Science.gov

Sample records for active metabolites formed

  1. Formed and preformed metabolites: facts and comparisons.

    PubMed

    Pang, K Sandy; Morris, Marilyn E; Sun, Huadong

    2008-10-01

    The administration of metabolites arising from new drug entities is often employed in drug discovery to investigate their associated toxicity. It is expected that administration of metabolites can predict the exposure of metabolites originating from the administration of precursor drug. Whether exact and meaningful information can be obtained from this has been a topic of debate. This communication summarizes observations and theoretical relationships based on physiological modelling for the liver, kidney and intestine, three major eliminating organs/tissues. Theoretical solutions based on physiological modelling of organs were solved, and the results suggest that deviations are expected. Here, examples of metabolite kinetics observed mostly in perfused organs that did not match predictions are provided. For the liver, discrepancies in fate between formed and preformed metabolites may be explained by the heterogeneity of enzymes, the presence of membrane barriers and whether transporters are involved. For the kidney, differences have been attributed to glomerular filtration of the preformed but not the formed metabolite. For the intestine, the complexity of segregated flows to the enterocyte and serosal layers and differences in metabolism due to the route of administration are addressed. Administration of the metabolite may or may not directly reflect the toxicity associated with drug use. However, kinetic data on the preformed metabolite will be extremely useful to develop a sound model for modelling and simulations; in-vitro evidence on metabolite handling at the target organ is also paramount. Subsequent modelling and simulation of metabolite data arising from a combined model based on both drug and preformed metabolite data are needed to improve predictions on the behaviours of formed metabolites. PMID:18812018

  2. Metabolites and DNA adduct formation from flavoenzyme-activated porfiromycin.

    PubMed

    Pan, S S; Iracki, T

    1988-08-01

    Porfiromycin was reductively metabolized by NADPH cytochrome P-450 reductase and xanthine oxidase under anaerobic conditions. The production of metabolites varied with the pH and the contents of the reaction buffer. In Tris buffer, two major metabolites were produced at pH 7.5 and above, whereas one major metabolite was produced at pH 6.5. The three major metabolites were separated and isolated by HPLC. Identification by californium-252 plasma desorption mass spectrometry showed that the two major metabolites from pH 7.5 were (trans) and (cis)-forms of 7-amino-1-hydroxyl-2-methylaminomitosene and the major metabolite from pH 6.5 was 7-amino-2-methylaminomitosene. All three major metabolites showed substitutions at the C-1 position. DNA was alkylated readily by enzyme-activated porfiromycin. Digestion of porfiromycin-alkylated DNA by DNase, snake venom phosphodiesterase, and alkaline phosphatase resulted in an insoluble nuclease-resistant fraction and a soluble fraction. The nuclease-resistant fraction reflected a high content of cross-linked adducts. Upon HPLC analysis, the solubilized fraction contained two monofunctionally linked porfiromycin adducts and a possibly cross-linked dinucleotide. The major adduct was isolated by HPLC and identified by NMR, as N2-(2'-deoxyguanosyl)-7-amino-2-methylaminomitosene. The N2 position of deoxyguanosine appeared as the major monofunctional alkylating site for DNA alkylation by porfiromycin. Thus, mitomycin C and porfiromycin (which differs from mitomycin C only by the addition of a methyl group to the aziridine nitrogen) share the same enzymatic activating mechanism that leads to the formation of the same types of metabolites and the same specificity of DNA alkylation. PMID:3412325

  3. Isolation and identification of metabolites of porfiromycin formed in the presence of a rat liver preparation.

    PubMed

    Lang, W; Mao, J; Wang, Q; Niu, C; Doyle, T W; Almassian, B

    2000-02-01

    The isolation and identification of the major metabolites of porfiromycin formed in the presence of a rat liver preparation under aerobic conditions were performed with high-performance liquid chromatography and electrospray ionization mass spectrometry. Porfiromycin was extensively metabolized by the rat liver preparation in an aqueous 0.1 M potassium phosphate buffer (pH 7.4) containing an NADPH generating system at 37 degrees C. A total of eight metabolites was identified as mitosene analogs. Of these, three primary metabolites are 2-methylamino-7-aminomitosene, 1,2-cis and 1,2-trans-1-hydroxy-2-methylamino-7-aminomitosene, which are consistent with those previously observed in hypoxia using purified rat liver NADPH-cytochrome c reductase. Interestingly, 2-methylamino-7-aminomitosene is a reactive metabolite, which undergoes further activation at the C-10 position by the loss of carbamic acid and then links with the 7-amino group of the primary metabolites to yield two dimeric adducts. In addition, three phosphate adducts, 10-decarbamoyl-2-methylamino-7-aminomitosene-10-phosphate, 1,2-cis and 1,2-trans-2-methylamino-7-aminomitosene-1-phosphate, were also identified in the incubation system. The configurations of the diastereoisomeric metabolites were determined with (1)HNMR and phosphatase digestion. On the basis of the metabolite profile, we propose in vitro metabolic pathways for porfiromycin. The findings provide direct evidence for understanding the reactive nature and hepatic metabolism of the drug currently in phase III clinical trials. PMID:10688748

  4. Synthesis of the alkylated active metabolite of tipidogrel.

    PubMed

    Zhi, Shuang; Xia, Guangping; Liu, Ying; Tao, Zunwei; Chen, Ligong; Liu, Dengke

    2015-04-15

    Tipidogrel (3), an effective anti-platelet drug candidate working by irreversibly inhibiting P2Y12 receptor, holds great promise in overcoming clopidogrel resistance and increasing bioavailability. As a prodrug like other thienopyridines, it metabolizes through thiophene ring opening to form active metabolites 3a and 3b, nevertheless they are easily to form disulfide bond. Derivatization of 3a and 3b via alkylation with MPBr can prevent disulfide conjugation and ensure reliable pharmacokinetic results. Thus, in order to support its pre-clinical studies on efficiencies in the formation of tipidogrel active metabolites, 13a and 13b were synthesized via seven steps of chemosynthesis and incubation with MPBr in rat plasma in vitro. The resulting crude productions were purified by semi-preparative HPLC to give Z configuration 13a and E configuration 13b. In LC-MS/MS spectra, they showed identical fragmentation pattern and retention time with M-13a and M-13b, the MPBr-derivatives of active metabolites of tipidogrel in rats. Thus, 13a and 13b were the anticipated alkylated active metabolite of tipidogrel. In addition, in the nucleophilic substitution of thioacetate with compound 11, besides the anticipated compounds 12a and 12b, their isomers compounds 12c and 12d were detected, whose structures were confirmed and the corresponding mechanism was presented. PMID:25801935

  5. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  6. Antimycobacterial activity of lichen metabolites in vitro.

    PubMed

    Ingólfsdóttir, K; Chung, G A; Skúlason, V G; Gissurarson, S R; Vilhelmsdóttir, M

    1998-04-01

    Several compounds, whose structures represent the most common chemical classes of lichen metabolites, were screened for in vitro activity against Mycobacterium aurum, a non-pathogenic organism with a similar sensitivity profile to M. tuberculosis. Of the compounds tested, usnic acid from Cladonia arbuscula exhibited the highest activity with an MIC value of 32 microg/ml. Atranorin and lobaric acid, both isolated from Stereocaulon alpinum, salazinic acid from Parmelia saxatilis and protolichesterinic acid from Cetraria islandica all showed MIC values >/=125 microg/ml. PMID:9795033

  7. Natural Forms of Vitamin E and 13′-Carboxychromanol, a Long-Chain Vitamin E Metabolite, Inhibit Leukotriene Generation from Stimulated Neutrophils by Blocking Calcium Influx and Suppressing 5-Lipoxygenase Activity, Respectively

    PubMed Central

    Jiang, Ziying; Yin, Xinmin; Jiang, Qing

    2014-01-01

    Leukotrienes generated by 5-lipoxygenase (5-LOX)–catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1–2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B4 (LTB4) with an IC50 of 5–20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC50 for α-tocopherol. 13′-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB4 with an IC50 of 4–7 μM and potently inhibited human recombinant 5-LOX activity with an IC50 of 0.5–1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca2+ increase and/or LTB4 formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13′-carboxychromanol decreased cellular production of LTB4 regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo. PMID:21169551

  8. Metabolite

    MedlinePlus

    A metabolite is any substance produced during metabolism (digestion or other bodily chemical processes). The term metabolite may also refer to the product that remains after a drug is broken down (metabolized) by the body.

  9. Antidotes for poisoning by alcohols that form toxic metabolites.

    PubMed

    McMartin, Kenneth; Jacobsen, Dag; Hovda, Knut Erik

    2016-03-01

    The alcohols, methanol, ethylene glycol and diethylene glycol, have many features in common, the most important of which is the fact that the compounds themselves are relatively non-toxic but are metabolized, initially by alcohol dehydrogenase, to various toxic intermediates. These compounds are readily available worldwide in commercial products as well as in homemade alcoholic beverages, both of which lead to most of the poisoning cases, from either unintentional or intentional ingestion. Although relatively infrequent in overall occurrence, poisonings by metabolically-toxic alcohols do unfortunately occur in outbreaks and can result in severe morbidity and mortality. These poisonings have traditionally been treated with ethanol since it competes for the active site of alcohol dehydrogenase and decreases the formation of toxic metabolites. Although ethanol can be effective in these poisonings, there are substantial practical problems with its use and so fomepizole, a potent competitive inhibitor of alcohol dehydrogenase, was developed for a hopefully better treatment for metabolically-toxic alcohol poisonings. Fomepizole has few side effects and is easy to use in practice and it may obviate the need for haemodialysis in some, but not all, patients. Hence, fomepizole has largely replaced ethanol as the toxic alcohol antidote in many countries. Nevertheless, ethanol remains an important alternative because access to fomepizole can be limited, the cost may appear excessive, or the physician may prefer ethanol due to experience. PMID:26551875

  10. ANALYSIS OF ARACHIDONIC ACID METABOLITE AND PLATELET ACTIVATING FACTOR PRODUCTION

    EPA Science Inventory

    Metabolites of arachidonic acid ("eicosanoids") and platelet activating factor are important bioactive lipids that may be involved in the pathobiological alterations in animals induced by pollutant exposure. nalysis of these substances in biological tissue and fluids is important...

  11. DHEA metabolites activate estrogen receptors alpha and beta

    PubMed Central

    Michael Miller, Kristy K.; Al-Rayyan, Numan; Ivanova, Margarita M.; Mattingly, Kathleen A.; Ripp, Sharon L.; Klinge, Carolyn M.; Prough, Russell A.

    2012-01-01

    Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo. PMID:23123738

  12. Identification of metabolites of the anabolic steroid methandienone formed by bovine hepatocytes in vitro.

    PubMed

    Hooijerink, D; Schilt, R; Hoogenboom, R; Huveneers-Oorsprong, M

    1998-12-01

    Monolayer cultures of bovine hepatocytes were used to investigate the biotransformation of methandienone in vitro. After incubation of bovine hepatocytes with methandienone, samples were taken at different times. The samples were treated with deconjugation enzymes and extracted with diethyl ether. The metabolites formed were converted to their trimethylsilylether derivatives. By using gas chromatography-mass spectrometry with electron impact and chemical ionisation, several metabolites were identified. After 24 h of incubation with bovine hepatocytes, 83% of the parent compound was converted to its metabolites. The major metabolite found was 6-beta-hydroxymethandienone with a yield of 24%. This compound was identified after comparison with an authentic sample of 6 beta-hydroxymethandienone, which was synthesized chemically. PMID:10435315

  13. Secondary Metabolites from Three Florida Sponges with Antidepressant Activity

    PubMed Central

    Kochanowska, Anna J.; Rao, Karumanchi V.; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R.; Kelly, Michelle; Stewart, Gina S.; Sufka, Kenneth J.; Hamann, Mark T.

    2016-01-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety–depression continuum model. Among the isolated compounds, 5,6-dibromo-N,N-dimethyltryptamine (1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo-N,N-dimethyltryptamine (2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs. PMID:18217716

  14. Molecular complexes of cocaine, its active metabolites and some other stimulants with thiamine.

    PubMed

    Misra, A L; Vadlamani, N L

    1976-10-01

    Cocaine, its pharmacologically active metabolites, norcocaine benzoylnorecgonine, benzoylecgonine and other central nervous system stimulants e.g. dextrococaine, nicotine, caffeine and p-hydroxy norephedrine formed molecular complexes with thiamine. The possible implications of such an interaction are discussed. PMID:10608

  15. Metabolism of a highly selective gelatinase inhibitor generates active metabolite.

    PubMed

    Lee, Mijoon; Villegas-Estrada, Adriel; Celenza, Giuseppe; Boggess, Bill; Toth, Marta; Kreitinger, Gloria; Forbes, Christopher; Fridman, Rafael; Mobashery, Shahriar; Chang, Mayland

    2007-11-01

    (4-Phenoxyphenylsulfonyl)methylthiirane (inhibitor 1) is a highly selective inhibitor of gelatinases (matrix metalloproteinases 2 and 9), which is showing considerable promise in animal models for cancer and stroke. Despite demonstrated potent, selective, and effective inhibition of gelatinases both in vitro and in vivo, the compound is rapidly metabolized, implying that the likely activity in vivo is due to a metabolite rather than the compound itself. To this end, metabolism of inhibitor 1 was investigated in in vitro systems. Four metabolites were identified by LC/MS-MS and the structures of three of them were further validated by comparison with authentic synthetic samples. One metabolite, 4-(4-thiiranylmethanesulfonylphenoxy)phenol (compound 21), was generated by hydroxylation of the terminal phenyl group of 1. This compound was investigated in kinetics of inhibition of several matrix metalloproteinases. This metabolite was a more potent slow-binding inhibitor of gelatinases (matrix metalloproteinase-2 and matrix metalloproteinase-9) than the parent compound 1, but it also served as a slow-binding inhibitor of matrix metalloproteinase-14, the upstream activator of matrix metalloproteinase-2. PMID:17927722

  16. In Vivo-Formed versus Preformed Metabolite Kinetics of trans-Resveratrol-3-sulfate and trans-Resveratrol-3-glucuronide

    PubMed Central

    Sharan, Satish; Iwuchukwu, Otito F.; Canney, Daniel J.; Zimmerman, Cheryl L.

    2012-01-01

    Metabolites in safety testing have gained a lot of attention recently. Regulatory agencies have suggested that the kinetics of preformed and in vivo-formed metabolites are comparable. This subject has been a topic of debate. We have compared the kinetics of in vivo-formed with preformed metabolites. trans-3,5,4′-Trihydroxystilbene [trans-resveratrol (RES)] and its two major metabolites, resveratrol-3-sulfate (R3S) and resveratrol-3-glucuronide (R3G) were used as model substrates. The pharmacokinetics (PK) of R3S and R3G were characterized under two situations. First, the pharmacokinetics of R3S and R3G were characterized (in vivo-formed metabolite) after administration of RES. Then, synthetic R3S and R3G were administered (preformed metabolite) and their pharmacokinetics were characterized. PK models were developed to describe the data. A three-compartment model for RES, a two-compartment model for R3S (preformed), and an enterohepatic cycling model for R3G (preformed) was found to describe the data well. These three models were further combined to build a comprehensive PK model, which was used to perform simulations to predict in vivo-formed metabolite kinetics. Comparisons were made between in vivo-formed and preformed metabolite kinetics. Marked differences were observed in the kinetics of preformed and in vivo-formed metabolites. PMID:22807110

  17. Isoflavone metabolism in domestic cats (Felis catus): comparison of plasma metabolites detected after ingestion of two different dietary forms of genistein and daidzein.

    PubMed

    Whitehouse-Tedd, K M; Cave, N J; Ugarte, C E; Waldron, L A; Prasain, J K; Arabshahi, A; Barnes, S; Hendriks, W H; Thomas, D G

    2013-03-01

    Some felid diets contain isoflavones but the metabolic capacity of cats toward isoflavones is relatively unknown, despite the understanding that isoflavones have divergent biological potential according to their metabolite end products. The objective of this study was to determine the plasma metabolites detectable in domestic cats after exposure to 2 different dietary forms of isoflavones, either as a soy extract tablet (n = 6) or as part of a dietary matrix (n = 4). Serial blood samples were collected after isoflavone exposure to identify the plasma metabolites of each cat. Genistein was detected in its unconjugated form or as a monosulfate. Daidzein was detected as both a mono- and disulfate as well as in its unconjugated form. Other daidzein metabolites detected included equol mono- and disulfate, dihydrodaidzein, and O-desmethylangolensin. No β-glucuronide metabolites of either isoflavone were detected. Equol was produced in markedly fewer cats after ingestion of a soy extract tablet as a single oral bolus compared with cats consuming an isoflavone-containing diet. The detectable metabolites of the isoflavones, genistein and daidzein, in domestic cat plasma after dietary ingestion has been described in the present study for the first time. The metabolic capacity for isoflavones by domestic cats appears to be efficient, with only minimal proportions of the ingested amount detected in their unconjugated forms. This has implications for the potential of isoflavones to exert physiological activity in the domestic cat when consumed at concentrations representative of typical dietary intake. PMID:23307849

  18. Investigations of fungal secondary metabolites with potential anticancer activity.

    PubMed

    Balde, ElHadj Saidou; Andolfi, Anna; Bruyère, Céline; Cimmino, Alessio; Lamoral-Theys, Delphine; Vurro, Maurizio; Damme, Marc Van; Altomare, Claudio; Mathieu, Véronique; Kiss, Robert; Evidente, Antonio

    2010-05-28

    Fourteen metabolites, isolated from phytopathogenic and toxigenic fungi, were evaluated for their in vitro antigrowth activity for six distinct cancer cell lines, using the MTT colorimetric assay. Bislongiquinolide (1) and dihydrotrichodimerol (5), which belong to the bisorbicillinoid structural class, displayed significant growth inhibitory activity against the six cancer cell lines studied, while the remaining compounds displayed weak or no activity. The data show that 1 and 5 have similar growth inhibitory activities with respect to those cancer cell lines that display certain levels of resistance to pro-apoptotic stimuli or those that are sensitive to apoptosis. Quantitative videomicroscopy analysis revealed that 1 and 5 exert their antiproliferative effect through cytostatic and not cytotoxic activity. The preliminary results from the current study have stimulated further structure-activity investigations with respect to the growth inhibitory activity of compounds belonging to the bisorbicillinoid group. PMID:20415482

  19. Activity of Praziquantel Enantiomers and Main Metabolites against Schistosoma mansoni

    PubMed Central

    Meister, Isabel; Ingram-Sieber, Katrin; Cowan, Noemi; Todd, Matthew; Robertson, Murray N.; Meli, Claudia; Patra, Malay; Gasser, Gilles

    2014-01-01

    A racemic mixture of R and S enantiomers of praziquantel (PZQ) is currently the treatment of choice for schistosomiasis. Though the S enantiomer and the metabolites are presumed to contribute only a little to the activity of the drug, in-depth side-by-side studies are lacking. The aim of this study was to investigate the in vitro activities of PZQ and its main metabolites, namely, R- and S-cis- and R- and S-trans-4′-hydroxypraziquantel, against adult worms and newly transformed schistosomula (NTS). Additionally, we explored the in vivo activity and hepatic shift (i.e., the migration of the worms to the liver) produced by each PZQ enantiomer in mice. Fifty percent inhibitory concentrations of R-PZQ, S-PZQ, and R-trans- and R-cis-4′-hydroxypraziquantel of 0.02, 5.85, 4.08, and 2.42 μg/ml, respectively, for adult S. mansoni were determined in vitro. S-trans- and S-cis-4′-hydroxypraziquantel were not active at 100 μg/ml. These results are consistent with microcalorimetry data and studies with NTS. In vivo, single 400-mg/kg oral doses of R-PZQ and S-PZQ achieved worm burden reductions of 100 and 19%, respectively. Moreover, worms treated in vivo with S-PZQ displayed an only transient hepatic shift and returned to the mesenteric veins within 24 h. Our data confirm that R-PZQ is the main effector molecule, while S-PZQ and the metabolites do not play a significant role in the antischistosomal properties of PZQ. PMID:24982093

  20. Hsp90 Activity Modulation by Plant Secondary Metabolites.

    PubMed

    Dal Piaz, Fabrizio; Terracciano, Stefania; De Tommasi, Nunziatina; Braca, Alessandra

    2015-09-01

    Hsp90 is an evolutionarily conserved adenosine triphosphate-dependent molecular chaperone and is one of the most abundant proteins in the cells (1-3 %). Hsp90 is induced when a cell undergoes various types of environmental stresses such as heat, cold, or oxygen deprivation. It is involved in the turnover, trafficking, and activity of client proteins, including apoptotic factors, protein kinases, transcription factors, signaling proteins, and a number of oncoproteins. Most of the Hsp90 client proteins are involved in cell growth, differentiation, and survival, and include kinases, nuclear hormone receptors, transcription factors, and other proteins associated with almost all the hallmarks of cancer. Consistent with these diverse activities, genetic and biochemical studies have demonstrated the implication of Hsp90 in a range of diseases, including cancer, making this chaperone an interesting target for drug research.During the last few decades, plant secondary metabolites have been studied as a major source for lead compounds in drug discovery. Recently, several plant-derived small molecules have been discovered exhibiting inhibitory activity towards Hsp90, such as epigallocatechin gallate, gedunin, lentiginosine, celastrol, and deguelin. In this work, an overview of plant secondary metabolites interfering with Hsp90 activities is provided. PMID:26227505

  1. Antioxidant activity of nimesulide and its main metabolites.

    PubMed

    Facino, R M; Carini, M; Aldini, G

    1993-01-01

    The antioxidant activity of nimesulide and its main metabolites, 4'-hydroxynimesulide (M1) and 2-(4'-hydroxyphenoxy)-4-N-acetylamino-methansulfonanilide (M2), was investigated using 2 in vitro models: NADPH-supported lipid peroxidation in rat liver microsomes (marker MDA formation) and xanthine/xanthine oxidase, iron-promoted depolymerisation of hyaluronic acid, determined by gel permeation chromatographic analysis (marker molecular weight distribution). In the lipid peroxidation model, all the compounds inhibited MDA formation in a concentration-dependent manner, although with different potencies; the maximum scavenging effect was observed for M1 [50% inhibitory concentration (IC50) = 30 mumol/L; M2 IC50 = 0.5 mmol/L; nimesulide = 0.8 mmol/L]. Nimesulide was more active than its metabolites in preventing OH-induced depolymerisation of hyaluronic acid, with a 50% effective concentration of approximately 230 mumol/L, which was fairly comparable to that of tenoxicam. This protective effect was due to the OH.-entrapping capacity of the drug, which, in the Fenton-driven model, is easily converted, via OH. attack, to M1 and putatively to 2-hydroxy-4-nitro-methansulfonanilide. PMID:7506157

  2. Selenium metabolite levels in human urine after dosing selenium in different chemical forms

    SciTech Connect

    Hasunuma, Ryoichi; Tsuda, Morizo; Ogawa, Tadao; Kawanishi, Yasuhiro

    1993-11-01

    It has been well known that selenium in marine fish such as tuna and swordfish protects the toxicity of methylmercury in vivo. The protective potency might depend on the chemical forms of selenium in the meat of marine fish sebastes and sperm whale. Little has been revealed, however, on the chemical forms of selenium in the meat of these animals or the selenium metabolites in urine, because the amount of the element is very scarce. Urine is the major excretory route for selenium. The chemical forms of urinary selenium may reflect the metabolism of the element. We have developed methodology for analysis of selenium-containing components in human urine. Using this method, we have observed the time courses of excretory levels of urinary selenium components after a single dose of selenium as selenious acid, selenomethionine, trimethylselenonium ion or tuna meat. 14 refs., 6 figs., 1 tab.

  3. Mutagenic activity of austocystins - secondary metabolites of Aspergillus ustus

    SciTech Connect

    Kfir, R.; Johannsen, E.; Vleggaar, R.

    1986-11-01

    Mycotoxins constitute a group of toxic secondary fungal metabolites. Fungi that produce these toxins frequently contaminate food and feed, creating a potential threat to human and animal health. Biological activities of mycotoxins include, amongst others: toxicity, mutagenicity and carcinogenicity, which can be expressed with or without metabolic activation. Austocystins are similar in structure to aflatoxin B/sup 1/ and are probably synthesized in a similar manner. The Ames Salmonella test, a widely accepted method employed for the detection of mutagenic activity of various chemical compounds was used for testing the mutagenic activity of different mycotoxins. As aflatoxin B/sup 1/ was found by the Ames test to be highly mutagenic, the same test was applied for the study of possible mutagenicity of the austocystins. The mutagenic activity of these compounds was studied with and without metabolic activation using two tester strains of S. typhimurium, one capable of detecting frame shift mutation (strain TA98) and the other capable of detecting base pair substitution (strain TA100).

  4. Depsides: Lichen Metabolites Active against Hepatitis C Virus

    PubMed Central

    Vu, Thi Huyen; Le Lamer, Anne-Cécile; Lalli, Claudia; Boustie, Joël; Samson, Michel

    2015-01-01

    A thorough phytochemical study of Stereocaulon evolutum was conducted, for the isolation of structurally related atranorin derivatives. Indeed, pilot experiments suggested that atranorin (1), the main metabolite of this lichen, would interfere with the lifecycle of hepatitis C virus (HCV). Eight compounds, including one reported for the first time (2), were isolated and characterized. Two analogs (5, 6) were also synthesized, to enlarge the panel of atranorin-related structures. Most of these compounds were active against HCV, with a half-maximal inhibitory concentration of about 10 to 70 µM, with depsides more potent than monoaromatic phenols. The most effective inhibitors (1, 5 and 6) were then added at different steps of the HCV lifecycle. Interestingly, atranorin (1), bearing an aldehyde function at C-3, inhibited only viral entry, whereas the synthetic compounds 5 and 6, bearing a hydroxymethyl and a methyl function, respectively, at C-3 interfered with viral replication. PMID:25793970

  5. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    PubMed Central

    Stodůlková, Eva; Císařová, Ivana; Kolařík, Miroslav; Chudíčková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavlů, Barbora; Černý, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  6. EFFECTS OF METHOPRENE, ITS METABOLITES, AND BREAKDOWN PRODUCTS ON RETINOID-ACTIVATED PATHWAYS IN TRANSFECTED CELL LINES

    EPA Science Inventory

    Methoprene is a terpene-based insecticide designed to act as an agonist of insect juvenile hormone, which is essential for the transition from larval to adult forms in some metamorphic insects. Recent evidence suggests that a methoprene metabolite, methoprene acid, activates a ve...

  7. Phenotypic and metabolic investigation of a CSF-1R kinase receptor inhibitor (BLZ945) and its pharmacologically active metabolite.

    PubMed

    Krauser, Joel A; Jin, Yi; Walles, Markus; Pfaar, Ulrike; Sutton, James; Wiesmann, Marion; Graf, Daniel; Pflimlin-Fritschy, Veronique; Wolf, Thierry; Camenisch, Gian; Swart, Piet

    2015-02-01

    1. 4-[2((1R,2R)-2-Hydroxycyclohexylamino)-benzothiazol-6-yloxyl]-pyridine-2-carboxylic acid methylamide (BLZ945) is a small molecule inhibitor of CSF-1R kinase activity within osteoclasts designed to prevent skeletal related events in metastatic disease. Key metabolites were enzymatically and structurally characterized to understand the metabolic fate of BLZ945 and pharmacological implications. The relative intrinsic clearances for metabolites were derived from in vitro studies using human hepatocytes, microsomes and phenotyped with recombinant P450 enzymes. 2. Formation of a pharmacologically active metabolite (M9) was observed in human hepatocytes. The M9 metabolite is a structural isomer (diastereomer) of BLZ945 and is about 4-fold less potent. This isomer was enzymatically formed via P450 oxidation of the BLZ945 hydroxyl group, followed by aldo-keto reduction to the alcohol (M9). 3. Two reaction phenotyping approaches based on fractional clearances were applied to BLZ945 using hepatocytes and liver microsomes. The fraction metabolized (fm) or contribution ratio was determined for each metabolic reaction type (oxidation, glucuronidation or isomerization) as well as for each metabolite. The results quantitatively illustrate contribution ratios of the involved enzymes and pathways, e.g. the isomerization to metabolite M9 accounted for 24% intrinsic clearance in human hepatocytes. In summary, contribution ratios for the Phase I and Phase II pathways can be determined in hepatocytes. PMID:25180976

  8. Pharmacologically active drug metabolites: therapeutic and toxic activities, plasma and urine data in man, accumulation in renal failure.

    PubMed

    Drayer, D E

    1976-01-01

    Drugs that are administered to man may be biotransformed to yield metabolites that are pharmacologically active. The therapeutic and toxic activities of drug metabolites and the species in which this activity was demonstrated are compiled for the metabolites of 58 drugs. The metabolite to parent drug ratio in the plasma of non-uraemic man and the percentage urinary excretion of the metabolite in non-uraemic man are also tabulated. Those active metabolites with significant pharmacological activity and high plasma levels, both relative to that of the parent drug, will probably contribute substantially to the pharmacological effect ascribed to the parent drug. Active metabolites may accumulate in patients with end stage renal disease if renal excretion is a major elimination pathway for the metabolite. This is true even if the active metabolite is a minor metabolite of the parent drug, as long as the minor metabolite is not further biotransformed and is mainly excreted in the urine. Minor metabolite accumulation may also occur if it is further biotransformed by a pathway inhibited in uraemia. Some clinical examples of the accumulation of active drug metabolites in patients with renal failure are: (a) The abolition of premature ventricular contractions and prevention of paroxysmal atrial tachycardia in some cardiac patients with poor renal function treated with procainamide are associated with high levels of N-acetylprocainamide. (b) The severe irritability and twitching seen in a uraemic patient treated with pethidine (meperidine) are associated with high levels of norpethidine. (c) The severe muscle weakness and tenderness seen in patients with renal failure receiving clofibrate are associated with excessive accumulation of the free acid metabolite of clofibrate. (d) Patients with severe renal insufficiency taking allopurinol appear to experience a higher incidence of side reactions, possibly due to the accumulation of oxipurinol. (e) Accumulation of free and

  9. Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α-Synuclein.

    PubMed

    Werner-Allen, Jon W; DuMond, Jenna F; Levine, Rodney L; Bax, Ad

    2016-06-20

    Parkinson's disease has long been known to involve the loss of dopaminergic neurons in the substantia nigra and the coincidental appearance of Lewy bodies containing oligomerized forms of α-synuclein. The "catecholaldehyde hypothesis" posits a causal link between these two central pathologies mediated by 3,4-dihydroxyphenylacetaldehyde (DOPAL), the most toxic dopamine metabolite. Here we determine the structure of the dominant product in reactions between DOPAL and α-synuclein, a dicatechol pyrrole lysine adduct. This novel modification results from the addition of two DOPAL molecules to the Lys sidechain amine through their aldehyde moieties and the formation of a new carbon-carbon bond between their alkyl chains to generate a pyrrole ring. The product is detectable at low concentrations of DOPAL and its discovery should provide a valuable chemical basis for future studies of DOPAL-induced crosslinking of α-synuclein. PMID:27158766

  10. Integrating phylogeny, geographic niche partitioning and secondary metabolite synthesis in bloom-forming Planktothrix.

    PubMed

    Kurmayer, Rainer; Blom, Judith F; Deng, Li; Pernthaler, Jakob

    2015-04-01

    Toxic freshwater cyanobacteria form harmful algal blooms that can cause acute toxicity to humans and livestock. Globally distributed, bloom-forming cyanobacteria Planktothrix either retain or lose the mcy gene cluster (encoding the synthesis of the secondary metabolite hepatotoxin microcystin or MC), resulting in a variable spatial/temporal distribution of (non)toxic genotypes. Despite their importance to human well-being, such genotype diversity is not being mapped at scales relevant to nature. We aimed to reveal the factors influencing the dispersal of those genotypes by analyzing 138 strains (from Europe, Russia, North America and East Africa) for their (i) mcy gene cluster composition, (ii) phylogeny and adaptation to their habitat and (iii) ribosomally and nonribosomally synthesized oligopeptide products. Although all the strains from different species contained at least remnants of the mcy gene cluster, various phylogenetic lineages evolved and adapted to rather specific ecological niches (for example, through pigmentation and gas vesicle protein size). No evidence for an increased abundance of specific peptides in the absence of MC was found. MC and peptide distribution rather depended on phylogeny, ecophysiological adaptation and geographic distance. Together, these findings provide evidence that MC and peptide production are primarily related to speciation processes, while within a phylogenetic lineage the probability that strains differ in peptide composition increases with geographic distance. PMID:25325384

  11. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats.

    PubMed

    Najmanová, Iveta; Pourová, Jana; Vopršalová, Marie; Pilařová, Veronika; Semecký, Vladimír; Nováková, Lucie; Mladěnka, Přemysl

    2016-05-01

    There are reports of positive effects of quercetin on cardiovascular pathologies, however, mainly due to its low biovailability, the mechanism remains elusive. Here, we report that one metabolite formed by human microflora (3-(3-hydroxyphenyl)propionic acid)relaxed isolated rat aorta and decreased arterial blood pressure in rats. PMID:26790841

  12. COMPARISON OF CHOLINESTERASE ACTIVITY, RESIDUE LEVELS, AND URINARY METABOLITE EXCRETION OF RATS EXPOSED TO ORGANOPHOSPHORUS PESTICIDES

    EPA Science Inventory

    Blood cholinesterase activity, urinary levels of phenolic and organophosphorus metabolites, and residues of intact compounds in blood and fat were determined following exposure of rats to organophosphorus pesticides. The eight pesticides studied included representative halogenate...

  13. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters.

    PubMed

    Writer, Jeffrey H; Ferrer, Imma; Barber, Larry B; Thurman, E Michael

    2013-09-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations±standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700±1000 ng L(-1), 2100±1700 ng L(-1), carbamazepine and 10-hydroxy-carbamazepine 480±380 ng L(-1), 360±400 ng L(-1), venlafaxine and O-desmethyl-venlafaxine 1400±1300 ng L(-1), 1800±2300 ng L(-1). Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that this is likely a global environmental issue

  14. Analysis of benzo[a]pyrene metabolites formed by rat hepatic microsomes using high pressure liquid chromatography: optimization of the method

    PubMed Central

    Moserová, Michaela; Kotrbová, Věra; Aimová, Dagmar; Šulc, Miroslav; Frei, Eva; Stiborová, Marie

    2009-01-01

    A simple and sensitive method was developed to separate the carcinogenic polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), and six of its oxidation metabolites generated by rat hepatic microsomes enriched with cytochrome P450 (CYP) 1A1, by high pressure liquid chromatography (HPLC). The HPLC method, using an acetonitrile/water gradient as mobile phase and UV detection, provided appropriate separation and detection of both mono- and di-hydroxylated metabolites of BaP as well as BaP diones formed by rat hepatic microsomes and the parental BaP. In this enzymatic system, 3-hydroxy BaP, 9-hydroxy BaP, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-9,10-dihydrodiol and BaP-dione were generated. Among them the mono-hydroxylated BaP metabolite, 3-hydroxy BaP followed by di-hydroxylated BaP products, BaP-7,8-dihydrodiol and BaP-9,10-dihydrodiol, predominated, while BaP-dione was a minor metabolite. This HPLC method will be useful for further defining the roles of the CYP1A1 enzyme with both in vitro and in vivo models in understanding its real role in activation and detoxification of BaP. PMID:21217860

  15. Structural Characterization of a Therapeutic Anti-Methamphetamine Antibody Fragment: Oligomerization and Binding of Active Metabolites

    PubMed Central

    Gokulan, Kuppan; Varughese, Kottayil I.

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy. PMID:24349338

  16. Ardipusilloside-I Metabolites from Human Intestinal Bacteria and Their Antitumor Activity.

    PubMed

    Cao, Wei-Yu; Wang, Ya-Nan; Wang, Peng-Yuan; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2015-01-01

    Ardipusilloside-I (ADS-I) is a triterpenoid saponin extracted from Ardisia pusilla DC, and has been demonstrated to have potent antitumor activity. However, ADS-I metabolism in humans has not been investigated. In this study, we studied the biotransformation of ADS-I in human intestinal bacteria, and examined the in vitro antitumor activity of the major metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to detect ADS-I biotransformation products, and their chemical structures were identified by high performance liquid chromatography-nuclear magnetic resonance (HPLC-NMR). The antitumor activity of the major metabolites was determined by the MTT assay. Here, we show that main reaction seen in the metabolism of ADS-I in human intestinal bacteria was deglycosylation, which produced a total of four metabolites. The structures of the two major metabolites M1 and M2 were confirmed by using NMR. MTT assay showed that ADS-I metabolites M1 and M2 have the same levels of inhibitory activities as ADS-I in cultured SMMC-7721 cells and MCF-7 cells. In conclusion, this study demonstrates deglycosylation as a primary pathway of ADS-I metabolism in human intestinal bacteria, and suggests that the pharmacological activity of ADS-I may be mediated, at least in part, by its metabolites. PMID:26610438

  17. Antiproliferative and hepatoprotective activity of metabolites from Corynebacterium xerosis against Ehrlich Ascites Carcinoma cells

    PubMed Central

    Islam, Farhadul; Ghosh, Soby; Khanam, Jahan Ara

    2014-01-01

    Objective To find out the effective anticancer drugs from bacterial products, petroleum ether extract of Corynebacterium xerosis. Methods Antiproliferative activity of the metabolite has been measured by monitoring the parameters like tumor weight measurement, tumor cell growth inhibition in mice and survival time of tumor bearing mice, etc. Hepatoprotective effect of the metabolites was determined by observing biochemical, hematological parameters. Results It has been found that the petroleum ether extract bacterial metabolite significantly decrease cell growth (78.58%; P<0.01), tumor weight (36.04 %; P<0.01) and increase the life span of tumor bearing mice (69.23%; P<0.01) at dose 100 mg/kg (i.p.) in comparison to those of untreated Ehrlich ascites carcinoma (EAC) bearing mice. The metabolite also alters the depleted hematological parameters like red blood cell, white blood cell, hemoglobin (Hb%), etc. towards normal in tumor bearing mice. Metabolite show no adverse effect on liver functions regarding blood glucose, serum alkaline phosphatases, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase activity and serum billirubin, etc. in normal mice. Histopathological observation of these mice organ does not show any toxic effect on cellular structure. But in the case of EAC bearing untreated mice these hematological and biochemical parameters deteriorate extremely with time whereas petroleum ether extract bacterial metabolite receiving EAC bearing mice nullified the toxicity induced by EAC cells. Conclusion Study results reveal that metabolite possesses significant antiproliferative and hepatoprotective effect against EAC cells. PMID:25183099

  18. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  19. Reactive metabolites and agranulocytosis.

    PubMed

    Uetrecht, J P

    1996-01-01

    Central to most hypotheses of the mechanism of idiosyncratic drug-induced blood dyscrasias is the involvement of reactive metabolites. In view of the reactive nature of the majority of such metabolites, it is likely that they are formed by, or in close proximity to the blood cells affected. The major oxidative system of neutrophils generates hypochlorous acid. We have demonstrated that the drugs associated with the highest incidence of agranulocytosis are oxidized to reactive metabolites by hypochlorous acid and/or activated neutrophils. There are many mechanisms by which such reactive metabolites could induce agranulocytosis. In the case of aminopyrine-induced agranulocytosis, most cases appear to involve drug-dependent anti-neutrophil antibodies, and these are likely to be induced by cell membrane antigens modified by the reactive metabolite of aminopyrine. The target of agranulocytosis associated with many other drugs is usually neutrophil precursors and may involve cytotoxicity or a cell-mediated immune reaction induced by a reactive metabolite. In the case of aplastic anaemia, there is evidence in some cases for involvement of cytotoxic T cells, which could either be induced by metabolites generated by neutrophils, or more likely, by reactive metabolites generated by stem cells. PMID:8987247

  20. Effects of 3-O-methyldopa, L-3,4-dihydroxyphenylalanine metabolite, on locomotor activity and dopamine turnover in rats.

    PubMed

    Onzawa, Yoritaka; Kimura, Yasuhiro; Uzuhashi, Kengo; Shirasuna, Megumi; Hirosawa, Tasuku; Taogoshi, Takanori; Kihira, Kenji

    2012-01-01

    It has been well known that 3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA) formed by catechol O-methyltransferase (COMT), and 3-OMD blood level often reaches higher than physiological level in Parkinson's disease (PD) patients receiving long term L-DOPA therapy. However, the physiological role of 3-OMD has not been well understood. Therefore, in order to clarify the effects of 3-OMD on physiological function, we examined the behavioral alteration in rats based on locomotor activity, and measured dopamine (DA) and its metabolites levels in rats at the same time after 3-OMD subchronic administration. The study results showed that repeated administrations of 3-OMD increased its blood and the striatum tissue levels in those rats, and decreased locomotor activity in a dose dependent manner. Although 3-OMD subchronic administration showed no significant change in DA level in the striatum, DA metabolite levels, such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were significantly decreased. After 3-OMD washout period (7 d), locomotor activity and DA turnover in those rats returned to normal levels. Furthermore, locomotor activity and DA turnover decreased by 3-OMD administration were recovered to normal level by acute L-DOPA administration. These results suggested that 3-OMD affect to locomotor activity via DA neuron system. In conclusion, 3-OMD itself may have a disadvantage in PD patients receiving L-DOPA therapy. PMID:22863920

  1. Not flavone-8-acetic acid (FAA) but its murine metabolite 6-OH-FAA exhibits remarkable antivascular activities in vitro.

    PubMed

    Pham, Minh Hien; Dauzonne, Daniel; Chabot, Guy G

    2016-06-01

    Flavone-8-acetic acid (FAA) has been proved to be a potent vascular-disrupting agent in mice. Unfortunately, FAA did not produce any anticancer activity in clinical trials. Previously, we had reported that FAA is metabolized by mouse microsomes into six metabolites, whereas it was poorly metabolized by human microsomes, with fewer metabolites formed in lesser amounts. Especially, 6-OH-FAA was not formed by human microsomes. In this work, two major available metabolites, 4'-OH-FAA and 6-OH-FAA, were tested and compared with the parent compound FAA for their potential antivascular activities in vitro. The ability of the products to induce morphological changes, disrupt preformed capillaries of EA.hy926 endothelial cells and inhibit tubulin polymerization in vitro was assessed. The action mechanism was determined using the RhoA and Rac1 inhibitors. At 25 µg/ml, 6-OH-FAA induced morphological changes and membrane blebbing, whereas 300 µg/ml of FAA and 4'-OH-FAA slightly changed the morphology without inducing membrane blebbing. At 300 µg/ml, 6-OH-FAA produced morphological changes that were 2.1-6.9-fold greater than that produced by FAA and 4'-OH-FAA, an effect that was consistent with its much greater inhibitory effect on tubulin polymerization compared with FAA and 4'-OH-FAA. 6-OH-FAA significantly disrupted the EA.hy926 cell capillaries. 6-OH-FAA activities were prevented in EA.hy926 cells pretreated with RhoA, but not Rac1, inhibitor. In this short communication we report for the first time that, in vitro, 6-OH-FAA, a mouse-specific FAA metabolite, exhibits significantly stronger antivascular activities compared with FAA and 4'-OH-FAA, which are mediated through the RhoA kinase pathway. PMID:26901071

  2. Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity.

    PubMed

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-08-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  3. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  4. Evaluation of Bacillus cereus and Bacillus pumilus metabolites for anthelmintic activity

    PubMed Central

    Kumar, M. L. Vijaya; Thippeswamy, B.; Kuppust, I. L.; Naveenkumar, K. J.; Shivakumar, C. K.

    2015-01-01

    Objective: To assess the anthelmintic acivity of Bacillus cereus and Bacillus pumilus metabolites. Materials and Methods: The successive solvent extractions with petroleum ether, ethyl acetate and methanol. The solvent extracts were tested for anthelmintic activity against Pheretima posthuma at 20 mg/ml concentration. The time of paralysis and time of death of the worms was determined for all the extracts. Albendazole was taken as a standard reference and sterile water as a control. Results: All the sample extracts showed significant anthelmintic activity in paralyzing the worms comparable with that of the standard drug. The time of death exhibited by BP metabolites was close to the time exhibited by standard. Conclusion: The study indicates both bacteria Bacillus cereus and Bacillus pumilus have anthelmintic activity indicating potential metabolites in them. PMID:25598639

  5. Curcumin Pharmacokinetic and Pharmacodynamic Evidences in Streptozotocin-Diabetic Rats Support the Antidiabetic Activity to Be via Metabolite(s)

    PubMed Central

    Gutierres, Vânia Ortega; Campos, Michel Leandro; Arcaro, Carlos Alberto; Assis, Renata Pires; Baldan-Cimatti, Helen Mariana; Peccinini, Rosângela Gonçalves; Paula-Gomes, Silvia; Kettelhut, Isis Carmo; Baviera, Amanda Martins; Brunetti, Iguatemy Lourenço

    2015-01-01

    This study measures the curcumin concentration in rat plasma by liquid chromatography and investigates the changes in the glucose tolerance and insulin sensitivity of streptozotocin-diabetic rats treated with curcumin-enriched yoghurt. The analytical method for curcumin detection was linear from 10 to 500 ng/mL. The Cmax⁡ and the time to reach Cmax⁡ (tmax⁡) of curcumin in plasma were 3.14 ± 0.9 μg/mL and 5 minutes (10 mg/kg, i.v.) and 0.06 ± 0.01 μg/mL and 14 minutes (500 mg/kg, p.o.). The elimination half-time was 8.64 ± 2.31 (i.v.) and 32.70 ± 12.92 (p.o.) minutes. The oral bioavailability was about 0.47%. Changes in the glucose tolerance and insulin sensitivity were investigated in four groups: normal and diabetic rats treated with yoghurt (NYOG and DYOG, resp.) and treated with 90 mg/kg/day curcumin incorporated in yoghurt (NC90 and DC90, resp.). After 15 days of treatment, the glucose tolerance and the insulin sensitivity were significantly improved in DC90 rats in comparison with DYOG, which can be associated with an increase in the AKT phosphorylation levels and GLUT4 translocation in skeletal muscles. These findings can explain, at least in part, the benefits of curcumin-enriched yoghurt to diabetes and substantiate evidences for the curcumin metabolite(s) as being responsible for the antidiabetic activity. PMID:26064170

  6. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    USGS Publications Warehouse

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that

  7. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine

    NASA Astrophysics Data System (ADS)

    Zaazaa, Hala E.; Mohamed, Afaf O.; Hawwam, Maha A.; Abdelkawy, Mohamed

    2015-01-01

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance.

  8. Investigation of fixed wavelength fluorescence results for biliary metabolites of polycyclic aromatic hydrocarbons formed in Atlantic cod (Gadus morhua).

    PubMed

    Pampanin, Daniela M; Kemppainen, Eeva K; Skogland, Karianne; Jørgensen, Kåre B; Sydnes, Magne O

    2016-02-01

    Fixed wavelength fluorescence (FF) and synchronous fluorescence scanning (SFS) of fish bile are commonly used methods to analyze for exposure to polycyclic aromatic hydrocarbons (PAHs) from petrogenic and pyrogenic sources. A range of conjugated oxidation products from petrogenic PAHs are normally accumulated in the bile. Therefore their detection is important. In the present study, phenanthrene and naphthalene metabolites, formed in vivo in Atlantic cod (Gadus morhua), were used to study the response of these compounds in both FF and SFS analyses. The selected synthetic metabolites were (-)-(1R,2R)-1,2-dihydrophenanthrene-1,2-diol and (-)-(1R,2R)-1,2-dihydronaphthalene-1,2-diol. The study findings showed that the recommended excitation and emission wavelengths for FF analysis do not comprise the maximum emission wavelengths for these metabolites, providing an incorrect estimation of the PAH exposure. A method developed in our laboratory for the synthesis of (-)-(1R,2R)-1,2-dihydrophenanthrene-1,2-diol is also described. PMID:26492423

  9. Anti-Oxidative Activity of Mytiloxanthin, a Metabolite of Fucoxanthin in Shellfish and Tunicates

    PubMed Central

    Maoka, Takashi; Nishino, Azusa; Yasui, Hiroyuki; Yamano, Yumiko; Wada, Akimori

    2016-01-01

    Anti-oxidative activities of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates, were investigated. Mytiloxanthin showed almost the same activities for quenching singlet oxygen and the inhibition of lipid peroxidation as those of astaxanthin, which is a well-known singlet oxygen quencher. Furthermore, mytiloxanthin showed excellent scavenging activity for hydroxyl radicals and this activity was markedly higher than that of astaxanthin. PMID:27187417

  10. Anti-Oxidative Activity of Mytiloxanthin, a Metabolite of Fucoxanthin in Shellfish and Tunicates.

    PubMed

    Maoka, Takashi; Nishino, Azusa; Yasui, Hiroyuki; Yamano, Yumiko; Wada, Akimori

    2016-01-01

    Anti-oxidative activities of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates, were investigated. Mytiloxanthin showed almost the same activities for quenching singlet oxygen and the inhibition of lipid peroxidation as those of astaxanthin, which is a well-known singlet oxygen quencher. Furthermore, mytiloxanthin showed excellent scavenging activity for hydroxyl radicals and this activity was markedly higher than that of astaxanthin. PMID:27187417

  11. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications

    PubMed Central

    Ren, Lili; Chen, Fang; Feng, Yuqian

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control. PMID:27214257

  12. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications.

    PubMed

    Pan, Long; Ren, Lili; Chen, Fang; Feng, Yuqian; Luo, Youqing

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control. PMID:27214257

  13. Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus).

    PubMed

    Pereira, Thiago Scremin Boscolo; Boscolo, Camila Nomura Pereira; Felício, Andreia Arantes; Batlouni, Sergio Ricardo; Schlenk, Daniel; de Almeida, Eduardo Alves

    2016-03-01

    Some endocrine disrupting chemicals (EDCs) can alter the estrogenic activities of the organism by directly interacting with estrogen receptors (ER) or indirectly through the hypothalamus-pituitary-gonadal axis. Recent studies in male Nile tilapia (Oreochromis niloticus) indicated that diuron may have anti-androgenic activity augmented by biotransformation. In this study, the effects of diuron and three of its metabolites were evaluated in female tilapia. Sexually mature female fish were exposed for 25 days to diuron, as well as to its metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU), at concentrations of 100 ng/L. Diuron metabolites caused increases in E2 plasma levels, gonadosomatic indices and in the percentage of final vitellogenic oocytes. Moreover, diuron and its metabolites caused a decrease in germinative cells. Significant differences in plasma concentrations of the estrogen precursor and gonadal regulator17α-hydroxyprogesterone (17α-OHP) were not observed. These results show that diuron metabolites had estrogenic effects potentially mediated through enhanced estradiol biosynthesis and accelerated the ovarian development of O. niloticus females. PMID:26741556

  14. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  15. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters

    PubMed Central

    Netzker, Tina; Fischer, Juliane; Weber, Jakob; Mattern, Derek J.; König, Claudia C.; Valiante, Vito; Schroeckh, Volker; Brakhage, Axel A.

    2015-01-01

    Microorganisms form diverse multispecies communities in various ecosystems. The high abundance of fungal and bacterial species in these consortia results in specific communication between the microorganisms. A key role in this communication is played by secondary metabolites (SMs), which are also called natural products. Recently, it was shown that interspecies “talk” between microorganisms represents a physiological trigger to activate silent gene clusters leading to the formation of novel SMs by the involved species. This review focuses on mixed microbial cultivation, mainly between bacteria and fungi, with a special emphasis on the induced formation of fungal SMs in co-cultures. In addition, the role of chromatin remodeling in the induction is examined, and methodical perspectives for the analysis of natural products are presented. As an example for an intermicrobial interaction elucidated at the molecular level, we discuss the specific interaction between the filamentous fungi Aspergillus nidulans and Aspergillus fumigatus with the soil bacterium Streptomyces rapamycinicus, which provides an excellent model system to enlighten molecular concepts behind regulatory mechanisms and will pave the way to a novel avenue of drug discovery through targeted activation of silent SM gene clusters through co-cultivations of microorganisms. PMID:25941517

  16. Oral administration of active vitamin D metabolites to low birthweight infants.

    PubMed Central

    Kovar, I Z; Mayne, P D; James, J J; Barnes, I C

    1986-01-01

    The active vitamin D metabolites 1 alpha, 25-dihydroxycholecalciferol (Rocaltrol) and the analogue 1 alpha-hydroxycholecalciferol (One-Alpha) are adequately absorbed after oral administration in the preterm infant. The absorption pattern is similar to that seen in adults. PMID:3755581

  17. Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice.

    PubMed

    Hagopian, Kevork; Ramsey, Jon J; Weindruch, Richard

    2003-03-01

    The influence of caloric restriction (CR) from 2 months of age on the activities of liver glycolytic enzymes and metabolite levels was studied in young and old mice. Livers were sampled 48 h after the last scheduled feeding time. Old mice on CR showed significant decreases in the activities of all the enzymes studied, except for aldolase, triosephosphate isomerase and phosphoglycerate mutase, which were unchanged. The metabolites glucose, glucose-6-phosphate, fructose-6-phosphate, pyruvate and lactate were lower while fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, dihydroxyacetone phosphate, 3-phosphoglycerate and phosphoenolpyruvate were increased in old CR. Young mice on CR also showed reduced enzyme activities, except for aldolase, triosephosphate isomerase and enolase which were unchanged when compared with young controls. The metabolites glucose, glucose-6-phosphate, fructose-6-phosphate and pyruvate were decreased when compared with young controls, while phosphoenolpyruvate was increased. Ketone bodies increased (65%) in old, but not young, CR mice while fructose-2,6-bisphosphate decreased in both young (22%) and old CR (28%) mice. The results indicate that decreased hepatic glucose levels in CR mice are associated with decreased enzyme activities but not a uniform decrease in metabolite levels. Increased ketone body levels indicate increased utilization of non-carbohydrate fuels while decreased fructose-2,6-bisphosphate level suggests its importance in the control of glycolysis in CR. PMID:12581789

  18. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting

    PubMed Central

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter “D” obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  19. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting.

    PubMed

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter "D" obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  20. CHARACTERIZATION ADN BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM ARMILLARIA TABESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethyl acetate extracts from liquid cultures of Armillaria tabescens showed good antimicrobial activity against Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analyses of extract constituents led to the isolation and identification of two new co...

  1. Mixture toxicity of the antiviral drug Tamiflu((R)) (oseltamivir ethylester) and its active metabolite oseltamivir acid.

    PubMed

    Escher, Beate I; Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith; Straub, Jürg Oliver

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  2. Effect of aposymbiotic conditions on colony growth and secondary metabolite production in the lichen-forming fungus Ramalina dilacerata.

    PubMed

    Timsina, Brinda A; Sorensen, John L; Weihrauch, Dirk; Piercey-Normore, Michele D

    2013-01-01

    The production of secondary metabolites by aposymbiotic lichen-forming fungi in culture is thought to be influenced by environmental conditions. The effects of the environment may be studied by culturing fungi under defined growing parameters to provide a better understanding of the role of the large number of polyketide synthase (PKS) gene paralogs detected in the genomes of many fungi. The objectives of this study were to examine the effects of culture conditions (media composition and pH level) on the colony growth, the numbers of secondary products, and the expression of two PKS genes by the lichen-forming fungus Ramalina dilacerata. Four types of growth media at four different pH levels were prepared to culture spore isolates of R. dilacerata. Colony diameter and texture were recorded. The number of secondary compounds were determined by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Expression of two PKS genes (non-reducing (NR) and 6-MSAS-type PKS) were compared with expression of an internal control mitochondrial small subunit gene (mtSSU). The results showed that media containing yeast extracts produced the largest colony diameters and the fewest number of secondary metabolites. Colony growth rates also varied with different media conditions, and a significant negative relationship occurred between colony diameter and number of secondary metabolites. Expression of the NR PKS gene was significantly higher at pH 6.5 on the glucose malt agar than any other media, and expression of the 6-MSAS-type (partially-reducing) PKS gene was significantly higher at pH 8.5 on (malt agar) malt agar than on the other types of agar. Gene expression was correlated with the pH level and media conditions that induced the production of the larger number of secondary substances. This is the first study to examine secondary metabolite production in R. dilacerata by comparing the number of polyketides detected with quantitative polymerase chain

  3. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    PubMed

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-01-01

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors. PMID:27447600

  4. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin

    PubMed Central

    WANG, CHONG-ZHI; ZHANG, CHUN-FENG; CHEN, LINA; ANDERSON, SAMANTHA; LU, FANG; YUAN, CHUN-SU

    2015-01-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal micro-biota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anti-cancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis. PMID:26398706

  5. Unexpected hormonal activity of a catechol equine estrogen metabolite reveals reversible glutathione conjugation

    PubMed Central

    Peng, Kuan-Wei; Chang, Minsun; Wang, Yue-Ting; Wang, Zhican; Qin, Zhihui; Bolton, Judy L.; Thatcher, Gregory R. J.

    2010-01-01

    4-Hydroxyequilenin (4-OHEN) is a major phase I metabolite of the equine estrogens present in widely prescribed hormone replacement formulations. 4-OHEN is autoxidized to an electrophilic o-quinone that has been shown to redox cycle, generating ROS, and to covalently modify proteins and DNA and thus potentially to act as a chemical carcinogen. To establish the ability of 4-OHEN to act as a hormonal carcinogen at the estrogen receptor (ER), estrogen responsive gene expression and proliferation were studied in ER(+) breast cancer cells. Recruitment by 4-OHEN of ER to estrogen responsive elements (ERE) of DNA in MCF-7 cells was also studied and observed. 4-OHEN was a potent estrogen, with additional weak activity associated with binding to the arylhydrocarbon receptor (AhR). The potency of 4-OHEN towards classical ERα mediated activity was unexpected given the reported rapid autoxidation and trapping of the resultant quinone by GSH. Addition of thiols to cell cultures did not attenuate the estrogenic activity of 4-OHEN and pre-formed thiol conjugates added to cell incubations only marginally reduced ERE-luciferase induction. On reaction of the 4OHEN-GSH conjugate with NADPH, 4-OHEN was observed to be regenerated at a rate dependent upon NADPH concentration, indicating that intracellular non-enzymatic and enzymatic regeneration of 4-OHEN accounts for the observed estrogenic activity of 4-OHEN. 4-OHEN is therefore capable of inducing chemical and hormonal pathways that may contribute to estrogen-dependent carcinogenesis, and trapping by cellular thiols does not provide a mechanism of termination of these pathways. PMID:20540524

  6. Antifouling Activity of Lipidic Metabolites Derived from Padina tetrastromatica.

    PubMed

    Suresh, Murugan; Iyapparaj, Palanisamy; Anantharaman, Perumal

    2016-07-01

    An attempt has been made to identify the potential seaweed for antifouling property due to the growing need for environmentally safe antifouling systems. The antibacterial, antimicroalgal, and antimussel foot adherence potentials of methanol, dichloromethane, and hexane extracts of the chosen seaweeds such as Padina tetrastromatica, Caulerpa taxifolia, and Amphiroa fragilissima have been compared against copper sulfate. Among the extracts, the maximum antibacterial activities were exhibited by the methanol extract of P. tetrastromatica. The minimum inhibitory concentration (MIC) of the methanolic extract of P. tetrastromatica was found to be 10 and 1 μg/ml against test biofilm bacteria and diatoms, respectively. The antimussel foot adherence assay indicated that the extract had inhibited the foot adherence of the green mussels Perna viridis with the effective concentration (EC50) of 25.51 ± 0.03 μg/ml, and lethal concentration for 50 % mortality (LC50) was recorded at 280.22 ± 0.12 μg/ml. Based on the prolific results, the crude methanolic extract of P. tetrastromatica was subjected to purification using silica gel column and thin-layer chromatography (TLC). Then, the active compounds of the bioassay-guided fraction (F13) were identified using gas chromatography coupled with mass spectroscopy (GC-MS), and it was observed that fatty acids were the major components, which may be responsible for the antifouling properties. PMID:26956575

  7. Antitumor Activity of Hierridin B, a Cyanobacterial Secondary Metabolite Found in both Filamentous and Unicellular Marine Strains

    PubMed Central

    Ramos, Vitor; Pereira, Alban R.; Fernandes, Virgínia C.; Domingues, Valentina F.; Gerwick, William H.; Vasconcelos, Vitor M.; Martins, Rosário

    2013-01-01

    Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells. PMID:23922738

  8. Global metabolite analysis of the land snail Theba pisana hemolymph during active and aestivated states.

    PubMed

    Bose, U; Centurion, E; Hodson, M P; Shaw, P N; Storey, K B; Cummins, S F

    2016-09-01

    The state of metabolic dormancy has fascinated people for hundreds of years, leading to research exploring the identity of natural molecular components that may induce and maintain this state. Many animals lower their metabolism in response to high temperatures and/or arid conditions, a phenomenon called aestivation. The biological significance for this is clear; by strongly suppressing metabolic rate to low levels, animals minimize their exposure to stressful conditions. Understanding blood or hemolymph metabolite changes that occur between active and aestivated animals can provide valuable insights relating to those molecular components that regulate hypometabolism in animals, and how they afford adaptation to their different environmental conditions. In this study, we have investigated the hemolymph metabolite composition from the land snail Theba pisana, a remarkably resilient mollusc that displays an annual aestivation period. Using LC-MS-based metabolomics analysis, we have identified those hemolymph metabolites that show significant changes in relative abundance between active and aestivated states. We show that certain metabolites, including some phospholipids [e.g. LysoPC(14:0)], and amino acids such as l-arginine and l-tyrosine, are present at high levels within aestivated snails. Further investigation of our T. pisana RNA-sequencing data elucidated the entire repertoire of phospholipid-synthesis genes in the snail digestive gland, as a precursor towards future comparative investigation between the genetic components of aestivating and non-aestivating species. In summary, we have identified a large number of metabolites that are elevated in the hemolymph of aestivating snails, supporting their role in protecting against heat or desiccation. PMID:27318654

  9. Culture condition-dependent metabolite profiling of Aspergillus fumigatus with antifungal activity.

    PubMed

    Kang, Daejung; Son, Gun Hee; Park, Hye Min; Kim, Jiyoung; Choi, Jung Nam; Kim, Hyang Yeon; Lee, Sarah; Hong, Seung-Beom; Lee, Choong Hwan

    2013-03-01

    Three sections of Aspergillus (five species, 21 strains) were classified according to culture medium-dependent and time-dependent secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analysed by liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS-MS) and multivariate statistical methods. From the Aspergillus sections that were cultured on malt extract agar (MEA) and Czapek yeast extract agar (CYA) for 7, 12, and 16 d, Aspergillus sections Fumigati (A. fumigatus), Nigri (A. niger), and Flavi (A. flavus, A. oryzae, and A. sojae) clustered separately on the basis of the results of the secondary metabolite analyses at 16 d regardless of culture medium. Based on orthogonal projection to latent structures discriminant analysis by partial least squares discriminant analysis (PLS-DA), we identified the secondary metabolites that helped differentiate sections between A. fumigatus and Aspergillus section Flavi to be gliotoxin G, fumigatin oxide, fumigatin, pseurotin A or D, fumiquinazoline D, fumagillin, helvolic acid, 1,2-dihydrohelvolic acid, and 5,8-dihydroxy-9,12-octadecadienoic acid (5,8-diHODE). Among these compounds, fumagillin, helvolic acid, and 1,2-dihydrohelvolic acid of A. fumigatus showed antifungal activities against Malassezia furfur, which is lipophilic yeast that causes epidermal skin disorders. PMID:23537878

  10. Channel-Forming Activities in the Glycosomal Fraction from the Bloodstream Form of Trypanosoma brucei

    PubMed Central

    Miinalainen, Ilkka J.; Hiltunen, J. Kalervo; Michels, Paul A. M.; Antonenkov, Vasily D.

    2012-01-01

    Background Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. Methods/Principal Findings We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T.brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70–80 pA, 20–25 pA, and 8–11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20–25 pA is anion-selective (PK+/PCl−∼0.31), while the other two types of channels are slightly selective for cations (PK+/PCl− ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively). The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel's pore. Conclusions/Significance These results indicate that the membrane of glycosomes apparently

  11. Secondary metabolites of plants from the genus chloranthus: chemistry and biological activities.

    PubMed

    Wang, An-Ran; Song, Hong-Chuan; An, Hong-Mei; Huang, Qian; Luo, Xie; Dong, Jin-Yan

    2015-04-01

    Chloranthus, a genus of the family Chloranthaceae, which is mainly distributed in eastern and southern Asia, has been used in Chinese folk medicine due to its antitumor, antifungal, and anti-inflammatory activities. This review compiles the research on isolation, structure elucidation, structural diversity, and bioactivities of Chloranthus secondary metabolites reported between 2007 and 2013. The metabolites listed encompass 82 sesquiterpenoids, 50 dimeric sesquiterpenoids, 15 diterpenoids, one coumarin, and five other compounds. Among them, dimeric sesquiterpenoids, the characteristic components of plants from the genus Chloranthus, have attracted considerable attention due to their complex structures and significant biological features, e.g., antitumor, antibacterial, antifungal, anti-inflammatory, and hepatoprotective activities, and potent and selective inhibition of the delayed rectifier (IK) K(+) current and tyrosinase. PMID:25879494

  12. Reproductive activity in the peninsular pronghorn determined from excreted gonadal steroid metabolites.

    PubMed

    Kersey, David C; Holland, Jeff; Eng, Curtis

    2015-01-01

    Fecal hormone monitoring was employed to better define annual patterns of reproductive steroid metabolites from a breeding pair of peninsular pronghorn (Antilocapra americana peninsularis) maintained at the Los Angeles Zoo. Notably in the female, increased excretion of estrogen metabolites occurred during the breeding season (Jun-Aug), and a biphasic pattern in progestagen activity was measured during gestation. Of additional interest, a preterm increase in estrogen that continued for an additional 64 days post partum. Male androgen activity correlated with the female estrogen patterns, with a single successful copulation occurring during the breeding season; interestingly however, the male exhibited no reproductive behaviors during the female's preterm/post partum estrogen increase. These data are the first reproductive steroid profiles for the peninsular pronghorn and provide valuable insight that will aid efforts that link the species' reproductive physiology with conservation management. PMID:25652944

  13. Aryl Hydrocarbon Receptor Activity of Tryptophan Metabolites in Young Adult Mouse Colonocytes.

    PubMed

    Cheng, Yating; Jin, Un-Ho; Allred, Clint D; Jayaraman, Arul; Chapkin, Robert S; Safe, Stephen

    2015-10-01

    The tryptophan microbiota metabolites indole-3-acetate, indole-3-aldehyde, indole, and tryptamine are aryl hydrocarbon receptor (AhR) ligands, and in this study we investigated their AhR agonist and antagonist activities in nontransformed young adult mouse colonocyte (YAMC) cells. Using Cyp1a1 mRNA as an Ah-responsive end point, we observed that the tryptophan metabolites were weak AhR agonists and partial antagonists in YAMC cells, and the pattern of activity was different from that previously observed in CaCo2 colon cancer cells. However, expansion of the end points to other Ah-responsive genes including the Cyp1b1, the AhR repressor (Ahrr), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiParp) revealed a highly complex pattern of AhR agonist/antagonist activities that were both ligand- and gene-dependent. For example, the magnitude of induction of Cyp1b1 mRNA was similar for TCDD, tryptamine, and indole-3-acetate, whereas lower induction was observed for indole and indole-3-aldehyde was inactive. These results suggest that the tryptophan metabolites identified in microbiota are selective AhR modulators. PMID:25873348

  14. Oxidation of propylthiouracil to reactive metabolites by activated neutrophils. Implications for agranulocytosis.

    PubMed

    Waldhauser, L; Uetrecht, J

    1991-01-01

    Propylthiouracil (PTU) is associated with idiosyncratic agranulocytosis that may be due to reactive metabolites generated from oxidative metabolism by neutrophils. Therefore, the metabolism of PTU was investigated in activated neutrophils. Three oxidized metabolites were observed on HPLC: PTU-disulfide, propyluracil-2-sulfinate, and propyluracil-2-sulfonate (PTU-SO3-). No metabolism was detected in cells that had not been activated. Metabolism was inhibited by sodium azide and by catalase. The same products were produced by myeloperoxidase (MPO) in an MPO/H2O2/Cl- system. PTU inhibited its own metabolism; however, complete conversion to PTU-SO3- could be achieved with optimal PTU concentrations. MPO/H2O2 without Cl- produced only slight metabolism. The PTU-sulfenyl chloride is a postulated intermediate. In the absence of chloride, oxidation might proceed through propyluracil-2-sulfenic acid. The sulfenyl chloride and PTU-SO3- are both chemically reactive with sulfhydryl compounds such as N-acetylcysteine. Such reactive metabolites, generated by activated neutrophils, may be involved in hypersensitivity reactions associated with PTU, such as agranulocytosis. PMID:1676636

  15. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem".

    PubMed

    Gomes, Nelson G M; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-05-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  16. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  17. Fungal transformation and T-cell proliferation inhibitory activity of melengestrol acetate and its metabolite.

    PubMed

    Baydoun, Elias; Bano, Saira; Atia-tul-Wahab; Jabeen, Almas; Yousuf, Sammer; Mesaik, Ahmed; Smith, Colin; Choudhary, M Iqbal

    2014-08-01

    Biotransformation of melengestrol acetate (MGA, 17α-acetoxy-6-methyl-16-methylenepregna-4,6-diene-3,20-dione) (1) was investigated for the first time by using fungal cultures. Incubation of compound 1 with Cunninghamella blakesleeana yielded a new major metabolite, 17α-acetoxy-11β-hydroxy-6-methyl-16-methylenepregna-4,6-diene-3,20-dione (2). The metabolite 2 was purified by using HPLC, followed by characterization through (1)H- and (13)C-NMR and other spectroscopic techniques. Single crystal X-ray diffraction analysis was used to deduce the three dimensional structures of melengestrol acetate (1) and metabolite 2 for the first time. T-cell proliferation assay was employed to evaluate the immunosuppressant effect of compounds 1 and 2 with IC50=0.5±0.07 and 0.6±0.08μg/mL, respectively. The results indicated that these compounds possess sixfold potent T-cell proliferation inhibitory activity as compared to the standard prednisolone (IC50<3.1μg/mL). Both compounds were found to be non-toxic in a 3T3 (mouse fibroblast) cell-based cytotoxicity assay. This discovery of potent anti-inflammatory activity of compounds 1 and 2 can lead the way to develop new immunosuppressant compounds for clinical application. PMID:24793568

  18. Biologically active polyketide metabolites from an undetermined fungicolous hyphomycete resembling Cladosporium.

    PubMed

    Höller, Ulrich; Gloer, James B; Wicklow, Donald T

    2002-06-01

    Eight new polyketide-derived metabolites [cladoacetals A and B (1 and 2), 3-(2-formyl-3-hydroxyphenyl)propionic acid (3), 3-deoxyisoochracinic acid (4), isoochracinol (5), 7-hydroxy-3-(2,3-dihydroxybutyl)-1(3H)-isobenzofuranone (6), (+)-cyclosordariolone (10), and altersolanol J (11)] and six known metabolites [two isomeric 1-(1,3-dihydro-4-hydroxy-1-isobenzofuranyl)butan-2,3-diols (7a/b), 7-hydroxy-1(3H)-isobenzofuranone (8), isoochracinic acid (9), altersolanol A (12), and macrosporin (13)] have been isolated from solid-substrate fermentation cultures of an undetermined fungicolous isolate (NRRL 29097) that resembles Cladosporium sp. All structures were assigned primarily by analysis of 1D and/or 2D NMR data. Five of the compounds showed antibacterial activity. PMID:12088431

  19. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites.

    PubMed

    Gliszczyńska, Anna; Łysek, Agnieszka; Janeczko, Tomasz; Świtalska, Marta; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2011-04-01

    Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated. PMID:21377882

  20. Evaluation of the pharmacological activity of the major mexiletine metabolites on skeletal muscle sodium currents

    PubMed Central

    De Bellis, M; De Luca, A; Rana, F; Cavalluzzi, M M; Catalano, A; Lentini, G; Franchini, C; Tortorella, V; Conte Camerino, D

    2006-01-01

    Background and purpose: Mexiletine (Mex), an orally effective antiarrhythmic agent used to treat ventricular arrhythmias, has also been found to be effective for myotonia and neuropathic pain. It is extensively metabolized in humans but little information exists about the pharmacodynamic properties of its metabolites. Experimental approach: To determine their contribution to the clinical activity of Mex, p-hydroxy-mexiletine (PHM), hydroxy-methyl-mexiletine (HMM), N-hydroxy-mexiletine (NHM) (phase I reaction products) and N-carbonyloxy β-D-glucuronide (NMG) (phase II reaction product) were tested on sodium currents (INa) of frog skeletal muscle fibres. Sodium currents were elicited with depolarizing pulses from different holding potentials (HP=−140, −100, −70 mV) and stimulation frequencies (0.25, 0.5, 1, 2, 5, 10 Hz) using the vaseline-gap voltage-clamp method. Key results: All the hydroxylated derivatives blocked the sodium channel in a voltage- and use-dependent manner. The PHM, HMM and NHM metabolites were up to 10-fold less effective than the parent compound. However, HMM showed a greater use-dependent behaviour (10 Hz), compared to Mex and the other metabolites. Similar to Mex, these products behaved as inactivating channel blockers. Conjugation with glucuronic acid (NMG) resulted in almost complete abolition of the pharmacological activity of the parent compound. Conclusions and Implications: Thus, although less potent, the phase I metabolites tested demonstrated similar pharmacological behaviour to Mex and might contribute to its clinical profile. PMID:16921388

  1. Antimicrobial activity of secondary metabolites from Streptomyces sp. K15, an endophyte in Houttuynia cordata Thunb.

    PubMed

    Chen, Huabao; Yang, Chunping; Ke, Tao; Zhou, Miaomiao; Li, Zhaojun; Zhang, Min; Gong, Guoshu; Hou, Taiping

    2015-01-01

    We isolated Streptomyces sp. K15 from the root tissue of Houttuynia cordata Thunb and found that some of its secondary metabolites exhibited significant antimicrobial activity against Botrytis cinerea. Moreover, we separated, purified and identified the major active ingredient to be 2-pyrrol formic acid by using silica gel column chromatography, high-performance liquid chromatography and NMR analysis of the spectral data. 2-Pyrrol formic acid critically inhibited the growth of some phytopathogenic bacteria. Therefore, it has potential value in agricultural applications. PMID:25675117

  2. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties

    PubMed Central

    2013-01-01

    The resinous metabolites commonly known as frankincense or olibanum are produced by trees of the genus Boswellia and have attracted increasing popularity in Western countries in the last decade for their various pharmacological activities. This review described the pharmacological specific details mainly on anti-inflammatory, anti-carcinogenic, anti-bacterial and apoptosis-regulating activities of individual triterpenoid together with the relevant mechanism. In addition, species-characterizing triterpenic markers with the methods for their detection, bioavailability, safety and other significant properties were reviewed for further research. PMID:24028654

  3. Activation of the aryl hydrocarbon receptor by carcinogenic aromatic amines and modulatory effects of their N-acetylated metabolites.

    PubMed

    Juricek, Ludmila; Bui, Linh-Chi; Busi, Florent; Pierre, Stéphane; Guyot, Erwan; Lamouri, Aazdine; Dupret, Jean-Marie; Barouki, Robert; Coumoul, Xavier; Rodrigues-Lima, Fernando

    2015-12-01

    Aromatic amines (AAs) are an important class of chemicals which account for 12 % of known carcinogens. The biological effects of AAs depend mainly on their biotransformation into reactive metabolites or into N-acetylated metabolites which are generally considered as less toxic. Although the activation of the aryl hydrocarbon receptor (AhR) pathway by certain carcinogenic AAs has been reported, the effects of their N-acetylated metabolites on the AhR have not been addressed. Here, we investigated whether carcinogenic AAs and their N-acetylated metabolites may activate/modulate the AhR pathway in the absence and/or the presence of a bona fide AhR ligand (benzo[a]pyrene/B(a)P]. In agreement with previous studies, we found that certain AAs activated the AhR in human liver and lung cells as assessed by an increase in cytochrome P450 1A1 (CYP1A1) expression and activity. Altogether, we report for the first time that these properties can be modulated by the N-acetylation status of the AA. Whereas 2-naphthylamine significantly activated the AhR and induced CYP1A1 expression, its N-acetylated metabolite was less efficient. In contrast, the N-acetylated metabolite of 2-aminofluorene was able to significantly activate AhR, whereas the parent AA, 2-aminofluorene, did not. In the presence of B(a)P, activation of AhR or antagonist effects were observed depending on the AA or its N-acetylated metabolite. Activation and/or modulation of the AhR pathway by AAs and their N-acetylated metabolites may represent a novel mechanism contributing to the toxicological effects of AAs. More broadly, our data suggest biological interactions between AAs and other classes of xenobiotics through the AhR pathway. PMID:25224404

  4. Identification of metabolites from an active fraction of Cajanus cajan seeds by high resolution mass spectrometry.

    PubMed

    Tekale, Satishkumar S; Jaiwal, Bhimrao V; Padul, Manohar V

    2016-11-15

    Antioxidants are important food additives which prolong food storage due to their protective effects against oxidative degradation of foods by free radicals. However, the synthetic antioxidants show toxic properties. Alternative economical and eco-friendly approach is screening of plant extract for natural antioxidants. Plant phenolics are potent antioxidants. Hence, in present study Cajanus cajan seeds were analyzed for antioxidant activity, Iron chelating activity and total phenolic content. The antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showed 71.3% inhibition and 65.8% Iron chelating activity. Total 37 compounds including some short peptides and five major abundant compounds were identified in active fraction of C. cajan seeds. This study concludes that C. cajan seeds are good source of antioxidants and Iron chelating activity. Metabolites found in C. cajan seeds which remove reactive oxygen species (ROS), may help to alleviate oxidative stress associated dreaded health problem like cancer and cardiovascular diseases. PMID:27283694

  5. Select steroid hormone glucuronide metabolites can cause toll-like receptor 4 activation and enhanced pain.

    PubMed

    Lewis, Susannah S; Hutchinson, Mark R; Frick, Morin M; Zhang, Yingning; Maier, Steven F; Sammakia, Tarek; Rice, Kenner C; Watkins, Linda R

    2015-02-01

    We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signaling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and temporomandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest. PMID:25218902

  6. Biotransformation of dianabol with the filamentous fungi and β-glucuronidase inhibitory activity of resulting metabolites.

    PubMed

    Khan, Naik T; Zafar, Salman; Noreen, Shagufta; Al Majid, Abdullah M; Al Othman, Zeid A; Al-Resayes, Saud Ibrahim; Atta-ur-Rahman; Choudhary, M Iqbal

    2014-07-01

    Biotransformation of the anabolic steroid dianabol (1) by suspended-cell cultures of the filamentous fungi Cunninghamella elegans and Macrophomina phaseolina was studied. Incubation of 1 with C. elegans yielded five hydroxylated metabolites 2-6, while M. phaseolina transformed compound 1 into polar metabolites 7-11. These metabolites were identified as 6β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (2), 15α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (3), 11α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (4), 6β,12β,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (5), 6β,15α,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (6), 17β-hydroxy-17α-methylandrost-1,4-dien-3,6-dione (7), 7β,17β,-dihydroxy-17α-methylandrost-1,4-dien-3-one (8), 15β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (9), 17β-hydroxy-17α-methylandrost-1,4-dien-3,11-dione (10), and 11β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (11). Metabolite 3 was also transformed chemically into diketone 12 and oximes 13, and 14. Compounds 6 and 12-14 were identified as new derivatives of dianabol (1). The structures of all transformed products were deduced on the basis of spectral analyses. Compounds 1-14 were evaluated for β-glucuronidase enzyme inhibitory activity. Compounds 7, 13, and 14 showed a strong inhibition of β-glucuronidase enzyme, with IC50 values between 49.0 and 84.9 μM. PMID:24755238

  7. Select steroid hormone glucuronide metabolites can cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Frick, Morin M.; Zhang, Yingning; Maier, Steven F.; Sammakia, Tarek; Rice, Kenner C.; Watkins, Linda R.

    2014-01-01

    We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signalling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and tempromandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest. PMID:25218902

  8. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  9. Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3.

    PubMed Central

    Nunn, J D; Katz, D R; Barker, S; Fraher, L J; Hewison, M; Hendy, G N; O'Riordan, J L

    1986-01-01

    We have examined the effects of 1,25(OH)2D3 on T-cell populations isolated by buoyant density and E rosetting from human tonsils. Cell proliferation was assessed by measuring the incorporation of 125iododeoxyuridine; interleukin-2 (IL-2) production was measured using an IL-2-dependent cell line, and the number of 1,25(OH)2D3 receptors was measured by whole-cell nuclear association assay. At a concentration of 10(-7) M, 1,25(OH)2D3 inhibited mitogen-induced T-cell proliferation in all E+ T-cell populations. This effect was more pronounced in the cells from the intermediate and high density layers and was reflected both in cell proliferative responses and in relative IL-2 synthesis. By adding the 1,25(OH)2D3 during the course of the mitogen assay, we demonstrated that activation of the T cell precedes the 1,25(OH)2D3-mediated inhibition. Cells that had been preincubated with mitogen in the presence of the 1,25(OH)2D3 were refractory to further stimulation by mitogens. Receptors for 1,25(OH)2D3 could not be detected in unstimulated T cells. However, activation led to the expression of high-affinity receptors for 1,25(OH)2D3. Co-incubation of the cells with mitogen and 1,25(OH)2D3 increased the number of receptors compared with mitogen alone. The effects provide further evidence for the hypothesis that 1,25(OH)2D3 is an important potential modulator of the immune system through its action on T cells. Taking our observations in conjunction with the known capacity of monocytes to hydroxylate the precursor metabolite (and thus synthesize the active form of cholecalciferol), the results support the suggestion that 1,25(OH)2D3 plays a role as a local mediator of mononuclear phagocyte-T cell interaction in human lymphomedullary tissues. PMID:3026959

  10. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi.

    PubMed

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2011-01-01

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity. PMID:21339946

  11. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    PubMed Central

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2011-01-01

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity. PMID:21339946

  12. Activation and Products of the Cryptic Secondary Metabolite Biosynthetic Gene Clusters by Rifampin Resistance (rpoB) Mutations in Actinomycetes

    PubMed Central

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie

    2013-01-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization. PMID:23603745

  13. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity.

    PubMed

    Wardecki, Tina; Brötz, Elke; De Ford, Christian; von Loewenich, Friederike D; Rebets, Yuriy; Tokovenko, Bogdan; Luzhetskyy, Andriy; Merfort, Irmgard

    2015-08-01

    Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients. PMID:26036671

  14. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity. PMID:27112424

  15. [The pharmacokinetics of the dipeptide analog of piracetam with nootropic activity GVS-111 and of its basic metabolites].

    PubMed

    Boĭko, S S; Zherdev, V P; Dvorianinov, A A; Gudasheva, T A; Ostrovskaia, R U; Voronina, T A; Rozantsev, G G; Seredenin, S B

    1997-01-01

    The pharmacokinetics of a new nootropic dipeptide analog of piracetam-N-phenylacetyl-L-prolylglycine (GWS-111) and its main metabolites were studied in rats by means of high performance liquid chromatography and gas-liquid chromatography. The compound under study showed a greater resistance to an enzymatic effect than natural neuropeptides. In addition to an unchanged compound three of its metabolites were found in the blood plasma of the rats. One of them, cyclo-Pro-Gly was an active metabolite of GWS-111. PMID:9206571

  16. Potent Antidiabetic Activity and Metabolite Profiling of Melicope Lunu-ankenda Leaves.

    PubMed

    Al-Zuaidy, Mizher Hezam; Hamid, Azizah Abdul; Ismail, Amin; Mohamed, Suhaila; Abdul Razis, Ahmad Faizal; Mumtaz, Muhammad Waseem; Salleh, Syafiq Zikri

    2016-05-01

    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in

  17. Kynurenine pathway metabolites are associated with hippocampal activity during autobiographical memory recall in patients with depression.

    PubMed

    Young, Kymberly D; Drevets, Wayne C; Dantzer, Robert; Teague, T Kent; Bodurka, Jerzy; Savitz, Jonathan

    2016-08-01

    Inflammation-related changes in the concentrations of inflammatory mediators such as c-reactive protein (CRP), interleukin 1β (IL-1), and IL-6 as well as kynurenine metabolites are associated with major depressive disorder (MDD) and affect depressive behavior, cognition, and hippocampal plasticity in animal models. We previously reported that the ratios of kynurenic acid (KynA) to the neurotoxic metabolites, 3-hydroxykynurenine (3HK) and quinolinic acid (QA), were positively correlated with hippocampal volume in depression. The hippocampus is critical for autobiographical memory (AM) recall which is impaired in MDD. Here we tested whether the ratios, KynA/3HK and KynA/QA were associated with AM recall performance as well as hippocampal activity during AM recall. Thirty-five unmedicated depressed participants and 25 healthy controls (HCs) underwent fMRI scanning while recalling emotionally-valenced AMs and provided serum samples for the quantification of kynurenine metabolites, CRP, and cytokines (IL-1 receptor antagonist - IL-1RA; IL-6, tumor necrosis factor alpha - TNF, interferon gamma -IFN-γ, IL-10). KynA/3HK and KynA/QA were lower in the MDD group relative to the HCs. The concentrations of the CRP and the cytokines did not differ significantly between the HCs and the MDD group. Depressed individuals recalled fewer specific AMs and displayed increased left hippocampal activity during the recall of positive and negative memories. KynA/3HK was inversely associated with left hippocampal activity during specific AM recall in the MDD group. Further, KynA/QA was positively correlated with percent negative specific memories recalled in the MDD group and showed a non-significant trend toward a positive correlation with percent positive specific memories recalled in HCs. In contrast, neither CRP nor the cytokines were significantly associated with AM recall or activity of the hippocampus during AM recall. Conceivably, an imbalance in levels of KynA versus QA

  18. Estrogenic and androgenic activities of TBBA and TBMEPH, metabolites of novel brominated flame retardants, and selected bisphenols, using the XenoScreen XL YES/YAS assay.

    PubMed

    Fic, Anja; Žegura, Bojana; Gramec, Darja; Mašič, Lucija Peterlin

    2014-10-01

    The present study investigated and compared the estrogenic and androgenic activities of the three different classes of environmental pollutants and their metabolites using the XenoScreen XL YES/YAS assay, which has advantages compared with the original YES/YAS protocol. Contrary to the parent brominated flame retardants TBB and TBPH, which demonstrated no or very weak (anti)estrogenic or (anti)androgenic activities, their metabolites, TBBA and TBMEPH, exhibited anti-estrogenic (IC50 for TBBA=31.75 μM and IC50 for TBMEPH=0.265 μM) and anti-androgenic (IC50 for TBBA=73.95 μM and IC50 for TBMEPH=2.92 μM) activities. These results reveal that metabolism can enhance the anti-estrogenic and anti-androgenic effects of these two novel brominated flame retardants. Based on the activities of BPAF, BPF, BPA and MBP, we can conclude that the XenoScreen XL YES/YAS assay gives comparable results to the (anti)estrogenic or (anti)androgenic assays that are reported in the literature. For BPA, it was confirmed previously that the metabolite formed after an ipso-reaction (hydroxycumyl alcohol) exhibited higher estrogenic activity compared with the parent BPA, but this was not confirmed for BPAF and BPF ipso-metabolites, which were not active in the XenoScreen YES/YAS assay. Among the substituted BPA analogues, bis-GMA exhibited weak anti-estrogenic activity, BADGE demonstrated weak anti-estrogenic and anti-androgenic activities (IC50=13.73 μM), and the hydrolysed product BADGE·2H2O demonstrated no (anti)estrogenic or (anti)androgenic activities. PMID:25048928

  19. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus

    PubMed Central

    Moghaddam, Ehsan; Teoh, Boon-Teong; Sam, Sing-Sin; Lani, Rafidah; Hassandarvish, Pouya; Chik, Zamri; Yueh, Andrew; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted. PMID:24965553

  20. Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass.

    PubMed

    Song, Qiu-Yan; Nan, Zhi-Biao; Gao, Kun; Song, Hui; Tian, Pei; Zhang, Xing-Xu; Li, Chun-Jie; Xu, Wen-Bo; Li, Xiu-Zhang

    2015-10-14

    The development of high-quality herbage is an important aspect of animal husbandry. Inoculating beneficial fungi onto inferior grass is a feasible strategy for producing new varieties of high-quality herbage. Epichloë bromicola is a candidate fungus that is isolated from Elymus tangutorum. A total of 17 metabolites, 1-17, were obtained from E. bromicola, and their biological activities were assayed. Metabolite 1 exhibited antifungal activities against Alternaria alternata, Fusarium avenaceum, Bipolaris sorokiniana, and Curvularia lunata. EC50 values ranged from 0.7 to 5.3 μM, which were better than the positive control, chlorothalonil. Metabolite 8 displayed obvious phytotoxic effects toward Lolium perenne and Poa crymophila seedlings, and it was as active as glyphosate. None of these isolated metabolites displayed cytotoxicity against Madin-Darby bovine kidney cells. The IC50 values were greater than 100 μM, and the metabolites increased the growth of the cells at a concentration of 12.5 μM. The bioassay indicated that E. bromicola may be a beneficial fungus for producing new varieties of herbage with various resistances. Additionally, metabolite 7, 3-(2'-(4″-hydroxyphenyl)acetoxy)-2S-methylpropanoic acid, is a new natural product, and its stereochemistry was determined by means of optical rotation computation and chemical reactions. PMID:26395226

  1. The vitamin D3 metabolite-type activity of Solanum malacoxylon.

    PubMed

    Basudde, C D; Humphreys, D J

    1976-01-01

    1. Administration of an aqueous extract of the dried leaves of Solanum malacoxylon (DLSM) to rats causes a rapid hyperphosphataemia and a decrease in plasma alkaline phosphatase activity; the two effects are typical of 1,25(OH)2D3, the hormonally active metabolite of vitamin D3. 2. DLSM, like both vitamin D3 and parathyroid hormone, increases plasma calcium and citrate levels in rats. The effect of DLSM in influencing plasma citrate, and the role of this important metabolite in mineral metabolism is discussed. 3. A decrease of plasma magnesium levels occurs in rats following treatment with DLSM. This decrease, which is associated with a renal loss of this cation, is remarkably similar to that produced by hypervitaminosis D3. 4. Prolonged administration of DLSM to vitamin D deficient rats causes a polyuria, hypercalciuria, hyperphosphaturia, hypermagnesuria, an increase in urinary total hydroxyproline, an increase in plasma total hexosamines, and a corresponding decrease in the bone total hexosamines. These effects, some of which can also be produced by hyperparathyroidism, or following the administration of parathyroid extract (PTE), large doses of vitamin D3, or 1,25(OH)2D3, suggest that DLSM, like the latter compounds, is capable of causing bone mineral mobilization, and the dissolution of bone organic matrix. PMID:212224

  2. Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators.

    PubMed

    Lauterbach, Birgit; Barbosa-Sicard, Eduardo; Wang, Mong-Heng; Honeck, Horst; Kärgel, Eva; Theuer, Jürgen; Schwartzman, Michal L; Haller, Hermann; Luft, Friedrich C; Gollasch, Maik; Schunck, Wolf-Hagen

    2002-02-01

    P450-dependent arachidonic acid (AA) metabolites regulate arterial tone by modulating calcium-activated (BK) potassium channels in vascular smooth muscle cells (VSMC). Because eicosapentaenoic acid (EPA) has been reported to improve vascular function, we tested the hypothesis that P450-dependent epoxygenation of EPA produces alternative vasoactive compounds. We synthesized the 5 regioisomeric epoxyeicosattrienoic acids (EETeTr) and examined them for effects on K(+) currents in rat cerebral artery VSMCs with the patch-clamp technique. 11(R),12(S)-epoxyeicosatrienoic acid (50 nmol/L) was used for comparison and stimulated K(+) currents 6-fold at +60 mV. However, 17(R),18(S)-EETeTr elicited a more than 14-fold increase. 17(S),18(R)-EET and the remaining four regioisomers were inactive. The effect of 17(R),18(S)-EETeTr was blocked by tetraethylammonium but not by 4-aminopyridine. VSMCs expressed P450s 4A1 and 4A3. Recombinant P450 4A1 hydroxylated EPA at C-19 and C-20 and epoxygenated the 17,18-double bond, yielding the R, S- and S, R-enantiomers in a ratio of 64:36. We conclude that 17(R),18(S)-EETeTr represents a novel, potent activator of BK potassium channels. Furthermore, this metabolite can be directly produced in VSMCs. We suggest that 17(R),18(S)-EETeTr may function as an important hyperpolarizing factor, particularly with EPA-rich diets. PMID:11882617

  3. Understanding the interactions between metabolites isolated from Achyrocline satureioides in relation to its antibacterial activity.

    PubMed

    Joray, Mariana Belén; Palacios, Sara María; Carpinella, María Cecilia

    2013-02-15

    As part of our ongoing research on the antibacterial activity of Achyrocline satureioides, this study seeks to better understand the interactions between the metabolites isolated from this plant. For this purpose, the combined effect of 23-methyl-6-O-desmethylauricepyrone (1), quercetin (2) and 3-O-methylquercetin (3), obtained through bioguided fractionation from A. satureioides ethanol extract, was evaluated against Staphylococcus aureus and Escherichia coli. In first place, the antibacterial effect of the combination of flavonols 2 and 3 was assessed, as these showed individual effectiveness lower than or equal to that of the fraction from which they were obtained. When the flavonols were applied together at concentrations below their minimum inhibitory concentration (MIC) values, a synergistic effect (FICI<0.30) against S. aureus was observed. In addition, compounds 2 and 3 in combination reduced 1000 times the MIC of compound 1, showing a clear synergistic interaction (FICI<0.15) in treatments against the Gram (+) bacterium. The most active combination against E. coli showed an additive interaction (FICI<0.62) between the three assayed compounds 1-3. These results indicated the existence of concerted action between these metabolites, evidence of the importance of the synergistic interactions between the components of plant-derived extracts for the control of pathogenic bacteria. PMID:23207251

  4. Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay

    PubMed Central

    Chen, Fangfang; Qi, Wen; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isorhynchophylline is one of the major alkaloids from the Uncaria hook possessing the effects of lowered blood pressure, vasodilatation and protection against ischemia-induced neuronal damage. However, the metabolic pathway of isorhynchophylline has not been fully reported yet. In this paper, the metabolism of isorhynchophylline was investigated in rats. Five metabolites were isolated by using solvent extraction and repeated chromatographic methods, and identified by spectroscopic methods including UV, MS, NMR and CD experiments. Three new compounds were identified as 5-oxoisorhynchophyllic acid-22-O-β-D-glucuronide (M1), 17-O-demethyl-16,17-dihydro isorhynchophylline (M2) and 5-oxoisorhynchophyllic acid (M4) together with two known compounds isorhynchophylline (M0) and rhynchophylline (M3). Possible metabolic pathways of isorhynchophylline are proposed. Furthermore, the activity assay for all the metabolites showed that isorhynchophylline (M0) exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, little or weak neuroprotective activities were observed for M1–M4. Our present study is important to further understand its metabolic fate and disposition in humans. PMID:24910000

  5. Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay.

    PubMed

    Chen, Fangfang; Qi, Wen; Sun, Jiahong; Simpkins, James W; Yuan, Dan

    2014-09-01

    Isorhynchophylline is one of the major alkaloids from the Uncaria hook possessing the effects of lowered blood pressure, vasodilatation and protection against ischemia-induced neuronal damage. However, the metabolic pathway of isorhynchophylline has not been fully reported yet. In this paper, the metabolism of isorhynchophylline was investigated in rats. Five metabolites were isolated by using solvent extraction and repeated chromatographic methods, and identified by spectroscopic methods including UV, MS, NMR and CD experiments. Three new compounds were identified as 5-oxoisorhynchophyllic acid-22-O-β-D-glucuronide (M1), 17-O-demethyl-16,17-dihydro isorhynchophylline (M2) and 5-oxoisorhynchophyllic acid (M4) together with two known compounds isorhynchophylline (M0) and rhynchophylline (M3). Possible metabolic pathways of isorhynchophylline are proposed. Furthermore, the activity assay for all the metabolites showed that isorhynchophylline (M0) exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, little or weak neuroprotective activities were observed for M1-M4. Our present study is important to further understand its metabolic fate and disposition in humans. PMID:24910000

  6. In vitro metabolism of pyripyropene A and ACAT inhibitory activity of its metabolites.

    PubMed

    Matsuda, Daisuke; Ohshiro, Taichi; Ohtawa, Masaki; Yamazaki, Hiroyuki; Nagamitsu, Tohru; Tomoda, Hiroshi

    2015-01-01

    Pyripyropene A (PPPA, 1) of fungal origin, a selective inhibitor of acyl-CoA:cholesterol acyltransferase 2 (ACAT2), proved orally active in atherogenic mouse models. The in vitro metabolites of 1 in liver microsomes and plasma of human, rabbit, rat and mouse were analyzed by ultra fast liquid chromatography and liquid chromatography/tandem mass spectrometry. In the liver microsomes from all species, successive hydrolysis occurred at the 1-O-acetyl residue, then at the 11-O-acetyl residue of 1, while the 7-O-acetyl residue was resistant to hydrolysis. Furthermore, dehydrogenation of the newly generated 11-alcoholic hydroxyl residue occurred in human and mouse-liver microsomes, while oxidation of the pyridine ring occurred in human and rabbit liver microsomes. On the other hand, hydrolysis of the 7-O-acetyl residue proceeded only in the mouse plasma. These data indicated that the in vitro metabolic profiles of 1 have subtle differences among animal species. All of the PPPA metabolites observed in liver microsomes and plasma markedly decreased ACAT2 inhibitory activity. These findings will help us to synthesize new PPPA derivatives more effective in in vivo study than 1. PMID:25005817

  7. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. ex Heuff. and Its Metabolites.

    PubMed

    Pavlović, Ivan; Petrović, Silvana; Milenković, Marina; Stanojković, Tatjana; Nikolić, Dejan; Krunić, Aleksej; Niketić, Marjan

    2015-10-01

    The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75μM). PMID:26460563

  8. Metabolic activation of tris(2,3-dibromopropyl)phosphate to reactive intermediates. II. Covalent binding, reactive metabolite formation, and differential metabolite-specific DNA damage in vivo.

    PubMed

    Pearson, P G; Omichinski, J G; Holme, J A; McClanahan, R H; Brunborg, G; Søderlund, E J; Dybing, E; Nelson, S D

    1993-02-01

    Analogs of tris(2,3-dibromopropyl)phosphate (Tris-BP) either labeled at specific positions with carbon-14 and phosphorus-32 or dual-labeled with both deuterium and tritium were administered to male Wistar rats at a nephrotoxic dose of 360 mumol/kg. The covalent binding of Tris-BP metabolites to hepatic, renal, and testicular proteins was determined after 9 and 24 hr, and plasma concentrations of bis(2,3-dibromopropyl)-phosphate (Bis-BP) formed metabolically from Tris-BP were measured at intervals throughout the initial 9-hr postdosing period. The covalent binding of 14C-Tris-BP metabolites in the kidney (2495 +/- 404 pmol/mg protein) was greater than that in the liver (476 +/- 123 pmol/mg protein) or testes (94 +/- 11 pmol/mg protein); the extent of renal covalent protein binding of Tris-BP metabolites was decreased by 82 and 84% when deuterium was substituted at carbon-2 and carbon-3, respectively. Substitution of Tris-BP with deuterium at carbon-2 or carbon-3 also decreased the mean area under the curve for Bis-BP plasma concentration by 48 and 57%, respectively. The mechanism of Tris-BP-induced renal and hepatic DNA damage was evaluated in Wistar rats by an automated alkaline elution procedure after the administration of analogs of Tris-BP or Bis-BP labeled at specific positions with deuterium. Renal DNA damage was decreased when Tris-BP was substituted with deuterium at either carbon-2 or carbon-3; the magnitude of the change correlated with both a decrease in the area under the Bis-BP plasma curve and a decrease in renal covalent binding of Tris-BP metabolites for each of the deuterated analogs. In marked contrast, analogs of Bis-BP labeled with deuterium at carbon-2 or carbon-3 did not show a decrease in the severity of renal DNA damage compared to unlabeled Bis-BP. On the basis of these observations a metabolic scheme for hepatic P-450-mediated oxidation at either carbon-2 or carbon-3 of Tris-BP affording Bis-BP by two alternate pathways that are susceptible

  9. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health.

    PubMed

    Lv, Xinmiao; Zhao, Siyu; Ning, Zhangchi; Zeng, Honglian; Shu, Yisong; Tao, Ou; Xiao, Cheng; Lu, Cheng; Liu, Yuanyan

    2015-01-01

    Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced. PMID:26705419

  10. Antimicrobial and antiprotozoal activities of secondary metabolites from the fungus Eurotium repens

    PubMed Central

    Gao, Jiangtao; Radwan, Mohamed M.; León, Francisco; Wang, Xiaoning; Jacob, Melissa R.; Tekwani, Babu L.; Khan, Shabana I.; Lupien, Shari; Hill, Robert A.; Dugan, Frank M.; Cutler, Horace G.

    2011-01-01

    In this study, we examined in vitro antibacterial, antifungal, antimalarial, and antileishmanial activities of secondary metabolites (1–8) isolated from the fungus Eurotium repens. All compounds showed mild to moderate antibacterial or antifungal or both activities except 7. The activity of compound 6 was the best of the group tested. The in vitro antimalarial evaluation of these compounds revealed that compounds 1–3, 5, and 6 showed antimalarial activities against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum with IC50 values in the range of 1.1–3.0 μg/ml without showing any cytotoxicity to the mammalian cells. Compound 5 displayed the highest antimalarial activity. Antileishmanial activity against Leishmania donovani promastigotes was observed for compounds 1–6 with IC50 values ranging from 6.2 to 23 μg/ml. Antileishmanial activity of compounds 5 and 6 (IC50 values of 7.5 and 6.2 μg/ml, respectively) was more potent than 1–4 (IC50 values ranging from 19–23 μg/ml). Compounds 7 and 8 did not show any antiprotozoal effect. Preliminary structure and activity relationship studies indicated that antibacterial, antifungal, antimalarial, and antileishmanial activities associated with phenol derivates (1–6) seem to be dependent on the number of double bonds in the side chain, which would be important for lead optimization in the future. PMID:23024574

  11. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic Activity

    PubMed Central

    Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  12. Biotransformation of bisphenol AF to its major glucuronide metabolite reduces estrogenic activity.

    PubMed

    Li, Ming; Yang, Yunjia; Yang, Yi; Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  13. Mutagenic activity and metabolites in the urine of workers exposed to trinitrotoluene (TNT).

    PubMed

    Ahlborg, G; Einistö, P; Sorsa, M

    1988-05-01

    Urine samples taken after work and after a free weekend from 50 workers employed in various activities in a chemical plant manufacturing explosives were analysed. On the basis of hygienic surveys, the subjects were divided into three categories of exposure to trinitrotoluene (TNT). The urine analyses consisted of gas chromatographic identification of TNT and its two metabolites, 4-ADNT and 2-ADNT, and a determination of the mutagenic activity. Two frame shift detector strains of Salmonella typhimurium were used, TA 98 and TA 98 NR, the latter being deficient in endogenous nitroreductase activity. On the basis of previous results on TNT mutagenicity, no exogeneous metabolic system was used to test the urine concentrates. Both tester strains showed that the mean urinary mutagenic activity was higher in the after work samples than in post weekend samples from the same subjects, showing that bacterial nitroreductase activity was not significantly responsible for the mutagenicity, although the response was higher with strain TA 98 than with TA 98 NR. The interindividual variation in urine mutagenicity was high, however, and the difference between the two sampling times was statistically significant (p less than 0.05) only for the high exposed group (workers in trotyl foundry and sieve house). Correlation between urinary mutagenicity and concentration of TNT in urine was poor; correlation was significant only with the urinary concentration of 4-ADNT. The correlation between urinary TNT and both metabolites was good (p less than 0.001). These results suggest that analysis of 4-ADNT in urine would be a sufficient biological measure for controlling exposure to TNT. PMID:3378017

  14. Isophosphoramide mustard, a metabolite of ifosfamide with activity against murine tumours comparable to cyclophosphamide.

    PubMed Central

    Struck, R. F.; Dykes, D. J.; Corbett, T. H.; Suling, W. J.; Trader, M. W.

    1983-01-01

    Isophosphoramide mustard was synthesized and was found to demonstrate activity essentially comparable to cyclophosphamide and ifosfamide against L1210 and P388 leukaemia. Lewis lung carcinoma, mammary adenocarcinoma 16/C, ovarian sarcoma M5076, and colon tumour 6A, in mice and Yoshida ascitic sarcoma in rats. At doses less than, or equivalent to, the LD10, isophosphoramide mustard retained high activity against cyclophosphamide-resistant L1210 and P388 leukaemias, but was less active against intracerebrally-implanted P388 leukaemia while cyclophosphamide produced a 4 log10 tumour cell reduction. It was also less active (one log10 lower cell kill) than cyclophosphamide against the B16 melonoma. Metabolism studies on ifosfamide in mice identified isophosphoramide mustard in blood. In addition, unchanged drug, carboxyifosfamide, 4-ketoifosfamide, dechloroethyl cyclophosphamide, dechloroethylifosfamide, and alcoifosfamide were identified. The latter 4 metabolites were also identified in urine from an ifosfamide-treated dog. In a simulated in vitro pharmacokinetic experiment against L1210 leukaemia in which drugs were incubated at various concentrations for various times, both 4-hydroxycyclophosphamide and isophosphoramide mustard exhibited significant cytoxicity at concentration times time values of 100-1000 micrograms X min ml-1, while acrolein was significantly cytotoxic at 10 micrograms X min ml-1. Treatment of mice with drug followed by L1210 cells demonstrated a shorter duration of effective levels of cytotoxic activity for isophosphoramide mustard and phosphoramide mustard in comparison with cyclophosphamide and ifosfamide. Isophosphoramide mustard and 2-chloroethylamine, a potential hydrolysis product of isophosphoramide mustard and carboxyifosfamide, were less mutagenic in the standard Ames test than the 2 corresponding metabolites of cyclophosphamide [phosphoramide mustard and bis(2-chloroethyl)amine]. PMID:6821629

  15. Oxidative DNA damage by an N-hydroxy metabolite of the mutagenic compound formed from norharman and aniline.

    PubMed

    Ohnishi, S; Murata, M; Oikawa, S; Totsuka, Y; Takamura, T; Wakabayashi, K; Kawanishi, S

    2001-07-25

    Norharman (9H-pyrido[3,4-b]indole), which is a heterocyclic amine included in cigarette smoke or cooked foodstuffs, is not mutagenic itself. However, norharman reacts with non-mutagenic aniline to form mutagenic aminophenylnorharman (APNH), of which DNA adducts formation and hepatocarcinogenic potential are pointed out. We investigated whether N-OH-APNH, an N-hydroxy metabolite of APNH, can cause oxidative DNA damage or not, using 32P-labeled DNA fragments. N-OH-APNH caused Cu(II)-mediated DNA damage. When an endogenous reductant, beta-nicotinamide adenine dinucleotide (NADH) was added, the DNA damage was greatly enhanced. Catalase and a Cu(I)-specific chelator inhibited DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). Typical -*OH scavenger did not inhibit DNA damage. These results suggest that the main reactive species are probably copper-hydroperoxo complexes with DNA. We also measured 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation by N-OH-APNH in the presence of Cu(II), using an electrochemical detector coupled to a high-pressure liquid chromatograph. Addition of NADH greatly enhanced 8-oxodG formation. UV-VIS spectra and mass spectra suggested that N-OH-APNH was autoxidized to nitrosophenylnorharman (NO-PNH). We speculated that NO-PNH was reduced by NADH. Cu(II) facilitated the redox cycle. In the presence of NADH and Cu(II), very low concentrations of N-OH-APNH could induce DNA damage via redox reactions. We conclude that oxidative DNA damage, in addition to DNA adduct formation, may play an important role in the expression of genotoxicity of APNH. PMID:11423346

  16. Plasma cathepsin D isoforms and their active metabolites increase after myocardial infarction and contribute to plasma renin activity.

    PubMed

    Naseem, R Haris; Hedegard, Wade; Henry, Timothy D; Lessard, Jennifer; Sutter, Kathryn; Katz, Stephen A

    2005-03-01

    Plasma renin activity (PRA) is often found to increase after myocardial infarction (MI). Elevated PRA may contribute to increased myocardial angiotensin II that is responsible for maladaptive remodeling of the myocardium after MI. We hypothesized that MI would also result in cardiac release of cathepsin D, a ubiquitous lysosomal enzyme with high renin sequence homology. Cathepsin D release from damaged myocardial tissue could contribute to angiotensin formation by acting as an enzymatic alternate to renin. We assessed circulating renin and cathepsin D from both control and MI patient plasma (7-20 hours after MI) using shallow gradient focusing that allowed for independent measurement of both enzymes. Cathepsin D was increased significantly in the plasma after MI (P < 0.001). Furthermore, circulating active cathepsin D metabolites were also significantly elevated after MI (P < 0.04), and contained the majority of cathepsin D activity in plasma. Spiking control plasma with cathepsin D resulted in a variable but significant (P = 0.005) increase in PRA using a clinical assay. We conclude that 7-20 hours after MI, plasma cathepsin D is significantly elevated and most of the active enzymatic activity is circulating as plasma metabolites. Circulating cathepsin D can falsely increase clinical PRA determinations, and may also provide an alternative angiotensin formation pathway after MI. PMID:15739123

  17. Symphonia globulifera, a widespread source of complex metabolites with potent biological activities.

    PubMed

    Fromentin, Yann; Cottet, Kevin; Kritsanida, Marina; Michel, Sylvie; Gaboriaud-Kolar, Nicolas; Lallemand, Marie-Christine

    2015-01-01

    Symphonia globulifera has been widely used in traditional medicine and has therefore been subjected to several phytochemical studies in the American and African continents. Interestingly, some disparities have been observed concerning its metabolic profile. Several phytochemical studies of S. globulifera have led to the identification of more than 40 compounds, including several polycyclic polyprenylated acylphloroglucinols. Biological evaluations have pointed out the promising biological activities of these secondary metabolites, mostly as antiparasitic or antimicrobial, confirming the traditional use of this plant. The purpose of this review is to describe the natural occurrence, botanical aspects, ethnomedicinal use, structure, and biogenesis, as well as biological activities of compounds isolated from this species according to their provenance. PMID:25590372

  18. Bioactive Metabolites from Chaetomium aureum: Structure Elucidation and Inhibition of the Hsp90 Machine Chaperoning Activity

    PubMed Central

    Kabbaj, Fatima Zahra; Lu, Su; Faouzi, My El Abbés; Meddah, Bouchra; Proksch, Peter; Cherrah, Yahya; Altenbach, Hans-Josef; Aly, Amal H.; Chadli, Ahmed; Debbab, Abdessamad

    2014-01-01

    Chemical investigation of the EtOAc extract of the fungus Chaetomium aureum, an endophyte of the Moroccan medicinal plant Thymelaea lythroides, afforded one new resorcinol derivative named chaetorcinol, together with five known metabolites. The structures of the isolated compounds were determined on the basis of one- and two-dimensional NMR spectroscopy and high-resolution mass spectrometry as well as by comparison with the literature. All compounds were tested for their activity towards the Hsp90 chaperoning machine in vitro using the progesterone receptor (PR) and rabbit reticulocyte lysate (RRL). Among the isolated compounds, only sclerotiorin efficiently inhibited the Hsp90 machine chaperoning activity. However, sclerotiorin showed no cytotoxic effect on breast cancer Hs578T, MDA-MB-231 and prostate cancer LNCaP cell lines. Interestingly, deacetylation of sclerotiorin increased its cytotoxicity toward the tested cell lines over a period of 48h. PMID:25482429

  19. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites.

    PubMed

    Brito Palma, Bernardo; Fisher, Charles W; Rueff, José; Kranendonk, Michel

    2016-05-16

    The formation of reactive metabolites through biotransformation is the suspected cause of many adverse drug reactions. Testing for the propensity of a drug to form reactive metabolites has increasingly become an integral part of lead-optimization strategy in drug discovery. DNA reactivity is one undesirable facet of a drug or its metabolites and can lead to increased risk of cancer and reproductive toxicity. Many drugs are metabolized by cytochromes P450 in the liver and other tissues, and these reactions can generate hard electrophiles. These hard electrophilic reactive metabolites may react with DNA and may be detected in standard in vitro genotoxicity assays; however, the majority of these assays fall short due to the use of animal-derived organ extracts that inadequately represent human metabolism. The current study describes the development of bacterial systems that efficiently detect DNA-damaging electrophilic reactive metabolites generated by human P450 biotransformation. These assays use a GFP reporter system that detects DNA damage through induction of the SOS response and a GFP reporter to control for cytotoxicity. Two human CYP1A2-competent prototypes presented here have appropriate characteristics for the detection of DNA-damaging reactive metabolites in a high-throughput manner. The advantages of this approach include a short assay time (120-180 min) with real-time measurement, sensitivity to small amounts of compound, and adaptability to a microplate format. These systems are suitable for high-throughput assays and can serve as prototypes for the development of future enhanced versions. PMID:27031942

  20. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  1. In-stream attenuation of neuro-active pharmaceuticals and their metabolites.

    PubMed

    Writer, Jeffrey H; Antweiler, Ronald C; Ferrer, Imma; Ryan, Joseph N; Thurman, E Michael

    2013-09-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments. PMID:23952127

  2. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio).

    PubMed

    Liu, Zhenzhen; Wang, Yueyi; Zhu, Zhihong; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei; Jin, Yuanxiang

    2016-04-01

    Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish. PMID:26803580

  3. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites.

    PubMed

    Masand, Meeta; Jose, Polpass Arul; Menghani, Ekta; Jebakumar, Solomon Robinson David

    2015-12-01

    Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds. PMID:26410426

  4. Current results on biological activities of lichen secondary metabolites: a review.

    PubMed

    Molnár, Katalin; Farkas, Edit

    2010-01-01

    Lichens are symbiotic organisms of fungi and algae or cyanobacteria. Lichen-forming fungi synthesize a great variety of secondary metabolites, many of which are unique. Developments in analytical techniques and experimental methods have resulted in the identification of about 1050 lichen substances (including those found in cultures). In addition to their role in lichen chemotaxonomy and systematics, lichen secondary compounds have several possible biological roles, including photoprotection against intense radiation, as well as allelochemical, antiviral, antitumor, antibacterial, antiherbivore, and antioxidant action. These compounds are also important factors in metal homeostasis and pollution tolerance of lichen thalli. Although our knowledge of the contribution of these extracellular products to the success of the lichen symbiosis has increased significantly in the last decades, their biotic and abiotic roles have not been entirely explored. PMID:20469633

  5. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations.

    PubMed

    Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan

    2016-06-01

    An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions. PMID:26873533

  6. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study

    PubMed Central

    Floegel, A; Wientzek, A; Bachlechner, U; Jacobs, S; Drogan, D; Prehn, C; Adamski, J; Krumsiek, J; Schulze, M B; Pischon, T; Boeing, H

    2014-01-01

    Objective: It is not yet resolved how lifestyle factors and intermediate phenotypes interrelate with metabolic pathways. We aimed to investigate the associations between diet, physical activity, cardiorespiratory fitness and obesity with serum metabolite networks in a population-based study. Methods: The present study included 2380 participants of a randomly drawn subcohort of the European Prospective Investigation into Cancer and Nutrition-Potsdam. Targeted metabolomics was used to measure 127 serum metabolites. Additional data were available including anthropometric measurements, dietary assessment including intake of whole-grain bread, coffee and cake and cookies by food frequency questionnaire, and objectively measured physical activity energy expenditure and cardiorespiratory fitness in a subsample of 100 participants. In a data-driven approach, Gaussian graphical modeling was used to draw metabolite networks and depict relevant associations between exposures and serum metabolites. In addition, the relationship of different exposure metabolite networks was estimated. Results: In the serum metabolite network, the different metabolite classes could be separated. There was a big group of phospholipids and acylcarnitines, a group of amino acids and C6-sugar. Amino acids were particularly positively associated with cardiorespiratory fitness and physical activity. C6-sugar and acylcarnitines were positively associated with obesity and inversely with intake of whole-grain bread. Phospholipids showed opposite associations with obesity and coffee intake. Metabolite networks of coffee intake and obesity were strongly inversely correlated (body mass index (BMI): r=−0.57 and waist circumference: r=−0.59). A strong positive correlation was observed between metabolite networks of BMI and waist circumference (r=0.99), as well as the metabolite networks of cake and cookie intake with cardiorespiratory fitness and intake of whole-grain bread (r=0.52 and r=0

  7. The antitumor activity study of ginsenosides and metabolites in lung cancer cell

    PubMed Central

    Xu, Feng-Yuan; Shang, Wen-Qing; Yu, Jia-Jun; Sun, Qian; Li, Ming-Qing; Sun, Jian-Song

    2016-01-01

    Ginseng and its components exert various biological effects, including antioxidant, anti-carcinogenic, anti-mutagenic, and antitumor activity. Ginsenosides are the main biological components of ginseng. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides. However, the difference between these compounds in anti-lung cancer is unclear. The present study aimed to evaluate the antitumor activity of PPD, PPT, Ginsenosides-Rg3 (G-Rg3) and Ginsenosides-Rh2 (G-Rh2) in lung cancer cell. After treatment with cisplatin, PPD, PPT, G-Rg3 or G-Rh2, the viability, apoptosis level and invasiveness of lung cell lines (A549 cell, a lung adenocarcinoma cell line and SK-MES-1 cell, a lung squamous cell line) in vitro were analyzed by Cell Counting Kit-8 (CCK8), Annexin V/PI apoptosis and Matrigel invasion assays, respectively. Here we found that all these compounds led to significant decreases of viability and invasiveness and an obvious increase of apoptosis of A549 and SK-MES-1 cells. Among these, the viability of SK-MES-1 cell treated with PPT was decreased to 66.8%, and this effect was closest to Cisplatin. G-Rg3 had the highest stimulatory effect on apoptosis, and PTT had the highest inhibitory effect on cell invasiveness in A549 and SK-MES-1 cells. These results indicate that both ginsenosides and two metabolites have antitumor activity on lung cancer cell in vitro. However, PPT is more powerful for inhibiting the viability and invasiveness of lung cancer cell, especially lung squamous cell. G-Rg3 has the best pro-apoptosis effects. This study provides a scientific basis for potential therapeutic strategies targeted to lung cancer by further structure modification. PMID:27186294

  8. Induction of CYP26A1 by Metabolites of Retinoic Acid: Evidence That CYP26A1 Is an Important Enzyme in the Elimination of Active Retinoids

    PubMed Central

    Topletz, Ariel R.; Tripathy, Sasmita; Foti, Robert S.; Shimshoni, Jakob A.; Nelson, Wendel L.

    2015-01-01

    All-trans-retinoic acid (atRA), the active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs). The primary hydroxylated metabolites formed from atRA by CYP26A1, and the subsequent metabolite 4-oxo-atRA, bind to RARs and potentially have biologic activity. Hence, CYP26A1, the main atRA hydroxylase, may function either to deplete bioactive retinoids or to form active metabolites. This study aimed to determine the role of CYP26A1 in modulating RAR activation via formation and elimination of active retinoids. After treatment of HepG2 cells with atRA, (4S)-OH-atRA, (4R)-OH-atRA, 4-oxo-atRA, and 18-OH-atRA, mRNAs of CYP26A1 and RARβ were increased 300- to 3000-fold, with 4-oxo-atRA and atRA being the most potent inducers. However, >60% of the 4-OH-atRA enantiomers were converted to 4-oxo-atRA in the first 12 hours of treatment, suggesting that the activity of the 4-OH-atRA was due to 4-oxo-atRA. In human hepatocytes, atRA, 4-OH-atRA, and 4-oxo-atRA induced CYP26A1 and 4-oxo-atRA formation was observed from 4-OH-atRA. In HepG2 cells, 4-oxo-atRA formation was observed even in the absence of CYP26A1 activity and this formation was not inhibited by ketoconazole. In human liver microsomes, 4-oxo-atRA formation was supported by NAD+, suggesting that 4-oxo-atRA formation is mediated by a microsomal alcohol dehydrogenase. Although 4-oxo-atRA was not formed by CYP26A1, it was depleted by CYP26A1 (Km = 63 nM and intrinsic clearance = 90 μl/min per pmol). Similarly, CYP26A1 depleted 18-OH-atRA and the 4-OH-atRA enantiomers. These data support the role of CYP26A1 to clear bioactive retinoids, and suggest that the enzyme forming active 4-oxo-atRA may be important in modulating retinoid action. PMID:25492813

  9. The leukotriene B4 paradox: neutrophils can, but will not, respond to ligand-receptor interactions by forming leukotriene B4 or its omega-metabolites.

    PubMed Central

    Haines, K A; Giedd, K N; Rich, A M; Korchak, H M; Weissmann, G

    1987-01-01

    Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate. PMID:3032161

  10. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium.

    PubMed

    Min-Oo, Gundula; Ayi, Kodjo; Bongfen, Silayuv E; Tam, Mifong; Radovanovic, Irena; Gauthier, Susan; Santiago, Helton; Rothfuchs, Antonio Gigliotti; Roffê, Ester; Sher, Alan; Mullick, Alaka; Fortin, Anny; Stevenson, Mary M; Kain, Kevin C; Gros, Philippe

    2010-08-01

    In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection. PMID:20219464

  11. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium

    PubMed Central

    Min-Oo, Gundula; Ayi, Kodjo; Bongfen, Silayuv E.; Tam, Mifong; Radovanovic, Irena; Gauthier, Susan; Santiago, Helton; Rothfuchs, Antonio Gigliotti; Roffê, Ester; Sher, Alan; Mullick, Alaka; Fortin, Anny; Stevenson, Mary M.; Kain, Kevin C.; Gros, Philippe

    2016-01-01

    In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection. PMID:20219464

  12. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production.

    PubMed

    Zheng, Weifa; Miao, Kangjie; Liu, Yubing; Zhao, Yanxia; Zhang, Meimei; Pan, Shenyuan; Dai, Yucheng

    2010-07-01

    Inonotus obliquus (Fr.) Pilat is a white rot fungus belonging to the family Hymenochaetaceae in the Basidiomycota. In nature, this fungus rarely forms a fruiting body but usually an irregular shape of sclerotial conk called 'Chaga'. Characteristically, I. obliquus produces massive melanins released to the surface of Chaga. As early as in the sixteenth century, Chaga was used as an effective folk medicine in Russia and Northern Europe to treat several human malicious tumors and other diseases in the absence of any unacceptable toxic side effects. Chemical investigations show that I. obliquus produces a diverse range of secondary metabolites including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are the active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Geographically, however, this fungus is restricted to very cold habitats and grows very slowly, suggesting that Chaga is not a reliable source of these bioactive compounds. Attempts for culturing this fungus axenically all resulted in a reduced production of bioactive metabolites. This review examines the current progress in the discovery of chemical diversity of Chaga and their biological activities and the strategies to modulate the expression of desired pathways to diversify and up-regulate the production of bioactive metabolites by the fungus grown in submerged cultures for possible drug discovery. PMID:20532760

  13. Evaluation of in vitro antiprotozoal activity of Ajuga laxmannii and its secondary metabolites.

    PubMed

    Atay, Irem; Kirmizibekmez, Hasan; Kaiser, Marcel; Akaydin, Galip; Yesilada, Erdem; Tasdemir, Deniz

    2016-09-01

    Context Some Ajuga L. (Lamiaceae) species are traditionally used for the treatment of malaria, as well as fever, which is a common symptom of many parasitic diseases. Objective In the continuation of our studies on the identification of antiprotozoal secondary metabolites of Turkish Lamiaceae species, we have investigated the aerial parts of Ajuga laxmannii. Materials and methods The aerial parts of A. laxmannii were extracted with MeOH. The H2O subextract was subjected to polyamide, C18-MPLC and SiO2 CCs to yield eight metabolites. The structures of the isolates were elucidated by NMR spectroscopy and MS analyses. The extract, subextracts as well as the isolates were tested for their in vitro antiprotozoal activities against Plasmodium falciparum, Trypanasoma brucei rhodesiense, T. cruzi and Leishmania donovani at concentrations of 90-0.123 μg/mL. Results Two iridoid glycosides harpagide (1) and 8-O-acetylharpagide (2), three o-coumaric acid derivatives cis-melilotoside (3), trans-melilotoside (4) and dihydromelilotoside (5), two phenylethanoid glycosides verbascoside (6) and galactosylmartynoside (7) and a flavone-C-glycoside, isoorientin (8) were isolated. Many compounds showed moderate to good antiparasitic activity, with isoorientin (8) displaying the most significant antimalarial potential (an IC50 value of 9.7 μg/mL). Discussion and conclusion This is the first report on the antiprotozoal evaluation of A. laxmannii extracts and isolates. Furthermore, isoorientin and dihydromelilotoside are being reported for the first time from the genus Ajuga. PMID:26734766

  14. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    PubMed Central

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-01-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography–mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  15. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.

    PubMed

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-07-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  16. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR.

    PubMed

    Kurashov, Evgeny A; Fedorova, Elena V; Krylova, Julia V; Mitrukova, Galina G

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases. PMID:27200207

  17. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR

    PubMed Central

    Fedorova, Elena V.; Krylova, Julia V.

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases. PMID:27200207

  18. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin

    PubMed Central

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944

  19. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin.

    PubMed

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944

  20. Multiple active forms of thrombin. IV. Relative activities of meizothrombins

    SciTech Connect

    Doyle, M.F.; Mann, K.G. )

    1990-06-25

    The prothrombin activation intermediates meizothrombin and meizothrombin(desF1) (meizothrombin that has been autoproteolyzed to remove fragment 1) have been obtained in a relatively pure, active form with minimal autolysis, making them suitable for enzymatic characterization. When compared at equimolar concentrations, alpha-thrombin, fragment 1.2+ alpha-thrombin, meizothrombin(desF1), and meizothrombin have approximately 100, 100, 10, and 1% activity, respectively, toward the macromolecular substrates factor V, fibrinogen, and platelets. The difference in activity of these four enzymes cannot be attributed to alterations in the catalytic triad, as all four enzymes have nearly identical catalytic efficiency toward the chromogenic substrate S2238. Further, the ability of meizothrombin and meizothrombin(desF1) to activate protein C was 75% of the activity exhibited by alpha-thrombin or fragment 1.2+ alpha-thrombin. All four enzymes bind to thrombomodulin, as judged by the enhanced rate of protein C activation upon preincubation of the enzymes with thrombomodulin. The extent of rate enhancement varied, with meizothrombin/thrombomodulin exhibiting only 50% of the alpha-thrombin/thrombomodulin rate. This difference in rate is not due to a decreased affinity of the meizothrombin for thrombomodulin since the apparent dissociation constants for the alpha-thrombin-thrombomodulin complex and the meizothrombin-thrombomodulin complex are virtually identical. The difference in the observed rate is due in part to the higher Km for protein C exhibited by the meizothrombin-thrombomodulin complex. Incubation of the thrombomodulin-enzyme complex with phospholipid vesicles caused an increase in the protein C activation rates. The kinetic constants for protein C activation in the presence of phospholipid are virtually identical for these enzyme-thrombomodulin complexes.

  1. A Practical Strategy to Discover New Antitumor Compounds by Activating Silent Metabolite Production in Fungi by Diethyl Sulphate Mutagenesis

    PubMed Central

    Fang, Shi-Ming; Wu, Chang-Jing; Li, Chang-Wei; Cui, Cheng-Bin

    2014-01-01

    Many fungal biosynthetic pathways are silent in standard culture conditions, and activation of the silent pathways may enable access to new metabolites with antitumor activities. The aim of the present study was to develop a practical strategy for microbial chemists to access silent metabolites in fungi. We demonstrated this strategy using a marine-derived fungus Penicillium purpurogenum G59 and a modified diethyl sulphate mutagenesis procedure. Using this strategy, we discovered four new antitumor compounds named penicimutanolone (1), penicimutanin A (2), penicimutanin B (3), and penicimutatin (4). Structures of the new compounds were elucidated by spectroscopic methods, especially extensive 2D NMR analysis. Antitumor activities were assayed by the MTT method using human cancer cell lines. Bioassays and HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses were used to estimate the activated secondary metabolite production. Compounds 2 and 3 had novel structures, and 1 was a new compound belonging to a class of very rare natural products from which only four members are so far known. Compounds 1–3 inhibited several human cancer cell lines with IC50 values lower than 20 μM, and 4 inhibited the cell lines to some extent. These results demonstrated the effectiveness of this strategy to discover new compounds by activating silent fungal metabolic pathways. These discoveries provide rationale for the increased use of chemical mutagenesis strategies in silent fungal metabolite studies. PMID:24681631

  2. Integrated semi-physiological pharmacokinetic model for both sunitinib and its active metabolite SU12662

    PubMed Central

    Yu, Huixin; Steeghs, Neeltje; Kloth, Jacqueline S L; de Wit, Djoeke; van Hasselt, J G Coen; van Erp, Nielka P; Beijnen, Jos H; Schellens, Jan H M; Mathijssen, Ron H J; Huitema, Alwin D R

    2015-01-01

    Aims Previously published pharmacokinetic (PK) models for sunitinib and its active metabolite SU12662 were based on a limited dataset or lacked important elements such as correlations between sunitinib and its metabolite. The current study aimed to develop an improved PK model that circumvented these limitations and to prove the utility of the PK model in treatment optimization in clinical practice. Methods One thousand two hundred and five plasma samples from 70 cancer patients were collected from three PK studies with sunitinib and SU12662. A semi-physiological PK model for sunitinib and SU12662 was developed incorporating pre-systemic metabolism using non-linear mixed effects modelling (nonmem). Allometric scaling based on body weight was applied. The final model was used for simulation of the PK of different treatment regimens. Results Sunitinib and SU12662 PK were best described by a one and two compartment model, respectively. Introduction of pre-systemic formation of SU12662 strongly improved model fit, compared with solely systemic metabolism. The clearance of sunitinib and SU12662 was estimated at 35.7 (relative standard error (RSE) 5.7%) l h−1 and 17.1 (RSE 7.4%) l h−1, respectively for 70 kg patients. Correlation coefficients were estimated between inter-individual variability of both clearances, both volumes of distribution and between clearance and volume of distribution of SU12662 as 0.53, 0.48 and 0.45, respectively. Simulation of the PK model predicted correctly the ratio of patients who did not reach proposed PK targets for efficacy. Conclusions A semi-physiological PK model for sunitinib and SU12662 in cancer patients was presented including pre-systemic metabolism. The model was superior to previous PK models in many aspects. PMID:25393890

  3. Metabolism of 20(S)-Ginsenoside Rg₂ by Rat Liver Microsomes: Bioactivation to SIRT1-Activating Metabolites.

    PubMed

    Ma, Li-Yuan; Zhou, Qi-Le; Yang, Xin-Bao; Wang, Hong-Ping; Yang, Xiu-Wei

    2016-01-01

    20(S)-Ginsenoside Rg₂ (1) has recently become a hot research topic due to its potent bioactivities and abundance in natural sources such as the roots, rhizomes and stems-leaves of Panax ginseng. However, due to the lack of studies on systematic metabolic profiles, the prospects for new drug development of 1 are still difficult to predict, which has become a huge obstacle for its safe clinical use. To solve this problem, investigation of the metabolic profiles of 1 in rat liver microsomes was first carried out. To identify metabolites, a strategy of combined analyses based on prepared metabolites by column chromatography and ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was performed. As a result, four metabolites M1-M4, including a rare new compound named ginsenotransmetin A (M1), were isolated and the structures were confirmed by spectroscopic analyses. A series of metabolites of 1, MA-MG, were also tentatively identified by UPLC-Q-TOF/MS in rat liver microsomal incubate of 1. Partial metabolic pathways were proposed. Among them, 1 and its metabolites M1, M3 and M4 were discovered for the first time to be activators of SIRT1. The SIRT1 activating effects of the metabolite M1 was comparable to those of 1, while the most interesting SIRT1 activatory effects of M3 and M4 were higher than that of 1 and comparable with that of resveratrol, a positive SIRT1 activator. These results indicate that microsome-dependent metabolism may represent a bioactivation pathway for 1. This study is the first to report the metabolic profiles of 1 in vitro, and the results provide an experimental foundation to better understand the in vivo metabolic fate of 1. PMID:27294899

  4. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic

    PubMed Central

    Shentu, Xuping; Zhan, Xiaohuan; Ma, Zheng; Yu, Xiaoping; Zhang, Chuanxi

    2014-01-01

    The endophytic fungus strain 0248, isolated from garlic, was identified as Trichoderma brevicompactum based on morphological characteristics and the nucleotide sequences of ITS1-5.8S- ITS2 and tef1. The bioactive compound T2 was isolated from the culture extracts of this fungus by bioactivity-guided fractionation and identified as 4β-acetoxy-12,13- epoxy-Δ9-trichothecene (trichodermin) by spectral analysis and mass spectrometry. Trichodermin has a marked inhibitory activity on Rhizoctonia solani, with an EC50 of 0.25 μgmL−1. Strong inhibition by trichodermin was also found for Botrytis cinerea, with an EC50 of 2.02 μgmL−1. However, a relatively poor inhibitory effect was observed for trichodermin against Colletotrichum lindemuthianum (EC50 = 25.60 μgmL−1). Compared with the positive control Carbendazim, trichodermin showed a strong antifungal activity on the above phytopathogens. There is little known about endophytes from garlic. This paper studied in detail the identification of endophytic T. brevicompactum from garlic and the characterization of its active metabolite trichodermin. PMID:24948941

  5. Cytotoxic, Antiangiogenic and Antitelomerase Activity of Glucosyl- and Acyl- Resveratrol Prodrugs and Resveratrol Sulfate Metabolites.

    PubMed

    Falomir, Eva; Lucas, Ricardo; Peñalver, Pablo; Martí-Centelles, Rosa; Dupont, Alexia; Zafra-Gómez, Alberto; Carda, Miguel; Morales, Juan C

    2016-07-15

    Resveratrol (RES) is a natural polyphenol with relevant and varied biological activity. However, its low bioavailability and rapid metabolism to its glucuronate and sulfate conjugates has opened a debate on the mechanisms underlying its bioactivity. RES prodrugs are being developed to overcome these problems. We have synthesized a series of RES prodrugs and RES sulfate metabolites (RES-S) and evaluated their biological activities. RES glucosylated prodrugs (RES-Glc) were more cytotoxic in HT-29 and MCF-7 cells than RES itself whereas RES-S showed similar or higher cytotoxicity than RES. VEGF production was decreased by RES-Glc, and RES-disulfate (RES-diS) diminished it even more than RES. Finally, RES-Glc and RES-diS inhibited hTERT gene expression to a higher extent than RES. In conclusion, resveratrol prodrugs are promising candidates as anticancer drugs. In addition, RES-S showed distinct biological activity, thus indicating they are not simply RES reservoirs. PMID:27147200

  6. Effect of Competition on the Production and Activity of Secondary Metabolites in Aspergillus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary metabolites are of intense interest to humans due to their pharmaceutical and/or toxic properties. Aspergillus species secrete these metabolites by themselves and in the presence of other fungal species. Here, we have performed co-cultivation competition assays among different Aspergillu...

  7. Dietary Epicatechin Is Available to Breastfed Infants through Human Breast Milk in the Form of Host and Microbial Metabolites.

    PubMed

    Khymenets, Olha; Rabassa, Montserrat; Rodríguez-Palmero, María; Rivero-Urgell, Montserrat; Urpi-Sarda, Mireia; Tulipani, Sara; Brandi, Pilar; Campoy, Cristina; Santos-Buelga, Celestino; Andres-Lacueva, Cristina

    2016-07-01

    Polyphenols play an important role in human health. To address their accessibility to a breastfed infant, we planned to evaluate whether breast milk (BM) (colostrum, transitional, and mature) epicatechin metabolites could be related to the dietary habits of mothers. The polyphenol consumption of breastfeeding mothers was estimated using a food frequency questionnaire and 24 h recalls. Solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) was applied for direct epicatechin metabolite analysis. Their bioavailability in BM as a result of dietary ingestion was confirmed in a preliminary experiment with a single dose of dark chocolate. Several host and microbial phase II metabolites of epicatechin were detected in BM among free-living lactating mothers. Interestingly, a modest correlation between dihydroxyvalerolactone sulfate and the intake of cocoa products was observed. Although a very low percentage of dietary polyphenols is excreted in BM, they are definitely in the diet of breastfed infants. Therefore, evaluation of their role in infant health could be further promoted. PMID:27285570

  8. Increased active metabolite formation explains the greater platelet inhibition with prasugrel compared to high-dose clopidogrel.

    PubMed

    Payne, Christopher D; Li, Ying Grace; Small, David S; Ernest, C Steven; Farid, Nagy A; Jakubowski, Joseph A; Brandt, John T; Salazar, Daniel E; Winters, Kenneth J

    2007-11-01

    Prasugrel pharmacodynamics and pharmacokinetics after a 60-mg loading dose (LD) and daily 10-mg maintenance doses (MD) were compared in a 3-way crossover study to clopidogrel 600-mg/75-mg and 300-mg/75-mg LD/MD in 41 healthy, aspirin-free subjects. Each LD was followed by 7 days of daily MD and a 14-day washout period. Inhibition of platelet aggregation (IPA) was assessed by turbidometric aggregometry (20 and 5 microM ADP). Prasugrel 60-mg achieved higher mean IPA (54%) 30 minutes post-LD than clopidogrel 300-mg (3%) or 600-mg (6%) (P < 0.001) and greater IPA by 1 hour (82%) and 2 hours (91%) than the 6-hour IPA for clopidogrel 300-mg (51%) or 600-mg (69%) (P < 0.01). During MD, IPA for prasugrel 10-mg (78%) exceeded that of clopidogrel (300-mg/75-mg, 56%; 600-mg/75-mg, 52%; P < 0.001). Active metabolite area under the concentration-time curve (AUC0-tlast) after prasugrel 60-mg (594 ng.hr/mL) was 2.2 times that after clopidogrel 600-mg. Prasugrel active metabolite AUC0-tlast was consistent with dose-proportionality from 10-mg to 60-mg, while clopidogrel active metabolite AUC0-tlast exhibited saturable absorption and/or metabolism. In conclusion, greater exposure to prasugrel's active metabolite results in faster onset, higher levels, and less variability of platelet inhibition compared with high-dose clopidogrel in healthy subjects. PMID:18030066

  9. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels.

    PubMed

    Chae, Yun Ju; Lee, Keon Jin; Lee, Hong Joon; Sung, Ki-Wug; Choi, Jin-Sung; Lee, Eun Hui; Hahn, Sang June

    2015-04-01

    The effects of tamoxifen, and its active metabolite endoxifen (4-hydroxy-N-desmethyl-tamoxifen), on hERG currents stably expressed in HEK cells were investigated using the whole-cell patch-clamp technique and an immunoblot assay. Tamoxifen and endoxifen inhibited hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 1.2 and 1.6μM, respectively. The steady-state activation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of endoxifen. The voltage-dependent inhibition of hERG currents by endoxifen increased steeply in the voltage range of channel activation. The inhibition by endoxifen displayed a shallow voltage dependence (δ=0.18) in the full activation voltage range. A fast application of endoxifen induced a reversible block of hERG tail currents during repolarization in a concentration-dependent manner, which suggested an interaction with the open state of the channel. Endoxifen also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an interaction with the activated (open and/or inactivated) states of the channels. Tamoxifen and endoxifen inhibited the hERG channel protein trafficking to the plasma membrane in a concentration-dependent manner with endoxifen being more potent than tamoxifen. These results indicated that tamoxifen and endoxifen inhibited the hERG current by direct channel blockage and by the disruption of channel trafficking to the plasma membrane in a concentration-dependent manner. A therapeutic concentration of endoxifen inhibited the hERG current by preferentially interacting with the activated (open and/or inactivated) states of the channel. PMID:25680947

  10. Lack of metabolic activation and predominant formation of an excreted metabolite of nontoxic platynecine-type pyrrolizidine alkaloids.

    PubMed

    Ruan, Jianqing; Liao, Cangsong; Ye, Yang; Lin, Ge

    2014-01-21

    Pyrrolizidine alkaloid (PA) poisoning is well-known because of the intake of PA-containing plant-derived natural products and PA-contaminated foodstuffs. Based on different structures of the necine bases, PAs are classified into three types: retronecine, otonecine, and platynecine type. The former two type PAs possessing an unsaturated necine base with a 1,2-double bond are hepatotoxic due to the P450-mediated metabolic activation to generate reactive pyrrolic ester, which interacts with cellular macromolecules leading to toxicity. With a saturated necine base, platynecine-type PAs are reported to be nontoxic and their nontoxicity was hypothesized to be due to the absence of metabolic activation; however, the metabolic pathway responsible for their nontoxic nature is largely unknown. In the present study, to prove the absence of metabolic activation in nontoxic platynecine-type PAs, hepatic metabolism of platyphylline (PLA), a representative platynecine-type PA, was investigated and directly compared with the representatives of two toxic types of PAs in parallel. By determining the pyrrolic ester-derived glutathione conjugate, our results confirmed that the major metabolic pathway of PLA did not lead to formation of the reactive pyrrolic ester. More interestingly, having a metabolic rate similar to that of toxic PAs, PLA also underwent oxidative metabolisms mediated by P450s, especially P450 3A4, the same enzyme that catalyzes metabolic activation of two toxic types of PAs. However, the predominant oxidative dehydrogenation pathway of PLA formed a novel metabolite, dehydroplatyphylline carboxylic acid, which was water-soluble, readily excreted, and could not interact with cellular macromolecules. In conclusion, our study confirmed that the saturated necine bases determine the absence of metabolic activation and thus govern the metabolic pathway responsible for the nontoxic nature of platynecine-type PAs. PMID:24308637

  11. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites

    PubMed Central

    Chen, Xiao-Jia; Zhang, Xiao-Jing; Shui, Yan-Mei; Wan, Jian-Bo

    2016-01-01

    Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer. PMID:27446225

  12. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites.

    PubMed

    Chen, Xiao-Jia; Zhang, Xiao-Jing; Shui, Yan-Mei; Wan, Jian-Bo; Gao, Jian-Li

    2016-01-01

    Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer. PMID:27446225

  13. Functional imaging of focal brain activation in conscious rats: impact of [(14)C]glucose metabolite spreading and release.

    PubMed

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2007-11-15

    Labeled glucose and its analogs are widely used in imaging and metabolic studies of brain function, astrocyte-neuron interactions, and neurotransmission. Metabolite shuttling among astrocytes and neurons is essential for cell-cell transfer of neurotransmitter precursors and supply and elimination of energy metabolites, but dispersion and release of labeled compounds from activated tissue would reduce signal registration in metabolic labeling studies, causing underestimation of focal functional activation. Processes and pathways involved in metabolite trafficking and release were therefore assessed in the auditory pathway of conscious rats. Unilateral monotonic stimulation increased glucose utilization (CMR(glc)) in tonotopic bands in the activated inferior colliculus by 35-85% compared with contralateral tissue when assayed with [(14)C]deoxyglucose (DG), whereas only 20-30% increases were registered with [1- or 6-(14)C]glucose. Tonotopic bands were not evident with [1-(14)C]glucose unless assayed during halothane anesthesia or pretreatment with probenecid but were detectable with [6-(14)C]glucose. Extracellular lactate levels transiently doubled during acoustic stimulation, so metabolite spreading was assessed by microinfusion of [(14)C]tracers into the inferior colliculus. The volume of tissue labeled by [1-(14)C]glucose exceeded that by [(14)C]DG by 3.2- and 1.4-fold during rest and acoustic activation, respectively. During activation, the tissue volume labeled by U-(14)C-labeled glutamine and lactate rose, whereas that by glucose fell 50% and that by DG was unchanged. Dispersion of [1-(14)C]glucose and its metabolites during rest was also reduced 50% by preinfusion of gap junction blockers. To summarize, during brain activation focal CMR(glc) is underestimated with labeled glucose because of decarboxylation reactions, spreading within tissue and via the astrocyte syncytium, and release from activated tissue. These findings help explain the fall in CMR(O2)/CMR

  14. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  15. Synthesis of new optically active propargylic fluorides and application to the enantioselective synthesis of monofluorinated analogues of fatty acid metabolites.

    PubMed

    Prakesch, M; Grée, D; Grée, R

    2001-05-01

    A new approach to obtain optically active unsaturated or polyunsaturated systems with a single fluorine atom in an allylic or propargylic position is reported. Central to this strategy is the high regio- and stereocontrol observed during the fluorination of propargylic alcohols allowing a short and efficient synthesis of 1. Further, simple functional group transformations gave the enals 2 and 3. These three key intermediates were used for the preparation of optically active monofluorinated analogues of fatty acid metabolites. PMID:11325281

  16. A fish-feeding laboratory bioassay to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms.

    PubMed

    Marty, Micah J; Pawlik, Joseph R

    2015-01-01

    Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology. PMID:25650625

  17. The ex vivo antiplatelet activation potential of fruit phenolic metabolite hippuric acid.

    PubMed

    Santhakumar, Abishek Bommannan; Stanley, Roger; Singh, Indu

    2015-08-01

    Polyphenol-rich fruit and vegetable intake has been associated with reduction in platelet hyperactivity, a significant contributor to thrombus formation. This study was undertaken to investigate the possible role of hippuric acid, a predominant metabolite of plant cyclic polyols, phenolic acids and polyphenols, in reduction of platelet activation-related thrombogenesis. Fasting blood samples were collected from 13 healthy subjects to analyse the effect of varying concentrations of hippuric acid (100 μM, 200 μM, 500 μM, 1 mM and 2 mM) on activation-dependant platelet surface-marker expression. Procaspase activating compound-1 (PAC-1) and P-selectin/CD62P monoclonal antibodies were used to evaluate platelet activation-related conformational changes and α-granule release respectively using flow cytometry. Platelets were stimulated ex vivo via the P2Y1/P2Y12- adenosine diphosphate (ADP) pathway of platelet activation. Hippuric acid at a concentration of 1 mM and 2 mM significantly reduced P-selectin/CD62P expression (p = 0.03 and p < 0.001 respectively) induced by ADP. Hippuric acid at 2 mM concentration also inhibited PAC-1 activation-dependant antibody expression (p = 0.03). High ex vivo concentrations of hippuric acid can therefore significantly reduce P-selectin and PAC-1 expression thus reducing platelet activation and clotting potential. However, although up to 11 mM of hippuric acid can be excreted in the urine per day following consumption of fruit, hippuric acid is actively excreted with a recorded Cmax for hippuric acid in human plasma at 250-300 μM. This is lower than the blood concentration of 1-2 mM shown to be bioactive in this research. The contribution of hippuric acid to the protective effects of fruit and vegetable intake against vascular disorders by the pathways measured is therefore low but could be synergistic with lowered doses of antiplatelet drugs and help reduce risk of thrombosis in current antiplatelet drug sensitive populations. PMID

  18. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    SciTech Connect

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  19. 76 FR 42129 - Agency Information Collection Activities: Case Submission Form, Case Assistance Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... FY2010. We are requesting a two year approval for the form anticipating Government Paperwork Elimination... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: Case Submission Form, Case Assistance Form (Form...

  20. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    NASA Astrophysics Data System (ADS)

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  1. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    PubMed Central

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-01-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions. PMID:27053227

  2. Molecular structure of antihypertensive drug perindopril, its active metabolite perindoprilat and impurity F

    NASA Astrophysics Data System (ADS)

    Remko, M.; Bojarska, J.; Ježko, P.; Maniukiewicz, W.; Olczak, A.

    2013-03-01

    The molecular structure of the antihypertensive drug perindopril (2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-ethoxy-1-oxopentan-2-yl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2 carboxylic acid), its active metabolite perindoprilat ((2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-carboxybutyl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2-carboxylic acid), and impurity F (ethyl (2S)-2-((3S,5aS,9aS,10aS)-3-methyl-1,4-dioxodecahydropyrazino[1,2-a]indol-2(1H)-yl) pentanoate) has been investigated using B3LYP/6-31g(d) and B3LYP/6-311+g(d,p) model chemistry. It has been found that solid state conformations of perindoprilat occur close to, but not actually at minima on the computed gas-phase potential energy surfaces. Both, neutral and zwitterionic structures of perindopril and perindoprilat have been investigated. Relative stability of individual ionized species of this drug has been determined. Water has a remarkable effect on the geometry of the perindopril species studied.

  3. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling.

    PubMed

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-01-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions. PMID:27053227

  4. Cytotoxicity and characterization of an active metabolite of benzamide riboside, a novel inhibitor of IMP dehydrogenase.

    PubMed

    Gharehbaghi, K; Paull, K D; Kelley, J A; Barchi, J J; Marquez, V E; Cooney, D A; Monks, A; Scudiero, D; Krohn, K; Jayaram, H N

    1994-03-15

    Benzamide riboside exhibits significant cytotoxicity against a variety of human tumor cells in culture. On the basis of metabolic studies, the primary target of this drug's action appears to be IMP dehydrogenase (IMPDH). Incubation of human myelogenous leukemia K562 cells with an IC50 concentration of benzamide riboside resulted in an expansion of IMP pools (5.9-fold), with a parallel reduction in the concentration of GMP (90%), GDP (63%), GTP (55%) and dGTP (40%). On kinetic grounds, it was deduced that benzamide riboside (whose Ki versus IMPDH is 6.4 mM, while that of its 5'-monophosphate is 3.9 mM) or its 5'-monophosphate were unlikely to be responsible for inhibition of this target enzyme, IMPDH, since only micromolar concentrations of benzamide riboside were needed to exert potent inhibition of tumor-cell growth. Studies on the metabolism of this C-nucleoside have revealed the presence of a new peak eluting in the nucleoside diphosphate area on HPLC. Treatment of this peak with venom phosphodiesterase degraded it and concurrently nullified its inhibitory activity versus IMPDH; alkaline phosphatase, on the other hand, totally failed to digest the anabolite. These results suggest that the metabolite in question is the phosphodiester, benzamide adenine dinucleotide (BAD). Evidence that the inhibitor was an analog of NAD, wherein the nicotinamide moiety has been replaced by benzamide, was provided by both NMR and mass spectrometric analysis and confirmed by enzymatic synthesis. Further insight into the nature of the active principle was obtained from kinetic studies, which established that BAD competitively inhibited NAD utilization by partially purified IMPDH from K562 cells with a Ki of 0.118 microM. In concert, these studies establish that benzamide riboside exhibits potent antiproliferative activity by inhibiting IMPDH through BAD. PMID:7907081

  5. Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-01-01

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955

  6. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri.

    PubMed

    Liang, Wan-Ling; Le, Xiu; Li, Hou-Jin; Yang, Xiang-Ling; Chen, Jun-Xiong; Xu, Jun; Liu, Huan-Liang; Wang, Lai-You; Wang, Kun-Teng; Hu, Kun-Chao; Yang, De-Po; Lan, Wen-Jian

    2014-11-01

    The production of fungal metabolites can be remarkably influenced by various cultivation parameters. To explore the biosynthetic potentials of the marine fungus, Neosartorya pseudofischeri, which was isolated from the inner tissue of starfish Acanthaster planci, glycerol-peptone-yeast extract (GlyPY) and glucose-peptone-yeast extract (GluPY) media were used to culture this fungus. When cultured in GlyPY medium, this fungus produced two novel diketopiperazines, neosartins A and B (1 and 2), together with six biogenetically-related known diketopiperazines,1,2,3,4-tetrahydro-2, 3-dimethyl-1,4-dioxopyrazino[1,2-a]indole (3), 1,2,3,4-tetrahydro-2-methyl-3-methylen e-1,4-dioxopyrazino[1,2-a]indole (4), 1,2,3,4-tetrahydro-2-methyl-1,3,4-trioxopyrazino[1,2-a] indole (5), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio)gliotoxin (11), didehydrobisdethiobis(methylthio)gliotoxin (12) and N-methyl-1H-indole-2-carboxamide (6). However, a novel tetracyclic-fused alkaloid, neosartin C (14), a meroterpenoid, pyripyropene A (15), gliotoxin (7) and five known gliotoxin analogues, acetylgliotoxin (8), reduced gliotoxin (9), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio) gliotoxin (11) and bis-N-norgliovictin (13), were obtained when grown in glucose-containing medium (GluPY medium). This is the first report of compounds 3, 4, 6, 9, 10 and 12 as naturally occurring. Their structures were determined mainly by MS, 1D and 2D NMR data. The possible biosynthetic pathways of gliotoxin-related analogues and neosartin C were proposed. The antibacterial activity of compounds 2-14 and the cytotoxic activity of compounds 4, 5 and 7-13 were evaluated. Their structure-activity relationships are also preliminarily discussed. PMID:25421322

  7. Exploring the Chemodiversity and Biological Activities of the Secondary Metabolites from the Marine Fungus Neosartorya pseudofischeri

    PubMed Central

    Liang, Wan-Ling; Le, Xiu; Li, Hou-Jin; Yang, Xiang-Ling; Chen, Jun-Xiong; Xu, Jun; Liu, Huan-Liang; Wang, Lai-You; Wang, Kun-Teng; Hu, Kun-Chao; Yang, De-Po; Lan, Wen-Jian

    2014-01-01

    The production of fungal metabolites can be remarkably influenced by various cultivation parameters. To explore the biosynthetic potentials of the marine fungus, Neosartorya pseudofischeri, which was isolated from the inner tissue of starfish Acanthaster planci, glycerol-peptone-yeast extract (GlyPY) and glucose-peptone-yeast extract (GluPY) media were used to culture this fungus. When cultured in GlyPY medium, this fungus produced two novel diketopiperazines, neosartins A and B (1 and 2), together with six biogenetically-related known diketopiperazines,1,2,3,4-tetrahydro-2,3-dimethyl-1,4-dioxopyrazino[1,2-a]indole (3), 1,2,3,4-tetrahydro-2-methyl-3-methylene-1,4-dioxopyrazino[1,2-a]indole (4), 1,2,3,4-tetrahydro-2-methyl-1,3,4-trioxopyrazino[1,2-a] indole (5), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio)gliotoxin (11), didehydrobisdethiobis(methylthio)gliotoxin (12) and N-methyl-1H-indole-2-carboxamide (6). However, a novel tetracyclic-fused alkaloid, neosartin C (14), a meroterpenoid, pyripyropene A (15), gliotoxin (7) and five known gliotoxin analogues, acetylgliotoxin (8), reduced gliotoxin (9), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio) gliotoxin (11) and bis-N-norgliovictin (13), were obtained when grown in glucose-containing medium (GluPY medium). This is the first report of compounds 3, 4, 6, 9, 10 and 12 as naturally occurring. Their structures were determined mainly by MS, 1D and 2D NMR data. The possible biosynthetic pathways of gliotoxin-related analogues and neosartin C were proposed. The antibacterial activity of compounds 2–14 and the cytotoxic activity of compounds 4, 5 and 7–13 were evaluated. Their structure-activity relationships are also preliminarily discussed. PMID:25421322

  8. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  9. Electrochemiluminescent Arrays for Cytochrome P450-Activated Genotoxicity Screening. DNA Damage from Benzo[a]pyrene Metabolites

    PubMed Central

    Hvastkovs, Eli G.; So, Minjeong; Krishnan, Sadagopan; Bajrami, Besnik; Tarun, Maricar; Jansson, Ingela; Schenkman, John B.; Rusling, James F.

    2007-01-01

    Arrays suitable for genotoxicity screening are reported that generate metabolites from cytochrome P450 enzymes (CYPs) in thin-film spots. Array spots containing DNA, various human cyt P450s, and electrochemiluminescence (ECL) generating metallopolymer [Ru(bpy)2PVP10]2+ were exposed to H2O2 to activate the enzymes. ECL from all spots was visualized simultaneously using a CCD camera. Using benzo[a]pyrene as a test substrate, enzyme activity for producing DNA damage in the arrays was found in the order CYP1B1 > CYP1A2 > CYP1A1 > CYP2E1 > myoglobin, the same as the order of their metabolic activity. Thus, these arrays estimate the relative propensity of different enzymes to produce genotoxic metabolites. This is the first demonstration of ECL arrays for high-throughput in vitro genotoxicity screening. PMID:17261025

  10. 3,4-DEHYDRODEBRISOQUINE, A NOVEL DEBRISOQUINE METABOLITE FORMED FROM 4-HYDROXYDEBRISOQUINE THAT IMPACTS THE CYP2D6 METABOLIC RATIO

    PubMed Central

    Zhen, Yueying; Slanař, Ondřej; Krausz, Kristopher W.; Chen, Chi; Slavík, Josef; McPhail, Kerry L.; Zabriskie, T. Mark; Perlík, František; Gonzalez, Frank J.; Idle, Jeffrey R.

    2006-01-01

    Considerable unexplained inter-subject variability in the debrisoquine metabolic ratio (urinary debrisoquine/4-hydroxydebrisoquine) exists within individual CYP2D6 genotypes. We speculated that debrisoquine was converted to as yet undisclosed metabolites. Thirteen healthy young volunteers, nine CYP2D6*1 homozygotes (EMs) and four CYP2D6*4 homozygotes (PMs) took 12.8 mg debrisoquine hemisulfate by mouth and collected 0–8 and 8–24 h urines, which were analyzed by GCMS before and after treatment with β-glucuronidase. Authentic 3,4-dehydrodebrisoquine was synthesized and characterized by GCMS, LC-MS/MS and 1H NMR. 3,4-Dehydrodebrisoquine is a novel metabolite of debrisoquine excreted variably in 0–24 h urine, both in EMs (3.1–27.6% dose) and PMs (0–2.1% dose). This metabolite is produced from 4-hydroxydebrisoquine in vitro by human and rat liver microsomes. A single CYP2D6*1 homozygote was administered 10.2 mg 4-hydroxydebrisoquine orally and also excreted 3,4-dehydrodebrisoquine. EMs excreted 6-hydroxydebrisoquine (0–4.8%), 8-hydroxydebrisoquine (0–1.3%) but these phenolic metabolites were not detected in PM urine. Debrisoquine and 4-hydroxydebrisoquine glucuronides were excreted in a highly genotype-dependent manner. A non-cytochrome P450 microsomal activity participates in the further metabolism of 4-hydroxydebrisoquine, which we speculate may also lead to the formation of 1- and 3-hydroxydebrisoquine and their ring-opened products. In conclusion, this study suggests that the traditional metabolic ratio is not a true measure of the debrisoquine 4-hydroxylation capacity of an individual and thus may, in part, explain the wide intragenotype variation in metabolic ratio. PMID:16782768

  11. [Secondary metabolites, lethality and antimicrobial activity of extracts from three corals and three marine mollusks from Sucre, Venezuela].

    PubMed

    Ordaz, Gabriel; D'Armas, Haydelba; Yáñez, Dayanis; Hernández, Juan; Camacho, Angel

    2010-06-01

    The study of biochemical activity of extracts obtained from marine organisms is gaining interest as some have proved to have efficient health or industrial applications. To evaluate lethality and antimicrobial activities, some chemical tests were performed on crude extracts of the octocorals Eunicea sp., Muricea sp. and Pseudopterogorgia acerosa and the mollusks Pteria colymbus, Phyllonotus pomum and Chicoreus brevifrons, collected in Venezuelan waters. The presence of secondary metabolites like alkaloids, unsaturated sterols and pentacyclic triterpenes in all invertebrates, was evidenced. Additionally, sesquiterpenlactones, saponins, tannins, cyanogenic and cardiotonic glycosides were also detected in some octocoral extracts, suggesting that biosynthesis of these metabolites is typical in this group. From the lethality bioassays, all extracts resulted lethal to Artemia salina (LC50<1000 microg/ml) with an increased of lethal activity with exposition time. P. pomum extract showed the highest lethality rate (LC50=46.8 microg/ml). Compared to the octocorals, mollusks extracts displayed more activity and a greater action spectrum against different bacterial strains, whereas octocorals also inhibited some fungi strains growth. Staphylococcus aureus was the most susceptible to the antimicrobial power of the extracts (66.7%), whereas Pseudomonas aeruginosa, Candida albicans and Aspergillus niger were not affected. The antibiosis shown by marine organisms extracts indicates that some of their biosynthesized metabolites are physiologically active, and may have possible cytotoxic potential or as a source of antibiotic components. PMID:20527468

  12. Direction of estradiol metabolism as a control of its hormonal action--uterotrophic activity of estradiol metabolites.

    PubMed

    Martucci, C; Fishman, J

    1977-12-01

    The uterotrophic activities of the catechol metabolites of estradiol 2-hydroxyestrone, 2-methoxyestrone and 2-hydroxyestradiol were measured under conditions of continuous administration of sc implanted paraffin pellets. The activity of these estrogens was compared to that of estradiol-17beta and its other principal metabolites estrone, estriol and 15alpha-hydroxyestriol (estetrol). The major catechol estrogens, 2-hydroxyestrone and 2-methoxyestrone, and the pregnancy metabolite, 15alpha-hydroxyestriol, exhibited no uterotrophic activity. The minor catecholestrogen, 2-hydroxyestradiol, showed some activity whose character was different from that exhibited by implants of estradiol, estrone and estriol all of which were equipotent uterotrophic agents. Implants of 2-hydroxyestrone in the presence of estradiol or estriol pellets did not diminish the response to the latter indicating that the 2-hydroxyestrone is not antiestrogenic under these conditions. It is concluded that the direction of estradiol metabolism can have a profound influence on the expression of peripheral hormonal activity with hydroxylation at C-2 terminating and hydroxylation at C-16 extending it. PMID:590186

  13. 75 FR 26782 - Agency Information Collection Activities: Form I-864, Form I-864A, Form I-864EZ, and Form I-864W...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... SECURITY U.S. Citizenship and Immigration Services Agency Information Collection Activities: Form I-864, Form I- 864A, Form I-864EZ, and Form I-864W; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review; Form I- 864, Affidavit of...

  14. CSF biomarkers of monocyte activation and chemotaxis correlate with magnetic resonance spectroscopy metabolites during chronic HIV disease.

    PubMed

    Anderson, Albert M; Fennema-Notestine, Christine; Umlauf, Anya; Taylor, Michael J; Clifford, David B; Marra, Christina M; Collier, Ann C; Gelman, Benjamin B; McArthur, Justin C; McCutchan, J Allen; Simpson, David M; Morgello, Susan; Grant, Igor; Letendre, Scott L

    2015-10-01

    Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. A multicenter cross-sectional study involving five sites in the USA was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein-1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell-derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM), and frontal gray matter (FGM): N-acetylaspartate (NAA), myo-inositol (MI), choline (Cho), and creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Eighty-three HIV-infected individuals were included, 78 % on cART and 37 % with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R (2) 0.179, p < 0.001) as well as MCP-1 and MI in FWM (R (2) 0.137, p = 0.002). Higher Cr levels in FWM were associated with MCP-1 (R (2) 0. 075, p = 0.01) and IP-10 (R (2) 0.106, p = 0.003). Comparing biomarkers to MRS metabolite/Cr ratios impacted some relationships, e.g., higher sCD14 levels were associated with lower Cho/Cr ratios in FGM (R (2) 0.224, p < 0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals. PMID:26069183

  15. Silk microgels formed by proteolytic enzyme activity.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Chiellini, Federica; Kaplan, David L; Chiellini, Emo

    2013-09-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study. PMID:23756227

  16. Activation of Dormant Secondary Metabolite Production by Introducing Neomycin Resistance into the Deep-Sea Fungus, Aspergillus versicolor ZBY-3

    PubMed Central

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-01-01

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(d-Pro-d-Phe) (1), cyclo(d-Tyr-d-Pro) (2), phenethyl 5-oxo-l-prolinate (3), cyclo(l-Ile-l-Pro) (4), cyclo(l-Leu-l-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1–6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent

  17. Phenobarbital increases DNA adduct and metabolites formed by ochratoxin A: role of CYP 2C9 and microsomal glutathione-S-transferase.

    PubMed

    El Adlouni, C; Pinelli, E; Azémar, B; Zaoui, D; Beaune, P; Pfohl-Leszkowicz, A

    2000-01-01

    Ochratoxin A (OTA), a mycotoxin that induces nephrotoxicity and urinary tract tumors, is genotoxic and can be metabolized not only by different cytochromes P450 (CYP) but also by peroxidases involved in the arachidonic cascade, although the exact nature of the metabolites involved in the genotoxic process is still unknown. In order to establish the relation between OTA genotoxicity and the formation of metabolites, we chose three experimental models: kidney microsomes from rabbit, human bronchial epithelial cells, and microsomes from yeast that specifically express the human cytochrome P450 2C9 or 2B6 genes. OTA-DNA adducts were analyzed by (32)P postlabeling and the OTA derivatives formed were isolated by HPLC after incubation of OTA in the presence of: (1) kidney microsomes from rabbit pretreated or not with phenobarbital (PB); (2) human pulmonary epithelial cells simultaneously pretreated (or not) with PB alone or in the presence of ethacrynic acid (EA); (3) microsomes expressing CYP 2B6 and 2C9. PB pretreatment significantly increased DNA adducts formed after OTA treatment, both in the presence of kidney microsomes and bronchial epithelial cells, and induced the formation of new adducts. Ethacrynic acid, which inhibits microsomal glutathione-S-transferase, reduced DNA adduct level. DNA adducts were detected when OTA were incubated with microsomes expressing human CYP 2C9 but not with those expressing CYP 2B6. Several metabolites detected by HPLC were increased after PB treatment. Some of them could be related to DNA-adduct formation. In conclusion, OTA biotransformation, enhanced by PB pretreatment, increased DNA-adduct formation through pathways involving microsomal glutathion-S-transferase and CYP 2C9. PMID:10712746

  18. Species and gender differences in the formation of an active metabolite of a substituted 2,4-thiazolidinedione insulin sensitizer.

    PubMed

    Beconi, M; Mao, A; Creighton, M; Hop, C E C A; Chiu, S H L; Eydelloth, R; Franklin, R; Tang, F; Yu, N; Vincent, S

    2003-07-01

    1. The metabolism of a substituted 2,4-thiazolidinedione (P1) with dual PPARalpha/gamma activity was evaluated in male and female rats, dogs and monkeys. A para-hydroxylated metabolite (M1) with potent PPARgamma-selective agonist, was a major circulating drug-related component in female rats, dogs and monkeys, but not in male rats (M1-to-P1 exposure ratio of <1, 3-5, 5 and 5-11 in male rat, monkey, female rat, and dog, respectively). 2. M1 (%) formed in vitro (5, 53, 57-65, 67 and 67% in male rat, monkey, female rat, dog, and human liver microsomes, respectively), rank ordered with M1 (%) formed in vivo (24-45, 53-57, 78, 75-85%, for male rat, monkey, female rat and dog, respectively, after oral administration of P1). 3. The plasma clearance of M1 was higher in male rats (32 ml min(-1) kg(-1) compared with 6, 7 and 2 ml min(-1) kg(-1) in female rat, male monkey and male dogs, respectively). 4. The low amounts of M1 observed in male rats, with the appearance of products of the cleavage of the propyl group between the phenyl groups was probably due to the presence of the sex-specific CYP2C11, which cleaves P1 at the propyl bridge. None of the CYPs present in female rats cleaved P1 at this site and M1 was only produced by CYP2C6. In humans, only CYP2C8 and the polymorphic CYP2C19 produced M1. PMID:12893525

  19. Pre-systemic elimination of tilidine: localization and consequences for the formation of the active metabolite nortilidine.

    PubMed

    Eichbaum, Christine; Mathes, Kristin; Burhenne, Jürgen; Markert, Christoph; Blank, Antje; Mikus, Gerd

    2015-02-01

    The therapeutic activity of tilidine, an opioid analgesic, is mainly related to its active metabolite nortilidine. Nortilidine formation mainly occurs during the high intestinal first-pass metabolism of tilidine by N-demethylation. Elimination of the active nortilidine to the inactive bisnortilidine is also mediated by N-demethylation and is supposed to take place in the liver, probably at a smaller rate. The aim of this study was the investigation of the pre-systemic elimination of tilidine using grapefruit juice (GFJ) as an intestinal CYP3A4 inhibitor and efavirenz (EFV) as a CYP3A4 activator. A randomized, open, placebo-controlled, cross-over study was conducted in 12 healthy volunteers using 100 mg tilidine solution p.o., regular strength GFJ 250 mL (3 times at 12-hr intervals) and EFV 400 mg (12 hr before tilidine administration). Tilidine, nortilidine and bisnortilidine in plasma and urine were quantified by a validated LC/MS/MS analysis. GFJ did not change any pharmacokinetic parameter of tilidine and its metabolites, which suggests that intestinal CYP3A4 does not contribute to the first-pass metabolism of tilidine. No effect of EFV on the pharmacokinetics of the active nortilidine was observed except a significant reduction of the terminal elimination half-life by 15%. Overall elimination (renal and metabolic clearances) was unaffected by every treatment. CYP3A4 does not seem to play a major role in tilidine first-pass and overall metabolism. Other unknown metabolites and their enzymes responsible for their formation have to be investigated as they account for the majority of renally excreted metabolites. PMID:25223231

  20. 76 FR 61725 - Agency Information Collection Activities: Case Submission Form, Case Assistance Form; (Form DHS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... Federal Register on July 18, 2011 at 76 FR 42129, for a 60-day public comment period. No comments were... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND...-7001), Online Ombudsman Form DHS-7001 AGENCY: Office of the Citizenship and Immigration...

  1. Metabolite identification of seven active components of Huan-Nao-Yi-Cong-Fang in rat plasma using high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry.

    PubMed

    Wang, Minchao; Lu, Yanzhen; Liu, Jiangang; Li, Hao; Wei, Yun

    2016-02-01

    Huan-Nao-Yi-Cong-Fang (HNYCF) is a potential prescription in treating Alzheimer's disease. Seven constituents [ferulic acid (FA), 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (THSG), berberine hydrochloride (BHCl), emodin, ginsenoside Rg1 (Rg1), ginsenoside Re (Re) and ginsenoside Rb1 (Rb1)] have been used as quality chemical markers of HNYCF owing to their biological significance and high contents in crude plant materials. This study explored the metabolites of the seven bioactive components in rat plasma to give useful data for further study of the action mechanism of HNYCF. LC/MS-IT-TOF was used to simultaneously characterize the metabolites of the seven components. Using the combination of MetID Solution 1.0 software and accurate mass measurements, the metabolites of HNYCF were reliably characterized. Their structures were elucidated based on the accurate MS(2) spectra and comparisons of their changes in accurate molecular masses and fragment ions with those of parent compounds. A total of five parent active compounds (BHCl, emodin, Rg1, Rb1 and Re) and 10 metabolites were found from the rat plasma 2 h after oral administration of HNYCF dosage, of which two metabolites of emodin were observed for the first time. The proposed metabolic pathways of the bioactive components in the rat plasma are helpful for further studies on the pharmacokinetics and real active compound forms of this drug. PMID:26138785

  2. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first

  3. Population pharmacokinetic modeling of oxcarbazepine active metabolite in Chinese patients with epilepsy.

    PubMed

    Yu, Yunli; Zhang, Quanying; Xu, Wenjun; Lv, Chengzhe; Hao, Gang

    2016-08-01

    The aim of the study was to develop a population pharmacokinetic (PPK) model of oxcarbazepine and optimize the treatment of oxcarbazepine in Chinese patients with epilepsy. A total of 108 oxcarbazepine therapeutic drug monitoring samples from 78 patients with epilepsy were collected in this study. The pharmacologically active metabolite 10,11-dihydro-10-hydrocarbamazepine (MHD) was used as the analytical target for monitoring therapy of oxcarbazepine. Patients' clinical data were retrospectively collected. The PPK model for MHD was developed using Phoenix NLME 1.2 with a non-linear mixed-effect model. MHD pharmacokinetics obeys a one-compartment model with first-order absorption and elimination. The effect of age, gender, red blood cell count, red blood cell specific volume, hemoglobin (HGB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatine were analyzed. Bootstrap and data splitting were used simultaneously to validate the final PPK models. The mean values of volume of distribution and clearance of MHD in the patients were 14.2 L and 2.38 L h(-1), respectively. BUN and HGB influenced the MHD volume of distribution according to the following equation: V = tvV × (BUN/4.76)(-0.007) × (HGB/140)(-0.001) × e (ηV) . The MHD clearance was dependent on ALT and gender as follows: CL = tvCL × (ALT/30)(0.181) × (gender) × 1.083 × e (ηCL). The final PPK model was demonstrated to be suitable and effective and it can be used to evaluate the pharmacokinetic parameters of MHD in Chinese patients with epilepsy and to choose an optimal dosage regimen of oxcarbazepine on the basis of these parameters. PMID:25700977

  4. Pharmacokinetics, safety and tolerability of triflusal and its main active metabolite HTB in healthy Chinese subjects.

    PubMed

    Wang, M; Zhang, Q; Huang, M; Zong, S; Hua, W; Zhou, W

    2014-05-01

    Triflusal presents comparable antiplatelet activity to aspirin while presenting a more favourable safety profile, and is used in the treatment of thrombosis. The study aimed to evaluate the pharmacokinetics and safety of triflusal and its major metabolite 2-(hydroxyl)-4-(trifluoromethyl)- benzoic acid (HTB) in healthy Chinese subjects.30 healthy subjects were recruited in this randomized, single-center, and open-label, parallel, single ascending doses (300, 600, 900 mg) and multiple doses (600 mg, once daily for 7 days) study. Plasma samples were analyzed with a validated liquid chromatography tandem mass spectrometry (LC/MS/MS) method. Safety was assessed by adverse events, ECG, laboratory testing, and vital signs.Triflusal was safe and well tolerated. After single-dose administration, triflusal was rapidly absorbed with a mean Tmax of 0.55-0.92 h and a mean t1/2 kel of 0.35-0.65 h, HTB was absorbed with a mean Tmax of 2.35-3.03 h and a mean t1/2 kel of 52.5-65.57 h. Cmax and AUC for triflusal and HTB were approximately dose proportional over the 300-900 mg dose range. In the steady state, the accumulation index (R) indicated that the exposure of triflusal increased slightly with repeated dosing, and the exposure of HTB increased obviously. 3 adverse events certainly related to the investigational drugs occurred in the multiple-dose phase.Following oral dosing under fasting condition, triflusal is promptly absorbed and rapidly depleted from the systemic circulation. HTB is quickly generated from triflusal and slowly eliminated. Triflusal accumulates slightly in the body. HTB plasma concentration builds up progressively toward steady-state. PMID:24105106

  5. Tissue accumulation kinetics of ciclesonide-active metabolite and budesonide in mice.

    PubMed

    Mårs, Ulla; d'Argy, Roland; Hallbeck, Karin; Miller-Larsson, Anna; Edsbäcker, Staffan

    2013-06-01

    Inhaled corticosteroids (ICS) are mainstay treatment of asthma and chronic obstructive pulmonary disease. However, highly lipophilic ICS accumulate in systemic tissues, which may lead to adverse systemic effects. The accumulation of a new, highly lipophilic ICS, ciclesonide and its active metabolite (des-CIC) has not yet been reported. Here, we have compared tissue accumulation of des-CIC and an ICS of a moderate lipophilicity, budesonide (BUD), after 14 days of once-daily treatment in mice. Single, three or 14 daily doses of [(3) H]-des-CIC or [(3) H]-BUD were administered subcutaneously to male CD1 albino mice, which were killed at 4 hr, 24 hr or 5 days after the last dose. Distribution of tissue concentration of radioactivity was studied by quantitative whole-body autoradiography. Pattern of radioactivity distribution across most tissues was similar for both corticosteroids after a single as well as after repeated dosing. However, tissue concentration of radioactivity differed between des-CIC and BUD. After a single dose, concentrations of radioactivity for both corticosteroids were low for most tissues but increased over 14 days of daily dosing. The tissue radioactivity of des-CIC at 24 hr and 5 days after the 14th dose was 2-3 times higher than that of BUD in majority of tissues. Tissue accumulation, assessed as concentration of tissue radioactivity 5 days after the 14th versus 3rd dose, showed an average ratio of 5.2 for des-CIC and 2.7 for BUD (p < 0.0001). In conclusion, des-CIC accumulated significantly more than BUD. Systemic accumulation may lead to increased risk of adverse systemic side effects during long-term therapy. PMID:23256845

  6. Trace Amine-Associated Receptor 1 (TAAR1) is Activated by Amiodarone Metabolites

    PubMed Central

    Snead, Aaron N.; Miyakawa, Motonori; Tan, Edwin S.; Scanlan, Thomas S.

    2012-01-01

    Amiodarone (Cordarone, Wyeth-Ayerst Pharmaceuticals) is a clinically available drug used to treat a wide variety of cardiac arrhythmias. We report here the synthesis and characterization of a panel of potential amiodarone metabolites that have significant structural similarity to thyroid hormone and its metabolites the iodothyronamines. Several of these amiodarone derivatives act as specific agonists of the G protein-coupled receptor (GPCR) trace amine-associated receptor 1 (TAAR1). This result demonstrates a novel molecular target for amiodarone derivatives with potential clinical significance. PMID:18752950

  7. [Detection of fungal metabolites showing toxic activity through Artemia salina bioassay].

    PubMed

    González, Ana María; Presa, Maximiliano; Latorre, María Gabriela; Lurá, María Cristina

    2007-03-01

    The aim of this study was to detect toxic metabolites from fungi contaminating food and medicinal herbs by applying the toxicity assay to Artemia salina. According to toxicity percentages, the extracts were classified as nontoxic (NT), slightly toxic (ST), toxic (T) and highly toxic (HT). Those classified as T and HT were assayed for mycotoxins. Only 6 out of 71 strains were found to be T (8.5%) for A. salina. Penicillium brevicompactum Dierckx, isolated from sausages, was found to be HT, mainly due to the presence of ochratoxin A and two other unidentified metabolites. PMID:17592895

  8. Antioxidative activity of bound-form phenolics in potato peel.

    PubMed

    Nara, Kazuhiro; Miyoshi, Takayuki; Honma, Tamaki; Koga, Hidenori

    2006-06-01

    Free and bound-form phenolics were isolated from potato (cv. Toyoshiro) flesh and peel. The free and bound-form phenolics in the peel showed high DPPH radical scavenging activity, while those in the flesh showed low activity. The total amount of chlorogenic acid and caffeic acid in the free-form phenolics from the peel was highly correlated with the DPPH radical scavenging activity. Ferulic acid was identified as the active radical scavenging compound in the bound-form phenolics from the peel. The potato peel may therefore offer an effective source of an antioxidative. PMID:16794331

  9. 76 FR 41279 - Agency Information Collection Activities; Form I-864, Form I-864A, Form I-864EZ, and Form I-864W...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... was previously published in the Federal Register on May 4, 2011, at 76 FR 25364, allowing for a 60-day... SECURITY U.S. Citizenship and Immigration Services Agency Information Collection Activities; Form I-864, Form I- 864A, Form I-864EZ, and Form I-864W; Extension of an Existing Information Collection;...

  10. 75 FR 51093 - Agency Information Collection Activities: Form I-864, Form I-864A, Form I-864EZ, and Form I-864W...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... on May 12, 2010, at 75 FR 26782, allowing for a 60-day public comment period. USCIS received 2... SECURITY U.S. Citizenship and Immigration Services Agency Information Collection Activities: Form I-864, Form I- 864A, Form I-864EZ, and Form I-864W; Extension of a Currently Approved Information...

  11. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk).

    PubMed

    Patel, Manish K; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Non-targeted metabolomics implies that psyllium (Plantago ovata) is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids) and essential and sulfur-rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and reactive oxygen species (ROS) scavenging activities. In leaves, seeds, and husks, about 76, 78, 58% polyunsaturated, 21, 15, 20% saturated, and 3, 7, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24) was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha-linolenic acid CPS (57%) and ω-6 linoleic acid CPS (18%) was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulfur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each) metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids, or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food. PMID:27092153

  12. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk)

    PubMed Central

    Patel, Manish K.; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Non-targeted metabolomics implies that psyllium (Plantago ovata) is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids) and essential and sulfur-rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and reactive oxygen species (ROS) scavenging activities. In leaves, seeds, and husks, about 76, 78, 58% polyunsaturated, 21, 15, 20% saturated, and 3, 7, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24) was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha-linolenic acid (57%) and ω-6 linoleic acid (18%) was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulfur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each) metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids, or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food. PMID:27092153

  13. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    biomass of Bacillus subtilis, a Gram-positive bacterium, showed the same pattern. Rapidly-dividing cells derived fewer of their O and H atoms from environmental water than did more slowly-growing cells and spores. To test whether a eukaryotic cell, surrounded by only a membrane, would also maintain an isotopic gradient and a detectable percentage of metabolic water, we applied our approach to cultured rat fibroblasts. Preliminary results showed that approximately 50% of the O and H atoms in exponentially growing cells were derived from metabolic activity. In quiescent cells, metabolic activity generated approximately 25% of the O and H atoms in intracellular water. Thus far, the data we have obtained is consistent with the following model: (1) Intracellular water is composed of water that diffuses in from the extracellular environment and water that is created as a result of metabolic activity. (2) The relative amounts of environmental and metabolic water inside a cell are a function of the cell's metabolic activity. (3) The oxygen and hydrogen isotope ratios of cellular metabolites are a function of those of intracellular water, and therefore reflect the metabolic activity of the cell at the time of biosynthesis.

  14. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    PubMed Central

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163

  15. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.

    PubMed

    Li, Xiao-Jun; Zhang, Qiang; Zhang, An-Ling; Gao, Jin-Ming

    2012-04-01

    Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed. PMID:22409377

  16. Formation and anti-tumor activity of uncommon in vitro and in vivo metabolites of CPI-613, a novel anti-tumor compound that selectively alters tumor energy metabolism.

    PubMed

    Lee, King C; Shorr, Robert; Rodriguez, Robert; Maturo, Claudia; Boteju, Lakmal W; Sheldon, Adrian

    2011-08-01

    CPI-613 is a novel anti-tumor compound with a mechanism-of-action which appears distinct from the current classes of anti-cancer agents used in the clinic. CPI-613 demonstrates both in vitro and in vivo anti-tumor activity. In vitro metabolic studies using liver S9 were performed which demonstrated that CPI-613 undergoes both phase 1 (oxidation) and phase 2 (glucuronidation) transformations. Its metabolic half-life varied between species and ranged from 8 minutes (Hanford minipig) to 47 minutes (CD-1 mouse). We performed metabolite mass assessments using selected in vitro incubation samples and demonstrated that +16 amu oxidation with and without +176 amu glucuronidation products were generated by human and animal liver S9. LC/MS/MS fragmentation patterns showed that an uncommon sulfoxide metabolite was formed and the O-glucuronidation occurred at the terminal carboxyl moiety. We observed that the +192 amu sulfoxide/glucuronide was generated only in human liver S9 and not by any of the other species tested. Synthetic metabolites were prepared and compared with the enzymatically-generated metabolites. Both the chromatographic retention times and the LC/MS/MS fragmentation patterns were similar, demonstrating that the synthetic metabolites were virtually identical to the S9-generated products. CYP450 reaction phenotyping and inhibition data both suggested that multiple CYP isozymes (2C8 and 3A4, along with minor contributions by 2C9 and 2C19) were involved in CPI-613 metabolism and sulfoxide formation. Plasma samples from human subjects dosed with CPI-613 also contained the sulfoxide ± glucuronide metabolites. These results show that the in vitro- and in vivo-generated phase 1 and phase 2 metabolites were in good agreement. PMID:21722089

  17. Relation between clopidogrel active metabolite levels and different platelet aggregation methods in patients receiving clopidogrel and aspirin.

    PubMed

    Liang, Yan; Johnston, Marilyn; Hirsh, Jack; Pare, Guillaume; Li, Chunjian; Mehta, Shamir; Teo, Koon K; Sloane, Debi; Yi, Qilong; Zhu, Jun; Eikelboom, John W

    2012-11-01

    Clopidogrel is a prodrug that undergoes bioconversion via cytochrome P450 system to form an active metabolite (AM) that binds to the platelet ADP receptor. The antiplatelet effect of clopidogrel is commonly assessed by measuring the aggregatory response to 5 μM ADP by light transmission aggregation (LTA) or multiple electrode aggregometry (MEA) or by the vasodilator-stimulated phosphoprotein platelet reactivity index (VASP-PRI). To determine which of these three tests of platelet ADP receptor pathway inhibition most closely correlates with clopidogrel AM levels. We analyzed blood samples from 82 patients with coronary artery disease who were randomized to receive double-dose or standard dose clopidogrel for 2 weeks. We measured peak clopidogrel AM levels, platelet aggregation in response to ADP and VASP-PRI on days 1, and repeated all the measures on days 7 and 14. Linear regression analysis was used to examine the correlation between clopidogrel AM and LTA, MEA and VASP-PRI. Bland-Altman plots were used to explore the agreement between tests of the antiplatelet effects of clopidogrel. Clopidogrel AM on day 1 correlated most closely with VASP-PRI (r = -0.5767) and demonstrated weaker correlations with LTA (r = -0.4656) and MEA (r = -0.3384) (all p < 0.01). Intra-class correlation (ICC) between VASP-PRI and LTA was 0.6446; VASP-PRI and MEA was 0.4720; and LTA and MEA was 0.4693. Similar results were obtained on days 7 and 14. Commonly used pharmacodynamic measures of clopidogrel response are only moderately correlated with clopidogrel AM levels and may not be suitable to measure the adequacy of clopidogrel therapy. PMID:22797934

  18. Solving the Jigsaw Puzzle of Wound-Healing Potato Cultivars: Metabolite Profiling and Antioxidant Activity of Polar Extracts

    PubMed Central

    2015-01-01

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding. PMID:24998264

  19. Pu-238 fuel form activities, January 1-31, 1982

    SciTech Connect

    Not Available

    1982-03-01

    This monthly report for /sup 238/Pu fuel form activities has two main sections: SRP-PuFF facility and SRL fuel form activities. The program status, budget information, and milestone schedules are discussed in each main section. The Work Breakdown Structure (WBS) for this program is shown. Only one monthly report per year is processed for EDB.

  20. Pu-238 fuel form activities, January 1-31, 1981

    SciTech Connect

    Not Available

    1981-02-01

    This monthly report for /sup 238/Pu Fuel Form Activities has two main sections: SRP-PuFF facility and SRL Fuel Form Activities. The program status, budget information, and milestone schedules are discussed in each main section. The Work Breakdown Structure (WBS) for this program is shown. Only one monthly report per year is processed for EDB.

  1. Pu-238 fuel form activities, January 1-31, 1983

    SciTech Connect

    Not Available

    1983-03-01

    This monthly report for /sup 238/Pu Fuel Form Activities has two main sections: SRP-PuFF facility and SRL Fuel Form Activities. The program status, budget information, and milestone schedules are discussed in each main section. The Work Breakdown Structure (WBS) for this program is shown. Only one monthly report per year is processed for EDB.

  2. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  3. Fungal metabolite ophiobolin A as a promising anti-glioma agent: In vivo evaluation, structure-activity relationship and unique pyrrolylation of primary amines.

    PubMed

    Dasari, Ramesh; Masi, Marco; Lisy, Romana; Ferdérin, Marlène; English, Lance R; Cimmino, Alessio; Mathieu, Véronique; Brenner, Andrew J; Kuhn, John G; Whitten, Steven T; Evidente, Antonio; Kiss, Robert; Kornienko, Alexander

    2015-10-15

    Glioblastoma, the most common form of malignant primary brain tumor, is characterized by resistance to apoptosis, which is largely responsible for the low effectiveness of the classical chemotherapeutic approaches based on apoptosis induction in cancer cells. Previously, a fungal secondary metabolite ophiobolin A was found to have significant activity against apoptosis-resistant glioblastoma cells through the induction of a non-apoptotic cell death, thus, offering an innovative strategy to combat this type of cancer. The current work describes the results of a preliminary evaluation of ophiobolin A in an in vivo glioblastoma model and its chemical derivatization to establish first synthetically generated structure-activity relationship. The synthetic work has also led to the discovery of a unique reaction of ophiobolin A with primary amines suggesting the possibility of pyrrolylation of lysine residues on its intracellular target protein(s). PMID:26341136

  4. Tissue distribution study of columbianadin and its active metabolite columbianetin in rats.

    PubMed

    Zhang, You-Bo; Yang, Xiu-Wei

    2016-02-01

    Columbianadin, one of the main bioactive constituents of the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan, has been found to possess obvious pharmacological effects in previous studies. In this study, a valid and sensitive reverse-phase high-performance liquid chromatography (RP-HPLC) method was established and validated for the determination of columbianadin (CBN) and its active metabolite columbianetin (CBT) in rat tissue samples. Sample separation was performed on an RP-HPLC column using a mobile phase of MeOH-H2 O (75:25, v/v) at a flow rate of 1.0 mL/min. The UV absorbance of the samples was measured at the wavelength 325 nm. The calibration curves for CBN were linear over the ranges of 0.5-20 µg/g for brain, testes and muscle, 1.0-10.0 µg/g for stomach and intestine, and 0.2-20.0 µg/g for heart, liver, spleen, lung and kidney. The calibration curves for CBT were linear over the ranges of 0.5-25 µg/g for stomach and intestine, and 0.1-10.0 µg/g for heart, liver, spleen, lung and kidney. The analysis method was successfully applied to a tissue distribution study of CBN and CBT after intravenous administration of CBN to rats. The results of this study indicated that CBN could be detected in all of the selected tissues after i.v. administration. CBN was distributed to rat tissues rapidly and could be metabolized to CBT in most detected tissues. Of the detected tissues, heart had the highest uptake of CBN, which suggested that heart might be one of the main target tissues of CBN. Concentrations of CBT were obviously higher in the digestive system than in other assayed tissues. The information provided by this research is very useful for gaining knowledge of the capacities of CBN and CBT to access different tissues. PMID:26115176

  5. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats

    PubMed Central

    Lysne, Vegard; Strand, Elin; Svingen, Gard F. T.; Bjørndal, Bodil; Pedersen, Eva R.; Midttun, Øivind; Olsen, Thomas; Ueland, Per M.; Berge, Rolf K.; Nygård, Ottar

    2016-01-01

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. PMID:26742069

  6. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats.

    PubMed

    Lysne, Vegard; Strand, Elin; Svingen, Gard F T; Bjørndal, Bodil; Pedersen, Eva R; Midttun, Øivind; Olsen, Thomas; Ueland, Per M; Berge, Rolf K; Nygård, Ottar

    2016-01-01

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. PMID:26742069

  7. Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity

    PubMed Central

    Jones, D J L; Lamb, J H; Verschoyle, R D; Howells, L M; Butterworth, M; Lim, C K; Ferry, D; Farmer, P B; Gescher, A J

    2004-01-01

    Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavone with putative ability to prevent cancer and cardiovascular diseases. Its metabolism was evaluated in rats and human. Rats received quercetin via the intravenous (i.v.) route and metabolites were isolated from the plasma, urine and bile. Analysis was by high-performance liquid chromatography and confirmation of species identity was achieved by mass spectrometry. Quercetin and isorhamnetin, the 3′-O-methyl analogue, were found in both the plasma and urine. In addition, several polar peaks were characterised as sulphated and glucuronidated conjugates of quercetin and isorhamnetin. Extension of the metabolism studies to a cancer patient who had received quercetin as an i.v. bolus showed that (Quercetin removed) isorhamnetin and quercetin 3′-O-sulphate were major plasma metabolites. As a catechol, quercetin can potentially be converted to a quinone and subsequently conjugated with glutathione (GSH). Oxidation of quercetin with mushroom tyrosinase in the presence of GSH furnished GSH conjugates of quercetin, two mono- and one bis-substituted conjugates. However, these species were not found in biomatrices in rats treated with quercetin. As cyclo-oxygenase-2 (COX-2) expression is mechanistically linked to carcinogenesis, we examined whether quercetin and its metabolites can inhibit COX-2 in a human colorectal cancer cell line (HCA-7). Isorhamnetin and its 4′-isomer tamarixetin were potent inhibitors, reflected in a 90% decrease in prostaglandin E-2 (PGE-2) levels, a marker of COX-2 activity. Quercetin was less effective, with a 50% decline. Quercetin 3- and 7-O-sulphate had no effect on PGE-2. The results indicate that quercetin may exert its pharmacological effects, at least in part, via its metabolites. PMID:15292928

  8. Mass Spectrometric Characterization of Human Serum Albumin Adducts Formed with N-Oxidized Metabolites of 2-Amino-1-methyl-phenylimidazo[4,5-b]pyridine in Human Plasma and Hepatocytes

    PubMed Central

    Wang, Yi; Peng, Lijuan; Bellamri, Medjda; Langoueët, Sophie; Turesky, Robert J.

    2015-01-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic heterocyclic aromatic amine formed in cooked meats, is metabolically activated to electrophilic intermediates that form covalent adducts with DNA and protein. We previously identified an adduct of PhIP formed at the Cys34 residue of human serum albumin following reaction of albumin with the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP). The major adducted peptide recovered from a tryptic/chymotryptic digest was identified as the missed-cleavage peptide LQQC*[SO2PhIP]PFEDHVK, a [Cysteine-S-yl-PhIP]-S-dioxide linked adduct. In this investigation, we have characterized the albumin adduction products of N-sulfooxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-sulfooxy-PhIP), which is thought to be a major genotoxic metabolite of PhIP formed in vivo. Targeted and data-dependent scanning methods showed that N-sulfooxy-PhIP adducted to the Cys34 of albumin in human plasma to form LQQC*[SO2PhIP]PFEDHVK at levels that were 8 to 10-fold greater than the adduct levels formed with N-(acetyloxy)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP) or HONH-PhIP. We also discovered that N-sulfooxy-PhIP forms an adduct at the sole tryptophan (Trp214) residue of albumin in the sequence AW*[PhIP]AVAR. However, stable adducts of PhIP with albumin were not detected in human hepatocytes. Instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)-phenylimidazo[4,5-b]pyridine (5-HO-PhIP), a solvolysis product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis, suggesting a labile sulfenamide linkage had formed between an N-oxidized intermediate of PhIP and Cys34 of albumin. A stable adduct was formed at the Tyr411 residue of albumin in hepatocytes, and identified as a deaminated product of PhIP, Y*[desaminoPhIP]TK, where the 4-HO-tyrosine group bound to the C-2 imidazole atom of PhIP. PMID:25815793

  9. Mass Spectrometric Characterization of Human Serum Albumin Adducts Formed with N-Oxidized Metabolites of 2-Amino-1-methylphenylimidazo[4,5-b]pyridine in Human Plasma and Hepatocytes.

    PubMed

    Wang, Yi; Peng, Lijuan; Bellamri, Medjda; Langouët, Sophie; Turesky, Robert J

    2015-05-18

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic heterocyclic aromatic amine formed in cooked meats, is metabolically activated to electrophilic intermediates that form covalent adducts with DNA and protein. We previously identified an adduct of PhIP formed at the Cys(34) residue of human serum albumin following reaction of albumin with the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP). The major adducted peptide recovered from a tryptic/chymotryptic digest was identified as the missed-cleavage peptide LQQC*([SO2PhIP])PFEDHVK, a [cysteine-S-yl-PhIP]-S-dioxide linked adduct. In this investigation, we have characterized the albumin adduction products of N-sulfooxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-sulfooxy-PhIP), which is thought to be a major genotoxic metabolite of PhIP formed in vivo. Targeted and data-dependent scanning methods showed that N-sulfooxy-PhIP adducted to the Cys(34) of albumin in human plasma to form LQQC*([SO2PhIP])PFEDHVK at levels that were 8-10-fold greater than the adduct levels formed with N-(acetyloxy)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP) or HONH-PhIP. We also discovered that N-sulfooxy-PhIP forms an adduct at the sole tryptophan (Trp(214)) residue of albumin in the sequence AW*([PhIP])AVAR. However, stable adducts of PhIP with albumin were not detected in human hepatocytes. Instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)phenylimidazo[4,5-b]pyridine (5-HO-PhIP), a solvolysis product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis, suggesting a labile sulfenamide linkage had formed between an N-oxidized intermediate of PhIP and Cys(34) of albumin. A stable adduct was formed at the Tyr(411) residue of albumin in hepatocytes and identified as a deaminated product of PhIP, Y(*[desaminoPhIP])TK, where the 4-HO-tyrosine group bound to the C-2 imidazole atom of PhIP. PMID:25815793

  10. Reduced photoinhibition under low irradiance enhanced Kacip Fatimah (Labisia pumila Benth) secondary metabolites, phenyl alanine lyase and antioxidant activity.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2012-01-01

    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m(2)/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m(2)/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m(2)/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition. PMID:22754297

  11. Reduced Photoinhibition under Low Irradiance Enhanced Kacip Fatimah (Labisia pumila Benth) Secondary Metabolites, Phenyl Alanine Lyase and Antioxidant Activity

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.

    2012-01-01

    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m2/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m2/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m2/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition. PMID:22754297

  12. Effectiveness of clopidogrel dose escalation to normalize active metabolite exposure and antiplatelet effects in CYP2C19 poor metabolizers.

    PubMed

    Horenstein, Richard B; Madabushi, Rajnikanth; Zineh, Issam; Yerges-Armstrong, Laura M; Peer, Cody J; Schuck, Robert N; Figg, William Douglas; Shuldiner, Alan R; Pacanowski, Michael A

    2014-08-01

    Carriers of two copies of the loss-of-function CYP2C19*2 variant convert less clopidogrel into its active metabolite, resulting in diminished antiplatelet responses and higher cardiovascular event rates. To evaluate whether increasing the daily clopidogrel dose in poor metabolizers (PM) overcomes the effect of the CYP2C19 * 2 variant, we enrolled 18 healthy participants in a genotype-stratified, multi-dose, three-period, fixed-sequence crossover study. Six participants with the *1/*1 extensive (EM), *1/*2 intermediate (IM), and *2/*2 poor metabolizer genotypes each received 75 mg, 150 mg, and 300 mg each for 8 days. In each period, maximal platelet aggregation 4 hours post-dose (MPA4) and active metabolite area under the curve (AUC) differed among genotype groups (P < .05 for all). At day 8, PMs needed 300 mg daily and IMs needed 150 mg daily to attain a similar MPA4 as EMs on the 75 mg dose (32.6%, 33.2%, 31.3%, respectively). Similarly, PMs needed 300 mg daily to achieve active metabolite concentrations that were similar to EMs on 75 mg (AUC 37.7 and 33.5 ng h/mL, respectively). These results suggest that quadrupling the usual clopidogrel dose might be necessary to overcome the effect of poor CYP2C19 metabolism. PMID:24710841

  13. Multiple modes of inhibition of human cytochrome P450 2J2 by dronedarone, amiodarone and their active metabolites.

    PubMed

    Karkhanis, Aneesh; Lam, Hui Yuan; Venkatesan, Gopalakrishnan; Koh, Siew Kwan; Chai, Christina Li Lin; Zhou, Lei; Hong, Yanjun; Kojodjojo, Pipin; Chan, Eric Chun Yong

    2016-05-01

    Dronedarone, a multiple ion channel blocker is prescribed for the treatment of paroxysmal and persistent atrial fibrillation. While dronedarone does not precipitate toxicities like its predecessor amiodarone, its clinical use has been associated with idiosyncratic hepatic and cardiac adverse effects and drug-drug interactions (DDIs). As dronedarone is a potent mechanism-based inactivator of CYP3A4 and CYP3A5, a question arose if it exerts a similar inhibitory effect on CYP2J2, a prominent cardiac CYP450 enzyme. In this study, we demonstrated that CYP2J2 is reversibly inhibited by dronedarone (Ki=0.034μM), amiodarone (Ki=4.8μM) and their respective pharmacologically active metabolites namely N-desbutyldronedarone (NDBD) (Ki=0.55μM) and N-desethylamiodarone (NDEA) (Ki=7.4μM). Moreover, time-, concentration- and NADPH-dependent irreversible inactivation of CYP2J2 was investigated where inactivation kinetic parameters (KI, kinact) and partition ratio (r) of dronedarone (0.05μM, 0.034min(-1), 3.3), amiodarone (0.21μM, 0.015min(-1), 20.7) and NDBD (0.48μM, 0.024min(-1), 21.7) were observed except for NDEA. The absence of the characteristic Soret peak, lack of recovery of CYP2J2 activity upon dialysis, and biotransformation of dronedarone and NDBD to quinone-oxime reactive metabolites further confirmed the irreversible inactivation of CYP2J2 by dronedarone and NDBD is via the covalent adduction of CYP2J2. Our novel findings illuminate the possible mechanisms of DDIs and cardiac adverse effects due to both reversible inhibition and irreversible inactivation of CYP2J2 by dronedarone, amiodarone and their active metabolites. PMID:26972388

  14. Anti-onchocerca Metabolites from Cyperus articulatus: Isolation, In Vitro Activity and In Silico 'Drug-Likeness'.

    PubMed

    Metuge, Jonathan Alunge; Babiaka, Smith B; Mbah, James A; Ntie-Kang, Fidele; Ayimele, Godfred A; Cho-Ngwa, Fidelis

    2014-08-01

    The aims of this investigation were to isolate active ingredients from the roots/rhizomes of Cyperus articulatus used as herbal medicine in Cameroon for the treatment of human onchocerciasis and to assess the efficacy of the metabolites on the Onchocerca worm. The antifilarial activity was evaluated in vitro on microfilariae (Mfs) and adult worms of the bovine derived Onchocerca ochengi, a close relative of Onchocerca volvulus. Cytotoxicity was assessed in vitro on monkey kidney epithelial cells. The structures of the active compounds were determined using spectroscopic methods and their drug-likeness evaluated using Lipinski parameters. Two secondary metabolites, AMJ1 [containing mustakone (1) as the major component] and linoleic acid or (9Z,12Z)-octadeca-9,12-dienoic acid (2) were isolated. Both compounds were found to kill both the microfilariae and adult worms of O. ochengi in a dose dependent manner. The IC50s for AMJ1 were 15.7 µg/mL for Mfs, 17.4 µg/mL for adult males and 21.9 µg/mL for adult female worms while for linoleic acid the values were, 15.7 µg/mL for Mfs, 31.0 µg/mL for adult males and 44.2 µg/mL for adult females. The present report provides the first ever evidence of the anti-Onchocerca efficacy of AMJ1 and linoleic acid. Thus, these secondary metabolites may provide a lead for design and development of new antifilarial agents. PMID:25089243

  15. In vivo anti-inflammatory activity of some naturally occurring O- and N-prenyl secondary metabolites.

    PubMed

    Epifano, Francesco; Genovese, Salvatore; Fiorito, Serena; della Loggia, Roberto; Tubaro, Aurelia; Sosa, Silvio

    2014-01-01

    A series of O- and N-prenyl secondary metabolites of insect, fungal, and plant origin have been evaluated for their topical anti-inflammatory activity using the Croton oil ear test in mice as a model of acute inflammation. Some of the tested compounds revealed an effect (ID50 = 0.31 divided by 0.56 micromol/cm2) comparable with that of the reference non-steroidal anti-inflammatory drug indomethacin (ID50 = 0.23 micromol/cm2). PMID:24660470

  16. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  17. Transthyretin Binding Heterogeneity and Anti-amyloidogenic Activity of Natural Polyphenols and Their Metabolites.

    PubMed

    Florio, Paola; Folli, Claudia; Cianci, Michele; Del Rio, Daniele; Zanotti, Giuseppe; Berni, Rodolfo

    2015-12-11

    Transthyretin (TTR) is an amyloidogenic protein, the amyloidogenic potential of which is enhanced by a number of specific point mutations. The ability to inhibit TTR fibrillogenesis is known for several classes of compounds, including natural polyphenols, which protect the native state of TTR by specifically interacting with its thyroxine binding sites. Comparative analyses of the interaction and of the ability to protect the TTR native state for polyphenols, both stilbenoids and flavonoids, and some of their main metabolites have been carried out. A main finding of this investigation was the highly preferential binding of resveratrol and thyroxine, both characterized by negative binding cooperativity, to distinct sites in TTR, consistent with the data of x-ray analysis of TTR in complex with both ligands. Although revealing the ability of the two thyroxine binding sites of TTR to discriminate between different ligands, this feature has allowed us to evaluate the interactions of polyphenols with both resveratrol and thyroxine preferential binding sites, by using resveratrol and radiolabeled T4 as probes. Among flavonoids, genistein and apigenin were able to effectively displace resveratrol from its preferential binding site, whereas genistein also showed the ability to interact, albeit weakly, with the preferential thyroxine binding site. Several glucuronidated polyphenol metabolites did not exhibit significant competition for resveratrol and thyroxine preferential binding sites and lacked the ability to stabilize TTR. However, resveratrol-3-O-sulfate was able to significantly protect the protein native state. A rationale for the in vitro properties found for polyphenol metabolites was provided by x-ray analysis of their complexes with TTR. PMID:26468275

  18. Magnolia Extract, Magnolol, and Metabolites: Activation of Cannabinoid CB2 Receptors and Blockade of the Related GPR55

    PubMed Central

    2012-01-01

    The bark of Magnolia officinalis is used in Asian traditional medicine for the treatment of anxiety, sleeping disorders, and allergic diseases. We found that the extract and its main bioactive constituents, magnolol and honokiol, can activate cannabinoid (CB) receptors. In cAMP accumulation studies, magnolol behaved as a partial agonist (EC50 = 3.28 μM) with selectivity for the CB2 subtype, while honokiol was less potent showing full agonistic activity at CB1 and antagonistic properties at CB2. We subsequently synthesized the major metabolites of magnolol and found that tetrahydromagnolol (7) was 19-fold more potent than magnolol (EC50 CB2 = 0.170 μM) exhibiting high selectivity versus CB1. Additionally, 7 behaved as an antagonist at GPR55, a CB-related orphan receptor (KB = 13.3 μM, β-arrestin translocation assay). Magnolol and its metabolites may contribute to the biological activities of Magnolia extract via the observed mechanisms of action. Furthermore, the biphenylic compound magnolol provides a simple novel lead structure for the development of agonists for CB receptors and antagonists for the related GPR55. PMID:24900561

  19. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    PubMed Central

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  20. Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells.

    PubMed

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (-)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  1. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor. PMID:25922884

  2. Excretion of tectoridin metabolites in rat urine and bile orally administrated at different dosages and their inhibitory activity against aldose reductase.

    PubMed

    Qu, Jialin; Wu, Zhizhen; Gao, Jie; Wen, Hao; Wang, Tao; Yuan, Dan

    2014-12-01

    This study investigated the urinary and biliary excretion of tectoridin, a major active isoflavonoid found in the flowers of Pueraria thomsonii Benth. and the rhizomes of Belamcanda chinensis (L.) DC. Using UHPLC/Q-TOFMS, seven glucuronides and/or sulfated metabolites and four Phase I metabolites were simultaneously quantified in rat urine after oral administration of tectoridin at 100 and 200 mg/kg. Over a 72-h period, 14.2% and 14.7% of the tectoridin were excreted as eleven metabolites in urine, among which, two major metabolites tectorigenin-7-O-β-D-glucuronide (Te-7G) and tectorigenin accounted for 5.5-5.5% and 4.3-4.4%. Furthermore, the cumulative excretion of four glucuronides and sulfated metabolites in bile accounted for 7.3% and 3.9% of the dose within 60 h, among which, Te-7G and tectorigenin-7-O-glucuronide-4'-O-sulfate (Te-7G-4'S) accounted for 2.3-3.0% and 1.4-3.9%, respectively. The results indicate that the urine was the primary elimination route, and glucuronidation after deglycosylation at C-7 position was the major metabolic pathway of tectoridin in vivo. Moreover, the inhibitory activities of tectoridin and its five metabolites on rat lens aldose reductase were confirmed (IC₅₀: 1.4-15.5 μM), whereas irisolidone-7-O-glucuronide (Ir-7G) and irisolidone showed little activity. PMID:25256063

  3. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases.

    PubMed

    Ko, Wen-Hsiung; Tsou, Yi-Jung; Lin, Mei-Ju; Chern, Lih-Ling

    2010-09-30

    Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins. PMID:20580869

  4. Metabolite Damage and Metabolite Damage Control in Plants.

    PubMed

    Hanson, Andrew D; Henry, Christopher S; Fiehn, Oliver; de Crécy-Lagard, Valérie

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms. PMID:26667673

  5. Form-Focused Discovery Activities in English Classes

    ERIC Educational Resources Information Center

    Ogeyik, Muhlise Cosgun

    2011-01-01

    Form-focused discovery activities allow language learners to grasp various aspects of a target language by contributing implicit knowledge by using discovered explicit knowledge. Moreover, such activities can assist learners to perceive and discover the features of their language input. In foreign language teaching environments, they can be used…

  6. Activation of the Silent Secondary Metabolite Production by Introducing Neomycin-Resistance in a Marine-Derived Penicillium purpurogenum G59

    PubMed Central

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-01-01

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α,6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1–5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1–5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways. PMID:25913704

  7. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  8. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  9. Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera ( Aloe barbadensis Miller) in different growth stages.

    PubMed

    Lee, Sarah; Do, Seon-Gil; Kim, Sun Yeou; Kim, Jinwan; Jin, Yoojeong; Lee, Choong Hwan

    2012-11-14

    Metabolite profiling of four different-sized Aloe vera plants was performed using gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) with multivariate analysis. Amino acids, sugars, and organic acids related to growth and development were identified by sizes. In particular, the relative contents of glucose, fructose, alanine, valine, and aspartic acid increased gradually as the size of the aloe increased. Anthraquinone derivatives such as 7-hydroxy-8-O-methylaloin, 7-hydroxyaloin A, and 6'-malonylnataloins A and B increased gradually, whereas chromone derivatives decreased continuously as the size of the aloe increased. The A30 aloe (size = 20-30 cm) with relatively high contents of aloins A and B, was suggested to have antioxidant components showing the highest antioxidant activity among the four different sizes of aloe. These data suggested that MS-based metabolomic approaches can illuminate metabolite changes associated with growth and development and can explain their change of antioxidant activity. PMID:23050594

  10. Isolation and Identification of Twelve Metabolites of Isocorynoxeine in Rat Urine and their Neuroprotective Activities in HT22 Cell Assay

    PubMed Central

    Qi, Wen; Chen, Fangfang; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isocorynoxeine, one of the major alkaloids from Uncaria Hook, shows the effects of lowering blood pressure, vasodilatation, and protection against ischemia-induced neuronal damage. In this paper, the metabolism of isocorynoxeine was investigated in rats. Twelve metabolites and the parent drug were isolated by using solvent extraction and repeated chromatographic methods, and determined by spectroscopic methods including UV, MS, NMR, and CD experiments. Seven new compounds were identified as 11-hydroxyisocorynoxeine, 5-oxoisocorynoxeinic acid-22-O-β-D-glucuronide, 10-hydroxyisocorynoxeine, 17-O-demethyl-16,17-dihydro-5-oxoisocorynoxeine, 5-oxoisocorynoxeinic acid, 21-hydroxy-5-oxoisocorynoxeine, and oxireno[18,19]-5-oxoisocorynoxeine, together with six known compounds identified as isocorynoxeine, 18,19-dehydrocorynoxinic acid, 18,19-dehydrocorynoxinic acid B, corynoxeine, isocorynoxeine-N-oxide, and corynoxeine-N-oxide. Possible metabolic pathways of isocorynoxeine are proposed. Furthermore, the activity assay for the parent drug and some of its metabolites showed that isocorynoxeine exhibited a significant neuroprotective effect against glutamate-induced HT22 cell death at the maximum concentration. However, little or weak neuroprotective activities were observed for M-3, M-6, M-7, and M-10. Our present study is important to further understand their metabolic fate and disposition in humans. PMID:25519834

  11. Isolation and identification of twelve metabolites of isocorynoxeine in rat urine and their neuroprotective activities in HT22 cell assay.

    PubMed

    Qi, Wen; Chen, Fangfang; Sun, Jiahong; Simpkins, James W; Yuan, Dan

    2015-01-01

    Isocorynoxeine, one of the major alkaloids from Uncaria Hook, shows the effects of lowering blood pressure, vasodilatation, and protection against ischemia-induced neuronal damage. In this paper, the metabolism of isocorynoxeine was investigated in rats. Twelve metabolites and the parent drug were isolated by using solvent extraction and repeated chromatographic methods, and determined by spectroscopic methods including UV, MS, NMR, and CD experiments. Seven new compounds were identified as 11-hydroxyisocorynoxeine, 5-oxoisocorynoxeinic acid-22-O-β-D-glucuronide, 10-hydroxyisocorynoxeine, 17-O-demethyl-16,17-dihydro-5-oxoisocorynoxeine, 5-oxoisocorynoxeinic acid, 21-hydroxy-5-oxoisocorynoxeine, and oxireno[18, 19]-5-oxoisocorynoxeine, together with six known compounds identified as isocorynoxeine, 18,19-dehydrocorynoxinic acid, 18,19-dehydrocorynoxinic acid B, corynoxeine, isocorynoxeine-N-oxide, and corynoxeine-N-oxide. Possible metabolic pathways of isocorynoxeine are proposed. Furthermore, the activity assay for the parent drug and some of its metabolites showed that isocorynoxeine exhibited a significant neuroprotective effect against glutamate-induced HT22 cell death at the maximum concentration. However, little or weak neuroprotective activities were observed for M-3, M-6, M-7, and M-10. Our present study is important to further understand their metabolic fate and disposition in humans. PMID:25519834

  12. Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba.

    PubMed

    Cao, Ling-Ling; Zhang, Ying-Ying; Liu, Ying-Jie; Yang, Ting-Ting; Zhang, Jin-Long; Zhang, Zheng-Guang; Shen, Li; Liu, Jun-Yan; Ye, Yong-Hao

    2016-05-01

    Phytopathogenic fungi such as Rhizoctonia solani and Sclerotinia sclerotiorum caused multiple plant diseases resulting in severe loss of crop production. Increasing documents endorsed that endophytes are a striking resource pool for numerous metabolites with various bioactivities such as anti-fungal. Here we reported the characterization and anti-phytopathogenic activity of sporothriolide, a metabolite produced by Nodulisporium sp. A21-an endophytic fungus in the leaves of Ginkgo biloba. Among the total twenty-five endophytic fungi isolated from the healthy leaves of G. biloba, the fermentation broth (FB) of the strain A21 was found potently inhibitory activity against R. solani and S. sclerotiorum using mycelia growth inhibition method. A21 was then identified as Nodulisporium sp., the asexual stage of Hypoxylon sp., by microscopic examination and ITS rDNA sequence data comparison. Under the bioassay-guided fractionation, sporothriolide was isolated from the petroleum ether extract of the FB of A21, whose structure was established by integrated interpretation of HR-ESI-MS and (1)H- and (13)C-NMR. Furthermore, the crystal structure of sporothriolide was first reported. In addition, sporothriolide was validated to be potently antifungal against R. solani, S. sclerotiorum and inhibit conidium germination of Magnaporthe oryzae in vitro and in vivo, indicating that it could be used as a lead compound for new fungicide development. PMID:27017876

  13. 20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests.

    PubMed

    Xu, Changjiang; Teng, Jijun; Chen, Weidong; Ge, Qiang; Yang, Zhiqi; Yu, Chunying; Yang, Zirong; Jia, William

    2010-12-01

    Ginseng has been used for mood adjustment in traditional Chinese medicine for thousands of years. Our previous study has shown that, total ginsenosides, the major pharmacologically functional ingredients of ginseng, possess antidepressant activity. In the present study, we hypothesized that an intestinal metabolite of ginseng, 20(S)-protopanaxadiol (code name S111), as a post metabolism compound (PMC) of ingested ginsenosides, may be responsible for the antidepressant activity of ginseng. To test this hypothesis, antidepressant-like activity of orally given S111 was measured in animal tests including tail suspension test, forced swimming test and rat olfactory bulbectomy depression model. In all those tests, S111 demonstrated antidepressant-like activity as potent as fluoxetine. S111 treated bulbectomy animals had higher levels of monoamine neurotransmitters in the brain and in vitro reuptake assay showed that S111 had a mild inhibitory effect. Furthermore, S111 but not fluoxetine significantly reduced brain oxidative stress and down-regulated serum corticosterone concentration in bulbectomy animals. No disturbance to central nervous system (CNS) normal functions were found in S111 treated animals. These results suggest that the ginseng active metabolite S111 is a potential antidepressant. Since the monoamine reuptake activity of this compound is rather weak, it remains to be investigated whether its antidepressant-like effect is by mechanisms that are different from current antidepressants. Furthermore, this study has demonstrated that post metabolism compounds (PMCs) of herb medicines such as S111 may be a novel source for drug discovery from medicinal herbs. PMID:20647027

  14. Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna.

    PubMed

    Kretschmann, Andreas; Ashauer, Roman; Hitzfeld, Kristina; Spaak, Piet; Hollender, Juliane; Escher, Beate I

    2011-06-01

    The organothiophosphate diazinon inhibits the target site acetylcholinesterase only after activation to its metabolite diazoxon. Commonly, the toxicity of xenobiotics toward aquatic organisms is expressed as a function of the external concentration and the resulting effect on the individual level after fixed exposure times. This approach does not account for the time dependency of internal processes such as uptake, metabolism, and interaction of the toxicant with the target site. Here, we develop a mechanistic toxicodynamic model for Daphnia magna and diazoxon, which accounts for the inhibition of the internal target site acetylcholinesterase and its link to the observable effect, immobilization, and mortality. The model was parametrized by experiments performed in vitro with the active metabolite diazoxon on enzyme extracts and in vivo with the parent compound diazinon. The mechanism of acetylcholinesterase inhibition was shown to occur irreversibly in two steps via formation of a reversible enzyme-inhibitor complex. The corresponding kinetic parameters revealed a very high sensitivity of acetylcholinesterase from D. magna toward diazoxon, which corresponds well with the high toxicity of diazinon toward this species. Recovery of enzyme activity but no recovery from immobilization was observed after in vivo exposure to diazinon. The toxicodynamic model combining all in vitro and in vivo parameters was successfully applied to describe the time course of immobilization in dependence of acetylcholinesterase activity during exposure to diazinon. The threshold value for enzyme activity below which immobilization set in amounted to 40% of the control activity. Furthermore, the model enabled the prediction of the time-dependent diazoxon concentration directly present at the target site. PMID:21539304

  15. IDO1 Metabolites Activate β-catenin Signaling to Promote Cancer Cell Proliferation and Colon Tumorigenesis in Mice

    PubMed Central

    Thaker, Ameet I.; Rao, M Suprada; Bishnupuri, Kumar S.; Kerr, Thomas A; Foster, Lynne; Marinshaw, Jeffrey M.; Newberry, Rodney D.; Stenson, William F.; Ciorba, Matthew A

    2013-01-01

    BACKGROUND & AIMS Indoleamine 2,3 dioxygenase-1 (IDO1) catabolizes tryptophan along the kynurenine pathway. Though IDO1 is expressed in inflamed and neoplastic epithelial cells of the colon, its role in colon tumorigenesis is not well understood. We used genetic and pharmacologic approaches to manipulate IDO1 activity in mice with colitis-associated cancer and human colon cancer cell lines. METHODS C57Bl6 wild type (control), IDO1−/−, Rag1−/−, Rag1/IDO1 double knockout mice were exposed to azoxymethane and dextran sodium sulfate (DSS) to induce colitis and tumorigenesis. Colitis severity was assessed by measurements of disease activity, cytokine levels and histologic analysis. In vitro experiments were conducted using HCT116 and HT29 human colon cancer cells. 1-methyl tryptophan and small interfering RNA were used to inhibit IDO1. Kynurenine pathway metabolites were used to simulate IDO1 activity. RESULTS C57Bl6 mice given pharmacologic inhibitors of IDO1 and IDO1−/− mice had lower tumor burdens and reduced proliferation in the neoplastic epithelium following administration of DSS and azoxymethane than control mice. These reductions were also observed in Rag1/IDO1 double knockout mice compared to Rag1−/− mice (which lack mature adaptive immunity). In human colon cancer cells, blockade of IDO1 activity reduced nuclear and activated β-catenin, transcription of its target genes (cyclin D1 and Axin2), and ultimately proliferation. Exogenous administration of IDO1 pathway metabolites kynurenine and quinolinic acid led to activation of β-catenin and proliferation of human colon cancer cells, and increased tumor growth in mice. CONCLUSIONS IDO1, which catabolizes tryptophan, promotes colitis-associated tumorigenesis in mice, independent of its ability to limit T-cell mediated immune surveillance. The epithelial cell-autonomous survival advantage provided by IDO1 to colon epithelial cells indicate its potential as a therapeutic target. PMID:23669411

  16. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a reactive metabolite of acetaminophen and mass spectral characterization of an arylated active site peptide.

    PubMed

    Dietze, E C; Schäfer, A; Omichinski, J G; Nelson, S D

    1997-10-01

    Acetaminophen (4'-hydroxyacetanilide, APAP) is a widely used analgesic and antipyretic drug that can cause hepatic necrosis under some circumstances via cytochrome P450-mediated oxidation to a reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Although the mechanism of hepatocellular injury caused by APAP is not fully understood, it is known that NAPQI forms covalent adducts with several hepatocellular proteins. Reported here is the identification of one of these proteins as glyceraldehyde-3-phosphate dehydrogenase [GAPDH, D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12]. Two hours after the administration of hepatotoxic doses of [14C]APAP to mice, at a time prior to overt cell damage, hepatocellular GAPDH activity was significantly decreased concurrent with the formation of a 14C-labeled GAPDH adduct. A nonhepatotoxic regioisomer of APAP, 3'-hydroxyacetanilide (AMAP), was found to decrease GAPDH activity to a lesser extent than APAP, and radiolabel from [14C]AMAP bound to a lesser extent to GAPDH at a time when its overall binding to hepatocellular proteins was almost equivalent to that of APAP. In order to determine the nature of the covalent adduct between GAPDH and APAP, its major reactive and toxic metabolite, NAPQI, was incubated with purified porcine muscle GAPDH. Microsequencing analysis and fast atom bombardment mass spectrometry (FAB-MS) with collision-induced dissociation (CID) were used to characterize one of the adducts as APAP bound to the cysteinyl sulfhydryl group of Cys-149 in the active site peptide of GAPDH. PMID:9348431

  17. Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μ mol/mol) and four levels of light intensity (225, 500, 625, and 900 μ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μ mol/mol + light intensity at 225 μ mol/m(2)/s. Meanwhile, at 400 μ mol/mol CO2 + 900 μ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336

  18. Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity

    PubMed Central

    Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μmol/mol) and four levels of light intensity (225, 500, 625, and 900 μmol/m2/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μmol/mol + light intensity at 225 μmol/m2/s. Meanwhile, at 400 μmol/mol CO2 + 900 μmol/m2/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μmol/mol the photosynthesis, stomatal conductance, fv/fm (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336

  19. The Oxidized Linoleic Acid Metabolite-Cytochrome P450 System is Active in Biopsies from Patients with Inflammatory Dental Pain

    PubMed Central

    Ruparel, Shivani; Hargreaves, Kenneth M.; Eskander, Michael; Rowan, Spencer; de Almeida, Jose F.A.; Roman, Linda; Henry, Michael A.

    2013-01-01

    Endogenous TRPV1 agonists such as oxidized linoleic acid metabolites (OLAMs) and the enzymes releasing them [e.g., cytochrome P450 (CYP)], are up-regulated following inflammation in the rat. However, it is not known if such agonists are elevated in human inflammatory pain conditions. Since TRPV1 is expressed in human dental pulp nociceptors, we hypothesized that OLAM-CYP machinery is active in this tissue type and is increased under painful inflammatory conditions such as irreversible pulpitis (IP). The aim of this study was to compare CYP expression and linoleic acid (LA) metabolism in normal versus inflamed human dental pulp. Our data showed that exogenous LA metabolism was significantly increased in IP tissues compared to normal tissues and that pretreatment with a CYP inhibitor, ketoconazole, significantly inhibited LA metabolism. Additionally, extracts obtained from LA-treated inflamed tissues, evoked significant inward currents in TG neurons, and were blocked by pretreatment with the TRPV1 antagonist, IRTX. Moreover, extracts obtained from ketoconazole-pretreated inflamed tissues significantly reduced inward currents in TG neurons. These data suggest that LA metabolites produced in human inflamed tissues act as TRPV1 agonists and that the metabolite production can be targeted by CYP inhibition. In addition, immunohistochemical analysis of two CYP isoforms, CYP2J and CYP3A1, were shown to be predominately expressed in immune cells infiltrating the inflamed dental pulp, emphasizing the paracrine role of CYP enzymes in OLAM regulation. Collectively, our data indicates that the machinery responsible for OLAM production is up-regulated during inflammation and can be targeted to develop potential analgesics for inflammatory-induced dental pain. PMID:23867730

  20. Protopanaxadiol, an Active Ginseng Metabolite, Significantly Enhances the Effects of Fluorouracil on Colon Cancer

    PubMed Central

    Wang, Chong-Zhi; Zhang, Zhiyu; Wan, Jin-Yi; Zhang, Chun-Feng; Anderson, Samantha; He, Xin; Yu, Chunhao; He, Tong-Chuan; Qi, Lian-Wen; Yuan, Chun-Su

    2015-01-01

    In this study, we evaluated the effects of protopanaxadiol (PPD), a gut microbiome induced ginseng metabolite, in increasing the anticancer effects of a chemotherapeutic agent fluorouracil (5-FU) on colorectal cancer. An in vitro HCT-116 colorectal cancer cell proliferation test was conducted to observe the effects of PPD, 5-FU and their co-administration and the related mechanisms of action. Then, an in vivo xenografted athymic mouse model was used to confirm the in vitro data. Our results showed that the human gut microbiome converted ginsenoside compound K to PPD as a metabolite. PPD and 5-FU significantly inhibited HCT-116 cell proliferation in a concentration-dependent manner (both p < 0.01), and the effects of 5-FU were very significantly enhanced by combined treatment with PPD (p < 0.01). Cell cycle evaluation demonstrated that 5-FU markedly induced the cancer cell S phase arrest, while PPD increased arrest in G1 phase. Compared to the control, 5-FU and PPD increased apoptosis, and their co-administration significantly increased the number of apoptotic cells (p < 0.01). Using bioluminescence imaging, in vivo data revealed that 5-FU significantly reduced the tumor growth up to Day 20 (p < 0.05). PPD and 5-FU co-administration very significantly reduced the tumor size in a dose-related manner (p < 0.01 compared to the 5-FU alone). The quantification of the tumor size and weight changes for 43 days supported the in vivo imaging data. Our results demonstrated that the co-administration of PPD and 5-FU significantly inhibited the tumor growth, indicating that PPD significantly enhanced the anticancer action of 5-FU, a commonly used chemotherapeutic agent. PPD may have a clinical value in 5-FU’s cancer therapeutics. PMID:25625815

  1. Colonic metabolites of berry polyphenols: the missing link to biological activity?

    PubMed

    Williamson, Gary; Clifford, Michael N

    2010-10-01

    The absorption of dietary phenols, polyphenols and tannins (PPT) is an essential step for biological activity and effects on health. Although a proportion of these dietary bioactive compounds are absorbed intact, depending on their chemical structure and the nature of any attached moiety (e.g. sugar, organic acid), substantial amounts of lower molecular weight catabolites are absorbed after biotransformation by the colon microflora. The main products in the colon are (a) benzoic acids (C6-C1), especially benzoic acid and protocatechuic acid; (b) phenylacetic acids (C6-C2), especially phenylacetic acid per se; (c) phenylpropionic acids (C6-C3), where the latter are almost entirely in the dihydro form, notably dihydrocaffeic acid, dihydroferulic acid, phenylpropionic acid and 3-(3'-hydroxyphenyl)-propionic acid. As a result of this biotransformation, some of these compounds can each reach mm concentrations in faecal water. Many of these catabolites are efficiently absorbed in the colon, appear in the blood and are ultimately excreted in the urine. In the case of certain polyphenols, such as anthocyanins, these catabolites are major products in vivo; protocatechuic acid is reported to represent a substantial amount of the ingested dose of cyanidin-3-O-glucoside. The major catabolites of berries, and especially blackcurrants, are predicted based on compositional data for polyphenols from berries and other sources. Since microbial catabolites may be present at many sites of the body in higher concentration than the parent compound, it is proposed that at least a part of the biological activities ascribed to berry polyphenols and other PPT are due to their colonic catabolites. PMID:20955650

  2. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    PubMed

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana. PMID:26688290

  3. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments.

    PubMed

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  4. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments

    PubMed Central

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the “secondary compound hypothesis” and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  5. Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam.

    PubMed

    Nhi-Cong, Le Thi; Mai, Cung Thi Ngoc; Minh, Nghiem Ngoc; Ha, Hoang Phuong; Lien, Do Thi; Tuan, Do Van; Quyen, Dong Van; Ike, Michihiko; Uyen, Do Thi To

    2016-01-01

    This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, β-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds. PMID:26654204

  6. Observation of an Unusual Electronically Distorted Semiquinone Radical of PCB Metabolites in the Active Site of Prostaglandin H Synthase-2

    PubMed Central

    Wangpradit, Orarat; Moman, Edelmiro; Nolan, Kevin B.; Buettner, Garry R.; Robertson, Larry W.; Luthe, Gregor

    2013-01-01

    The activation of the metabolites of airborne polychlorinated biphenyls (PCBs) into highly reactive radicals is of fundamental importance. We found that human recombinant prostaglandin H synthase-2 (hPGHS-2) biotransforms dihydroxy-PCBs, such as 4-chlorobiphenyl-2′,5′-hydroquinone (4-CB-2′,5′H2Q), into semiquinone radicals via one-electron oxidation. Using electron paramagnetic resonance (EPR) spectroscopy, we observed the formation of the symmetric quartet spectrum (1:3:3:1 by area) of 4-chlorobiphenyl-2′,5′-semiquinone radical (4-CB-2′,5′-SQ•−) from 4-CB-2′,5′H2Q. This spectrum changed to an asymmetric spectrum with time: the change can be explained as the overlap of two different semiquinone radical species. Hindered rotation of the 4-CB-2′,5′-SQ•− appears not to be a major factor for the change in lineshape because increasing the viscosity of the medium with glycerol produced no significant change in lineshape. Introduction of a fluorine, which increases the steric hindrance for rotation of the dihydroxy-PCB studied, also produced no significant changes. An in silico molecular docking model of 4-CB-2′,5′H2Q in the peroxidase site of hPGHS-2 together with ab initio quantum mechanical studies indicate that the close proximity of a negatively charged carboxylic acid in the peroxidase active site may be responsible for the observed perturbation in the spectrum. This study provides new insights into the formation of semiquinones from PCB metabolites and underscores the potential role of PGHS-2 in the metabolic activation of PCBs. PMID:20843536

  7. Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae).

    PubMed

    Zhao, Yunhe; Xu, Chunmei; Wang, Qiuhong; Wei, Yan; Liu, Feng; Xu, Shuangyu; Zhang, Zhengqun; Mu, Wei

    2016-05-01

    Bradysia odoriphaga (Diptera: Sciaridae) is the major pest that damages Chinese chive production. As a volatile compound derived from microbial secondary metabolites, benzothiazole has been determined to possess fumigant activity against B. odoriphaga. However, the mechanism of action of benzothiazole is not well understood. In the present study, fourth-instar larvae of B. odoriphaga were exposed to LC10 and LC30 of benzothiazole. Sublethal concentrations (LC10 and LC30) of benzothiazole significantly reduced the food consumption of the larvae on the second day after treatment (2 DAT). However, there were no significant changes in pupal weight among the different treatments. We also measured the protein, lipid, carbohydrate, and trehalose contents and the digestive enzyme activities of the larvae, and the results suggest that benzothiazole reduced the nutrient accumulation and decreased the digestive enzyme activities of B. odoriphaga. In addition, the activity of glutathione S-transferase was significantly decreased at 6h after treatment with benzothiazole, whereas general esterase activities were significantly increased at 6 and 24h after treatment. The results of this study indicate that benzothiazole interferes in the normal food consumption and digestion process by decreasing the activities of digestive enzymes. These results provide valuable information for understanding the toxicity of benzothiazole and for exploring volatile compound for the control of this pest. PMID:27017881

  8. Pore-forming activity of clostridial binary toxins.

    PubMed

    Knapp, O; Benz, R; Popoff, M R

    2016-03-01

    Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. PMID:26278641

  9. Histopathology, enzyme activities, and PAH metabolites in English sole collected near coastal pulp mills

    SciTech Connect

    Brand, D.G.

    1995-12-31

    The bottom-feeding flatfish, English sole (Pleuronectes vetulus), is widely distributed along the B.C. Pacific coast and fulfills a majority of the requirements as a sentinel species for environmental effects monitoring programs. Studies involving the use of histopathological, biochemical, and chemical tools with English sole collected near the vicinity of B.C. pulp mills are currently being conducted. Analysis, to date, has revealed idiopathic liver lesions to be strongly dependent on location of capture with a prevalence of 30% preneoplastic and neoplastic lesions found in fish collected near pulp mills. All fish residing near pulp mills show hepatocellular hemosiderosis, an iron storage disorder. The mixed-function oxidizing enzyme, EROD, was found to be induced in fish collected near pulp mills. However, the levels of conjugating enzymes, GST and UDP-GT, were found to be unchanged when compared with reference fish. PAH metabolites, measured as FACs in bile, are also present in English sole collected from the mill sites and the conjugated derivatives are presently being identified by HPLC/ES-MS techniques, The relationships between these observations will be discussed.

  10. mu Opioid receptor-mediated G-protein activation by heroin metabolites: evidence for greater efficacy of 6-monoacetylmorphine compared with morphine.

    PubMed

    Selley, D E; Cao, C C; Sexton, T; Schwegel, J A; Martin, T J; Childers, S R

    2001-08-15

    The efficacy of heroin metabolites for the stimulation of mu opioid receptor-mediated G-protein activation was investigated using agonist-stimulated [(35)S]guanosine-5'-O-(gamma-thio)-triphosphate binding. In rat thalamic membranes, heroin and its primary metabolite, 6-monoacetylmorphine (6-MAM), were more efficacious than morphine or morphine-6-beta D-glucuronide. This increased efficacy was not due to increased action of heroin and 6-MAM at delta receptors, as determined by competitive antagonism by naloxone, lack of antagonism by naltrindole, and competitive partial antagonism with morphine. In agreement with this interpretation, the same relative efficacy profile of heroin and its metabolites was observed at the cloned human mu opioid receptor expressed in C6 glioma cells. Moreover, these efficacy differences were GDP-dependent in a manner consistent with accepted mechanisms of receptor-mediated G-protein activation. The activity of heroin was attributed to in vitro deacetylation to 6-MAM, as confirmed by HPLC analysis. These results indicate that the heroin metabolite 6-MAM possesses higher efficacy than other heroin metabolites at mu opioid receptors, which may contribute to the higher efficacy of heroin compared with morphine in certain behavioral paradigms in vivo. PMID:11448454