/mL) of the radical scavenging activity of the chicory extracts ranged from 281.00 to 983.33 μg/mL. The content of caffeoylquinic acids of root extract, which was extracted by the optimal combination was 0.104%. Several extracts displayed antibacterial activities against Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, Bacillus subtilis, and Salmonella typhi, while Penicillium sp. and Aspergillus sp. resisted against all the extracts. Combination of 70% ethanol v/v, 24-h impregnation time, 3 sonication rounds, and 300-W ultrasonic input power was found to be the optimal combination for the chicory extract yield, TPC, antioxidant activity, and antibacterial activity. © 2012 Institute of Food Technologists®

  18. The extracellular matrix in myocardial injury, repair, and remodeling

    PubMed Central

    2017-01-01

    The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration. PMID:28459429

  19. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    DOEpatents

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  20. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED)

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng

    2014-01-01

    A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving

  1. Advanced polymeric matrix for valvular complications.

    PubMed

    Acharya, Gayathri; Hopkins, Richard A; Lee, Chi H

    2012-05-01

    Poly(L-lactic acid) (PLLA) matrix systems incorporated with poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing nitric oxide (NO) donors (DETA NONOate) were developed for prevention of heart valve complications through sustained and controlled release of NO. PLLA matrices were prepared using the salt leaching method and the properties and drug release profiles were characterized. For assessment of the effects of PLLA systems on the pharmacological responses and cytotoxicity, various factors, such as calcium content, alkaline phosphatase (ALP) activity, cyclic guanosine monophosphate (cGMP) expression, intercellular adhesion molecule (ICAM-1) expression and cell viability of porcine aortic valve interstitial cells (PAVICs), were evaluated. PLLA matrices embedded with PLGA- NPs demonstrated its usefulness in alleviating the calcification rate of the VICs. The cGMP levels under osteoblastic conditions significantly increased, supporting that anticalcification activity of NO is mediated through NO-cGMP signaling pathway. The level of ICAM-1 expression in cells exposed to NO was lowered, suggesting that NO has an inhibitory activity against tissue inflammation. NO releases from PLLA matrix embedded with PLGA NPs prevented valvular calcification and inflammation without causing any cytotoxic activities. PLLA matrix system loaded with NPs containing NO donors could provide a new platform for sustained and controlled delivery of NO, significantly reducing valvular complications. Copyright © 2012 Wiley Periodicals, Inc.

  2. Block matrix based LU decomposition to analyze kinetic damping in active plasma resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Roehl, Jan Hendrik; Oberrath, Jens

    2016-09-01

    ``Active plasma resonance spectroscopy'' (APRS) is a widely used diagnostic method to measure plasma parameter like electron density. Measurements with APRS probes in plasmas of a few Pa typically show a broadening of the spectrum due to kinetic effects. To analyze the broadening a general kinetic model in electrostatic approximation based on functional analytic methods has been presented [ 1 ] . One of the main results is, that the system response function Y(ω) is given in terms of the matrix elements of the resolvent of the dynamic operator evaluated for values on the imaginary axis. To determine the response function of a specific probe the resolvent has to be approximated by a huge matrix which is given by a banded block structure. Due to this structure a block based LU decomposition can be implemented. It leads to a solution of Y(ω) which is given only by products of matrices of the inner block size. This LU decomposition allows to analyze the influence of kinetic effects on the broadening and saves memory and calculation time. Gratitude is expressed to the internal funding of Leuphana University.

  3. High performance organic transistor active-matrix driver developed on paper substrate

    NASA Astrophysics Data System (ADS)

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-09-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V-1s-1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up.

  4. High performance organic transistor active-matrix driver developed on paper substrate

    PubMed Central

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-01-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V−1s−1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up. PMID:25234244

  5. Matrix metalloproteinases: their biological functions and clinical implications.

    PubMed

    Hijova, E

    2005-01-01

    Matrix metalloproteinases (MMPs), which are also known as matrixins, are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are precisely regulated at the level of transcription, at that of activation of the pro-MMP precursor zymogenes as well as at that of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). Alterations in the regulation of MMP activity are implicated in diseases such as cancer, fibrosis, arthritis and atherosclerosis. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and cardiac remodelling in congestive heart failure or after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinases activity have been demonstrated during atherosclerotic lesion progression (including plaque disruption), MMPs represent a potential target for therapeutic intervention aimed at the modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. Recent findings suggest that MMPs are also involved in cancer initiation, invasion and metastasis; MMP inhibitors could be considered for evaluation as cancer chemopreventive molecules. This review describes the members of MMP and TIMP families and discusses the structure, function and regulation of MMP activity. (Tab. 1, Ref: 45.)

  6. Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi

    2013-05-01

    We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.

  7. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Peter; Huang, Qing; Ong, Choon Nam

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionationmore » of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.« less

  8. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow.

    PubMed

    Rougraff, Bruce T; Kling, Thomas J

    2002-06-01

    The treatment of unicameral bone cysts varies from open bone-grafting procedures to percutaneous injection of corticosteroids or bone marrow. The purpose of this study was to evaluate the feasibility and effectiveness of percutaneous injection of a mixture of demineralized bone matrix and autogenous bone marrow for the treatment of simple bone cysts. Twenty-three patients with an active unicameral bone cyst were treated with trephination and injection of allogeneic demineralized bone matrix and autogenous bone marrow. The patients were followed for an average of fifty months (range, thirty to eighty-one months), at which time pain, function, and radiographic signs of resolution of the cyst were assessed. The average time until the patients had pain relief was five weeks, and the average time until the patients returned to full, unrestricted activities was six weeks. Bone-healing at the site of the injection was first seen radiographically at three to six months. No patient had a pathologic fracture during this early bone-healing stage. Cortical remodeling was seen radiographically by six to nine months, and after one year the response was usually complete, changing very little from then on. Five patients required a second injection because of recurrence of the cyst, and all five had a clinically and radiographically quiescent cyst after an average of thirty-six additional months of follow-up. Seven of the twenty-three patients had incomplete healing manifested by small, persistent radiolucent areas within the original cyst. None of these cysts increased in size or resulted in pain or fracture. Percutaneous injection of allogeneic demineralized bone matrix and autogenous bone marrow is an effective treatment for unicameral bone cysts.

  9. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    PubMed

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  10. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  11. Active matrix OLED for rugged HMD and viewfinder applications

    NASA Astrophysics Data System (ADS)

    Low, Kia; Jones, Susan K.; Prache, Olivier; Fellowes, David A.

    2004-09-01

    We present characterization of a full-color 852x3x600-pixel, active matrix organic light emitting diode (AMOLED) color microdisplay (eMagin Corporation's SVGA+ display) for environmentally demanding applications. The results show that the AMOLED microdisplay can provide cold-start turn-on and operate at extreme temperature conditions, far in excess of non-emissive displays. Correction factors for gamma response of the AMOLED microdisplay as a function of temperature have been determined to permit consistent luminance and contrast from -40°C to over +80°C. Gamma adjustments are made by a simple temperature compensation adjustment of the reference voltages of the AMOLED. The typical room temperature full-on luminance half-life of the SVGA+ full color display organic light emitting diode (OLED) display at over 3,000 hr at a starting luminance at approx. 100 cd/m2, translates to more than 15,000 hr of continuous full-motion video usage, based on a 25% duty cycle at a typical 50-60 cd/m2 commercial luminance level, or over 60,000 hr half-life in monochrome white usage, or over 100,000 hr luminance half-life in monochrome yellow usage at similar operating conditions. Half life at typical night vision luminance levels would be much longer.

  12. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  13. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  14. Aesculin inhibits matrix metalloproteinase-9 expression via p38 mitogen activated protein kinase and activator protein 1 in lipopolysachride-induced RAW264.7 cells.

    PubMed

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Jai-Eun; Jeong, Han-Sol; Joo, Myungsoo; Cha, Jaeho; Kim, Cheorl-Ho; Ha, Ki-Tae

    2012-11-01

    Expression of matrix metalloproteinase 9 (MMP-9) may contribute to inflammatory conditions such as arthritis, hepatitis, atherosclerosis, and pulmonary fibrosis, which involves the destruction of the extracellular matrix (ECM). Macrophages stimulated with lipopolysaccharide (LPS) express MMP-9 through the nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1) signaling pathways. Aesculin, a 6,7-dihydroxycoumarin-6-O-beta-glucopyranoside, has been highlighted for its anti-hepatotoxic, hypouricemic, antioxidative, photo-protective, and anti-apoptotic properties. In this study, we investigated the effects of aesculin on LPS-stimulated MMP-9 production and its regulatory mechanism by using murine macrophage RAW264.7 cells. Aesculin did not trigger any significant cytotoxic effect on RAW264.7 cells at concentration up to 150 μM. Secretion and expression levels of MMP-9, which were highly elevated by LPS treatment, were reduced by the addition of aesculin in a dose-dependent manner. However, gelatinolytic activity of MMP-9 was not reduced by aesculin. Luciferase activity assays and electrophoretic mobility shift assays using RAW264.7 cells showed that the inhibition of MMP-9 expression by aesculin was mediated by AP-1 rather than NF-κB. In addition, aesculin inhibited phosphorylation of p38 MAPK and subsequent activation of c-fos, a component of AP-1 transcription factor, but not JNK, ERK1/2, and c-jun. These findings suggest that aesculin is a potent drug candidate that protects against the inflammatory destruction of ECM. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Doxycycline blocks gastric ulcer by regulating matrix metalloproteinase-2 activity and oxidative stress

    PubMed Central

    Singh, Laishram Pradeepkumar; Mishra, Amartya; Saha, Debjit; Swarnakar, Snehasikta

    2011-01-01

    AIM: To examine the effect of doxycycline on the activity of matrix metalloproteinases (MMPs) and oxidative stress in gastric tissues of rats following gastric injury. METHODS: Gastric ulcers were generated in rats by administration of 70% ethanol, and activity of doxycycline was tested by administration 30 min prior to ethanol. Similarly, the effect of doxycycline was tested in an indomethacin-induced gastric ulcer model. The activities and expression of MMPs were examined by zymography and Western blot analysis. RESULTS: Gastric injury in rats as judged by elevated ulcer indices following exposure to ulcerogen, either indomethacin or ethanol, was reversed significantly by doxycycline. Indomethacin-induced ulcerated gastric tissues exhibited about 12-fold higher proMMP-9 activity and about 5-fold higher proMMP-3 activity as compared to control tissues. Similarly, ethanol induced about 22-fold and about 6-fold higher proMMP-9 and proMMP-3 activities, respectively, in rat gastric tissues. Both proMMP-9 and MMP-3 activities were markedly decreased by doxycycline in ulcerogen treated rat gastric tissues. In contrast, the reduced MMP-2 activity in ulcerated tissues was increased by doxycycline during ulcer prevention. On the other hand, doxycycline inhibited significantly proMMP-9, -2 and -3 activities in vitro. In addition, doxycycline reduced oxidative load in gastric tissues and scavenged H2O2 in vitro. Our results suggest a novel regulatory role of doxycycline on MMP-2 activity in addition to inhibitory action on MMP-9 and MMP-3 during prevention of gastric ulcers. CONCLUSION: This is the first demonstration of dual action of doxycycline, that is, regulation of MMP activity and reduction of oxidative stress in arresting gastric injury. PMID:21876619

  16. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    NASA Astrophysics Data System (ADS)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  17. Matrix metabolism rate differs in functionally distinct tendons.

    PubMed

    Birch, Helen L; Worboys, Sarah; Eissa, Sabry; Jackson, Brendan; Strassburg, Sandra; Clegg, Peter D

    2008-04-01

    Tendon matrix integrity is vital to ensure adequate mechanical properties for efficient function. Although historically tendon was considered to be relatively inert, recent studies have shown that tendon matrix turnover is active. During normal physiological activities some tendons are subjected to stress and strains much closer to their failure properties than others. Tendons with low safety margins are those which function as energy stores such as the equine superficial digital flexor tendon (SDFT) and human Achilles tendon (AT). We postulate therefore that energy storing tendons suffer a higher degree of micro-damage and thus have a higher rate of matrix turnover than positional tendons. The hypothesis was tested using tissue from the equine SDFT and common digital extensor tendon (CDET). Matrix turnover was assessed indirectly by a combination of measurements for matrix age, markers of degradation, potential for degradation and protein expression. Results show that despite higher cellularity, the SDFT has lower relative levels of mRNA for collagen types I and III. Non-collagenous proteins, although expressed at different levels per cell, do not appear to differ between tendon types. Relative levels of mRNA for MMP1, MMP13 and both pro-MMP3 and MMP13 protein activity were significantly higher in the CDET. Correspondingly levels of cross-linked carboxyterminal telopeptide of type I collagen (ICTP) were higher in the CDET and tissue fluorescence lower suggesting more rapid turnover of the collagenous component. Reduced or inhibited collagen turnover in the SDFT may account for the high level of degeneration and subsequent injury compared to the CDET.

  18. Dexamethasone-Mediated Activation of Fibronectin Matrix Assembly Reduces Dispersal of Primary Human Glioblastoma Cells

    PubMed Central

    Shannon, Stephen; Vaca, Connan; Jia, Dongxuan; Entersz, Ildiko; Schaer, Andrew; Carcione, Jonathan; Weaver, Michael; Avidar, Yoav; Pettit, Ryan; Nair, Mohan; Khan, Atif; Foty, Ramsey A.

    2015-01-01

    Despite resection and adjuvant therapy, the 5-year survival for patients with Glioblastoma multiforme (GBM) is less than 10%. This poor outcome is largely attributed to rapid tumor growth and early dispersal of cells, factors that contribute to a high recurrence rate and poor prognosis. An understanding of the cellular and molecular machinery that drive growth and dispersal is essential if we are to impact long-term survival. Our previous studies utilizing a series of immortalized GBM cell lines established a functional causation between activation of fibronectin matrix assembly (FNMA), increased tumor cohesion, and decreased dispersal. Activation of FNMA was accomplished by treatment with Dexamethasone (Dex), a drug routinely used to treat brain tumor related edema. Here, we utilize a broad range of qualitative and quantitative assays and the use of a human GBM tissue microarray and freshly-isolated primary human GBM cells grown both as conventional 2D cultures and as 3D spheroids to explore the role of Dex and FNMA in modulating various parameters that can significantly influence tumor cell dispersal. We show that the expression and processing of fibronectin in a human GBM tissue-microarray is variable, with 90% of tumors displaying some abnormality or lack in capacity to secrete fibronectin or assemble it into a matrix. We also show that low-passage primary GBM cells vary in their capacity for FNMA and that Dex treatment reactivates this process. Activation of FNMA effectively “glues” cells together and prevents cells from detaching from the primary mass. Dex treatment also significantly increases the strength of cell-ECM adhesion and decreases motility. The combination of increased cohesion and decreased motility discourages in vitro and ex vivo dispersal. By increasing cell-cell cohesion, Dex also decreases growth rate of 3D spheroids. These effects could all be reversed by an inhibitor of FNMA and by the glucocorticoid receptor antagonist, RU-486. Our

  19. Voltage Drop Compensation Method for Active Matrix Organic Light Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Choi, Sang-moo; Ryu, Do-hyung; Kim, Keum-nam; Choi, Jae-beom; Kim, Byung-hee; Berkeley, Brian

    2011-03-01

    In this paper, the conventional voltage drop compensation methods are reviewed and the novel design and driving scheme, the advanced power de-coupled (aPDC) driving method, is proposed to effectively compensate the voltage IR drop of active matrix light emitting diode (AMOLED) displays. The advanced PDC driving scheme can be applied to general AMOLED pixel circuits that have been developed with only minor modification or without requiring modification in pixel circuit. A 14-in. AMOLED panel with the aPDC driving scheme was fabricated. Long range uniformity (LRU) of the 14-in. AMOLED panel was improved from 43% without the aPDC driving scheme, to over 87% at the same brightness by using the scheme and the layout complexity of the panel with new design scheme is less than that of the panel with the conventional design scheme.

  20. Attempting to validate the overtriage/undertriage matrix at a Level I trauma center

    PubMed Central

    Davis, James W.; Dirks, Rachel C.; Sue, Lawrence P.; Kaups, Krista L.

    2017-01-01

    BACKGROUND The Optimal Resources Document mandates trauma activation based on injury mechanism, physiologic and anatomic criteria and recommends using the overtriage/undertriage matrix (Matrix) to evaluate the appropriateness of trauma team activation. The purpose of this study was to assess the effectiveness of the Matrix method by comparing patients appropriately triaged with those undertriaged. We hypothesized that these two groups are different, and Matrix does not discriminate the needs or outcomes of these different groups of patients. METHODS Trauma registry data, from January 2013 to December 2015, at a Level I trauma center, were reviewed. Overtriage and undertriage rates were calculated by Matrix. Patients with Injury Severity Score (ISS) of 16 or greater were classified by activation level (full, limited, consultation), and triage category by Matrix. Patients in the limited activation and consultation groups were compared with patients with full activation by demographics, injuries, initial vital signs, procedures, delays to procedure, intensive care unit admission, length of stay, and mortality. RESULTS Seven thousand thirty-one patients met activation criteria. Compliance with American College of Surgeons tiered activation criteria was 99%. The Matrix overtriage rate was 45% and undertriage was 24%. Of 2,282 patients with an ISS of 16 or greater, 1,026 were appropriately triaged (full activation), and 1,256 were undertriaged. Undertriaged patients had better Glasgow Coma Scale score, blood pressure, and base deficit than patients with full activation. Intensive care unit admission, hospital stays, and mortality were lower in the undertriaged group. The undertriaged group required fewer operative interventions with fewer delays to procedure. CONCLUSION Despite having an ISS of 16 or greater, patients with limited activations were dissimilar to patients with full activation. Level of activation and triage are not equivalent. The American College of

  1. Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

    PubMed

    Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei

    2015-01-30

    Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Characterizing muscular activities using non-negative matrix factorization from EMG channels for driver swings in golf.

    PubMed

    Ozaki, Yasunori; Aoki, Ryosuke; Kimura, Toshitaka; Takashima, Youichi; Yamada, Tomohiro

    2016-08-01

    The goal of this study is to propose a data driven approach method to characterize muscular activities of complex actions in sports such as golf from a lot of EMG channels. Two problems occur in a many channel measurement. The first problem is that it takes a lot of time to check the many channel data because of combinatorial explosion. The second problem is that it is difficult to understand muscle activities related with complex actions. To solve these problems, we propose an analysis method of multi EMG channels using Non-negative Matrix Factorization and adopt the method to driver swings in golf. We measured 26 EMG channels about 4 professional coaches of golf. The results show that the proposed method detected 9 muscle synergies and the activation of each synergy were mostly fitted by sigmoid curve (R2=0.85).

  3. Novel Entries in a Fungal Biofilm Matrix Encyclopedia

    PubMed Central

    Zarnowski, Robert; Westler, William M.; Lacmbouh, Ghislain Ade; Marita, Jane M.; Bothe, Jameson R.; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D.; Ntambi, James M.; Nett, Jeniel E.; Mitchell, Aaron P.

    2014-01-01

    ABSTRACT Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. PMID:25096878

  4. Curcumin: a potential candidate for matrix metalloproteinase inhibitors.

    PubMed

    Kumar, Dileep; Kumar, Manish; Saravanan, Chinnadurai; Singh, Sushil Kumar

    2012-10-01

    Curcumin, a natural yellow pigment of turmeric, has become focus of interest with regard to its role in regulation of matrix metalloproteinases (MMPs). MMPs are metal-dependent endopeptidases capable of degrading components of the extracellular matrix. MMPs are involved in chronic diseases such as arthritis, Alzheimer's disease, psoriasis, chronic obstructive pulmonary disease, asthma, cancer, neuropathic pain, and atherosclerosis. Curcumin regulates the expression and secretion of various MMPs. This review documents the matrix metalloproteinase inhibitory activity of curcumin on various diseases viz., cancer, arthritis, and ulcer. Finally, the steps to be taken for getting potent curcuminoids have also been discussed in the structure-activity relationship (SAR) section. From this review, readers can get answer to the question: Is curcumin a potential MMPI candidate? Numerous approaches have been taken to beget a molecule with specificity restricted to a particular MMP as well as good oral bioavailability; however, nearly all the molecules lack these criteria. Using quantitative structure-activity relationship (QSAR) modeling and virtual screening, new analogs of curcumin can be designed which will be selectively inhibiting different MMPs.

  5. Inhibition of Gelatinase B (Matrix Metalloprotease-9) Activity Reduces Cellular Inflammation and Restores Function of Transplanted Pancreatic Islets

    PubMed Central

    Lingwal, Neelam; Padmasekar, Manju; Samikannu, Balaji; Bretzel, Reinhard G.; Preissner, Klaus T.; Linn, Thomas

    2012-01-01

    Islet transplantation provides an approach to compensate for loss of insulin-producing cells in patients with type 1 diabetes. However, the intraportal route of transplantation is associated with instant inflammatory reactions to the graft and subsequent islet destruction as well. Although matrix metalloprotease (MMP)-2 and -9 are involved in both remodeling of extracellular matrix and leukocyte migration, their influence on the outcome of islet transplantation has not been characterized. We observed comparable MMP-2 mRNA expressions in control and transplanted groups of mice, whereas MMP-9 mRNA and protein expression levels increased after islet transplantation. Immunostaining for CD11b (Mac-1)-expressing leukocytes (macrophage, neutrophils) and Ly6G (neutrophils) revealed substantially reduced inflammatory cell migration into islet-transplanted liver in MMP-9 knockout recipients. Moreover, gelatinase inhibition resulted in a significant increase in the insulin content of transplanted pancreatic islets and reduced macrophage and neutrophil influx compared with the control group. These results indicate that the increase of MMP-9 expression and activity after islet transplantation is directly related to enhanced leukocyte migration and that early islet graft survival can be improved by inhibiting MMP-9 (gelatinase B) activity. PMID:22586582

  6. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less

  7. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity.

    PubMed

    Smith, Dayle M A; Raugei, Simone; Squier, Thomas C

    2014-11-21

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  8. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion

    PubMed Central

    Cunniff, Brian; McKenzie, Andrew J.; Heintz, Nicholas H.; Howe, Alan K.

    2016-01-01

    Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion. PMID:27385336

  9. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis.

    PubMed

    Trentini, Alessandro; Manfrinato, Maria C; Castellazzi, Massimiliano; Tamborino, Carmine; Roversi, Gloria; Volta, Carlo A; Baldi, Eleonora; Tola, Maria R; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Fainardi, Enrico

    2015-08-01

    The activity of matrix metalloproteinase-9 (MMP-9) depends on two isoforms, an 82 kDa active MMP-9 modulated by its specific tissue inhibitor (TIMP-1), and a 65 kDa TIMP-1 resistant active MMP-9. The relevance of these two enzymatic isoforms in multiple sclerosis (MS) is still unknown. To investigate the contribution of the TIMP-1 modulated and resistant active MMP-9 isoforms to MS pathogenesis. We measured the serum levels of the 82 kDa and TIMP-1 resistant active MMP-9 isoforms by activity assay systems in 86 relapsing-remitting MS (RRMS) patients, categorized according to clinical and magnetic resonance imaging (MRI) evidence of disease activity, and in 70 inflammatory (OIND) and 69 non-inflammatory (NIND) controls. Serum levels of TIMP-1 resistant MMP-9 were more elevated in MS patients than in OIND and NIND (p < 0.05, p < 0.02, respectively). Conversely, 82 kDa active MMP-9 was higher in NIND than in the OIND and MS patients (p < 0.01 and p < 0.00001, respectively). MRI-active patients had higher levels of TIMP-1 resistant MMP-9 and 82 kDa active MMP-9, than did those with MRI inactive MS (p < 0.01 and p < 0.05, respectively). Our findings suggested that the TIMP-1 resistant MMP-9 seem to be the predominantly active isoform contributing to MS disease activity. © The Author(s), 2015.

  10. AMOLED (active matrix OLED) functionality and usable lifetime at temperature

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan

    2005-05-01

    Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.

  11. Identification of matrix metalloproteinase-2 and -9 activities within the intestinal mucosa of dogs with chronic enteropathies.

    PubMed

    Hanifeh, Mohsen; Rajamäki, Minna Marjaana; Syrjä, Pernilla; Mäkitalo, Laura; Kilpinen, Susanne; Spillmann, Thomas

    2018-03-12

    Matrix metalloproteinases (MMPs) 2 and 9 are zinc- and calcium-dependent endopeptidases involved in the breakdown and reconstitution of extracellular matrix under both physiological and pathological conditions. Mucosal MMP-2 and -9 activities have been reported to be upregulated in the intestine of humans with inflammatory bowel disease (IBD), and in animal models of IBD. However, their involvement in the pathogenesis of canine chronic enteropathies (CE) is unknown. This study investigated mucosal pro- and active MMP-2 and -9 activities in dogs with CE and healthy dogs using gelatin zymography, and also to determine the association of their activities in dogs with CE with the canine IBD activity index (CIBDAI), histopathologic findings, the clinical outcome, and hypoalbuminemia. Intestinal mucosal samples from duodenum, ileum, colon, and cecum were collected from 40 dogs with CE and 18 healthy Beagle dogs. In dogs with CE, the number of samples positive for mucosal pro- and active MMP-2 was significantly higher in the duodenum (P < 0.0001 and P = 0.011, respectively), ileum (P = 0.002 and P = 0.018, respectively), and colon (P < 0.0001 and P = 0.002, respectively), compared with healthy controls. Mucosal pro-MMP-9-positive samples in the duodenum and colon were significantly more frequent in dogs with CE than in healthy dogs (P = 0.0004 and P = 0.001, respectively). Despite the presence of mucosal samples positive for active MMP-9 in the intestinal segments of dogs with CE, the difference compared to healthy controls did not reach statistical significance. None of the intestinal mucosal samples in healthy dogs showed gelatinolytic activity corresponding to the control bands of active MMP-2 and -9. Mucosal active MMP-9 activities displayed a significant positive association with the severity of neutrophil infiltration in the duodenum (P = 00.040), eosinophils in the cecum (P = 00.037), and the CIBDAI score for ileum samples

  12. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.

    PubMed

    Koo, H; Falsetta, M L; Klein, M I

    2013-12-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.

  13. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  14. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics

    PubMed Central

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng

    2014-01-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl−/−; or Yes, Src, and Fyn knockout mice (YSF−/−)] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl−/− MEF showed impaired matrix endocytosis, YSF−/− MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  15. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    PubMed

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  16. The matrix peptide exporter HAF-1 signals a mitochondrial unfolded protein response by activating the transcription factor ZC376.7 in C. elegans

    PubMed Central

    Haynes, Cole M.; Yang, Yun; Blais, Steven P.; Neubert, Thomas A.; Ron, David

    2010-01-01

    Summary Genetic analyses previously implicated the matrix-localized protease ClpP in signaling the stress of protein misfolding in the mitochondrial matrix to activate nuclear encoded mitochondrial chaperone genes in C. elegans (UPRmt). Here we report that haf-1, a gene encoding a mitochondria-localized ATP-binding cassette protein, is required for signaling within the UPRmt and for coping with misfolded protein stress. Peptide efflux from isolated mitochondria was ATP-dependent and required HAF-1 and the protease ClpP. Defective UPRmt signaling in the haf-1 deleted worms was associated with failure of the bZIP protein, ZC376.7, to localize to nuclei in worms with perturbed mitochondrial protein folding, whereas zc376.7(RNAi) strongly inhibited the UPRmt. These observations suggest a simple model whereby perturbation of the protein-folding environment in the mitochondrial matrix promotes ClpP-mediated generation of peptides whose haf-1-dependent export from the matrix contributes to UPRmt signaling across the mitochondrial inner membrane. PMID:20188671

  17. Circulating Matrix Metalloproteinase-2 and -9 Enzyme Activities in the Children with Ventricular Septal Defect

    PubMed Central

    Cheng, Kun-Shan; Liao, Yan-Chiou; Chen, Mu-Yuan; Kuan, Tang-Ching; Hong, Yi-Han; Ko, Li; Hsieh, Wen-Yeh; Wu, Chien-Liang; Chen, Ming-Ren; Lin, Chih-Sheng

    2013-01-01

    Ventricular septal defect (VSD) is the most common form of congenital heart diseases. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases involved in causal cardiac tissue remodeling. We studied the changes of circulating MMP-2 and MMP-9 activities in the patients with VSD severity and closure. There were 96 children with perimembranous VSD enrolled in this study. We assigned the patients into three groups according to the ratio of VSD diameter/diameter of aortic root (Ao). They were classified as below: Trivial (VSD/Ao ratio ≤ 0.2), Small (0.2 < VSD/Ao ≤ 0.3) and Median (0.3 < VSD/Ao) group. Plasma MMP-2 and MMP-9 activities were assayed by gelatin zymography. There was a significant higher MMP-2 activity in the VSD (Trivial, Small and Median) groups compared with that in Control group. The plasma MMP-9 activity showed a similar trend as the findings in MMP-2 activity. After one year follow-up, a significant difference in the MMP-9 activity was found between VSD spontaneous closure and non-closure groups. In conclusion, a positive trend between the severity of VSD and activities of MMP-2 and MMP-9 was found. Our data imply that MMP-2 and MMP-9 activities may play a role in the pathogenesis of VSD. PMID:23847438

  18. Circulating matrix metalloproteinase-2 and -9 enzyme activities in the children with ventricular septal defect.

    PubMed

    Cheng, Kun-Shan; Liao, Yan-Chiou; Chen, Mu-Yuan; Kuan, Tang-Ching; Hong, Yi-Han; Ko, Li; Hsieh, Wen-Yeh; Wu, Chien-Liang; Chen, Ming-Ren; Lin, Chih-Sheng

    2013-01-01

    Ventricular septal defect (VSD) is the most common form of congenital heart diseases. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases involved in causal cardiac tissue remodeling. We studied the changes of circulating MMP-2 and MMP-9 activities in the patients with VSD severity and closure. There were 96 children with perimembranous VSD enrolled in this study. We assigned the patients into three groups according to the ratio of VSD diameter/diameter of aortic root (Ao). They were classified as below: Trivial (VSD/Ao ratio ≤ 0.2), Small (0.2 < VSD/Ao ≤ 0.3) and Median (0.3 < VSD/Ao) group. Plasma MMP-2 and MMP-9 activities were assayed by gelatin zymography. There was a significant higher MMP-2 activity in the VSD (Trivial, Small and Median) groups compared with that in Control group. The plasma MMP-9 activity showed a similar trend as the findings in MMP-2 activity. After one year follow-up, a significant difference in the MMP-9 activity was found between VSD spontaneous closure and non-closure groups. In conclusion, a positive trend between the severity of VSD and activities of MMP-2 and MMP-9 was found. Our data imply that MMP-2 and MMP-9 activities may play a role in the pathogenesis of VSD.

  19. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?

    PubMed

    Agarwal, Renu; Agarwal, Puneet

    2017-02-01

    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.

  20. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?

    PubMed Central

    Agarwal, Puneet

    2016-01-01

    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses. PMID:27798117

  1. Collagen degradation by interleukin-1beta-stimulated gingival fibroblasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases.

    PubMed

    Cox, S W; Eley, B M; Kiili, M; Asikainen, A; Tervahartiala, T; Sorsa, T

    2006-01-01

    Several collagenolytic matrix metalloproteinases (MMPs) have recently been identified in gingival fibroblasts, while secreted cysteine proteinases could also participate in connective tissue destruction in periodontitis. To clarify their involvement, we examined enzyme release during collagen breakdown by cultured cytokine-stimulated fibroblasts. Gingival fibroblasts were derived from four chronic periodontitis patients and cultured on collagen gels in serum-free medium for 1-4 days. Collagenolysis was measured by hydroxyproline release into the medium. Proteinases were assessed by electrophoresis and immunoblotting. Adding interleukin-1beta resulted in progressive gel breakdown. This was associated particularly with a shift in MMP-1 band position from proenzyme to active enzyme and the appearance of active as well as proenzyme forms of cathepsin B. There was also partial processing of pro-MMP-13 and increased immunoreactivity for active cathepsin L. In addition, both pro-forms and active forms of MMP-8, membrane-type-1-MMP and MMP-2 were present in control and treated cultures. Fibroblast MMP-1 was most likely responsible for collagen dissolution in the culture model, while cathepsin B may have been part of an activation pathway. All studied proteinases contribute to extracellular matrix destruction in inflamed gingival tissue, where they probably activate each other in proteolytic cascades.

  2. Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith.

    PubMed

    Glazer, Lilah; Tom, Moshe; Weil, Simy; Roth, Ziv; Khalaila, Isam; Mittelman, Binyamin; Sagi, Amir

    2013-05-15

    Gastroliths are transient extracellular calcium deposits formed by the crayfish Cherax quadricarinatus von Martens on both sides of the stomach wall during pre-molt. Gastroliths are made of a rigid chitinous organic matrix, constructed as sclerotized chitin-protein microfibrils within which calcium carbonate is deposited. Although gastroliths share many characteristics with the exoskeleton, they are simpler in structure and relatively homogeneous in composition, making them an excellent cuticle-like model for the study of cuticular proteins. In searching for molt-related proteins involved in gastrolith formation, two integrated approaches were employed, namely the isolation and mass spectrometric analysis of proteins from the gastrolith matrix, and 454-sequencing of mRNAs from both the gastrolith-forming and sub-cuticular epithelia. SDS-PAGE separation of gastrolith proteins revealed a set of bands at apparent molecular masses of 75-85 kDa; mass spectrometry data matched peptide sequences from the deduced amino acid sequences of seven hemocyanin transcripts. This assignment was then examined by immunoblot analysis using anti-hemocyanin antibodies, also used to determine the spatial distribution of the proteins in situ. Apart from contributing to oxygen transport, crustacean hemocyanins were previously suggested to be involved in several aspects of the molt cycle, including hardening of the new post-molt exoskeleton via phenoloxidation. The phenoloxidase activity of gastrolith hemocyanins was demonstrated. It was also noted that hemocyanin transcript expression during pre-molt was specific to the hepatopancreas. Our results thus reflect a set of functionally versatile proteins, expressed in a remote metabolic tissue and dispersed via the hemolymph to perform different roles in various organs and structures.

  3. High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer

    NASA Astrophysics Data System (ADS)

    Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu

    2006-12-01

    We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.

  4. Electrical Properties of Reactive Liquid Crystal Semiconductors

    NASA Astrophysics Data System (ADS)

    McCulloch, Iain; Coelle, Michael; Genevicius, Kristijonas; Hamilton, Rick; Heckmeier, Michael; Heeney, Martin; Kreouzis, Theo; Shkunov, Maxim; Zhang, Weimin

    2008-01-01

    Fabrication of display products by low cost printing technologies such as ink jet, gravure offset lithography and flexography requires solution processable semiconductors for the backplane electronics. The products will typically be of lower performance than polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal displays (AMLCD's), and flexible organic light-emitting diode (OLED) displays. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the initial evaluation of reactive mesogen semiconductors, which can polymerise within mesophase temperatures, “freezing in” the order in crosslinked domains. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. Both time-of-flight and field effect transistor devices were prepared and their electrical characterisation reported.

  5. Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display

    NASA Astrophysics Data System (ADS)

    Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B.; Zhang, Qing

    2015-06-01

    Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V-1s-1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.

  6. Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display

    PubMed Central

    Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B.; Zhang, Qing

    2015-01-01

    Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V−1s−1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays. PMID:26119218

  7. Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display.

    PubMed

    Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B; Zhang, Qing

    2015-06-29

    Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm(2)V(-1)s(-1) and the high channel current on/off ratio of ~10(5) of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.

  8. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  9. Novel entries in a fungal biofilm matrix encyclopedia.

    PubMed

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed

  10. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  11. Modulation of matrix metalloproteinase activity by EDTA prevents posterior capsular opacification

    PubMed Central

    Guha, Rajdeep; Jongkey, Geram; Palui, Himangshu; Mishra, Akhilesh; Vemuganti, Geeta K.; Basak, Samar K.; Mandal, Tapan Kumar; Konar, Aditya

    2012-01-01

    Purpose To evaluate the effect of ethylenediaminetetraacetic acid (EDTA) on posterior capsular opacification (PCO) of rabbits and to assess its effect on intraocular tissues. Methods Modulation of matrix metalloproteinase (MMP) activity in the aqueous following cataract surgery in rabbits and its prevention by different doses of EDTA was determined by zymography. For evaluation of PCO, lensectomized rabbits were intracamerally injected with single dose of either 5 mg EDTA or normal saline. After one month, the degree of PCO was determined by slitlamp biomicroscopy, Miyake-Apple view, and histology of the lens capsule. The effect of EDTA on intra ocular pressure (IOP), corneal endothelial cells, and the retina was evaluated by tonometry, specular microscopy and scanning electron microscopy, and electroretinography. The concentration of EDTA in the aqueous was determined by high performance liquid chromatography (HPLC) at different time points. Results The MMP activity was significantly increased in the aqueous of the operated eyes, and EDTA reduced the degree of increase in a dose-dependent manner. EDTA treatment significantly reduced the degree of PCO (p<0.05). Histopathology of the lens capsule showed a reduction in the number of proliferating and migrating cells as well as MMP2 expression in the EDTA-treated eyes. EDTA treatment did not change the IOP; density, morphology and ultrastructure of the corneal endothelial cells; and electroretinography (ERG). EDTA was detectable in the aqueous humor up to 72 h following a single intracameral injection. Conclusions EDTA reduces the degree of PCO by suppressing the MMP activity and it is not toxic to intra ocular structures at the concentration used. PMID:22815623

  12. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry.

    PubMed

    Ju, Sanghyun; Li, Jianfeng; Liu, Jun; Chen, Po-Chiang; Ha, Young-Geun; Ishikawa, Fumiaki; Chang, Hsiaokang; Zhou, Chongwu; Facchetti, Antonio; Janes, David B; Marks, Tobin J

    2008-04-01

    Optically transparent, mechanically flexible displays are attractive for next-generation visual technologies and portable electronics. In principle, organic light-emitting diodes (OLEDs) satisfy key requirements for this application-transparency, lightweight, flexibility, and low-temperature fabrication. However, to realize transparent, flexible active-matrix OLED (AMOLED) displays requires suitable thin-film transistor (TFT) drive electronics. Nanowire transistors (NWTs) are ideal candidates for this role due to their outstanding electrical characteristics, potential for compact size, fast switching, low-temperature fabrication, and transparency. Here we report the first demonstration of AMOLED displays driven exclusively by NW electronics and show that such displays can be optically transparent. The displays use pixel dimensions suitable for hand-held applications, exhibit 300 cd/m2 brightness, and are fabricated at temperatures suitable for integration on plastic substrates.

  13. Matrix management in hospitals: testing theories of matrix structure and development.

    PubMed

    Burns, L R

    1989-09-01

    A study of 315 hospitals with matrix management programs was used to test several hypotheses concerning matrix management advanced by earlier theorists. The study verifies that matrix management involves several distinctive elements that can be scaled to form increasingly complex types of lateral coordinative devices. The scalability of these elements is evident only cross-sectionally. The results show that matrix complexity is not an outcome of program age, nor does matrix complexity at the time of implementation appear to influence program survival. Matrix complexity, finally, is not determined by the organization's task diversity and uncertainty. The results suggest several modifications in prevailing theories of matrix organization.

  14. The provisional matrix: setting the stage for tissue repair outcomes.

    PubMed

    Barker, Thomas H; Engler, Adam J

    2017-07-01

    Since its conceptualization in the 1980s, the provisional matrix has often been characterized as a simple fibrin-containing scaffold for wound healing that supports the nascent blood clot and is functionally distinct from the basement membrane. However subsequent advances have shown that this matrix is far from passive, with distinct compositional differences as the wound matures, and providing an active role for wound remodeling. Here we review the stages of this matrix, provide an update on the state of our understanding of provisional matrix, and present some of the outstanding issues related to the provisional matrix, its components, and their assembly and use in vivo. Copyright © 2017. Published by Elsevier B.V.

  15. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-08-29

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  16. Fibroblasts and the extracellular matrix in right ventricular disease.

    PubMed

    Frangogiannis, Nikolaos G

    2017-10-01

    Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of

  17. Collagen Membranes Adsorb the Transforming Growth Factor-β Receptor I Kinase-Dependent Activity of Enamel Matrix Derivative.

    PubMed

    Stähli, Alexandra; Miron, Richard J; Bosshardt, Dieter D; Sculean, Anton; Gruber, Reinhard

    2016-05-01

    Enamel matrix derivative (EMD) and collagen membranes (CMs) are simultaneously applied in regenerative periodontal surgery. The aim of this study is to evaluate the ability of two CMs and a collagen matrix to adsorb the activity intrinsic to EMD that provokes transforming growth factor (TGF)-β signaling in oral fibroblasts. Three commercially available collagen products were exposed to EMD or recombinant TGF-β1, followed by vigorous washing. Oral fibroblasts were either seeded directly onto collagen products or were incubated with the respective supernatant. Expression of TGF-β target genes interleukin (IL)-11 and proteoglycan 4 (PRG4) was evaluated by real time polymerase chain reaction. Proteomic analysis was used to study the fraction of EMD proteins binding to collagen. EMD or TGF-β1 provoked a significant increase of IL-11 and PRG4 expression of oral fibroblasts when seeded onto collagen products and when incubated with the respective supernatant. Gene expression was blocked by the TGF-β receptor I kinase inhibitor SB431542. Amelogenin bound most abundantly to gelatin-coated culture dishes. However, incubation of palatal fibroblasts with recombinant amelogenin did not alter expression of IL-11 and PRG4. These in vitro findings suggest that collagen products adsorb a TGF-β receptor I kinase-dependent activity of EMD and make it available for potential target cells.

  18. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity.

    PubMed

    Liu, Hongyu; Jiang, Yue; Jin, Xiaoyan; Zhu, Lihua; Shen, Xiaoyue; Zhang, Qun; Wang, Bin; Wang, Junxia; Hu, Yali; Yan, Guijun; Sun, Haixiang

    2013-07-15

    Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2.

  19. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity

    PubMed Central

    2013-01-01

    Background Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Methods Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. Results CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. Conclusions CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2. PMID:23855590

  20. Platelet geometry sensing spatially regulates α-granule secretion to enable matrix self-deposition

    PubMed Central

    Sakurai, Yumiko; Fitch-Tewfik, Jennifer L.; Qiu, Yongzhi; Ahn, Byungwook; Myers, David R.; Tran, Reginald; Fay, Meredith E.; Ding, Lingmei; Spearman, Paul W.; Michelson, Alan D.; Flaumenhaft, Robert

    2015-01-01

    Although the biology of platelet adhesion on subendothelial matrix after vascular injury is well characterized, how the matrix biophysical properties affect platelet physiology is unknown. Here we demonstrate that geometric orientation of the matrix itself regulates platelet α-granule secretion, a key component of platelet activation. Using protein microcontact printing, we show that platelets spread beyond the geometric constraints of fibrinogen or collagen micropatterns with <5-µm features. Interestingly, α-granule exocytosis and deposition of the α-granule contents such as fibrinogen and fibronectin were primarily observed in those areas of platelet extension beyond the matrix protein micropatterns. This enables platelets to “self-deposit” additional matrix, provide more cellular membrane to extend spreading, and reinforce platelet-platelet connections. Mechanistically, this phenomenon is mediated by actin polymerization, Rac1 activation, and αIIbβ3 integrin redistribution and activation, and is attenuated in gray platelet syndrome platelets, which lack α-granules, and Wiskott-Aldrich syndrome platelets, which have cytoskeletal defects. Overall, these studies demonstrate how platelets transduce geometric cues of the underlying matrix geometry into intracellular signals to extend spreading, which endows platelets spatial flexibility when spreading onto small sites of exposed subendothelium. PMID:25964667

  1. BASIC Matrix Operations.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…

  2. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  3. Technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    NASA Astrophysics Data System (ADS)

    Zuccaro Marchi, Alessandro; D'Amato, Francesco; Gallieni, Daniele; Biasi, Roberto; Molina, Marco; Duò, Fabrizio; Ruder, Nikolaus; Salinari, Piero; Lisi, Franco; Riccardi, Armando; Gambicorti, Lisa; Simonetti, Francesca; Pereira do Carmo, Joao Pedro N.

    2017-11-01

    The increasing interest on space telescopes for scientific applications leads to implement the manufacturing technology of the most critical element, i.e. the primary mirror: being more suitable a large aperture, it must be lightweight and deployable. The presented topic was originally addressed to a spaceborne DIAL (Differential Absorption LIDAR) mission operating at 935.5 nm for the measurement of water vapour profile in atmosphere, whose results were presented at ICSO 2006 and 2008. Aim of this paper is to present the latest developments on the main issues related to the fabrication of a breadboard, covering two project critical areas identified during the preliminary studies: the design and performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch via Electrostatic Locking (EL) between mirror and backplane. The described work is developed under the ESA/ESTEC contract No. 22321/09/NL/RA. The lightweight mirror is structured as a central sector surrounded by petals, all of them actively controlled to reach the specified shape after initial deployment and then maintained within specs for the entire mission duration. The presented study concerns: a) testing the Carbon Fiber Reinforced Plastic (CFRP) backplane manufacturing and EL techniques, with production of suitable specimens; b) actuator design optimisation; c) design of the deployment mechanism including a high precision latch; d) the fabrication of thin mirrors mock-ups to validate the fabrication procedure for the large shells. The current activity aims to the construction of an optical breadboard capable of demonstrating the achievement of all these coupled critical aspects: optical quality of the thin shell mirror surface, actuators performances and back-plane - EL subsystem functionality.

  4. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  5. Ceramic matrix and resin matrix composites - A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  6. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays.

    PubMed

    Zhang, Jialu; Fu, Yue; Wang, Chuan; Chen, Po-Chiang; Liu, Zhiwei; Wei, Wei; Wu, Chao; Thompson, Mark E; Zhou, Chongwu

    2011-11-09

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components, such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  7. Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu

    2012-02-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  8. Biochemical characterization of matrilysin. Activation conforms to the stepwise mechanisms proposed for other matrix metalloproteinases.

    PubMed

    Crabbe, T; Willenbrock, F; Eaton, D; Hynds, P; Carne, A F; Murphy, G; Docherty, A J

    1992-09-15

    The latent precursor of matrilysin (EC 3.4.24.23; punctuated metalloproteinase (PUMP) was purified from transfected mouse myeloma cell conditioned medium and was found to contain one zinc atom per molecule which was essential for catalytic activity. Promatrilysin could be activated to the same specific activity by (4-aminophenyl)mercuric acetate, trypsin, and incubation at elevated temperatures (heat activation). Active matrilysin hydrolyzed the fluorescent substrate 2,4-dinitrophenyl-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2 at the Gly-Leu bond with a maximum value for kcat/Km of 1.3 x 10(4) M-1 s-1 at the pH optimum of 6.5 and pKa values of 4.60 and 8.65. Activity is inhibited by the tissue inhibitor of metalloproteinases-1 in a 1:1 stoichiometric interaction. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with N-terminal sequencing revealed that, as with all other matrix metalloproteinases similarly studied, promatrilysin activation was accompanied by the stepwise proteolytic removal of an M(r) 9000 propeptide from the N-terminus. The intermediates generated were dependent on the mode of activation used but, in all cases studied, activation terminated with an autocatalytic cleavage at E77-Y78 to yield the final M(r) 19,000 active matrilysin. From an analysis of the stability of the various intermediates, we propose that the sequence L13-K33 is particularly important in protecting the E77-Y78 site from autocatalytic cleavage, thereby maintaining the latency of the proenzyme.

  9. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.

    PubMed

    Münch, Christian; Harper, J Wade

    2016-06-30

    The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8) or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt.

  10. Matrix Management Structures in Higher Education. Coombe Lodge Working Paper. Information Bank Number 1394.

    ERIC Educational Resources Information Center

    Cuthbert, Rob

    The matrix structure as an alternative to the departmental structure for colleges and universities is discussed, and the matrix system at Middlesex Polytechnic in England is used as illustration. The major impact of the introduction of a matrix structure is its effect on teaching activities within the institution. The matrix structure formally…

  11. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  12. Biofilm Matrix Proteins.

    PubMed

    Fong, Jiunn N C; Yildiz, Fitnat H

    2015-04-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

  13. AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma

    PubMed Central

    2013-01-01

    Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways. PMID:24047437

  14. Opportunity potential matrix for Atlantic Canadians

    Treesearch

    Greg Danchuk; Ed Thomson

    1992-01-01

    Opportunity for provision of Parks Service benefit to Atlantic Canadians was investigated by mapping travel behaviour into a matrix in terms of origin, season, purpose, distance, time, and destination. Findings identified potential for benefit in several activity areas, particularly within residents' own province.

  15. Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints

    PubMed Central

    Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Yoon, Tae Won; Hasty, Karen A.; Stuart, John M.; Yi, Ae-Kyung

    2016-01-01

    Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models. PMID:27231625

  16. Doxycycline reduces the expression and activity of matrix metalloproteinase-2 in the periodontal ligament of the rat incisor without altering the eruption process.

    PubMed

    Gomes, J R; Omar, N F; Neves, J D S; Novaes, P D

    2017-06-01

    Doxycycline is an antibiotic agent that inhibits the activity of matrix metalloproteinases (MMPs) present in the extracellular matrix. In this study, the rat incisor was submitted to a hypofunctional condition, and the effects of doxycycline (80 mg/kg/d) on the expression and activity of MMP-2, as well as on eruption rate, were determined in the odontogenic region and in the periodontal ligament for 14 d. Rats were distributed into four groups: normofunctional (NF); doxycyline normofunctional (DNF); hypofunctional (HP); and doxycyline hypofunctional (DHP). The left lower incisors of 10 rats were shortened every 2 d, using a high-rotation drill, to produce the HP and DHP groups, after starting doxycycline treatment (80 mg/kg) by gavage. Eruption was measured using a millimeter ocular, from the gingival margin to the top of the tooth in the HP and DHP groups, and also by a mark made in the tooth previously, in the NF and DNF groups. The hemimandibles were removed and the teeth were extracted to collect the periodontal and odontogenic tissues for immunohistochemical analyses and zymography. The eruption rates were higher in the HP and the DHP groups than in the NF and DNF groups, respectively (p < 0.05). In the odontogenic region, neither of the treatments changed the expression and activity of MMP-2. In the HP group, the shortening treatment decreased the expression, but not the activity, of MMP-2, while doxycycline was able to inhibit the increase of expression and activity of MMP-2. We conclude that the inhibition of MMP-2 by doxycycline, during incisor shortening, was not enough to alter the eruption rate, which suggests that MMP-2 may have an important role in the turnover of extracellular matrix of the periodontal ligament during the tooth-eruption process. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals.

    PubMed

    Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A

    2007-08-15

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  18. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    NASA Astrophysics Data System (ADS)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.

    2007-08-01

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  19. Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication

    DOE PAGES

    Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...

    2015-01-01

    The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less

  20. The dual personalities of matrix metalloproteinases in inflammation.

    PubMed

    Le, Nghia T V; Xue, Meilang; Castelnoble, Laura A; Jackson, Christopher J

    2007-01-01

    Collagen, gelatin, elastin, fibronectin, proteoglycans and vitronectin are just a few proteins which form the "mesh" that holds a multicellular organism together. The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade the extracellular matrix. Over several decades it has been clearly established that MMPs are the key molecules associated with matrix remodeling. The remodeling of this matrix is important for physiological and pathological processes such as pregnancy, wound repair, cancer and arthritis. The identification of new non-matrix MMP substrates involved in inflammation, highlights the diverse role of MMPs. These enzymes can enhance leukocyte invasion and regulate the inflammatory activity of serine proteases, cytokines and chemokines. Interestingly, the MMP family appears to have a "dual personality" in that several MMPs such as MMP-2 and -9 can favour either anti- or pro-inflammatory action, respectively. The extent of this dual functionality of MMPs is yet to be realized. Elucidating these processes may assist in the development of drugs for the treatment of inflammatory diseases such as arthritis, cancer and chronic wounds.

  1. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  2. Cytokine Response to Diet and Exercise Affects Atheromatous Matrix Metalloproteinase-2/9 Activity in Mice.

    PubMed

    Shon, Soo-Min; Jang, Hee Jeong; Schellingerhout, Dawid; Kim, Jeong-Yeon; Ryu, Wi-Sun; Lee, Su-Kyoung; Kim, Jiwon; Park, Jin-Yong; Oh, Ji Hye; Kang, Jeong Wook; Je, Kang-Hoon; Park, Jung E; Kim, Kwangmeyung; Kwon, Ick Chan; Lee, Juneyoung; Nahrendorf, Matthias; Park, Jong-Ho; Kim, Dong-Eog

    2017-09-25

    The aim of this study is to identify the principal circulating factors that modulate atheromatous matrix metalloproteinase (MMP) activity in response to diet and exercise.Methods and Results:Apolipoprotein-E knock-out (ApoE -/- ) mice (n=56) with pre-existing plaque, fed either a Western diet (WD) or normal diet (ND), underwent either 10 weeks of treadmill exercise or had no treatment. Atheromatous MMP activity was visualized using molecular imaging with a MMP-2/9 activatable near-infrared fluorescent (NIRF) probe. Exercise did not significantly reduce body weight, visceral fat, and plaque size in either WD-fed animals or ND-fed animals. However, atheromatous MMP-activity was different; ND animals that did or did not exercise had similarly low MMP activities, WD animals that did not exercise had high MMP activity, and WD animals that did exercise had reduced levels of MMP activity, close to the levels of ND animals. Factor analysis and path analysis showed that soluble vascular cell adhesion molecule (sVCAM)-1 was directly positively correlated to atheromatous MMP activity. Adiponectin was indirectly negatively related to atheromatous MMP activity by way of sVCAM-1. Resistin was indirectly positively related to atheromatous MMP activity by way of sVCAM-1. Visceral fat amount was indirectly positively associated with atheromatous MMP activity, by way of adiponectin reduction and resistin elevation. MMP-2/9 imaging of additional mice (n=18) supported the diet/exercise-related anti-atherosclerotic roles for sVCAM-1. Diet and exercise affect atheromatous MMP activity by modulating the systemic inflammatory milieu, with sVCAM-1, resistin, and adiponectin closely interacting with each other and with visceral fat.

  3. Summary of Granulation Matrix Testing for the Plutonium Immobilization Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, C.C.

    2001-10-19

    In FY00, a matrix for process development testing was created to identify those items related to the ceramic process that had not been fully developed or tested and to help identify variables that needed to be tested. This matrix, NMTP/IP-99-003, was jointly created between LLNL and SRTC and was issued to all affected individuals. The matrix was also used to gauge the progress of the development activities. As part of this matrix, several series of tests were identified for the granulation process. This summary provides the data and results from the granulation testing. The results of the granulation matrix testingmore » were used to identify the baseline process for testing in the PuCTF with cold surrogates in B241 at LLNL.« less

  4. Matrix metalloproteinases in acute coronary syndromes: current perspectives.

    PubMed

    Kampoli, Anna-Maria; Tousoulis, Dimitris; Papageorgiou, Nikolaos; Antoniades, Charalambos; Androulakis, Emmanuel; Tsiamis, Eleftherios; Latsios, George; Stefanadis, Christodoulos

    2012-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc metallo-endopeptidases secreted by cells and are responsible for much of the turnover of matrix components. Several studies have shown that MMPs are involved in all stages of the atherosclerotic process, from the initial lesion to plaque rupture. Recent evidence suggests that MMP activity may facilitate atherosclerosis, plaque destabilization, and platelet aggregation. In the heart, matrix metalloproteinases participate in vascular remodeling, plaque instability, and ventricular remodelling after cardiac injury. The aim of the present article is to review the structure, function, regulation of MMPs and to discuss their potential role in the pathogenesis of acute coronary syndromes, as well as their contribution and usefullness in the setting of the disease.

  5. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less

  6. Degradation of propyl paraben by activated persulfate using iron-containing magnetic carbon xerogels: investigation of water matrix and process synergy effects.

    PubMed

    Metheniti, Maria Evangelia; Frontistis, Zacharias; Ribeiro, Rui S; Silva, Adrián M T; Faria, Joaquim L; Gomes, Helder T; Mantzavinos, Dionissios

    2017-10-06

    An advanced oxidation process comprising an iron-containing magnetic carbon xerogel (CX/Fe) and persulfate was tested for the degradation of propyl paraben (PP), a contaminant of emerging concern, in various water matrices. Moreover, the effect of 20 kHz ultrasound or light irradiation on process performance was evaluated. The pseudo-first order degradation rate of PP was found to increase with increasing SPS concentration (25-500 mg/L) and decreasing PP concentration (1690-420 μg/L) and solution pH (9-3). Furthermore, the effect of water matrix on kinetics was detrimental depending on the complexity (i.e., wastewater, river water, bottled water) and the concentration of matrix constituents (i.e., humic acid, chloride, bicarbonate). The simultaneous use of CX/Fe and ultrasound as persulfate activators resulted in a synergistic effect, with the level of synergy (between 35 and 50%) depending on the water matrix. Conversely, coupling CX/Fe with simulated solar or UVA irradiation resulted in a cumulative effect in experiments performed in ultrapure water.

  7. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  8. Hospital acquired pneumonia with high-risk bacteria is associated with increased pulmonary matrix metalloproteinase activity

    PubMed Central

    Schaaf, Bernhard; Liebau, Cornelia; Kurowski, Volkhard; Droemann, Daniel; Dalhoff, Klaus

    2008-01-01

    Background Neutrophil products like matrix metalloproteinases (MMP), involved in bacterial defence mechanisms, possibly induce lung damage and are elevated locally during hospital- acquired pneumonia (HAP). In HAP the virulence of bacterial species is known to be different. The aim of this study was to investigate the influence of high-risk bacteria like S. aureus and pseudomonas species on pulmonary MMPconcentration in human pneumonia. Methods In 37 patients with HAP and 16 controls, MMP-8, MMP-9 and tissue inhibitors of MMP (TIMP) were analysed by ELISA and MMP-9 activity using zymography in bronchoalveolar lavage (BAL). Results MMP-9 activity in mini-BAL was increased in HAP patients versus controls (149 ± 41 vs. 34 ± 11, p < 0.0001). In subgroup analysis, the highest MMP concentrations and activity were seen in patients with high-risk bacteria: patients with high-risk bacteria MMP-9 1168 ± 266 vs. patients with low-risk bacteria 224 ± 119 ng/ml p < 0.0001, MMP-9 gelatinolytic activity 325 ± 106 vs. 67 ± 14, p < 0.0002. In addition, the MMP-8 and MMP-9 concentration was associated with the state of ventilation and systemic inflammatory marker like CRP. Conclusion Pulmonary MMP concentrations and MMP activity are elevated in patients with HAP. This effect is most pronounced in patients with high-risk bacteria. Artificial ventilation may play an additional role in protease activation. PMID:18700005

  9. A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A.

    PubMed

    Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A

    2017-02-01

    Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC 50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay. Published by Elsevier Ltd.

  10. Superior integrin activating capacity and higher adhesion to fibrinogen matrix in buffy coat-derived platelet concentrates (PCs) compared to PRP-PCs.

    PubMed

    Beshkar, Pezhman; Hosseini, Ehteramolsadat; Ghasemzadeh, Mehran

    2018-02-01

    Regardless of different sources, methods or devices which are applied for preparation of therapeutic platelets, these products are generally isolated from whole blood by the sedimentation techniques which are based on PRP or buffy coat (BC) separation. As a general fact, platelet preparation and storage are also associated with some deleterious changes that known as platelet storage lesion (PSL). Although these alternations in platelet functional activity are aggravated during storage, whether technical issues within preparation can affect integrin activation and platelet adhesion to fibrinogen were investigated in this study. PRP- and BC-platelet concentrates (PCs) were subjected to flowcytometry analysis to examine the expression of platelet activation marker, P-selectin as well as active confirmation of the GPIIb/IIIa (α IIb β 3 ) on day 0, 1, 3 and 5 post-storage. Platelet adhesion to fibrinogen matrix was evaluated by fluorescence microscopy. Glucose concentration and LDH activity were also measured by colorimetric methods. The increasing P-selectin expression during storage was in a reverse correlation with PAC-1 binding (r = -0.67; p = .001). PRP-PCs showed the higher level of P-selectin expression than BC-PCs, whereas the levels of PAC-1 binding and platelet adhesion to fibrinogen matrix were significantly lower in PRP-PCs. Higher levels of active confirmation of the GPIIb/IIIa in BC-PCs were also associated with greater concentration of glucose in these products. We demonstrated the superior capacities of integrin activation and adhesion to fibrinogen for BC-PCs compared to those of PRP-PCs. These findings may provide more advantages for BC method of platelet preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dimerization of Matrix Metalloproteinase-2 (MMP-2)

    PubMed Central

    Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik

    2012-01-01

    Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca2+ ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys102 and the neighboring Cys102. Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2. PMID:22577146

  12. Dynamic mechanical analysis of storage modulus development in light-activated polymer matrix composites.

    PubMed

    Sakaguchi, Ronald L; Shah, Nilam C; Lim, Bum Soon; Ferracane, Jack L; Borgersen, Svenn E

    2002-05-01

    The goal of this study was to evaluate the potential for using dynamic mechanical analysis of tubular geometry in a three-point flexure fixture for monitoring the storage modulus development of a light-activated polymer matrix composite. Composite samples were inserted into PTFE tubes and tested in a three-point bend fixture in a dynamic mechanical analyzer (DMA) at 200 Hz with 20 microm amplitude. Samples were light activated for 60s (385 mW/cm(2) at the composite surface) and storage modulus (E') was measured continuously for the seven light-activated composites studied (one microfill, four hybrids and two unfilled resins). Cores of composite were removed from the PTFE sheath after 13.5 min and evaluated with the same parameters in the DMA. A finite element model of the test configuration was created and used to estimate operating parameters for the DMA. Degree of conversion (DC) was measured using micro-Fourier Transform Infrared (FTIR) spectroscopy for the microfilled composite samples and one hybrid 13.5 and 60 min after light activation. The E' for a generic hybrid and microfilled composite was 13,400+/-1100 and 5900+/-200 MPa, respectively, when cured within the tube and then removed and tested in the DMA. DC was 54.6% for the hybrid and 60.6% for the microfill. A linear regression of E' for the sheath and core vs core alone (r(2)=0.986) indicated a linear scaling of the sheath and core values for E' enabling a correction for estimated E' values of the composite core. This method estimates the storage modulus growth during light-activated polymerization of highly filled dimethacrylates. Although the approach is phenomenological in that quantitative measurements of E' are not made directly from the DMA, estimates of early polymerization kinetics appear to be validated by three different approaches.

  13. Structured decomposition design of partial Mueller matrix polarimeters.

    PubMed

    Alenin, Andrey S; Scott Tyo, J

    2015-07-01

    Partial Mueller matrix polarimeters (pMMPs) are active sensing instruments that probe a scattering process with a set of polarization states and analyze the scattered light with a second set of polarization states. Unlike conventional Mueller matrix polarimeters, pMMPs do not attempt to reconstruct the entire Mueller matrix. With proper choice of generator and analyzer states, a subset of the Mueller matrix space can be reconstructed with fewer measurements than that of the full Mueller matrix polarimeter. In this paper we consider the structure of the Mueller matrix and our ability to probe it using a reduced number of measurements. We develop analysis tools that allow us to relate the particular choice of generator and analyzer polarization states to the portion of Mueller matrix space that the instrument measures, as well as develop an optimization method that is based on balancing the signal-to-noise ratio of the resulting instrument with the ability of that instrument to accurately measure a particular set of desired polarization components with as few measurements as possible. In the process, we identify 10 classes of pMMP systems, for which the space coverage is immediately known. We demonstrate the theory with a numerical example that designs partial polarimeters for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)10.1364/AO.46.008364APOPAI1559-128X]. We show that we can reduce the polarimeter to making eight measurements while still covering the Mueller matrix subspace spanned by the objects.

  14. Design process of a photonics network for military platforms

    NASA Astrophysics Data System (ADS)

    Nelson, George F.; Rao, Nagarajan M.; Krawczak, John A.; Stevens, Rick C.

    1999-02-01

    Technology development in photonics is rapidly progressing. The concept of a Unified Network will provide re- configurable network access to platform sensors, Vehicle Management Systems, Stores and avionics. The re-configurable taps into the network will accommodate present interface standards and provide scaleability for the insertion of future interfaces. Significant to this development is the design and test of the Optical Backplane Interconnect System funded by Naval Air Systems Command and developed by Lockheed Martin Tactical Defense Systems - Eagan. OBIS results in the merging of the electrical backplane and the optical backplane, with interconnect fabric and card edge connectors finally providing adequate electrical and optical card access. Presently OBIS will support 1.2 Gb/s per fiber over multiples of 12 fibers per ribbon cable.

  15. Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix.

    PubMed

    Smalyukh, Ivan I; Butler, John; Shrout, Joshua D; Parsek, Matthew R; Wong, Gerard C L

    2008-09-01

    DNA is a common extracellular matrix component of bacterial biofilms. We find that bacteria can spontaneously order in a matrix of aligned concentrated DNA, in which rod-shaped cells of Pseudomonas aeruginosa follow the orientation of extended DNA chains. The alignment of bacteria is ensured by elasticity and liquid crystalline properties of the DNA matrix. These findings show how behavior of planktonic bacteria may be modified in extracellular polymeric substances of biofilms and illustrate the potential of using complex fluids to manipulate embedded nanosized and microsized active particles.

  16. Matrix metalloproteinase activity in stifle synovial fluid of cranial cruciate ligament deficient dogs and effect of postoperative doxycycline treatment.

    PubMed

    Rabillard, M; Danger, R; Doran, I P; Niebauer, G W; Brouard, S; Gauthier, O

    2012-07-01

    This prospective clinical study investigated the activity of matrix metalloproteinases (MMPs) in stifle synovial fluid (SF) of 13 dogs with acute cranial cruciate ligament (CCL) rupture, and the effect of a postoperative doxycycline treatment. MMP-2, 3, 9 and 13 activities were compared with respect to the time of sampling (preoperatively or 1 month after surgical stabilisation) and the type of postoperative adjuvant treatment (doxycycline or not). No significant activity was detected for both MMP-3 and MMP-13. MMP-2 and MMP-9 activities were found to be significantly highly increased in SF of CCL ruptured stifles compared to control stifles of unaffected dogs. No significant effect from surgical stabilisation and postoperative doxycycline treatment on MMP-2 and MMP-9 activities was found, indicating that doxycycline may not be an appropriate postoperative medical treatment after CCL rupture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Matrix Interdiction Problem

    NASA Astrophysics Data System (ADS)

    Kasiviswanathan, Shiva Prasad; Pan, Feng

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove a set of k matrix columns that minimizes in the residual matrix the sum of the row values, where the value of a row is defined to be the largest entry in that row. This combinatorial problem is closely related to bipartite network interdiction problem that can be applied to minimize the probability that an adversary can successfully smuggle weapons. After introducing the matrix interdiction problem, we study the computational complexity of this problem. We show that the matrix interdiction problem is NP-hard and that there exists a constant γ such that it is even NP-hard to approximate this problem within an n γ additive factor. We also present an algorithm for this problem that achieves an (n - k) multiplicative approximation ratio.

  18. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis

    PubMed Central

    Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon

    2016-01-01

    The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931

  19. Spatially patterned matrix elasticity directs stem cell fate

    NASA Astrophysics Data System (ADS)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  20. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    PubMed Central

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198

  1. Cellular control of connective tissue matrix tension.

    PubMed

    Langevin, Helene M; Nedergaard, Maiken; Howe, Alan K

    2013-08-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. Copyright © 2013 Wiley Periodicals, Inc.

  2. Co-distribution of cysteine cathepsins and matrix metalloproteases in human dentin.

    PubMed

    Scaffa, Polliana Mendes Candia; Breschi, Lorenzo; Mazzoni, Annalisa; Vidal, Cristina de Mattos Pimenta; Curci, Rosa; Apolonio, Fabianni; Gobbi, Pietro; Pashley, David; Tjäderhane, Leo; Tersariol, Ivarne Luis Dos Santos; Nascimento, Fábio Dupart; Carrilho, Marcela Rocha

    2017-02-01

    It has been hypothesized that cysteine cathepsins (CTs) along with matrix metalloproteases (MMPs) may work in conjunction in the proteolysis of mature dentin matrix. The aim of this study was to verify simultaneously the distribution and presence of cathepsins B (CT-B) and K (CT-K) in partially demineralized dentin; and further to evaluate the activity of CTs and MMPs in the same tissue. The distribution of CT-B and CT-K in sound human dentin was assessed by immunohistochemistry. A double-immunolabeling technique was used to identify, at once, the occurrence of those enzymes in dentin. Activities of CTs and MMPs in dentin extracts were evaluated spectrofluorometrically. In addition, in situ gelatinolytic activity of dentin was assayed by zymography. The results revealed the distribution of CT-B and CT-K along the dentin organic matrix and also indicated co-occurrence of MMPs and CTs in that tissue. The enzyme kinetics studies showed proteolytic activity in dentin extracts for both classes of proteases. Furthermore, it was observed that, at least for sound human dentin matrices, the activity of MMPs seems to be predominant over the CTs one. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  4. Assessment of Matrix Metalloproteinases by Gelatin Zymography.

    PubMed

    Cathcart, Jillian

    2016-01-01

    Matrix metalloproteinases are endopeptidases responsible for remodeling of the extracellular matrix and have been identified as critical contributors to breast cancer progression. Gelatin zymography is a valuable tool which allows the analysis of MMP expression. In this approach, enzymes are resolved electrophoretically on a sodium dodecyl sulfate-polyacrylamide gel copolymerized with the substrate for the MMP of interest. Post electrophoresis, the enzymes are refolded in order for proteolysis of the incorporated substrate to occur. This assay yields valuable information about MMP isoforms or changes in activation and can be used to analyze the role of MMPs in normal versus pathological conditions.

  5. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    PubMed

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Limitation of Cell Adhesion by the Elasticity of the Extracellular Matrix

    PubMed Central

    Nicolas, Alice; Safran, Samuel. A.

    2006-01-01

    Cell/matrix adhesions are modulated by cytoskeletal or external stresses and adapt to the mechanical properties of the extracellular matrix. We propose that this mechanosensitivity arises from the activation of a mechanosensor located within the adhesion itself. We show that this mechanism accounts for the observed directional growth of focal adhesions and the reduction or even cessation of their growth when cells adhere to a soft extracellular matrix. We predict quantitatively that both the elasticity and the thickness of the matrix play a key role in the dynamics of focal adhesions. Two different types of dynamics are expected depending on whether the thickness of the matrix is of order of or much larger than the adhesion size. In the latter situation, we predict that the adhesion region reaches a saturation size that can be tuned by the mechanical properties of the matrix. PMID:16581840

  7. Influence of irradiation on the osteoinductive potential of demineralized bone matrix.

    PubMed

    Wientroub, S; Reddi, A H

    1988-04-01

    Samples of demineralized bone matrix (DBM) were exposed to graduated doses of radiation (1-15 Megarad) (Mrad) utilizing a linear accelerator and then implanted into the thoracic region of Long-Evans rats. Subcutaneous implantation of DBM into allogenic rats induces endochondral bone. In response to matrix implantation, a cascade of events ensues; mesenchymal cell proliferation on day 3 postimplantation, chondrogenesis on day 7, calcification of the cartilagenous matrix and chondrolysis on day 9, and osteogenesis on day 11 resulting in formation of an ossicle containing active hemopoietic tissue. Bone formation was assessed by measuring alkaline phosphatase activity, the rate of mineralization was determined by measuring 45Ca incorporation to bone mineral, and 40Ca content measured the extent of mineralization; acid phosphatase activity was used as a parameter for bone resorption. The dose of radiation (2.5 Mrad) currently used by bone banks for sterilization of bone tissue did not destroy the bone induction properties of DBM. Furthermore, radiation of 3-5 Mrad even enhanced bone induction, insofar as it produced more bone at the same interval of time than was obtained from unirradiated control samples. None of the radiation doses used in these experiments abolished bone induction, although the response induced by matrix irradiated with doses higher than 5 Mrad was delayed.

  8. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts.

    PubMed

    Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk

    2016-06-01

    Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Modification of natural matrix lac-bagasse for matrix composite films

    NASA Astrophysics Data System (ADS)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  10. Modeling for Matrix Multicracking Evolution of Cross-ply Ceramic-Matrix Composites Using Energy Balance Approach

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.

  11. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  12. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization.

    PubMed

    Guan, Pei-Pei; Yu, Xin; Guo, Jian-Jun; Wang, Yue; Wang, Tao; Li, Jia-Yi; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-04-20

    Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis.

  13. Matrix differentiation formulas

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.; Tkhabisimov, D. K.

    1983-01-01

    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  14. A generalized graph-theoretical matrix of heterosystems and its application to the VMV procedure.

    PubMed

    Mozrzymas, Anna

    2011-12-14

    The extensions of generalized (molecular) graph-theoretical matrix and vector-matrix-vector procedure are considered. The elements of the generalized matrix are redefined in order to describe molecules containing heteroatoms and multiple bonds. The adjacency, distance, detour and reciprocal distance matrices of heterosystems, and corresponding vectors are derived from newly defined generalized graph matrix. The topological indices, which are most widely used in predicting physicochemical and biological properties/activities of various compounds, can be calculated from the new generalized vector-matrix-vector invariant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The spatiotemporal MEG covariance matrix modeled as a sum of Kronecker products.

    PubMed

    Bijma, Fetsje; de Munck, Jan C; Heethaar, Rob M

    2005-08-15

    The single Kronecker product (KP) model for the spatiotemporal covariance of MEG residuals is extended to a sum of Kronecker products. This sum of KP is estimated such that it approximates the spatiotemporal sample covariance best in matrix norm. Contrary to the single KP, this extension allows for describing multiple, independent phenomena in the ongoing background activity. Whereas the single KP model can be interpreted by assuming that background activity is generated by randomly distributed dipoles with certain spatial and temporal characteristics, the sum model can be physiologically interpreted by assuming a composite of such processes. Taking enough terms into account, the spatiotemporal sample covariance matrix can be described exactly by this extended model. In the estimation of the sum of KP model, it appears that the sum of the first 2 KP describes between 67% and 93%. Moreover, these first two terms describe two physiological processes in the background activity: focal, frequency-specific alpha activity, and more widespread non-frequency-specific activity. Furthermore, temporal nonstationarities due to trial-to-trial variations are not clearly visible in the first two terms, and, hence, play only a minor role in the sample covariance matrix in terms of matrix power. Considering the dipole localization, the single KP model appears to describe around 80% of the noise and seems therefore adequate. The emphasis of further improvement of localization accuracy should be on improving the source model rather than the covariance model.

  16. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  17. Optimal matrix rigidity for stress fiber polarization in stem cells

    PubMed Central

    Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-01-01

    The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity of their environment; the physical mechanisms involved are unknown. A theoretical model and experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular forces that develop in response to matrix stresses. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem cell differentiation on tissue elasticity. PMID:20563235

  18. The Bushido Matrix for Couple Communication

    ERIC Educational Resources Information Center

    Li, Chi-Sing; Lin, Yu-Fen; Ginsburg, Phil; Eckstein, Daniel

    2012-01-01

    The concept of Japanese Bushido and its seven virtues were introduced by the authors in this article for the practice and application of couple communication. The Bushido Matrix Worksheet (BMW) was created for enhancing couple's awareness and understanding of each other's values and experiences. An activity and a case study to demonstrate the use…

  19. The symmetries of the system matrix and propagator matrix for anisotropic media and of the system matrix forperiodically layered media

    NASA Astrophysics Data System (ADS)

    Xu, Guo-Ming; Ni, Si-Dao

    1998-11-01

    The `auxiliary' symmetry properties of the system matrix (symmetry with respect to the trailing diagonal) for a general anisotropic dissipative medium and the special form for a monoclinic medium are revealed by rearranging the motion-stress vector. The propagator matrix of a single-layer general anisotropic dissipative medium is also shown to have auxiliary symmetry. For the multilayered case, a relatively simple matrix method is utilized to obtain the inverse of the propagator matrix. Further, Woodhouse's inverse of the propagator matrix for a transversely isotropic medium is extended in a clearer form to handle the monoclinic symmetric medium. The properties of a periodic layer system are studied through its system matrix Aly , which is computed from the propagator matrix P. The matrix Aly is then compared with Aeq , the system matrix for the long-wavelength equivalent medium of the periodic isotropic layers. Then we can find how the periodic layered medium departs from its long-wavelength equivalent medium when the wavelength decreases. In our numerical example, the results show that, when λ/D decreases to 6-8, the components of the two matrices will depart from each other. The component ratio of these two matrices increases to its maximum (more than 15 in our numerical test) when λ/D is reduced to 2.3, and then oscillates with λ/D when it is further reduced. The eigenvalues of the system matrix Aly show that the velocities of P and S waves decrease when λ/D is reduced from 6-8 and reach their minimum values when λ/D is reduced to 2.3 and then oscillate afterwards. We compute the time shifts between the peaks of the transmitted waves and the incident waves. The resulting velocity curves show a similar variation to those computed from the eigenvalues of the system matrix Aly , but on a smaller scale. This can be explained by the spectrum width of the incident waves.

  20. Chondrites: The Compaction of Fine Matrix and Matrix-like Chondrule Rims

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.

    1995-09-01

    Primitive chondritic meteorites mainly consist of chondrules, sulfide+/-metal, and fine-grained matrix. The most unequilibrated chondrites preserve in their phase compositions and, to a lesser degree, their textures, many details about processes that occurred in the solar nebula. On the other hand, much of the textural evidence records processes that occurred in or on the parent body. I suggest that the low-porosity of chondrule matrix and matrix-like rims reflects compaction processes that occurred in asteroid-size bodies, and that neither matrix lumps nor compact matrix-like rims on chondrules could have achieved their observed low porosities in the solar nebula. Recent theoretical studies by Donn and Meakin (1) and Chokshi et al. (2) have concluded that grain-grain sticking in the solar nebula mainly produces fluffy structures having very high porosities (probably >>50%). If these structures grow large enough, they can provide an aerogel-like matrix that can trap chondrules as well as metal and sulfide grains, and thus form suitable precursors of chondritic meteorites. However, the strength of any such structure formed in the solar nebula must be a trivial fraction of that required to survive passage through the Earth's atmosphere in order to fall as a meteorite. The best evidence of accretionary structures appears to be that reported by Metzler et al. (3). They made SEM images of entire thin sections of CM chondrites, and showed that, in the best preserved chondrites, rims are present on all entitities--on chondrules, chondrule fragments, refractory inclusions, etc. A study by Krot and Wasson (4) shows a more complex situation in ordinary chondrites. Although matrix is common, a sizable fraction of chondrules are not surrounded by matrix-like rims. As summarized by Rubin and Krot (1995), there are reports of small textural and compositional differences between matrix lumps and mean matrix-like chondrule rims, but there is so much overlap in properties between

  1. Biosensing of matrix metalloproteinase activity with Cd-free quantum dots

    NASA Astrophysics Data System (ADS)

    Plumley, John Bryan

    Quantum dots (QDs) have become attractive in the biomedical field on account of their superior optical properties and stability, in comparison to traditional fluorophores. QDs also have properties which make them ideal for complex in vivo conditions. However, toxicity has been a chief concern in the eventual implementation of QDs for in vivo applications such as biosensing and tumor imaging. Commercially available QDs contain a notoriously noxious Cd component and therefore continuous research has gone into developing QDs without toxic heavy metals, generally Cd, that would still yield comparable performance in terms of their optical properties. Nonetheless, even in the case of Cd-free QDs, toxicity should be evaluated on a case by case basis, as other properties such as size, coating, stability, and charge can affect toxicity of nanomaterials as well, making it a very complex issue. With the high promise of QDs in the field of biomedical development as a motivation, this work strives to develop the efficient and repeatable synthesis of Cd-free QDs with high stability and luminescence, with proven low toxicity, and the ability to detect active matrix metalloproteinase (MMP) in a biosensing system, designed to identify direct biomarkers for pathological conditions, which in turn would enable early disease diagnosis and better treatment development. In this work, highly luminescent ZnSe:Mn/ZnS QDs have been synthesized, characterized, and modified with peptides with a bioconjugation procedure that utilized thiol-metal affinity. Experiments aiming at MMP detection were conducted using the peptide/QD conjugates. In addition, the ApoTox-Glo(TM) Triplex assay was utilized to evaluate cytotoxicity, and a safe concentration below 0.125 microM was identified for peptide-coated ZnSe:Mn/ZnS QDs in water. Finally, in contribution to developing an in vivo fiberoptic system for sensing MMP activity, the QDs were successfully tethered to silica and MMP detection was demonstrated

  2. Elastase and matrix metalloproteinase activities are associated with pulmonary vascular disease in the nitrofen rat model of congenital diaphragmatic hernia.

    PubMed

    Wild, Benjamin; St-Pierre, Marie-Eve; Langlois, Stéphanie; Cowan, Kyle N

    2017-05-01

    Pulmonary vascular disease (PVD) is a leading cause of congenital diaphragmatic hernia (CDH) mortality. Progression of PVD involves extracellular matrix remodeling by elastases and matrix metalloproteinases (MMP), concomitant with proliferation of smooth muscle cells in a growth factor-enriched environment. Blockade of this pathway reversed primary pulmonary hypertension and improved survival. This study was designed to determine whether a similar pathway is induced in PVD secondary to CDH. Fetal rats exposed to nitrofen at gestational day 9 developed left-sided CDH and were compared at term to their non-CDH littermates by assessing histologic and biochemical features of PVD. Rats with CDH displayed right ventricle hypertrophy, increased pulmonary artery medial wall thickness and muscularization, and decreased lumen size. As revealed by in situ zymography and immunohistochemistry, this was associated with an induction of elastolytic and MMP activities as well as an elevation of epidermal growth factor and osteopontin levels in the diseased lung vasculature. CDH-associated PVD involves an induction of elastase and MMP activities and increased osteopontin deposition in an epidermal growth factor-rich environment. Inhibition of this pathway may thus represent a novel therapeutic approach for the treatment of CDH-associated PVD. Level I (Basic Science Study). Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    PubMed

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  4. Suppression of TFT leakage current effect on active matrix displays by employing a new circular switch

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hoon; Park, Hyun-Sang; Jeon, Jae-Hong; Han, Min-Koo

    2008-03-01

    We have proposed a new poly-Si TFT pixel, which can suppress TFT leakage current effect on active matrix organic diode (AMOLED) displays, by employing a new circular switching TFT and additional signal line for compensating the leakage current. When the leakage current of switching TFT is increased, the VGS of the current driving TFT in the proposed pixel is not altered by the variable data voltages due to the circular switching TFT. Our simulation results show that OLED current variation of the proposed pixel can be suppressed less than 3%, while that of conventional pixel exceeds 30%. The proposed pixel may be suitable to suppress the leakage current effect on AMOLED display.

  5. Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Rajamanickam, Sivasankaran; Trott, Christian Robert

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  6. Studies of matrix vesicle-induced mineralization in a gelatin gel

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  7. A high efficiency readout architecture for a large matrix of pixels.

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Giorgi, F.; Villa, M.

    2010-07-01

    In this work we present a fast readout architecture for silicon pixel matrix sensors that has been designed to sustain very high rates, above 1 MHz/mm2 for matrices greater than 80k pixels. This logic can be implemented within MAPS (Monolithic Active Pixel Sensors), a kind of high resolution sensor that integrates on the same bulk the sensor matrix and the CMOS logic for readout, but it can be exploited also with other technologies. The proposed architecture is based on three main concepts. First of all, the readout of the hits is performed by activating one column at a time; all the fired pixels on the active column are read, sparsified and reset in parallel in one clock cycle. This implies the use of global signals across the sensor matrix. The consequent reduction of metal interconnections improves the active area while maintaining a high granularity (down to a pixel pitch of 40 μm). Secondly, the activation for readout takes place only for those columns overlapping with a certain fired area, thus reducing the sweeping time of the whole matrix and reducing the pixel dead-time. Third, the sparsification (x-y address labeling of the hits) is performed with a lower granularity with respect to single pixels, by addressing vertical zones of 8 pixels each. The fine-grain Y resolution is achieved by appending the zone pattern to the zone address of a hit. We show then the benefits of this technique in presence of clusters. We describe this architecture from a schematic point of view, then presenting the efficiency results obtained by VHDL simulations.

  8. Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Jung, Myoung Hoon; Choi, Inho; Chung, Hoon-Ju; Kim, Ohyun

    2008-11-01

    A new digital driving method has been developed for low-temperature polycrystalline silicon, transistor-driven, active-matrix organic light-emitting diode (AM-OLED) displays by time-ratio gray-scale expression. This driving method effectively increases the emission ratio and the number of subfields by inserting another subfield set into nondisplay periods in the conventional digital driving method. By employing the proposed modified gravity center coding, this method can be used to effectively compensate for dynamic false contour noise. The operation and performance were verified by current measurement and image simulation. The simulation results using eight test images show that the proposed approach improves the average peak signal-to-noise ratio by 2.61 dB, and the emission ratio by 20.5%, compared with the conventional digital driving method.

  9. Embedded Touch Sensing Circuit Using Mutual Capacitance for Active-Matrix Organic Light-Emitting Diode Display

    NASA Astrophysics Data System (ADS)

    Park, Young-Ju; Seok, Su-Jeong; Park, Sang-Ho; Kim, Ohyun

    2011-03-01

    We propose and simulate an embedded touch sensing circuit for active-matrix organic light-emitting diode (AMOLED) displays. The circuit consists of three thin-film transistors (TFTs), one fixed capacitor, and one variable capacitor. AMOLED displays do not have a variable capacitance characteristic, so we realized a variable capacitor to detect touches in the sensing pixel by exploiting the change in the mutual capacitance between two electrodes that is caused by touch. When a dielectric substance approaches two electrodes, the electric field is shunted so that the mutual capacitance decreases. We use the existing TFT process to form the variable capacitor, so no additional process is needed. We use advanced solid-phase-crystallization TFTs because of their stability and uniformity. The proposed circuit detects multi-touch points by a scanning process.

  10. Driving technology for improving motion quality of active-matrix organic light-emitting diode display

    NASA Astrophysics Data System (ADS)

    Kim, Jongbin; Kim, Minkoo; Kim, Jong-Man; Kim, Seung-Ryeol; Lee, Seung-Woo

    2014-09-01

    This paper reports transient response characteristics of active-matrix organic light emitting diode (AMOLED) displays for mobile applications. This work reports that the rising responses look like saw-tooth waveform and are not always faster than those of liquid crystal displays. Thus, a driving technology is proposed to improve the rising transient responses of AMOLED based on the overdrive (OD) technology. We modified the OD technology by combining it with a dithering method because the conventional OD method cannot successfully enhance all the rising responses. Our method can improve all the transitions of AMOLED without modifying the conventional gamma architecture of drivers. A new artifact is found when OD is applied to certain transitions. We propose an optimum OD selection method to mitigate the artifact. The implementation results show the proposed technology can successfully improve motion quality of scrolling texts as well as moving pictures in AMOLED displays.

  11. The structure of cell-matrix adhesions: the new frontier.

    PubMed

    Hanein, Dorit; Horwitz, Alan Rick

    2012-02-01

    Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells.

    PubMed

    Akhmedov, Dmitry; Braun, Matthias; Mataki, Chikage; Park, Kyu-Sang; Pozzan, Tullio; Schoonjans, Kristina; Rorsman, Patrik; Wollheim, Claes B; Wiederkehr, Andreas

    2010-11-01

    Glucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic β cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic β cell. Here, we have tested whether mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in the rat β-cell line INS-1E. Acidification of the mitochondrial matrix pH by nigericin blunted nutrient-dependent respiratory and ATP responses (continuously monitored in intact cells). Using electrophysiology and single cell imaging, we find that the associated defects in energy metabolism suppress glucose-stimulated plasma membrane electrical activity and cytosolic calcium transients. The same parameters were unaffected after direct stimulation of electrical activity with tolbutamide, which bypasses mitochondrial function. Furthermore, lowered matrix pH strongly inhibited sustained, but not first-phase, insulin secretion. Our results demonstrate that the matrix pH exerts a control function on oxidative phosphorylation in intact cells and that this mode of regulation is of physiological relevance for the generation of downstream signals leading to insulin granule exocytosis. We propose that matrix pH serves a novel signaling role in sustained cell activation.

  13. Structural requirements for bone sialoprotein binding and modulation of matrix metalloproteinase-2.

    PubMed

    Jain, Alka; Karadag, Abdullah; Fisher, Larry W; Fedarko, Neal S

    2008-09-23

    Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2's propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation.

  14. Suppression of activation energy and superconductivity by the addition of Al{sub 2}O{sub 3} nanoparticles in CuTl-1223 matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabbar, Abdul; Qasim, Irfan; Mumtaz, M.

    2014-05-28

    Low anisotropic (Cu{sub 0.5}Tl{sub 0.5})Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10−δ} (CuTl-1223) high T{sub c} superconducting matrix was synthesized by solid-state reaction and Al{sub 2}O{sub 3} nanoparticles were prepared separately by co-precipitation method. Al{sub 2}O{sub 3} nanoparticles were added with different concentrations during the final sintering cycle of CuTl-1223 superconducting matrix to get the required (Al{sub 2}O{sub 3}){sub y}/CuTl-1223, y = 0.0, 0.5, 0.7, 1.0, and 1.5 wt. %, composites. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and dc-resistivity (ρ) measurements. The activation energy and superconductivity were suppressed with increasing concentration of Al{sub 2}O{sub 3} nanoparticles in (CuTl-1223) matrix.more » The XRD analysis showed that the addition of Al{sub 2}O{sub 3} nanoparticles did not affect the crystal structure of the parent CuTl-1223 superconducting phase. The suppression of activation energy and superconducting properties is most probably due to weak flux pinning in the samples. The possible reason of weak flux pinning is reduction of weak links and enhanced inter-grain coupling due to the presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries. The presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries possibly reduced the number of flux pinning centers, which were present in the form of weak links in the pure CuTl-1223 superconducting matrix. The increase in the values of inter-grain coupling (α) deduced from the fluctuation induced conductivity analysis with the increased concentration of Al{sub 2}O{sub 3} nanoparticles is a theoretical evidence of improved inter-grain coupling.« less

  15. Corrosion of Titanium Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increasedmore » with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.« less

  16. Structural properties of matrix metalloproteinases.

    PubMed

    Bode, W; Fernandez-Catalan, C; Tschesche, H; Grams, F; Nagase, H; Maskos, K

    1999-04-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap.

  17. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  18. Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix

    NASA Astrophysics Data System (ADS)

    Caldwell, Kathleen L.; Murray, Kermit K.

    1998-05-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained using a water and glycerol matrix with a tunable mid-infrared optical parametric oscillator. The matrix consists of a 1:1 mixture of water and glycerol deposited on a thin layer of nitrocellulose and cooled to -30°C. When exposed to vacuum, most of the water evaporates, leaving a matrix of glycerol with residual water. The peptide bradykinin and the protein bovine insulin were used to test this new matrix. Mass spectra were obtained for bradykinin between 2.76 and 3.1 μm with the maximum analyte signal at 2.8 μm. Mass resolution in excess of 2000 for bradykinin and 500 for insulin was obtained with delayed ion extraction and a linear time of flight mass spectrometer. The addition of nitrocellulose to the matrix resulted in exceptionally durable samples: more than 10,000 laser shots which produced analyte signal could be obtained from a single sample spot.

  19. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED).

    PubMed

    Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng

    2014-01-01

    A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10(-3) A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 10(4) and output current up to 3.5 × 10(-4) A at V(scan) = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.

  20. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tamarixetin 3-O-β-d-Glucopyranoside from Azadirachta indica Leaves: Gastroprotective Role through Inhibition of Matrix Metalloproteinase-9 Activity in Mice.

    PubMed

    Yadav, Dharmendra K; Bharitkar, Yogesh P; Hazra, Abhijit; Pal, Uttam; Verma, Sugreev; Jana, Sayantan; Singh, Umesh P; Maiti, Nakul C; Mondal, Nirup B; Swarnakar, Snehasikta

    2017-05-26

    Neem (Azadirachta indica) is a well-known medicinal and insecticidal plant. Although previous studies have reported the antiulcer activity of neem leaf extract, the lead compound is still unidentified. The present study reports tamarixetin 3-O-β-d-glucopyranoside (1) from a methanol extract of neem leaves and its gastroprotective activity in an animal model. Compound 1 showed significant protection against indomethacin-induced gastric ulceration in mice in a dose-dependent manner. Moreover, ex vivo and circular dichroism studies confirmed that 1 inhibited the enzyme matrix metalloproteinase-9 (MMP-9) activity with an IC 50 value of ca. 50 μM. Molecular docking and dynamics showed the binding of 1 into the pocket of the active site of MMP-9, forming a coordination complex with the catalytic zinc, thus leading to inhibition of MMP-9 activity.

  2. Engineering a collagen matrix that replicates the biological properties of native extracellular matrix.

    PubMed

    Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio

    2011-01-01

    In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.

  3. The glycogen metabolism via Akt signaling is important for the secretion of enamel matrix in tooth development.

    PubMed

    Ida-Yonemochi, Hiroko; Otsu, Keishi; Ohshima, Hayato; Harada, Hidemitsu

    2016-02-01

    Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3β and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  5. Method of forming a ceramic matrix composite and a ceramic matrix component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Diego, Peter; Zhang, James

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  6. Teaching the extracellular matrix and introducing online databases within a multidisciplinary course with i-cell-MATRIX: A student-centered approach.

    PubMed

    Sousa, João Carlos; Costa, Manuel João; Palha, Joana Almeida

    2010-03-01

    The biochemistry and molecular biology of the extracellular matrix (ECM) is difficult to convey to students in a classroom setting in ways that capture their interest. The understanding of the matrix's roles in physiological and pathological conditions study will presumably be hampered by insufficient knowledge of its molecular structure. Internet-available resources can bridge the division between the molecular details and ECM's biological properties and associated processes. This article presents an approach to teach the ECM developed for first year medical undergraduates who, working in teams: (i) Explore a specific molecular component of the matrix, (ii) identify a disease in which the component is implicated, (iii) investigate how the component's structure/function contributes to ECM' supramolecular organization in physiological and in pathological conditions, and (iv) share their findings with colleagues. The approach-designated i-cell-MATRIX-is focused on the contribution of individual components to the overall organization and biological functions of the ECM. i-cell-MATRIX is student centered and uses 5 hours of class time. Summary of results and take home message: A "1-minute paper" has been used to gather student feedback on the impact of i-cell-MATRIX. Qualitative analysis of student feedback gathered in three consecutive years revealed that students appreciate the approach's reliance on self-directed learning, the interactivity embedded and the demand for deeper insights on the ECM. Learning how to use internet biomedical resources is another positive outcome. Ninety percent of students recommend the activity for subsequent years. i-cell-MATRIX is adaptable by other medical schools which may be looking for an approach that achieves higher student engagement with the ECM. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  7. Thioredoxin-1 Selectively Activates Transglutaminase 2 in the Extracellular Matrix of the Small Intestine

    PubMed Central

    Plugis, Nicholas M.; Palanski, Brad A.; Weng, Chih-Hisang; Albertelli, Megan; Khosla, Chaitan

    2017-01-01

    Transglutaminase 2 (TG2) catalyzes transamidation or deamidation of its substrates and is ordinarily maintained in a catalytically inactive state in the intestine and other organs. Aberrant TG2 activity is thought to play a role in celiac disease, suggesting that a better understanding of TG2 regulation could help to elucidate the mechanistic basis of this malady. Structural and biochemical analysis has led to the hypothesis that extracellular TG2 activation involves reduction of an allosteric disulfide bond by thioredoxin-1 (TRX), but cellular and in vivo evidence for this proposal is lacking. To test the physiological relevance of this hypothesis, we first showed that macrophages exposed to pro-inflammatory stimuli released TRX in sufficient quantities to activate their extracellular pools of TG2. By using the C35S mutant of TRX, which formed a metastable mixed disulfide bond with TG2, we demonstrated that these proteins specifically recognized each other in the extracellular matrix of fibroblasts. When injected into mice and visualized with antibodies, we observed the C35S TRX mutant bound to endogenous TG2 as its principal protein partner in the small intestine. Control experiments showed no labeling of TG2 knock-out mice. Intravenous administration of recombinant TRX in wild-type mice, but not TG2 knock-out mice, led to a rapid rise in intestinal transglutaminase activity in a manner that could be inhibited by small molecules targeting TG2 or TRX. Our findings support the potential pathophysiological relevance of TRX in celiac disease and establish the Cys370–Cys371 disulfide bond of TG2 as one of clearest examples of an allosteric disulfide bond in mammals. PMID:28003361

  8. Ultrastructure and biological function of matrix vesicles in bone mineralization.

    PubMed

    Hasegawa, Tomoka

    2018-04-01

    Bone mineralization is initiated by matrix vesicles, small extracellular vesicles secreted by osteoblasts, inducing the nucleation and subsequent growth of calcium phosphate crystals inside. Although calcium ions (Ca 2+ ) are abundant throughout the tissue fluid close to the matrix vesicles, the influx of phosphate ions (PO4 3- ) into matrix vesicles is a critical process mediated by several enzymes and transporters such as ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ankylosis (ANK), and tissue nonspecific alkaline phosphatase (TNSALP). The catalytic activity of ENPP1 in osteoblasts generates inorganic pyrophosphate (PPi) intracellularly and extracellularly, and ANK may allow the intracellular PPi to pass through the plasma membrane to the outside of the osteoblasts. Although the extracellular PPi binds to growing hydroxyapatite crystals to prevent crystal overgrowth, TNSALP on the osteoblasts and matrix vesicles hydrolyzes PPi into PO4 3- monomers: the prevention of crystal growth is blocked, and PO4 3- monomers are supplied to matrix vesicles. In addition, PHOSPHO1 is thought to function inside matrix vesicles to catalyze phosphocoline, a constituent of the plasma membrane, consequently increasing PO4 3- in the vesicles. Accumulation of Ca 2+ and PO4 3- inside the matrix vesicles then initiates crystalline nucleation associated with the inner leaflet of the matrix vesicles. Calcium phosphate crystals elongate radially, penetrate the matrix vesicle's membrane, and finally grow out of the vesicles to form calcifying nodules, globular assemblies of needle-shaped mineral crystals retaining some of those transporters and enzymes. The subsequent growth of calcifying nodules appears to be regulated by surrounding organic compounds, finally leading to collagen mineralization.

  9. WeaselBoard :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, John C.; Schwartz, Moses Daniel; Berg, Michael J.

    2013-10-01

    Critical infrastructures, such as electrical power plants and oil refineries, rely on programmable logic controllers (PLCs) to control essential processes. State of the art security cannot detect attacks on PLCs at the hardware or firmware level. This renders critical infrastructure control systems vulnerable to costly and dangerous attacks. WeaselBoard is a PLC backplane analysis system that connects directly to the PLC backplane to capture backplane communications between modules. WeaselBoard forwards inter-module traffic to an external analysis system that detects changes to process control settings, sensor values, module configuration information, firmware updates, and process control program (logic) updates. WeaselBoard provides zero-daymore » exploit detection for PLCs by detecting changes in the PLC and the process. This approach to PLC monitoring is protected under U.S. Patent Application 13/947,887.« less

  10. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  11. Active matrix organic light emitting diode (OLED)-XL life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier

    2008-04-01

    OLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. As a result of this need, the US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to improve the lifetime of OLED displays. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications, and RDECOM CERDEC NVESD ran life tests on these displays, finding over 200% lifetime improvement for the XL devices over the standard displays. Early results were published at the 2007 SPIE Defense and Security Symposium. Further life testing of XL and standard devices at ambient conditions and at high temperatures will be presented this year along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed. This is a continuation of the paper "Life test results of OLED-XL long-life devices for use in active matrix organic light emitting diode (AMOLED) displays for head mounted applications" presented at SPIE DSS in 2007.

  12. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization.

    PubMed

    Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H

    1998-04-01

    Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.

  13. Effect of cannabidiol on human gingival fibroblast extracellular matrix metabolism: MMP production and activity, and production of fibronectin and transforming growth factor β.

    PubMed

    Rawal, S Y; Dabbous, M Kh; Tipton, D A

    2012-06-01

    Marijuana (Cannabis sativa) use may be associated with gingival enlargement, resembling that caused by phenytoin. Cannabidiol (CBD), a nonpsychotropic Cannabis derivative, is structurally similar to phenytoin. While there are many reports on effects of phenytoin on human gingival fibroblasts, there is no information on effects of Cannabis components on these cells. The objective of this study was to determine effects of CBD on human gingival fibroblast fibrogenic and matrix-degrading activities. Fibroblasts were incubated with CBD in serum-free medium for 1-6 d. The effect of CBD on cell viability was determined by measuring activity of a mitochondrial enzyme. The fibrogenic molecule transforming growth factor β and the extracellular matrix molecule fibronectin were measured by ELISA. Pro-MMP-1 and total MMP-2 were measured by ELISA. Activity of MMP-2 was determined via a colorimetric assay in which a detection enzyme is activated by active MMP-2. Data were analysed using ANOVA and Scheffe's F procedure for post hoc comparisons. Cannabidiol had little or no significant effect on cell viability. Low CBD concentrations increased transforming growth factor β production by as much as 40% (p < 0.001), while higher concentrations decreased it by as much as 40% (p < 0.0001). Cannabidiol increased fibronectin production by as much as approximately 100% (p < 0.001). Lower CBD concentrations increased MMP production, but the highest concentrations decreased production of both MMPs (p < 0.05) and decreased MMP-2 activity (p < 0.02). The data suggest that the CBD may promote fibrotic gingival enlargement by increasing gingival fibroblast production of transforming growth factor β and fibronectin, while decreasing MMP production and activity. © 2011 John Wiley & Sons A/S.

  14. Preliminary Results From the First Flight of ATIC: The Silicon Matrix

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Ahn, H. S.; Bashindzhagyan, G.; Ampe, J.; Case, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) uses a silicon matrix detector in conjunction with a scintillator hodoscope to determine the incident cosmic ray's charge. Cosmic rays that interact in a carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO crystals. The silicon matrix consists of 4480 individual silicon pads, each capable of measuring the signal from cosmic rays with atomic numbers from I to 26. Preliminary results will be presented describing the performance of the silicon matrix during the 16-day maiden flight of ATIC around Antarctica.

  15. Preliminary Results from the First Flight of ATIC: The Silicon Matrix

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) uses a silicon matrix detector to determine charge in conjunction with a scintillator hodoscope that measures charge and trajectory. Cosmic rays that interact in a carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO crystals. The silicon matrix consists of 4480 individual silicon pads, each capable of measuring the signal from cosmic rays with atomic numbers from 1 to 26. Preliminary results will be presented describing the performance of the silicon matrix during the 16-day maiden flight of ATIC around Antarctica.

  16. Damping Characteristics of Metal Matrix Composites

    DTIC Science & Technology

    1989-05-25

    DAMPING OF METAL MATRIX COMPOSITES - -.......... 7-1 7.1 EPERIMENTAL PROCEDURE .............................................................. 7-1 7.2 M...space structures (LSS). A critical design concern for LSS is suppression of vibrations, caused by onboard and hostile threat-related disturbances during...acquisi- tion pointing and tracing (APT) phases of maneuvering. Various active and passive control mea- sures can be incorporated in the designs of

  17. Modeling extracellular matrix degradation balance with proteinase/transglutaminase cycle.

    PubMed

    Larreta-Garde, Veronique; Berry, Hugues

    2002-07-07

    Extracellular matrix mass balance is implied in many physiological and pathological events, such as metastasis dissemination. Widely studied, its destructive part is mainly catalysed by extracellular proteinases. Conversely, the properties of the constructive part are less obvious, cellular neo-synthesis being usually considered as its only element. In this paper, we introduce the action of transglutaminase in a mathematical model for extracellular matrix remodeling. This extracellular enzyme, catalysing intermolecular protein cross-linking, is considered here as a reverse proteinase as far as the extracellular matrix physical state is concerned. The model is based on a proteinase/transglutaminase cycle interconverting insoluble matrix and soluble proteolysis fragments, with regulation of cellular proteinase expression by the fragments. Under "closed" (batch) conditions, i.e. neglecting matrix influx and fragment efflux from the system, the model is bistable, with reversible hysteresis. Extracellular matrix proteins concentration abruptly switches from low to high levels when transglutaminase activity exceeds a threshold value. Proteinase concentration usually follows the reverse complementary kinetics, but can become apparently uncoupled from extracellular matrix concentration for some parameter values. When matrix production by the cells and fragment degradation are taken into account, the dynamics change to sustained oscillations because of the emergence of a stable limit cycle. Transitions out of and into oscillation areas are controlled by the model parameters. Biological interpretation indicates that these oscillations could represent the normal homeostatic situation, whereas the other exhibited dynamics can be related to pathologies such as tumor invasion or fibrosis. These results allow to discuss the insights that the model could contribute to the comprehension of these complex biological events.

  18. Non-invasive detection of matrix-metalloproteinase activity in a mouse model of cerebral ischemia using multispectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Ni, Ruiqing; Vaas, Markus; Ren, Wuwei; Klohs, Jan

    2018-02-01

    Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of cerebral ischemia. Here we visualized in vivo MMP activity in the transient middle cerebral artery occlusion (tMCAO) mouse model using multispectral optoacoustic imaging (MSOT) with a MMP-activatable probe. MSOT data was co-registered with structural magnetic resonance imaging (MRI) obtained at 7 T for localization of signal distribution. We demonstrated upregulated MMP signal within the focal ischemic lesion in the tMCAO mouse model using MSOT/MRI multimodal imaging. This convenient non-invasive method will allow repetitive measurement following the time course of MMP-lesion development in ischemic stroke animal model.

  19. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well.

  20. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    PubMed

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  1. D-MATRIX: A web tool for constructing weight matrix of conserved DNA motifs

    PubMed Central

    Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok

    2009-01-01

    Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D­MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co­regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos­box cis­regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D­MATRIX tool is accessible through the CIMAP domain network. Availability http://203.190.147.116/dmatrix/ PMID:19759861

  2. D-MATRIX: a web tool for constructing weight matrix of conserved DNA motifs.

    PubMed

    Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok

    2009-07-27

    Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D-MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co-regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos-box cis-regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D-MATRIX tool is accessible through the CIMAP domain network. http://203.190.147.116/dmatrix/

  3. Structural Requirements For Bone Sialoprotein Binding And Modulation Of Matrix Metalloproteinase-2

    PubMed Central

    Jain, Alka; Karadag, Abdullah; Fisher, Larry W.; Fedarko, Neal S.

    2008-01-01

    Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2′s propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation. PMID:18729384

  4. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization

    PubMed Central

    Guan, Pei-Pei; Yu, Xin; Guo, Jian-Jun; Wang, Yue; Wang, Tao; Li, Jia-Yi; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-01-01

    Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis. PMID:25823818

  5. Matrix mechanics controls FHL2 movement to the nucleus to activate p21 expression

    PubMed Central

    Nakazawa, Naotaka; Sathe, Aneesh R.; Shivashankar, G. V.; Sheetz, Michael P.

    2016-01-01

    Substrate rigidity affects many physiological processes through mechanochemical signals from focal adhesion (FA) complexes that subsequently modulate gene expression. We find that shuttling of the LIM domain (domain discovered in the proteins, Lin11, Isl-1, and Mec-3) protein four-and-a-half LIM domains 2 (FHL2) between FAs and the nucleus depends on matrix mechanics. In particular, on soft surfaces or after the loss of force, FHL2 moves from FAs into the nucleus and concentrates at RNA polymerase (Pol) II sites, where it acts as a transcriptional cofactor, causing an increase in p21 gene expression that will inhibit growth on soft surfaces. At the molecular level, shuttling requires a specific tyrosine in FHL2, as well as phosphorylation by active FA kinase (FAK). Thus, we suggest that FHL2 phosphorylation by FAK is a critical, mechanically dependent step in signaling from soft matrices to the nucleus to inhibit cell proliferation by increasing p21 expression. PMID:27742790

  6. Calreticulin--an endoplasmic reticulum protein with calcium-binding activity is also found in the extracellular matrix.

    PubMed

    Somogyi, Eszter; Petersson, Ulrika; Hultenby, Kjell; Wendel, Mikael

    2003-04-01

    Previous studies have reported that calreticulin (CRT), a calcium-binding and chaperoning protein, is expressed only in the endoplasmatic reticulum, nucleus and at the cell surface. In this study we clearly show that odontoblasts and predentin matrix contain CRT. To our knowledge, this is the first time CRT has been described in the extracellular matrix. The expression of CRT was studied by immunohistochemistry, ultrastructural immunocytochemistry and in situ hybridization in developing rat teeth. CRT was detected as a 59-kDa protein in rat pulp cell culture medium and dentin extracellular matrix extract by Western blotting. The presence of the protein was shown in rat odontoblasts and predentin with immunohistochemistry. At the ultrastructural level, the labeling was distributed in the rat odontoblasts, ameloblasts and predentin. Northern blotting showed the presence of CRT mRNA in rat molars, which was confirmed by in situ hybridization in odontoblasts and ameloblasts. We now present the first convincing evidence that CRT is found in extracellular matrix where it may play an important role in mineralization.

  7. Membrane-type matrix metalloproteases as diverse effectors of cancer progression.

    PubMed

    Turunen, S Pauliina; Tatti-Bugaeva, Olga; Lehti, Kaisa

    2017-11-01

    Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Matrix metalloproteinase and heparin-stimulated serine proteinase activities in post-prostate massage urine of men with prostate cancer.

    PubMed

    Muñoz, David; Serrano, Maria K; Hernandez, Maria E; Haller, Ross; Swanson, Tamara; Slaton, Joel W; Sinha, Akhouri A; Wilson, Michael J

    2017-12-01

    Proteinases secreted by the prostate gland have a reproductive function in cleaving proteins in the ejaculate and in the female reproductive tract, but some may have a fundamental role in disease and pathological processes including cancer. The purpose of this study was to determine if there were differences in proteinase activities in urine samples collected following prostate massage of men positive (CaP) or negative (no evidence of malignancy, NEM) for biopsy determined prostate cancer. Matrix metalloproteinase (MMP) and serine proteinase activities were detected using protein substrate zymography. There were no differences in activities of MMP-2, proMMP-9, and MMP-9/NGAL (neutrophil gelatinase associated lipocalin) complex (gelatin substrate) in men with detected prostate cancer, although the latter two were somewhat diminished. A caseinolytic activity of about 75kDa inhibited by calcium did not differ between the NEM and CaP groups. Heparin stimulated calcium sensitive gelatinolytic activities of approximately 22, 42, and 60kDa, but did not affect activities of MMP-2, MMP-9, or the 75kDa caseinolytic activity. The 22, 42, and 60kDa activities appear to be serine proteinases since they were inhibited by benzamidine. There was a significant decrease in the 22kDa heparin-stimulated serine proteinase activity in urines of men with cancer. Proteinase expression and activities, perhaps in combination with other potential markers, may prove useful in urine for detection and evaluation of prostate cancer. Copyright © 2017. Published by Elsevier Inc.

  9. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  10. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  11. Semicarbazide-sensitive amine oxidase and extracellular matrix deposition by smooth-muscle cells

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.; Trent, Margaret B.; Boor, Paul J.

    2002-01-01

    We have recently reported in vivo disruption of collagen and elastin architecture within blood vessel walls resulting from the selective inhibition of the enzyme semicarbazide-sensitive amine oxidase (SSAO). This study further investigates the effects of SSAO inhibition on extracellular matrix deposition by smooth-muscle cells (SMCs) cultured from neonatal rat hearts. SMCs were characterized, SSAO activity was measured, and soluble and insoluble collagen and elastin in the extracellular matrix (ECM) were quantified. Cultured neonatal rat heart SMC exhibited a monotypic synthetic phenotype that likely represents a myofibroblast. Detectable levels of SSAO activity present throughout 30-d culture peaked at 7-14 d, coinciding with the production of ECM. The addition of enzyme inhibitors and alternate SSAO substrates (benzylamine) produced varied and, in some cases, marked changes in SSAO activity as well as in the composition of mature and soluble matrix components. Similar to our previous in vivo findings, in vitro SSAO inhibition produced aberrations in collagen and elastin deposition by heart SMC. Because changes in SSAO activity are associated with cardiovascular pathologic states, this enzyme may play a protective or modulating role by regulating ECM production during pathologic insult.

  12. Nuclear Matrix Association: Switching to the Invasive Cytotrophoblast

    PubMed Central

    Drennan, Kathryn J.; Linnemann, Amelia K.; Platts, Adrian E.; Heng, Henry H.; Armant, D. Randall; Krawetz, Stephen A.

    2010-01-01

    Abnormal trophoblast invasion is associated with the most common and most severe complications of human pregnancy. The biology of invasion, as well as the etiology of abnormal invasion remains poorly understood. The aim of this study was to characterize the transcriptome of the HTR-8/SVneo human cytotrophoblast cell line which displays well characterized invasive and non-invasive behavior, and to correlate the activity of the transcriptome with nuclear matrix attachment and cell phenotype. Comparison of the invasive to non-invasive HTR transcriptomes was unremarkable. In contrast, comparison of the MARs on chromosomes 14–18 revealed an increased number of MARs associated with the invasive phenotype. These attachment areas were more likely to be associated with silent rather than actively transcribed genes. This study supports that view that that nuclear matrix attachment may play an important role in cytotrophoblast invasion by ensuring specific silencing that facilitates invasion. PMID:20346505

  13. A colinear backscattering Mueller matrix microscope for reflection Muller matrix imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Yao, Yue; Zhu, Yuanhuan; Ma, Hui

    2018-02-01

    In a recent attempt, we developed a colinear backscattering Mueller matrix microscope by adding polarization state generator (PSG) and polarization state analyzer (PSA) into the illumination and detection optical paths of a commercial metallurgical microscope. It is found that specific efforts have to be made to reduce the artifacts due to the intrinsic residual polarizations of the optical system, particularly the dichroism due to the 45 degrees beam splitter. In this paper, we present a new calibration method based on numerical reconstruction of the instrument matrix to remove the artifacts introduced by beam splitter. Preliminary tests using a mirror as a standard sample show that the maximum Muller matrix element error of the colinear backscattering Muller matrix microscope can be reduced to a few percent.

  14. Metal-matrix radiation-protective composite materials based on aluminum

    NASA Astrophysics Data System (ADS)

    Cherdyntsev, V. V.; Gorshenkov, M. V.; Danilov, V. D.; Kaloshkin, S. D.; Gul'bin, V. N.

    2013-05-01

    A method of mechanical activation providing a homogeneous distribution of reinforcing boron-bearing components and tungsten nanopowder in the matrix is recommended for making an aluminum-based radiation- protective material. Joint mechanical activation and subsequent extrusion are used to produce aluminum- based composites. The structure and the physical, mechanical and tribological characteristics of the composite materials are studied.

  15. Ceramic matrix composite behavior -- Computational simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamis, C.C.; Murthy, P.L.N.; Mital, S.K.

    Development of analytical modeling and computational capabilities for the prediction of high temperature ceramic matrix composite behavior has been an ongoing research activity at NASA-Lewis Research Center. These research activities have resulted in the development of micromechanics based methodologies to evaluate different aspects of ceramic matrix composite behavior. The basis of the approach is micromechanics together with a unique fiber substructuring concept. In this new concept the conventional unit cell (the smallest representative volume element of the composite) of micromechanics approach has been modified by substructuring the unit cell into several slices and developing the micromechanics based equations at themore » slice level. Main advantage of this technique is that it can provide a much greater detail in the response of composite behavior as compared to a conventional micromechanics based analysis and still maintains a very high computational efficiency. This methodology has recently been extended to model plain weave ceramic composites. The objective of the present paper is to describe the important features of the modeling and simulation and illustrate with select examples of laminated as well as woven composites.« less

  16. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms.

    PubMed

    Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto

    2010-05-18

    Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed.

  17. KinD Is a Checkpoint Protein Linking Spore Formation to Extracellular-Matrix Production in Bacillus subtilis Biofilms

    PubMed Central

    Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto

    2010-01-01

    ABSTRACT Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed. PMID:20689749

  18. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  19. Jones matrix polarization-correlation mapping of biological crystals networks

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Vanchuliak, O.; Motrich, A. V.; Gorsky, M. P.; Meglinskiy, I.; Marchuk, Yu. F.

    2017-08-01

    It has been proposed the optical model of Jones-matrix description of mechanisms of optical anisotropy of polycrystalline films of human bile, namely optical activity and birefringence. The algorithm of reconstruction of distributions of parameters - optical rotation angles and phase shifts of the indicated anisotropy types has been elaborated. The objective criteria of differentiation of bile films taken from healthy donors and patients with cholelithiasis by means of statistic analysis of such distributions have been determined. The operational characteristics (sensitivity, specificity and accuracy) of Jones-matrix reconstruction method of optical anisotropy parameters were defined.

  20. Structure and evolutionary aspects of matrix metalloproteinases: a brief overview.

    PubMed

    Das, Sudip; Mandal, Malay; Chakraborti, Tapati; Mandal, Amritlal; Chakraborti, Sajal

    2003-11-01

    The matrix metalloproteinases (MMPs) are zinc dependent endopeptidases known for their ability to cleave one or several extracellular matrix (ECM) constituents, as well as non-matrix proteins. They comprise a large family of proteinases that share common structural and functional elements and are products of different genes. All members of this family contain a signal peptide, a propeptide and a catalytic domain. The catalytic domain contains two zinc ions and at least one calcium ion coordinated to various residues. All MMPs, with the exception matrilysin, have a hemopexin/vitronectin-like domain that is connected to the catalytic domain by a hinge or linker region. The hemopexin-like domain influences tissue inhibitor of metalloproteinases (TIMP) binding, the binding of certain substrates, membrane activation, and some proteolytic activities. It has been proposed that the origin of MMPs could be traced to before the emergence of vertebrates from invertebrates. It appears conceivable that the domain assemblies occurred at an early stage of the diversification of different MMPs and that they progressed through the evolutionary process independent of one another, and perhaps parallel to each other.

  1. Epigallocatechin-3-gallate ameliorates intrahepatic cholestasis of pregnancy by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Zhang, Mei; Xu, Meimei

    2017-10-01

    Matrix metalloproteinase (MMP)-2 and matrix metalloproteinase-9 are involved in many illnesses affecting pregnant women, including intrahepatic cholestasis of pregnancy (ICP), a serious liver abnormality during pregnancy. Epigallocatechin-3-gallate (EGCG) has been widely reported to inhibit activities of MMP-2 and MMP-9. We aimed to investigate the role of EGCG in ameliorating ICP symptoms in a rat model. Using 17α-ethinylestradiol to induce ICP in pregnant rats, we investigated the efficacy of EGCG administration on ICP symptoms, including bile flow rate, total bile acids (TBA) and MMP-2 and MMP-9 activities. Correlation study was conducted among levels of the two MMPs with other ICP symptoms. In ICP rats, activities of both MMP-2 and MMP-9 were significantly elevated. EGCG administration could inhibit the upregulation of MMP-2 and MMP-9 post-transcriptionally. Furthermore, EGCG ameliorated ICP symptoms, as evidenced by restored bile flow rate and TBA, showing efficient treatment outcomes. At last, levels of TBA and the two MMPs were found to be strongly correlated. Our study demonstrates that, for the first time, the efficacy of EGCG in ameliorating ICP symptoms by inhibiting both MMP-2 and MMP-9, which supports its potential as a novel drug in ameliorating ICP. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  2. Geometric control of capillary architecture via cell-matrix mechanical interactions.

    PubMed

    Sun, Jian; Jamilpour, Nima; Wang, Fei-Yue; Wong, Pak Kin

    2014-03-01

    Capillary morphogenesis is a multistage, multicellular activity that plays a pivotal role in various developmental and pathological situations. In-depth understanding of the regulatory mechanism along with the capability of controlling the morphogenic process will have direct implications on tissue engineering and therapeutic angiogenesis. Extensive research has been devoted to elucidate the biochemical factors that regulate capillary morphogenesis. The roles of geometric confinement and cell-matrix mechanical interactions on the capillary architecture, nevertheless, remain largely unknown. Here, we show geometric control of endothelial network topology by creating physical confinements with microfabricated fences and wells. Decreasing the thickness of the matrix also results in comparable modulation of the network architecture, supporting the boundary effect is mediated mechanically. The regulatory role of cell-matrix mechanical interaction on the network topology is further supported by alternating the matrix stiffness by a cell-inert PEG-dextran hydrogel. Furthermore, reducing the cell traction force with a Rho-associated protein kinase inhibitor diminishes the boundary effect. Computational biomechanical analysis delineates the relationship between geometric confinement and cell-matrix mechanical interaction. Collectively, these results reveal a mechanoregulation scheme of endothelial cells to regulate the capillary network architecture via cell-matrix mechanical interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma.

    PubMed

    Lyons, A J; Jones, J

    2007-08-01

    Carcinomas are characterized by invasion of malignant cells into the underlying connective tissue and migration of malignant cells to form metastases at distant sites. These processes require alterations in cell-cell and cell-extracellular matrix interactions. As cell adhesion molecules play a role in cell-cell and cell-extracellular matrix adhesion and interactions they are involved in the process of tumour invasion and metastases. In epithelial tissues, receptors of the integrin family mediate adhesion to the adjacent matrix whereas cadherins largely mediate intercellular adhesion. These and other cell adhesion molecules such as intercellular adhesion molecule-1, CD44, dystroglycans and selectins, are involved and undergo changes in carcinomas, which provide possible targets for anti-cancer drug treatments. In the extracellular matrix that is associated with tumours, laminin 5, oncofetal fibronectin and tenascin C appear. The degree of expression of some of these moieties indicates prognosis in oral cancer and offer targets for antibody-directed radiotherapy. Metalloproteases which degrade the extracellular matrix are increased in carcinomas, and their activity is necessary for tumour angiogenesis and consequent invasion and metastases. Metalloprotease inhibitors have begun to produce decreases in mortality in clinical trials. This report provides a brief overview of our current understanding of cell adhesion molecules, the extracellular matrix, tumour invasion and metastasis.

  4. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  5. Whey peptide Isoleucine-Tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta.

    PubMed

    Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas

    2016-08-01

    Aortic stiffness is an independent risk factor for development of cardiovascular diseases. Activation of renin-angiotensin-aldosterone system (RAAS) including angiotensin converting enzyme (ACE) activity leads to overproduction of angiotensin II (ANGII) from its precursor angiotensin I (ANGI). ANGII leads to overexpression and activation of matrix metalloproteinase-2 (MMP2), which is critically associated with pathophysiology of aortic stiffness. We previously reported that the whey peptide Isoleucine-Tryptophan (IW) acts as a potent ACE inhibitor. Herein, we critically elucidate the mechanism of action by which IW causes inhibition of expression and activity of MMP2 in aortic tissue. Effects of IW on expression and activity of MMP2 were assessed on endothelial and smooth muscle cells (ECs and SMCs) in vitro and ex vivo (isolated rat aorta). As controls we used the pharmaceutical ACE inhibitor - captopril and the ANGII type 1 receptor blocker - losartan. In vitro, both ANGII and ANGI stimulation significantly (P<0.01) increased expression of MMP2 assessed with western blot. Similarly, to captopril IW significantly (P<0.05) inhibited ANGI, but not ANGII mediated increase in expression of MMP2, while losartan also blocked effects of ANGII. Signaling pathways regulating MMP2 expression in ECs and SMCs were similarly inhibited after treatment with IW or captopril. In ECs IW significantly (P<0.05) inhibited JNK pathway, whereas in SMCs JAK2/STAT3 pathway, assessed with western blot. In vitro findings were fully consistent with results in isolated rat aorta ex vivo. Moreover, IW not only inhibited the MMP2 expression, but also its activation assessed with gelatin zymography. Our findings demonstrate that IW effectively inhibits expression and activation of MMP2 in rat aorta by decreasing local conversion of ANGI to ANGII. Thus, similar to pharmaceutical ACE inhibitor captopril the dipeptide IW may effectively inhibit ACE activity and prevent the age and hypertension

  6. Matrix metalloproteinases and epidermal wound repair.

    PubMed

    Martins, Vera L; Caley, Matthew; O'Toole, Edel A

    2013-02-01

    Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell-cell and cell-matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.

  7. Anti-proteolytic capacity and bonding durability of proanthocyanidin-biomodified demineralized dentin matrix

    PubMed Central

    Liu, Rui-Rui; Fang, Ming; Zhang, Ling; Tang, Cheng-Fang; Dou, Qi; Chen, Ji-Hua

    2014-01-01

    Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin (PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability. PMID:24810807

  8. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    PubMed

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  9. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  10. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  11. Matrix Metalloproteinase-3 (MMP-3) Is an Endogenous Activator of the MMP-9 Secreted by Placental Leukocytes: Implication in Human Labor.

    PubMed

    Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Castillo-Castrejon, Marisol; Meraz-Cruz, Noemi; Beltran-Montoya, Jorge; Zaga-Clavellina, Veronica; Nava-Salazar, Sonia; Sanchez-Martinez, Maribel; Vadillo-Ortega, Felipe; Estrada-Gutierrez, Guadalupe

    2015-01-01

    The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. In this work we confirm that placental leukocytes from human term

  12. A new fracture mechanics model for multiple matrix cracks of SiC fiber reinforced brittle-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okabe, T.; Takeda, N.; Komotori, J.

    1999-11-26

    A new model is proposed for multiple matrix cracking in order to take into account the role of matrix-rich regions in the cross section in initiating crack growth. The model is used to predict the matrix cracking stress and the total number of matrix cracks. The model converts the matrix-rich regions into equivalent penny shape crack sizes and predicts the matrix cracking stress with a fracture mechanics crack-bridging model. The estimated distribution of matrix cracking stresses is used as statistical input to predict the number of matrix cracks. The results show good agreement with the experimental results by replica observations.more » Therefore, it is found that the matrix cracking behavior mainly depends on the distribution of matrix-rich regions in the composite.« less

  13. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  14. Identification of matrix metalloproteinase inhibitors by chemical arrays.

    PubMed

    Kawatani, Makoto; Fukushima, Yukako; Kondoh, Yasumitsu; Honda, Kaori; Sekine, Tomomi; Yamaguchi, Yoshiki; Taniguchi, Naoyuki; Osada, Hiroyuki

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade many extracellular matrix components and that have been implicated in the pathogenesis of various human diseases including cancer metastasis. Here, we screened MMP-9 inhibitors using photo-cross-linked chemical arrays, which can detect small-molecule ligand-protein interactions on a chip in a high-throughput manner. The array slides were probed sequentially with His-MMP-9, anti-His antibody, and a Cy5-labeled secondary antibody and then scanned with a microarray scanner. We obtained 27 hits among 24,275 compounds from the NPDepo library; 2 of the identified compounds (isoxazole compound 1 and naphthofluorescein) inhibited MMP-9 enzyme activity in vitro. We further explored 17 analogs of 1 and found that compound 18 had the strongest inhibitory activity. Compound 18 also inhibited other MMPs, including MMP-2, MMP-12, and MMP-13 and significantly inhibited cell migration in human fibrosarcoma HT1080 cells. These results suggest that 18 is a broad-spectrum MMP inhibitor.

  15. Valsartan attenuates pulmonary hypertension via suppression of mitogen activated protein kinase signaling and matrix metalloproteinase expression in rodents.

    PubMed

    Lu, Yuyan; Guo, Haipeng; Sun, Yuxi; Pan, Xin; Dong, Jia; Gao, Di; Chen, Wei; Xu, Yawei; Xu, Dachun

    2017-08-01

    It has previously been demonstrated that the renin-angiotensin system is involved in the pathogenesis and development of pulmonary hypertension (PH). However, the efficacy of angiotensin II type I (AT1) receptor blockers in the treatment of PH is variable. The present study examined the effects of the AT1 receptor blocker valsartan on monocrotaline (MCT)‑induced PH in rats and chronic hypoxia‑induced PH in mice. The results demonstrated that valsartan markedly attenuated development of PH in rats and mice, as indicated by reduced right ventricular systolic pressure, diminished lung vascular remodeling and decreased right ventricular hypertrophy, compared with vehicle treated animals. Immunohistochemical analyses of proliferating cell nuclear antigen expression revealed that valsartan suppressed smooth muscle cell proliferation. Western blot analysis demonstrated that valsartan limited activation of p38, c‑Jun N‑terminal kinase 1/2 and extracellular signal‑regulated kinase 1/2 signaling pathways and significantly reduced MCT‑induced upregulation of pulmonary matrix metalloproteinases‑2 and ‑9, and transforming growth factor‑β1 expression. The results suggested that valsartan attenuates development of PH in rodents by reducing expression of extracellular matrix remodeling factors and limiting smooth muscle cell proliferation to decrease pathological vascular remodeling. Therefore, valsartan may be a valuable future therapeutic approach for the treatment of PH.

  16. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.

    PubMed

    Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J

    2017-06-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and

  17. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro

    PubMed Central

    Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.

    2017-01-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and

  18. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara

    2005-02-15

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment asmore » compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7{sup HIGH}-polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium.« less

  19. Identification of regional activation by factorization of high-density surface EMG signals: A comparison of Principal Component Analysis and Non-negative Matrix factorization.

    PubMed

    Gallina, Alessio; Garland, S Jayne; Wakeling, James M

    2018-05-22

    In this study, we investigated whether principal component analysis (PCA) and non-negative matrix factorization (NMF) perform similarly for the identification of regional activation within the human vastus medialis. EMG signals from 64 locations over the VM were collected from twelve participants while performing a low-force isometric knee extension. The envelope of the EMG signal of each channel was calculated by low-pass filtering (8 Hz) the monopolar EMG signal after rectification. The data matrix was factorized using PCA and NMF, and up to 5 factors were considered for each algorithm. Association between explained variance, spatial weights and temporal scores between the two algorithms were compared using Pearson correlation. For both PCA and NMF, a single factor explained approximately 70% of the variance of the signal, while two and three factors explained just over 85% or 90%. The variance explained by PCA and NMF was highly comparable (R > 0.99). Spatial weights and temporal scores extracted with non-negative reconstruction of PCA and NMF were highly associated (all p < 0.001, mean R > 0.97). Regional VM activation can be identified using high-density surface EMG and factorization algorithms. Regional activation explains up to 30% of the variance of the signal, as identified through both PCA and NMF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reductionmore » in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.« less

  1. Regularized matrix regression

    PubMed Central

    Zhou, Hua; Li, Lexin

    2014-01-01

    Summary Modern technologies are producing a wealth of data with complex structures. For instance, in two-dimensional digital imaging, flow cytometry and electroencephalography, matrix-type covariates frequently arise when measurements are obtained for each combination of two underlying variables. To address scientific questions arising from those data, new regression methods that take matrices as covariates are needed, and sparsity or other forms of regularization are crucial owing to the ultrahigh dimensionality and complex structure of the matrix data. The popular lasso and related regularization methods hinge on the sparsity of the true signal in terms of the number of its non-zero coefficients. However, for the matrix data, the true signal is often of, or can be well approximated by, a low rank structure. As such, the sparsity is frequently in the form of low rank of the matrix parameters, which may seriously violate the assumption of the classical lasso. We propose a class of regularized matrix regression methods based on spectral regularization. A highly efficient and scalable estimation algorithm is developed, and a degrees-of-freedom formula is derived to facilitate model selection along the regularization path. Superior performance of the method proposed is demonstrated on both synthetic and real examples. PMID:24648830

  2. Matrix Transfer Function Design for Flexible Structures: An Application

    NASA Technical Reports Server (NTRS)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  3. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression

    PubMed Central

    Liu, Fei; Mih, Justin D.; Shea, Barry S.; Kho, Alvin T.; Sharif, Asma S.; Tager, Andrew M.

    2010-01-01

    Tissue stiffening is a hallmark of fibrotic disorders but has traditionally been regarded as an outcome of fibrosis, not a contributing factor to pathogenesis. In this study, we show that fibrosis induced by bleomycin injury in the murine lung locally increases median tissue stiffness sixfold relative to normal lung parenchyma. Across this pathophysiological stiffness range, cultured lung fibroblasts transition from a surprisingly quiescent state to progressive increases in proliferation and matrix synthesis, accompanied by coordinated decreases in matrix proteolytic gene expression. Increasing matrix stiffness strongly suppresses fibroblast expression of COX-2 (cyclooxygenase-2) and synthesis of prostaglandin E2 (PGE2), an autocrine inhibitor of fibrogenesis. Exogenous PGE2 or an agonist of the prostanoid EP2 receptor completely counteracts the proliferative and matrix synthetic effects caused by increased stiffness. Together, these results demonstrate a dominant role for normal tissue compliance, acting in part through autocrine PGE2, in maintaining fibroblast quiescence and reveal a feedback relationship between matrix stiffening, COX-2 suppression, and fibroblast activation that promotes and amplifies progressive fibrosis. PMID:20733059

  4. Regulated Production of Mineralization-competent Matrix Vesicles in Hypertrophic Chondrocytes

    PubMed Central

    Kirsch, Thorsten; Nah, Hyun-Duck; Shapiro, Irving M.; Pacifici, Maurizio

    1997-01-01

    Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro–osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that

  5. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  6. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration.

    PubMed

    Kutys, Matthew L; Yamada, Kenneth M

    2014-09-01

    Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.

  7. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity.

    PubMed

    Ma, Qingyu; Liu, Qiuming; Yuan, Ling; Zhuang, Yongliang

    2018-03-28

    A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  8. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity

    PubMed Central

    Ma, Qingyu; Liu, Qiuming; Yuan, Ling; Zhuang, Yongliang

    2018-01-01

    A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities. PMID:29597313

  9. Charge retention characteristics of silicide-induced crystallized polycrystalline silicon floating gate thin-film transistors for active matrix organic light-emitting diode.

    PubMed

    Park, Jae Hyo; Son, Se Wan; Byun, Chang Woo; Kim, Hyung Yoon; Joo, So Na; Lee, Yong Woo; Yun, Seung Jae; Joo, Seung Ki

    2013-10-01

    In this work, non-volatile memory thin-film transistor (NVM-TFT) was fabricated by nickel silicide-induced laterally crystallized (SILC) polycrystalline silicon (poly-Si) as the active layer. The nickel seed silicide-induced crystallized (SIC) poly-Si was used as storage layer which is embedded in the gate insulator. The novel unit pixel of active matrix organic light-emitting diode (AMOLED) using NVM-TFT is proposed and investigated the electrical and optical performance. The threshold voltage shift showed 17.2 V and the high reliability of retention characteristic was demonstrated until 10 years. The retention time can modulate the recharge refresh time of the unit pixel of AMOLED up to 5000 sec.

  10. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  11. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    NASA Astrophysics Data System (ADS)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  12. Proinflammatory cytokine activities, matrix metalloproteinase-3 activity, and sulfated glycosaminoglycan content in synovial fluid of dogs with naturally acquired cranial cruciate ligament rupture.

    PubMed

    Fujita, Yukihiro; Hara, Yasushi; Nezu, Yoshinori; Schulz, Kurt S; Tagawa, Masahiro

    2006-06-01

    To measure and compare activities of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and matrix metalloproteinase-3 (MMP-3); as well as sulfated glycosaminoglycan (S-GAG) content in synovial fluid from dogs with cranial cruciate ligament rupture (CCLR) and dogs with clinically normal stifles. To determine whether correlations exist between demographic and disease-related variables and these synovial markers. Prospective clinical study. Dogs with CCLR (n=23) and Beagles with normal stifle joints (n=21). Synovial fluid activities of proinflammatory cytokines (IL-1beta, IL-6, and TNF-alpha) were determined by bioassay. MMP-3 activity was measured using fluorogenic substrate. S-GAG contents were determined by dimethylmethylene blue dye-binding assay. Mann-Whitney U-test was used to compare results from CCLR joints with normal controls. Spearman's rank correlation test was used to evaluate associations between demographic and disease-related markers and synovial markers. Mean values for synovial markers were significantly higher in CCLR joints compared with controls. IL-1beta and MMP-3 were positively correlated with lameness duration. Activities of proinflammatory cytokines, MMP-3 activity and S-GAG contents were significantly elevated in synovial fluid from canine stifle joints with naturally acquired CCLR. These results indicate that there is joint inflammation and increased release of GAGs into synovial fluid, suggesting that these inflammatory changes are associated with depletion of proteoglycan from articular cartilage. Medical and surgical treatments designed to decrease joint inflammation and breakdown of proteoglycans may be of value in the management of CCLR in the dog.

  13. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    PubMed

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A compact integrated device for spatially selective optogenetic neural stimulation based on the Utah Optrode Array

    NASA Astrophysics Data System (ADS)

    Scharf, Robert; Reiche, Christopher F.; McAlinden, Niall; Cheng, Yunzhou; Xie, Enyuan; Sharma, Rohit; Tathireddy, Prashant; Rieth, Loren; Mathieson, Keith; Blair, Steve

    2018-02-01

    Optogenetics is a powerful tool for neural control, but controlled light delivery beyond the superficial structures of the brain remains a challenge. For this, we have developed an optrode array, which can be used for optogenetic stimulation of the deep layers of the cortex. The device consists of a 10×10 array of penetrating optical waveguides, which are predefined using BOROFLOAT® wafer dicing. A wet etch step is then used to achieve the desired final optrode dimensions, followed by heat treatment to smoothen the edges and the surface. The major challenge that we have addressed is delivering light through individual waveguides in a controlled and efficient fashion. Simply coupling the waveguides in the optrode array to a separately-fabricated μLED array leads to low coupling efficiency and significant light scattering in the optrode backplane and crosstalk to adjacent optrodes due to the large mismatch between the μLED and waveguide numerical aperture and the working distance between them. We mitigate stray light by reducing the thickness of the glass backplane and adding a silicon interposer layer with optical vias connecting the μLEDs to the optrodes. The interposer additionally provides mechanical stability required by very thin backplanes, while restricting the unwanted spread of light. Initial testing of light output from the optrodes confirms intensity levels sufficient for optogenetic neural activation. These results pave the way for future work, which will focus on optimization of light coupling and adding recording electrodes to each optrode shank to create a bidirectional optoelectronic interface.

  15. In vitro studies to show sequestration of matrix metalloproteinases by silver-containing wound care products.

    PubMed

    Walker, Michael; Bowler, Philip G; Cochrane, Christine A

    2007-09-01

    Excess or "uncontrolled" proteinase activity in the wound bed has been implicated as one factor that may delay or compromise wound healing. One proteinase group--matrix metalloproteinases--includes collagenases, elastase, and gelatinases and can be endogenous (cell) or exogenous (bacterial) in origin. A study was conducted to assess the ability of five silver-containing wound care products to reduce a known matrix metalloproteinase supernatant concentration in vitro. Four silver-containing wound dressings (a carboxy-methyl cellulose, a nanocrystalline, a hydro-alginate, and a collagen/oxidized regenerated cellulose composite dressing), along with a 0.5% aqueous silver nitrate [w/v] solution and controls for matrix metalloproteinase-2 and matrix metalloproteinase-9 sourced from ex vivo dermal tissue and blood monocytes, respectively, were used. Extracts were separated and purified using gelatine-Sepharose column chromatography and dialysis and polyacrylamide gel electrophoretic zymography was used to analyze specific matrix metalloproteinase activity. All dressings and the solution were shown to sequester both matrix metalloproteinases. The silver-containing carboxy-methyl cellulose dressing showed significantly greater sequestration for matrix metalloproteinase-2 at 6 and 24 hours (P< 0.001) compared to the other treatments. For matrix metalloproteinase-9, both the carboxy-methyl cellulose dressing and the oxidized regenerated cellulose dressing achieved significant sequestration when compared to the other treatments at 24 hours (P <0.001), which was maintained to 48 hours (P < 0.001). Results from this study show that silver-containing dressings are effective in sequestering matrix metalloproteinase-2 and -9 and that this can be achieved without a sacrificial protein (eg, collagen). Although the varying ability of wound dressings to sequester matrix metalloproteinases has been shown in vitro, further in vivo evidence is required to confirm these findings.

  16. ERK-regulated αB-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo.

    PubMed

    Malin, D; Strekalova, E; Petrovic, V; Rajanala, H; Sharma, B; Ugolkov, A; Gradishar, W J; Cryns, V L

    2015-11-05

    Evasion of extracellular matrix detachment-induced apoptosis ('anoikis') is a defining characteristic of metastatic tumor cells. The ability of metastatic carcinoma cells to survive matrix detachment and escape anoikis enables them to disseminate as viable circulating tumor cells and seed distant organs. Here we report that αB-crystallin, an antiapoptotic molecular chaperone implicated in the pathogenesis of diverse poor-prognosis solid tumors, is induced by matrix detachment and confers anoikis resistance. Specifically, we demonstrate that matrix detachment downregulates extracellular signal-regulated kinase (ERK) activity and increases αB-crystallin protein and messenger RNA (mRNA) levels. Moreover, we show that ERK inhibition in adherent cancer cells mimics matrix detachment by increasing αB-crystallin protein and mRNA levels, whereas constitutive ERK activation suppresses αB-crystallin induction during matrix detachment. These findings indicate that ERK inhibition is both necessary and sufficient for αB-crystallin induction by matrix detachment. To examine the functional consequences of αB-crystallin induction in anoikis, we stably silenced αB-crystallin in two different metastatic carcinoma cell lines. Strikingly, silencing αB-crystallin increased matrix detachment-induced caspase activation and apoptosis but did not affect cell viability of adherent cancer cells. In addition, silencing αB-crystallin in metastatic carcinoma cells reduced the number of viable circulating tumor cells and inhibited lung metastasis in two orthotopic models, but had little or no effect on primary tumor growth. Taken together, our findings point to αB-crystallin as a novel regulator of anoikis resistance that is induced by matrix detachment-mediated suppression of ERK signaling and promotes lung metastasis. Our results also suggest that αB-crystallin represents a promising molecular target for antimetastatic therapies.

  17. Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  18. Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder

    PubMed Central

    Lasek, Amy W.

    2016-01-01

    The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, ethanol exposure generally increases perineuronal net (PN) components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD. PMID:27581478

  19. The organic matrix of gallstones

    PubMed Central

    Sutor, D. June; Wooley, Susan E.

    1974-01-01

    Dissolution of gallstones consisting of cholesterol, calcium carbonate, or calcium phosphate in different solvents left an amorphous organic gel-like substance (the matrix). Matrix from cholesterol stones could be colourless but was usually orange, yellow, or brown while that from calcium carbonate and calcium phosphate stones was almost invariably coloured black or dark brown. These pigments were also shown to be organic and amorphous. The amount of matrix present and its structure varied with the texture of the crystalline material. Irrespective of their composition, laminated pieces of material yielded compact laminated matrix of the same shape as the original piece and areas of loose crystalline material gave small pieces of non-cohesive matrix. Only large cholesterol crystals which usually radiate from the stone nucleus had no associated matrix. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4854981

  20. Lysophosphatidic acid (LPA) effects on endometrial carcinoma in vitro proliferation, invasion, and matrix metalloproteinase activity.

    PubMed

    Wang, Feng-qiang; Ariztia, Edgardo V; Boyd, Leslie R; Horton, Faith R; Smicun, Yoel; Hetherington, Jessica A; Smith, Phillip J; Fishman, David A

    2010-04-01

    Lysophosphatidic acid (LPA) has potent growth-regulatory effect in many cell types and has been linked to the in vivo tumor growth and metastasis in several malignancies. The goal of this study was to assess the regulation of (EC) microenvironment by LPA through the examination of its effect on cell proliferation, migration, invasion, uPA activity, and matrix metalloproteinase (MMP) secretion/activation. All experiments were performed in vitro using an EC cell line, HEC-1A. Cell proliferation was determined using the Promega MTS proliferation assay following 48 h of exposures to different concentrations of LPA (0.1, 1.0 and 10.0 microM). Cell invasion was assessed using a modified Boyden chamber assay with collagen I coated on the membrane. HEC-1A motility was examined by Boyden chamber migration assay as well as the scratch wound closure assay on type I collagen. MMP secretion/activation in HEC-1A conditioned medium was detected by gelatin zymography. MMP-7 mRNA expression was determined using real-time PCR. uPA activity was measured using a coupled colorimetric assay. LPA, at the concentrations of 0.1 and 1.0 microM, significantly induced the proliferation of HEC-1A cells (p<0.01). At 10 microM, LPA- induced HEC-1A proliferation to a less extent and showed no significant effect on HEC-1A invasion and migration (p>0.05). Gelatin zymogram showed that HEC-1A cells secreted high levels of MMP-7, while MMP-2 and MMP-9 are barely detectable. In addition, LPA significantly enhanced uPA activity in HEC-1A conditioned medium in a concentration-dependent manner. LPA is a potent modulator of cellular proliferation and invasion for EC cells. It also has the capacity to stimulate the secretion/activity of uPA and MMP-7. Those results suggest that LPA is a bioactive modulator of EC microenvironment and may have a distinct regulation mechanism as observed in epithelial ovarian cancer. Copyright 2009. Published by Elsevier Inc.

  1. Grape seed extracts inhibit dentin matrix degradation by MMP-3

    PubMed Central

    Khaddam, Mayssam; Salmon, Benjamin; Le Denmat, Dominique; Tjaderhane, Leo; Menashi, Suzanne; Chaussain, Catherine; Rochefort, Gaël Y.; Boukpessi, Tchilalo

    2014-01-01

    Since Matrix metalloproteinases (MMPs) have been suggested to contribute to dentin caries progression, the hypothesis that MMP inhibition would affect the progression of dentin caries is clinically relevant. Grape seed extracts (GSE) have been previously reported to be natural inhibitors of MMPs. Objective: To evaluate the capacity of a GSE mouthrinse to prevent the degradation of demineralized dentin matrix by MMP-3 (stromelysin-1). Materials and Methods: Standardized blocks of dentin obtained from sound permanent teeth extracted for orthodontic reasons were demineralized with Ethylenediaminetetraacetic acid (EDTA) and pretreated either with (A) GSE (0.2% w/v), (B) amine fluoride (AmF) (20% w/v), (C) a mouthrinse which contains both, (D) placebo, (E) sodium fluoride (0.15 mg.ml−1), (F) PBS, (G) Chlorhexidine digluconate (CHX), or (H) zinc chloride (ZnCl2). The dentin blocks were then incubated with activated recombinant MMP-3. The supernatants were analyzed by Western Blot for several dentin matrix proteins known to be MMP-3 substrate. In parallel, scanning electron microscopy (SEM) was performed on resin replica of the dentin blocks. Results: Western blot analysis of the supernatants revealed that MMP-3 released from the dentin matrix small proteoglycans (decorin and biglycan) and dentin sialoprotein (DSP) in the AmF, sodium fluoride, PBS and placebo pretreated groups, but not in the GSE and mouthrinse pretreated groups. SEM examination of resin replica showed that the mouthrinse and its active components not only had an anti-MMP action but also modified the dentin surface accessibility. Conclusion: This study shows that GSE either alone or combined with AmF as in the evaluated mouthrinse limits dentin matrix degradation. This association may be promising to prevent the progression of caries within dentin. However, the procedure should be adapted to clinically relevant durations. PMID:25400590

  2. Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.

    PubMed

    Hobley, Laura; Li, Bin; Wood, Jennifer L; Kim, Sok Ho; Naidoo, Jacinth; Ferreira, Ana Sofia; Khomutov, Maxim; Khomutov, Alexey; Stanley-Wall, Nicola R; Michael, Anthony J

    2017-07-21

    Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C -methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S -adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S -adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient Δ speD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR . © 2017 by The American Society for Biochemistry and

  3. Extracellular matrix remodeling and matrix metalloproteinase inhibition in visceral adipose during weight cycling in mice.

    PubMed

    Caria, Cíntia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Santos, Paola Souza; Acedo, Simone Coghetto; de Morais, Thainá Rodrigues; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2017-10-15

    Extracellular matrix (ECM) remodeling is necessary for a health adipose tissue (AT) expansion and also has a role during weight loss. We investigate the ECM alteration during weight cycling (WC) in mice and the role of matrix metalloproteinases (MMPs) was assessed using GM6001, an MMP inhibitor, during weight loss (WL). Obesity was induced in mice by a high-fat diet. Obese mice were subject to caloric restriction for WL followed by reintroduction to high-fat diet for weight regain (WR), resulting in a WC protocol. In addition, mice were treated with GM6001 during WL period and the effects were observed after WR. Activity and expression of MMPs was intense during WL. MMP inhibition during WL results in inflammation and collagen content reduction. MMP inhibition during WL period interferes with the period of subsequent expansion of AT resulting in improvements in local inflammation and systemic metabolic alterations induced by obesity. Our results suggest that MMPs inhibition could be an interesting target to improve adipose tissue inflammation during WL and to support weight cyclers. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  5. Technology and design of an active-matrix OLED on crystalline silicon direct-view display for a wristwatch computer

    NASA Astrophysics Data System (ADS)

    Sanford, James L.; Schlig, Eugene S.; Prache, Olivier; Dove, Derek B.; Ali, Tariq A.; Howard, Webster E.

    2002-02-01

    The IBM Research Division and eMagin Corp. jointly have developed a low-power VGA direct view active matrix OLED display, fabricated on a crystalline silicon CMOS chip. The display is incorporated in IBM prototype wristwatch computers running the Linus operating system. IBM designed the silicon chip and eMagin developed the organic stack and performed the back-end-of line processing and packaging. Each pixel is driven by a constant current source controlled by a CMOS RAM cell, and the display receives its data from the processor memory bus. This paper describes the OLED technology and packaging, and outlines the design of the pixel and display electronics and the processor interface. Experimental results are presented.

  6. New insights into the roles of matrix metalloproteinases in colorectal cancer development and progression.

    PubMed

    Leeman, Matthew F; Curran, Stephanie; Murray, Graeme I

    2003-12-01

    This review outlines new concepts that are emerging for the functions of matrix metalloproteinases in colorectal cancer development and progression. The two main concepts that will be discussed are the role of matrix metalloproteinases in the early stages of colorectal tumour development and the functional mechanisms by which matrix metalloproteinases contribute to colorectal tumour invasion and metastasis. The matrix metalloproteinases are a group of enzymes, which have been best characterized for their ability to degrade extracellular matrix proteins and thus they have been extensively studied in tumour invasion. It is now becoming recognized that the matrix metalloproteinases have key roles in a variety of biological processes that are distinct from their well-defined role in matrix degradation. This group of enzymes has been shown to interact with a broad range of non-matrix proteins including growth factors and their receptors, mediators of apoptosis, and cell adhesion molecules. The elucidation of novel biological roles for the matrix metalloproteinases also challenges the current predominant concept of matrix metalloproteinases as enzymes only involved in matrix degradation. Recent studies have shown that several matrix metalloproteinases, especially matrilysin (MMP-7), interact with the specific molecular genetic and signalling pathways involved in colorectal cancer development. In particular, matrilysin is activated at an early stage of colorectal tumourigenesis by the beta-catenin signalling pathway. Furthermore, studies are now elucidating specific mechanisms by which individual matrix metalloproteinases, especially membrane-type matrix metalloproteinases, interact with specific cell adhesion molecules and cytoskeletal proteins and thus contribute dynamically to colorectal tumour invasion. Copyright 2003 John Wiley & Sons, Ltd.

  7. Tailorable Release of Small Molecules Utilizing Plant Viral Nanoparticles and Fibrous Matrix

    NASA Astrophysics Data System (ADS)

    Cao, Jing

    We have engineered Red clover necrotic mosaic virus (RCNMV) derived plant viral nanoparticles (PVNs) within a fibrous matrix to optimize its application for delivery and controlled release of active ingredients. RCNMV's structure and unique response to divalent cation depletion and re-addition enables the infusion of small molecules into its viral capsid through a pore formation mechanism. While this PVN technology shows a potential use in nano-scale therapeutic drug delivery, its inherent molecular dynamics to environmental stimuli places a constraint on its application and functionality as a vehicle for tailorable release of loading cargo. In this study, we enhance the understanding of the PVN technology by elucidating its mechanism for loading and triggered release of doxorubicin (Dox), a chemotherapeutic drug for breast cancer. Of critical importance is the methodology for manipulation of Dox's loading capacity and its binding location on either the exterior or interior of the virion capsid. The ability to control the active ingredient binding location provides an additional approach of tunable release from the PVN delivery vehicle besides its inherent pH- and ion- responsive release of loading cargo. The efficacious and controlled release strategy for agricultural active ingredients, such as nematicides, is also a large social need right now. Crop infestation of plant parasite nematodes causes in excess of 157 billion in worldwide crop damage annually. If an effective control strategy for these pests could be developed, it is estimated that the current market for effective nematicides is between 700 million and $1 billion each year worldwide. In this study, we report on the utilization of PVN technology to encapsulate the biological nematicide, abamectin (Abm), within the PVN's interior capsid (PVNAbm). Creating PVNAbm addresses Abm's issues of soil immobility while rendering a controlled release strategy for its bioavailability to root knot nematodes (RKNs

  8. Adenoviral transduction supports matrix expression of alginate cultured articular chondrocytes.

    PubMed

    Pohle, D; Kasch, R; Herlyn, P; Bader, R; Mittlmeier, T; Pützer, B M; Müller-Hilke, B

    2012-09-01

    The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins. Copyright © 2012 Wiley Periodicals, Inc.

  9. MATLAB Simulation of Gradient-Based Neural Network for Online Matrix Inversion

    NASA Astrophysics Data System (ADS)

    Zhang, Yunong; Chen, Ke; Ma, Weimu; Li, Xiao-Dong

    This paper investigates the simulation of a gradient-based recurrent neural network for online solution of the matrix-inverse problem. Several important techniques are employed as follows to simulate such a neural system. 1) Kronecker product of matrices is introduced to transform a matrix-differential-equation (MDE) to a vector-differential-equation (VDE); i.e., finally, a standard ordinary-differential-equation (ODE) is obtained. 2) MATLAB routine "ode45" is introduced to solve the transformed initial-value ODE problem. 3) In addition to various implementation errors, different kinds of activation functions are simulated to show the characteristics of such a neural network. Simulation results substantiate the theoretical analysis and efficacy of the gradient-based neural network for online constant matrix inversion.

  10. Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2000-01-01

    This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.

  11. Inhibition of Matrix Metalloproteinase Activity Prevents Increases in Myocardial Tumor Necrosis Factor-α

    PubMed Central

    Murray, David B.; Levick, Scott P; Brower, Gregory L.; Janicki, Joseph S.

    2010-01-01

    Aim TNF-α is known to cause adverse myocardial remodeling. While we have previously shown a role for cardiac mast cells in mediating myocardial TNF-α, matrix metalloproteinases (MMP) activation of TNF-α may also be contributory. We sought to determine the relative roles of MMPs and cardiac mast cells in the activation of TNF-α in the hearts of rats subjected to chronic volume overload. Methods Interventions with the broad spectrum MMP inhibitor, GM6001, or the mast cell stabilizer, nedocromil, were performed in the rat aortocaval fistula (ACF) model of volume overload. Results Myocardial TNF-α levels were significantly increased in the ACF. This increase was prevented by MMP inhibition with GM6001 (p ≤ 0.001 vs. ACF). Conversely, myocardial TNF-α levels were increased in the ACF + nedocromil treated fistula groups (p ≤ 0.001 vs. sham). The degradation of interstitial collagen volume fraction seen in the untreated ACF group was prevented in both the GM6001 and nedocromil treated hearts. Significant increases in LV myocardial ET-1 levels also occurred in the ACF group at 3 days post-fistula. Whereas administration of GM6001 significantly attenuated this increase, mast cell stabilization with nedocromil markedly exacerbated the increase, producing ET-1 levels 6.5 fold and 2 fold greater than that in the sham-operated control and ACF group, respectively. Conclusion The efficacy of the MMP inhibitor, GM6001, to prevent increased levels of myocardial TNF-α is indicative of MMP-mediated cleavage of latent extracellular membrane bound TNF-α protein as the primary source of bioactive TNF-α in the myocardium of the volume-overload heart. PMID:20403361

  12. Osteoinductive Activity of Selected Demineralized Bone Matrix Products from Donors of Different Ages.

    PubMed

    Alaribe, Franca N; Razwinani, Mapula; Maepa, Makwese J; Bierman, Felicity; Motaung, Shirley C K M

    2016-07-25

    Despite previous confirmation of osteoinductive potential of demineralized bone matrix (DBM) by other researchers, there is not yet any evidence of studies showing the osteoinductive activity of DBM products from South Africa tissue banks using both in vitro and animal models. This work evaluated the osteoinductivity of DBM both in vitro and in vivo. DBM particles from six donors from the Centre for Tissue Engineering and C2C12 were cultured (5x104) in 24-well plates using DMEM/F-12 medium supplemented with 10% FBS. After 24 h medium was replaced with medium containing 1% FBS and 5 mg/ml of DBM particles. Bone morphogenetic protein-2 (BMP-2,500 pg/ml) was used as a positive control. After 48 h of incubation, cells were assayed for osteoinductive potentials. In an in vivo study, 27 Wistar rats aged six to eight weeks were divided into three groups and experimentally observed for 7, 14 and 28 days. Implants were explanted according to the duration of the experiment. Increase in cell growth was observed in C2C12 treated with DBM samples. BMP-2 and DBM samples were found to stimulate alkaline phosphatase activity and ELISA assay. Animal weight increase was observed during the 7, 14 and 28 days. Cartilage regeneration were also observed in the histology results. BMP-2 played a role in the differentiation of myoblast cells into osteoblasts. DBM products showed different osteoinductive capacity both in vitro and in vivo. Findings were variable and time-dependent. From our results, this study supports the effectiveness of DBM fromdonors aged between 45 to 55 years.

  13. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways.

    PubMed

    Déziel, Bob A; Patel, Kunal; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert A R

    2010-10-15

    Prostate cancer is one of the most common cancers in the Western world, and it is believed that an individual's diet affects his risk of developing cancer. There has been an interest in examining phytochemicals, the secondary metabolites of plants, in order to determine their potential anti-cancer activities in vitro and in vivo. In this study we document the effects of proanthocyanidins (PACs) from the American Cranberry (Vaccinium macrocarpon) on matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells. Cranberry PACs decreased cellular viability of DU145 cells at a concentration of 25 µg/ml by 30% after 6 h of treatment. Treatment of DU145 cells with PACs resulted in an inhibition of both MMPs 2 and 9 activity. PACs increased the expression of TIMP-2, a known inhibitor of MMP activity, and decreased the expression of EMMPRIN, an inducer of MMP expression. PACs decreased the expression of PI-3 kinase and AKT proteins, and increased the phosphorylation of both p38 and ERK1/2. Cranberry PACs also decreased the translocation of the NF-κB p65 protein to the nucleus. Cranberry PACs increased c-jun and decreased c-fos protein levels. These results suggest that cranberry PACs decreases MMP activity through the induction and/or inhibition of specific temporal MMP regulators, and by affecting either the phosphorylation status and/or expression of MAP kinase, PI-3 kinase, NF-κB and AP-1 pathway proteins. This study further demonstrates that cranberry PACs are a strong candidate for further research as novel anti-cancer agents. © 2010 Wiley-Liss, Inc.

  14. [Extracellular matrix--regulation of cancer invasion and metastasis].

    PubMed

    Watanabe, Hideto

    2010-11-01

    Cancer cell invasion comprises steps in the destruction of the basement membrane and migration of cells into the connective tissue. These cells further migrate into lymph ducts and small vessels to reach metastasis. The extracellular matrix (ECM) provides a microenvironment for cells, and its destruction is associated with cancer cell invasion. Among matrix metalloproteinases (MMPs), both MMP-2 and 9 digest type IV collagen, a major component of the basement membrane, and MMP-14/MT1-MMP, a membrane-type MMP, activates MMP-2. Thus, these MMPs play a central role in cancer cell invasion. MMPs also cleave latent forms of growth factors and signaling molecules, releasing and activating them, which influence neo-vascularization and cancer apoptosis. Like proteins, carbohydrates are known to be involved in cancer invasion. Hyaluronan is known to both stimulate and inhibit cancer invasion, depending on its molecular size. Heparanase, which digests heparan sulfate, is known to facilitate cancer invasion and metastasis. In summary, ECM provides a microenvironment that regulates cell behavior and its structure altered by MMPs affects cancer cell invasion.

  15. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  16. Effects of rosuvastatin on the production and activation of matrix metalloproteinase-2 and migration of cultured rat vascular smooth muscle cells induced by homocysteine.

    PubMed

    Shi, Ya-fei; Chi, Ju-fang; Tang, Wei-liang; Xu, Fu-kang; Liu, Long-bin; Ji, Zheng; Lv, Hai-tao; Guo, Hang-yuan

    2013-08-01

    To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Rat VSMCs were incubated with different concentrations of homocysteine (50-5000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10(-9)-10(-5) mol/L) were added when VSMCs were induced with 1000 μmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Homocysteine (50-1000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5000 μmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and activation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50-5000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Homocysteine (50-1000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and activation of MMP-2 and

  17. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration

    PubMed Central

    Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne

    2013-01-01

    Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787

  18. Two cases of matrix-producing carcinoma showing chondromyxoid matrix in cytological specimens.

    PubMed

    Tajima, Shogo; Koda, Kenji

    2015-01-01

    Matrix-producing carcinoma (MPC) is extremely rare. Limited reports have described the cytological aspects of MPC. Herein, we present 2 cases of MPC, both of which showed ring-enhancement on magnetic resonance imaging (MRI) and chondromyxoid matrix on cytological specimens. In these cases, the diagnosis of MPC was preoperatively suspected. Recognizing extracellular matrix as chondromyxoid matrix on the cytological specimen is important in making a distinction between MPC and mucinous carcinoma. They share some features on cytology and MRI (ring-enhancement) but have different prognoses and involve different approaches for obtaining histological specimens for neoadjuvant therapy. The reason for the different approaches for obtaining the histological specimens is that tumor cells usually distribute peripherally in MPC in contrast to the relatively uniform distribution of mucinous carcinoma. Therefore, it would be helpful if the diagnosis of MPC can be suspected by examination of the cytological specimen.

  19. Osteoarthritis as a disease of the cartilage pericellular matrix.

    PubMed

    Guilak, Farshid; Nims, Robert; Dicks, Amanda; Wu, Chia-Lung; Meulenbelt, Ingrid

    2018-05-22

    Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease. Copyright © 2017. Published by Elsevier B.V.

  20. Quantifying matrix product state

    NASA Astrophysics Data System (ADS)

    Bhatia, Amandeep Singh; Kumar, Ajay

    2018-03-01

    Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.

  1. Interaction of 8-anilinonaphthalene 1-sulphonate (ANS) and human matrix metalloproteinase 7 (MMP-7) as examined by MMP-7 activity and ANS fluorescence.

    PubMed

    Samukange, Vimbai; Yasukawa, Kiyoshi; Inouye, Kuniyo

    2012-05-01

    Human matrix metalloproteinase 7 (MMP-7) is the smallest matrix metalloproteinase. It plays important roles in tumour invasion and metastasis. 8-Anilinonaphthalene 1-sulphonate (ANS) is a fluorescent probe widely used for the analysis of proteins. It emits large fluorescence energy when its anilinonaphthalene group binds with hydrophobic regions of protein. In this study, we analysed the interaction of ANS and MMP-7. At pH 4.5-9.5, ANS inhibited MMP-7 activity in the hydrolysis of (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl]-L-Ala-L-Arg-NH(2). The inhibition was a non-competitive manner and depended on the time for pre-incubation of ANS and MMP-7. At pH 4.5-9.5, the fluorescence of ANS was not changed by the addition of MMP-7. At pH 3.5, MMP-7 lacked activity, and the fluorescence of ANS was increased by the addition of MMP-7. These results suggest that at pH 4.5-9.5, the sulphonic group of ANS binds with MMP-7 through electrostatic interaction, whereas at pH 3.5, the anilinonaphthalene group of ANS binds with MMP-7 through hydrophobic interaction.

  2. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants

    PubMed Central

    Verma, Sugreev; Kesh, Kousik; Ganguly, Nilanjan; Jana, Sayantan; Swarnakar, Snehasikta

    2014-01-01

    The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases (MMPs). Degradation of extracellular matrix (ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK (reversion including cysteine-rich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2, -9 and -14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species (ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is

  3. Zymographic analysis using gelatin-coated film of the effect of etanercept on the extracellular matrix-degrading activity in synovial fluids of rheumatoid arthritis patients.

    PubMed

    Kamataki, Akihisa; Ishida, Mutsuko; Komagamine, Masataka; Yoshida, Masaaki; Ando, Takanobu; Sawai, Takashi

    2016-04-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease. Most RA patients develop cartilage and bone destruction, and various proteinases are involved in the destruction of extracellular matrix of cartilage and bone. The aim of this study is to evaluate the utility of our newly developed method to measure total gelatinolytic activity. We adopted this method for measurement in synovial fluid from RA patients treated by the anti-rheumatic drug etanercept (ETN), a recombinant human soluble tumor necrosis factor receptor fusion protein, and compared the findings with clinical and laboratory data. Enzymatic activity of synovial fluid was analyzed by zymography using gelatin-coated film, and compared with the index of Disease Activity Score of 28 joints - C-reactive protein (DAS28-CRP), CRP and matrix metalloproteinase (MMP)-3 level before and after ETN therapy. Synovial fluids of 19 patients were collected before and after administration of ETN therapy. In nine of 19 patients, who showed a decrease in gelatin-degrading activity in synovial fluid, the index of DAS28-CRP (4.85-2.85, ΔDAS = -2.00) and CRP (3.30-0.94 mg/dL, ΔCRP = -2.36) was alleviated after ETN therapy, while cases with no change or an increase in gelatin-degrading activity showed a modest improvement in clinical data: DAS28-CRP (4.23-3.38, ΔDAS = -0.85) and CRP (1.70-0.74 mg/dL, ΔCRP = -0.96). Our newly developed method for measurement of gelatin-degrading activity in synovial fluid from RA patients is highly practicable and useful for predicting the effect of ETN therapy. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  4. Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Liang, Y.-Z.

    1984-01-01

    A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.

  5. Physiological Ranges of Matrix Rigidity Modulate Primary Mouse Hepatocyte Function In Part Through Hepatocyte Nuclear Factor 4 Alpha

    PubMed Central

    Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.

    2016-01-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329

  6. A matrix-inversion method for gamma-source mapping from gamma-count data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adsley, Ian; Burgess, Claire; Bull, Richard K

    In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less

  7. Hacking the Matrix.

    PubMed

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  9. Downregulation of Extracellular Matrix Metalloproteinase Inducer by scFv-M6-1B9 Intrabody Suppresses Cervical Cancer Invasion Through Inhibition of Urokinase-Type Plasminogen Activator.

    PubMed

    Panich, Tipattaraporn; Tragoolpua, Khajornsak; Pata, Supansa; Tayapiwatana, Chatchai; Intasai, Nutjeera

    2017-02-01

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) accelerates tumor invasion and metastasis via activation of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA) expression. The authors were interested in whether the scFv-M6-1B9 intrabody against EMMPRIN that retains EMMPRIN in endoplasmic reticulum could be a potential tool to suppress cervical cancer invasion through inhibition of uPA. The chimeric adenoviral vector Ad5/F35-scFv-M6-1B9 was transferred into human cervical carcinoma HeLa cells to produce the scFv-M6-1B9 intrabody against EMMPRIN. Cell surface expression of EMMPRIN, the membrane-bound uPA, the enzymatic activity of secreted uPA, and the invasion ability were analyzed. The scFv-M6-1B9 intrabody successfully diminished the cell surface expression of EMMPRIN and the membrane-bound uPA on HeLa cells. uPA activity from tissue culture media of EMMPRIN-downregulated HeLa cells was decreased. The invasion ability of HeLa cells harboring scFv-M6-1B9 intrabody was also suppressed. These results suggested that the scFv-M6-1B9 intrabody might represent a potential approach for invasive cervical cancer treatment. The application of scFv-M6-1B9 intrabody in animal experiments and preclinical studies would be investigated further.

  10. Mapping of polycrystalline films of biological fluids utilizing the Jones-matrix formalism

    NASA Astrophysics Data System (ADS)

    Ushenko, Vladimir A.; Dubolazov, Alexander V.; Pidkamin, Leonid Y.; Sakchnovsky, Michael Yu; Bodnar, Anna B.; Ushenko, Yuriy A.; Ushenko, Alexander G.; Bykov, Alexander; Meglinski, Igor

    2018-02-01

    Utilizing a polarized light approach, we reconstruct the spatial distribution of birefringence and optical activity in polycrystalline films of biological fluids. The Jones-matrix formalism is used for an accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline films of biological fluids can be performed based on a statistical analysis of the distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. Finally, practical operational characteristics, such as sensitivity, specificity and accuracy of the Jones-matrix reconstruction of optical anisotropy, were identified with special emphasis on biomedical application, specifically for differentiation of bile films taken from healthy donors and from patients with cholelithiasis.

  11. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  12. Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions.

    PubMed

    Parasaram, Vaideesh; Nosoudi, Nasim; Chowdhury, Aniqa; Vyavahare, Naren

    2018-04-30

    Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts. We also studied the effect of PGG treatment in reducing MMP activity and ROS levels in cells. We exposed rat pulmonary fibroblasts to two different types of inflammatory environments i.e., tumor necrosis factor-α (TNF-α) and cigarette smoke extract (CSE) to mimic the disease. Parameters like lysyl oxidase (LOX) and elastin gene expression, MMP-9 activity in the medium, lysyl oxidase (LOX) activity and ROS levels were studied to assess the effect of PGG on pulmonary fibroblasts. CSE inhibited lysyl oxidase (LOX) enzyme activity that resulted in a decreased elastin formation. Similarly, TNF-α treated cells showed less elastin in the cell layers. Both these agents caused increase in MMP activity and ROS levels in cells. However, when supplemented with PGG treatment along with these two inflammatory agents, we saw a significant increase in elastin deposition, reduction in both MMP activity and ROS levels. Thus PGG, which has anti-inflammatory, anti-oxidant properties coupled with its ability to aid in elastic fiber formation, can be a multifunctional drug to potentially arrest the progression of emphysema. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Scalable non-negative matrix tri-factorization.

    PubMed

    Čopar, Andrej; Žitnik, Marinka; Zupan, Blaž

    2017-01-01

    Matrix factorization is a well established pattern discovery tool that has seen numerous applications in biomedical data analytics, such as gene expression co-clustering, patient stratification, and gene-disease association mining. Matrix factorization learns a latent data model that takes a data matrix and transforms it into a latent feature space enabling generalization, noise removal and feature discovery. However, factorization algorithms are numerically intensive, and hence there is a pressing challenge to scale current algorithms to work with large datasets. Our focus in this paper is matrix tri-factorization, a popular method that is not limited by the assumption of standard matrix factorization about data residing in one latent space. Matrix tri-factorization solves this by inferring a separate latent space for each dimension in a data matrix, and a latent mapping of interactions between the inferred spaces, making the approach particularly suitable for biomedical data mining. We developed a block-wise approach for latent factor learning in matrix tri-factorization. The approach partitions a data matrix into disjoint submatrices that are treated independently and fed into a parallel factorization system. An appealing property of the proposed approach is its mathematical equivalence with serial matrix tri-factorization. In a study on large biomedical datasets we show that our approach scales well on multi-processor and multi-GPU architectures. On a four-GPU system we demonstrate that our approach can be more than 100-times faster than its single-processor counterpart. A general approach for scaling non-negative matrix tri-factorization is proposed. The approach is especially useful parallel matrix factorization implemented in a multi-GPU environment. We expect the new approach will be useful in emerging procedures for latent factor analysis, notably for data integration, where many large data matrices need to be collectively factorized.

  14. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway.

    PubMed

    González, Mariela Natacha; de Mello, Wallace; Butler-Browne, Gillian S; Silva-Barbosa, Suse Dayse; Mouly, Vincent; Savino, Wilson; Riederer, Ingo

    2017-10-10

    The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving

  15. Enhanced Antimicrobial Effects of Decellularized Extracellular Matrix (CorMatrix) with Added Vancomycin and Gentamicin for Device Implant Protection.

    PubMed

    Deering, Thomas F; Chang, Carlos; Snyder, Carl; Natarajan, Selvamuthu K; Matheny, Robert

    2017-06-01

    The incidence of cardiac implantable electronic device (CIED) infections has risen significantly over the past years. Although several devices are currently available to decrease the incidence of infection, most are made from nonviable synthetic material and are more prone to infection than vascularized tissue. This study was undertaken to assess the resistance to infection of the CorMatrix CanGaroo (CorMatrix Cardiovascular, Roswell, GA, USA), a CIED envelope made of decellularized extracellular matrix (ECM) hydrated in different antibiotic solutions. This study was comprised of two in vitro tests and one animal trial. For all the tests, the ECM was hydrated in a mixture of vancomycin (25 mg/mL) and gentamicin (20 mg/mL) or gentamicin alone (40 mg/mL). The drug elution characteristics were assessed followed by the effectiveness of CanGaroo to prevent the bacterial growth of Staphylococcus aureus and Staphylococcus epidermidis in culture. Then, the direct inoculation of pacemaker implant pockets with both Staphylococcus species was performed in rabbits implanted with either a pacemaker alone or a pacemaker with antibiotic-soaked CorMatrix ECM pouches. The hydration of CanGaroo envelopes in both antibiotic mixtures resulted in antimicrobial activity against both Staphylococcus species, with an early bolus release of antibiotics followed by a slow release lasting for up to 6 days. In vivo, there was a substantial decrease in the occurrence of infection. The hydration of the CanGaroo ECM with an antibiotic solution prevented Staphylococcus species growth in vitro and substantially reduced the incidence of CIED pocket infections in an in vivo rabbit model. © 2017 Wiley Periodicals, Inc.

  16. Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder.

    PubMed

    Lasek, Amy W

    2016-10-01

    The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol (EtOH) exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, EtOH exposure generally increases perineuronal net components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD. Copyright © 2016 by the Research Society on Alcoholism.

  17. Global Matrix 2.0: Report Card Grades on the Physical Activity of Children and Youth Comparing 38 Countries.

    PubMed

    Tremblay, Mark S; Barnes, Joel D; González, Silvia A; Katzmarzyk, Peter T; Onywera, Vincent O; Reilly, John J; Tomkinson, Grant R

    2016-11-01

    The Active Healthy Kids Global Alliance organized the concurrent preparation of Report Cards on the physical activity of children and youth in 38 countries from 6 continents (representing 60% of the world's population). Nine common indicators were used (Overall Physical Activity, Organized Sport Participation, Active Play, Active Transportation, Sedentary Behavior, Family and Peers, School, Community and the Built Environment, and Government Strategies and Investments), and all Report Cards were generated through a harmonized development process and a standardized grading framework (from A = excellent, to F = failing). The 38 Report Cards were presented at the International Congress on Physical Activity and Public Health in Bangkok, Thailand on November 16, 2016. The consolidated findings are summarized in the form of a Global Matrix demonstrating substantial variation in grades both within and across countries. Countries that lead in certain indicators often lag in others. Average grades for both Overall Physical Activity and Sedentary Behavior around the world are D (low/poor). In contrast, the average grade for indicators related to supports for physical activity was C. Lower-income countries generally had better grades on Overall Physical Activity, Active Transportation, and Sedentary Behaviors compared with higher-income countries, yet worse grades for supports from Family and Peers, Community and the Built Environment, and Government Strategies and Investments. Average grades for all indicators combined were highest (best) in Denmark, Slovenia, and the Netherlands. Many surveillance and research gaps were apparent, especially for the Active Play and Family and Peers indicators. International cooperation and cross-fertilization is encouraged to address existing challenges, understand underlying determinants, conceive innovative solutions, and mitigate the global childhood inactivity crisis. The paradox of higher physical activity and lower sedentary behavior

  18. Degradation of extracellular matrix by mouse trophoblast outgrowths: a model for implantation

    PubMed Central

    Glass, RH; Aggeler, J; Spindle, A; Pederson, RA; Werb, Z

    1983-01-01

    During implantation the embryo attaches to the endometrial surface and trophoblast traverses the uterine epithelium, anchoring in the uterine connective tissue. To determine whether trophoblast can facilitate invasion of the uterus by degrading components of normal uterine extracellular matrix, mouse blastocysts were cultured on a radio-labeled extracellular matrix that contained glycoproteins, elastin, and collagen. The embryos attached to the matrix, and trophoblast spread over the surface. Starting on day 5 of culture there was a release of labeled peptides into the medium. The radioactive peptides released from the matrix by the embryos had molecular weights ranging from more than 25,000 to more than 200. By day 7 there were areas where individual trophoblast cells had separated from one another, revealing the underlying substratum that was cleared of matrix. When trophoblast cells were lysed with NH(4)OH on day 8, it was apparent that the area underneath the trophoblast outgrowth had been cleared of matrix. Scanning electron microscopy and time-lapse cinemicrography confirmed that the digestion of matrix was highly localized, taking place only underneath the trophoblast, with no evidence of digestion of the matrix beyond the periphery of the trophoblast outgrowth. The sharp boundaries of degredation observed may be due to localized proteinase secretion by trophoblast, to membrane proteinases on the surface of trophoblast, or to endocytosis. Digestion of the matrix was not dependent on plasminogen, thus ruling out a role for plasminogen activator. Digestion was not inhibited by a variety of hormones and inhibitors, including progesterone, 17β-estradiol, leupeptin, EDTA, colchicine, NH(4)Cl, or ε-aminocaproic acid. This system of culturing embryos on extracellular matrix may be useful in determining the processes that regulate trophoblast migration and invasion into the maternal tissues during implantation.0 PMID:6339525

  19. Effect of Matrix Multicracking on the Hysteresis Loops of Carbon-Fiber-Reinforced Cross-Ply Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.

    2017-01-01

    The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.

  20. Drawing a different picture with pencil lead as matrix-assisted laser desorption/ionization matrix for fullerene derivatives.

    PubMed

    Nye, Leanne C; Hungerbühler, Hartmut; Drewello, Thomas

    2018-02-01

    Inspired by reports on the use of pencil lead as a matrix-assisted laser desorption/ionization matrix, paving the way towards matrix-free matrix-assisted laser desorption/ionization, the present investigation evaluates its usage with organic fullerene derivatives. Currently, this class of compounds is best analysed using the electron transfer matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB), which was employed as the standard here. The suitability of pencil lead was additionally compared to direct (i.e. no matrix) laser desorption/ionization-mass spectrometry. The use of (DCTB) was identified as the by far gentler method, producing spectra with abundant molecular ion signals and much reduced fragmentation. Analytically, pencil lead was found to be ineffective as a matrix, however, appears to be an extremely easy and inexpensive method for producing sodium and potassium adducts.

  1. Scytonemin Plays a Potential Role in Stabilizing the Exopolysaccharidic Matrix in Terrestrial Cyanobacteria.

    PubMed

    Gao, Xiang

    2017-02-01

    Cyanobacteria are photosynthetic oxygen-evolving prokaryotes that are distributed in diverse habitats. They synthesize the ultraviolet (UV)-screening pigments, scytonemin (SCY) and mycosporine-like amino acids (MAAs), located in the exopolysaccharide (EPS) matrix. Multiple roles for both pigments have gradually been recognized, such as sunscreen ability, antioxidant activity, and heat dissipation from absorbed UV radiation. In this study, a filamentous terrestrial cyanobacterium Nostoc flagelliforme was used to evaluate the potential stabilizing role of SCY on the EPS matrix. SCY (∼3.7 %) was partially removed from N. flagelliforme filaments by rinsing with 100 % acetone for 5 s. The physiological damage to cells resulting from this treatment, in terms of photosystem II activity parameter Fv/Fm, was repaired after culturing the sample for 40 h. The physiologically recovered sample was further desiccated by natural or rapid drying and then allowed to recovery for 24 h. Compared with the normal sample, a relatively slower Fv/Fm recovery was observed in the SCY-partially removed sample, suggesting that the decreased SCY concentration in the EPS matrix caused cells to suffer further damage upon desiccation. In addition, the SCY-partially removed sample could allow the release of MAAs (∼25 %) from the EPS matrix, while the normal sample did not. Therefore, damage caused by drying of the former resulted from at least the reduction of structural stability of the EPS matrix as well as the loss of partial antioxidant compounds. Considering that an approximately 4 % loss of SCY led to this significant effect, the structurally stabilizing potential of SCY on the EPS matrix is crucial for terrestrial cyanobacteria survival in complex environments.

  2. The Silicon Matrix as a Charge Detector in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long- duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei over a wide energy range from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2OO1 around the continent. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix, consisting of 4480 pixels, was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.

  3. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  4. Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review

    NASA Astrophysics Data System (ADS)

    Morales, Verónica L.; Parlange, J.-Yves; Steenhuis, Tammo S.

    2010-10-01

    SummaryRecently, the interactions between soil structure and microbes have been associated with water transport, retention and preferential or column flow development. Of particular significance is the potential impact of microbial extracellular polymeric substances (EPS) on soil porosity (i.e., hydraulic conductivity reduction or bioclogging) and of exudates from biota, including bacteria, fungi, roots and earthworms on the degree of soil water repellency. These structural and surface property changes create points of wetting instability, which under certain infiltrating conditions can often result in the formation of persistent preferential flow paths. Moreover, distinct differences in physical and chemical properties between regions of water flow (preferential flow paths) and no-flow (soil matrix) provide a unique set of environmental living conditions for adaptable microorganisms to exist. In this review, special consideration is given to: (1) the functional significance of microbial activity in the host porous medium in terms of feedback mechanisms instigated by irregular water availability and (2) the related physical and chemical conditions that force the organization and formation of unique microbial habitats in unsaturated soils that prompt and potentially perpetuate the formation of preferential flow paths in the vadose zone.

  5. Matrix suppression as a guideline for reliable quantification of peptides by matrix-assisted laser desorption ionization.

    PubMed

    Ahn, Sung Hee; Bae, Yong Jin; Moon, Jeong Hee; Kim, Myung Soo

    2013-09-17

    We propose to divide matrix suppression in matrix-assisted laser desorption ionization into two parts, normal and anomalous. In quantification of peptides, the normal effect can be accounted for by constructing the calibration curve in the form of peptide-to-matrix ion abundance ratio versus concentration. The anomalous effect forbids reliable quantification and is noticeable when matrix suppression is larger than 70%. With this 70% rule, matrix suppression becomes a guideline for reliable quantification, rather than a nuisance. A peptide in a complex mixture can be quantified even in the presence of large amounts of contaminants, as long as matrix suppression is below 70%. The theoretical basis for the quantification method using a peptide as an internal standard is presented together with its weaknesses. A systematic method to improve quantification of high concentration analytes has also been developed.

  6. Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity.

    PubMed

    Tanimura, Susumu; Kadomoto, Ryoji; Tanaka, Takashi; Zhang, Ying-Jun; Kouno, Isao; Kohno, Michiaki

    2005-05-20

    Elevated expression of matrix metalloproteinases (MMPs), especially that of MMP-2 and MMP-9, is associated with increased metastatic potential in many tumor cells. Recently, green tea polyphenol epigallocatechin-3-O-gallate (EGCG) has been shown to inhibit the MMP-2/-9 activity as well as the invasiveness of tumor cells. In this study, we have examined the inhibitory effect of hydrolyzable tannins (plant polyphenols) on the tumor cell invasion. Our results demonstrate that beta-d-glucose whose hydroxy groups are substituted entirely with galloyl group and further some of them are cross-linked to form hexahydroxydiphenoyl group, for example, suppresses the invasiveness of tumor cells much more potently than EGCG via direct inhibition of the MMP-2/-9 activity. Among those examined, 1,2,4-tri-O-galloyl-3,6-hexahydroxydiphenoyl-beta-d-glucose (punicafolin) inhibits the invasion of HT1080 fibrosarcoma cells most potently. These hydrolyzable tannins would provide new leads for the development of potent inhibitors against tumor metastasis.

  7. Proteolytic roles of matrix metalloproteinase (MMP)-13 during progression of chronic periodontitis: initial evidence for MMP-13/MMP-9 activation cascade.

    PubMed

    Hernández Ríos, Marcela; Sorsa, Timo; Obregón, Fabián; Tervahartiala, Taina; Valenzuela, María Antonieta; Pozo, Patricia; Dutzan, Nicolás; Lesaffre, Emmanuel; Molas, Marek; Gamonal, Jorge

    2009-12-01

    Matrix metalloproteinases (MMP)-13 can initiate bone resorption and activate proMMP-9 in vitro, and both these MMPs have been widely implicated in tissue destruction associated with chronic periodontitis. We studied whether MMP-13 activity and TIMP-1 levels in gingival crevicular fluid (GCF) associated with progression of chronic periodontitis assessed clinically and by measuring carboxy-terminal telopeptide of collagen I (ICTP) levels. We additionally addressed whether MMP-13 could potentiate gelatinase activation in diseased gingival tissue. In this prospective study, GCF samples from subjects undergoing clinical progression of chronic periodontitis and healthy controls were screened for ICTP levels, MMP-13 activity and TIMP-1. Diseased gingival explants were cultured, treated or not with MMP-13 with or without adding CL-82198, a synthetic MMP-13 selective inhibitor, and assayed by gelatin zymography and densitometric analysis. Active sites demonstrated increased ICTP levels and MMP-13 activity (p<0.05) in progression subjects. The MMP-9 activation rate was elevated in MMP-13-treated explants (p<0.05) and MMP-13 inhibitor prevented MMP-9 activation. MMP-13 could be implicated in the degradation of soft and hard supporting tissues and proMMP-9 activation during progression of chronic periodontitis. MMP-13 and -9 can potentially form an activation cascade overcoming the protective TIMP-1 shield, which may become useful for diagnostic aims and a target for drug development.

  8. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease.

    PubMed

    Liu, Bin; Li, Chenghai; Liu, Zijuan; Dai, Zonghan; Tao, Yunxia

    2012-09-11

    Polycystic Kidney Disease (PKD) kidneys exhibit increased extracellular matrix (ECM) collagen expression and metalloproteinases (MMPs) activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. We examined the role of type I collagen (collagen I) and membrane bound type 1 MMP (MT1-MMP) on cyst development using both in vitro 3 dimensional (3D) collagen gel culture and in vivo PCK rat model of PKD. We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  9. Matrix Metalloproteinases as Regulators of Periodontal Inflammation

    PubMed Central

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-01-01

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665

  10. Matrix Metalloproteinases as Regulators of Periodontal Inflammation.

    PubMed

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-02-17

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.

  11. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses

    PubMed Central

    Sur, Mriganka

    2017-01-01

    Striosomes were discovered several decades ago as neurochemically identified zones in the striatum, yet technical hurdles have hampered the study of the functions of these striatal compartments. Here we used 2-photon calcium imaging in neuronal birthdate-labeled Mash1-CreER;Ai14 mice to image simultaneously the activity of striosomal and matrix neurons as mice performed an auditory conditioning task. With this method, we identified circumscribed zones of tdTomato-labeled neuropil that correspond to striosomes as verified immunohistochemically. Neurons in both striosomes and matrix responded to reward-predicting cues and were active during or after consummatory licking. However, we found quantitative differences in response strength: striosomal neurons fired more to reward-predicting cues and encoded more information about expected outcome as mice learned the task, whereas matrix neurons were more strongly modulated by recent reward history. These findings open the possibility of harnessing in vivo imaging to determine the contributions of striosomes and matrix to striatal circuit function. PMID:29251596

  12. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer.

    PubMed

    Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin

    2017-01-25

    Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

  13. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review

    PubMed Central

    Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Gianello, Pierre; Fervaille, Caroline; El Khoury, Gebrine

    2016-01-01

    Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for ‘next-generation’ cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair. PMID:26912574

  14. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha.

    PubMed

    Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T

    2016-07-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.

  15. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    PubMed

    Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-10-27

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment.

    PubMed

    Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling

    2013-07-01

    Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.

  17. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-01-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850

  18. Matrix metalloproteinase-14 is a biomarker of angiogenic activity in proliferative diabetic retinopathy

    PubMed Central

    Mohammad, Ghulam; Allegaert, Eef; Ahmad, Ajmal; Siddiquei, Mohammad Mairaj; Alam, Kaiser; Gikandi, Priscilla W.; De Hertogh, Gert; Opdenakker, Ghislain

    2018-01-01

    Purpose Matrix metalloproteinase-14 (MMP-14) is a transmembrane MMP that plays a critical role in promoting angiogenesis. We investigated the expression levels of MMP-14 and correlated the levels with clinical disease activity and with the levels of the angiogenic factors vascular endothelial growth factor (VEGF) and MMP-9 in proliferative diabetic retinopathy (PDR). To reinforce the findings at the functional level, we examined the expression of MMP-14 in the retinas of diabetic rats. Methods Vitreous samples from 34 patients with PDR and 18 nondiabetic patients and epiretinal membranes from 13 patients with PDR and the retinas of rats were studied with enzyme-linked immunosorbent assay, immunohistochemistry, western blotting, and real-time reverse transcription PCR (RT–PCR). Results The MMP-14, VEGF, and MMP-9 levels were statistically significantly higher in the vitreous samples from patients with PDR than in the samples from the nondiabetic controls (p<0.001 for all comparisons). The MMP-14 levels in patients with PDR with active neovascularization were statistically significantly higher than those in patients with inactive PDR (p<0.001). There were statistically significant positive correlations between levels of MMP-14 and levels of VEGF (r = 0.3; p = 0.032) and MMP-9 (r = 0.54; p<0.001). In the epiretinal membranes, MMP-14 was expressed in vascular endothelial cells, leukocytes, and myofibroblasts. Statistically significant positive correlations were detected between the numbers of blood vessels expressing CD31 and the numbers of blood vessels (r = 0.74; p = 0.004) and stromal cells (r = 0.72; p = 0.005) expressing MMP-14. Statistically significant increases of MMP-14 mRNA and protein were detected in rat retinas after induction of diabetes. Conclusions These results suggest that MMP-14 is involved in PDR angiogenesis. PMID:29853773

  19. The Astrobiology Matrix and the "Drake Matrix" in Education

    NASA Technical Reports Server (NTRS)

    Mizser, A.; Kereszturi, A.

    2003-01-01

    We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.

  20. A Glimpse of Matrix Metalloproteinases in Diabetic Nephropathy

    PubMed Central

    Xu, X.; Xiao, L.; Xiao, P.; Yang, S.; Chen, G.; Liu, F.; Kanwar, Y.Y.; Sun, L.

    2014-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy in humans and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy. PMID:25039784

  1. Prediction on neutrino Dirac and Majorana phases and absolute mass scale from the CKM matrix

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Yamada, Toshifumi

    2018-03-01

    In the type-I seesaw model, the lepton-flavor-mixing matrix (Pontecorvo-Maki-Nakagawa-Sakata matrix) and the quark-flavor-mixing matrix [Cabibbo-Kobayashi-Maskawa (CKM) matrix] may be connected implicitly through a relation between the neutrino Dirac Yukawa coupling YD and the quark Yukawa couplings. In this paper, we study whether YD can satisfy—in the flavor basis where the charged lepton Yukawa and right-handed neutrino Majorana mass matrices are diagonal—the relation YD∝diag (yd,ys,yb)VCKMT or YD∝diag (yu,yc,yt)VCKM* without contradicting the current experimental data on quarks and neutrino oscillations. We search for sets of values of the neutrino Dirac C P phase δC P, Majorana phases α2 , α3 , and the lightest active neutrino mass that satisfy either of the above relations, with the normal or inverted hierarchy of neutrino masses. In performing the search, we consider renormalization group evolutions of the quark masses and CKM matrix and the propagation of their experimental errors along the evolutions. We find that only the former relation YD∝diag (yd,ys,yb)VCKMT with the normal neutrino mass hierarchy holds, based on which we make predictions for δC P, α2, α3, and the lightest active neutrino mass.

  2. Inhibition of host extracellular matrix destructive enzyme production and activity by a high-molecular-weight cranberry fraction.

    PubMed

    Bodet, C; Chandad, F; Grenier, D

    2007-04-01

    Periodontal diseases are a group of inflammatory disorders that are initiated by specific gram-negative bacteria and lead to connective tissue destruction. Proteolytic enzymes, including matrix metalloproteinases (MMPs) and elastase, produced by resident and inflammatory cells in response to periodontopathogens and their products, play a major role in gingival tissue destruction. The aim of this study was to investigate the effect of a high-molecular-weight fraction prepared from cranberry juice concentrate on MMP-3, MMP-9 and elastase activities, as well as on MMP production by human cells stimulated with lipopolysaccharide of Actinobacillus actinomycetemcomitans. MMP-3 and MMP-9 production by gingival fibroblasts and macrophages treated with the cranberry fraction and then stimulated with lipopolysaccharide was measured by enzyme-linked immunosorbent assay. MMP-3, MMP-9 and elastase activities in the presence of the cranberry fraction were evaluated using colorimetric or fluorogenic substrates. The changes in expression and phosphorylation state of fibroblast intracellular signaling proteins induced by A. actinomycetemcomitans lipopolysaccharide and the cranberry fraction were characterized by antibody microarrays. The lipopolysaccharide-induced MMP-3 and MMP-9 responses of fibroblasts and macrophages were inhibited in a dose-dependent manner by the cranberry fraction. This fraction was found to inhibit fibroblast intracellular signaling proteins, a phenomenon that may lead to a down-regulation of activating protein-1 activity. MMP-3, MMP-9 and elastase activities were also efficiently inhibited by the cranberry fraction, even when it was used at low concentrations. These results suggest that cranberry compounds offer promising perspectives for the development of novel host-modulating strategies for an adjunctive treatment of periodontitis.

  3. Effect of flaw size and temperature on the matrix cracking behavior of a brittle ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandakumar, U.; Webb, J.E.; Singh, R.N.

    The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less

  4. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  5. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    PubMed Central

    2011-01-01

    Background Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. Methods We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP+ matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. Results We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP+ matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP+ matrix-induced tumor invasion phenotype is β1-integrin/FAK mediated. Conclusion Cancer cell invasiveness can be affected by

  6. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    PubMed

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p<0.001). At MIC or 10 x MIC, fluconazole showed high amounts of intracellular polysaccharides (p<0.05), but did not affect the exopolysaccharide matrix (p>0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  7. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    USDA-ARS?s Scientific Manuscript database

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  8. Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.

    PubMed

    Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde

    2017-08-01

    Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  10. Inner Space Perturbation Theory in Matrix Product States: Replacing Expensive Iterative Diagonalization.

    PubMed

    Ren, Jiajun; Yi, Yuanping; Shuai, Zhigang

    2016-10-11

    We propose an inner space perturbation theory (isPT) to replace the expensive iterative diagonalization in the standard density matrix renormalization group theory (DMRG). The retained reduced density matrix eigenstates are partitioned into the active and secondary space. The first-order wave function and the second- and third-order energies are easily computed by using one step Davidson iteration. Our formulation has several advantages including (i) keeping a balance between the efficiency and accuracy, (ii) capturing more entanglement with the same amount of computational time, (iii) recovery of the standard DMRG when all the basis states belong to the active space. Numerical examples for the polyacenes and periacene show that the efficiency gain is considerable and the accuracy loss due to the perturbation treatment is very small, when half of the total basis states belong to the active space. Moreover, the perturbation calculations converge in all our numerical examples.

  11. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  12. Polymorphic Variants 279R and 668Q Augment Activity of Matrix Metalloproteinase-9 in Breath Condensates of Children with Asthma.

    PubMed

    Grzela, Katarzyna; Zagórska, Wioletta; Krejner, Alicja; Litwiniuk, Malgorzata; Zawadzka-Krajewska, Anna; Kulus, Marek; Grzela, Tomasz

    2017-04-01

    Matrix metalloproteinase (MMP)-9 is involved in pathophysiology of asthma, mainly asthma-associated airway remodeling. Exhaled breath condensates (EBC) of asthmatics contain increased amounts of MMP-9 with activity higher, than in healthy controls. The increased activity of MMP-9 may originate from its excessive production and activation, but may also result from variations in MMP-9 structure, which are determined by single nucleotide polymorphisms (SNPs). In this pilot study we aimed to assess the possible influence of two functional MMP-9 polymorphisms, Q279R and R668Q, on enzymatic activity of MMP-9, measured in EBC of asthmatic children. The concentration and activity of MMP-9 were analyzed in EBC of 20 children with allergic asthma using specific standard ELISA and novel immunoenzymatic activity assay. The SNPs of MMP-9 were assessed using real-time PCR-based genotyping test. We have found that MMP-9 concentration in breath condensates of children with stable asthma was slightly higher in ELISA, than in the activity assay. Moreover, these results and activity-to-amount ratio have revealed some relationship with a presence of specific 279R and/or 668Q MMP-9 gene variants. Our observation suggests that at least in some patients MMP-9 hyperactivity may result from genetic predisposition, determined by polymorphic variants of MMP-9 gene. Moreover, it supports previous reports postulating significance of MMP-9 in pathogenesis of asthma. However, this issue still requires further studies.

  13. Nuclear matrix - structure, function and pathogenesis.

    PubMed

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  14. Neu1 Sialidase and Matrix Metalloproteinase-9 Cross-talk Is Essential for Toll-like Receptor Activation and Cellular Signaling*

    PubMed Central

    Abdulkhalek, Samar; Amith, Schammim Ray; Franchuk, Susan L.; Jayanth, Preethi; Guo, Merry; Finlay, Trisha; Gilmour, Alanna; Guzzo, Christina; Gee, Katrina; Beyaert, Rudi; Szewczuk, Myron R.

    2011-01-01

    The signaling pathways of mammalian Toll-like receptors (TLRs) are well characterized, but the precise mechanism(s) by which TLRs are activated upon ligand binding remains poorly defined. Recently, we reported a novel membrane sialidase-controlling mechanism that depends on ligand binding to its TLR to induce mammalian neuraminidase-1 (Neu1) activity, to influence receptor desialylation, and subsequently to induce TLR receptor activation and the production of nitric oxide and proinflammatory cytokines in dendritic and macrophage cells. The α-2,3-sialyl residue of TLR was identified as the specific target for hydrolysis by Neu1. Here, we report a membrane signaling paradigm initiated by endotoxin lipopolysaccharide (LPS) binding to TLR4 to potentiate G protein-coupled receptor (GPCR) signaling via membrane Gαi subunit proteins and matrix metalloproteinase-9 (MMP9) activation to induce Neu1. Central to this process is that a Neu1-MMP9 complex is bound to TLR4 on the cell surface of naive macrophage cells. Specific inhibition of MMP9 and GPCR Gαi-signaling proteins blocks LPS-induced Neu1 activity and NFκB activation. Silencing MMP9 mRNA using lentivirus MMP9 shRNA transduction or siRNA transfection of macrophage cells and MMP9 knock-out primary macrophage cells significantly reduced Neu1 activity and NFκB activation associated with LPS-treated cells. These findings uncover a molecular organizational signaling platform of a novel Neu1 and MMP9 cross-talk in alliance with TLR4 on the cell surface that is essential for ligand activation of TLRs and subsequent cellular signaling. PMID:21873432

  15. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation

    PubMed Central

    Ling, H; Yang, H; Tan, S-H; Chui, W-K; Chew, E-H

    2010-01-01

    BACKGROUND AND PURPOSE Shogaols are reported to possess anti-inflammatory and anticancer activities. However, the antimetastatic potential of shogaols remains unexplored. This study was performed to assess the effects of shogaols against breast cancer cell invasion and to investigate the underlying mechanisms. EXPERIMENTAL APPROACH The anti-invasive effect of a series of shogaols was initially evaluated on MDA-MB-231 breast cancer cells using the matrigel invasion assay. The suppressive effects of 6-shogaol on phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) gelatinolytic activity and nuclear factor-κB (NF-κB) activation were further determined. KEY RESULTS Shogaols (6-, 8- and 10-shogaol) inhibited PMA-stimulated MDA-MB-231 cell invasion with an accompanying decrease in MMP-9 secretion. 6-Shogaol was identified to display the greatest anti-invasive effect in association with a dose-dependent reduction in MMP-9 gene activation, protein expression and secretion. The NF-κB transcriptional activity was decreased by 6-shogaol; an effect mediated by inhibition of IκB phosphorylation and degradation that subsequently led to suppression of NF-κB p65 phosphorylation and nuclear translocation. In addition, 6-shogaol was found to inhibit JNK activation with no resulting reduction in activator protein-1 transcriptional activity. By using specific inhibitors, it was demonstrated that ERK and NF-κB signalling, but not JNK and p38 signalling, were involved in PMA-stimulated MMP-9 activation. CONCLUSIONS AND IMPLICATIONS 6-Shogaol is a potent inhibitor of MDA-MB-231 cell invasion, and the molecular mechanism involves at least in part the down-regulation of MMP-9 transcription by targeting the NF-κB activation cascade. This class of naturally occurring small molecules thus have potential for clinical use as antimetastatic treatments. PMID:20718733

  16. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation.

    PubMed

    Ling, H; Yang, H; Tan, S-H; Chui, W-K; Chew, E-H

    2010-12-01

    Shogaols are reported to possess anti-inflammatory and anticancer activities. However, the antimetastatic potential of shogaols remains unexplored. This study was performed to assess the effects of shogaols against breast cancer cell invasion and to investigate the underlying mechanisms. The anti-invasive effect of a series of shogaols was initially evaluated on MDA-MB-231 breast cancer cells using the matrigel invasion assay. The suppressive effects of 6-shogaol on phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) gelatinolytic activity and nuclear factor-κB (NF-κB) activation were further determined. Shogaols (6-, 8- and 10-shogaol) inhibited PMA-stimulated MDA-MB-231 cell invasion with an accompanying decrease in MMP-9 secretion. 6-Shogaol was identified to display the greatest anti-invasive effect in association with a dose-dependent reduction in MMP-9 gene activation, protein expression and secretion. The NF-κB transcriptional activity was decreased by 6-shogaol; an effect mediated by inhibition of IκB phosphorylation and degradation that subsequently led to suppression of NF-κB p65 phosphorylation and nuclear translocation. In addition, 6-shogaol was found to inhibit JNK activation with no resulting reduction in activator protein-1 transcriptional activity. By using specific inhibitors, it was demonstrated that ERK and NF-κB signalling, but not JNK and p38 signalling, were involved in PMA-stimulated MMP-9 activation. 6-Shogaol is a potent inhibitor of MDA-MB-231 cell invasion, and the molecular mechanism involves at least in part the down-regulation of MMP-9 transcription by targeting the NF-κB activation cascade. This class of naturally occurring small molecules thus have potential for clinical use as antimetastatic treatments. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  17. A new surface-potential-based compact model for the MoS2 field effect transistors in active matrix display applications

    NASA Astrophysics Data System (ADS)

    Cao, Jingchen; Peng, Songang; Liu, Wei; Wu, Quantan; Li, Ling; Geng, Di; Yang, Guanhua; Ji, Zhouyu; Lu, Nianduan; Liu, Ming

    2018-02-01

    We present a continuous surface-potential-based compact model for molybdenum disulfide (MoS2) field effect transistors based on the multiple trapping release theory and the variable-range hopping theory. We also built contact resistance and velocity saturation models based on the analytical surface potential. This model is verified with experimental data and is able to accurately predict the temperature dependent behavior of the MoS2 field effect transistor. Our compact model is coded in Verilog-A, which can be implemented in a computer-aided design environment. Finally, we carried out an active matrix display simulation, which suggested that the proposed model can be successfully applied to circuit design.

  18. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  19. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process.

  20. Phase matrix induced symmetrics for multiple scattering using the matrix operator method

    NASA Technical Reports Server (NTRS)

    Hitzfelder, S. J.; Kattawar, G. W.

    1973-01-01

    Entirely rigorous proofs of the symmetries induced by the phase matrix into the reflection and transmission operators used in the matrix operator theory are given. Results are obtained for multiple scattering in both homogeneous and inhomogeneous atmospheres. These results will be useful to researchers using the method since large savings in computer time and storage are obtainable.

  1. Pulmonary immunity and extracellular matrix interactions.

    PubMed

    O'Dwyer, David N; Gurczynski, Stephen J; Moore, Bethany B

    2018-04-09

    The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  2. Multi-gigabit optical interconnects for next-generation on-board digital equipment

    NASA Astrophysics Data System (ADS)

    Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.

  3. Multi-gigabit optical interconnects for next-generation on-board digital equipment

    NASA Astrophysics Data System (ADS)

    Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2004-06-01

    Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.

  4. Board-to-board optical interconnection using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon

    2004-10-01

    A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.

  5. Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts.

    PubMed

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.

  6. Shell Extracts from the Marine Bivalve Pecten maximus Regulate the Synthesis of Extracellular Matrix in Primary Cultured Human Skin Fibroblasts

    PubMed Central

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635

  7. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  8. [Modern polymers in matrix tablets technology].

    PubMed

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  9. Data-Driven Learning of Q-Matrix

    PubMed Central

    Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang

    2013-01-01

    The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known Q-matrix, which specifies the item–attribute relationships. This article proposes a data-driven approach to identification of the Q-matrix and estimation of related model parameters. A key ingredient is a flexible T-matrix that relates the Q-matrix to response patterns. The flexibility of the T-matrix allows the construction of a natural criterion function as well as a computationally amenable algorithm. Simulations results are presented to demonstrate usefulness and applicability of the proposed method. Extension to handling of the Q-matrix with partial information is presented. The proposed method also provides a platform on which important statistical issues, such as hypothesis testing and model selection, may be formally addressed. PMID:23926363

  10. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix.

    PubMed

    Yu, Shan; Su, Tiantian; Wu, Huijun; Liu, Shiheng; Wang, Di; Zhao, Tianhu; Jin, Zengjun; Du, Wenbin; Zhu, Mei-Jun; Chua, Song Lin; Yang, Liang; Zhu, Deyu; Gu, Lichuan; Ma, Luyan Z

    2015-12-01

    Biofilms are surface-associated communities of microorganism embedded in extracellular matrix. Exopolysaccharide is a critical component in the extracellular matrix that maintains biofilm architecture and protects resident biofilm bacteria from antimicrobials and host immune attack. However, self-produced factors that target the matrix exopolysaccharides, are still poorly understood. Here, we show that PslG, a protein involved in the synthesis of a key biofilm matrix exopolysaccharide Psl in Pseudomonas aeruginosa, prevents biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. The crystal structure of PslG indicates the typical features of an endoglycosidase. PslG mainly disrupts the Psl matrix to disperse bacteria from biofilms. PslG treatment markedly enhances biofilm sensitivity to antibiotics and macrophage cells, resulting in improved biofilm clearance in a mouse implant infection model. Furthermore, PslG shows biofilm inhibition and disassembly activity against a wide range of Pseudomonas species, indicating its great potential in combating biofilm-related complications.

  11. Peroxisome proliferator-activated receptor-δ activates endothelial progenitor cells to induce angio-myogenesis through matrix metallo-proteinase-9-mediated insulin-like growth factor-1 paracrine networks.

    PubMed

    Han, Jung-Kyu; Kim, Hack-Lyoung; Jeon, Ki-Hyun; Choi, Young-Eun; Lee, Hyun-Sook; Kwon, Yoo-Wook; Jang, Ja-June; Cho, Hyun-Jai; Kang, Hyun-Jae; Oh, Byung-Hee; Park, Young-Bae; Kim, Hyo-Soo

    2013-06-01

    The roles of peroxisome proliferator-activated receptor (PPAR)-δ in vascular biology are mainly unknown. We investigated the effects of PPAR-δ activation on the paracrine networks between endothelial progenitor cells (EPCs) and endothelial cells (ECs)/skeletal muscle. Treatment of EPCs with GW501516, a PPAR-δ agonist, induced specifically matrix metallo-proteinase (MMP)-9 by direct transcriptional activation. Subsequently, this increased-MMP-9 broke down insulin-like growth factor-binding protein (IGFBP)-3, resulting in IGF-1 receptor (IGF-1R) activation in surrounding target cells. Treatment of conditioned medium from GW501516-stimulated EPCs enhanced the number and functions of human umbilical vein ECs and C2C12 myoblasts via MMP-9-mediated IGF-1R activation. Systemic administration of GW501516 in mice increased MMP-9 expression in EPCs, and augmented IGFBP-3 degradation in serum. In a mouse hindlimb ischaemia model, systemic treatment of GW501516 or local transplantation of GW501516-treated EPCs induced IGF-1R phosphorylation in ECs and skeletal muscle in the ischaemic limbs, leading to augmented angiogenesis and skeletal muscle regeneration. It also enhanced wound healing with increased angiogenesis in a mouse skin punch wound model. These pro-angiogenic and muscle-regenerating effects were abolished by MMP-9 knock-out. Our results suggest that PPAR-δ is a crucial modulator of angio-myogenesis via the paracrine effects of EPCs, and its agonist is a good candidate as a therapeutic drug for patients with peripheral vascular diseases.

  12. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory.

    PubMed

    Nasrollahi, Samila; Walter, Christopher; Loza, Andrew J; Schimizzi, Gregory V; Longmore, Gregory D; Pathak, Amit

    2017-11-01

    During morphogenesis and cancer metastasis, grouped cells migrate through tissues of dissimilar stiffness. Although the influence of matrix stiffness on cellular mechanosensitivity and motility are well-recognized, it remains unknown whether these matrix-dependent cellular features persist after cells move to a new microenvironment. Here, we interrogate whether priming of epithelial cells by a given matrix stiffness influences their future collective migration on a different matrix - a property we refer to as the 'mechanical memory' of migratory cells. To prime cells on a defined matrix and track their collective migration onto an adjoining secondary matrix of dissimilar stiffness, we develop a modular polyacrylamide substrate through step-by-step polymerization of different PA compositions. We report that epithelial cells primed on a stiff matrix migrate faster, display higher actomyosin expression, form larger focal adhesions, and retain nuclear YAP even after arriving onto a soft secondary matrix, as compared to their control behavior on a homogeneously soft matrix. Priming on a soft ECM causes a reverse effect. The depletion of YAP dramatically reduces this memory-dependent migration. Our results present a previously unidentified regulation of mechanosensitive collective cell migration by past matrix stiffness, in which mechanical memory depends on YAP activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of Extracellular Matrix Components and Biological Factors in Micronized Dehydrated Human Amnion/Chorion Membrane

    PubMed Central

    Lei, Jennifer; Priddy, Lauren B.; Lim, Jeremy J.; Massee, Michelle; Koob, Thomas J.

    2017-01-01

    Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair. PMID:28224047

  14. Identification of Extracellular Matrix Components and Biological Factors in Micronized Dehydrated Human Amnion/Chorion Membrane.

    PubMed

    Lei, Jennifer; Priddy, Lauren B; Lim, Jeremy J; Massee, Michelle; Koob, Thomas J

    2017-02-01

    Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION ® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek ® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair.

  15. MATRIX PHOTOCATALYTIC, INC. PHOTOCATALYTIC OXIDATION TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Matrix Technology involves the exposure of titanium dioxide (Ti02) particles to ultraviolet light (UV). The Ti02 is activated by UV light to produce high oxidizing hydroxyl radicals. Maxtrix also uses hydrogen peroxide (H202) and ozone (03) to enhance the treatment systems p...

  16. Osteoactivin regulates head and neck squamous cell carcinoma invasion by modulating matrix metalloproteases.

    PubMed

    Arosarena, Oneida A; Barr, Eric W; Thorpe, Ryan; Yankey, Hilary; Tarr, Joseph T; Safadi, Fayez F

    2018-01-01

    Nearly 60% of patients with head and neck squamous cell carcinoma (HNSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell migration and invasion, which are in part dependent on extracellular matrix degradation by matrix metalloproteinases. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies, and has been shown to upregulate matrix metalloproteinase (MMP) expression and activity. To determine how OA modulates MMP expression and activity in HNSCC, and to investigate OA effects on cell invasion, we assessed effects of OA treatment on MMP mRNA and protein expression, as well as gelatinase and caseinolytic activity in HNSCC cell lines. We assessed the effects of OA gene silencing on MMP expression, gelatinase and caseinolytic activity, and cell invasion. OA treatment had differential effects on MMP mRNA expression. OA treatment upregulated MMP-10 expression in UMSCC14a (p = 0.0431) and SCC15 (p < 0.0001) cells, but decreased MMP-9 expression in UMSCC14a cells (p = 0.0002). OA gene silencing decreased MMP-10 expression in UMSCC12 cells (p = 0.0001), and MMP-3 (p = 0.0005) and -9 (p = 0.0036) expression in SCC25 cells. In SCC15 and SCC25 cells, OA treatment increased MMP-2 (p = 0.0408) and MMP-9 gelatinase activity (p < 0.0001), respectively. OA depletion decreased MMP-2 (p = 0.0023) and -9 (p < 0.0001) activity in SCC25 cells. OA treatment increased 70 kDa caseinolytic activity in UMSCC12 cells consistent with tissue type plasminogen activator (p = 0.0078). OA depletion decreased invasive capacity of UMSCC12 cells (p < 0.0001). OA's effects on MMP expression in HNSCC are variable, and may promote cancer cell invasion. © 2017 Wiley Periodicals, Inc.

  17. Temozolomide does not influence the transcription or activity of matrix metalloproteinases 9 and 2 in glioma cell lines.

    PubMed

    Suzuki, Yuta; Fujioka, Kouki; Ikeda, Keiichi; Murayama, Yuichi; Manome, Yoshinobu

    2017-07-01

    Glioblastoma multiforme (GBM) is a treatment-resistant malignancy with poor prognosis. Temozolomide (TMZ) is widely used as a first-line drug for GBM. Although this improves patient prognosis, it does not completely eradicate the tumour. Even after total surgical resection, GBM can exhibit uncontrollable invasiveness at the tumour margins owing to activation of matrix metalloproteinases (MMPs) such as MMP-2 and -9; these degrade collagen IV in the basement membrane, which normally prevents cancer invasion. TMZ induces DNA damage and activates transcription factors including c-jun, c-fos, nuclear factor-κβ, and early growth response protein-1, which have putative binding sites on the MMP-9 promoter. TMZ may therefore enhance tumour invasion by stimulating MMP-9 transcription and enzymatic activity. To test this hypothesis, we investigated MMP-2 and -9 mRNA transcription and activity in GBM cell lines treated with TMZ. Human A172 GBM cells were exposed to TMZ (25% and 50% inhibitory concentrations) for 24 or 48h; cell cycle distribution and mRNA levels of MMP-2 and -9 were evaluated using flow cytometry and semi-quantitative reverse transcription PCR, respectively. MMP-2 and -9 enzymatic activities were assessed using gelatin zymography in human A172 and U373 MG GBM cells exposed to TMZ under the same conditions. TMZ altered A172 cell cycle distribution, but not MMP-2 or -9 mRNA levels. TMZ did not affect MMP-2 or -9 enzymatic activities in A172 or U373 MG cells. These findings indicated that TMZ is therefore unlikely to promote GBM invasiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simultaneous remote measurement of CO2 concentration, humidity and temperature with a matrix of optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Wysokiński, Karol; Filipowicz, Marta; Stańczyk, Tomasz; Lipiński, Stanisław; Napierała, Marek; Murawski, Michał; Nasiłowski, Tomasz

    2017-10-01

    A matrix of optical fiber sensors eligible for remote measurements is reported in this paper. The aim of work was to monitor the air quality with a device, which does not need any electricity on site of the measurement. The matrix consists of several sensors detecting carbon dioxide concentration, relative humidity and temperature. Sensors utilize active optical materials, which change their color when exposed to varied conditions. All the sensors are powered with standard light emitting diodes. Light is transmitted by an optical fiber from the light source and then it reaches the active layer which changes its color, when the conditions change. This results in a change of attenuation of light passing through the active layer. Modified light is then transmitted by another optical fiber to the detector, where simple photoresistor is used. It is powered by a stabilized DC power supply and the current is measured. Since no expensive elements are needed to manufacture such a matrix of sensors, its price may be competitive to the price of the devices already available on the market, while the matrix also exhibits other valuable properties.

  19. Fast polar decomposition of an arbitrary matrix

    NASA Technical Reports Server (NTRS)

    Higham, Nicholas J.; Schreiber, Robert S.

    1988-01-01

    The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

  20. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J [Livermore, CA; Lyon, Richard E [Absecon, NJ; Groves, Scott E [Brentwood, CA

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  1. Optimized Projection Matrix for Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jianping; Pi, Yiming; Cao, Zongjie

    2010-12-01

    Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  2. Prevention of abdominal aortic aneurysm progression by targeted inhibition of matrix metalloproteinase activity with batimastat-loaded nanoparticles.

    PubMed

    Nosoudi, Nasim; Nahar-Gohad, Pranjal; Sinha, Aditi; Chowdhury, Aniqa; Gerard, Patrick; Carsten, Christopher G; Gray, Bruce H; Vyavahare, Naren R

    2015-11-06

    Matrix metalloproteinases (MMPs)-mediated extracellular matrix destruction is the major cause of development and progression of abdominal aortic aneurysms. Systemic treatments of MMP inhibitors have shown effectiveness in animal models, but it did not translate to clinical success either because of low doses used or systemic side effects of MMP inhibitors. We propose a targeted nanoparticle (NP)-based delivery of MMP inhibitor at low doses to the abdominal aortic aneurysms site. Such therapy will be an attractive option for preventing expansion of aneurysms in patients without systemic side effects. Our previous study showed that poly(d,l-lactide) NPs conjugated with an antielastin antibody could be targeted to the site of an aneurysm in a rat model of abdominal aortic aneurysms. In the study reported here, we tested whether such targeted NPs could deliver the MMP inhibitor batimastat (BB-94) to the site of an aneurysm and prevent aneurysmal growth. Poly(d,l-lactide) NPs were loaded with BB-94 and conjugated with an elastin antibody. Intravenous injections of elastin antibody-conjugated BB-94-loaded NPs targeted the site of aneurysms and delivered BB-94 in a calcium chloride injury-induced abdominal aortic aneurysms in rats. Such targeted delivery inhibited MMP activity, elastin degradation, calcification, and aneurysmal development in the aorta (269% expansion in control versus 40% elastin antibody-conjugated BB-94-loaded NPs) at a low dose of BB-94. The systemic administration of BB-94 alone at the same dose was ineffective in producing MMP inhibition. Targeted delivery of MMP inhibitors using NPs may be an attractive strategy to inhibit aneurysmal progression. © 2015 American Heart Association, Inc.

  3. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.

  4. The nuclear matrix prepared by amine modification

    PubMed Central

    Wan, Katherine M.; Nickerson, Jeffrey A.; Krockmalnic, Gabriela; Penman, Sheldon

    1999-01-01

    The nucleus is spatially ordered by attachments to a nonchromatin nuclear structure, the nuclear matrix. The nuclear matrix and chromatin are intimately connected and integrated structures, and so a major technical challenge in nuclear matrix research has been to remove chromatin while retaining a native nuclear matrix. Most methods for removing chromatin require first a nuclease digestion and then a salt extraction to remove cut chromatin. We have hypothesized that cut chromatin is held in place by charge interactions involving nucleosomal amino groups. We have tested this hypothesis by chemically modifying amino groups after nuclease digestion. By using this protocol, chromatin could be effectively removed at physiological ionic strength. We compared the ultrastructure and composition of this nuclear matrix preparation with the traditional high-salt nuclear matrix and with the third nuclear matrix preparation that we have developed from which chromatin is removed after extensive crosslinking. All three matrix preparations reveal internal nuclear matrix structures that are built on a network of branched filaments of about 10 nm diameter. That such different chromatin-removal protocols reveal similar principles of nuclear matrix construction increases our confidence that we are observing important architectural elements of the native structure in the living cell. PMID:9927671

  5. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  6. Matrix metalloproteinase inhibitors as anticancer agents.

    PubMed

    Konstantinopoulos, Panagiotis A; Karamouzis, Michalis V; Papatsoris, Athanasios G; Papavassiliou, Athanasios G

    2008-01-01

    The important role of matrix metalloproteinases (MMPs) in the process of carcinogenesis is well established. However, despite very promising activity in a plethora of preclinical models, MMP inhibitors (MMPIs) failed to demonstrate a statistically significant survival advantage in advanced stage clinical trials in most human malignancies. Herein, we review the implication of MMPs in carcinogenesis, outline the pharmacology and current status of various MMPIs as anticancer agents and discuss the etiologies for the discrepancy between their preclinical and clinical evaluation. Finally, strategies for effective incorporation of MMPIs in current anticancer therapies are proposed.

  7. Exposure matrix development for the Libby cohort.

    PubMed

    Noonan, C W

    2006-11-01

    The Libby, MT, cohort includes current and former residents with potential historical exposure to asbestos-contaminated vermiculite. This cohort includes individuals with a broad range of exposure experiences and work histories. While both occupational and nonoccupational exposure pathways were found to be relevant in recent investigations of health effects among this cohort, there has not been a comprehensive approach to characterizing these varied exposure pathways. Any approach toward assessing historical exposures among this population must account for three general categories: (1) occupational exposures, (2) residential exposures, and (3) exposures related to a variety of nonoccupational activities thought to be associated with vermiculite/asbestos exposure in this community. First, a job exposure matrix is commonly used in occupational epidemiology to assess historical worker exposures, allowing for the incorporation of numerous occupational categories and weighting factors applied to specific jobs for different time periods. Second, residential exposures can best be quantified by integrating individuals' residential histories with data on environmental asbestos contamination in the community. Previous soil or sediment sampling as well as air modeling could inform estimates of time- and spatial-dependent exposure concentrations for a residential exposure matrix. Finally, exposure opportunities due to nonoccupational activities could be weighted by factors such as time, geography, environmental sampling, and an assessment of the relative importance for each pathway. These three matrices for occupational, residential, and activity exposure pathways could be combined or used separately to provide a more comprehensive and quantitative, or semiquantitative, assessment of individual exposure in future epidemiological studies of this cohort.

  8. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    PubMed

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  9. [Effect of dopamine on the activity of matrix metalloproteinases and degradation of dentin collagen].

    PubMed

    Xu, Qiangjian; Li, Quanli; Chen, Jialong; Zhang, Weibo; Wu, Xiaoting; Cao, Ying

    2015-03-01

    To investigate the inhibition effect of dopamine on the activity of matrix metalloproteinases (MMP) and the effect of dopamine on degradation of dentin collagen for its potential use in caries treatment and dentin adhesive. In the experiment of MMP activity test, 2.0 g/L dopamine + 1.0 g/L highly purified collagenase type VIII from Clostridium histolyticum served as the experimental group, and deionized water + 1.0 g/L highly purified collagenase type VIII from Clostridium histolyticum served as the negative control group, and 2% chlorhexidine + 1.0 g/L highly purified collagenase type VIII from Clostridium histolyticum served as the positive control group, and the mixture volume ratio of the two ingredients in every group was 1:9. After 15 minutes, the enzyme activity of each sample was tested by MMP activity colerimetric quantitative detection kits, and the test was repeated 5 times in each group. In the experiment of collagen degradation, the dentin slices were demineralized with 37% phosphoric acid for 1 min. In sequence, 2 dentin slices were used to observe the morphology, and the remaining 30 dentine slices were randomly divided into three groups (n = 10) according to random number table: the negative control ones were stored in 100 µl deionized water and 900 µl collagenase (7 days, 37 °C), the positive control ones were stored in 100 µl chlorhexidine and 900 µl collagenase (7 days, 37 °C) and the experimental specimens were stored in 100 µl dopamine and 900 µl collagenase (7 days, 37 °C). The degraded collagen was investigated by assaying hydroxyproline. The framework of collagen was evaluated with field emission scanning electron microscope (FE-SEM). The statistical results of completely random design ANOVA showed that the MMP activity and the amount of degraded collagen of the negative control group [(0.089 ± 0.011) µmol · min⁻¹ · mg⁻¹ and (2 837 ± 201) µg/cm²] were significantly higher than those of the positive control group [(0

  10. A new gallium complex inhibits tumor cell invasion and matrix metalloproteinase MMP-14 expression and activity.

    PubMed

    Mohsen, Ahmed; Collery, Philippe; Garnotel, Roselyne; Brassart, Bertrand; Etique, Nicolas; Mohamed Sabry, Gilane; Elsherif Hassan, Rasha; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid

    2017-08-16

    In this study, we investigated the effect of [N-(5-chloro-2-hydroxyphenyl)-l-aspartato] chlorogallate (GS2), a new water soluble gallium complex, on cell invasion and on the expression and activity of matrix metalloproteinases (MMPs) in human metastatic HT-1080 fibrosarcoma and MDA-MB 231 breast carcinoma cells. The effect on cell invasion was studied using a modified Boyden chamber coated with a type-I collagen. We analyzed the effect of GS2 on MMP-2, MMP-9, and MMP-14 via zymography and enzymatic assay using high affinity fluorogenic substrates. The expression of MMP mRNA was analyzed via qRT-PCR. GS2 induced a decrease in cell invasion. A dose-dependent inhibition effect was observed on the activities of MMP-2, MMP-9, and MMP-14 with the IC 50 values of 168, 82, and 20 μM, respectively. A decrease in the expression of MMP-14 mRNA was observed in both cell lines, whereas the expression of MMP-2 and MMP-9 mRNA was decreased only in the MDA-MB231 cells. Data obtained for the expression of MMP-14 mRNA were confirmed via Western blotting. In fact, MMP-14 expression was decreased in the presence of GS2. Overall, these data show that GS2 is a promising compound for anti-invasive and anticancer therapy.

  11. Improvements in sparse matrix operations of NASTRAN

    NASA Technical Reports Server (NTRS)

    Harano, S.

    1980-01-01

    A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.

  12. Mathematical Modeling of Cancer Invasion: The Role of Membrane-Bound Matrix Metalloproteinases

    PubMed Central

    Deakin, Niall E.; Chaplain, Mark A. J.

    2013-01-01

    One of the hallmarks of cancer growth and metastatic spread is the process of local invasion of the surrounding tissue. Cancer cells achieve protease-dependent invasion by the secretion of enzymes involved in proteolysis. These overly expressed proteolytic enzymes then proceed to degrade the host tissue allowing the cancer cells to disseminate throughout the microenvironment by active migration and interaction with components of the extracellular matrix (ECM) such as collagen. In this paper we develop a mathematical model of cancer invasion which consider the role of matrix metalloproteinases (MMPs). Specifically our model will focus on two distinct types of MMP, i.e., soluble, diffusible MMPs (e.g., MMP-2) and membrane-bound MMPs (e.g., MT1-MMP), and the roles each of these plays in cancer invasion. The implications of MMP-2 activation by MMP-14 and the tissue inhibitor of metalloproteinases-2 are considered alongside the effect the architecture of the matrix may have when applied to a model of cancer invasion. Elements of the ECM architecture investigated include pore size of the matrix, since in some highly dense collagen structures such as breast tissue, the cancer cells are unable to physically fit through a porous region, and the crosslinking of collagen fibers. In this scenario, cancer cells rely on membrane-bound MMPs to forge a path through which degradation by other MMPs and movement of cancer cells becomes possible. PMID:23565505

  13. [Characteristics, advantages, and limits of matrix tests].

    PubMed

    Brand, T; Wagener, K C

    2017-03-01

    Deterioration of communication abilities due to hearing problems is particularly relevant in listening situations with noise. Therefore, speech intelligibility tests in noise are required for audiological diagnostics and evaluation of hearing rehabilitation. This study analyzed the characteristics of matrix tests assessing the 50 % speech recognition threshold in noise. What are their advantages and limitations? Matrix tests are based on a matrix of 50 words (10 five-word sentences with same grammatical structure). In the standard setting, 20 sentences are presented using an adaptive procedure estimating the individual 50 % speech recognition threshold in noise. At present, matrix tests in 17 different languages are available. A high international comparability of matrix tests exists. The German language matrix test (OLSA, male speaker) has a reference 50 % speech recognition threshold of -7.1 (± 1.1) dB SNR. Before using a matrix test for the first time, the test person has to become familiar with the basic speech material using two training lists. Hereafter, matrix tests produce constant results even if repeated many times. Matrix tests are suitable for users of hearing aids and cochlear implants, particularly for assessment of benefit during the fitting process. Matrix tests can be performed in closed form and consequently with non-native listeners, even if the experimenter does not speak the test person's native language. Short versions of matrix tests are available for listeners with a shorter memory span, e.g., children.

  14. Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds.

    PubMed

    Hortensius, Rebecca A; Ebens, Jill H; Harley, Brendan A C

    2016-06-01

    Adult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support. In order to facilitate regeneration, success may be found by tempering the body's inflammatory response. This work combines collagen-glycosaminoglycan scaffolds, previously developed for tissue regeneration, with matrix materials (hyaluronic acid and amniotic membrane) that have been shown to promote healing and decreased scar formation in skin studies. The results presented show that scaffolds containing amniotic membrane matrix have significantly increased mechanical properties and that tendon cells within these scaffolds have increased metabolic activity even when the media is supplemented with the pro-inflammatory cytokine interleukin-1 beta. Collagen scaffolds containing hyaluronic acid or amniotic membrane also temper the expression of genes associated with the inflammatory response in normal tendon healing (TNF-α, COLI, MMP-3). These results suggest that alterations to scaffold composition, to include matrix known to decrease scar formation in vivo, can modify the inflammatory response in tenocytes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1332-1342, 2016. © 2016 Wiley Periodicals, Inc.

  15. SIGMAR1 Regulates Membrane Electrical Activity in Response to Extracellular Matrix Stimulation to Drive Cancer Cell Invasiveness.

    PubMed

    Crottès, David; Rapetti-Mauss, Raphael; Alcaraz-Perez, Francisca; Tichet, Mélanie; Gariano, Giuseppina; Martial, Sonia; Guizouarn, Hélène; Pellissier, Bernard; Loubat, Agnès; Popa, Alexandra; Paquet, Agnès; Presta, Marco; Tartare-Deckert, Sophie; Cayuela, Maria Luisa; Martin, Patrick; Borgese, Franck; Soriani, Olivier

    2016-02-01

    The sigma 1 receptor (Sig1R) is a stress-activated chaperone that regulates ion channels and is associated with pathologic conditions, such as stroke, neurodegenerative diseases, and addiction. Aberrant expression levels of ion channels and Sig1R have been detected in tumors and cancer cells, such as myeloid leukemia and colorectal cancer, but the link between ion channel regulation and Sig1R overexpression during malignancy has not been established. In this study, we found that Sig1R dynamically controls the membrane expression of the human voltage-dependent K(+) channel human ether-à-go-go-related gene (hERG) in myeloid leukemia and colorectal cancer cell lines. Sig1R promoted the formation of hERG/β1-integrin signaling complexes upon extracellular matrix stimulation, triggering the activation of the PI3K/AKT pathway. Consequently, the presence of Sig1R in cancer cells increased motility and VEGF secretion. In vivo, Sig1R expression enhanced the aggressiveness of tumor cells by potentiating invasion and angiogenesis, leading to poor survival. Collectively, our findings highlight a novel function for Sig1R in mediating cross-talk between cancer cells and their microenvironment, thus driving oncogenesis by shaping cellular electrical activity in response to extracellular signals. Given the involvement of ion channels in promoting several hallmarks of cancer, our study also offers a potential strategy to therapeutically target ion channel function through Sig1R inhibition. ©2015 American Association for Cancer Research.

  16. FPGA-based coprocessor for matrix algorithms implementation

    NASA Astrophysics Data System (ADS)

    Amira, Abbes; Bensaali, Faycal

    2003-03-01

    Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.

  17. Shrinkage estimation of the realized relationship matrix

    USDA-ARS?s Scientific Manuscript database

    The additive relationship matrix plays an important role in mixed model prediction of breeding values. For genotype matrix X (loci in columns), the product XX' is widely used as a realized relationship matrix, but the scaling of this matrix is ambiguous. Our first objective was to derive a proper ...

  18. The Extracellular Matrix of Fungal Biofilms.

    PubMed

    Mitchell, Kaitlin F; Zarnowski, Robert; Andes, David R

    A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.

  19. Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200×

    PubMed Central

    Papalexakis, Evangelos E.; Faloutsos, Christos; Mitchell, Tom M.; Talukdar, Partha Pratim; Sidiropoulos, Nicholas D.; Murphy, Brian

    2015-01-01

    How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like ‘edible’, ‘fits in hand’)? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem. Can we accelerate any CMTF solver, so that it runs within a few minutes instead of tens of hours to a day, while maintaining good accuracy? We introduce TURBO-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, by up to 200×, along with an up to 65 fold increase in sparsity, with comparable accuracy to the baseline. We apply TURBO-SMT to BRAINQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. TURBO-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. PMID:26473087

  20. Stromal matrix metalloproteinase 2 regulates collagen expression and promotes the outgrowth of experimental metastases.

    PubMed

    Bates, Andreia L; Pickup, Michael W; Hallett, Miranda A; Dozier, E Ashley; Thomas, Stacy; Fingleton, Barbara

    2015-04-01

    Breast cancer survival rates decrease from 99% for patients with local disease to 25% for those with distant metastases. Matrix metalloproteinases (MMPs), including MMP2, are associated with metastatic progression. We found that loss of host MMP2 reduces the proliferation of experimental metastases in the lungs and identified fibroblasts in tumour-bearing lungs as the major source of MMP2. In vitro, spheroidal mammary tumour growth was increased by co-culture with control fibroblasts isolated from tumour-bearing lungs, but not when fibroblasts with stable Mmp2 knockdown were used. This result prompted us to assess whether MMP2 was responsible for a tumour-proliferative, activated fibroblast phenotype. To test this, we evaluated: (a) fibroblasts from wild-type tumour-bearing lungs, with or without shRNA-mediated MMP2 knockdown; and (b) normal, quiescent fibroblasts isolated from either WT or Mmp2(-/-) mice. Quantitative PCR revealed that Mmp2 knockdown attenuated expression of two markers of activation (α-smooth muscle actin and vimentin), but there was minimal expression in quiescent WT or Mmp2(-/-) fibroblasts, as expected. Placing quiescent fibroblasts under activating conditions led to increases in activation-associated transcripts in WT but not Mmp2(-/-) fibroblasts. Additionally, Mmp2 knockdown fibroblasts showed significantly decreased expression of the matrix transcripts collagen I, collagen IV and fibronectin. Addition of active TGFβ was sufficient to rescue the MMP2-dependent collagen I and IV expression, while MMP2-induced collagen expression was blocked by the addition of TGFβ1-neutralizing antibody. Gene expression data in stromal cells of human breast cancers reveal that MMP2 expression is also positively correlated with activation and matrix transcripts. Thus, we present a model whereby MMP2 production in tumour fibroblasts is important for TGFβ1 activity and subsequent activation of fibroblasts to a matrix-producing, proliferation