Sample records for active methane seeps

  1. Methane-Stimulated Benthic Marine Nitrogen Fixation at Deep-Sea Methane Seeps

    NASA Astrophysics Data System (ADS)

    Dekas, A. E.; Orphan, V.

    2011-12-01

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. Although current measurements of N2 production and consumption in the oceans indicate that the nitrogen cycle is not balanced, recent findings on the limits of nitrogen fixation suggest that the perceived imbalance is an artifact of an incomplete assessment of marine diazotrophy. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. In the present study we investigate the distribution and magnitude of benthic marine diazotrophy at several active deep-sea methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). Using 15N2 and 15NH4 sediment incubation experiments followed by single-cell (FISH-NanoSIMS) and bulk isotopic analysis (EA-IRMS), we observed total protein synthesis (15N uptake from 15NH4) and nitrogen fixation (15N update from 15N2). The highest rates of nitrogen fixation observed in the methane seep sediment incubation experiments were over an order of magnitude greater than those previously published from non-seep deep-sea sediments (Hartwig and Stanley, Deep-Sea Research, 1978, 25:411-417). However, methane seep diazotrophy appears to be highly spatially variable, with sediments exhibiting no nitrogen fixation originating only centimeters away from sediments actively incorporating 15N from 15N2. The greatest spatial variability in diazotrophy was observed with depth in the sediment, and corresponded to steep gradients in sulfate and methane. The maximum rates of nitrogen fixation were observed within the methane-sulfate transition zone, where organisms mediating the anaerobic oxidation of methane are typically in high abundance. Additionally, incubation

  2. Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages

    PubMed Central

    Pasulka, Alexis L.; Marlow, Jeffrey J.; Grupe, Benjamin M.; Levin, Lisa A.

    2015-01-01

    ABSTRACT Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. PMID:26695630

  3. Anaerobic methane oxidation in low-organic content methane seep sediments

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Lapham, Laura; Grabowski, Kenneth S.; Coffin, Richard B.; Spence, George D.

    2013-01-01

    Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.

  4. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    DOE PAGES

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...

    2014-09-22

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less

  5. Anaerobic oxidation of methane in the Concepción Methane Seep Area, Chilean continental margin

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Linke, P.; Scholz, F.; Schmidt, M.; Liebetrau, V.; Treude, T.

    2012-04-01

    Within subduction zones of active continental margins, large amounts of methane can be mobilized by dewatering processes and transported to the seafloor along migration pathways. A recently discovered seep area located off Concepción (Chile) at water depth between 600 to 1100 mbsl is characterized by active methane vent sites as well as massive carbonates boulders and plates which probably are related to methane seepage in the past. During the SO210 research expedition "Chiflux" (Sept-Oct 2010), sediment from the Concepción Methane Seep Area (CSMA) at the fore arc of the Chilean margin was sampled to study microbial activity related to methane seepage. We sampled surface sediments (0-30cm) from sulfur bacteria mats, as well as clam, pogonophoran, and tubeworm fields with push cores and a TV-guided multicorer system. Anaerobic oxidation of methane (AOM) and sulfate reduction rates were determined using ex-situ radioisotope tracer techniques. Additionally, porewater chemistry of retrieved cores as well as isotopic composition and age record of surrounding authigenic carbonates were analyzed. The shallowest sulfate-methane-transition zone (SMTZ) was identified at 4 cm sediment depth hinting to locally strong fluid fluxes. However, a lack of Cl- anomalies in porewater profiles indicates a shallow source of these fluids, which is supported by the biogenic origin of the methane (δ13C -70‰ PDB). Sulfide and alkalinity was relatively high (up to 20 mM and 40 mEq, respectively). Rates of AOM and sulfate reduction within this area reached magnitudes typical for seeps with variation between different habitat types, indicating a diverse methane supply, which is affecting the depths of the SMTZ. Rates were highest at sulfur a bacteria mats (20 mmol m-2 d-1) followed by a large field of dead clams, a pogonophoran field, a black sediment spot, and a carbonate rich clam field. Lowest rates (0.2 mmol m-2 d-1) were measured in close vicinity to these hot spots. Abundant massive

  6. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses

    DOE PAGES

    Dekas, Anne E.; Connon, Stephanie A.; Chadwick, Grayson L.; ...

    2015-09-22

    To characterize the activity and interactions of methanotrophic archaea (ANME) and Deltaproteo-bacteria at a methane-seeping mud volcano, we used two complimentary measures of microbial activity: a community-level analysis of the transcription of four genes (16S rRNA, methyl coenzyme M reductase A (mcrA), adenosine-5'-phosphosulfate reductase α-subunit (aprA), dinitrogenase reductase (nifH)), and a single-cell-level analysis of anabolic activity using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). Transcript analysis revealed that members of the deltaproteobacterial groups Desulfosarcina/Desulfococcus (DSS) and Desulfobulbaceae (DSB) exhibit increased rRNA expression in incubations with methane, suggestive of ANME-coupled activity. Direct analysis of anabolic activity in DSS cells in consortia with ANME by FISH-NanoSIMS confirmed their dependence on methanotrophy, with no 15NHmore » $$+\\atop{4}$$ assimilation detected without methane. In contrast, DSS and DSB cells found physically independent of ANME (i.e., single cells) were anabolically active in incubations both with and without methane. These single cells therefore comprise an active ‘free-living’ population, and are not dependent on methane or ANME activity. We investigated the possibility of N 2 fixation by seep Deltaproteobacteria and detected nifH transcripts closely related to those of cultured diazotrophic Deltaproteobacteria. However, nifH expression was methane-dependent. 15N 2 incorporation was not observed in single DSS cells, but was detected in single DSB cells. Interestingly, 15N 2 incorporation in single DSB cells was methane-dependent, raising the possibility that DSB cells acquired reduced 15N products from diazotrophic ANME while spatially coupled, and then subsequently dissociated. In conclusion, with this combined data set we address several outstanding questions in methane seep microbial ecosystems and highlight the benefit

  7. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses

    PubMed Central

    Dekas, Anne E; Connon, Stephanie A; Chadwick, Grayson L; Trembath-Reichert, Elizabeth; Orphan, Victoria J

    2016-01-01

    To characterize the activity and interactions of methanotrophic archaea (ANME) and Deltaproteobacteria at a methane-seeping mud volcano, we used two complimentary measures of microbial activity: a community-level analysis of the transcription of four genes (16S rRNA, methyl coenzyme M reductase A (mcrA), adenosine-5′-phosphosulfate reductase α-subunit (aprA), dinitrogenase reductase (nifH)), and a single-cell-level analysis of anabolic activity using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). Transcript analysis revealed that members of the deltaproteobacterial groups Desulfosarcina/Desulfococcus (DSS) and Desulfobulbaceae (DSB) exhibit increased rRNA expression in incubations with methane, suggestive of ANME-coupled activity. Direct analysis of anabolic activity in DSS cells in consortia with ANME by FISH-NanoSIMS confirmed their dependence on methanotrophy, with no 15NH4+ assimilation detected without methane. In contrast, DSS and DSB cells found physically independent of ANME (i.e., single cells) were anabolically active in incubations both with and without methane. These single cells therefore comprise an active ‘free-living' population, and are not dependent on methane or ANME activity. We investigated the possibility of N2 fixation by seep Deltaproteobacteria and detected nifH transcripts closely related to those of cultured diazotrophic Deltaproteobacteria. However, nifH expression was methane-dependent. 15N2 incorporation was not observed in single DSS cells, but was detected in single DSB cells. Interestingly, 15N2 incorporation in single DSB cells was methane-dependent, raising the possibility that DSB cells acquired reduced 15N products from diazotrophic ANME while spatially coupled, and then subsequently dissociated. With this combined data set we address several outstanding questions in methane seep microbial ecosystems and highlight the benefit of measuring microbial activity in the

  8. Toward estimation of origin of methane at ancient seeps — Carbon isotopes of seep carbonates, lipid biomarkers, and adsorbed gas

    NASA Astrophysics Data System (ADS)

    Miyajima, Yusuke; Watanabe, Yumiko; Ijiri, Akira; Goto, Akiko; Jenkins, Robert; Hasegawa, Takashi; Sakai, Saburo; Matsumoto, Ryo

    2017-04-01

    Methane is generated mainly by microbial or thermal degradation of organic matter, and the origin of methane can be estimated based on its stable carbon isotopic signature. Seafloor seepages of methane-charged fluids have been a major source of methane to the ocean, and knowing the origin of methane at the methane seeps can provide valuable insights into the subsurface fluid circulation and biogeochemical processes. Methane seeps in the geological past are archived as authigenic methane-derived carbonate rocks, which precipitate via an alkalinity increase facilitated by microbially mediated anaerobic oxidation of methane. Here we attempted to estimate origins of methane at ancient seeps, based on several proxies preserved within the seep carbonates. We examined methane-seep carbonate rocks in the Japan Sea region, collected from lower Miocene to middle Pleistocene sediments at 11 sites on land, and also carbonate nodules collected from the seafloor off Joetsu, where thermogenic methane is seeping. Carbon isotopic compositions of the carbonates and lipid biomarkers of methane-oxidizing archaea within them were analyzed. In order to directly know original isotopic signatures of methane, we also attempted to extract adsorbed methane through acid dissolution of the powdered carbonates. Early-diagenetic carbonate phases show various δ13C values between -64.7 and -4.7‰ vs. VPDB, suggesting either biogenic or thermogenic, or both origins of methane. A lipid biomarker pentamethylicosane (PMI) extracted from the ancient carbonates has δ13C values mostly lower than -100‰ , whereas that from the modern methane-derived carbonate nodule has a higher value (-80‰ ). The δ13C values of the seeping methane (-36‰ ) and PMI in the modern Joetsu seep carbonate shows an offset of -44‰ . If this carbon isotope offset was similar at the ancient seeps, the δ13C values of PMI indicate that methane at ancient seeps in the Japan Sea region was biogenic in origin, with δ13C

  9. Microbial communities in methane seep sediments along US Atlantic Margin are structured by organic matter and seepage dynamics

    NASA Astrophysics Data System (ADS)

    Graw, M. F.; Pohlman, J.; Treude, T.; Ruppel, C. D.; Colwell, F. S.

    2016-12-01

    Methane seeps are dynamic environments on continental margins where subsurface methane reaches the ocean. Microbial communities play a critical role in carbon cycling within seep sediments via organic carbon degradation, methane production, and anaerobic oxidation of methane (AOM), which consumes 20-80% of methane in seep sediments. However, biogeochemical controls on microbial community structure at seeps on a margin-wide scale remain unclear. The passive US Atlantic Margin (USAM) has been identified as a region of active methane seepage. Passive margin seeps have traditionally been understudied relative to seeps on active margins. Passive margins exhibit large cross-margin variability in organic carbon deposition and are anticipated to have divergent seep dynamics from active margins. Thus, the USAM offers a unique opportunity to investigate controls on microbial communities in seep sediments. We undertook analysis of microbial communities inhabiting seep sediments at 6 biogeochemically distinct sites along the USAM. Microbiological samples were co-located with measurements of sediment geochemistry and AOM and sulfate reduction rates. Illumina sequencing of the 16S rRNA gene, using both universal (83 samples) and archaeal-specific (64 samples) primers, and the mcrA gene (18 samples) identified 44 bacterial phyla and 7 archaeal phyla. Seeps in canyons and on open slope, likely representing high and low organic content sediments, hosted distinct communities; the former was dominated by ammonia-oxidizing Marine Group I Thaumarchaeota and the latter by mixotrophic Hadesarchaeota. Seep stability also impacted microbial community structure, and in particular the establishment of an AOM community rather than a Bathyarchaeota-dominated community. These findings contribute to understanding how microbial communities are structured within methane seep sediments and pave the way for investigating broad differences in carbon cycling between seeps on passive and active margins.

  10. Methane seeps along boundaries of receding glaciers in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

    2012-12-01

    Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca

  11. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean

    PubMed Central

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by 13C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO2 was confirmed in a 13C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 109 cells cm−3 sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD–FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible. PMID:22207865

  12. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean.

    PubMed

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by (13)C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO(2) was confirmed in a (13)C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 10(9) cells cm(-3) sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD-FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible.

  13. Methane seeps along boundaries of arctic permafrost thaw and melting glaciers

    NASA Astrophysics Data System (ADS)

    Anthony, P.; Walter Anthony, K. M.; Grosse, G.; Chanton, J.

    2014-12-01

    Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs. In the Arctic, impermeable icy permafrost and glacial overburden form a 'cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. We document the release of geologic methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska. Through aerial and ground surveys we mapped >150,000 seeps identified as bubbling-induced open holes in lake ice. Subcap methane seeps had anomalously high fluxes, 14C-depletion, and stable isotope values matching known coalbed and thermogenic methane accumulations in Alaska. Additionally, we observed younger subcap methane seeps in Greenland that were associated with ice-sheet retreat since the Little Ice Age. These correlations suggest that in a warming climate, continued disintegration of permafrost, glaciers, and parts of the polar ice sheets will relax pressure on subsurface seals and further open conduits, allowing a transient expulsion of geologic methane currently trapped by the cryosphere cap.

  14. Geologic Significance of Newly Discovered Methane Seeps on the Northern US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.; Ruppel, C. D.; Kodis, M.; Lobecker, E.; Malik, M.

    2013-12-01

    identified within the GHSZ, but do not yet appear to be associated with salt diapirism or any other geological phenomena with the capacity to drive active methane expulsion at the seafloor. Repeat acoustic and video surveys at an ~500 m2 seep field south of Nantucket Island demonstrated that some seeps are characterized by continuous gas emission, whereas other proximal seeps exhibit episodic gas emission with a temporal variability on the order of hours to days. While significant ephemerality of methane emission at the scale of individual plumes has been verified, ROV imagery of massive, but isolated, patches of authigenic carbonate and well-developed chemosynthetic communities suggest that emission of methane at the scale of the seep field has been persistent over hundreds to thousands of years.

  15. Metagenomics in methane seep detection and studies of the microbial methane sediment filter

    NASA Astrophysics Data System (ADS)

    Gunn Rike, Anne; Håvelsrud, Othilde Elise; Haverkamp, Thomas; Kristensen, Tom; Jakobsen, Kjetill

    2013-04-01

    Metanotrophic prokaryotes with their capacity to oxidize methane to biomass and CO2 contribute considerably in reduction of the global methane emission from oceans. Metagenomic studies of seabed sediments represent a new approach to detect marine methane seeps and to study whether the inhabiting microbial consortium represent a microbial methane filter. We have used next generation high throughput DNA sequencing technology to study microbial consortia and their potential metabolic processes in marine sediment samples from the Håkon Mosby mud volcano (HMMV) in the Barents Sea, the Tonya Seep in the Coal Oil Point area in California and from the pockmarked area at the Troll oil and gas field in the North Sea. Annotation of archaeal reads from the HMMV metagenome resulted in hits to all enzymes supposed to be involved in the anaerobic oxidation of methane (AOM) carried out by anaerobic methanotrophic archaea (ANME). The presence of several ANME taxa at HMMV has previously been well described (1). The stratification analysis of the Tonya seep sediment showed that both aerobic and anaerobic methanotrophs were present at both layers investigated, although total archaea, ANME-1, ANME-2 and ANME-3 were overabundant in the deepest layer. Several sulphate reducing taxa (possibly syntrophic ANME partners) were detected. The Tonya Seep sediment represent a robust methane filter where presently dominating methanotrophic taxa could be replaced by less abundant methanotrophs should the environmental conditions change (2). In the Troll pockmarked sediments several methanotrophic taxa including ANME-1, ANME-2 and candidate division NC10 were detected although there was an overabundance of autotrophic nitrifiers (e.g. Nitrosopumilis, Nitrococcus, Nitrospira) using CO2 as the carbon source. Methane migrating upwards through the sediments is probably oxidized to CO2 in AOM resulting in an upward CO2 flux. The CO2 entering the seafloor may contribute to maintain the pockmark structure

  16. A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor

    PubMed Central

    Aoki, Masataka; Ehara, Masayuki; Saito, Yumi; Yoshioka, Hideyoshi; Miyazaki, Masayuki; Saito, Yayoi; Miyashita, Ai; Kawakami, Shuji; Yamaguchi, Takashi; Ohashi, Akiyoshi; Nunoura, Takuro; Takai, Ken; Imachi, Hiroyuki

    2014-01-01

    Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms. PMID:25141130

  17. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    DOE PAGES

    Loyd, S. J.; Sample, J.; Tripati, R. E.; ...

    2016-07-22

    Here, methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixingmore » of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.« less

  18. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers

    NASA Astrophysics Data System (ADS)

    Walter Anthony, Katey M.; Anthony, Peter; Grosse, Guido; Chanton, Jeffrey

    2012-06-01

    Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs, such as coal beds and natural gas deposits. In the Arctic, permafrost and glaciers form a `cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. With a carbon store of over 1,200Pg, the Arctic geologic methane reservoir is large when compared with the global atmospheric methane pool of around 5Pg. As such, the Earth's climate is sensitive to the escape of even a small fraction of this methane. Here, we document the release of 14C-depleted methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska and Greenland, using aerial and ground surface survey data and in situ measurements of methane isotopes and flux. We mapped over 150,000 seeps, which we identified as bubble-induced open holes in lake ice. These seeps were characterized by anomalously high methane fluxes, and in Alaska by ancient radiocarbon ages and stable isotope values that matched those of coal bed and thermogenic methane accumulations. Younger seeps in Greenland were associated with zones of ice-sheet retreat since the Little Ice Age. Our findings imply that in a warming climate, disintegration of permafrost, glaciers and parts of the polar ice sheets could facilitate the transient expulsion of 14C-depleted methane trapped by the cryosphere cap.

  19. Methane from shallow seep areas of the NW Svalbard Arctic margin does not reach the sea surface

    NASA Astrophysics Data System (ADS)

    Silyakova, Anna; Greinert, Jens; Jansson, Pär; Ferré, Bénédicte

    2015-04-01

    Methane, an important greenhouse gas, leaks from large areas of the Arctic Ocean floor. One overall question is how much methane passes from the seabed through the water column, potentially reaching the atmosphere. Transport of methane from the ocean floor into and through the water column depends on many factors such as distribution of gas seeps, microbial methane oxidation, and ambient oceanographic conditions, which may trigger a change in seep activity. From June-July 2014 we investigated dissolved methane in the water column emanating from the "Prins Karls Forland seeps" area offshore the NW Svalbard Arctic margin. Measurements of the spatial variability of dissolved methane in the water column included 65 CTD stations located in a grid covering an area of 30 by 15 km. We repeated an oceanographic transect twice in a week for time lapse studies, thus documenting significant temporal variability in dissolved methane above one shallow seep site (~100 m water depth). Analysis of both nutrient concentrations and dissolved methane in water samples from the same transect, reveal striking similarities in spatial patterns of both dissolved methane and nutrients indicating that microbial community is involved in methane cycling above the gas seepage. Our preliminary results suggest that although methane release can increase in a week's time, providing twice as much dissolved gas to the water column, no methane from a seep reaches the sea surface. Instead it spreads horizontally under the pycnocline. Yet microbial communities react rapidly to the methane supply above gas seepage areas and may also have an important role as an effective filter, hindering methane release from the ocean to the atmosphere during rapid methane ebullition. This study is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259.

  20. Activity and Diversity of Methanotrophic Bacteria at Methane Seeps in Eastern Lake Constance Sediments ▿

    PubMed Central

    Deutzmann, Jörg S.; Wörner, Susanne; Schink, Bernhard

    2011-01-01

    The activity and community structure of aerobic methanotrophic communities were investigated at methane seeps (pockmarks) in the littoral and profundal zones of an oligotrophic freshwater lake (Lake Constance, Germany). Measurements of potential methane oxidation rates showed that sediments inside littoral pockmarks are hot spots of methane oxidation. Potential methane oxidation rates at littoral pockmark sites exceeded the rates of the surrounding sediment by 2 orders of magnitude. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the pmoA gene revealed major differences in the methanotrophic community composition between littoral pockmarks and the surrounding sediments. Clone library analysis confirmed that one distinct Methylobacter-related group dominates the community at littoral pockmarks. In profundal sediments, the differences between pockmarks and surrounding sediments were found to be less pronounced. PMID:21335392

  1. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy

    PubMed Central

    Ruff, S. Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  2. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy.

    PubMed

    Ruff, S Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g(-1) day(-1) indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20-50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  3. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.

    PubMed

    Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J

    2016-09-01

    Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Methane emission and consumption at a North Sea gas seep (Tommeliten area)

    NASA Astrophysics Data System (ADS)

    Niemann, H.; Elvert, M.; Hovland, M.; Orcutt, B.; Judd, A.; Suck, I.; Gutt, J.; Joye, S.; Damm, E.; Finster, K.; Boetius, A.

    2005-11-01

    The North Sea hosts large coal, oil and gas reservoirs of commercial value. Natural leakage pathways of subsurface gas to the hydrosphere have been recognized during geological surveys (Hovland and Judd, 1988). The Tommeliten seepage area is part of the Greater Ekofisk area, which is situated above the Tommeliten Delta salt diapir in the central North Sea. In this study, we report of an active seep site (56°29.90'N, 2°59.80'E) located in the Tommeliten area, Norwegian Block 1/9, at 75 m water depth. Here, cracks in a buried marl horizon allow methane to migrate into overlying clay-silt and sandy sediments. Hydroacoustic sediment echosounding showed several venting spots coinciding with the apex of marl domes where methane is released into the water column and potentially to the atmosphere during deep mixing situations. In the vicinity of the gas seeps, sea floor observations showed small mats of giant sulphide-oxidizing bacteria above patches of black sediments and carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Authigenic Carbonates (MDACs) contain 13C-depleted, archaeal lipids indicating previous gas seepage and AOM activity. High amounts of sn2-hydroxyarchaeol relative to archaeol and low abundances of biphytanes in the crusts give evidence that ANaerobic MEthane-oxidising archaea (ANME) of the phylogenetic cluster ANME-2 were the potential mediators of Anaerobic Oxidation of Methane (AOM) at the time of carbonate formation. Small pieces of MDACs were also found subsurface at about 1.7 m sediment depth, associated with the Sulphate-Methane Transition Zone (SMTZ). The SMTZ of Tommeliten is characterized by elevated AOM and Sulphate Reduction (SR) rates, increased concentrations of 13C-depleted tetraether derived biphytanes, and specific bacterial Fatty Acids (FA). Further biomarker and 16S rDNA based analyses give evidence that AOM at the Tommeliten SMTZ is mediated by archaea belonging to the ANME-1b

  5. Authigenic carbonates from active methane seeps offshore southwest Africa

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 < δ13C ‰ V-PDB < -40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4 < δ18O ‰ V-PDB < +6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive δ18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby

  6. Methane seep events of the southern Joetsu Knoll since middle Pleistocene based on benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Oi, T.; Akiba, F.; Matsumoto, R.; Kakuwa, Y.

    2016-12-01

    Gas hydrates were collected at several sites off Joetsu which presented anomalous seismic structures. "Gas chimneys", major host structures for shallow gas hydrates, were recognized ROV off Joetsu in eastern margin of the Japan Sea, as were a number of active methane seeps. The assemblage components and carbon isotope of benthic foraminifera, which are ubiquitous in global marine settings, can indicate methane seep environments (Akimoto et al., 1994; Bhaumik and Gupta, 2007). Preliminary work by Oi et al. (2015) documented the obvious occurrences of methane related foraminifera, Rutherfordoides sp., in three core sediments recovered from Umitaka Spur, west Oki Trough and north Mogami Trough in the eastern margin of the Japan Sea, and found them to comprise the early part of the MIS 2, calculated to 28-25ka. These records suggest that active methane seep events might occur at the same time during early MIS 2, but were confined within the last 100ka. In this study, we analyzed benthic foraminiferal fossils from drilling core J04RB (core length 122 m; one of the gas hydrate bearing sites at a southern part of the Joetsu Knoll) in order to document methane seep events during the last 500ka. Firstly, we estimated sedimentation ages from diatom biostratigraphy and identification of Aso-1 tephra. Based on diatom components, we recognized a boundary between NPD (Neogene North Pacific diatom Zonations) 12 and NPD11, estimated at 300 ka (MIS8/9; Yanagisawa and Akiba, 1998). The bottom age was estimated to almost 530-560 ka (around MIS14) especially from the alternation with warm and cold diatom zones (Akiba et al., 2014). Secondary, we could suppose the paleoenvironments from benthic foraminifera as below. 1. The rare benthic foraminifera during the cold stages (MIS8, MIS10, and MIS12) indicate anoxic bottom conditions characteristic of falling sea level, just as with MIS 2. 2. We recognized the continuous distributions of tiny methane related specimens of Rutherfordoides sp

  7. Gammaproteobacterial Methanotrophs Dominate Cold Methane Seeps in Floodplains of West Siberian Rivers

    PubMed Central

    Oshkin, Igor Y.; Wegner, Carl-Eric; Lüke, Claudia; Glagolev, Mikhail V.; Filippov, Illiya V.; Pimenov, Nikolay V.; Liesack, Werner

    2014-01-01

    A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h−1, while some seeps emitted up to 5.54 g CH4 h−1. The δ13C value of methane released from these seeps varied between −71.1 and −71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml−1 day−1) were measured in mud samples. Fluorescence in situ hybridization detected 107 methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies. PMID:25063667

  8. Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.

    The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane andmore » CO 2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH 4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO 2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.« less

  9. Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep

    DOE PAGES

    Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.; ...

    2017-02-27

    The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane andmore » CO 2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH 4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO 2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.« less

  10. Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep

    PubMed Central

    Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.; Kellermann, Matthias Y.; Redmond, Molly C.; Andersen, Gary L.; Valentine, David L.

    2017-01-01

    The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane and CO2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems. PMID:28289403

  11. Investigating Microbial Activity in Diazotrophic Methane Seep Sediment via Transcript Analysis and Single-Cell FISH-NanoSIMS

    NASA Astrophysics Data System (ADS)

    Dekas, A. E.; Connon, S. A.; Chadwick, G.; Orphan, V. J.

    2012-12-01

    Methane seep microbial ecosystems are phylogenetically diverse and physiologically complex, and require culture-independent techniques to accurately investigate metabolic activity. In the present study we combine an RNA analysis of four key microbial genes with FISH-NanoSIMS analysis of single cells to determine the diversity of nitrogen fixing microorganisms (diazotrophs) present at a deep-sea methane-seeping site, as well as investigate the methane-dependency of a variety of community members. Recently, methane-dependent nitrogen fixation was observed in Mound 12 Costa Rica sediments, and was spatially correlated with the abundance of aggregates of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacterial symbionts (SRB). Combined with the detection of 15N uptake from 15N2 in these aggregates, this suggested that the ANME-SRB aggregates are the primary diazotrophs in seep sediment. However, the diversity of dinitrogenase reductase (nifH) sequences recovered from several deep-sea locales, including Mound 12, suggests a greater diversity of diazotrophs in marine sediment. To investigate the activity of these potential diazotrophs in Mound 12 sediment, we investigated a suite of RNA transcripts in 15N2 incubations in both the presence and absence of methane: nifH, bacterial 16S rRNA, methyl coenzyme M reductase A (mcrA), and adenosine-5'-phosposulfate reductase alpha subunit (aprA). No nifH transcripts were recovered in incubations without methane, consistent with previous measurements lacking 15N2 uptake in the same sediments. The activity of the bacterial community in general, assessed by variable transcription, was also greatly affected by the presence or absence of methane. Single-cell fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) was employed to confirm diazotrophic activity (15N2 uptake) and protein synthesis (15NH4+ uptake) of particular species implicated as ecologically important by the

  12. Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand).

    PubMed

    Ruff, S Emil; Arnds, Julia; Knittel, Katrin; Amann, Rudolf; Wegener, Gunter; Ramette, Alban; Boetius, Antje

    2013-01-01

    The methane-emitting cold seeps of Hikurangi margin (New Zealand) are among the few deep-sea chemosynthetic ecosystems of the Southern Hemisphere known to date. Here we compared the biogeochemistry and microbial communities of a variety of Hikurangi cold seep ecosystems. These included highly reduced seep habitats dominated by bacterial mats, partially oxidized habitats populated by heterotrophic ampharetid polychaetes and deeply oxidized habitats dominated by chemosynthetic frenulate tubeworms. The ampharetid habitats were characterized by a thick oxic sediment layer that hosted a diverse and biomass-rich community of aerobic methanotrophic Gammaproteobacteria. These bacteria consumed up to 25% of the emanating methane and clustered within three deep-branching groups named Marine Methylotrophic Group (MMG) 1-3. MMG1 and MMG2 methylotrophs belong to the order Methylococcales, whereas MMG3 methylotrophs are related to the Methylophaga. Organisms of the groups MMG1 and MMG3 are close relatives of chemosynthetic endosymbionts of marine invertebrates. The anoxic sediment layers of all investigated seeps were dominated by anaerobic methanotrophic archaea (ANME) of the ANME-2 clade and sulfate-reducing Deltaproteobacteria. Microbial community analysis using Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that the different seep habitats hosted distinct microbial communities, which were strongly influenced by the seep-associated fauna and the geographic location. Despite outstanding features of Hikurangi seep communities, the organisms responsible for key ecosystem functions were similar to those found at seeps worldwide. This suggests that similar types of biogeochemical settings select for similar community composition regardless of geographic distance. Because ampharetid polychaetes are widespread at cold seeps the role of aerobic methanotrophy may have been underestimated in seafloor methane budgets.

  13. Microbial Communities of Deep-Sea Methane Seeps at Hikurangi Continental Margin (New Zealand)

    PubMed Central

    Ruff, S. Emil; Arnds, Julia; Knittel, Katrin; Amann, Rudolf; Wegener, Gunter; Ramette, Alban; Boetius, Antje

    2013-01-01

    The methane-emitting cold seeps of Hikurangi margin (New Zealand) are among the few deep-sea chemosynthetic ecosystems of the Southern Hemisphere known to date. Here we compared the biogeochemistry and microbial communities of a variety of Hikurangi cold seep ecosystems. These included highly reduced seep habitats dominated by bacterial mats, partially oxidized habitats populated by heterotrophic ampharetid polychaetes and deeply oxidized habitats dominated by chemosynthetic frenulate tubeworms. The ampharetid habitats were characterized by a thick oxic sediment layer that hosted a diverse and biomass-rich community of aerobic methanotrophic Gammaproteobacteria. These bacteria consumed up to 25% of the emanating methane and clustered within three deep-branching groups named Marine Methylotrophic Group (MMG) 1-3. MMG1 and MMG2 methylotrophs belong to the order Methylococcales, whereas MMG3 methylotrophs are related to the Methylophaga . Organisms of the groups MMG1 and MMG3 are close relatives of chemosynthetic endosymbionts of marine invertebrates. The anoxic sediment layers of all investigated seeps were dominated by anaerobic methanotrophic archaea (ANME) of the ANME-2 clade and sulfate-reducing Deltaproteobacteria. Microbial community analysis using Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that the different seep habitats hosted distinct microbial communities, which were strongly influenced by the seep-associated fauna and the geographic location. Despite outstanding features of Hikurangi seep communities, the organisms responsible for key ecosystem functions were similar to those found at seeps worldwide. This suggests that similar types of biogeochemical settings select for similar community composition regardless of geographic distance. Because ampharetid polychaetes are widespread at cold seeps the role of aerobic methanotrophy may have been underestimated in seafloor methane budgets. PMID:24098632

  14. Methane emission and consumption at a North Sea gas seep (Tommeliten area)

    NASA Astrophysics Data System (ADS)

    Niemann, H.; Elvert, M.; Hovland, M.; Orcutt, B.; Judd, A.; Suck, I.; Gutt, J.; Joye, S.; Damm, E.; Finster, K.; Boetius, A.

    The Tommeliten seepage area is part of the Greater Ekofisk area, which is situated above the Tommeliten Delta salt diapir in the central North Sea (56°29.90' N, 2°59.80' E, Norwegian Block 1/9, 75 m water depth). Here, cracks in a buried marl horizon allow methane to migrate into overlying clay-silt and sandy sediments. Hydroacoustic sediment echosounding showed several venting spots coinciding with the apex of marl domes where methane is released into the water column and potentially to the atmosphere. In the vicinity of the gas seeps, sea floor observations showed small mats of giant sulphide-oxidizing bacteria above patches of black sediments as well as carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Authigenic Carbonates (MDACs) contain 13C-depleted, archaeal lipids indicating previous gas seepage and AOM activity. High amounts of sn2-hydroxyarchaeol relative to archaeol and low abundances of biphytanes in the crusts give evidence that ANaerobic MEthane-oxidising archaea (ANME) of the phylogenetic cluster ANME-2 were the potential mediators of Anaerobic Oxidation of Methane (AOM) at the time of carbonate formation. Small pieces of MDACs were also found subsurface at about 1.7 m sediment depth, associated with the AOM zone. This zone is characterized by elevated AOM and Sulphate Reduction (SR) rates, increased concentrations of 13C-depleted tetraether derived biphytanes, and specific bacterial Fatty Acids (FA). Further biomarker and 16S rDNA based analyses of this horizon give evidence that AOM is mediated by archaea belonging to the ANME-1b group and Sulphate Reducing Bacteria (SRB) most likely belonging to the Seep-SRB1 cluster. The zone of active methane consumption was restricted to a distinct horizon of about 20 cm. Concentrations of 13C-depleted lipid biomarkers (e.g. 500 ng g-dw-1 biphythanes, 140 ng g-dw-1 fatty acid ai-C15:0), cell numbers (1.5×108 cells cm-3), AOM and SR rates (3 nmol cm-3 d

  15. Application of parasound data for sediment study on methane seep site at Simeulue basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiguna, Taufan, E-mail: taufan.wiguna@bppt.go.id; Ardhyastuti, Sri

    2015-09-30

    The Parasound data presents sea depth and sub-bottom profiler. In terms of geological terminology, parasound data represents significant recent surface sedimentary structures that valuable for the selection of subsequent sampling site such as sampling at methane seep site. Therefore, Parasound is used to detailing methane seep at surface sediment following seismic data interpretation. In this study, parasound is used to focus observe area especially for sediment study on methane seep site. The Parasound systems works both as narrow beam sounder use high frequency and as sediment echosounder use low frequency. Parasound acquisition applies parametric effect. It produces additional frequency bymore » nonlinear acoustic interaction of finite amplitude waves. Parasound transducers have 128 elements on 1 m2 and need transmission power up to 70 kW. The results of this study are discovered large seep carbonate with porous surface which means there are gas expulsions passing through that rock.« less

  16. Authigenic minerals related to carbon and sulfur biogeochemical cycling from deep-sea active methane seeps offshore South-West Africa

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc-Valleron, M.; Demange, J.; Boudouma, O.; Pape, T.; Himmler, T.; Fekete, N.; Spiess, V.

    2011-12-01

    The South-West African continental margin is well known for occurrences of active methane-rich fluid seeps that are associated with seafloor pockmarks in a broad range of water depths, from the shelf to the deep basins. High gas flares in the water column, luxurious oases of benthic fauna, gas hydrate accumulations and diagenetic carbonate crusts have been observed at these seeps. During the M76/3a expedition of R/V METEOR (summer 2008) gravity cores recovered abundant authigenic carbonate concretions from five pockmarks of the South-West African margin including previously studied sites (Hydrate Hole, Worm Hole, Regab Pockmark) and two sites (Deep Hole, Baboon Cluster) newly discovered during the cruise. Carbonate concretions were mostly associated to sediments settled by seep-associated benthic macrofauna and bearing shallow gas hydrates. We present new results of the comprehensive analysis of the mineralogy and isotope geochemistry of the diagenetic carbonates sampled in the five pockmarks. The mineralogy of authigenic carbonates is dominated by magnesian calcite and aragonite, associated occasionally with dolomite. The oxygen and carbon isotopic compositions of authigenic carbonates (+2.4 < δ18O % V-PDB < +6.2 ; -61.0 < δ13C % V-PDB < -40.1) indicate that microbial anaerobic oxidation of methane (AOM) was the main process controling carbonate precipitation within sub-seafloor sediments deposited from the glacial-time up to the present. The frequent occurrence of diagenetic gypsum crystals within the sediments demonstrates that bio-irrigation with oxygenated bottom water by the burrowing activity of benthic fauna caused the secondary oxidation of reduced sulfur (hydrogen sulfide and pyrite) that was produced by sulfate reducting bacteria as a by-product of AOM; during the sulfide oxidation process, the released acidity induced the partial dissolution of carbonates. Our results demonstrate also the strong link that existed between the carbon and sulfur cycles

  17. The Application of Methane Clumped Isotope Measurements to Determine the Source of Large Methane Seeps in Alaskan Lakes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.

    2014-12-01

    Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.

  18. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance.

    PubMed

    Bornemann, Maren; Bussmann, Ingeborg; Tichy, Lucas; Deutzmann, Jörg; Schink, Bernhard; Pester, Michael

    2016-08-01

    Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Examining the diversity and distribution of microbial communities from newly discovered methane seeps along the Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Seabrook, S.; Thurber, A. R.; Embley, R. W.; Raineault, N.; Baumberger, T.; Merle, S. G.

    2016-12-01

    Methane seeps provide biogeochemical and microbial heterogeneity in deep-sea habitats. In June of 2016 the E/V Nautilus, exploring for methane seeps along the Cascadia continental margin, discovered over 450 bubble streams, indicative of active seepage, and collected biological samples at 6 of the resulting newly discovered seeps. These seeps covered a range of depths, latitudes, habitat types and biogeochemical environments and included: Juan de Fuca (150m), Astoria canyon (800m and 500m), Nehalem Bank (185m), Heceta SW (1200m), SW Coquille Bank (600m), and Klamath Knoll seep (700m). Geologic environment types included continental shelf, canyons and slopes, and these sites spanned the zone of hydrate stability and the Oxygen Minimum Zone. A range of seep-specific habitat were found and sampled including: reduced sediments, microbial mats, methane hydrates, clam beds (Calyptogena spp.), Siboglinidae tubeworm assemblages and sparse assemblages of stalked barnacles. Here, we present an initial characterization of the microbial communities collected via push cores by a remotely operated vehicle (ROV) at the six aforementioned sites. With high throughput amplicon sequencing of the V4-V5 region of the 16S rRNA gene, we characterize the diversity and microbial composition of the seep sites sampled. This characterization is furthered with digital drop PCR of the pmoA gene (involved with aerobic methanotrophy) to allow for a comparison of the community composition with functional gene abundance of critical microbial processes. These data will be placed in the greater biogeochemical context of the region, including direct comparison with paired gas-tight sampling at key locations. The results of these analyses will provide the first microbial description of this broad range of seep ecosystems along the Cascadia Margin adding to our overall understanding of microbial diversity, the dominant physiological processes at seep ecosystems, and the connection between community

  20. Aragonite precipitation induced by anaerobic oxidation of methane in shallow-water seeps, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Wiedling, Johanna; Kuhfuß, Hanna; Lott, Christian; Böttcher, Michael E.; Lichtschlag, Anna; Wegener, Gunter; Deusner, Christian; Bach, Wolfgang; Weber, Miriam

    2014-05-01

    flow path. The Elba aragonites, showed a carbon isotope signature of -14.9o vs. VPDB, mirroring the isotopic signature of the pore-water DIC at this sediment depth. Similar δ13C-compositions of -15.3o were obtained for the discharging methane, giving room for discussion about the origin of the gas. We suppose that AOM is the main driver for aragonite precipitation in the permeable sands at the shallow-water seeps because of (1) very low organic carbon contents (0.5 mg/g) in the sediment, (2) 13C enrichment in the methane gas, (3) elevated DIC concentrations in the pore-water, and (4) AOM in vitro activity. Thus, aragonite precipitates of the seep site near Elba may represent a unique system to study ongoing abiogenic seep carbonate formation at shallow depth as a modern analogue for seep carbonates occurring in the geological record.

  1. Field Exploration of Methane Seep Near Atqasuk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{submore » 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.« less

  2. Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: Relevance to Astrobiology

    NASA Astrophysics Data System (ADS)

    Shapiro, Russell Scott

    2004-12-01

    Recovery of prokaryotic body fossils from methane seep carbonates such as those of the Cretaceous Tepee Buttes of Colorado serves as a model for sampling in future astrobiological missions. The fossils, found primarily at the interface between paragenetic fabrics, suggest a sharp physicochemical gradient. Evidence of these microbial fossils occurs at a variety of scales. In the field, microbialite is found as meter-scale thrombolitic zones and centimeterscale stromatolitic crusts lining voids inferred to be the sites of ancient methane seepage. Petrographic fabrics suggestive of microbialite include indistinct peloids (0.1-1 mm in diameter) and crusts of authigenic micrite. Primary evidence obtained from scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis comprises pinnate bacteria (0.3 µm in diameter and 1-1.5 µm long), sheaths (2-4 µm in diameter), coccoids (0.5-1 µm in diameter, up to 40 per cluster), and the presence of framboidal pyrite (6-8 µm in diameter). These results are in agreement with studies of other ancient and modern seeps and suggest a morphological conservatism of microbial form that can be incorporated into studies of extraterrestrial environments where it is presumed that reduced gases drive the metabolic activity of prokaryote-like organisms. Target areas that could serve as conduits for reduced gas seeps include tectonic or impact-driven faulting, zones of cryosphere melting, or other disruptions in crustal coherence. Ancient seeps, preserved as localized anomalous evaporite deposits in the sedimentary cover, could be detected by remote sensing. Astrobiology 4, 438-449.

  3. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  4. Extreme Morphologic and Venting Changes in Methane Seeps at Southern Hydrate Ridge, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Bigham, K.; Kelley, D. S.; Solomon, E. A.; Delaney, J. R.

    2017-12-01

    Two highly active methane hydrate seeps have been visited over a 7-year period as part of the construction and operation of NSF's Ocean Observatory Initiative's Regional Cable Array at Southern Hydrate Ridge. The site is located 90 km west of Newport, Oregon, at a water depth of 800 m. The seeps, Einstein's Grotto (OOI instrument deployment site) and Smokey Tavern (alternate site to the north), have been visited yearly from 2010 to 2017 with ROVs. Additionally, a digital still camera deployed from 2014 to 2017 at Einstein's Grotto, has been documenting the profound morphologic and biological changes at this site. A cabled pressure sensor, Acoustic Doppler Current Profiler, hydrophone, seismometer array, and uncabled fluid samplers have also been operational at the site for the duration of the camera's deployment. During this time, Einstein's Grotto has evolved from a gentle mound with little venting, to a vigorously bubbling pit bounded by a near vertical wall. Early on bubble emissions blew significant amounts of sediment into the water column and thick Beggiatoa mats coverd the mound. Most recently the face of the pit has collapsed, although bubble plumes are still emitted from the site. The Smokey Tavern site has undergone more extreme changes. Similar to Einstein's Grotto it was first characterized by gentle hummocks with dispersed bacterial mats. In subsequent years, it developed an extremely rugged, elongated collapsed area with vertical walls and jets of methane bubbles rising from small pits near the base of the collapse zone. Meter-across nearly sediment-free blocks of methane hydrate were exposed on the surface and in the walls of the collapse zone. In 2016, this area was unrecognizable with a much more subdued topography, and weak venting of bubbles. Exposed methane hydrate was not visible. From these observations new evolutionary models for methane seeps are being developed for Southern Hydrate Ridge.

  5. Methane Seeps in the Gulf of Mexico: repeat acoustic surveying shows highly temporally and spatially variable venting

    NASA Astrophysics Data System (ADS)

    Beaumont, B. C.; Raineault, N.

    2016-02-01

    Scientists have recognized that natural seeps account for a large amount of methane emissions. Despite their widespread occurrence in areas like the Gulf of Mexico, little is known about the temporal variability and site-scale spatial variability of venting over time. We used repeat acoustic surveys to compare multiple days of seep activity and determine the changes in the locus of methane emission and plume height. The Sleeping Dragon site was surveyed with an EM302 multibeam sonar on three consecutive days in 2014 and 4 days within one week in 2015. The data revealed three distinctive plume regions. The locus of venting varied by 10-60 meters at each site. The plume that exhibited the least spatial variability in venting, was also the most temporally variable. This seep was present in one-third of survey dates in 2014 and three quarters of survey dates in 2015, showing high day-to-day variability. The plume height was very consistent for this plume, whereas the other plumes were more consistent temporally, but varied in maximum plume height detection by 25-85 m. The single locus of emission at the site that had high day-to-day variability may be due to a single conduit for methane release, which is sometimes closed off by carbonate or clathrate hydrate formation. In addition to day-to-day temporal variability, the locus of emission at one site was observed to shift from a point-source in 2014 to a diffuse source in 2015 at a nearby location. ROV observations showed that one of the seep sites that closed off temporarily, experienced an explosive breakthrough of gas, releasing confined methane and blowing out rock. The mechanism that causes on/off behavior of certain plumes, combined with the spatial variability of the locus of methane release shown in this study may point to carbonate or hydrate formation in the seep plumbing system and should be further investigated.

  6. Estimation of past intermittent methane seep activity using radiocarbon dating of Calyptogena shells in the eastern Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Yagasaki, K.; Ashi, J.; Yokoyama, Y.; Miyairi, Y.; Kuramoto, S.

    2013-12-01

    Radioisotope carbon dating samples from the deep ocean has always been a difficult phenomenon due to the carbon offset present. This research presents a way of utilizing such method to date shell samples in order to study past fault activities. The research presented will be based on the preliminary data collected thus far. The Nankai and the Tokai regions are common areas for cold seeps, where seepage of hydrogen sulfide and methane rich fluid occurs. These various substances encourage the growth of Calyptogena colonies to flourish at these sites. Cold seeps generally occur at tectonically active continental margins and are mostly ephemeral. This suggests that the cold seep events are possibly influenced by the tectonic activity during the plate divergence. In 1997, a submersible dive by Shinkai 2000 discovered an unusually large Calyptogena colony ranging over 200 m2 off Daini Tenryu Knoll. Majority of the shells were fossilized with few live shells remaining. It is assumed that past tectonic events in the region may have caused a high flux of methane fluid or gas to be released, making it possible to support such a vast scale colony to survive until their eventual death. Previous attempt to reconstruct the cold seep activity history through amino acid racemisation dating revealed two different age grouped shells. Further data using a different method is required to prove its reliability, as acid racemization dating technique can easily be affected by seawater temperature changes and microbial activity. This consequently alters the protein structure of the sample and its overall age. As 14C radioisotope dating is not affected by temperature change, it will provide additional information to the accuracy of the acid racemisation dating of the shell. However, the possibility of contamination is likely due to the shells incorporating older carbon from the sediments during their early stages of growth. The old carbon value can be calculated by subtracting the formerly

  7. Analysis of past recurrent methane seep activity using radiocarbon dating of Calyptogena spp. shells in the eastern Nankai subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuhiro; Ashi, Juichiro; Yokoyama, Yusuke; Miyairi, Yosuke; Kuramoto, Shin'ichi

    2016-04-01

    Fault activity around subduction zones have been widely studied and monitored through drilling of oceanic plates, studying piston cores, use of monitoring equipment or through visual analysis using submersible vehicles. Yet the understanding of how small scale faults near shallow regions of the seabed behave in relation to cold seep vent activity is still vague, especially determining when they were active in the past. In tectonically active margins such as the Nankai and Tokai regions off Japan, dense methane hydrate reservoirs have been identified. Cold seeps releasing methane rich hydrocarbon fluids are common here, supporting a wide variety of biological species that hold a symbiotic relationship with the chemosynthetic bacteria. In 1998 a large dead Calyptogena spp. bivalve colony (over 400m2 in size) was discovered off Tokai, Japan. It is unusual for a bivalve colony this size to mostly be dead, raising questions as to what caused their death. In this study we document the radiocarbon 14C age of these bivalve shells to attempt analysing the possible methane seep bahaviour in the past. The measured 14C age ranged in three age groups of 1396±36-1448±34, 1912±31-1938±35 and 5975±34. The 14C age of shells that were alive upon collection and the dissolved inorganic carbon (DIC) in seawater show little difference (˜100 14C age) indicating that shells are not heavily affected by the dead carbon effect from cold seeps that is of biogenic or thermogenic origin, which can make the age to become considerably older than the actual age. Thus the novel calibration model used was based on the seawater DIC collected above the Calyptogena spp. colony site (1133±31), which resulted in the dead shells to be clustered around 1900 Cal AD. This proves to be interesting as the predicted epicenter of the Ansei-Tokai earthquake (M 8.4) in 1854 is extremely close to the bibalve colony site. Using geological data obtained using visual analysis and sub-seafloor structural

  8. A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas

    PubMed Central

    2016-01-01

    Deep-sea hydrothermal vents and methane seeps are inhabited by members of the same higher taxa but share few species, thus scientists have long sought habitats or regions of intermediate character that would facilitate connectivity among these habitats. Here, a network analysis of 79 vent, seep, and whale-fall communities with 121 genus-level taxa identified sedimented vents as a main intermediate link between the two types of ecosystems. Sedimented vents share hot, metal-rich fluids with mid-ocean ridge-type vents and soft sediment with seeps. Such sites are common along the active continental margins of the Pacific Ocean, facilitating connectivity among vent/seep faunas in this region. By contrast, sedimented vents are rare in the Atlantic Ocean, offering an explanation for the greater distinction between its vent and seep faunas compared with those of the Pacific Ocean. The distribution of subduction zones and associated back-arc basins, where sedimented vents are common, likely plays a major role in the evolutionary and biogeographic connectivity of vent and seep faunas. The hypothesis that decaying whale carcasses are dispersal stepping stones linking these environments is not supported. PMID:27974524

  9. Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps

    PubMed Central

    Levin, Lisa A.; Mendoza, Guillermo F.; Grupe, Benjamin M.; Gonzalez, Jennifer P.; Jellison, Brittany; Rouse, Greg; Thurber, Andrew R.; Waren, Anders

    2015-01-01

    Carbonate communities: The activity of anaerobic methane oxidizing microbes facilitates precipitation of vast quantities of authigenic carbonate at methane seeps. Here we demonstrate the significant role of carbonate rocks in promoting diversity by providing unique habitat and food resources for macrofaunal assemblages at seeps on the Costa Rica margin (400–1850 m). The attendant fauna is surprisingly similar to that in rocky intertidal shores, with numerous grazing gastropods (limpets and snails) as dominant taxa. However, the community feeds upon seep-associated microbes. Macrofaunal density, composition, and diversity on carbonates vary as a function of seepage activity, biogenic habitat and location. The macrofaunal community of carbonates at non-seeping (inactive) sites is strongly related to the hydrography (depth, temperature, O2) of overlying water, whereas the fauna at sites of active seepage is not. Densities are highest on active rocks from tubeworm bushes and mussel beds, particularly at the Mound 12 location (1000 m). Species diversity is higher on rocks exposed to active seepage, with multiple species of gastropods and polychaetes dominant, while crustaceans, cnidarians, and ophiuroids were better represented on rocks at inactive sites. Macro-infauna (larger than 0.3 mm) from tube cores taken in nearby seep sediments at comparable depths exhibited densities similar to those on carbonate rocks, but had lower diversity and different taxonomic composition. Seep sediments had higher densities of ampharetid, dorvilleid, hesionid, cirratulid and lacydoniid polychaetes, whereas carbonates had more gastropods, as well as syllid, chrysopetalid and polynoid polychaetes. Stable isotope signatures and metrics: The stable isotope signatures of carbonates were heterogeneous, as were the food sources and nutrition used by the animals. Carbonate δ13Cinorg values (mean = -26.98‰) ranged from -53.3‰ to +10.0‰, and were significantly heavier than carbonate δ13

  10. Methane-derived carbonates form at the sediment-bedrock interface in a shallow marine gas seep.

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Ding, H.; Valentine, D. L.

    2006-12-01

    Hydrocarbon seeps occur world-wide, and release large quantities of oil and natural gas to the ocean and atmosphere. One of the world's most prolific hydrocarbon seep fields is located just offshore from Goleta, CA, and serves as the study site for this investigation. In the course of investigating gas fluxes from a 10 m deep coastal seep, samples of seafloor bedrock were collected by scuba diving during a time of low sediment burden. These samples were found to be concretions composed primarily of carbonate-cemented sand. The delta13C values of the carbonate range from -25 to -32 per mille, and indicate a role for methane oxidation in the formation of the carbonates. Long chain fatty acids were extracted from the concretions and were quantified, identified, and analyzed for their 13C composition. Fatty acids typical of sulfate reducing bacteria were observed, and interpreted as a signature of anoxia. Further mineralogical and isotopic studies are planned. From these observations we interpret a shallow water origin for these concretions, whereby the seasonal migration of sand to the seep environment drives anoxia and anaerobic methane oxidation at the sediment-bedrock interface. The alkalinity generated from sulfate reduction causes the precipitation of methane-derived carbonate- which forms a concretion with sand.

  11. Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a Beggiatoa spp. Mat in a Gulf of Mexico Hydrocarbon Seep

    PubMed Central

    Lloyd, Karen G.; Albert, Daniel B.; Biddle, Jennifer F.; Chanton, Jeffrey P.; Pizarro, Oscar; Teske, Andreas

    2010-01-01

    Background Subsurface fluids from deep-sea hydrocarbon seeps undergo methane- and sulfur-cycling microbial transformations near the sediment surface. Hydrocarbon seep habitats are naturally patchy, with a mosaic of active seep sediments and non-seep sediments. Microbial community shifts and changing activity patterns on small spatial scales from seep to non-seep sediment remain to be examined in a comprehensive habitat study. Methodology/Principal Findings We conducted a transect of biogeochemical measurements and gene expression related to methane- and sulfur-cycling at different sediment depths across a broad Beggiatoa spp. mat at Mississippi Canyon 118 (MC118) in the Gulf of Mexico. High process rates within the mat (∼400 cm and ∼10 cm from the mat's edge) contrasted with sharply diminished activity at ∼50 cm outside the mat, as shown by sulfate and methane concentration profiles, radiotracer rates of sulfate reduction and methane oxidation, and stable carbon isotopes. Likewise, 16S ribosomal rRNA, dsrAB (dissimilatory sulfite reductase) and mcrA (methyl coenzyme M reductase) mRNA transcripts of sulfate-reducing bacteria (Desulfobacteraceae and Desulfobulbaceae) and methane-cycling archaea (ANME-1 and ANME-2) were prevalent at the sediment surface under the mat and at its edge. Outside the mat at the surface, 16S rRNA sequences indicated mostly aerobes commonly found in seawater. The seep-related communities persisted at 12–20 cm depth inside and outside the mat. 16S rRNA transcripts and V6-tags reveal that bacterial and archaeal diversity underneath the mat are similar to each other, in contrast to oxic or microoxic habitats that have higher bacterial diversity. Conclusions/Significance The visual patchiness of microbial mats reflects sharp discontinuities in microbial community structure and activity over sub-meter spatial scales; these discontinuities have to be taken into account in geochemical and microbiological inventories of seep environments. In

  12. Larvae from deep-sea methane seeps disperse in surface waters.

    PubMed

    Arellano, Shawn M; Van Gaest, Ahna L; Johnson, Shannon B; Vrijenhoek, Robert C; Young, Craig M

    2014-07-07

    Many species endemic to deep-sea methane seeps have broad geographical distributions, suggesting that they produce larvae with at least episodic long-distance dispersal. Cold-seep communities on both sides of the Atlantic share species or species complexes, yet larval dispersal across the Atlantic is expected to take prohibitively long at adult depths. Here, we provide direct evidence that the long-lived larvae of two cold-seep molluscs migrate hundreds of metres above the ocean floor, allowing them to take advantage of faster surface currents that may facilitate long-distance dispersal. We collected larvae of the ubiquitous seep mussel "Bathymodiolus" childressi and an associated gastropod, Bathynerita naticoidea, using remote-control plankton nets towed in the euphotic zone of the Gulf of Mexico. The timing of collections suggested that the larvae might disperse in the water column for more than a year, where they feed and grow to more than triple their original sizes. Ontogenetic vertical migration during a long larval life suggests teleplanic dispersal, a plausible explanation for the amphi-Atlantic distribution of "B." mauritanicus and the broad western Atlantic distribution of B. naticoidea. These are the first empirical data to demonstrate a biological mechanism that might explain the genetic similarities between eastern and western Atlantic seep fauna. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Hydrothermal vents and methane seeps: Rethinking the sphere of influence

    USGS Publications Warehouse

    Levin, Lisa A.; Baco, Amy; Bowden, David; Colaco, Ana; Cordes, Erik E.; Cunha, Marina; Demopoulos, Amanda W.J.; Gobin, Judith; Grupe, Ben; Le, Jennifer; Metaxas, Anna; Netburn, Amanda; Rouse, Greg; Thurber, Andrew; Tunnicliffe, Verena; Van Dover, Cindy L.; Vanreusel, Ann; Watling, Les

    2016-01-01

    Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as

  14. Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria

    PubMed Central

    Bailey, Jake V; Salman, Verena; Rouse, Gregory W; Schulz-Vogt, Heide N; Levin, Lisa A; Orphan, Victoria J

    2011-01-01

    We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization. PMID:21697959

  15. Possible roles of uncultured archaea in carbon cycling in methane-seep sediments

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Marcos Y.; Lazar, Cassandre S.; Elvert, Marcus; Lin, Yu-Shih; Zhu, Chun; Heuer, Verena B.; Teske, Andreas; Hinrichs, Kai-Uwe

    2015-09-01

    Studies on microbial carbon cycling uniformly confirm that anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria represent the dominant and most active fraction of the sedimentary microbial community in methane-seep sediments. However, little is known about other frequently observed and abundant microbial taxa, their role in carbon cycling and association with the anaerobic oxidation of methane (AOM). Here, we provide a comprehensive characterization of stable carbon isotopes (δ13C) from several intact polar lipid (IPL) classes and metabolite pools in a downcore profile at a cold seep within the oxygen minimum zone off Pakistan. We aimed to evaluate microbial carbon metabolism using IPLs in relation to redox conditions, metabolites and 16S rRNA gene libraries. The 13C-depleted signature of carbon pools and microbial metabolites in pore waters (e.g., dissolved inorganic carbon, lactate and acetate) demonstrated high accumulation of AOM-associated biomass and subsequent turnover thereof. ANMEs accounted for a small fraction of the archaeal 16S rRNA gene survey, whereas sequences of other uncultured benthic archaea dominated the clone libraries, particularly the Marine Benthic Group D. On the basis of lipid diversity and carbon isotope information, we suggest that structurally diverse phospho- and glycolipids, including the recently identified unsaturated tetraethers that are particularly abundant in this setting, are likely derived from archaea other than ANMEs. Through the evaluation of δ13C values of individual IPL, our results indicate heterotrophy as a possible metabolic pathway of archaea in these AOM-dominated sediments.

  16. Did shifting seawater sulfate concentrations drive the evolution of deep-sea methane-seep ecosystems?

    PubMed

    Kiel, Steffen

    2015-04-07

    The origin and evolution of the faunas inhabiting deep-sea hydrothermal vents and methane seeps have been debated for decades. These faunas rely on a local source of sulfide and other reduced chemicals for nutrition, which spawned the hypothesis that their evolutionary history is independent from that of photosynthesis-based food chains and instead driven by extinction events caused by deep-sea anoxia. Here I use the fossil record of seep molluscs to show that trends in body size, relative abundance and epifaunal/infaunal ratios track current estimates of seawater sulfate concentrations through the last 150 Myr. Furthermore, the two main faunal turnovers during this time interval coincide with major changes in seawater sulfate concentrations. Because sulfide at seeps originates mostly from seawater sulfate, variations in sulfate concentrations should directly affect the base of the food chain of this ecosystem and are thus the likely driver of the observed macroecologic and evolutionary patterns. The results imply that the methane-seep fauna evolved largely independently from developments and mass extinctions affecting the photosynthesis-based biosphere and add to the growing body of evidence that the chemical evolution of the oceans had a major impact on the evolution of marine life. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Schwalenberg, Katrin; Rippe, Dennis; Koch, Stephanie; Scholl, Carsten

    2017-05-01

    Marine controlled source electromagnetic (CSEM) data have been collected to investigate methane seep sites and associated gas hydrate deposits at Opouawe Bank on the southern tip of the Hikurangi Margin, New Zealand. The bank is located in about 1000 m water depth within the gas hydrate stability field. The seep sites are characterized by active venting and typical methane seep fauna accompanied with patchy carbonate outcrops at the seafloor. Below the seeps, gas migration pathways reach from below the bottom-simulating reflector (at around 380 m sediment depth) toward the seafloor, indicating free gas transport into the shallow hydrate stability field. The CSEM data have been acquired with a seafloor-towed, electric multi-dipole system measuring the inline component of the electric field. CSEM data from three profiles have been analyzed by using 1-D and 2-D inversion techniques. High-resolution 2-D and 3-D multichannel seismic data have been collected in the same area. The electrical resistivity models show several zones of highly anomalous resistivities (>50 Ωm) which correlate with high amplitude reflections located on top of narrow vertical gas conduits, indicating the coexistence of free gas and gas hydrates within the hydrate stability zone. Away from the seeps the CSEM models show normal background resistivities between 1 and 2 Ωm. Archie's law has been applied to estimate gas/gas hydrate saturations below the seeps. At intermediate depths between 50 and 200 m below seafloor, saturations are between 40 and 80% and gas hydrate may be the dominating pore filling constituent. At shallow depths from 10 m to the seafloor, free gas dominates as seismic data and gas plumes suggest.

  18. Quantification of methane fluxes from hydrocarbon seeps to the ocean and atmosphere: Development of an in situ and online gas flux measuring system

    NASA Astrophysics Data System (ADS)

    Di, Pengfei; Chen, Qinghua; Chen, Duofu

    2017-06-01

    Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate change. To accurately quantify the methane flux from hydrocarbon seeps on the seafloor, a specialized in situ and online gas flux measuring (GFM) device was designed to obtain high-resolution time course gas fluxes using the process of equal volume exchange. The device consists of a 1.0-m diameter, 0.9-m tall, inverted conical tent and a GFM instrument that contains a solenoid valve, level transducer, and gas collection chamber. Rising gas bubbles from seeps were measured by laboratory-calibrated GFM instruments attached to the top of the tent. According to the experimental data, the optimal anti-shake time interval was 5 s. The measurement range of the device was 0-15 L min-1, and the relative error was ± 1.0%. The device was initially deployed at an active seep site in the Lingtou Promontory seep field in South China Sea. The amount of gas released from a single gas vent was 30.5 m3 during the measurement period, and the gas flow rate ranged from 22 to 72 L h-1, depending on tidal period, and was strongly negatively correlated with water depth. The measurement results strongly suggest that oceanic tides and swells had a significant forcing effect on gas flux. Low flow rates were associated with high tides and vice versa. The changes in gas volume escaping from the seafloor seeps could be attributed to the hydrostatic pressure induced by water depth. Our findings suggest that in the marine environment, especially in the shallow shelf area, sea level variation may play an important role in controlling methane release into the ocean. Such releases probably also affect atmospheric methane levels.

  19. Interpretation of the Relationship between Benthic Fauna, Geologic Distributions, and Methane Seeps at Southern Hydrate Ridge, Oregon Continental Margin

    NASA Astrophysics Data System (ADS)

    Bigham, K.; Kelley, D. S.; Delaney, J. R.

    2016-12-01

    Deposits of methane sequestered along continental margins and their associated seeps are found worldwide. These seeps are of increasing interest and importance because of their potential as an energy source, their contribution to greenhouse gases, and the unique community of chemosynthetic microorganisms and fauna that they host. One of the best­studied methane seep sites is Southern Hydrate Ridge, which is at a water depth of 800 m. It is located 90 km west of Newport, Oregon. Despite extensive geophysical and biological research completed here, no studies have quantified the relationship of seep sites and seafloor geology to the spatial distribution and abundances of microbial and macrofaunal communities. High resolution, georeferenced photomosaics of the individual seeps and the associated biological communities at this site were collected in 2011, using the remotely operated vehicle ROPOS. Detailed analyses of these images has allowed for the quantification and characterization of the diversity and structure of the faunal community. Results show that both the distribution and abundances of seep organisms are highly variable. Further examination of these photomosaics may improve understanding of the relationships between faunal distributions and seep locations, with implications for the impacts that chemical gradients have on these ecosystems.

  20. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea.

    PubMed

    Niu, Mingyang; Fan, Xibei; Zhuang, Guangchao; Liang, Qianyong; Wang, Fengping

    2017-09-01

    Cold seeps are widespread chemosynthetic ecosystems in the deep-sea environment, and cold seep microbial communities of the South China Sea are poorly constrained. Here we report on the archaeal communities, particularly those involved in methane metabolization, in sediments of a newly discovered cold seep (named 'Haima') on the northwest slope of the South China Sea. Archaeal diversity, abundance and distribution were investigated in two piston cores collected from a seep area (QDN-14B) and a non-seep control site (QDN-31B). Geochemical investigation of the QDN-14B core identified an estimated sulfate-methane transition zone (Estimated SMTZ) at 300-400 cm below sea floor (cmbsf), where a high abundance of anaerobic methane-oxidizing archaea (ANME) occurred, as revealed by analysis of the 16S rRNA gene and the gene (mcrA) encoding the α-subunit of the key enzyme methyl-coenzyme M reductase. ANME-2a/b was predominant in the upper and middle layers of the estimated SMTZ, whereas ANME-1b outcompeted ANME-2 in the sulfate-depleted bottom layers of the estimated SMTZ and the methanogenic zone. Fine-scale phylogenetic analysis further divided the ANME-1b group into three subgroups with different distribution patterns: ANME-1bI, ANME-1bII and ANME-1bIII. Multivariate analyses indicated that dissolved inorganic carbon and sulfate may be important factors controlling the composition of the methane-metabolizing community. Our study on ANME niche separation and interactions with other archaeal groups improves our understanding of the metabolic diversity and flexibility of ANME, and the findings further suggest that ANME subgroups may have evolved diversified/specified metabolic capabilities other than syntrophic anaerobic oxidation of methane coupled with sulfate reduction in marine sediments. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Methane Metabolizing Microbial Communities in the Cold Seep Areas in the Northern Continental Shelf of South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, F.; Liang, Q.

    2016-12-01

    Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the

  2. Evidence of active methanogen communities in shallow sediments of the sonora margin cold seeps.

    PubMed

    Vigneron, Adrien; L'Haridon, Stéphane; Godfroy, Anne; Roussel, Erwan G; Cragg, Barry A; Parkes, R John; Toffin, Laurent

    2015-05-15

    In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Cold-seep ostracods from the western Svalbard margin: direct palaeo-indicator for methane seepage?

    NASA Astrophysics Data System (ADS)

    Yasuhara, Moriaki; Sztybor, Kamila; Rasmussen, Tine L.; Okahashi, Hisayo; Sato, Runa; Tanaka, Hayato

    2018-01-01

    Despite their high abundance and diversity, microfossil taxa adapted to a particular chemosynthetic environment have rarely been studied and are therefore poorly known. Here we report on an ostracod species, Rosaliella svalbardensis gen. et sp. nov., from a cold methane seep site at the western Svalbard margin, Fram Strait. The new species shows a distinct morphology, different from other eucytherurine ostracod genera. It has a marked similarity to Xylocythere, an ostracod genus known from chemosynthetic environments of wood falls and hydrothermal vents. Rosaliella svalbardensis is probably an endemic species or genus linked to methane seeps. We speculate that the surface ornamentation of pore clusters, secondary reticulation, and pit clusters may be related to ectosymbiosis with chemoautotrophic bacteria. This new discovery of specialized microfossil taxa is important because they can be used as an indicator species for past and present seep environments (http://zoobank.org/urn:lsid:zoobank.org:pub:6075FF30-29D5-4DAB-9141-AE722CD3A69B).

  4. Carbon isotopes of benthic foraminifera associated with methane seeps in Four-Way Closure Ridge, offshore southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, W. R.; Wei, K. Y.; Mii, H. S.; Lin, Y. S.; Huang, J. J.; Wang, P. L.; Lin, A. T.

    2015-12-01

    Release of large amounts of methane from marine gas hydrate reservoirs has been considered as a possible trigger of climate change, which can be recorded by the variation of carbon isotopes (δ13C) of the benthic foraminifera. In modern analogs, previous studies have suggested that δ13C becomes more negative when influenced by methane seeps. However, values of δ13C of benthic foraminifera might vary with different species and sedimentary settings in different regions. Seismic profiles in offshore southwestern Taiwan show the existence of Bottom Simulating Reflector (BSR) in the region, indicative of gas hydrate reservoirs. Various methane seepages have been found, and they are suspected to be related to the gas hydrates buried underneath. A better understanding of the δ13C signals of benthic foraminifera near the methane seepages can further clarify the origin of the methane and to evaluate it as a proxy of methane release for the geologic past. We have analyzed δ13C of benthic foraminifera Uvigerina proboscidea (150-250 mm) in the topmost 15 cm sediments in five marine cores (OR1-1092-WFWC-1, OR1-1092-WFWC-4, OR1-1092-WFWC-6, OR3-1806-C5-2 and OR3-1806-C10) collected from the Four-Way Closure Ridge in offshore southwestern Taiwan (water depth from 1330 to 1580 m). Our results show that δ13C values of U. proboscidea range from -0.98‰ to -6.21‰ (VPDB) for core OR3-1806-C5-2, which is considered as a seeps-influenced site. On the other hand, δ13C values of U. proboscidea from the background sites range from -0.40‰ to -1.00‰. The difference between the methane seep-affected and the background sites is in the range of 0.00‰ to 5.01‰, comparable to those documented in previous studies in other areas. The significant negative excursion in carbon isotopes in the seep site foraminifera is likely caused by incorporation of light inorganic carbon generated by methanotrophy in the system.

  5. The phase transition of methane caused by pressure change during its seeping up from seepage, revealed by video observation and acoustic reflection data

    NASA Astrophysics Data System (ADS)

    Aoyama, C.

    2017-12-01

    Methane plumes often exist in the vicinity sea area where shallow type methane hydrates are extracted and they are observed as images displayed on monitors of multi-beam sonar and echo sounder onboard, where methane hydrates are expected at sea bottom on ROV observation data. The hydrates are generally considered to be generated in shallow depths below the sea floor. In this study, author examined annual amount of methane dissolving into seawater by measuring the amount of plume in order to make a quantification of dissolving methane from seafloor. Measurement procedure is plume exploration using multi-beam and quantitative echo sounder , submerge ROV to gushing point at seafloor , calculate the rising speed of methane plumes and examine the phases by monitoring seeping plumes from seafloor with high-definition camera. Components of seeping plumes were defined as methane hydrate particles based on the result by measuring water temperature. From this procedure, it can be concluded that the minimum rising speed of methane hydrate particles from gushing point is 1.6×10-1(m/s) and the maximum of 2.0×10-1(m/s) indicating a difference of more than ten times the gaseous theoretical value of 2.74(m/s). This speed is theoretically closer to the solid speed of the material with physical property similar to hydrates, which is 3.05×10-1 (m/s). Therefore, it can be determined that those particles are in the solid state, immediately above seafloor. To measure the amount of plumes seeping from gushing points funnel-shaped instruments with 20cm diameter opening were used to collect methane plumes in this sea area. This was performed in three different gushing points. As a result, 300ml of methane plume was collected in 643 seconds. Assuming that gushing points exist evenly in the sea area, the annual amount of methane gas seeping from these points will be 7.7×105m3 /per m2. Result shows a large quantity of methane seeping from seafloor into the water. This data is an important

  6. [Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].

    PubMed

    Belova, S É; Oshkin, I Iu; Glagolev, M V; Lapshina, E D; Maksiutov, Sh Sh; Dedysh, S N

    2013-01-01

    Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are a potentially important, although poorly studied sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3-5 degrees C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with predomination of type I methanotrophs. Among the latter, microorganisms related to Methylobacterpsychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two isolates were determined. Methylobactersp. CMS7 exhibited active growth at 4-10 degrees C, while Methylocystis sp. SB12 grew better at 20 degrees C. Experimental results confirmed the major role ofmethanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.

  7. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  8. Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America

    NASA Astrophysics Data System (ADS)

    Hansman, Roberta L.; Thurber, Andrew R.; Levin, Lisa A.; Aluwihare, Lihini I.

    2017-02-01

    The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 9050 l of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (δ13C) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (δ13C-DNA), which had values between -17.0 and -19.5‰, indicated that bulk planktonic microbial production was not ultimately linked to methane or other 13C-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (<5% of 16S rRNA gene copies). There was an overall decrease of 13C-depleted carbon fueling the benthic metazoan community from 3 to 5 cm below the seafloor

  9. Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps

    USGS Publications Warehouse

    Prouty, Nancy G.; Sahy, Diana; Ruppel, Carolyn D.; Roark, E. Brendan; Condon, Dan; Brooke, Sandra; Ross, Steve W.; Demopoulos, Amanda W.J.

    2016-01-01

    The recent discovery of active methane venting along the US northern and mid-Atlantic margin represents a new source of global methane not previously accounted for in carbon budgets from this region. However, uncertainty remains as to the origin and history of methane seepage along this tectonically inactive passive margin. Here we present the first isotopic analyses of authigenic carbonates and methanotrophic deep-sea mussels, Bathymodiolus   sp., and the first direct constraints on the timing of past methane emission, based on samples collected at the upper slope Baltimore Canyon (∼385 m water depth) and deepwater Norfolk (∼1600 m) seep fields within the area of newly-discovered venting. The authigenic carbonates at both sites were dominated by aragonite, with an average  signature of −47‰, a value consistent with microbially driven anaerobic oxidation of methane-rich fluids occurring at or near the sediment–water interface. Authigenic carbonate U and Sr isotope data further support the inference of carbonate precipitation from seawater-derived fluids rather than from formation fluids from deep aquifers. Carbonate stable and radiocarbon ( and ) isotope values from living Bathymodiolus   sp. specimens are lighter than those of seawater dissolved inorganic carbon, highlighting the influence of fossil carbon from methane on carbonate precipitation. U–Th dates on authigenic carbonates suggest seepage at Baltimore Canyon between 14.7±0.6 ka to 15.7±1.6 ka, and at the Norfolk seep field between 1.0±0.7 ka to 3.3±1.3 ka, providing constraint on the longevity of methane efflux at these sites. The age of the brecciated authigenic carbonates and the occurrence of pockmarks at the Baltimore Canyon upper slope could suggest a link between sediment delivery during Pleistocene sea-level lowstand, accumulation of pore fluid overpressure from sediment compaction, and release of overpressure through subsequent venting. Calculations show that

  10. HYFLUX: Satellite Exploration of Natural Hydrocarbon Seeps and Discovery of a Methane Hydrate Mound at GC600

    NASA Astrophysics Data System (ADS)

    Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.; Zimmer, B.

    2009-12-01

    Analysis of natural hydrocarbon seeps is important to improve our understanding of methane flux from deeper sediments to the water column. In order to quantify natural hydrocarbon seep formations in the Northern Gulf of Mexico, a set of 686 Synthetic Aperture Radar (SAR) images was analyzed using the Texture Classifying Neural Network Algorithm (TCNNA), which processes SAR data to delineate oil slicks. This analysis resulted in a characterization of 396 natural seep sites distributed in the northern GOM. Within these sites, a maximum of 1248 individual vents where identified. Oil reaching the sea-surface is deflected from its source during transit through the water column. This presentation describes a method for estimating locations of active oil vents based on repeated slick detection in SAR. One of the most active seep formations was detected in MMS lease block GC600. A total of 82 SAR scenes (collected by RADARSAT-1 from 1995 to 2007) was processed covering this region. Using TCNNA the area covered by each slick was computed and Oil Slicks Origins (OSO) were selected as single points within detected oil slicks. At this site, oil slick signatures had lengths up to 74 km and up to 27 km^2 of area. Using SAR and TCNNA, four active vents were identified in this seep formation. The geostatistical mean centroid among all detections indicated a location along a ridge-line at ~1200m. Sea truth observations with an ROV, confirmed that the estimated location of vents had a maximum offset of ~30 m from their actual locations on the seafloor. At the largest vent, a 3-m high, 12-m long mound of oil-saturated gas hydrate was observed. The outcrop contained thousands of ice worms and numerous semi-rigid chimneys from where oily bubbles were escaping in a continuous stream. Three additional vents were found along the ridge; these had lower apparent flow, but were also plugged with gas hydrate mounds. These results support use of SAR data for precise delineation of active seep

  11. Identification, visualization, and sorting of translationally active microbial consortia from deep-sea methane seeps

    NASA Astrophysics Data System (ADS)

    Hatzenpichler, R.; Connon, S. A.; Goudeau, D.; Malmstrom, R.; Woyke, T.; Orphan, V. J.

    2015-12-01

    Within the past few years, great progress has been made in tapping the genomes of individual cells separated from environmental samples. Unfortunately, however, most often these efforts have been target blind, as they did not pre-select for taxa of interest or focus on metabolically active cells that could be considered key species of the system at the time. This problem is particularly pronounced in low-turnover systems such as deep sea sediments. In an effort to tap the genetic potential hidden within functionally active cells, we have recently developed an approach for the in situ fluorescent tracking of protein synthesis in uncultured cells via bioorthogonal non-canonical amino acid-tagging (BONCAT). This technique depends on the incorporation of synthetic amino acids that carry chemically modifiable tags into newly made proteins, which later can be visualized via click chemistry-mediated fluorescence-labeling. BONCAT is thus able to specifically target proteins that have been expressed in reaction to an experimental condition. We are particularly interested in using BONCAT to understand the functional potential of slow-growing syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria which together catalyze the anaerobic oxidation of methane (AOM) in marine methane seeps. In order to specifically target consortia that are active under varying environmental regimes, we are studying different subpopulations of these inter-domain consortia via a combination of BONCAT with rRNA-targeted FISH. We then couple the BONCAT-enabled staining of active consortia with their separation from inactive members of the community via fluorescence-activated cell-sorting (FACS) and metagenomic sequencing of individual consortia. Using this approach, we were able to identify previously unrecognized AOM-partnerships. By comparing the mini-metagenomes obtained from individual consortia with each other we are starting to gain a more hollistic understanding

  12. Methanotrophic gastropods from a bathyal hydrocarbon seep, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, L.C.; Aharon, P.; Gupta, S.

    Two gastropods, Neritina sp. and Truncatella sp., collected live from a Gulf of Mexico active gas seep with the submersible Johnson Sea Link in September 1991, apparently incorporate methane-derived carbon in their soft tissues. Flesh of an individual Neritina sp. had a delta C-13 of [minus]50.92 per mil PDB, and that of two coexisting individuals of Truncatella sp. had values of [minus]45.11 and [minus]49.27 per mil. These isotope values are comparable to those reported for the methanotrophic mytilid bivalve Bathymodiolus sp. from other hydrocarbon seeps on the Gulf of Mexico, and are lighter than published isotopic values of chemosynthetic organismsmore » with sulfur-oxidizing symbionts. The anomalously light carbon-isotopic values of Neritina sp. and Truncatella sp. may steam from one of three causes: (1) these gastropods host symbiotic methanotrophic bacteria, (2) their chief food is methane-oxidizing bacteria present at the seep, or (3) they incorporate some carbon from the periostracum of mussels on which they may graze. The presence of abundant juveniles of Bathymodiolus, reported to settle preferentially in areas of active seepage and high methane release, indicates that methane was abundant and supported a community with multiple trophic levels. Generally, studies of hydrocarbon-seep communities have focused on larger community members, especially bivalves and tube worms. The presence of living Neritina and Truncatella at the authors sampling site, however, draws attention to the fact that these gastropods are integral and significant parts of hydrocarbon-seep communities. Both gastropod species are members of genera that characteristically inhabit shallow marine, intertidal, and semiterrestrial environments. The presence of these genera in bathyal hydrocarbon seeps indicates that they have very broad environmental ranges, thus limiting their utility in paleoecologic reconstructions.« less

  13. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    PubMed

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  14. Natural gas sources from methane seeps on the Northern U.S. Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Pohlman, J.; Ruppel, C. D.; Wang, D. T.; Ono, S.; Kluesner, J.; Xu, X.; Sylva, S.; Casso, M.

    2017-12-01

    Following the discovery of shallow- (< 180 m) and deep-water (>1000 m) methane seeps north of Cape Hatteras on the U.S. Atlantic margin (USAM), questions have been raised about the source of the emitted gas in an area where deeply-buried thermogenic basins have been identified by the Bureau of Ocean Energy Management. In September 2015, 21 piston cores and 14 multicores were collected along a 365 km section of the margin that extends from Washington Canyon offshore of Virginia to southern New England. Several coring sites targeted gas accumulations in shallow-sediments (< 10 m below the seafloor) between water depths of 541 and 1055 m. A comprehensive compositional and isotopic analysis of gases extracted from five cores containing elevated gas concentrations is being conducted to provide a first-order characterization of natural gas sources along the USAM. Stable carbon isotope analysis of the gases is consistent with a microbial methane source at all sites with δ13C values ranging from -73.5 to -109 ‰ and C1/C2 ratios ranging from 385 to 71,000 within non-oxidizing sections of the cores. The site with the highest ethane contribution (C1/C2 = 385 to 926) is the so-called Chincoteague seep located at 1100 m water depth offshore Virginia. This seep is sourced in fractured rock imaged during a 2015 USGS multichannel seismic survey and could potentially contain a small thermogenic component. Additional isotopic data from radiocarbon, deuterium and clumped isotope analyses will further constrain the relative microbial and thermogenic contributions to the gas emissions, the age of the source rocks, and the thermal conditions under which the gas is generated. Furthermore, biogeochemical controls responsible for the exceptionally 13C-depleted δ13C values (-106.6 to -109.0 ‰) of core gas methane from the methanogenic sedimentary zone at the northern and southern sections of the continental slope will be evaluated.

  15. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Feng, Dong; Liang, Qianyong; Xia, Zhen; Chen, Linying; Chen, Duofu

    2015-12-01

    Cold hydrocarbon seepage is a frequently observed phenomenon along continental margins worldwide. However, little is known about the impact of seeping fluids on the geochemical cycle of redox-sensitive elements. Pore waters from four gravity cores (D-8, D-5, D-7, and D-F) collected from cold-seep sites of the northern South China Sea were analyzed for SO42-, Mg2+, Ca2+, Sr2+, dissolved inorganic carbon (DIC), δ13CDIC, dissolved Fe, Mn, and trace elements (e.g. Mo, U). The sulfate concentration-depth profiles, δ13CDIC values and (ΔDIC+ΔCa2++ΔMg2+)/ΔSO42- ratios suggest that organoclastic sulfate reduction (OSR) is the dominant process in D-8 core. Besides OSR, anaerobic oxidation of methane (AOM) is partially responsible for depletion of sulfate at D-5 and D-7 cores. The sulfate consumption at D-F core is predominantly caused by AOM. The depth of sulfate-methane interface (SMI) and methane diffusive flux of D-F core are calculated to be ~7 m and 0.035 mol m-2 yr-1, respectively. The relatively shallow SMI and high methane flux at D-F core suggest the activity of gas seepage in this region. The concentrations of dissolved uranium (U) were inferred to decrease significantly within the iron reduction zone. It seems that AOM has limited influence on the U geochemical cycling. In contrast, a good correlation between the consumption of sulfate and the removal of molybdenum (Mo) suggests that AOM has a significantly influence on the geochemical cycle of Mo at cold seeps. Accordingly, cold seep environments may serve as an important potential sink in the marine geochemical cycle of Mo.

  16. Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?

    NASA Astrophysics Data System (ADS)

    Blumenberg, Martin; Pape, Thomas; Seifert, Richard; Bohrmann, Gerhard; Schlömer, Stefan

    2018-04-01

    The geochemistry of seep gases is useful for an understanding of the local petroleum system. Here it was tested whether individual light hydrocarbons in seep gases are representatively entrapped in authigenic carbonates that formed near active seep sites. If applicable, it would be possible to extract geochemical information not only on the origin but also on the thermal maturity of the hydrocarbon source rocks from the gases entrapped in carbonates in the past. Respective data could be used for a better understanding of paleoenvironments and might directly serve as calibration point for, amongst others, petroleum system modeling. For this approach, (sub)-recent seep carbonates from the Black Sea (Paleodnjepr region and Batumi seep area), two sites of the Campeche Knoll region in the Gulf of Mexico, and the Venere mud volcano (Mediterranean Sea) were selected. These seep carbonates derive from sites for which geochemical data on the currently seeping gases exist. During treatment with phosphoric acid, methane and higher hydrocarbons were released from all carbonates, but in low concentrations. Compositional studies demonstrate that the ratio of methane to the sum of higher hydrocarbons (C1/(C2+C3)) is (partly strongly) positively biased in the entrapped gas fraction. δ13C values of C1 were determined for all samples and, for the samples from the Gulf of Mexico and the Mediterranean Sea, also of C2 and C3. The present dataset from six seep sites indicates that information on the seeped methane can be—although with a scatter of several permil—recorded in seep carbonate matrices, but other valuable information like the composition and δ13C of ethane and propane appears to be modified or lost during, for example, enclosure or at an early stage of diagenesis.

  17. Passive acoustic records of two vigorous bubble-plume methane seeps on the Oregon continental margin

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Matsumoto, H.; Merle, S. G.; Embley, R. W.; Baumberger, T.; Hammond, S. R.

    2016-12-01

    We present preliminary analysis of the acoustic records of two bubble-plume methane seeps recorded by an autonomous hydrophone deployed during the E/V Nautilus expedition (NA072) in June 2016. The goal of the NA072 expedition was to use the Simrad 302 as a survey tool to map bubble plumes at a regional scale along the Oregon and northern California margins, followed by in situ investigation of bubble-plume sites using the ROV Hercules. The exploration carried out during NA072 resulted in the discovery of hundreds of new individual methane seep sites in water depths ranging from 125 to 1725 m depth. A Greenridge Acousonde 3B™ hydrophone was deployed via ROV within two vigorous bubble-plume sites. Despite persistent ship and ROV propeller noise, the acoustic signature of the bubble-plume can be seen in the hydrophone record as a broadband (0.5 - 4.5 kHz) series of short duration ( 0.2-0.5 msec) pulses that occur in clusters of dozens of pulses lasting 2-3 secs. Previous studies of the passive acoustics of seep bubble-plumes indicate sound is generated during bubble formation, where detachment of the gas bubble from the end of a tube or conduit causes the bubble to oscillate, producing sound. The peak frequency f (the zeroth oscillatory mode) and the bubble equivalent spherical radius r for a given pressure P are: f = (2πr)-1 [(3γP/ρ)]1/2 where γ is the ratio of gas specific heat at constant pressure to constant volume and ρ is the water density (Leifer and Tang, 2006). Thus the frequency of a bubble's oscillation is proportional to the bubble's volume, and therefore it may be possible to use our acoustic data to obtain an estimate of the volume of methane being released at these seafloor plume sites.

  18. Increased methane emissions from deep osmotic and buoyant convection beneath submarine seeps as climate warms

    PubMed Central

    Cardoso, Silvana S. S.; Cartwright, Julyan H. E.

    2016-01-01

    High speeds have been measured at seep and mud-volcano sites expelling methane-rich fluids from the seabed. Thermal or solute-driven convection alone cannot explain such high velocities in low-permeability sediments. Here we demonstrate that in addition to buoyancy, osmotic effects generated by the adsorption of methane onto the sediments can create large overpressures, capable of recirculating seawater from the seafloor to depth in the sediment layer, then expelling it upwards at rates of up to a few hundreds of metres per year. In the presence of global warming, such deep recirculation of seawater can accelerate the melting of methane hydrates at depth from timescales of millennia to just decades, and can drastically increase the rate of release of methane into the hydrosphere and perhaps the atmosphere. PMID:27807343

  19. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane.

    PubMed

    Pohlman, John W; Greinert, Jens; Ruppel, Carolyn; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan

    2017-05-23

    Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 10 6 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO 2 ) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO 2 uptake rates (-33,300 ± 7,900 μmol m -2 ⋅d -1 ) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m -2 ⋅d -1 ). The negative radiative forcing expected from this CO 2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13 C in CO 2 ) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO 2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.

  20. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane

    PubMed Central

    Greinert, Jens; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan

    2017-01-01

    Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea−air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (−33,300 ± 7,900 μmol m−2⋅d−1) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea−air methane efflux (17.3 ± 4.8 μmol m−2⋅d−1). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea−air methane flux always increase the global atmospheric greenhouse gas burden. PMID:28484018

  1. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins

    USGS Publications Warehouse

    Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.

    2003-01-01

    Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.

  2. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    PubMed

    Kiel, Steffen; Hansen, Bent T

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids because they

  3. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    PubMed Central

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  4. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Waite, W.F.; Osburn, C.L.; Chapman, N.R.

    2011-01-01

    Marine sediments contain about 500-10,000 Gt of methane carbon, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined, but it releases relatively little methane to the ocean and atmosphere. Sedimentary microbes convert most of the dissolved methane to carbon dioxide. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use ??14 C and ??13 C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13 C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000-6,000 year age of dissolved organic carbon in the deep ocean, and provide reduced organic matter and energy to deep-ocean microbial communities. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  5. Cenozoic Methane-Seep Faunas of the Caribbean Region

    PubMed Central

    Kiel, Steffen; Hansen, Bent T.

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted ‘Joes River fauna’ consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted ‘Bath Cliffs fauna’ containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman’s Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical ‘Cenozoic’ lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids

  6. Evidence and biogeochemical implications for glacially-derived sediments in an active margin cold seep

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Novosel, Ivana; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Coffin, Richard B.; Grabowski, Kenneth S.; Knies, David L.; Hyndman, Roy D.; Spence, George D.

    2011-01-01

    Delineating sediment organic matter origins and sediment accumulation rates at gas hydratebearing and hydrocarbon seeps is complicated by the microbial transfer of 13C-depleted and 14Cdepleted methane carbon into sedimentary pools. Sediment 13C and 14C measurements from four cores recovered at Bullseye vent on the northern Cascadia margin are used to identify methane carbon assimilation into different carbon pools. While the total organic carbon (TOC) is mostly unaltered and primarily terrigenous in origin, planktonic foraminifera and the bulk carbonate display evidence of methane overprinting. Mass balance models are applied to determine the extent to which methane overprinting increased the radiocarbon ages of the biogenic foraminifera. The corrected and calibrated foraminifera ages between sediment depths of 70 and 573 cm are from 14.9 to 15.9 ka BP, which coincides with the retreat of the late Quaternary Cordilleran Ice Sheet from Vancouver Island. Uniform TOC _13C values of -24.5 ± 0.5‰ from the upper 8 meters of sediment at Bullseye vent suggest all cored material is Pleistocene-derived glacimarine material deposited as the ice edge retreated landward. Bullseye vent is located within an uplifted sediment block isolated from turbidite deposition and has been a site of non-deposition since the ice sheet retreated from the shelf. Biogeochemical implications of seep sediments being dominated by aged, organic-poor (<0.4 wt% TOC) material are that methane is the primary energy source, and microbes directly and indirectly associated with the anaerobic oxidation of methane (AOM) will dominate the seep microbial community.

  7. Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing

    PubMed Central

    Nunoura, Takuro; Takaki, Yoshihiro; Kazama, Hiromi; Hirai, Miho; Ashi, Juichiro; Imachi, Hiroyuki; Takai, Ken

    2012-01-01

    Microbial community structures in methane seep sediments in the Nankai Trough were analyzed by tag-sequencing analysis for the small subunit (SSU) rRNA gene using a newly developed primer set. The dominant members of Archaea were Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG 6), Marine Group I (MGI) and Deep Sea Archaeal Group (DSAG), and those in Bacteria were Alpha-, Gamma-, Delta- and Epsilonproteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. Diversity and richness were examined by 8,709 and 7,690 tag-sequences from sediments at 5 and 25 cm below the seafloor (cmbsf), respectively. The estimated diversity and richness in the methane seep sediment are as high as those in soil and deep-sea hydrothermal environments, although the tag-sequences obtained in this study were not sufficient to show whole microbial diversity in this analysis. We also compared the diversity and richness of each taxon/division between the sediments from the two depths, and found that the diversity and richness of some taxa/divisions varied significantly along with the depth. PMID:22510646

  8. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans

    USGS Publications Warehouse

    Pohlman, John; Waite, William F.; Bauer, James E.; Osburn, Christopher L.; Chapman, N. Ross

    2011-01-01

    Marine sediments contain about 500–10,000 Gt of methane carbon1, 2, 3, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined1, 4, but it releases relatively little methane to the ocean and atmosphere5. Sedimentary microbes convert most of the dissolved methane to carbon dioxide6, 7. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use Δ14C and δ13C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000–6,000 year age of dissolved organic carbon in the deep ocean8, and provide reduced organic matter and energy to deep-ocean microbial communities.

  9. Facultative methanotrophs are abundant at terrestrial natural gas seeps.

    PubMed

    Farhan Ul Haque, Muhammad; Crombie, Andrew T; Ensminger, Scott A; Baciu, Calin; Murrell, J Colin

    2018-06-28

    Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. New biomolecular tools designed in

  10. Submarine seep of carbon dioxide in Norton Sound, Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Weliky, K.; Nelson, H.; Des Marais, D.J.

    1979-01-01

    Earlier workers have described a submarine gas seep in Norton Sound having an unusual mixture of petroleum-like, low-molecular-weight hydrocarbons. Actually, only about 0.04 percent of the seeping gas is hydrocarbons and 98 percent is carbon dioxide. The isotopic compositions of carbon dioxide (??13CPDB = -2.7 per mil) and methane (??13CPDB = -36 per mil, where PDB is the Peedee belemnite standard) indicate that geothermal processes are active here. Copyright ?? 1979 AAAS.

  11. Ecological release and niche partitioning under stress: Lessons from dorvilleid polychaetes in sulfidic sediments at methane seeps

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Ziebis, Wiebke; Mendoza, Guillermo F.; Bertics, Victoria J.; Washington, Tracy; Gonzalez, Jennifer; Thurber, Andrew R.; Ebbe, Brigitte; Lee, Raymond W.

    2013-08-01

    Organisms inhabiting methane seep sediments are exposed to stress in the form of high levels of hydrogen sulfide, which result mainly from sulfate reduction coupled to anaerobic methane oxidation. Dorvilleidae (Polychaeta) have successfully invaded this ecosystem, and multiple species in divergent genetic clades co-occur at high densities. At methane seeps in the NE Pacific off California and Oregon, the genera Ophryotrocha, Parougia and Exallopus are especially well represented. To test the hypothesis that dorvilleid coexistence is facilitated by niche partitioning through sulfide tolerance and trophic patterns, we examined dorvilleid species-specific patterns of occurrence and nutrition at methane seeps off Eel R. [ER] on the Californian continental slope and at Hydrate Ridge [HR] on the Oregon continental slope, and in two habitats (clam bed and microbial mat) characterized by lower and higher hydrogen sulfide levels, respectively. Microelectrode measurements of hydrogen sulfide enabled characterization of environmental sulfide levels for species sampled in background sediment cores and in colonization trays. Dorvilleids tolerated H2S levels from 10 μM to over 2.6 mM, with the majority of species inhabiting sediments with similar environmental H2S concentrations (median 85-100 μM). Dorvilleid species richness was greater at HR than ER, but did not differ between clam bed and microbial mat habitats. Species distribution patterns reflected preferences for ER clam bed (lower sulfide levels), ER mat and HR clam bed (moderate sulfide levels), or HR mat (very high sulfide levels). Nutritional patterns, including trophic diversity and functional similarity, were examined using community stable isotope metrics based on δ15N and δ13C. Within each region, dorvilleid species exhibited multiple trophic strategies. Co-existing congeners typically exhibited distinct isotope signatures, suggesting trophic partitioning. Trophic diversity and δ15N range for whole

  12. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea

    PubMed Central

    Sapir, Amir; Dillman, Adler R.; Connon, Stephanie A.; Grupe, Benjamin M.; Ingels, Jeroen; Mundo-Ocampo, Manuel; Levin, Lisa A.; Baldwin, James G.; Orphan, Victoria J.; Sternberg, Paul W.

    2013-01-01

    The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere. PMID:24575084

  13. Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas

    NASA Astrophysics Data System (ADS)

    Kinnaman, Franklin S.; Kimball, Justine B.; Busso, Luis; Birgel, Daniel; Ding, Haibing; Hinrichs, Kai-Uwe; Valentine, David L.

    2010-06-01

    of methane is favored. Precipitation occurs at a sufficient distance from active venting for the molecular and isotopic composition of seep gas to be masked by the generation of carbonate alkalinity from anaerobic methane oxidation.

  14. Constraining the relationships between anaerobic oxidation of methane and sulfate reduction under in situ methane concentrations

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Wegener, G.; Joye, S. B.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important microbial metabolism in the global carbon cycle. In marine methane seeps sediment, this process is mediated by syntrophic consortium that includes anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Stoichiometrically in AOM methane oxidation should be coupled to sulfate reduction (SR) in a 1:1 ratio. However, weak coupling of AOM and SR in seep sediments was frequently observed from the ex situ rate measurements, and the metabolic dynamics of AOM and SR under in situ conditions remain poorly understood. Here we investigated the metabolic activity of AOM and SR with radiotracers by restoring in situ methane concentrations under pressure to constrain the in situ relationships between AOM and SR in the cold seep sediments of Gulf of Mexico as well as the sediment-free AOM enrichments cultivated from cold seep of Italian Island Elba or hydrothermal vent of Guaymas Basin5. Surprisingly, we found that AOM rates strongly exceeded those of SR when high pressures and methane concentrations were applied at seep sites of GC600 and GC767 in Gulf of Mexico. With the addition of molybdate, SR was inhibited but AOM was not affected, suggesting the potential coupling of AOM with other terminal processes. Amendments of nitrate, iron, manganese and AQDS to the SR-inhibited slurries did not stimulate or inhibit the AOM activity, indicating either those electron acceptors were not limiting for AOM in the sediments or AOM was coupled to other process (e.g., organic matter). In the ANME enrichments, higher AOM rates were also observed with the addition of high concentrations of methane (10mM and 50 mM). The tracer transfer of CO2 to methane, i.e., the back reaction of AOM, increased with increasing methane concentrations and accounted for 1%-5% of the AOM rates. AOM rates at 10 mM and 50 mM methane concentration were much higher than the SR rates, suggesting those two processes were not tightly coupled

  15. Patterns and variability in geochemical signatures and microbial activity within and between diverse cold seep habitats along the lower continental slope, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bowles, Marshall; Hunter, Kimberley S.; Samarkin, Vladimir; Joye, Samantha

    2016-07-01

    We collected 69 sediment cores from distinct ecological and geological settings along the deep slope in the Northern Gulf of Mexico to evaluate whether specific geochemical- or habitat-related factors correlated with rates of microbial processes and geochemical signatures. By collecting replicate cores from distinct habitats across multiple sites, we illustrate and quantify the heterogeneity of cold seep geochemistry and microbial activity. These data also document the factors driving unique aspects of the geochemistry of deep slope gas, oil and brine seeps. Surprisingly little variation was observed between replicate (n=2-5) cores within sites for most analytes (except methane), implying that the common practice of collecting one core for geochemical analysis can capture the signature of a habitat in most cases. Depth-integrated concentrations of methane, dissolved inorganic carbon (DIC), and calcium were the predominant geochemical factors that correlated with a site's ecological or geological settings. Pore fluid methane concentration was related to the phosphate and DIC concentration, as well as to rates of sulfate reduction. While distinctions between seep habitats were identified from geochemical signatures, habitat specific geochemistry varied little across sites. The relative concentration of dissolved inorganic nitrogen versus phosphorus suggests that phosphorus availability limits biomass production at cold seeps. Correlations between calcium, chloride, and phosphate concentrations were indicative of brine-associated phosphate transport, suggesting that in addition to the co-migration of methane, dissolved organic carbon, and ammonium with brine, phosphate delivery is also associated with brine advection.

  16. Cold seep epifaunal communities on the Hikurangi margin, New Zealand: composition, succession, and vulnerability to human activities.

    PubMed

    Bowden, David A; Rowden, Ashley A; Thurber, Andrew R; Baco, Amy R; Levin, Lisa A; Smith, Craig R

    2013-01-01

    Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information about the probable life-history characteristics of the principal fauna to develop a hypothetical succession sequence for the Hikurangi seep communities, from the onset of fluid flux to senescence. New Zealand seep communities exhibit taxa characteristic of seeps in other regions, including predominance of large siboglinid tubeworms, vesicomyid clams, and bathymodiolin mussels. Some aspects appear to be novel; however, particularly the association of dense populations of ampharetid polychaetes with high-sulphide, high-methane flux, soft-sediment microhabitats. The common occurrence of these ampharetids suggests they play a role in conditioning sulphide-rich sediments at the sediment-water interface, thus facilitating settlement of clam and tubeworm taxa which dominate space during later successional stages. The seep sites are subject to disturbance from bottom trawling at present and potentially from gas hydrate extraction in future. The likely life-history characteristics of the dominant megafauna suggest that while ampharetids, clams, and mussels exploit ephemeral resources through rapid growth and reproduction, lamellibrachid tubeworm populations may persist potentially for centuries. The potential consequences of gas hydrate extraction cannot be fully assessed until extraction methods and target localities are defined but any long-term modification of fluid flow to seep sites would have consequences for all chemoautotrophic fauna.

  17. Cold Seep Epifaunal Communities on the Hikurangi Margin, New Zealand: Composition, Succession, and Vulnerability to Human Activities

    PubMed Central

    Bowden, David A.; Rowden, Ashley A.; Thurber, Andrew R.; Baco, Amy R.; Levin, Lisa A.; Smith, Craig R.

    2013-01-01

    Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information about the probable life-history characteristics of the principal fauna to develop a hypothetical succession sequence for the Hikurangi seep communities, from the onset of fluid flux to senescence. New Zealand seep communities exhibit taxa characteristic of seeps in other regions, including predominance of large siboglinid tubeworms, vesicomyid clams, and bathymodiolin mussels. Some aspects appear to be novel; however, particularly the association of dense populations of ampharetid polychaetes with high-sulphide, high-methane flux, soft-sediment microhabitats. The common occurrence of these ampharetids suggests they play a role in conditioning sulphide-rich sediments at the sediment-water interface, thus facilitating settlement of clam and tubeworm taxa which dominate space during later successional stages. The seep sites are subject to disturbance from bottom trawling at present and potentially from gas hydrate extraction in future. The likely life-history characteristics of the dominant megafauna suggest that while ampharetids, clams, and mussels exploit ephemeral resources through rapid growth and reproduction, lamellibrachid tubeworm populations may persist potentially for centuries. The potential consequences of gas hydrate extraction cannot be fully assessed until extraction methods and target localities are defined but any long-term modification of fluid flow to seep sites would have consequences for all chemoautotrophic fauna. PMID:24204691

  18. Discovery and Characterization of Cold Seep Vents Using a Mass Spectrometer Operating aboard an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Camilli, R.; Macelloni, L.; Asper, V.; Woolsey, M.; Williams, J.; Diercks, A.; Lutken, C. B.; Sleeper, K.

    2009-12-01

    A chemical and bathymetric survey was conducted in June 2009 at a known gas hydrate site approximately 900 meters deep in the Gulf of Mexico Mississippi Canyon 118 block. This survey used the EagleRay autonomous underwater vehicle equipped with a TETHYS in-situ mass spectrometer and EM 2000 multibeam sonar. Results indicate previously unobserved active sea floor methane seeps that correlate with bathymetric depressions and a geologic fault. These data suggest linkage of the methane cold seeps to an underlying thermogenic hydrocarbon reservoir.

  19. Lessons in microbial geochemistry from the Coal Oil Point seep field: progress as prospects.

    NASA Astrophysics Data System (ADS)

    Valentine, D. L.; Kinnaman, F.; Wardlaw, G.; Redmond, M.; Ding, H.; Kimball, J.; Busso, L.; Larson, A.

    2005-12-01

    The hydrocarbon seeps located offshore Coal Oil Point, Santa Barbara, CA, are estimated to emit 1010 grams of methane and 50 thousand barrels of oil annually, and are among the most prolific in the world. The seep field spans a range of shelf depths and many of the seeps are accessible by SCUBA, making this an ideal location to investigate the impact of microbes on the biogeochemical cycling of methane and other hydrocarbons. With funding provided by the National Science Foundation, the Minerals Management Service and the Petroleum Research Fund, we have begun to investigate the interactions between microbes, hydrocarbon distributions, and environmental dynamics in the seep environment. This presentation will provide an overview of Coal Oil Point seep field and the biogeochemical research being conducted there. Several topics will be incorporated including i) the dynamics of oil and gas seepage, ii) the microbial consumption of methane, ethane, propane, butane and crude oil, iii) the distribution and composition of microbial mats, iv) redox differentiation in seep sediments and the importance of advection, and v) the development of experimental tools for the investigation of seep environments. Prospects for future biochemical research in the Coal Oil Point seep field will also be discussed.

  20. Age of Sulfate Methane Transition Zone Determined by Modelling Barium Sulfate Growth

    NASA Astrophysics Data System (ADS)

    Lin, S.; Wang, W. C.; Lien, K. L.; Liu, C. C.; Fan, L. F.

    2017-12-01

    Methane seep to the sediment/water interface could initiate anaerobic methane oxidation (AOM) with subsequent build up of chemosynthetic community, carbonate, pyrite and a number of other authigenic mineral formation. Determination the duration, sequence and time of methane seeps are keys to understand how methane seep to the environment and degree of alteration to the vicinity area. However, limited method existed in defining time of methane seep since there are some known problems involving typical dating methods, i.e. old carbon on C14 of fossil test or authigenic carbonate, thorium from surrounding matrix on U/Th authigenic carbonate dating. In this study, we have employed barium determination method (Dickens, 2001) to model timing of methane seep at two locations in the South China Sea. Our objective is to compare timing of the barium accumulation near the sulfate methane transition zone (SMTZ) on these two different locations and to seek if a similar mechanism driving the methane seep at two locations far apart. Dissolved barium, total sediment barium and aluminum were measured as well as pore water sulfate, and sediment pyrite concentrations. Time for the barium sulfate accumulation is calculated by: T = C/F, C= ∫ I x p x (1-Ø) Our results show that SMTZ is stabilized at each site for a duration of about 4000-5000 years. AOM process have been active at both sites at about the same time. In conjunction, pyrite also accumulated at a depth near the SMTZ as a result of methane oxidation. This result show that AOM could stay at the SMTZ for a relatively long period of time, on a scale of thousands of years.

  1. A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems

    PubMed Central

    Levin, Lisa A.; Orphan, Victoria J.; Rouse, Greg W.; Rathburn, Anthony E.; Ussler, William; Cook, Geoffrey S.; Goffredi, Shana K.; Perez, Elena M.; Waren, Anders; Grupe, Benjamin M.; Chadwick, Grayson; Strickrott, Bruce

    2012-01-01

    Upon their initial discovery, hydrothermal vents and methane seeps were considered to be related but distinct ecosystems, with different distributions, geomorphology, temperatures, geochemical properties and mostly different species. However, subsequently discovered vents and seep systems have blurred this distinction. Here, we report on a composite, hydrothermal seep ecosystem at a subducting seamount on the convergent Costa Rica margin that represents an intermediate between vent and seep ecosystems. Diffuse flow of shimmering, warm fluids with high methane concentrations supports a mixture of microbes, animal species, assemblages and trophic pathways with vent and seep affinities. Their coexistence reinforces the continuity of reducing environments and exemplifies a setting conducive to interactive evolution of vent and seep biota. PMID:22398162

  2. Dinitrogen and Cyanide Fixation by Methane Seep Microorganisms Revealed by FISH- SIMS And Implications for AOM Productivity and Nitrogenase Evolution

    NASA Astrophysics Data System (ADS)

    Dekas, A.; Orphan, V.

    2008-12-01

    The anaerobic oxidation of methane (AOM), mediated by methane oxidizing archaea (ANME) and sulfate reducing bacterial symbionts (SRB), minimizes the flux of methane from marine sediment to the overlying water column. Understanding the factors determining AOM productivity, and particularly the rates of methane catabolism and anabolism, is of interest to both modern and ancient investigations of climate and bulk carbon isotopic change. It has been hypothesized that nitrogen availability in methane seeps is temporally variable, and that the seep biomass may be at least partially nitrogen limited. The recent finding of nif genes, those necessary for the production of nitrogenase, in enrichments of ANME and SRB consortia suggested that the organisms mediating AOM have the potential to fix dinitrogen. In the present study we incubated methane seep sediment with nitrogen-deplete artificial marine media and a headspace of methane (CH4) and either 15N-labeled dinitrogen (15N2), cyanide (C15N-), or ammonia (15NH3) in order to (1) test the ability of these currently unculturable microorganisms to fix nitrogen and other triple bonded substrates, (2) investigate which AOM partner was responsible for the fixation, (3) compare growth rates on different nitrogen sources, and (4) characterize the phylogeny of these methane seep-associated nitrogenases. Fluorescence in situ hybridization coupled to nano-scale Secondary Ion Mass Spectroscopy imaging (FISH-SIMS) revealed incorporation of 15N into ANME and SRB biomass of up to 0.06 15N fractional abundance in the 15N2 incubation, and up to 0.02 in the C15N- incubation, after 6 and 4 months, respectively. This represents a nearly ten-fold enrichment of 15N compared to the measured natural 15N fractional abundance (0.0036). The NanoSIMS ion images of ANME/SRB aggregates from 15N2 incubations show evidence for 15N enrichment in both partners with the highest incorporation of 15N within the methanotrophic ANME cells. Cyanide incubations

  3. Methane seepage along the Hikurangi Margin offshore New Zealand: 6 years of multidisciplinary studies

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Bialas, J.; Klaucke, I.; Crutchley, G.; Dale, A.; Linke, P.; Sommer, S.; Bowden, D.; Rowden, A.; de Haas, H.; de Stigter, H.; Faure, K.

    2012-12-01

    Detailed studies in 2006, 2007 and 2011 along the east coast of New Zealand's North Island highlighted the close link of sub-bottom fluid pathways and seafloor expressions of methane seepage such as clam fields, carbonate build-ups, tubeworms, bacterial mats and methane release (Marine Geology 272). Prior to our studies, only accidental observations of hydroacoustic anomalies, recoveries of calyptogena shells and methane-derived carbonate chimneys indicated active seepage. Wide areas of the sub-seafloor show BSR structures, gas migration pathways, gas chimneys and blanking zones, which are closely linked to actual seep sites. Sidescan surveys showed four prominent seep areas at Omakere Ridge in 1120m water depth, three of them perfectly matching the shapes and locations of faults seen in high resolution 3D-seismic surveys. The fourth seep, Bear's Paw, on its western side represents an old seep which developed into a cold water coral habitat. At the actively seeping eastern part, gas hydrates could be retrieved and bubble release was observed hydroacoustically and confirmed by high dissolved methane values (380nM). No strong microbial oxidation effects could be found in δ13C values plotting along a mixing curve between pure seep (-70 ‰PDB) and atmospheric methane (-47 ‰PDB). Lander deployments show a tide-influenced gas discharge with sometimes eruptive bubble release with possible plume development transporting methane-charged water higher up into the water column. Rock Garden, with just above 600m water depth at its top outside the gas hydrate stability zone, hosts two main seep areas. ROV observations at Faure Site document eruptive releases of free gas from decimeter-wide craters at the seafloor. Flux estimates show peak releases of 420ml/min with bubbles up to 9mm in diameter. Concentrations of dissolved methane reach up to 3500nM close to the bottom, but higher concentrations are limited to below 400m of water depth; here, methane is transported towards

  4. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (<1% total). The processes that control the concentration and isotopic signature of these gases in sediments are well explained for methane, but the controls for C2/C3 cycling are still a relative mystery. Methane production proceeds in deep anoxic sediments by either 1) thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, i.e. methanogenesis. In surface sediments, it appears that both microbial consumption and chemical deposition of methane (i.e. as methane clathrate) ensures that >95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes

  5. Hydrocarbon gas seeps of the convergent Hikurangi margin, North Island, New Zealand

    USGS Publications Warehouse

    Kvenvolden, K.A.; Pettinga, J.R.

    1989-01-01

    Two hydrocarbon gas seeps, located about 13 km apart, have distinctive molecular and isotopic compositions. These seeps occur within separate tectonic melange units of narrow parallel trending and structurally complex zones with incorporated upper Cretaceous and Palaeogene passive continental margin deposits which are now compressively deformed and imbricated along the convergent Hikurangi margin of North Island, New Zealand. At Brookby Station within the Coastal High, the seeping hydrocarbon gas has a methane/ethane ratio of 48 and ??13C and ??D values of methane of -45.7 and -188???, respectively (relative to the PDB and SMOW standards). Within the complex core of the Elsthorpe Anticline at Campbell Station seep, gas has a methane/ethane ratio of about 12000, and the methane has ??13C and ??D values of -37.4 and -170???, respectively. The source of the gases cannot be positively identified, but the gases probably originate from the thermal decomposition of organic matter in tectonically disturbed upper Cretaceous and/or lower Tertiary sedimentary rocks of passive margin affinity and reach the surface by migration along thrust faults associated with tectonic melange. The geochemical differences between the two gases may result from differences in burial depths of similar source sediment. ?? 1989.

  6. Shell growth and environmental control of methanophyllic Thyasirid bivalves from Svalbard cold seeps

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Åström, Emmelie; Ambrose, William; Locke, William; Oliver, Graham; Hong, Wei-Li; Carroll, JoLynn

    2016-04-01

    The analysis of molluscan shell material (sclerochronology) can provide information about an organism's age, growth history, and environmental conditions during its lifetime. Bivalve molluscs are common members of hydrothermal vents and methane cold seeps communities where, supported by chemosynthetic symbionts, they can reach high density and biomass. But little is known about methane-associated bivalve populations inhabiting high-Arctic cold seeps, and sclerochronological analysis of methane-influenced bivalves is rare. We measured growth rates and elemental and isotopic shell signatures in a newly discovered species of bivalve (Thyasiridae) from cold seeps at 350-390m depth southwest of Svalbard. First discovered in 2014, recently described shells of Thyasira capitanea sp.nov. were found at 2 independent seep systems in Storfjordrenna. Mean shell carbon isotopic ratios from inorganic δ13C (mean = -4.8‰) and organic δ13C (mean = -26.9‰) fractions clearly indicate a methane influenced habitat and food source for these organisms. Shell mineral ratios (Li/Ca, Mg/Ca, Mn/Ca, Fe/Ca, Sr/Ca, Ba/Ca, Pb/Ca) sampled along the axis of growth with laser-ablated ICP-MS exhibit variability through time and between sites, suggesting that concentrations of these elements that may be affected by methane emissions. The mineralogical data also elucidates the internal pattern of shell deposition and growth checks, and combined with the isotopic and growth rate data, enables us to interpret the temporal history of methane release from these locations.

  7. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Formolo, Michael J.; Lyons, Timothy W.

    2013-10-01

    Cold seeps in the Gulf of Mexico provide a natural laboratory to study biogeochemical cycling of sulfur, carbon, and oxygen at hydrate- and hydrocarbon-rich deep marine settings with obvious additional relevance to studies of diverse modern and ancient seeps. Of particular interest are the sulfur isotope signatures of microbial sulfate reduction coupled to anaerobic oxidation of methane and other non-methane liquid and gaseous hydrocarbons. Whereas most of the published sulfur isotope data from cold seep systems pertain to pore-water species, our study integrates both solid and dissolved sulfur: acid-volatile sulfides (SAVS), pyrite (Spy), elemental sulfur (S°), dissolved sulfate and ΣH2S. Modeled and 35SO42- reduction rates and δ13C and δ18O data for authigenic carbonates are integrated within this sulfur framework. Our results indicate extreme variability over narrow spatial and temporal scales within short distances (meters) from active seeps. High rates of microbial sulfate reduction can lead to complete consumption of the sulfate within the upper few centimeters of burial, while meters away the sulfate profile shows little depletion. Such small-scale variability must reflect the structure and temporal dynamics of hydrocarbon migration in the presence of low amounts of background organic matter. Our past work demonstrated that electron donors other than methane drive significant levels of microbial activity at these seeps, and very recent work has demonstrated that oxidation of higher chain volatile hydrocarbons can contribute to the high levels of microbial activity. These findings are consistent with our new results. Elevated concentrations of pyrite and diagenetic carbonate relative to background sediments are diagnostic of active seepage, yet the S isotopes tell more complex stories. Low levels of the transient, 'instantaneous' products of S cycling-AVS and S°-show high δ34S values that increase with depth. Most of the pyrite formation, however, seems

  8. High-Resolution Seafloor Mapping at A Deep-Sea Methane Seep Field with an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.

    2017-12-01

    A growing body of research indicates that points of seafloor gas emission, known as cold-seeps, are a common feature along many continental margins. Results from recent exploration efforts show that benthic environments at cold-seeps are characterized by extensive authigenic carbonate crusts and complex chemosynthetic communities. The seafloor morphology and geophysical properties of these locations are heterogeneous and relatively complex due to the three-dimensional structure created by carbonate buildups and dense bivalve beds. Seeps are often found clustered and the spatial extent of associated seafloor crusts and beds can reach multiple square kilometers. Here, the results of a 1.25 km2 autonomous underwater vehicle (AUV) survey of a deep-sea methane seep field with 13 vents, at a nominal depth of 1400 m, located near Veatch Canyon on the US Atlantic margin are presented. Multibeam sonar, sidescan sonar, and a sub bottom profiler on the AUV were used to make high-resolution observations of seafloor bathymetry (resolution 1m2) as well as water column, seafloor, and subsurface acoustic backscatter intensity. Additionally, a downward oriented camera was used to collect seafloor imagery coincident with acoustic observations at select locations. Acoustic results indicated the location of discrete gas plumes as well as a continuous area of elevated seafloor roughness and backscatter intensity consistent with the presence of large scale authigenic rock outcrops and extensive mussel beds, which were visually confirmed with camera imagery. Additionally, a linear area of particularly elevated seafloor roughness and acoustic backscatter intensity that lies sub-parallel to an adjacent ridge was interpreted to be controlled by underlying geologic processes such as soft sediment faulting. Automated analysis of camera imagery and coincident acoustic backscatter and bathymetry data as well as derivative metrics (e.g. slope and rugosity) was used to segment and classify bed

  9. Natural gas seeps in the French Alps: Sources and pathways

    NASA Astrophysics Data System (ADS)

    Kloppmann, Wolfram; Blessing, Michaela; Proust, Eric; Gal, Frédéric; Bentivegna, Gaetan; Henry, Benoit; Defossez, Pierrick; Catherine, Lerouge; Humez, Pauline; Mayer, Bernhard; Millot, Romain; Gaucher, Eric

    2016-04-01

    Natural gas emanations are part of the geochemical baseline to take into account when assessing global greenhouse gas emissions and potential impacts of conventional and unconventional gas exploration and exploitation on groundwater. Examples of such natural gas macro-seeps are known in several parts of the world (Etiope et al., 2009). Only a limited number of them have been characterized for their gas and isotopic compositions. Such analyses can provide essential information for baseline studies, providing insight in the sources (biogenic vs. thermogenic or modified thermogenic) and pathways of such seeps and may allow for distinction of natural seeps from stray gas leakage associated with human activities. Here, we report gas concentrations and multi-isotope data (δ13C and δ2H of methane and ethane, δ13C and δ18O of CO2, 3He/4He ratio) of two gas seeps in the French subalpine chains, both in a similar geological and structural position within Middle Jurassic claystones along the eastern border of the large synclinal structures of the Vercors and the Chartreuse massifs (Moss, 1992). The "ardent fountain" (fontaine ardente) of Le Gua, 30 km south of Grenoble has most likely the longest continuous written record of existence of any individual natural gas seep, mentioned explicitly as early as the first quarter of the 5th century (Augustin of Hippo (St. Augustin), approx. 426) This natural seep was described in the past as a "wet seep" associated with a spring, whereas the second investigated seep, Rochasson near Meylan north of Grenoble, is a dry seep. Both seeps contain methane and ethane with thermogenic C and H isotope signatures, comparable with a seep in the Northern Swiss Alps at Giswil (Etiope et al., 2010) but with a higher dryness (C1/(C2+C3)>1000) for the Le Gua seep, possibly due to molecular fractionation upon advective fluid+gas migration (Etiope et al., 2009). Maturity (R0) of the reservoir rocks deduced from δ13C(CH4), δ13C(C2H6) is similar to

  10. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  11. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities

    PubMed Central

    Marlow, Jeffrey J.; Skennerton, Connor T.; Li, Zhou; Chourey, Karuna; Hettich, Robert L.; Pan, Chongle; Orphan, Victoria J.

    2016-01-01

    Marine methane seep habitats represent an important control on the global flux of methane. Nucleotide-based meta-omics studies outline community-wide metabolic potential, but expression patterns of environmentally relevant proteins are poorly characterized. Proteomic stable isotope probing (proteomic SIP) provides additional information by characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities, offering enhanced detection through system-wide product integration. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 unique proteins were identified, 11% of which were 15N-labeled. Consistent with the dominant anaerobic oxidation of methane (AOM) activity commonly observed in anoxic seep sediments, proteins associated with sulfate reduction and reverse methanogenesis—including the ANME-2 associated methylenetetrahydromethanopterin reductase (Mer)—were all observed to be actively synthesized (15N-enriched). Conversely, proteins affiliated with putative aerobic sulfur-oxidizing epsilon- and gammaproteobacteria showed a marked decrease over time in our anoxic sediment incubations. The abundance and phylogenetic range of 15N-enriched methyl-coenzyme M reductase (Mcr) orthologs, many of which exhibited novel post-translational modifications, suggests that seep sediments provide niches for multiple organisms performing analogous metabolisms. In addition, 26 proteins of unknown function were consistently detected and actively expressed under conditions supporting AOM, suggesting that they play important roles in methane seep ecosystems. Stable isotope probing in environmental proteomics experiments provides a mechanism to determine protein durability and evaluate lineage-specific responses in complex microbial communities placed under environmentally relevant conditions. Our work here

  12. Pockmarks: self-scouring seep features?

    USGS Publications Warehouse

    Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Koons, Peter O.

    2011-01-01

    Pockmarks, or seafloor craters, occur worldwide in a variety of geologic settings and are often associated with fluid discharge. The mechanisms responsible for pockmark preservation, and pockmarks? relation to active methane venting are not well constrained. Simple numerical simulations run in 2-and 3-dimensions, and corroborated by flume tank experiments, indicate turbulence may play a role in pockmark maintenance, and, potentially, in pockmark excavation. Morphological analysis of the pockmarks indicates an abundance of flat-bottomed and/or elongated pockmarks. Pockmarks transition into furrows as the bay narrows and tidal flow is enhanced, providing unmistakable evidence of post-formation evolution. We hypothesize that some pockmarks formed from seafloor perturbations (e.g., gas or methane discharge), are1 maintained and gradually modified by vortical flow. This hypothesis provides a mechanism for pockmark preservation and enlargement without active fluid venting, which has implications for the interpretation of seafloor seep features in gas hydrates areas.

  13. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Philip, Brendan T.; Denny, Alden R.; Solomon, Evan A.; Kelley, Deborah S.

    2016-03-01

    An estimated 500-2500 gigatons of methane carbon is sequestered in gas hydrate at continental margins and some of these deposits are associated with overlying methane seeps. To constrain the impact that seeps have on methane concentrations in overlying ocean waters and to characterize the bubble plumes that transport methane vertically into the ocean, water samples and time-series acoustic images were collected above Southern Hydrate Ridge (SHR), a well-studied hydrate-bearing seep site ˜90 km west of Newport, Oregon. These data were coregistered with robotic vehicle observations to determine the origin of the seeps, the plume rise heights above the seafloor, and the temporal variability in bubble emissions. Results show that the locations of seep activity and bubble release remained unchanged over the 3 year time-series investigation, however, the magnitude of gas release was highly variable on hourly time scales. Bubble plumes were detected to depths of 320-620 m below sea level (mbsl), in several cases exceeding the upper limit of hydrate stability by ˜190 m. For the first time, sustained gas release was imaged at the Pinnacle site and in-between the Pinnacle and the Summit area of venting, indicating that the subseafloor transport of fluid and gas is not restricted to the Summit at SHR, requiring a revision of fluid-flow models. Dissolved methane concentrations above background levels from 100 to 300 mbsl are consistent with long-term seep gas transport into the upper water column, which may lead to the build-up of seep-derived carbon in regional subsurface waters and to increases in associated biological activity.

  14. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities

    DOE PAGES

    Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou; ...

    2016-04-29

    Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to

  15. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou

    Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to

  16. Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Orcutt, Beth N.; Joye, Samantha B.; Kleindienst, Sara; Knittel, Katrin; Ramette, Alban; Reitz, Anja; Samarkin, Vladimir; Treude, Tina; Boetius, Antje

    2010-11-01

    Gulf of Mexico cold seeps characterized by variable compositions and magnitudes of hydrocarbon seepage were sampled in order to investigate the effects of natural oils, methane, and non-methane hydrocarbons on microbial activity, diversity, and distribution in seafloor sediments. Though some sediments were characterized by relatively high quantities of oil, which may be toxic to some microorganisms, high rates of sulfate reduction (SR, 27.9±14.7 mmol m-2 d-1), anaerobic oxidation of methane (AOM, 16.2±6.7 mmol m-2 d-1), and acetate oxidation (2.74±0.76 mmol m-2 d-1) were observed in radiotracer measurements. In many instances, the SR rate was higher than the AOM rate, indicating that non-methane hydrocarbons fueled SR. Analysis of 16S rRNA gene clone libraries revealed phylogenetically diverse communities that were dominated by phylotypes of sulfate-reducing bacteria (SRB) and anaerobic methanotrophs of the ANME-1 and ANME-2 varieties. Another group of archaea form a Gulf of Mexico-specific clade (GOM ARC2) that may be important in brine-influenced, oil-impacted sediments from deeper water. Additionally, species grouping within the uncultivated Deltaproteobacteria clades SEEP-SRB3 and -SRB4, as well as relatives of Desulfobacterium anilini, were observed in relatively higher abundance in the oil-impacted sediments, suggesting that these groups of SRB may be involved in or influenced by degradation of higher hydrocarbons or petroleum byproducts.

  17. Can sediments at hydrocarbon seep sites represent a source for marine bioavailable iron? — A case study from the South China Sea

    NASA Astrophysics Data System (ADS)

    Li, N.; Feng, D.; Chen, D.

    2017-12-01

    Niu Li1, Dong Feng1,2, and Duofu Chen2,31CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. 2Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China. 3Hadal Science and Technology Research Center, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China. Iron is an essential micronutrient and commonly considered to be one of the key-limiting factors for biological productivity in many ocean regions. Seafloor Fe supply should be most efficient in suboxic conditions. Recent studies shown that widely spread anoxic environments can develop in hydrocarbon seep sediment and local bottom water, owing to the occurrence of aerobic and/or anaerobic methane oxidation. Under this condition, the iron in sediment can be reduced to dissolved Fe2+ in the ocean. However, questions remain about whether the hydrocarbon seep sediment can represent a source for bioavailable iron to the ocean, and the control factor for the transformation of iron in the sediment remains largely unexplored. For a number of hydrocarbon seeps from the northern and southern South China Sea, the iron speciation, pyrite sulfur isotope, and iron isotope, as well as the major and trace elements are used to constrain the intensity of cold seep, and its impact on transformation of iron in sediment. Samples from both areas show sediment iron lost during the high methane flux conditions, owing to the suboxic conditions cause by aerobic methane oxidation. On the other hand, high sediment iron content accompanied by high sulfur content can be seen during the conditions of high methane flux without the occurrence of aerobic methane oxidation, which is possible ascribed to the anaerobic methane oxidation and the release of iron through seep activity. This study reveals the transformation of iron in the sediment is closely related to the

  18. seeping gas

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    On a recent cruise of the Russian research ship Professor Logachev, scientists from the U.S. Naval Research Laboratory (NRL), the Russian research institute VNI-IOkeangeologia (St. Petersburg), and other institutions found what they believe to be thin white sheets of methane hydrates. The white layer (possibly also mats of chemosynthetic bacteria) covers the center of a deep-sea mud volcano in the Norwegian-Greenland Sea. The Haakon Mosby mud volcano—a “cow-pie-shaped” cold seep that is 1 km in diameter—lies at 1250-m depth and south of Spitsbergen, Norway.

  19. Paleozoic Hydrocarbon-Seep Limestones

    NASA Astrophysics Data System (ADS)

    Peckmann, J.

    2007-12-01

    To date, five Paleozoic hydrocarbon-seep limestones have been recognized based on carbonate fabrics, associated fauna, and stable carbon isotopes. These are the Middle Devonian Hollard Mound from the Antiatlas of Morocco [1], Late Devonian limestone lenses with the dimerelloid brachiopod Dzieduszyckia from the Western Meseta of Morocco [2], Middle Mississippian limestones with the dimerelloid brachiopod Ibergirhynchia from the Harz Mountains of Germany [3], Early Pennsylvanian limestones from the Tantes Mound in the High Pyrenees of France [4], and Late Pennsylvanian limestone lenses from the Ganigobis Shale Member of southern Namibia [5]. Among these examples, the composition of seepage fluids varied substantially as inferred from delta C-13 values of early diagenetic carbonate phases. Delta C-13 values as low as -50 per mil from the Tantes Mound and -51 per mil from the Ganigobis limestones reveal seepage of biogenic methane, whereas values of -12 per mil from limestones with Dzieduszyckia associated with abundant pyrobitumen agree with oil seepage. Intermediate delta C-13 values of carbonate cements from the Hollard Mound and Ibergirhynchia deposits probably reflect seepage of thermogenic methane. It is presently very difficult to assess the faunal evolution at seeps in the Paleozoic based on the limited number of examples. Two of the known seeps were typified by extremely abundant rhynchonellide brachiopods of the superfamily Dimerelloidea. Bivalve mollusks and tubeworms were abundant at two of the known Paleozoic seep sites; one was dominated by bivalve mollusks (Hollard Mound, Middle Devonian), another was dominated by tubeworms (Ganigobis Shale Member, Late Pennsylvanian). The tubeworms from these two deposits are interpreted to represent vestimentiferan worms, based on studies of the taphonomy of modern vestimentiferans. However, this interpretation is in conflict with the estimated evolutionary age of vestimentiferans based on molecular clock methods

  20. The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea.

    PubMed

    Wu, Yuzhi; Qiu, Jian-Wen; Qian, Pei-Yuan; Wang, Yong

    2018-05-01

    In deep-sea cold seeps, microbial communities are shaped by geochemical components in seepage solutions. In the present study, we report the composition of microbial communities and potential metabolic activities in the surface sediment of Jiaolong cold seep at the northern South China Sea. Pyrosequencing of 16S rRNA gene amplicons revealed that a majority of the microbial inhabitants of the surface layers (0-6 cm) were sulfur oxidizer bacteria Sulfurimonas and archaeal methane consumer ANME-1, while sulfate reducer bacteria SEEP-SRB1, ANME-1 and ANME-2 dominated the bottom layers (8-14 cm). The potential ecological roles of the microorganisms were further supported by the presence of functional genes for methane oxidation, sulfur oxidation, sulfur reduction and nitrate reduction in the metagenomes. Metagenomic analysis revealed a significant correlation between coverage of 16S rRNA gene of sulfur oxidizer bacteria, functional genes involved in sulfur oxidation and nitrate reduction in different layers, indicating that sulfur oxidizing may be coupled to nitrate reducing at the surface layers of Jiaolong seeping site. This is probably related to the sulfur oxidizers of Sulfurimonas and Sulfurovum, which may be the capacity of nitrate reduction or associated with unidentified syntrophic nitrate-reducing microbes in the surface of the cold seep.

  1. Cold seeps and splay faults on Nankai margin

    NASA Astrophysics Data System (ADS)

    Henry, P.; Ashi, J.; Tsunogai, U.; Toki, T.; Kuramoto, S.; Kinoshita, M.; Lallemant, S. J.

    2003-04-01

    Cold seeps (bacterial mats, specific fauna, authigenic carbonates) are common on the Nankai margin and considered as evidence for seepage of methane bearing fluids. Camera and submersible surveys performed over the years have shown that cold seeps are generally associated with active faults. One question is whether part of the fluids expelled originate from the seismogenic zone and migrate along splay faults to the seafloor. The localisation of most cold seeps on the hanging wall of major thrusts may, however, be interpreted in various ways: (a) footwall compaction and diffuse flow (b) fluid channelling along the fault zone at depths and diffuse flow near the seafloor (c) erosion and channelling along permeable strata. In 2002, new observations and sampling were performed with submersible and ROV (1) on major thrusts along the boundary between the Kumano forearc basin domain and the accretionary wedge domain, (2) on a fault affecting the forearc (Kodaiba fault), (3) on mud volcanoes in the Kumano basin. In area (1) tsunami and seismic inversions indicate that the targeted thrusts are in the slip zone of the To-Nankai 1944 earthquakes. In this area, the largest seep zone, continuous over at least 2 km, coincides with the termination of a thrust trace, indicating local fluid channelling along the edge of the fault zone. Kodaiba fault is part of another splay fault system, which has both thrusting and strike-slip components and terminates westward into an en-echelon fold system. Strong seepage activity with abundant carbonates was found on a fold at the fault termination. One mud volcano, rooted in one of the en-echelon fold, has exceptionally high seepage activity compared with the others and thick carbonate crusts. These observations suggest that fluid expulsion along fault zones is most active at fault terminations and may be enhanced during fault initiation. Preliminary geochemical results indicate signatures differ between seep sites and suggests that the two

  2. Characterization of C1-Metabolizing Prokaryotic Communities in Methane Seep Habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by Analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA Genes

    PubMed Central

    Inagaki, Fumio; Tsunogai, Urumu; Suzuki, Masae; Kosaka, Ayako; Machiyama, Hideaki; Takai, Ken; Nunoura, Takuro; Nealson, Kenneth H.; Horikoshi, Koki

    2004-01-01

    Samples from three submerged sites (MC, a core obtained in the methane seep area; MR, a reference core obtained at a distance from the methane seep; and HC, a gas-bubbling carbonate sample) at the Kuroshima Knoll in the southern Ryuku arc were analyzed to gain insight into the organisms present and the processes involved in this oxic-anoxic methane seep environment. 16S rRNA gene analyses by quantitative real-time PCR and clone library sequencing revealed that the MC core sediments contained abundant archaea (∼34% of the total prokaryotes), including both mesophilic methanogens related to the genus Methanolobus and ANME-2 members of the Methanosarcinales, as well as members of the δ-Proteobacteria, suggesting that both anaerobic methane oxidation and methanogenesis occurred at this site. In addition, several functional genes connected with methane metabolism were analyzed by quantitative competitive-PCR, including the genes encoding particulate methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), methanol dehydrogenese (mxaF), and methyl coenzyme M reductase (mcrA). In the MC core sediments, the most abundant gene was mcrA (2.5 × 106 copies/g [wet weight]), while the pmoA gene of the type I methanotrophs (5.9 × 106 copies/g [wet weight]) was most abundant at the surface of the MC core. These results indicate that there is a very complex environment in which methane production, anaerobic methane oxidation, and aerobic methane oxidation all occur in close proximity. The HC carbonate site was rich in γ-Proteobacteria and had a high copy number of mxaF (7.1 × 106 copies/g [wet weight]) and a much lower copy number of the pmoA gene (3.2 × 102 copies/g [wet weight]). The mmoX gene was never detected. In contrast, the reference core contained familiar sequences of marine sedimentary archaeal and bacterial groups but not groups specific to C1 metabolism. Geochemical characterization of the amounts and isotopic composition of pore water methane and

  3. Improved Detection and Mapping of Deepwater Hydrocarbon Seeps: Optimizing Acquisition and Processing Parameters for Marine Seep Hunting

    NASA Astrophysics Data System (ADS)

    Mitchell, G. A.; Orange, D.; Gharib, J. J.; Saade, E. J.; Joye, S. B.

    2016-12-01

    Marine seep hunting surveys are a current focus of hydrocarbon exploration due to recent advances in offshore geophysical and geochemical technologies. Hydrocarbon seeps are ephemeral, small, discrete, and often difficult to sample on the deep seafloor. Low to mid-frequency multibeam echosounders (MBES) are an ideal exploration tool to remotely locate and map seafloor features associated with seepage. Geophysical signatures from hydrocarbon seeps are evident in bathymetric datasets (fluid expulsion features), seafloor backscatter datasets (carbonate outcrops, gassy sediments, methane hydrate deposits), and midwater backscatter datasets (gas bubble and oil droplet plumes). Interpretation of these geophysical seep signatures in backscatter datasets is a fundamental component in seep hunting. Degradation of backscatter datasets resulting from environmental, geometric, and system noise can interfere with the detection and delineation of seeps. We present a backscatter intensity normalization method and a 2X acquisition technique that can enhance the geologic resolvability within backscatter datasets and assist in interpretation and characterization of seeps. We use GC600 in the Northern Gulf of Mexico as a seep calibration site for a Kongsberg EM302 30 kHz MBES prior to the start of the Gigante seep hunting survey. We analyze the results of a backscatter intensity normalization, assess the effectiveness of 2X seafloor coverage in resolving geologic features in backscatter data, and determine off-nadir detection limits of bubble plumes. GC600's location and robust venting make it a natural laboratory in which to study natural hydrocarbon seepage. The site has been the focus of several near-seafloor surveys as well as in-situ studies using advanced deepwater technologies analyzing fluid flux and composition. These datasets allow for ground-truthing of our remote backscatter measurements prior to commencing exploration within the frontier regions of the Southern Gulf of

  4. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions

    NASA Astrophysics Data System (ADS)

    Suess, Erwin

    2014-10-01

    Characteristics of cold seeps at different geologic settings are the subject of this review primarily based on results of the Research Consortium SFB 574. Criteria are drawn from examples on the erosive convergent margin off Costa Rica, the accretionary margin off Chile supplemented by examples from the transform margin of the Golf of Cadiz and the convergent Hikurangi margin off New Zealand. Others are from well-studied passive margins of the Black Sea, the Golf of Mexico, the eastern Mediterranean Sea and the South China Sea. Seeps at all settings transport water and dissolved compounds to the ocean through the seafloor by different forcing mechanism and from different depths of the submerged geosphere (10s of meters to 10s of km). The compounds sustain oasis-type ecosystems by providing bioactive reductants sulfide, methane and hydrogen. Hereby, the interaction between fluid composition, flux rates and biota results in a diagnostic hydrocarbon-metazoan-microbe-carbonate association; currently, well over 100 active sites are known. The single most important reaction is microbially mediated anaerobic oxidation of methane with secondary reactions involving S-biogeochemistry and carbonate mineral precipitation. Seep fluids and their seafloor manifestations provide clues as to source depth, fluid-sediment/rock interaction during ascent, lifetime and cyclicity of seepage events but less so on the magnitude of return flow. At erosive margins, Cl-depleted and B-enriched fluids from clay dehydration provide criteria for source depth and temperature. The upward material flow generates mud volcanoes at the seafloor above the projected location of dehydration at depth. At accretionary margins, fluids are derived from more shallow depths by compaction of sediments as they ride on the incoming oceanic plate; they are emitted through thrust faults. At highly sedimented margins, organic-rich and evaporite-containing strata (when present) determine the final fluid composition

  5. Hydrocarbon seeps in petroliferous basins in China: A first inventory

    NASA Astrophysics Data System (ADS)

    Zheng, Guodong; Xu, Wang; Etiope, Giuseppe; Ma, Xiangxian; Liang, Shouyun; Fan, Qiaohui; Sajjad, Wasim; Li, Yang

    2018-01-01

    Natural hydrocarbon seepage is a widespread phenomenon in sedimentary basins, with important implications in petroleum exploration and emission of greenhouse gases to the atmosphere. China has vast petroleum (oil and gas) bearing sedimentary basins, but hydrocarbon seepage has rarely been the object of systematic studies and measurements. Based on the available Chinese literature, we report a first inventory of 932 hydrocarbon seeps or seepage zones (710 onshore seeps and 222 offshore seeps), including 81 mud volcanoes, 449 oil seeps, 215 gas seeps, and 187 solid seeps (bitumen outcrops). The seeps are located within the main 20 Mesozoic-Cenozoic petroliferous sedimentary basins, especially along the marginal, regional and local faults. The type of manifestations (oil, gas or mud volcano) reflects the type and maturity of the subsurface petroleum system and the sedimentary conditions of the basin. Oil seeps are particularly abundant in the Junggar Basin. Gas seeps mostly developed in the Lunpola Basin, in smaller basins of the eastern Guizhou and Yunnan provinces, onshore Taiwan and in the offshore Yinggehai Basin. Mud volcanoes developed in basins (Junggar, Qaidam, Qiangtang, onshore and offshore Taiwan) that experienced rapid sedimentation, which induced gravitative instability of shales and diapirism. In comparison to available global onshore seep data-bases, China results to be the country with the highest number of seeps in the world. The massive gas seepage in China could represent a considerable natural source of methane to the atmosphere, and a key process that may drive future hydrocarbon exploration.

  6. Characterisation of the nematode community of a low-activity cold seep in the recently ice-shelf free Larsen B area, Eastern Antarctic Peninsula.

    PubMed

    Hauquier, Freija; Ingels, Jeroen; Gutt, Julian; Raes, Maarten; Vanreusel, Ann

    2011-01-01

    Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely to influence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide. The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (>2000 individuals per 10 cm(2)) and showed below-surface maxima at a sediment depth of 2-3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable (13)C isotopic signals (ranging between -21.97±0.86‰ and -24.85±1.89‰) were indicative of a phytoplankton-derived food source. The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine nematodes and may be responsible for the

  7. Methane-carbon flow into the benthic food web at cold seeps--a case study from the Costa Rica subduction zone.

    PubMed

    Niemann, Helge; Linke, Peter; Knittel, Katrin; MacPherson, Enrique; Boetius, Antje; Brückmann, Warner; Larvik, Gaute; Wallmann, Klaus; Schacht, Ulrike; Omoregie, Enoma; Hilton, David; Brown, Kevin; Rehder, Gregor

    2013-01-01

    Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15∶0 and C17∶1ω6c with stable carbon isotope compositions as low as -53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other (13)C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus.

  8. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    USGS Publications Warehouse

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  9. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    NASA Astrophysics Data System (ADS)

    Weinstein, Alexander; Navarrete, Luis; Ruppel, Carolyn; Weber, Thomas C.; Leonte, Mihai; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Scranton, Mary I.; Kessler, John D.

    2016-10-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern U.S. Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6-24 kmol methane per day). These analyses suggest that the emitted methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH.

  10. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    USGS Publications Warehouse

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  11. Stable carbon, nitrogen and sulfur isotopes in non-carbonate fractions of cold-seep carbonates

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Peng, Yongbo; Peckmann, Jörn; Roberts, Harry; Chen, Duofu

    2017-04-01

    Sulfate-driven anaerobic oxidation of methane (AOM) supports chemosynthesis-based communities and limits the release of methane from marine sediments. This process promotes the formation of carbonates close to the seafloor along continental margins. The geochemical characteristics of the carbonate minerals of these rocks are increasingly understood, questions remain about the geochemical characteristics of the non-carbonate fractions. Here, we report stable carbon, nitrogen and sulfur isotope patterns in non-carbonate fractions of seep carbonates. The authigenic carbonates were collected from three modern seep provinces (Black Sea, Gulf of Mexico, and South China Sea) and three ancient seep deposits (Marmorito, northern Italy, Miocene; SR4 deposit of the Lincoln Creek Formation and Whiskey Creek, western Washington, USA, Eocene to Oligocene). The δ13C values of non-carbonate fractions range from ˜-25‰ to -80‰ VPDB. These values indicate that fossil methane mixed with varying amounts of pelagic organic matter is the dominant source of carbon in these fractions. The relatively small offset between the δ34S signatures of the non-carbonate fractions and the respective sulfide minerals suggests that locally produced hydrogen sulfide is the main source of sulfur in seep environments. The δ15N values of the non-carbonate fractions are generally lower than the corresponding values of deep-sea sediments, suggesting that organic nitrogen is mostly of a local origin. This study reveals the potential of using δ13C, δ15N, δ34S values to discern seep and non-seep deposits. In cases where δ13Ccarbonate values are only moderately low due to mixing processes and lipid biomarkers have been erased in the course of burial, it is difficult to trace back AOM owing to the lack of other records. This problem is even more pronounced when authigenic carbonate is not available in ancient seep environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support

  12. Carbon, oxygen, and strontium isotopic composition of methane-derived authigenic carbonates in methane seep areas, eastern margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Kakizaki, Y.; Ishikawa, T.; Hiruta, A.; Matsumoto, R.

    2016-12-01

    We report the occurrence, mineralogy, and isotopic composition (δ13C; δ18O) of methane-derived authigenic carbonates (MDACs) from three methane seep areas with shallow gas hydrate (Umitaka Spur, Joetsu Knoll, and off-Tobishima Island), in the southeastern margin of Japan Sea. Furthermore, we present strontium isotopic ratios (87Sr/86Sr) of MDACs, pore waters, and seawater from Umitaka Spur. MDACs range from a few mm to several tens of cm in diameter. Their shape is quite varied, e.g. nodular, platy, and indetermine form. Most MDACs are composed of high-Mg calcite. The δ13C values of MDACs from Umitaka Spur range from -30 to -4 permil. These isotopic values are higher than those of Joetsu Knoll and off-Tobishima Island. This difference is dependent upon the formation depth of MDACs in the sediment column. It probably indicates a difference in the formation environment of MDACs (e.g. methane flux). Meanwhile, range of the δ18O values of MDACs from those three areas is mostly equal. The 87Sr/86Sr ratios in MDACs from shallow sediment depth of Umitaka Spur are equal to those of modern surface seawater just above Umitaka Spur. The 87Sr/86Sr ratios of MDACs from deeper sediment depth are lower, and the Sr-isotopic trend indicates an upward increase. This trend can be correlated to the global Sr-isotopic trend of the seawater from late Pleistocene to present. It means that 87Sr/86Sr ratios of MDACs reflect the 87Sr/86Sr ratio of seawater at the formation age. However, the 87Sr/86Sr ratios in pore water are lower than those of MDACs, yet follow a parallel trend. This would suggest that the pore water includes a source of light Sr, presumably released from tuff and volcaniclastics during diagenetic processes. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  13. Implementation of an acoustic-based methane flux estimation methodology in the Eastern Siberian Arctic Sea

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Weber, T. C.; Mayer, L. A.

    2017-12-01

    Quantifying methane flux originating from marine seep systems in climatically sensitive regions is of critically importance for current and future climate studies. Yet, the methane contribution from these systems has been difficult to estimate given the broad spatial scale of the ocean and the heterogeneity of seep activity. One such region is the Eastern Siberian Arctic Sea (ESAS), where bubble release into the shallow water column (<40 meters average depth) facilitates transport of methane to the atmosphere without oxidation. Quantifying the current seep methane flux from the ESAS is necessary to understand not only the total ocean methane budget, but also to provide baseline estimates against which future climate-induced changes can be measured. At the 2016 AGU fall meeting, we presented a new acoustic-based flux methodology using a calibrated broadband split-beam echosounder. The broad (14-24 kHz) bandwidth provides a vertical resolution of 10 cm, making possible the identification of single bubbles. After calibration using 64 mm copper sphere of known backscatter, the acoustic backscatter of individual bubbles is measured and compared to analytical models to estimate bubble radius. Additionally, bubbles are precisely located and traced upwards through the water column to estimate rise velocity. The combination of radius and rise velocity allows for gas flux estimation. Here, we follow up with the completed implementation of this methodology applied to the Herald Canyon region of the western ESAS. From the 68 recognized seeps, bubble radii and rise velocity were computed for more than 550 individual bubbles. The range of bubble radii, 1-6 mm, is comparable to those published by other investigators, while the radius dependent rise velocities are consistent with published models. Methane flux for the Herald Canyon region was estimated by extrapolation from individual seep flux values.

  14. Methane-Carbon Flow into the Benthic Food Web at Cold Seeps – A Case Study from the Costa Rica Subduction Zone

    PubMed Central

    Niemann, Helge; Linke, Peter; Knittel, Katrin; MacPherson, Enrique; Boetius, Antje; Brückmann, Warner; Larvik, Gaute; Wallmann, Klaus; Schacht, Ulrike; Omoregie, Enoma; Hilton, David; Brown, Kevin; Rehder, Gregor

    2013-01-01

    Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15∶0 and C17∶1ω6c with stable carbon isotope compositions as low as −53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other 13C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus. PMID:24116017

  15. Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.

    2014-12-01

    The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the

  16. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    USGS Publications Warehouse

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  17. Reducing the effect on the environment by collecting methane plumes.

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Aoyama, C.

    2017-12-01

    Often times, seeping methane plumes can be observed in the vicinity of surface layer methane hydrate. Greenhouse effect of methane gas is approximately 25 times that of carbon dioxide. This is a big influence on the environment. From the investigation performed in 2006 at Umitaka Kaikyaku of the Sea of Japan, the annual amount of methane gas seeping naturally from seafloor was 7.7×105m3/per m2. Methane plume is one of the important factors in considering carbon cycle. In order to collect seeping methane plumes naturally, a method using dome-shaped film was examined. In March, 2016, experiment was performed in the northeast coast of Sado Island in the Sea of Japan using ROV to collect bubbles with a film, using ROV at methane plume gushing point of 150m depth. Bubbles rising into the tubes from dome-shaped film were observed. In June, 2017, another investigation was performed in Umitaka Kaikyaku in offshore Joetsu at Sea of Japan. ROV was used at 890m depth and the experiment was performed with domes made of various materials and shapes. In this study, the author will describe the investigation result.

  18. Microbial Community Dynamics in Methane-Oxidizing Mesocosms from the Gulf of Mexico and U.S. Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Redmond, M. C.; Sorgen, A. A.; Chan, E. W.; Kessler, J. D.

    2016-12-01

    Microbial methane oxidation at natural gas seeps plays an important role in reducing the amount of this greenhouse gas that reaches the atmosphere, but questions remain about the factors that control methane oxidation rates and organisms responsible. We collected water samples from methane seeps on the U.S. Atlantic Margin (Hudson Canyon) and the Gulf of Mexico and tracked aerobic methane oxidation with high resolution measurements of methane, carbon dioxide, and oxygen concentrations, stable isotopic changes in methane and carbon dioxide, trace metals and nutrients in ten replicate mesocosms from each site. At several time points, we collected DNA for 16S rRNA gene and metagenomic sequencing. Hudson Canyon seep mesocosm communities were dominated by methanotrophs from the family Methylococcaceae (>75% of 16S rRNA gene sequences in all samples). Methylococcaceae were also present in the Gulf of Mexico mesocosms, but were much less abundant (<50% of 16S rRNA gene sequences) and methane was consumed less rapidly than in the Hudson Canyon mesocosms. The Hudson Canyon seeps emit only methane, whereas the Gulf of Mexico seeps also emit ethane, propane, and other hydrocarbons. Consistent with this differing geochemistry, hydrocarbon degraders such as Colwellia and Cycloclasticus were also abundant in the Gulf of Mexico mesocosms, as were genes for the oxidation of longer chain alkanes and aromatic compounds.

  19. Chemosynthetic trophic support for the benthic community at an intertidal cold seep site at Mocha Island off central Chile

    NASA Astrophysics Data System (ADS)

    Sellanes, Javier; Zapata-Hernández, Germán; Pantoja, Silvio; Jessen, Gerdhard L.

    2011-12-01

    We analyzed C and N stable isotope ratios of benthic fauna and their potential food sources at an intertidal methane seep site and a control site without emanation at Mocha Island (central Chile). The objective was to trace the origin of the main food sources used by the local heterotrophic fauna, based on the hypothesis that chemosynthetic production could be partially fueling the local food web at the seep site. Food sources sampled at both sites included macroalgae, particulate organic matter and bacteria-like filaments found growing over the red algae Gelidium lingulatum within the areas of active methane release. At the control site, located 11 km away from the gas emanation, fauna exhibited moderate δ 13C values ranging from -16.2‰ (in a nereid polychaete) to -14.8‰ (in a cirolanid isopod), which were consistent with those of the potential photosynthetic food sources sampled at this site (-20.2 to -16.5‰). δ 13C values of the photosynthetic food sources at the seep site similarly ranged between -25.4 and -17.9‰. However, a portion of the animals at this site were consistently more 13C-depleted, with δ 13C values close to that of the seeping methane (-43.8‰) and the bacteria-like filaments (-39.2 ± 2.5‰) also collected at this site. Specific examples were the Marphysa sp. polychaetes (δ 13C = -44.7 ± 0.6‰), the Schistomeringos sp. dorvilleid polychaetes (δ 13C = -42.9‰), and the tanaid crustacean Zeuxo marmoratus (δ 13C = -37.3 ± 0.2‰). The significantly higher δ 13C values of the herbivorous gastropod Tegula atra at the seep site (-29.3 ± 3.1‰) than at the control site (-12.6 ± 0.3‰) also indicated differences among sites of the preferred carbon sources of this species. Mixing model estimates indicate that at the seep site bacteria-like filaments could be contributing up to ˜60% of the assimilated diet of selected invertebrates. Furthermore, several indicators of trophic structure, based in isotopic niche metrics, indicate a

  20. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Aharon, Paul; Fu, Baoshun

    2000-01-01

    Sulfate reduction and anaerobic methane oxidation are the dominant microbial processes occurring in hydrate-bearing sediments at bathyal depths in the Gulf of Mexico where crude oil and methane are advecting through fault conduits to the seafloor. The oil and gas seeps are typically overlain by chemosynthetic communities consisting of thiotrophic bacterial mats (Beggiatoa spp.) and methanotrophic mussels (Bathymodiolus spp.), respectively. Cores were recovered with a manned submersible from fine-grained sediments containing dispersed gas hydrates at the threshold of stability. Estimated sulfate reduction rates are variable but generally are substantially higher in crude oil seeps (up to 50 times) and methane seeps (up to 600 times) relative to a non-seep reference sediment (0.0043 μmol SO 42- cm -3 day -1). Sulfur and oxygen isotope fractionation factors are highest in the reference sediment (α S = 1.027; α O = 1.015) but substantially lower in the seep sediments (α S = 1.018 to 1.009; α O = 1.006 to 1.002) and are controlled primarily by kinetic factors related to sulfate reduction rates. Kinetic effects also control the δ 34S/δ 18O ratios such that slow microbial rates yield low ratios whereas faster rates yield progressively higher ratios. The seep data contradict previous claims that δ 34S/δ 18O ratios are diagnostic of either microbial sulfate reduction at a fixed δ 34S/δ 18O ratio of 4/1 or lower ratios caused by SO 4-H 2O equilibration at ambient temperatures. The new results offer a better understanding of methane removal via anaerobic oxidation in the sulfate reduction zone of hydrate-bearing sediments and have significant implications regarding the origin and geochemical history of sedimentary sulfate reconstructed on the basis of δ 34S and δ 18O compositions.

  1. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea)

    PubMed Central

    Pop Ristova, Petra; Wenzhöfer, Frank; Ramette, Alban; Felden, Janine; Boetius, Antje

    2015-01-01

    Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea. PMID:25500510

  2. A SIMS Study of Sulfur Isotopes of Accessory Pyrites Associated with Barites from Methane Cold Seeps in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Morelli, E. C.; Aharon, P.

    2017-12-01

    Bacteria and archaea associated with seeps can fix methane from sublimating gas hydrates through coupled bacterial sulfate reduction/ anaerobic methane oxidation (BSR/AMO) and prevent outgassing to the atmosphere. The occurrence of such microbial processes has been established on the basis of the sulfur isotope compositions of microbial byproducts (pyrites; FeS2) that reflect the degree of fractionation between SO4 and FeS2 via the production of the H2S intermediate phase. BSR/AMO coupling has been discerned in accessory sulfides associated with carbonates from gas hydrate sites. Whether BSR/AMO coupling is also active in barites, another ubiquitous product of gas hydrate sublimation, has so far been overlooked. Here we present results of a new sulfur isotope study of accessory sulfides in barites associated with gas hydrates at the threshold of stability occurring on the Gulf of Mexico slope. Using a fractionation factor of 1.009 and a seawater δ34SSO4 value of 20.3‰ and assuming a Rayleigh distillation closed system model for marine sulfide precipitation, pyrites from barite gas seeps are predicted to exhibit a range of δ34S values (about -1‰ to 20‰ CDT) as the pool of sulfate is continuously depleted. Actual δ34S values could fall outside of the predicted range because the system in question is likely only partially closed and kinetic fractionations are likely. δ34S of accessory pyrites from three Garden Banks Lease Block 382 (510 - 640m water depth) and one Mississippi Canyon Lease Block 929 (590m) barite samples have been determined using an ims-1290 Secondary Ion Mass Spectrometer (SIMS). Two Garden Banks samples and one Mississippi Canyon sample reveal a spread of values from 5.30 ± 0.04 to 25.90 ± 0.09 (‰ CDT), which follow the predicted trend for gas seeps and indicate the source of fractionation is likely from the coupled BSR/AMO process. One Garden Banks sample yields a wide spread of values from -26.2 ± 0.05 to 20.5 ± 0.4 (‰ CDT). The

  3. Faunal and stable isotopic analyses of benthic foraminifera from the Southeast Seep on Kimki Ridge offshore southern California, USA

    USGS Publications Warehouse

    McGann, Mary; Conrad, James E.

    2018-01-01

    We investigated the benthic foraminiferal faunal and stable carbon and oxygen isotopic composition of a 15-cm push core (NA075-092b) obtained on a Telepresence-Enabled cruise to the Southeast Seep on Kimki Ridge offshore southern California. The seep core was taken at a depth of 973 m in the vicinity of a Beggiatoa bacterial mat and vesicomyid clams (Calyptogena) and compared to previously published data of living assemblages from ~ 714 m, four reference cores obtained at ~ 1030 m, and another one at 739 m. All of the reference sites are also from the Inner Continental Borderland but with no evidence of methane seepage.No endemic species were found at the seep site and most of the taxa recovered there have been reported previously from other seep or low oxygen environments. Q- and R-mode cluster analyses clearly illustrated differences in the faunal assemblages of the seep and non-seep sites. The living assemblage at Southeast Seep was characterized by abundant Takayanagia delicata, Cassidulina translucens, and Spiroplectammina biformis, whereas the non-seep San Pedro Basin reference assemblage was comprised primarily of Chilostomella oolina and Globobulimina pacifica. Density and species richness were lower at the seep site compared to the non-seep site, reflecting the harsher living conditions there. The dead assemblage at the seep site was dominated by Gyroidina turgida compared to Cassidulina translucens at the ~ 1030 m non-seep site and Cassidulina translucens, Pseudoparrella pacifica, and Takayanagia delicata at the 739 m non-seep site. Density was three times lower at Southeast Seep than at the non-seep sites of comparable water depth but species richness was ~ 30% higher. Stable carbon isotopic values were considerably depleted in the seep samples compared to the non-seep samples, with a progression from lightest to heaviest average δ13C values evident at the seep site reflecting microhabitat preference and vital effect: the

  4. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  5. Quantification of Methane Gas Flux and Bubble Fate on the Eastern Siberian Arctic Shelf Utilizing Calibrated Split-beam Echosounder Data.

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.

    2016-12-01

    On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with

  6. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    NASA Astrophysics Data System (ADS)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  7. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments: A case study from the South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Chen, Linying; Feng, Dong; Liang, Qianyong; Xia, Zhen; Chen, Duofu

    2017-05-01

    Sediments at marine methane seep sites provide potential archives of past fluid flow that serve to explore seepage activities over time. Three gravity cores (D-8, D-F, and D-7) were collected from seep sites on the northern slope of the South China Sea where gas hydrates were drilled in the subsurface. Various carbon and sulfur contents, δ13C values of total inorganic carbon (δ13CTIC), δ34S values of chromium reducible sulfur (δ34SCRS), trace element contents, grain size, and AMS 14C dating of planktonic Foraminifera in the sediments were determined to explore the availability of related proxies at seeps and to trace past methane seepage activities. Evidence for the presence of methane seepage and consequently anaerobic oxidation of methane comes from the occurrence of 13C-depleted authigenic carbonate nodules (δ13C values as low as -49‰) discovered at an interval of 150-200 cm in core D-7. This finding is supported by high S/C ratios and molybdenum enrichment in the same interval. However, low contents of CRS and negative δ34SCRS values are present. It is suggested to reflect a transient methane seepage event, which continued for about 1 ka based on the 14C ages. Cores D-8 and D-F have δ13CTIC values close to zero, low S/C ratios and CRS contents, negative δ34SCRS values, and no trace element enrichment, suggesting a negligible impact of methane-seepage on the sediments. The negative δ34SCRS values of the studied seep-impacted and background sediments suggest that the application of δ34SCRS alone as a proxy to identify AOM-related process may be insufficient. Sediment carbon-sulfur-trace element systematics and 14C ages used here have the potential to be a promising tool to recognize transient methane seepages and constrain their timescales.

  8. E/V Nautilus Detection of Isolated Features in the Eastern Pacific Ocean: Newly Discovered Calderas and Methane Seeps

    NASA Astrophysics Data System (ADS)

    Raineault, N.; Irish, O.; Lubetkin, M.

    2016-02-01

    The E/V Nautilus mapped over 80,000 km2 of the seafloor in the Gulf of Mexico and Eastern Pacific Ocean during its 2015 expedition. The Nautilus used its Kongsberg EM302 multibeam system to map the seafloor prior to remotely operated vehicle (ROV) dives, both for scientific purposes (site selection) and navigational safety. The Nautilus also routinely maps during transits to identify previously un-mapped or unresolved seafloor features. During its transit from the Galapagos Islands to the California Borderland, the Nautilus mapped 44,695 km2 of seafloor. Isolated features on the seafloor and in the water-column, such as calderas and methane seeps, were detected during this data collection effort. Operating at a frequency of 30 kHz in waters ranging from 1000-5500 m, we discovered caldera features off the coast of Central America. Since seamounts are known hotspots of biodiversity, locating new ones may enrich our understanding of seamounts as "stepping stones" for species distribution and ocean current pathways. Satellite altimetry datasets prior to this data either did not discern these calderas or recognized the presence of a bathymetric high without great detail. This new multibeam bathymetry data, gridded at 50 m, gives a precise look at these seamounts that range in elevation from 350 to 1400 m from abyssal depth. The largest of the calderas is circular in shape and is 10,000 m in length and 5,000 m in width, with a distinct circular depression at the center of its highest point, 1,400 m above the surrounding abyssal depth. In the California Borderland region, located between San Diego and Los Angeles, four new seeps were discovered in water depths from 400-1,020 m. ROV exploration of these seeps revealed vent communities. Altogether, these discoveries reinforce how little we know about the global ocean, indicate the presence of isolated deep-sea ecosystems that support biologically diverse communities, and will impact our understanding of seafloor habitat.

  9. Multi-scale monitoring of a marine geologic methane source in the Santa Barbara Channel using imaging spectrometry, ARCTAS-CARB in situ sampling and coastal hourly total hydrocarbon measurements

    NASA Astrophysics Data System (ADS)

    Bradley, E. S.; Leifer, I.; Roberts, D.; Dennison, P. E.; Margolis, J.; Moritsch, M.; Diskin, G. S.; Sachse, G. W.

    2009-12-01

    The Coal Oil Point (COP) hydrocarbon seep field off the coast of Santa Barbara, CA is one of the most active and best-studied marine geologic methane sources in the world and contributes to elevated terrestrial methane concentrations downwind. In this study, we investigate the spatiotemporal variability of this local source and the influence of meteorological conditions on transport and concentration. A methane plume emanating from Trilogy Seep was mapped with the Airborne Visible Infrared Imaging Spectrometer at a 7.5 m resolution with a short-wave infrared band ratio technique. This structure agrees with the local wind speed and direction and is orthogonal to the surface currents. ARCTAS-CARB aircraft in situ sampling of lower-troposphere methane is compared to sub-hour total hydrocarbon concentration (THC) measurements from the Santa Barbara Air Pollution Control District (SBAPCD) station located near COP. Hourly SBAPCD THC values from 1980-2008 demonstrate a decrease in seep source strength until the late 1990s, followed by a consistent increase. The occurrence of elevated SBAPCD THC values for onshore wind conditions as well as numerous positive outliers as high as 17 ppm suggests that seep field emissions are both quasi-steady state and transient, direct (bubble) and diffuse (outgassing). As demonstrated for the COP seeps, the combination of imaging spectrometry, aircraft in situ sampling, and ground-based monitoring provides a powerful approach for understanding local methane sources and transport processes.

  10. Interactions between nitrogen cycling and methane oxidation in the pelagic waters of the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Joye, S. B.; Weber, S.; Battles, J.; Montoya, J. P.

    2014-12-01

    Methane is an important greenhouse gas that plays a critical role in climate variation. Although a variety of marine methane sources and sinks have been identified, key aspects of the fate of methane in the ocean remain poorly constrained. At cold seeps in the Gulf of Mexico and elsewhere, methane is introduced into the overlying water column via fluid escape from the seabed. We quantified the fate of methane in the water column overlying seafloor cold seeps, in a brine basin, and at several control sites. Our goals were to determine the factors that regulated methane consumption and assimilation and to explore how these controlling factors varied among and between sites. In particular, we examined the impact of nitrogen availability on methane oxidation and studied the ability of methane oxidizing bacteria to fix molecular nitrogen. Methane oxidation rates were highest in the methane rich bottom waters of natural hydrocabron seeps. At these sites, inorganic nitrogen addition stimulated methane oxidation in laboratory experiments. In vitro shipboard experiments revealed that rates of methane oxidation and nitrogen fixation were correlated strongly, suggesting that nitrogen fixation may have been mediated by methanotrophic bacteria. The highest rates of methane oxidation and nitrogen fixation were observed in the deepwater above at natural hydrocarbon seeps. Rates of methane oxidation were substantial along the chemocline of a brine basin but in these ammonium-rich brines, addition of inorganic nitrogen had little impact on methane oxidation suggesting that methanotrophy in these waters were not nitrogen limited. Control sites exhibited the lowest methane concentrations and methane oxidation rates but even these waters exhibited substantial potential for methane oxidation when methane and inorganic nitrogen concentrations were increased. Together, these data suggest that the availability of inorganic nitrogen plays a critical role in regulating methane oxidation in

  11. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics

    NASA Astrophysics Data System (ADS)

    Liang, Qianyong; Hu, Yu; Feng, Dong; Peckmann, Jörn; Chen, Linying; Yang, Shengxiong; Liang, Jinqiang; Tao, Jun; Chen, Duofu

    2017-06-01

    Authigenic carbonates recovered from two newly discovered active cold seeps on the northwestern slope of the South China Sea have been studied using petrography, mineralogy, stable carbon and oxygen isotopic, as well as trace element compositions, together with AMS 14C ages of shells of seep-dwelling bivalves to unravel fluid sources, formation conditions, and seepage dynamics. The two seeps (ROV1 and ROV2), referred to as 'Haima seeps' herein, are approximately 7 kilometers apart, and are typified by abundant carbonate rocks represented bycrusts and nodules. Aragonite and high-Mg calcite are the main carbonate minerals. Based on low δ13Ccarbonate values ranging from -43.0‰ to -27.5‰ (V-PDB) methane is apparently the predominant carbon source of seep carbonates. The corresponding δ18O values, varying from 2.5‰ to 5.8‰ (V-PDB), mostly are higher than calculated values representing precipitation in equilibrium with seawater (2.5‰ to 3.8‰), which probably reflects past destabilization of locally abundant gas hydrates. In addition, we found that carbonates with bivalve shells are generally aragonite-dominated, and bear no barium enrichment but uranium enrichments, reflecting shallow formation depths close to the seafloor. In contrast, carbonate crusts without bivalve shells and nodules contain more calcite, and are characterized by major molybdenum enrichment and different degrees of barium enrichment, agreeing with precipitation at greater depth under strictly anoxic conditions. AMS 14C ages suggest that a major episode of carbonate precipitation occurred between 6.1 ka and 5.1 ka BP at the Haima seeps, followed by a possibly subordinate episode from approximately 3.9 ka to 2.9 ka BP. The common occurrence of dead bivalves at both sites indicates that chemosynthesis-based communities flourished to a greater extent in the past, probably reflecting a decline of seepage activity in recent times. Overall, these results confirm that authigenic carbonates from

  12. Physical Conditions Associated with Widespread Seafloor Methane Discharge on the Northern US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.; Ruppel, C. D.; Brothers, D. S.

    2014-12-01

    Recent analysis of water column backscatter data and remotely operated vehicle (ROV) video imagery collected by NOAA Ship Okeanos Explorer between 2011 and 2013 revealed methane discharge from the seafloor at over 570 gas seep locations along the northern US Atlantic margin. To the best of our knowledge, such large-scale seepage has not previously been observed on a passive margin outside the Arctic or not spatially associated with a petroleum basin. This seepage has implications for the global carbon cycle, ocean chemistry (e.g., acidification), and in some cases, the climate system. Using data collected by Okeanos Explorer and NOAA's Deep Discoverer ROV, we combine water column backscatter data with video imagery and seafloor backscatter data to estimate gas flux and constrain the geoacoustic properties of the seabed at methane discharge sites. The total methane flux from the northern US Atlantic margin seeps is conservatively estimated at ~15-90 Mg y-1, based on observations of gas bubble volume, discharge rates, and discharge points per site. However, fewer than 1% of the identified seep sites have been inspected with a ROV, and this estimate is likely to be revised upward as the characteristics of the seeps are further constrained. Another important observation to emerge from our analysis is the lack of spatial correlation between seep sites and the ~5000 pockmarks mapped on the northern part of the US Atlantic margin. In this region, pockmarks, which are often easily identified by geophysical imaging of the seafloor, should not be considered potential target sites for finding undiscovered areas of seepage. Conversely, discrete patches of elevated relative seafloor acoustic backscatter amplitude do appear to be correlated with the spatial distribution of methane seeps, implying anomalous seafloor characteristic at seep loci. This finding is consistent with ROV video observations of authigenic carbonate outcrops and extensive chemosynthetic bivalve communities

  13. Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates

    PubMed Central

    Steele, Joshua A.; Ziebis, Wiebke; Scheller, Silvan; Case, David; Reynard, Linda M.; Orphan, Victoria J.

    2017-01-01

    ABSTRACT Biological methane oxidation is a globally relevant process that mediates the flux of an important greenhouse gas through both aerobic and anaerobic metabolic pathways. However, measuring these metabolic rates presents many obstacles, from logistical barriers to regulatory hurdles and poor precision. Here we present a new approach for investigating microbial methane metabolism based on hydrogen atom dynamics, which is complementary to carbon-focused assessments of methanotrophy. The method uses monodeuterated methane (CH3D) as a metabolic substrate, quantifying the aqueous D/H ratio over time using off-axis integrated cavity output spectroscopy. This approach represents a nontoxic, comparatively rapid, and straightforward approach that supplements existing radiotopic and stable carbon isotopic methods; by probing hydrogen atoms, it offers an additional dimension for examining rates and pathways of methane metabolism. We provide direct comparisons between the CH3D procedure and the well-established 14CH4 radiotracer method for several methanotrophic systems, including type I and II aerobic methanotroph cultures and methane-seep sediment slurries and carbonate rocks under anoxic and oxic incubation conditions. In all applications tested, methane consumption values calculated via the CH3D method were directly and consistently proportional to 14C radiolabel-derived methane oxidation rates. We also employed this method in a nontraditional experimental setup, using flexible, gas-impermeable bags to investigate the role of pressure on seep sediment methane oxidation rates. Results revealed an 80% increase over atmospheric pressure in methanotrophic rates the equivalent of ~900-m water depth, highlighting the importance of this parameter on methane metabolism and exhibiting the flexibility of the newly described method. IMPORTANCE Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation

  14. Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates.

    PubMed

    Marlow, Jeffrey J; Steele, Joshua A; Ziebis, Wiebke; Scheller, Silvan; Case, David; Reynard, Linda M; Orphan, Victoria J

    2017-01-01

    Biological methane oxidation is a globally relevant process that mediates the flux of an important greenhouse gas through both aerobic and anaerobic metabolic pathways. However, measuring these metabolic rates presents many obstacles, from logistical barriers to regulatory hurdles and poor precision. Here we present a new approach for investigating microbial methane metabolism based on hydrogen atom dynamics, which is complementary to carbon-focused assessments of methanotrophy. The method uses monodeuterated methane (CH 3 D) as a metabolic substrate, quantifying the aqueous D/H ratio over time using off-axis integrated cavity output spectroscopy. This approach represents a nontoxic, comparatively rapid, and straightforward approach that supplements existing radiotopic and stable carbon isotopic methods; by probing hydrogen atoms, it offers an additional dimension for examining rates and pathways of methane metabolism. We provide direct comparisons between the CH 3 D procedure and the well-established 14 CH 4 radiotracer method for several methanotrophic systems, including type I and II aerobic methanotroph cultures and methane-seep sediment slurries and carbonate rocks under anoxic and oxic incubation conditions. In all applications tested, methane consumption values calculated via the CH 3 D method were directly and consistently proportional to 14 C radiolabel-derived methane oxidation rates. We also employed this method in a nontraditional experimental setup, using flexible, gas-impermeable bags to investigate the role of pressure on seep sediment methane oxidation rates. Results revealed an 80% increase over atmospheric pressure in methanotrophic rates the equivalent of ~900-m water depth, highlighting the importance of this parameter on methane metabolism and exhibiting the flexibility of the newly described method. IMPORTANCE Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation

  15. Methane Seepage on Mars: Where to Look and Why

    NASA Astrophysics Data System (ADS)

    Oehler, Dorothy Z.; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available.

  16. News from the "blowout", a man-made methane pockmark in the North Sea: chemosynthetic communities and microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Steinle, Lea I.; Wilfert, Philipp; Schmidt, Mark; Bryant, Lee; Haeckel, Matthias; Lehmann, Moritz F.; Linke, Peter; Sommer, Stefan; Treude, Tina; Niemann, Helge

    2013-04-01

    The accidental penetration of a base-Quaternary shallow gas pocket by a drilling rig in 1990 caused a "blowout" in the British sector of the North Sea (57°55.29' N, 01°37.86' E). Large quantities of methane have been seeping out of this man-made pockmark ever since. As the onset of gas seepage is well constrained, this site can be used as a natural laboratory to gain information on the development of methane oxidizing microbial communities at cold seeps. During an expedition with the R/V Celtic Explorer in July and August 2012, we collected sediments by video-guided push-coring with an ROV (Kiel 6000) along a gradient from inside the crater (close to where a jet of methane bubbles enters the water column) outwards. We also sampled the water column in a grid above the blowout at three different depths. In this presentation, we provide evidence for the establishment of methanotrophic communities in the sediment (AOM communities) on a time scale of decades. Furthermore, we will report data on methane concentrations and anaerobic methane oxidation rates in the sediment. Finally, we will also discuss the spatial distribution of methane and aerobic methane oxidation rates in the water column.

  17. Seep Detection using E/V Nautilus Integrated Seafloor Mapping and Remotely Operated Vehicles on the United States West Coast

    NASA Astrophysics Data System (ADS)

    Gee, L. J.; Raineault, N.; Kane, R.; Saunders, M.; Heffron, E.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Exploration Vessel (E/V) Nautilus has been mapping the seafloor off the west coast of the United States, from Washington to California, for the past three years with a Kongsberg EM302 multibeam sonar. This system simultaneously collects bathymetry, seafloor and water column backscatter data, allowing an integrated approach to mapping to more completely characterize a region, and has identified over 1,000 seafloor seeps. Hydrographic multibeam sonars like the EM302 were designed for mapping the bathymetry. It is only in the last decade that major mapping projects included an integrated approach that utilizes the seabed and water column backscatter information in addition to the bathymetry. Nautilus mapping in the Eastern Pacific over the past three years has included a number of seep-specific expeditions, and utilized and adapted the preliminary mapping guidelines that have emerged from research. The likelihood of seep detection is affected by many factors: the environment: seabed geomorphology, surficial sediment, seep location/depth, regional oceanography and biology, the nature of the seeps themselves: size variation, varying flux, depth, and transience, the detection system: design of hydrographic multibeam sonars limits use for water column detection, the platform: variations in the vessel and operations such as noise, speed, and swath overlap. Nautilus integrated seafloor mapping provided multiple indicators of seep locations, but it remains difficult to assess the probability of seep detection. Even when seeps were detected, they have not always been located during ROV dives. However, the presence of associated features (methane hydrate and bacterial mats) serve as evidence of potential seep activity and reinforce the transient nature of the seeps. Not detecting a seep in the water column data does not necessarily indicate that there is not a seep at a given location, but with multiple passes over an area and by the use of other contextual data, an area may

  18. Assessing the role of spatial structure on cell-specific activity and interactions within uncultured methane-oxidizing syntrophic consortia (Invited)

    NASA Astrophysics Data System (ADS)

    Orphan, V. J.; McGlynn, S.; Chadwick, G.; Dekas, A.; Green-Saxena, A.

    2013-12-01

    Sulfate-coupled anaerobic oxidation of methane is catalysed through symbiotic associations between archaea and sulphate-reducing bacteria and represents the dominant sink for methane in the oceans. These methane-oxidizing symbiotic consortia form well-structured multi-celled aggregations in marine methane seeps, where close spatial proximity is believed to be essential for efficient exchange of substrates between syntrophic partners. The nature of this interspecies metabolic relationship is still unknown however there are a number of hypotheses regarding the electron carrying intermediate and ecophysiology of the partners, each of which should be affected by, and influence, the spatial arrangement of archaeal and bacterial cells within aggregates. To advance our understanding of the role of spatial structure within naturally occurring environmental consortia, we are using spatial statistical methods combined with fluorescence in situ hybridization and high-resolution nanoscale secondary ion mass spectrometry (FISH-nanoSIMS) to quantify the effect of spatial organization and intra- and inter-species interactions on cell-specific microbial activity within these diverse archaeal-bacterial partnerships.

  19. Changes in deep-sea carbonate-hosted microbial communities associated with high and low methane flux

    NASA Astrophysics Data System (ADS)

    Case, D. H.; Steele, J. A.; Chadwick, G.; Mendoza, G. F.; Levin, L. A.; Orphan, V. J.

    2012-12-01

    Methane seeps on continental shelves are rich in authigenic carbonates built of methane-derived carbon. These authigenic carbonates are home to micro- and macroscopic communities whose compositions are thus far poorly constrained but are known to broadly depend on local methane flux. The formation of authigenic carbonates is itself a result of microbial metabolic activity, as associations of anaerobic methane oxidizing archaea (ANME) and sulfate reducing bacteria (SRB) in the sediment subsurface increase both dissolved inorganic carbon (DIC) and alkalinity in pore waters. This 1:1 increase in DIC and alkalinity promotes the precipitation of authigenic carbonates. In this study, we performed in situ manipulations to test the response of micro- and macrofaunal communities to a change in methane flux. Methane-derived authigenic carbonates from two locations at Hydrate Ridge, OR, USA (depth range 595-604 mbsl), were transplanted from "active" cold seep sites (high methane flux) to "inactive" background sites (low methane flux), and vise versa, for one year. Community diversity surveys using T-RFLP and 16S rRNA clone libraries revealed how both bacterial and archaeal assemblages respond to this change in local environment, specifically demonstrating reproducible shifts in different ANME groups (ANME-1 vs. ANME-2). Animal assemblage composition also shifted during transplantation; gastropod representation increased (relative to control rocks) when substrates were moved from inactive to active sites and polychaete, crustacean and echinoderm representation increased when substrates were moved from active to inactive sites. Combined with organic and inorganic carbon δ13C measurements and mineralogy, this unique in situ experiment demonstrates that authigenic carbonates are viable habitats, hosting microbial and macrofaunal communities capable of responding to changes in external environment over relatively short time periods.

  20. Variations in Gas and Water Pulses at an Arctic Seep: Fluid Sources and Methane Transport

    NASA Astrophysics Data System (ADS)

    Hong, W.-L.; Torres, M. E.; Portnov, A.; Waage, M.; Haley, B.; Lepland, A.

    2018-05-01

    Methane fluxes into the oceans are largely dependent on the methane phase as it migrates upward through the sediments. Here we document decoupled methane transport by gaseous and aqueous phases in Storfjordrenna (offshore Svalbard) and propose a three-stage evolution model for active seepage in the region where gas hydrates are present in the shallow subsurface. In a preactive seepage stage, solute diffusion is the primary transport mechanism for methane in the dissolved phase. Fluids containing dissolved methane have high 87Sr/86Sr ratios due to silicate weathering in the microbial methanogenesis zone. During the active seepage stage, migration of gaseous methane results in near-seafloor gas hydrate formation and vigorous seafloor gas discharge with a thermogenic fingerprint. In the postactive seepage stage, the high concentration of dissolved lithium points to the contribution of a deeper-sourced aqueous fluid, which we postulate advects upward following cessation of gas discharge.

  1. Authigenic carbonates from methane seeps of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Fouquet, Yves

    2007-06-01

    Submersible investigations with the ROV Victor 6000 of some pockmark structures on the seafloor of the Congo deep-sea fan have shown that they are active venting sites of methane-rich fluids, associated with abundant fauna and carbonate crusts. Moreover, methane hydrates have been observed both outcropping and deep in the sediments in the centre of the “Regab” giant pockmark. Authigenic carbonates, mostly calcite sometimes mixed with aragonite, are cementing the sedimentary matrix components and fauna; diatoms are abundant but only as moulds, indicating that biogenic silica dissolution occurred in situ synchronous with carbonate precipitation. The occurrence of diagenetic barite and pyrite in some carbonate crusts demonstrates that they can be formed either within the sulphate/methane transition zone or deeper in sulphate-depleted sediments. The oxygen isotopic compositions of the diagenetic carbonates (3.17 6.01‰ V-PDB) indicate that precipitation occurred with bottom seawater mixed with a variable contribution of water from gas hydrate decomposition. The very low carbon isotopic compositions of the diagenetic carbonates (-57.1 to -27.75‰ V-PDB) demonstrate that carbon derives mostly from the microbial oxidation of methane.

  2. Fluid geochemistry of cold seeps and hydrothermal vents in the Guaymas Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Hensen, Christian; Geilert, Sonja; Scholz, Florian; Schmidt, Mark; Liebetrau, Volker; Kipfer, Rolf; Sarkar, Sudipta; Doll, Mechthild

    2017-04-01

    In this study, we present geochemical data from pore fluids and gases that were sampled at cold seeps and hydrothermal vents in the Guaymas Basin during Sonne cruise 241. The Guaymas Basin is a unique environment where magma intrudes into thick sequences of organic-rich sediments, thereby maturing host rocks and releasing large amounts of hydrocarbons. Geochemical measurements performed on samples from a recently discovered high-temperature vent field (Berndt et al., 2016) clearly support this paradigm. 3He/4He ratios agree with that of excess He from the southern part of the Guaymas Basin (Lupton, 1979) and suggest the same general MORB source, while isotopic data of hydrocarbon gases largely indicate a thermogenic, sedimentary source. Heat flow measurements performed in the vicinity of the smoker site are extremely high, exceeding 10 W/m2, indicating that hydrocarbon gas production (mainly CH4) is related to contact heating due to magmatic activity near the hydrothermal vents. Cold seeps are located up to some tens of kilometres off the rift axis and are typically characterized by chemosynthetic fauna assemblages at the seafloor. The occurrence of the seeps has also been related to sill intrusions. Seismic records typically show evidence for sediment mobilization in the deeper subsurface and blanked zones due to gas accumulations directly beneath the seeps. Despite these visual and geophysical indications for deep-sourced heat-driven fluid flow, pore water data are not indicative for geochemical reactions taking place at elevated temperatures. Major dissolved constituents do not show strong deviations from seawater and dissolved methane is typically of biogenic origin. In addition, heat flow values do not deviate from regional averages, and hence, these findings contradict the existing hypothesis of a sill-driven mechanism responsible for the formation of seafloor seepage sites. A preliminary interpretation is that fluid and gas mobilisation from sill activity

  3. Intense gas bubble emissions in the Kerch seep area - A newly discovered high-flux seep site in the Black Sea

    NASA Astrophysics Data System (ADS)

    Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann, G.

    2012-04-01

    suggested that gas discharge varied spatially and temporally while the total number of flares remained rather constant. During seafloor inspections with MARUḾs remotely operated vehicle 'ROV QUEST 4000 m' gas bubble emission sites were investigated in detail. Gas bubbles collected during the ROV dives mainly consisted of methane predominantly of microbial origin. By analyzing the high-definition video material the gas flux from several bubble emission sites was calculated. In combination with the hydroacoustic results (flare distributions) it is estimated that about 2.2 - 87 × 106 mol CH4/yr are emitted from the seafloor at the Kerch seep area. Despite this high mass of methane injected into the hydrosphere, the peak of the highest flares at ~350 m water depth as revealed by echosounder recording suggest that the ascending methane completely dissolves in the water column and does not pass the sea-atmosphere boundary.

  4. Investigating the emission, dissolution, and oxidation of CH4 within and around a seep bubble plume in the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Leonte, M.; Kessler, J. D.; Socolofsky, S. A.

    2016-02-01

    One of the largest carbon reservoirs on the planet is stored as methane (CH4) in and below the seafloor. However, a large discrepancy exists between estimated fluxes of CH4 into the water column and CH4 fluxes from the sea surface to the atmosphere, suggesting that a significant fraction of CH4 released from seafloor seeps is dissolved and potentially removed through microbial oxidation. Here we present data investigating the fate of CH4 released from the Sleeping Dragon seep site in the Gulf of Mexico. The bubble plume was followed from the seafloor until it fully dissolved using a remotely operated vehicle (ROV). Water samples were collected by the ROV at different depths as well as lateral transects through the bubble plume. These samples were analyzed for dissolved concentrations of methane, ethane, propane, and butane as well as the 13C isotopic ratio of methane. Furthermore, seep bubbles from the seafloor were also collected and analyzed for the same properties. Based on these chemical data, the rate of CH4 emission from the seafloor, oxidation in the water column, and dissolution are investigated.

  5. Methane Seepage on Mars: Where to Look and Why.

    PubMed

    Oehler, Dorothy Z; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key

  6. Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Lorenson, T.D.; Kvenvolden, K.A.; Hostettler, F.D.; Rosenbauer, R.J.; Orange, D.L.; Martin, J.B.

    2002-01-01

    Samples from four geographically and tectonically discrete cold seeps named Clam Flat, Clamfield, Horseshoe Scarp South, and Tubeworm City, within the Monterey Bay National Marine Sanctuary were analyzed for their hydrocarbon content. The sediment contains gaseous hydrocarbons and CO2, as well as high molecular weight aliphatic and aromatic hydrocarbons with various combinations of thermogenic and biogenic contributions from petroleum, marine, and terrigenous sources. Of particular interest is the cold seep site at Clamfield which is characterized by the presence of thermogenic hydrocarbons including oil that can likely be correlated with oil-saturated strata at Majors Creek near Davenport, CA, USA. At Clam Flat, the evidence for thermogenic hydrocarbons is equivocal. At Horseshoe Scarp South and Tubeworm City, hydrocarbon gases, mainly methane, are likely microbial in origin. These varied sources of hydrocarbon gases highlight the diverse chemical systems that appear at cold seep communities. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps.

    PubMed

    Portail, Marie; Olu, Karine; Dubois, Stanislas F; Escobar-Briones, Elva; Gelinas, Yves; Menot, Lénaick; Sarrazin, Jozée

    In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the

  8. Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps

    PubMed Central

    Olu, Karine; Dubois, Stanislas F.; Escobar-Briones, Elva; Gelinas, Yves; Menot, Lénaick; Sarrazin, Jozée

    2016-01-01

    In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the

  9. Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea.

    PubMed

    Arakawa, Shizuka; Sato, Takako; Sato, Rumi; Zhang, Jing; Gamo, Toshitaka; Tsunogai, Urumu; Hirota, Akinari; Yoshida, Yasuhiko; Usami, Ron; Inagaki, Fumio; Kato, Chiaki

    2006-08-01

    Microbial communities inhabiting deep-sea cold seep sediments at the northeastern Japan Sea were characterized by molecular phylogenetic and chemical analyses. White patchy microbial mats were observed along the fault offshore the Hokkaido Island and sediment samples were collected from two stations at the southern foot of the Shiribeshi seamount (M1 site at a depth of 2,961 m on the active fault) and off the Motta Cape site (M2 site at a depth of 3,064 m off the active fault). The phylogenetic and terminal-restriction fragment polymorphism analyses of PCR-amplified 16S rRNA genes revealed that microbial community structures were different between two sampling stations. The members of ANME-2 archaea and diverse bacterial components including sulfate reducers within Deltaproteobacteria were detected from M1 site, indicating the occurrence of biologically mediated anaerobic oxidation of methane, while microbial community at M2 site was predominantly composed of members of Marine Crenarchaeota group I, sulfate reducers of Deltaproteobacteria, and sulfur oxidizers of Epsilonproteobacteria. Chemical analyses of seawater above microbial mats suggested that concentrations of sulfate and methane at M1 site were largely decreased relative to those at M2 site and carbon isotopic composition of methane at M1 site shifted heavier ((13)C-enriched), the results of which are consistent with molecular analyses. These results suggest that the mat microbial communities in deep-sea cold seep sediments at the northeastern Japan Sea are significantly responsible for sulfur and carbon circulations and the geological activity associated with plate movements serves unique microbial habitats in deep-sea environments.

  10. Cold seep-related occurrence of the Early Jurassic rhynchonellid brachiopod Anarhynchia from the Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    Pálfy, József; Price, Gregory D.; Vörös, Attila; Kovács, Zsófia; Johannson, Gary G.

    2017-04-01

    Cold seeps, where seepage of methane and/or other hydrocarbon-rich fluids and hydrogen-sulfide occurs in the sea floor, are sites which harbor highly specialized ecosystems associated with distinctive carbonate sediments. Although their Mesozoic record is scarce and patchy, it commonly includes rhynchonellid brachiopods, often of large size. Each new occurrence is valuable in filling gaps and providing additional insight into these peculiar ecosystems. Here we report a monospecific assemblage of Anarhynchia from a boulder-sized limestone clast of Early Pliensbachian (Early Jurassic) age in the Inklin Formation of the Whitehorse Trough in Stikine terrane, recovered from a locality at Copper Island in Atlin Lake, northern British Columbia, Canada. Specimens are of unusually large size, up to 9 cm in length, and their external and internal morphology allows assignment to Anarhynchia but warrants introduction of a new species. Although d13C and d18O values of the shells are close to equilibrium with ancient seawater, early precipitated carbonate cement phases of the enclosing limestone are characterised by highly depleted carbon isotopic composition, indicative of the influence of microbial oxidation of methane derived from a cold seep. Carbonate petrography of the isopachous, banded-fibrous cement supports its origin in a cold seep environment. Volcanogenic detrital grains in the micritic matrix of the limestone clast are indistinguishable from those in the sandstone layers in the siliciclastic sequence, suggesting that the seep carbonate is broadly coeval with the enclosing conglomerate. Previously, Anarhynchia has been known from the Lower Jurassic of California and Oregon, from both cold seep and hydrothermal vent deposits. Our new record extends the geographic range and species-level diversity of the genus, but supports its endemism to the East Pacific and membership in chemosynthesis-based ecosystems.

  11. Methane Seepage on Mars: Where to Look and Why

    PubMed Central

    Etiope, Giuseppe

    2017-01-01

    Abstract Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as “gas seepage.” Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently

  12. Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Ho-Han; Liu, Char-Shine; Morita, Sumito; Tu, Shu-Lin; Lin, Saulwood; Machiyama, Hideaki; Azuma, Wataru; Ku, Chia-Yen; Chen, Song-Chuen

    2017-12-01

    Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This "gas reservoir" is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.

  13. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

    PubMed Central

    Wegener, Gunter; Krukenberg, Viola; Ruff, S. Emil; Kellermann, Matthias Y.; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1–7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1–9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM

  14. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Sylva, Sean P.

    2017-05-01

    Aerobic oxidation is an important methane sink in seawater overlying gas seeps. Recent surveys have identified active methane seeps in the waters of Hudson Canyon, US Atlantic Margin near the updip limit of methane clathrate hydrate stability. The close proximity of these seeps to the upper stability limit of methane hydrates suggests that changing bottom water temperatures may influence the release rate of methane into the overlying water column. In order to assess the significance of aerobic methane oxidation in limiting the atmospheric expression of methane released from Hudson Canyon, the total extent of methane oxidized along with integrated oxidation rates were quantified. These calculations were performed by combining the measurements of the natural levels of methane concentrations, stable carbon isotopes, and water current velocities into kinetic isotope models yielding rates ranging from 22.8 ± 17 to 116 ± 76 nM/day with an average of 62.7 ± 37 nM/day. Furthermore, an average of 63% of methane released into the water column from an average depth of 515 m was oxidized before leaving this relatively small study area (6.5 km2). Results from the kinetic isotope model were compared to previously-published but concurrently-sampled ex situ measurements of oxidation potential performed using 13C-labeled methane. Ex situ rates were substantially lower, ranging from 0.1 to 22.5 nM/day with an average of 5.6 ± 2.3 nM/day, the discrepancy likely due to the inherent differences between these two techniques. Collectively, the results reveal exceptionally-rapid methane oxidation, with turnover times for methane as low as 0.3-3.7 days, indicating that methane released to the water column is removed quantitatively within the greater extent of Hudson Canyon. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text.

  15. Fine-Scale Community Structure Analysis of ANME in Nyegga Sediments with High and Low Methane Flux

    PubMed Central

    Roalkvam, Irene; Dahle, Håkon; Chen, Yifeng; Jørgensen, Steffen Leth; Haflidason, Haflidi; Steen, Ida Helene

    2012-01-01

    To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance, and diversity of anaerobic methanotrophs (ANME), we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. These data were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A down core stratification and high relative abundance of ANME were observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low methane horizons to ANME-1 dominance in horizons near the sulfate-methane transition zone. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through operational taxonomical units (OTU) clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free-living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The observation of specific ANME-2a/b OTUs at each location could reflect that organisms within this clade are adapted to different geochemical settings, perhaps due to differences in methane affinity. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments. PMID:22715336

  16. Geologic Emissions of Methane and C2 - C5 Alkanes at the La Brea Tar Pits, Los Angeles, CA

    NASA Astrophysics Data System (ADS)

    Doezema, L. A.; Etiope, G.; Pacheco, C.

    2017-12-01

    Natural hydrocarbon (oil and gas) seeps are widespread in Los Angeles due to gas migration, along faults, from numerous subsurface petroleum fields. These seeps may represent important natural contributors of methane (CH4) and heavier alkanes (C2-C4) for the atmosphere. Methane flux measurements were made from various locations at the La Brea Tar Pits in Los Angeles, CA. Measurements were made using a closed-chamber method and spectroscopic sensors for CH4 and CO2, at 26 oil-asphalt seeps and 188 other sites, without gas manifestations, homogeneously distributed throughout the park. The molecular C1 - C5 composition of gas released from seeps and soil was also analyzed using either FTIR spectroscopy or gas chromatography (GC-FID). Methane emissions from seeps varied from approximately 7 to 54,000 g m-2 day-1, while emissions from soil degassing were between 0 and 9,000 g m-2 day-1. Total emissions were estimated to be in the order of 103 kg day-1 for methane, and at least 10 and 5 kg day-1 for ethane and propane, respectively. The seeping gas exhibited high C1/(C2 + C3) ratios, likely due to molecular fractionation during gas migration from a subsurface petroleum reservoir. Evidence for biodegredation in certain samples was indicated by large i-butane to n-butane ratios. These molecular alterations can be important tracers of natural seepage and should be considered in the atmospheric modelling of the relative contribution of fossil fuel (anthropogenic fugitive emission and natural geologic sources) vs biogenic sources, on local and global scales.

  17. The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels

    USGS Publications Warehouse

    Fisher, C.R.; Childress, J.J.; Oremland, R.S.; Bidigare, R.R.

    1987-01-01

    Undescribed hydrocarbon-seep mussels were collected from the Louisiana Slope, Gulf of Mexico, during March 1986, and the ultrastructure of their gills was examined and compared to Bathymodiolus thermophilus, a mussel collected from the deep-sea hydrothermal vents on the Gala??pagos Rift in March 1985. These closely related mytilids both contain abundant symbiotic bacteria in their gills. However, the bacteria from the two species are distinctly different in both morphology and biochemistry, and are housed differently within the gills of the two mussels. The symbionts from the seep mussel are larger than the symbionts from B. thermophilus and, unlike the latter, contain stacked intracytoplasmic membranes. In the seep mussel three or fewer symbionts appear to be contained in each host-cell vacuole, while in B. thermophilus there are often more than twenty bacteria visible in a single section through a vacuole. The methanotrophic nature of the seep-mussel symbionts was confirmed in 14C-methane uptake experiments by the appearance of label in both CO2 and acid-stable, non-volatile, organic compounds after a 3 h incubation of isolated gill tissue. Furthermore, methane consumption was correlated with methanol dehydrogenase activity in isolated gill tissue. Activity of ribulose-1,5-biphosphate (RuBP) carboxylase and 14CO2 assimilation studies indicate the presence of either a second type of symbiont or contaminating bacteria on the gills of freshly captured seep mussels. A reevaluation of the nutrition of the symbionts in B. thermophilus indicates that while the major symbiont is not a methanotroph, its status as a sulfur-oxidizing chemoautotroph, as has been suggested previously, is far from proven. ?? 1987 Springer-Verlag.

  18. [Microbial Processes and Genesis of Methane Gas Jets in the Coastal Areas of the Crimea Peninsula].

    PubMed

    Malakhova, T V; Kanapatskii, T A; Egorov, V N; Malakhova, L V; Artemov, Yu G; Evtushenko, D B; Gulin, S B; Pimenov, N V

    2015-01-01

    Hydroasoustic techniques were used for detection and mapping of gas jet areas in the coastal regions of the Crimean peninsula. Gas seep areas in the bays Laspi, Khersones, and Kazach'ya were chosen for detailed microbiological investigation. The first type of gas jets, observed in the Laspi Bay, was probably associated with discarge of deep thermogenic methane along the faults. Methane isotopic composition was char- acterized by Δ13C of -35.3 degrees. While elevated rates of aerobic methane oxidation were revealed in the sandy sediments adjacent to the methane release site, no evidence of bacterial mats was found. The second type of gas emission, observed in the Khersones Bay, was accompanied by formation of bacterial biofilms of the "Thiodendron" microbial community type, predominated by filamentous, spirochete-like organisms, in the areas of gas seepage. The isotopic composition of methane was there considerably lower (-60.4 degrees), indicating a considerable contribution of modern microbial methane to the gas bubbles discharged in this bay. Activity of the third type of gas emission, the seeps of the Kazach'ya Bay, probably depended directly on modern microbial processes of organic matter degradation in the upper sediment layers. The rates of sulfate reduction and methanogenesis were 260 and 34 μmol dm(-3) day(-1), respectively. Our results indicate different mechanisms responsible for formation of methane jets in the Laspi Bay and in the coastal areas of the Heracles Peninsula, where the bays Kazach'ya and Khersones are located.

  19. Widespread abiotic methane in chromitites.

    PubMed

    Etiope, G; Ifandi, E; Nazzari, M; Procesi, M; Tsikouras, B; Ventura, G; Steele, A; Tardini, R; Szatmari, P

    2018-06-07

    Recurring discoveries of abiotic methane in gas seeps and springs in ophiolites and peridotite massifs worldwide raised the question of where, in which rocks, methane was generated. Answers will impact the theories on life origin related to serpentinization of ultramafic rocks, and the origin of methane on rocky planets. Here we document, through molecular and isotopic analyses of gas liberated by rock crushing, that among the several mafic and ultramafic rocks composing classic ophiolites in Greece, i.e., serpentinite, peridotite, chromitite, gabbro, rodingite and basalt, only chromitites, characterized by high concentrations of chromium and ruthenium, host considerable amounts of 13 C-enriched methane, hydrogen and heavier hydrocarbons with inverse isotopic trend, which is typical of abiotic gas origin. Raman analyses are consistent with methane being occluded in widespread microfractures and porous serpentine- or chlorite-filled veins. Chromium and ruthenium may be key metal catalysts for methane production via Sabatier reaction. Chromitites may represent source rocks of abiotic methane on Earth and, potentially, on Mars.

  20. Evidence for extensive methane venting on the southeastern U.S. Atlantic margin

    USGS Publications Warehouse

    Brothers, L.L.; Van Dover, C.L.; German, C.R.; Kaiser, C.L.; Yoerger, D.R.; Ruppel, C.D.; Lobecker, E.; Skarke, A.D.; Wagner, J.K.S.

    2013-01-01

    We present the first evidence for widespread seabed methane venting along the southeastern United States Atlantic margin beyond the well-known Blake Ridge diapir seep. Recent ship- and autonomous underwater vehicle (AUV)–collected data resolve multiple water-column anomalies (>1000 m height) and extensive new chemosynthetic seep communities at the Blake Ridge and Cape Fear diapirs. These results indicate that multiple, highly localized fluid conduits punctuate the areally extensive Blake Ridge gas hydrate province, and enable the delivery of significant amounts of methane to the water column. Thus, there appears to be an abundance of seabed fluid flux not previously ascribed to the Atlantic margin of the United States.

  1. Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanes, Ruben

    The overall goals of this research are: (1) to determine the physical fate of single and multiple methane bubbles emitted to the water column by dissociating gas hydrates at seep sites deep within the hydrate stability zone or at the updip limit of gas hydrate stability, and (2) to quantitatively link theoretical and laboratory findings on methane transport to the analysis of real-world field-scale methane plume data placed within the context of the degrading methane hydrate province on the US Atlantic margin. The project is arranged to advance on three interrelated fronts (numerical modeling, laboratory experiments, and analysis of field-basedmore » plume data) simultaneously. The fundamental objectives of each component are the following: Numerical modeling: Constraining the conditions under which rising bubbles become armored with hydrate, the impact of hydrate armoring on the eventual fate of a bubble’s methane, and the role of multiple bubble interactions in survival of methane plumes to very shallow depths in the water column. Laboratory experiments: Exploring the parameter space (e.g., bubble size, gas saturation in the liquid phase, “proximity” to the stability boundary) for formation of a hydrate shell around a free bubble in water, the rise rate of such bubbles, and the bubble’s acoustic characteristics using field-scale frequencies. Field component: Extending the results of numerical modeling and laboratory experiments to the field-scale using brand new, existing, public-domain, state-of-the-art real world data on US Atlantic margin methane seeps, without acquiring new field data in the course of this particular project. This component quantitatively analyzes data on Atlantic margin methane plumes and place those new plumes and their corresponding seeps within the context of gas hydrate degradation processes on this margin.« less

  2. Methane seepage effects on biodiversity and biological traits of macrofauna inhabiting authigenic carbonates

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Mendoza, Guillermo F.; Grupe, Benjamin M.

    2017-03-01

    Authigenic carbonate rocks at methane seeps are recognized as hosting diverse and abundant invertebrate assemblages, with potential forcing from fluid seepage and hydrography. Mensurative studies of carbonate macrofauna (>0.3 mm) at Hydrate Ridge, OR revealed little effect of water depth and overlying oxygenation (at 600 m and 800 m) but a large influence of seepage activity on density, taxonomic composition, diversity, and biological traits (feeding, lifestyle, motility, size and calcification). Rocks exposed to active seepage had 3-4× higher total macrofaunal densities than under inactive conditions. Assemblages exhibited higher species richness and reduced evenness (greater dominance) under active seepage than inactive conditions, but no difference in H‧ or rarefaction diversity. Actively seeping sites were characterized by errant (motile), bacterial grazing, small- and medium-sized, heavily calcified species, whereas inactive sites exhibited a greater diversity of feeding modes and more burrowers, sessile, large and lightly calcified species. Active rocks supported more exogonid (Syllidae), ampharetid, and cirratulid polychaetes, provannid snails, pyropeltid limpets, nemerteans, and sponges; whereas inactive rocks supported higher densities of ophiuroids, isopods, gammarid amphipods, hydroids, Typosyllis (Syllidae) and tanaids. Transplant experiments, in which rocks were transferred between active and inactive sites at Hydrate Ridge North (600 m), revealed that assemblages respond within 13 months to increase or cessation of seepage, taking on the feeding, size and calcification characteristics of the background fauna at the new site. Lifestyles and motility patterns shifted more slowly as the sessile, attached species did not track seepage as quickly. Provannid snails and pyropeltid limpets rapidly colonized rocks transplanted to active sites and disappeared when transplanted to inactive sites. Given the known variability of fluid fluxes and rapid community

  3. A Non-Steady-State Condition in Sediments at the Gashydrate Stability Boundary off West Spitsbergen: Evidence for Gashydrate Dissociation or Just Dynamic Methane Transport?

    NASA Astrophysics Data System (ADS)

    Treude, T.; Krause, S.; Bertics, V. J.; Steinle, L.; Niemann, H.; Liebetrau, V.; Feseker, T.; Burwicz, E.; Krastel, S.; Berndt, C.

    2014-12-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009, GRL 36, doi:10.1029/2009GL039191). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014, Science 343: 284-287). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. δ18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study

  4. Chasing Sources and Transports of Methane Plumes in the Northern Gulf of Mexico Using In Situ Sensors on Untethered Landers

    NASA Astrophysics Data System (ADS)

    Martens, C. S.; Mendlovitz, H.; Seim, H.; Lapham, L.; Magen, C.; Joye, S. B.; MacDonald, I. R.; Asper, V. L.; Diercks, A. R.

    2016-02-01

    In situ time-series measurements of light hydrocarbons, oxygen, temperature and bottom currents from landers and elevators in the benthic boundary layer (BBL) at multiple sites in the northern Gulf of Mexico reveal spatial and temporal variability in methane concentrations controlled by horizontal advection of methane-rich plumes originating from nearby natural oil and gas seeps. Multi-sensor systems deployed for several weeks within 1m of the seafloor at depths from 882 to 1622m revealed methane concentrations ranging from near atmospheric saturation (<3 nM) to over 4000 nM depending on seep proximity, current speed and direction. Methane concentrations observed in the BBL equal or exceed maximum near-bottom values seen in shipboard water column profiles analyzed by conventional gas chromatography. Continuous laser sensor methane measurements from mini-landers deployed in September 2015 at our Horn Dome and Bush Hill sites featuring numerous gas seeps revealed methane concentrations ranging from <3 to over 300 nM over two-week periods. Net current speeds in the BBL at our six lander sites in blocks GC600, OC26 and MC118 ranged from near zero to over 5 cm/s; instantaneous speeds ranged from near zero to over 30 cm/s. Near real-time acquisition of continuous hydrocarbon concentration and current data within the BBL and friction layer from untethered platforms provides important new opportunities for monitoring the impacts of natural seeps and accidental hydrocarbon releases. The instrumented approaches we have developed to simultaneously monitor methane sources and physical processes controlling plume development and transport will enable more effective responses to further accidental hydrocarbon releases.

  5. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane

    PubMed Central

    Green-Saxena, A; Dekas, A E; Dalleska, N F; Orphan, V J

    2014-01-01

    Diverse associations between methanotrophic archaea (ANME) and sulfate-reducing bacterial groups (SRB) often co-occur in marine methane seeps; however, the ecophysiology of these different symbiotic associations has not been examined. Here, we applied a combination of molecular, geochemical and Fluorescence in situ hybridization (FISH) coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) analyses of in situ seep sediments and methane-amended sediment incubations from diverse locations (Eel River Basin, Hydrate Ridge and Costa Rican Margin seeps) to investigate the distribution and physiology of a newly identified subgroup of the Desulfobulbaceae (seepDBB) found in consortia with ANME-2c archaea, and compared these with the more commonly observed associations between the same ANME partner and the Desulfobacteraceae (DSS). FISH analyses revealed aggregates of seepDBB cells in association with ANME-2 from both environmental samples and laboratory incubations that are distinct in their structure relative to co-occurring ANME/DSS consortia. ANME/seepDBB aggregates were most abundant in shallow sediment depths below sulfide-oxidizing microbial mats. Depth profiles of ANME/seepDBB aggregate abundance revealed a positive correlation with elevated porewater nitrate relative to ANME/DSS aggregates in all seep sites examined. This relationship with nitrate was supported by sediment microcosm experiments, in which the abundance of ANME/seepDBB was greater in nitrate-amended incubations relative to the unamended control. FISH-NanoSIMS additionally revealed significantly higher 15N-nitrate incorporation levels in individual aggregates of ANME/seepDBB relative to ANME/DSS aggregates from the same incubation. These combined results suggest that nitrate is a geochemical effector of ANME/seepDBB aggregate distribution, and provides a unique niche for these consortia through their utilization of a greater range of nitrogen substrates than the ANME/DSS. PMID:24008326

  6. Methane-Hydrogen Generation in the Zambales Ophiolite (Philippines) Revisited

    NASA Astrophysics Data System (ADS)

    Abrajano, J.; Telling, J.; Sherwood-Lollar, B.; Villiones, R.

    2006-05-01

    The so-called Zambales Ophiolite Methane (ZOM) is one of the earliest reported occurrences of reduced gas in ultramafic terranes. The ZOM also holds the distinction of having the most 13C-enriched carbon of naturally occurring methane seeps on Earth. This attribute, along with evidence that shows strong "mantle-like" noble gas components, led to the general acknowledgement that ZOM represents abiotically generated methane. In this presentation, the geologic setting, host rocks, apparent gas flux and composition and other field attributes of ZOM will be described, based on a fieldwork and sampling that we recently conducted. In addition to the original gas occurrence in Los Fuegos Eternos, LFE (e.g., Abrajano et al., 1988), a newly discovered major gas seep occurrence on Nagsaza, San Antonio, Zambales will also be described. It is noteworthy that the new site occurs in a separate ophiolitic block, and is over 70 km away from the LFE site. Analyses of molecular composition and compound-specific carbon and hydrogen isotope composition of methane and minor hydrocarbons are currently on-going. We will conclude this presentation with a re-assessment of the generation mechanism(s) previously considered for the ZOM and other similar occurrences worldwide.

  7. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  8. Assessing submarine gas hydrate at active seeps on the Hikurangi Margin, New Zealand, using controlled source electromagnetic data with constraints from seismic, geochemistry, and heatflow data

    NASA Astrophysics Data System (ADS)

    Schwalenberg, K.; Haeckel, M.; Pecher, I. A.; Toulmin, S. J.; Hamdan, L. J.; Netzeband, G.; Wood, W.; Poort, J.; Jegen, M. D.; Coffin, R. B.

    2009-12-01

    Electrical resistivity is one of the key properties useful for evaluating submarine gas hydrate deposits. Gas hydrates are electrically insulating in contrast to the conductive pore fluid. Where they form in sufficient quantities the bulk resistivity of the sub-seafloor is elevated. CSEM data were collected in 2007 as part of the German - International “New Vents” project on R/V Sonne, cruise SO191, at three target areas on the Hikurangi subduction margin, New Zealand. The margin is characterized by widespread bottom simulating reflectors (BSR), seep structures, and active methane and fluid venting indicating the potential for gas hydrate formation. Opouawe Bank is one of the ridge and basin systems on the accretionary wedge and is located off the Wairarapa coast at water depths of 1000-1100 m. The first observed seep sites (North Tower, South Tower, Pukeko, Takahe, and Tui) were identified from individual gas flares in hydro-acoustic data and video observations during voyages on R/V Tangaroa. Seismic reflection data collected during SO191 subsequently identified more than 25 new seep structures. Two intersecting CSEM profiles have been surveyed across North Tower, South Tower, and Takahe. 1-D inversion of the data reveals anomalously high resistivities at North Tower and South Tower, moderately elevated resistivities at Takahe, and normal background resistivities away from the seeps. The high resistivities are attributed to gas hydrate layers at intermediate depths beneath the seeps. At South Tower the hydrate concentration could be possibly as much as 25% of the total sediment volume within a 50m thick layer. This conforms with geochemical pore water analyses which show a trend of increased methane flux towards South Tower. At Takahe, gas pockets and patchy gas hydrate, as well as sediment heterogeneities and carbonates, or temperature driven upward fluid flow indicated by the observed higher heat flow at this site may explain the resistivity pattern

  9. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    PubMed Central

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Glavina del Rio, Tijana; Foster, Brian; Copeland, Alex; Jansson, Janet; Pati, Amrita; Tringe, Susannah; Gilbert, Jack A.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-01

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of its main constituents. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders – and their metabolic capabilities – may be fundamental to the ecology of the SBC oil seep. PMID:25197496

  10. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.

    2014-01-02

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of the main constituents of crude oil. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of themore » assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders and their metabolic capabilities may be fundamental to the ecology of the SBC oil seep.« less

  11. Fatty Acid and Carbon Isotopic Evidence for type I Methanotrophs in Microbial Mats from a Shallow Marine Gas Seep, Coal Oil Point, CA.

    NASA Astrophysics Data System (ADS)

    Ding, H.; Valentine, D.

    2005-12-01

    To study the microbial community in a Southern California seep field, sediment and bacterial mat samples were collected from natural gas-bearing and gas-free surfaces at two distinct seeps in the Coal Oil Point seep field, offshore Santa Barbara. Fatty acids in these samples were extracted, analyzed and identified. Using gas chromatography (GC), more than 30 different fatty acids were separated. Generally, fatty acid concentrations in natural gas-bearing samples were about 5-fold higher compared to gas-free samples. Using gas chromatography mass sepctrometry (GC-MS), all separated fatty acids were identified in each sample. The major constituents included saturated 14:0, 16:0, 18:0, branched i-15, a-15 and unsaturated 16:1 and 18:1 series fatty acids. GC-IRMS (isotope ratio mass spectrometry) analysis provided the 13C of all major fatty acids and some 16:1 series fatty acids were found to be more depleted than -40% in samples associated with gas seepage. After treatment with dimethyl disufide (DMDS), the 16:1 series fatty acids were resolved into five distinct components, including common composition 16:1(7), bacterial specific i-16:1(7) and typical biomarkers of type I methnotrophs 16:1(8), 16(6) and 16:1(5), suggesting an important role for methnotrophs in seep sediments and microbial mats. These results provide evidence for the activity of type I methanotrophic bacteria in microbial mats and surficial sediments at the Coal Oil Point seep field, and have implications for methane cycling in this and other seep

  12. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, David

    2012-09-30

    this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications

  13. Food-web structure of seep sediment macrobenthos from the Gulf of Mexico

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Gualtieri, Daniel; Kovacs, Kaitlin

    2010-01-01

    The slope environment of the Gulf of Mexico (GOM) supports dense communities of seep megafaunal invertebrates that rely on endosymbiotic bacteria for nutrition. Seep sediments also contain smaller macrofaunal invertebrates whose nutritional pathways are not well understood. Using stable-isotope analysis, we investigate the utilization of chemosynthetically fixed and methane-derived organic matter by macrofauna. Biological sampling was conducted in three lower-slope GOM seep environs: Green Canyon (GC852, 1428 m), Atwater Valley (AT340, 2230 m), and Alaminos Canyon (AC601, 2384 m). Infaunal delta13C and delta15N exhibited a broad range of values; most infauna appeared to be heterotrophic, although several taxa had very light delta15N and delta13C values, indicating possible reliance on chemoautotrophic symbioses. The lightest delta13C and delta15N values were observed in nematodes (delta13C=-54.6 + or - 0.1 per mil, delta15N=-6.1 + or - 0.2 per mil) and one gastropod (delta13C=-54.1 per mil, delta15N=-1.1 per mil) from Green Canyon. Mixing-model results indicated that sulfur-oxidizing Beggiatoa may be an important food source for seep infauna; the rate of utilization ranged from 60% to 100% at Green Canyon and Atwater Valley. The overall range in isotope values was similar across the three sites, suggesting that biogeochemical processes may be very similar in these geographically distinct areas.

  14. Food-web structure of seep sediment macrobenthos from the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Demopoulos, Amanda W. J.; Gualtieri, Daniel; Kovacs, Kaitlin

    2010-11-01

    The slope environment of the Gulf of Mexico (GOM) supports dense communities of seep megafaunal invertebrates that rely on endosymbiotic bacteria for nutrition. Seep sediments also contain smaller macrofaunal invertebrates whose nutritional pathways are not well understood. Using stable-isotope analysis, we investigate the utilization of chemosynthetically fixed and methane-derived organic matter by macrofauna. Biological sampling was conducted in three lower-slope GOM seep environs: Green Canyon (GC852, 1428 m), Atwater Valley (AT340, 2230 m), and Alaminos Canyon (AC601, 2384 m). Infaunal δ13C and δ15N exhibited a broad range of values; most infauna appeared to be heterotrophic, although several taxa had very light δ15N and δ13C values, indicating possible reliance on chemoautotrophic symbioses. The lightest δ13C and δ15N values were observed in nematodes (δ13C=-54.6±0.1‰, δ15N=-6.1±0.2‰) and one gastropod (δ13C=-54.1‰, δ15N=-1.1‰) from Green Canyon. Mixing-model results indicated that sulfur-oxidizing Beggiatoa may be an important food source for seep infauna; the rate of utilization ranged from 60% to 100% at Green Canyon and Atwater Valley. The overall range in isotope values was similar across the three sites, suggesting that biogeochemical processes may be very similar in these geographically distinct areas.

  15. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.

    PubMed

    Niemann, Helge; Lösekann, Tina; de Beer, Dirk; Elvert, Marcus; Nadalig, Thierry; Knittel, Katrin; Amann, Rudolf; Sauter, Eberhard J; Schlüter, Michael; Klages, Michael; Foucher, Jean Paul; Boetius, Antje

    2006-10-19

    Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux.

  16. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.

    2017-08-01

    Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical

  17. Bedded Barite Deposits from Sonora (nw Mexico): a Paleozoic Analog for Modern Cold Seeps

    NASA Astrophysics Data System (ADS)

    Canet, C.; Anadón, P.; González-Partida, E.; Alfonso, P.; Rajabi, A.; Pérez-Segura, E.; Alba-Aldave, L. A.

    2013-05-01

    The Mazatán barite deposits represent an outstanding example of Paleozoic bedded barite, a poorly understood type of mineral deposit of major economic interest. The largest barite bodies of Mazatán are hosted within an Upper Carboniferous flysch succession, which formed part of an accretionary wedge related to the subduction of the Rheic Ocean beneath Gondwana. As well, a few barite occurrences are hosted in Upper Devonian, pre-orogenic turbidites. A variety of mineralized structures is displayed by barite, including: septaria nodules, enterolitic structures, rosettes and debris-flow conglomerates. Barite is accompanied by chalcedony, pyrite (framboids) and berthierine. Gas-rich fluid inclusions in barite were analyzed by Raman spectroscopy and methane was identified, suggesting the occurrence of light hydrocarbons in the environment within which barite precipitated. 13C-depleted carbonates (δ13C: -24.3 to -18.8‰) were found in the barite deposits; they formed through anaerobic oxidation of methane coupled to sulfate reduction, and yield negative δ18O values (-11.9 to -5.2‰) reflecting the isotopic composition of Devonian-Carboniferous seawater. Methane-derived carbonates occur in modern hydrocarbon seeps and have been reported from Mesozoic and Cenozoic seep sediments, but they have never before been described in Paleozoic bedded barite deposits. δ34S of barite varies from +17.6 to +64.1‰, with the lowest values overlapping the range for coeval seawater sulfate; this distribution indicates a process of sulfate reduction. Barite precipitation can be explained by mixing of methane- and barium-rich fluids with pore-water (seawater) containing sulfate residual from microbial reduction. Two analyses from barite gave an 87Sr/86Sr within and slightly above the range for seawater at the time of deposition, with 0.708130 and 0.708588, which would preclude the involvement of hydrothermal fluids in the mineralization process.

  18. Mechanistic insights into heterogeneous methane activation

    DOE PAGES

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; ...

    2017-01-11

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  19. Mechanistic insights into heterogeneous methane activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  20. Environmental controls on sulfur isotopic composition of sulfide minerals in seep carbonates from the South China Sea

    NASA Astrophysics Data System (ADS)

    Gong, S.; Li, N.; Liang, Q.; Chen, D.; Feng, D.

    2017-12-01

    Authigenic carbonates and pyrite associated with sulfate-driven anaerobic oxidation of methane (AOM) at methane seeps provide archives to explore the biogeochemical processes involved and seepage dynamics over time. The wide range and extremely high δ34Spy value of authigenic sulfide has been used to trace the AOM-related processes. However, the detail mechanism for this is unknown. We proposed the δ34Spy characteristics result from high sulfate reduction rate and its competition with sulfate supply rate. To test this hypothesis, we investigated Mo content, Sr/Ca and Mg/Ca ratios, pyrite content, and its sulfur isotopic compositions in methane-derived carbonates from Site F and Haima in northern South China Sea. Calcite and aragonite were distinguished through the Sr/Ca and Mg/Ca ratios. The data show that aragonites are always associated with relatively low δ34Spy values compared to calcites. The Mo content and pyrite have good linear correlations in both aragonites and calcites, and aragonites have more positive slope than calcites. This indicates that there is more Mo available from seawater during the aragonite precipitation. The data suggest that the low δ34Spy values are formed at higher supply rate of sulfate under relatively open system, and high δ34Spy values result from a deep sulfate methane transition zone where dissolve sulfate near to complete exhausted via AOM. The combination of a detailed elemental study of authigenic carbonate with sulfur isotopes of sulfide minerals in carbonates are promising tools for reconstructing the dynamics of seep intensities in modern and, potentially, geological record.

  1. The FISH-SIMS Approach: Isotopic Imprints of Methane in Diverse Microbial Assemblages

    NASA Astrophysics Data System (ADS)

    Orphan, V. J.; House, C. H.; Hinrichs, K.; McKeegan, K. D.; Paull, C.; Ussler, W.; DeLong, E. F.

    2001-12-01

    One of the more important biogeochemical processes influencing carbon turnover in continental margin environments and cold seeps is the anaerobic oxidation of methane (AOM). Although there is convincing biogeochemical evidence for archaeal/sulfate-reducer cooperative involvement in AOM, methane-consuming anaerobic microorganisms have eluded identification until only very recently. Parallel phylogenetic gene surveys and isotopic determination of lipid biomarkers in methane-rich seep sediments suggested that diverse archaeal and bacterial assemblages are involved in AOM. Specifically, a novel clade of Archaea related to known methanogens (ANME-1 group), as well as microorganisms affiliated with the Methanosarcinales (ANME-2 group) and their syntrophic sulfate-reducing bacterial partner affiliated with the Desulfosarcina, have been identified as likely candidate methane-oxidizing microorganisms. Both 16S rDNA and lipid analyses provide only circumstantial evidence linking these specific groups to AOM, however, because they are based on bulk analyses of whole sediments, rather than on the level of single microorganisms. In this study, we provide the first concrete evidence directly linking two distinct groups of Archaea, the uncultured consortium archaeal ANME-2/ bacterial Desulfosarcina spp. and the archaeal ANME-1 to methane consumption in anoxic marine sediments. Using a novel approach combining fluorescent in situ hybridization (FISH) and secondary ion mass spectrometry (SIMS), we identified aggregations of ANME-2/ Desulfosarcina and single cells and aggregates of ANME-1 from methane seep sediments and directly determined the carbon stable isotopic composition for the individual cells and cell aggregates. Both archaeal groups ANME-1 and ANME-2 displayed isotopic signatures suggestive of methane assimilation, with extreme 13C depletion (down to -97 per mil). In comparison, the carbon isotopic composition of microorganisms from the same sample not targeted with

  2. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8more » nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.« less

  3. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sedimentmore » porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration« less

  4. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source

    PubMed Central

    Timmers, Peer HA; Suarez-Zuluaga, Diego A; van Rossem, Minke; Diender, Martijn; Stams, Alfons JM; Plugge, Caroline M

    2016-01-01

    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment. PMID:26636551

  5. Fluxes of dissolved methane from the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard

    NASA Astrophysics Data System (ADS)

    Graves, Carolyn; Steinle, Lea; Niemann, Helge; Rehder, Gregor; Fisher, Rebecca; Lowry, Dave; Connelly, Doug; James, Rachael

    2015-04-01

    Seepage of methane from seafloor sediments offshore Svalbard may partly be driven by destabilization of gas hydrates as a result of bottom water warming. As the world's oceans are expected to continue to warm, in particular in the Arctic, destabilization of hydrate may become an important source of methane to ocean bottom waters and potentially to the overlying atmosphere where it contributes to further warming. In order to quantify the fate of methane from seafloor seeps, we have determined the distribution of dissolved methane in the water column on the upper slope and shelf offshore western Svalbard during three research cruises with RRS James Clark Ross (JR253) in 2011 and R/V Maria S. Merian (MSM21/4) and Heincke (HE387) in 2012. Combining discrete depth profile methane concentration data and surface seawater concentrations from an equilibrator-online system with oxidation rate measurements and atmospheric methane observations allows insight into the fate of methane input from the seafloor, and evaluation of the potential contributions of other methane sources. A simple box model considering oxidation and horizontal and vertical mixing indicates that the majority of seep methane is oxidized at depth. A plume of high methane concentrations is expected to persist more than 100 km downstream of the seepage area in the rapid barotropic West Spitsbergen Current, which flows northward towards the Arctic Ocean. We calculate that the diffusive sea-air flux of methane is largest on the shallow shelf, reaching 36 μmol m-2 day-1. Over the entire western Svalbard region there is a persistent, but small, source of methane from surface seawater to the overlying atmosphere. Measurements of the atmospheric methane carbon isotope signature indicate that the seafloor seeps do not make a significant contribution to atmospheric methane in this region, which is consistent with earlier studies. Observations downstream of the seepage region are necessary to further constrain

  6. Characterization of Carbonate Crust from Deep-sea Methane Seeps on the Northern US Atlantic Margin.

    NASA Astrophysics Data System (ADS)

    Gabitov, R. I.; Borrelli, C.; Buettner, J.; Testa, M.; Garner, B.; Weremeichik, J.; Thomas, J. B.; Wahidi, M.; Thirumalai, R. V. K. G.; Kirkland, B. L.; Skarke, A. D.

    2017-12-01

    Authigenic carbonate minerals widely occur at the seafloor as carbonate crusts and are often directly linked to microbial activity, about which promotion of carbonate crystal growth and geochemistry are not entirely understood. To evaluate a potential metabolic contribution, studies were conducted on carbonate crust collected from a methane seep and on precipitation experiments which produced inorganic aragonite crystallized at high pressure. Among the samples collected during a NSF sponsored cruise to the North Atlantic Continental Margin of the United States (off of New England) in July-August 2016, we analyzed one carbonate crust sample (AD4835 BB-4522) collected at 39.805860; -69.592593 and at a depth of 1419.6 m. In this crust sample, two textural types of aragonite were identified: 1) groundmass consisting of fine grey crystals (<1 µm in size); 2) veins consisting of white acicular crystals (up to 100 µm in width). In addition, large equant quartz crystals (>100 µm, 24.9 wt%), feldspar (5.6 wt%), and dolomite (3.6 wt%), and trace amount of troilite were identified using XRD, SEM, and optical microscopy. The sample was cut into slabs parallel to crust growth assuming the crust grew in a downward direction. Concentrations of Na, Mg, Al, Si, S, K, Ca, Mn, Fe, Sr, Zr, Ba, and U were measured in the direction parallel to growth of the crust using LA-ICP-MS. Proportions of Si, Al, (Na+K), Mg, S, and Fe in the groundmass suggest the occurrence of sub-micron inclusions of alkali feldspar, and potentially pyroxene, Fe oxide, and Fe sulfide, which were impossible to avoid with the instrument's spatial resolution. The occurrence of micro non-carbonate inclusions causes high elemental concentrations compared to the values expected for aragonite crystallized from seawater. White aragonite acicular crystals were free of silicate and sulfide inclusions, and therefore, yielded lower concentrations of all measured elements except Sr compared to the groundmass. Analyzed Mg

  7. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this researchmore » also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we

  8. New insight into stratification of anaerobic methanotrophs in cold seep sediments.

    PubMed

    Roalkvam, Irene; Jørgensen, Steffen Leth; Chen, Yifeng; Stokke, Runar; Dahle, Håkon; Hocking, William Peter; Lanzén, Anders; Haflidason, Haflidi; Steen, Ida Helene

    2011-11-01

    Methane seepages typically harbor communities of anaerobic methane oxidizers (ANME); however, knowledge about fine-scale vertical variation of ANME in response to geochemical gradients is limited. We investigated microbial communities in sediments below a white microbial mat in the G11 pockmark at Nyegga by 16S rRNA gene tag pyrosequencing and real-time quantitative PCR. A vertical stratification of dominating ANME communities was observed at 4 cmbsf (cm below seafloor) and below in the following order: ANME-2a/b, ANME-1 and ANME-2c. The ANME-1 community was most numerous and comprised single or chains of cells with typical rectangular morphology, accounting up to 89.2% of the retrieved 16S rRNA gene sequences. Detection rates for sulfate-reducing Deltaproteobacteria possibly involved in anaerobic oxidation of methane were low throughout the core. However, a correlation in the abundance of Candidate division JS-1 with ANME-2 was observed, indicating involvement in metabolisms occurring in ANME-2-dominated horizons. The white microbial mat and shallow sediments were dominated by organisms affiliated with Sulfurovum (Epsilonproteobacteria) and Methylococcales (Gammaproteobacteria), suggesting that aerobic oxidation of sulfur and methane is taking place. In intermediate horizons, typical microbial groups associated with methane seeps were recovered. The data are discussed with respect to co-occurring microbial assemblages and interspecies interactions. FEMS Microbiology Ecology © 2011 Federation of Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original Norwegian works.

  9. Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development

    NASA Astrophysics Data System (ADS)

    Dumke, Ines; Klaucke, Ingo; Berndt, Christian; Bialas, Jörg

    2014-06-01

    Cold seeps on the Hikurangi Margin off New Zealand exhibit various seabed morphologies producing different intensity patterns in sidescan backscatter images. Acoustic backscatter characteristics of 25 investigated seep sites fall into four distinct types characterised by variations in backscatter intensity, distribution and inferred structural heights. The types reflect different carbonate morphologies including up to 20-m-high structures (type 1), low-relief crusts (type 2), scattered blocks (type 3) and carbonate-free sites (type 4). Each seep corresponds to a single type; intermediates were not observed. This correlates well with published data on seep fauna at each site, with the four types representing three different faunal habitats of successive stages of seep development. Backscatter signatures in sidescan sonar images of cold seeps may therefore serve as a convenient proxy for variations in faunal habitats.

  10. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  11. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  12. Imaging hydrological processes in headwater riparian seeps with time-lapse electrical resistivity

    USDA-ARS?s Scientific Manuscript database

    The activation of subsurface seepage in response to precipitation events represents a potentially important pathway of nitrogen (N) delivery to streams in agricultural catchments. We used electrical resistivity imaging (ERI) and shallow piezometers to elucidate how seep and non-seep areas within the...

  13. Short-term monitoring of a gas seep field in the Katakolo bay (Western Greece) using Raman spectra DTS and DAS fibre-optic methods

    NASA Astrophysics Data System (ADS)

    Chalari, A.; Mondanos, M.; Finfer, D.; Christodoulou, D.; Kordella, S.; Papatheodorou, G.; Geraga, M.; Ferentinos, G.

    2012-12-01

    A wide submarine seep of thermogenic gas in the Katakolo bay, Western Greece, was monitored passively using the intelligent Distributed Acoustic Sensor (iDAS) and Ultima Raman spectra Distributed Temperature Sensor (DTS), in order to study the thermal and noise signal of the bubble plumes released from the seafloor. Katakolo is one one of the most prolific thermogenic gas seepage zones in Europe and the biggest methane seep ever reported in Greece. Very detailed repetitive offshore gas surveys, including marine remote sensing (sub-bottom profiling, side scan sonar), underwater exploration by a towed instrumented system (MEDUSA), long-term monitoring benthic station (GMM), compositional and isotopic analyses, and flux measurements of gas, showed that: (a) gas seepage takes place over an extended area in the Katakolo harbour and along two main normal faults off the harbour; (b) at least 823 gas bubble ( 10-20 cm in diameter) plumes escaping over an area of 94,200 m2, at depths ranging from 5.5 to 16 m; (c) the gas consists mainly of methane and has H2S levels of hundreds to thousands ppmv, and shows significant amounts of other light hydrocarbons like ethane, propane, iso-butane and C6 alkanes, (d) offshore and onshore seeps release the same type of thermogenic gas; (e) due to the shallow depth, more than 90 % of CH4 released at the seabed enters the atmosphere, and (f) the gas seeps may produce severe geohazards for people, buildings and construction facilities due to the explosive and toxicological properties of methane and hydrogen sulfide, respectively. For the short-term monitoring, the deployment took place on a site located inside the harbour of Katakolo within a thermogenic gas seepage area where active faults are intersected. The iDAS system makes it possible to observe the acoustical signal along the entire length of an unmodified optical cable without introducing any form of point sensors such as Bragg gratings. When the bubble plumes are released by the

  14. Two-Dimensional Heat Transfer Modeling of the Formosa Ridge Offshore SW Taiwan: Implication for Fluid Migrating Paths of a Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Chi, W.; Liu, C.; Shyu, C.

    2011-12-01

    The Formosa Ridge, a small ridge located on the passive China continental slope offshore southwestern Taiwan, is an active cold seep site. Large and dense chemosynthetic communities were found there by the ROV Hyper-Dolphin during the 2007 NT0705 cruise. A vertical blank zone is clearly observed on all the seismic profiles across the cold seep site. This narrow zone is interpreted to be the fluid conduit of the seep site. Previous studies suggest that cold sea water carrying large amount of sulfate could flow into the fluid system from flanks of the ridge, and forms a very effective fluid circulation system that emits both methane and hydrogen sulfide to feed the unusual chemosynthetic communities observed at the Formosa Ridge cold seep site. Here we use thermal signals to study possible fluid flow migration paths. In 2008 and 2010, we have collected vdense thermal probe data at this site. We also study the temperatures at Bottom-Simulating Reflectors (BSRs) based on methane hydrate phase diagram. We perform 2D finite element thermal conductive simulations to study the effects of bathymetry on the temperature field in the ridge, and compare the simulation result with thermal probe and BSR-derived datasets. The boundary conditions include insulated boundaries on both sides, and we assign a fix temperature at the bottom of the model using an average regional geothermal gradient. Sensitivity tests and thermal probe data from a nearby region give a regional background geothermal gradient of 0.04 to 0.05 °C/m. The outputs of the simulation runs include geothermal gradient and temperature at different parts of the model. The model can fit the geothermal gradient at a distance away from the ridge where there is less geophysics evidence of fluid flow. However our model over-predicts the geothermal gradient by 50% at the ridge top. We also compare simulated temperature field and found that under the flanks of the ridge the temperature is cooled by 2 °C compared with the

  15. The origin of gas seeps and shallow gas in northern part of South China Sea

    NASA Astrophysics Data System (ADS)

    Li, M.; Jin, X.

    2003-04-01

    vary in different places. Gas chimneys can be found on seafloor, which show blank zone on seismic profiles, locally with pit holes. The geochemical analyses of gas samples from gas seeps indicate its composition is dominated by hydrocarbon gas, the other include CO_2, N_2 and O_2. The gas has high dry index, and heavier δ13C_1.This shows that the gas is of matured- over matured thermogenic gas. The geochemical characteristics of extracts from sediments in the area are similar to those of penetrated source rock of Neogene in the basin, indicating the gas is from the matured source rock in the basin, the diapric zone and fault act as the migration pathway. The gas samples on slope were obtained through degasification of sediments collected by SONNE. Geochemical analyses show that the gas composition is dominated by methane, with high dry index and heavier δ13C_1, belonging to typical thermogenic gas. On maturity chart, the gas samples on upper slope fall in the area near the boundary of condensate, indicating higher maturity, while those on lower slope has lower maturity and fall in the area near oil window. The gas samples from deep sea basin is mixed gas of thermogenic gas and biogas. Therefore, it is reasonable to consider the deep buried source rock as the origin of the gas, and the active faults are the migration pathway. As stated above, the gas seeps and shallow gas in northern part of South China Sea were mainly originated from deep buried source rock, migrated through diapric zone or active faults. Their distribution and occurrence have directly relation with the source rock type and maturity, and the tectonic active of the underlying basins. The petroleum exploration has proved that Yinggehai basin and Qiongdongnan basin on the western part are favored for gas generation, while the Pearl River Mouth Basin and Beibu Gulf basin on the eastern part are favored for oil generation. This may account for the distribution of gas seeps which concentrated in the

  16. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

    PubMed

    Scheller, Silvan; Yu, Hang; Chadwick, Grayson L; McGlynn, Shawn E; Orphan, Victoria J

    2016-02-12

    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane. Copyright © 2016, American Association for the Advancement of Science.

  17. Wide area methane emissions mapping with airborne IPDA lidar

    NASA Astrophysics Data System (ADS)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  18. Microbial Oxidation of Natural Gas in a Plume Emanating from the Coal Oil Point Seep Field

    NASA Astrophysics Data System (ADS)

    Mendes, S. D.; Valentine, D. L.; Perez, C.; Scarlett, R.

    2012-12-01

    The hydrocarbon seep field at Coal Oil Point, off the coast of Santa Barbara, California, releases > 1010 g of thermogenic natural gas each year. Gases emitted from Coal Oil Point include methane, ethane, propane, and butane, which are atmospheric pollutants and greenhouse gases. Even though the seeps are at water depths of only 5-80 m, much of the gas dissolves and contributes to a plume that is transported by ocean currents. While hydrocarbons can support bacterial respiration, resulting in the removal of hydrocarbon gas from the plume, the time-scale for the bacterial respiratory response is unconstrained. To track hydrocarbon respiration 3H-ethane, propane, and butane were synthesized using Grignard reagents and tritiated water with yields of >70% and applied as tracers to samples up- and down-current from the seeps at Coal Oil Point. Validation experiments conducted in September 2011 aboard the R/V Atlantis show that 3H-labeled tracers are an order of magnitude more sensitive than previous methods using stable carbon isotopes (Valentine et. al 2010), making this technique preferable in natural systems. Application of the tracers concurrent with plume tracking in July-August 2012 show ethane, propane, and butane consumption are readily inducible on a timescale of days.

  19. A non-steady-state condition in sediments at the gas hydrate stability boundary off West Spitsbergen: Evidence for gas hydrate dissociation or just dynamic methane transport

    NASA Astrophysics Data System (ADS)

    Treude, Tina; Krause, Stefan; Bertics, Victoria; Steinle, Lea; Niemann, Helge; Liebetrau, Volker; Feseker, Tomas; Burwicz, Ewa; Krastel, Sebastian; Berndt, Christian

    2015-04-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. d18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity

  20. A quantitative assessment of methane cycling in Hikurangi Margin sediments (New Zealand) using geophysical imaging and biogeochemical modeling

    NASA Astrophysics Data System (ADS)

    Luo, Min; Dale, Andrew W.; Haffert, Laura; Haeckel, Matthias; Koch, Stephanie; Crutchley, Gareth; De Stigter, Henko; Chen, Duofu; Greinert, Jens

    2016-12-01

    Takahe seep, located on the Opouawe Bank, Hikurangi Margin, is characterized by a well-defined subsurface seismic chimney structure ˜80,500 m2 in area. Subseafloor geophysical data based on acoustic anomaly layers indicated the presence of gas hydrate and free gas layers within the chimney structure. Reaction-transport modeling was applied to porewater data from 11 gravity cores to constrain methane turnover rates and benthic methane fluxes in the upper 10 m. Model results show that methane dynamics were highly variable due to transport and dissolution of ascending gas. The dissolution of gas (up to 3761 mmol m-2 yr-1) dwarfed the rate of methanogenesis within the simulated sediment column (2.6 mmol m-2 yr-1). Dissolved methane is mainly consumed by anaerobic oxidation of methane (AOM) at the base of the sulfate reduction zone and trapped by methane hydrate formation below it, with maximum rates in the central part of the chimney (946 and 2420 mmol m-2 yr-1, respectively). A seep-wide methane budget was constrained by combining the biogeochemical model results with geophysical data and led to estimates of AOM rates, gas hydrate formation, and benthic dissolved methane fluxes of 3.68 × 104 mol yr-1, 73.85 × 104 mol yr-1, and 1.19 × 104 mol yr-1, respectively. A much larger flux of methane probably escapes in gaseous form through focused bubble vents. The approach of linking geochemical model results with spatial geophysical data put forward here can be applied elsewhere to improve benthic methane turnover rates from limited single spot measurements to larger spatial scales.

  1. Steps toward identifying a biogeochemical signal in non-equilibrium methane clumped isotope measurements

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Eiler, J. M.; Sessions, A. L.; Dawson, K.; Walter Anthony, K. M.; Smith, D. A.; Lloyd, M. K.; Yanay, E.

    2016-12-01

    Microbially produced methane is a globally important greenhouse gas, energy source, and biological substrate. Methane clumped isotope measurements have recently been developed as a new analytical tool for understanding the source of methane in different environments. When methane forms in isotopic equilibrium clumped isotope values are determined by formation temperature, but in many cases microbial methane clumped isotope values deviate strongly from expected equilibrium values. Indeed, we observe a very wide range of clumped isotope values in microbial methane, which are likely strongly influenced by kinetic isotope effects, but thus far the biological and environmental parameters controlling this variability are not understood. We will present data from both culture experiments and natural environments to explore patterns of variability in non-equilibrium clumped isotope values on temporal and spatial scales. In methanogen batch cultures sampled at different time points along a growth curve we observe significant variability in clumped isotope values, with values decreasing from early to late exponential growth. Clumped isotope values then increase during stationary growth. This result is consistent with previous work suggesting that differences in the reversibility of methanogenesis related to metabolic rates control non-equilibrium clumped isotope values. Within single lakes in Alaska and Sweden we observe substantial variability in clumped isotope values on the order of 5‰. Lower clumped isotope values are associated with larger 2H isotopic fractionation between water and methane, which is also consistent with a kinetic isotope effect determined by the reversibility of methanogenesis. Finally, we analyzed a time-series clumped isotope compositions of methane emitted from two seeps in an Alaskan lake over several months. Temporal variability in these seeps is on the order of 2‰, which is much less than the observed spatial variability within the lake

  2. Cold-seep habitat mapping: High-resolution spatial characterization of the Blake Ridge Diapir seep field

    NASA Astrophysics Data System (ADS)

    Wagner, Jamie K. S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-08-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25-70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  3. Cold-seep habitat mapping: high-resolution spatial characterization of the Blake Ridge Diapir seep field

    USGS Publications Warehouse

    Wagner, Jamie K.S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-01-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25–70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  4. Monitoring fossil fuel sources of methane in Australia

    NASA Astrophysics Data System (ADS)

    Loh, Zoe; Etheridge, David; Luhar, Ashok; Hibberd, Mark; Thatcher, Marcus; Noonan, Julie; Thornton, David; Spencer, Darren; Gregory, Rebecca; Jenkins, Charles; Zegelin, Steve; Leuning, Ray; Day, Stuart; Barrett, Damian

    2017-04-01

    CSIRO has been active in identifying and quantifying methane emissions from a range of fossil fuel sources in Australia over the past decade. We present here a history of the development of our work in this domain. While we have principally focused on optimising the use of long term, fixed location, high precision monitoring, paired with both forward and inverse modelling techniques suitable either local or regional scales, we have also incorporated mobile ground surveys and flux calculations from plumes in some contexts. We initially developed leak detection methodologies for geological carbon storage at a local scale using a Bayesian probabilistic approach coupled to a backward Lagrangian particle dispersion model (Luhar et al. JGR, 2014), and single point monitoring with sector analysis (Etheridge et al. In prep.) We have since expanded our modelling techniques to regional scales using both forward and inverse approaches to constrain methane emissions from coal mining and coal seam gas (CSG) production. The Surat Basin (Queensland, Australia) is a region of rapidly expanding CSG production, in which we have established a pair of carefully located, well-intercalibrated monitoring stations. These data sets provide an almost continuous record of (i) background air arriving at the Surat Basin, and (ii) the signal resulting from methane emissions within the Basin, i.e. total downwind methane concentration (comprising emissions including natural geological seeps, agricultural and biogenic sources and fugitive emissions from CSG production) minus background or upwind concentration. We will present our latest results on monitoring from the Surat Basin and their application to estimating methane emissions.

  5. Modeling methane emissions from Arctic lakes under warming conditions

    NASA Astrophysics Data System (ADS)

    Zhuang, Qianlai; Tan, Zeli

    2014-05-01

    To investigate the response of methane emissions from arctic lakes, a process-based climate-sensitive lake methane model is developed. The processes of methane production, oxidation and transport are modeled within a one-dimensional water and sediment column. Dynamics of point-source ebullition seeps are explicitly modeled. The model was calibrated and verified using observational data in the region. The model was further used to estimate the lake methane emissions from the Arctic from 2002 to 2004. We estimate that the total amount of methane emissions is 24.9 Tg CH4 yr-1, which is consistent with a recent estimation of 24±10 Tg CH4 yr-1 and two-fold of methane emissions from natural wetlands in the north of 60 oN. The methane emission rate of lakes spatially varies over high latitudes from 170.5 mg CH4 m-2 day-1 in northern Siberia to only 10.1 mg CH4 m-2 day-1 in northern Europe. A projection assuming 2-7.5oC warming and 15-25% expansion of lake coverage shows that the total amount of methane emitted from Arctic lakes will increase to 29.8-35.6 Tg CH4 yr-1.

  6. Pathways and regulation of carbon, sulfur and energy transfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand)

    NASA Astrophysics Data System (ADS)

    Dale, A. W.; Sommer, S.; Haeckel, M.; Wallmann, K.; Linke, P.; Wegener, G.; Pfannkuche, O.

    2010-10-01

    oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m -2 d -1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m -2 d -1 of CH 4) with a high efficiency of energy expenditure (35 mmol CH 4 kJ -1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.

  7. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA

    PubMed Central

    Davis, J. B.; Coty, V. F.; Stanley, J. P.

    1964-01-01

    Davis, J. B. (Socony Mobil Oil Co., Inc., Dallas, Tex.), V. F. Coty, and J. P. Stanley. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88:468–472. 1964.—Methane-oxidizing bacteria capable of fixing atmospheric nitrogen were isolated from garden soil, pond mud, oil field soil, and soil exposed to natural gas, indicating a rather wide prevalence in nature. This may explain the high concentration of organic nitrogen commonly found in soils exposed to gas leakage from pipelines or natural-gas seeps. Added molybdenum was a requirement for growth in a nitrogen-free mineral salts medium. All nitrogen-fixing, methane-oxidizing bacteria isolated were gram-negative, nonsporeforming, usually motile rods. Colonies were light yellow, yellow, or white. The most common isolate, which formed light-yellow colonies, is referred to as Pseudomonas methanitrificans sp. n., and is distinguished from Pseudomonas (Methanomonas) methanica by nitrogen-fixing ability and a preponderance of poly-β-hydroxybutyrate in the cellular lipid fraction. Images PMID:14203365

  8. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane

    USGS Publications Warehouse

    Briggs, B.R.; Pohlman, J.W.; Torres, M.; Riedel, M.; Brodie, E.L.; Colwell, F.S.

    2011-01-01

    Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10 7 to 10 8 cells cm -3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to-43%) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments. ?? 2011, American Society for Microbiology.

  9. Microbial and Isotopic Evidence for Methane Cycling in Hydrocarbon-Containing Groundwater from the Pennsylvania Region

    PubMed Central

    Vigneron, Adrien; Bishop, Andrew; Alsop, Eric B.; Hull, Kellie; Rhodes, Ileana; Hendricks, Robert; Head, Ian M.; Tsesmetzis, Nicolas

    2017-01-01

    The Pennsylvania region hosts numerous oil and gas reservoirs and the presence of hydrocarbons in groundwater has been locally observed. However, these methane-containing freshwater ecosystems remain poorly explored despite their potential importance in the carbon cycle. Methane isotope analysis and analysis of low molecular weight hydrocarbon gases from 18 water wells indicated that active methane cycling may be occurring in methane-containing groundwater from the Pennsylvania region. Consistent with this observation, multigenic qPCR and gene sequencing (16S rRNA genes, mcrA, and pmoA genes) indicated abundant populations of methanogens, ANME-2d (average of 1.54 × 104 mcrA gene per milliliter of water) and bacteria associated with methane oxidation (NC10, aerobic methanotrophs, methylotrophs; average of 2.52 × 103 pmoA gene per milliliter of water). Methane cycling therefore likely represents an important process in these hydrocarbon-containing aquifers. The microbial taxa and functional genes identified and geochemical data suggested that (i) methane present is at least in part due to methanogens identified in situ; (ii) Potential for aerobic and anaerobic methane oxidation is important in groundwater with the presence of lineages associated with both anaerobic an aerobic methanotrophy; (iii) the dominant methane oxidation process (aerobic or anaerobic) can vary according to prevailing conditions (oxic or anoxic) in the aquifers; (iv) the methane cycle is closely associated with the nitrogen cycle in groundwater methane seeps with methane and/or methanol oxidation coupled to denitrification or nitrate and nitrite reduction. PMID:28424678

  10. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roberts, Harry H.; Feng, Dong; Joye, Samantha B.

    2010-11-01

    Authigenic carbonates from cold seeps on the middle and lower continental slope of the northern Gulf of Mexico (GOM) exhibit a wide range of mineralogical and stable isotopic compositions. These carbonates consist of concretions and nodules in surface sediments, hardgrounds of crusts and isolated slabs, and mounded buildups of blocks and slabs of up to over 10 meters in relief above the surrounding seafloor. Mineralogically, the carbonates are dominated by high-Mg calcite (HMC) and aragonite. However, low levels (<5 wt%) of dolomite are present in most samples. Petrographically, Mg-calcite peloidal matrix and acicular to botryoidal aragonitic void-filling cements are the most frequent associations. The carbon isotopic compositions of the carbonates range from -60.8 to 14.0‰ PDB, indicating complex carbon sources that include 13C-depleted biogenic and thermogenic methane, biodegraded crude oil, seawater CO2, and 13C-enriched residual CO2 from methanogenesis. A similarly large variability in δ18O values (2.5 to 6.7‰ PDB) demonstrates the geochemical complexity of the slope, with some samples pointing toward an 18O-enriched oxygen source that is possibly related to advection of 18O-enriched formation water and/or to the decomposition of gas hydrate. A considerable range of mineralogical and isotopic variations in cold-seep carbonate composition was noted even within individual study sites. However, common trends occur across multiple geographic areas. This situation suggests that local controls on fluid and gas flux, types of seep hydrocarbons, the presence or absence of gas hydrate in the near-surface sediment, and chemosynthetic communities, as well as the temporal evolution of the local hydrocarbon reservoir, all may play a part in determining carbonate mineralogy and isotope geochemistry. The carbon isotope data clearly indicate that between-site variation is greater than within-site variation. Seep carbonates formed on the middle and lower continental slope

  11. Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager, 1866) on artificial substrates in seep and adjacent off-seep locations in dysoxic, deep-sea environments

    NASA Astrophysics Data System (ADS)

    Burkett, Ashley M.; Rathburn, Anthony E.; Elena Pérez, M.; Levin, Lisa A.; Martin, Jonathan B.

    2016-11-01

    After ~1 yr on the seafloor at water depths of ~700 m on Hydrate Ridge in the Pacific, eight colonization experiments composed primarily of a plastic mesh cube (from here on refered to as SEA3, for Seafloor Epibenthic Attachment Cubes) were colonized by 1076 Cibicidoides wuellerstorfi on ~1841 cm2 of experimental substrate. This species is typically considered an indicator of well-oxygenated conditions, and recruitment of such large numbers in bottom waters with low dissolved oxygen availability (0.24-0.37 mL/L) indicate that this taxon may not be as limited by oxygen as previously thought. Clues about substrate preferences were evident from the distribution, or lack thereof, of individuals among plastic mesh, coated steel frame, wooden dowels and reflective tape. Abundance, individual size distributions within cage populations and isotopic biogeochemistry of living foraminifera colonizing experimental substrates were compared between active seep and adjacent off-seep experiment locations, revealing potential differences between these environments. Few studies have examined foraminiferal colonization of hard substrates in the deep-sea and to our knowledge no previous study has compared foraminiferal colonization of active seep and off-seep substrates from the same region. This study provides initial results of recruitment, colonization, geochemical and morphological aspects of the paleoceanographically significant species, C. wuellerstorfi, from dynamic deep-sea environments. Further experimental deployments of SEA3s will provide a means to assess relatively unknown ecologic dynamics of important foraminiferal deep-sea species.

  12. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico

    USGS Publications Warehouse

    Kellogg, Christina A.

    2010-01-01

    Little is known about the distribution and abundance of viruses in deep-sea cold-seep environments. Like hydrothermal vents, seeps support communities of macrofauna that are sustained by chemosynthetic bacteria. Sediments close to these communities are hypothesized to be more microbiologically active and therefore to host higher numbers of viruses than non-seep areas. Push cores were taken at five types of Gulf of Mexico habitats at water depths below 1000 m using a remotely operated vehicle (ROV). The habitats included non-seep reference sediment, brine seeps, a microbial mat, an urchin field, and a pogonophoran worm community. Samples were processed immediately for enumeration of viruses and prokaryotes without the addition of a preservative. Prokaryote counts were an order of magnitude lower in sediments directly in contact with macrofauna (urchins, pogonophorans) compared to all other samples (107 vs. 108 cells g-1 dry weight) and were highest in areas of elevated salinity (brine seeps). Viral-Like Particle (VLP) counts were lowest in the reference sediments and pogonophoran cores (108 VLP g-1 dry wt), higher in brine seeps (109 VLP g-1 dry wt), and highest in the microbial mats (1010 VLP g-1 dry wt). Virus-prokaryote ratios (VPR) ranged from <5 in the reference sediment to >30 in the microbial mats and >60 in the urchin field. VLP counts and VPR were all significantly greater than those reported from sediments in the deep Mediterranean Sea and in most cases were higher than recent data from a cold-seep site near Japan. The high VPR suggest that greater microbial activity in or near cold-seep environments results in greater viral production and therefore higher numbers of viruses.

  13. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kellogg, Christina A.

    2010-11-01

    Little is known about the distribution and abundance of viruses in deep-sea cold-seep environments. Like hydrothermal vents, seeps support communities of macrofauna that are sustained by chemosynthetic bacteria. Sediments close to these communities are hypothesized to be more microbiologically active and therefore to host higher numbers of viruses than non-seep areas. Push cores were taken at five types of Gulf of Mexico habitats at water depths below 1000 m using a remotely operated vehicle (ROV). The habitats included non-seep reference sediment, brine seeps, a microbial mat, an urchin field, and a pogonophoran worm community. Samples were processed immediately for enumeration of viruses and prokaryotes without the addition of a preservative. Prokaryote counts were an order of magnitude lower in sediments directly in contact with macrofauna (urchins, pogonophorans) compared to all other samples (107 vs. 108 cells g-1 dry weight) and were highest in areas of elevated salinity (brine seeps). Viral-Like Particle (VLP) counts were lowest in the reference sediments and pogonophoran cores (108 VLP g-1 dry wt), higher in brine seeps (109 VLP g-1 dry wt), and highest in the microbial mats (1010 VLP g-1 dry wt). Virus-prokaryote ratios (VPR) ranged from <5 in the reference sediment to >30 in the microbial mats and >60 in the urchin field. VLP counts and VPR were all significantly greater than those reported from sediments in the deep Mediterranean Sea and in most cases were higher than recent data from a cold-seep site near Japan. The high VPR suggest that greater microbial activity in or near cold-seep environments results in greater viral production and therefore higher numbers of viruses.

  14. A comparative molecular and isotopic investigation of seep carbonates from mussel and tubeworm environments of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Feng, D.; Guan, H.; Wu, N.; Chen, D.

    2017-12-01

    At deep-sea hydrocarbon seeps, macrofauna such as mussels and tubeworms and authigenic carbonate outcrops are common. It has been suggested that the distinct metabolic process of the macrofauna could modify the sedimentary geochemistry of their ambient environments. To better understand if the differences in the geochemical environments of mussels and tubeworms can be archived in the associated carbonates, lipid biomarker inventory and compound-specific isotopes of the carbonates from mussel and tubeworm environments from two seep sites were analyzed. The large δ13C offset (-32‰) of SRB-derived fatty acids (FAs) between tubeworm and mussel carbonates were partially attributed to the distinct effects on isotope fraction by specific metabolic process of the macrofauna. In such processes, the isotope fraction of chemosynthetic symbionts and physical action of mussel activities could result in local 13C enrichment, whereas the sufficient sulfate released through the tubeworm roots resulting in a persistent production of methane-derived bicarbonate and the enrichment of lighter carbon at subsurface sediments. Compared to mussel carbonates, the significantly higher concentrations of DAGEs and FAs as well as the smaller δ13C offset (Δδ13CDAGEs-FAs) than that of the mussel carbonates, suggest that the DAGEs and at least part of FAs found in tubeworm carbonates biosynthesized by SRB species other than DSS cluster. This DAGE-producing SRB is most likely involved in the hydrogen-driven SR instead of methane-fueled SR because a variety of SRB other than members of DSS cluster on hydrogen was isolated in presence of ANME-1 assemblage. The substantial amounts of DAGEs with strong 13C-depletions in tubeworm ecosystem may provide an important clue for their sources and role in the AOM process.

  15. Community Proteogenomics of a Cold-methane Seep Sediment at Nyegga, Mid-Norwegian Margin

    NASA Astrophysics Data System (ADS)

    Stokke, R.; Roalkvam, I.; Lanzen, A.; Chen, Y.; Haflidason, H.; Steen, I.

    2010-12-01

    Anaerobic oxidation of methane (AOM) is limited to anoxic environments and differs in its rates from a few pmol cm-3day-1 in subsurface SMTZ (sulfate-methane transition zone) of deep margins, to a few μmol cm-3 day-1 in surface sediments above gas hydrates [1]. This process is catalyzed by consortia of anaerobic methane oxidizing archaea (ANME) in association with sulfate-reducing bacteria. The Nyegga area is located on the Mid-Norwegian continental slope at the northern flank of the Storegga Slide at 700-800 mbsl. Hundreds of pockmarks are widespread on the seabed in Nyegga and sub-zero temperatures (-0.7 °C), and pingo-structures within the pockmarks are indicators of active fluid flow locations. Preliminary microbial and geochemical profiling of a 22 cm push-core within the G11 pockmark gave strong indications of an ANME-1 dominated community at 14-16 cmbsf. In light of these findings we submitted extracted DNA to 454-pyrosequencing. Sequencing data (829,527 reads) was assembled using the Newbler v2.3, resulting in 13,151 contigs (357,530 reads) over 500 bp with the longest contig being 24,521 bp. MEGAN taxonomic analysis supported the high abundance of Euryarchaea (70%) with 66% of the assembled metagenome belonging to ANME-1. In order to obtain functional information of the ANME-1 community, protein extraction protocols from sediment samples was established. Extracted proteins was separated on a large (18cm) 1D-SDS-PAGE and subsequently cut in 30 gel slices. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the metagenome including known contaminants such as trypsin and human keratin was search against using Mascot 2.2. IRMa tool box [2] was used in peptide validation and peptides whose score >= 25.0 (i.e avg identity, p<0.05) and

  16. Thermal Imagery of Groundwater Seeps: Possibilities and Limitations.

    PubMed

    Mundy, Erin; Gleeson, Tom; Roberts, Mark; Baraer, Michel; McKenzie, Jeffrey M

    2017-03-01

    Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air-water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non-freezing conditions, and no solar radiation. © 2016, National Ground Water Association.

  17. Identification of Methanotrophic Biomarker Lipids in the Symbiont-Containing Gills of Seep Mussels

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Zahiralis, K. D.; Klein, H. P.; Morrison, David (Technical Monitor)

    1994-01-01

    Mussels collected from hydrocarbon seeps in the Gulf of Mexico grow with methane as sole carbon and energy source due to a symbiotic association with methane-oxidizing bacteria. Transmission electron micrographs of mussel gills show cells with stacked intracytoplasmic membranes similar to type I methanotrophic bacteria. Methanotrophs are known to synthesize several types of cyclic triterpenes, hopanoids and methyl sterols, as well as unique monounsaturated fatty acid, double bond positional isomers that serve as biomarkers for this group. Lipid analysis of dissected mussels demonstrated the presence of these biomarkers predominantly in the gill tissue with much smaller amounts in mantle and remaining body tissues. Gill tissue contained 1150 micrograms/g dry wt. of hopanepolyol derivatives and diplopterol while the mantle tissue contained only 17 micrograms/g. The C16 monounsaturated fatty acids (16:1) characteristic of type I methanotrophic membranes dominated the gill tissue making up 53% of the total while only 5% 16:1 was present in the mantle tissue. The methyl sterol distribution was more dispersed. The predominant sterol in all tissues was cholesterol with lesser amounts of other desmethyl and 4-methyl sterols. The gill and mantle tissues contained 3461 micrograms (17% methyl) and 2750 micrograms (5% methyl) sterol per gm dry wt., respectively. Methyl sterol accounted for 44% of the sterol esters isolated from the gill, suggesting active demethylation of the methanotrophic sterols in this tissue. The use of lipid biomarkers could provide an effective means for identifying host-symbiont relationships.

  18. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea

  19. Nutritional associations among fauna at hydrocarbon seep communities in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Macavoy, S. E.; Fisher, C. R.; Carney, R. S.; Macko, S. A.

    2004-05-01

    The Gulf of Mexico supports dense aggregations of megafauna associated with hydrocarbon seeps on the Louisiana Slope. The visually dominant megafauna at the seeps, mussels and tubeworms, derive their nutrition from symbiotic relationships with sulfide or methane oxidizing bacteria. The structure of the tubeworm aggregations provide biogenic habitat for numerous other species of heterotrophic animals. Carbon, nitrogen and sulfur stable isotope analyses of heterotrophic fauna collected with tubeworm aggregations in the Green Canyon Lease area (GC 185) indicate that most of these species derive the bulk of their nutrition from chemoautotrophic sources. The isotope analyses also indicates that although two species may be deriving significant nutritional input from the bivalves, none of the species analyzed are feeding directly on the tubeworms. Grazing gastropods and deposit feeding sipuncluids were used to estimate the isotopic value of the free-living chemoautotrophic bacteria associated with the tubeworms (d13C -32 to -20%; d15N 0 to 7%; d34S -14 to -1 %). The use of tissue d34S analyses in conjunction with tissue d13C and d15N led to several insights into the trophic biology of the communities that would not have been evident from tissue stable C and N analyses alone.

  20. Greigite as a marker of paleo sulphate methane transition zone (SMTZ) in cold seep environment of Krishna-Godavari (KG) Basin, Bay of Bengal, India.

    NASA Astrophysics Data System (ADS)

    B, F. K.; Dewangan, P.; Usapkar, A.; Mazumdar, A.; Kocherla, M.; Tammisetti, R.; Khalap, S. T.; Satelkar, N. P.; Mehrtens, T.; Rosenauer, A.

    2014-12-01

    Rockmagnetic results and electron microscopic observations on a sediment core retrieved from a proven cold seep environment of Krishna-Godavari (KG) Basin revealed an anomalously magnetically enhanced zone (17 - 23 mbsf) below the present-day SMTZ in the KG offshore basin. This zone is characterized by higher SIRM / k, kARM / SIRM and kfd % values indicating the presence of fine grained superparamagnetic (SP) sized ferrimagnetic iron sulphides minerals such as greigite formed due to anaerobic oxidation of methane (AOM). Identification of such mineral phases and understanding the mechanism of their formation and preservation is of vital importance which could provide better understanding of the geochemical processes on the paleo - SMTZ. Magnetic concentrates extracted from this zone were characterised by transmission electron microscopy and energy dispersive X- ray spectrometry. We observed two possible occurrences of magnetic phases within this sediment depths 17 - 23 mbsf. (a) authigenically formed SP sized ferrimagnetic inclusions of magnetite, pyrite and greigite within matrix of host siliceous grain, (b) poorly crystallized fine-grained magnetite with ill defined grain boundary possibily formed extracellulary by magnetotactic bacterias through biologically-induced mineralization. High methane fluxes as observed in this basin provides suitable environment for the formation of greigite in the vicinity of SMTZ. We hypothesize that due to availability of residual iron and low supply of hydrogen sulphide caused by downwards diffusion lead to preservation of greigite. The occurence of greigite as inclusion within the host silicate matrix might explain its preservation in this zone in spite of intense pyritization. The greigite would otherwise be converted to stable-form pyrite. It is challenging to explain the origin of biologically produced magnetite within 17 - 23 mbsf as it is expected to dissolve in this zone due to intense pyritization.

  1. Investigating Hydrocarbon Seep Environments with High-Resolution, Three-Dimensional Geographic Visualizations.

    NASA Astrophysics Data System (ADS)

    Doolittle, D. F.; Gharib, J. J.; Mitchell, G. A.

    2015-12-01

    Detailed photographic imagery and bathymetric maps of the seafloor acquired by deep submergence vehicles such as Autonomous Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV) are expanding how scientists and the public view and ultimately understand the seafloor and the processes that modify it. Several recently acquired optical and acoustic datasets, collected during ECOGIG (Ecosystem Impacts of Oil and Gas Inputs to the Gulf) and other Gulf of Mexico expeditions using the National Institute for Undersea Science Technology (NIUST) Eagle Ray, and Mola Mola AUVs, have been fused with lower resolution data to create unique three-dimensional geovisualizations. Included in these data are multi-scale and multi-resolution visualizations over hydrocarbon seeps and seep related features. Resolution of the data range from 10s of mm to 10s of m. When multi-resolution data is integrated into a single three-dimensional visual environment, new insights into seafloor and seep processes can be obtained from the intuitive nature of three-dimensional data exploration. We provide examples and demonstrate how integration of multibeam bathymetry, seafloor backscatter data, sub-bottom profiler data, textured photomosaics, and hull-mounted multibeam acoustic midwater imagery are made into a series a three-dimensional geovisualizations of actively seeping sites and associated chemosynthetic communities. From these combined and merged datasets, insights on seep community structure, morphology, ecology, fluid migration dynamics, and process geomorphology can be investigated from new spatial perspectives. Such datasets also promote valuable inter-comparisons of sensor resolution and performance.

  2. The earliest mollusc dominated seep fauna from the Early Jurassic of Argentina

    NASA Astrophysics Data System (ADS)

    Kaim, Andrzej; Jenkins, Robert; Parent, Horacio; Garrido, Alberto; Moriya, Kazuhiro

    2015-04-01

    The earliest mollusc dominated seep fauna from the Early Jurassic of Argentina Andrzej Kaim, Robert G. Jenkins, Horacio Parent, Alberto C. Garrido The hydrocarbon seep deposits are known from Early Jurassic of Argentina since the report of Gomez-Perez (2003). The latter author identified very negative δ13C values (down to -33) and several fabrics typical for seep carbonates. Nevertheless she identified no macrofaunal assemblages apart from worm tubes. We re-visited the locality of Gomez-Perez (named here La Elina) and we were able to collect several molluscs associated with the seep carbonate. The most common and diversified are molluscs and worm tubes. We identified at least three species of gastropods, including the oldest-known species of neomphalids, lucinid and protobranch bivalves and numerous ammonoids. Unlike another known Early Jurassic seep from Oregon and the only Late Triassic seep (also from Oregon) there are no brachiopods associated with this seep. Therefore we consider the seep at La Elina as the oldest seep of modern aspect where the fauna is dominated by molluscs and not brachiopods.

  3. Importance of seep primary production to Lophelia pertusa and associated fauna in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Becker, Erin L.; Cordes, Erik E.; Macko, Stephen A.; Fisher, Charles R.

    2009-05-01

    To investigate the importance of seep primary production to the nutrition of Lophelia pertusa and associated communities and examine local trophic interactions, we analyzed stable carbon, nitrogen, and sulfur compositions in seven quantitative L. pertusa community collections. A significant seep signature was only detected in one of the 35 species tested ( Provanna sculpta, a common seep gastropod) despite the presence of seep fauna at the three sample sites. A potential predator of L. pertusa was identified ( Coralliophila sp.), and a variety of other trophic interactions among the fauna occupying the coral framework were suggested by the data, including the galatheid crab Munidopsis sp. 2 feeding upon hydroids and the polychaete Eunice sp. feeding upon the sabellid polychaete Euratella sp. Stable carbon abundances were also determined for different sections of L. pertusa skeleton representing different stages in the growth and life of the aggregation. There was no temporal trend detected in the skeleton isotope values, suggesting that L. pertusa settles in these areas only after seepage has largely subsided. Isotope values of individual taxa that were collected from both L. pertusa and vestimentiferan habitats showed decreasing reliance upon seep primary production with average age of the vestimentiferan aggregation, and finally, no seep signature was detected in the coral collections. Together our data suggest that it is the presence of authigenic carbonate substrata, a product of past seep microbial activity, as well as hydrodynamic processes that drive L. pertusa occurrence at seep sites in the Gulf of Mexico, not nutritional dependence upon primary production by seep microbes.

  4. Gaia's breath - Global methane exhalations

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rogers, B.W.

    2005-01-01

    Methane (CH4) is the most abundant organic compound in the Earth's atmosphere, where it acts as a greenhouse gas and thus has implications for global climate change. The current atmospheric CH4 budget, however, does not take into account geologically-sourced CH4 seepage. Geological sources of CH4 include natural macro- and micro-seeps, mud volcanoes, and other miscellaneous sources such as gas hydrates, magmatic volcanoes, geothermal regions, and mid-ocean ridges. Macro-seeps contribute ???25 Tg (teragrams) CH4/yr to the atmosphere, whereas, micro-seepage contributes perhaps 7 Tg CH4/yr. Mud volcanoes emit ???5 Tg CH4/yr, and miscellaneous sources emit ???8 Tg CH4/yr to the atmosphere. Thus, the total contribution to the atmosphere from geological sources is estimated to be 45 Tg CH4/yr, which is significant to the atmospheric organic carbon cycle and should be included in any global inventory of atmospheric CH4. We argue that the atmospheric CH4 global inventory of the Interplanetary Panel on Climate Change must be adjusted in order to incorporate geologically-sourced CH4 from naturally occurring seepage.

  5. Observations of mass fractionation of noble gases in synthetic methane hydrate

    USGS Publications Warehouse

    Hunt, Andrew G.; Pohlman, John; Stern, Laura A.; Ruppel, Carolyn D.; Moscati, Richard J.; Landis, Gary P.; Pinkston, John C.

    2011-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings are presently dissociating and releasing methane and other gases to the oceanatmosphere system. A key challenge in assessing the susceptibility of gas hydrates to warming climate is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sublake and subseafloor sediments, coalbeds, and other sources. Carbon and deuterium stable isotopic data provide only a first-order characterization of methane sources, while gas hydrate can sequester any type of methane. Here, we investigate the possibility of exploiting the pattern of noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under careful laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  6. Enriched groundwater seeps in two Vermont headwater catchments are hotspots of nitrate turnover

    USGS Publications Warehouse

    Kaur, Amninder J.; Ross, Donald S.; Shanley, James B.; Yatzor, Anna R.

    2016-01-01

    Groundwater seeps in upland catchments are often enriched relative to stream waters, higher in pH, Ca2+ and sometimes NO3¯. These seeps could be a NO3¯ sink because of increased denitrification potential but may also be ‘hotspots’ for nitrification because of the relative enrichment. We compared seep soils with nearby well-drained soils in two upland forested watersheds in Vermont that are sites of ongoing biogeochemical studies. Gross N transformation rates were measured over three years along with denitrification rates in the third year. Gross ammonification rates were not different between the seep and upland soils but gross nitrification rates were about 3 × higher in the seep soils. Net nitrification rates trended higher in the upland soils and NO3¯ consumption (gross—net) was 8 times higher in the seep soils. The average denitrification rate for seep soils was about equal to the difference in NO3¯ consumption between seep and upland soils, suggesting denitrification can make up the difference. Temporal variation in seep water NO3¯ concentration was correlated with watershed outlet NO3¯ concentration. However, it is not clear that in-seep processes greatly altered seep water NO3¯ contribution to the streams. Seep soils appear to be hotspots of both nitrification and denitrification.

  7. Investigations on the "Extreme" Microbial Methane Cycle within the Sediments of an Acidic Impoundment of the Inactive Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.; Wei, J. H. C.; Welander, P. V.

    2014-12-01

    The inactive Sulfur Bank Mercury Mine is located in a volcanic region having geothermal flow and gas inputs into the Herman Pit impoundment. The acidic (pH 2 - 4) waters of the Herman Pit are permeated by hundreds of continuous flow gas seeps that contain CO2, H2S and CH4. We sampled one seep and found it to be composed of 95 % CO2 and 5 % CH4, in agreement with earlier measurements. Only a trace of ethane (10 - 20 ppm) was found and propane was below detection, resulting in a high CH4/C2H6 + C3H8 ratio of > 5,000, while the δ13CH4 and the δ13CO2 were respectively - 24 and - 11 per mil. Collectively, these results suggested a complex origin for the methane, being made up of a thermogenic component resulting from pyrolysis of buried organics, along with an active methanogenic portion. The relatively 12C-enriched value for the CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. We found that dissolved methane in the collected water from 2-4 m depth was high (~ 400 µM), which would support methanotrophy in the lake's aerobic biomes. We therefore tested the ability of bottom sediments to consume methane by conducting aerobic incubations of slurried bottom sediments. Methane was removed from the headspace of live slurries, and subsequent additions of methane to the headspace over the course of 2-3 months resulted in faster removal rates suggesting a buildup of the population of methanotrophs. This activity could be transferred to an artificial medium originally devised for the cultivation of acidophilic iron oxidizing bacteria (Silverman and Lundgren, 1959; J. Bacteriol. 77: 642 - 647), suggesting the possibility of future cultivation of acidophilic methanotrophs. A successful extraction of some hopanoid compounds from the sediments was achieved, although the results were too preliminary at the time of this writing to identify any hopanoids specifically linked to methanotrophic bacteria. Further efforts to amplify functional genes for

  8. Shell carbon isotope indicators of metabolic activity in the deep-sea mussel Bathymodiolus childressi

    NASA Astrophysics Data System (ADS)

    Riekenberg, P. M.; Carney, R. S.; Fry, B.

    2018-04-01

    The incorporation of metabolic carbon (Cm) into shells of mollusks has been used as an indicator of animal condition and availability of food resources in estuarine and freshwater settings. This study examines Cm in Bathymodiolus childressi, a marine cold seep mussel dependent on methanotrophic symbionts. As seeps develop, mature, and go quiescent, methane supply will vary and affect the amount of metabolic carbon deposited into the growing shell. B. childressi (n = 136) were live-collected from two seep sites over a 17 year period in the Northern Gulf of Mexico to investigate whether changes in Cm were detectable between sites and across years. Significant differences in Cm were observed between mussel populations at Brine Pool (15.4 ± 0.4%) and Bush Hill (10.3 ± 0.3%). Cm also changed significantly within each site across year (Bush Hill 1991: 12.2 ± 0.5%, 1992: 17.3 ± 0.8%) and decadal time scales (Brine Pool 1989: 15.5 ± 0.7%, 2006: 19.5 ± 0.7%). These findings agree with previous studies that found mussel condition was higher at Brine Pool and correlate well with a trophic mixing model that indicated significantly higher methane source utilization at the Brine Pool (65 ± 1.1%) than at Bush Hill (49 ± 1.6%). Further development of this method should allow for assessment of Cm in shell assemblages as an indicator of historical resource availability at both active and former cold seep sites.

  9. Oxygen-Promoted Methane Activation on Copper

    DOE PAGES

    Niu, Tianchao; Jiang, Zhao; Zhu, Yaguang; ...

    2017-11-01

    The role of oxygen in the activation of C–H bonds in methane on clean and oxygen-precovered Cu(111) and Cu 2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and “moderate pressures” was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C–H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole–dipole attraction of O–H and Cu–CH 3 species. Furthermore, the C–H bond activation barriersmore » on Cu 2O(111) surfaces are large due to the weak stabilization of H and CH 3 fragments.« less

  10. Oxygen-Promoted Methane Activation on Copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tianchao; Jiang, Zhao; Zhu, Yaguang

    The role of oxygen in the activation of C–H bonds in methane on clean and oxygen-precovered Cu(111) and Cu 2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and “moderate pressures” was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C–H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole–dipole attraction of O–H and Cu–CH 3 species. Furthermore, the C–H bond activation barriersmore » on Cu 2O(111) surfaces are large due to the weak stabilization of H and CH 3 fragments.« less

  11. Genomic insights into the metabolic potential and interactions between marine methanotrophic ANME archaea and associated bacteria

    NASA Astrophysics Data System (ADS)

    Orphan, V. J.; Skennerton, C.; Chadwick, G.; Haroon, F.; Tyson, G. W.; Leu, A.; Hatzenpichler, R.; Woyke, T.; Malmstrom, R.; Yu, H.; Scheller, S.

    2015-12-01

    Cooperative metabolic interactions between multiple groups of methanotrophic 'ANME' archaea and sulfate-reducing bacteria represent the primary sink for methane within continental margin sediments. These syntrophic associations are frequently observed as structured multi-celled consortia in methane seeps, often comprising a substantial proportion of the microbial biomass within near seafloor seep sediments. Since their discovery nearly 15 years ago, a number of distinct ANME groups and multiple sulfate-reducing bacterial partners have been described from seep environments worldwide. Attempts to reconstruct the genomes of some ANME organisms have been reported, however the ecological physiology and metabolic interactions of distinct ANME lineages and their bacterial partners remains poorly understood. Here, we used a fluorescence azide-alkyne click chemistry technique known as BONCAT combined with FAC sorting to examine patterns in microbial membership and the genomes of single, metabolically active ANME-bacterial consortia recovered from methane seep sediments. This targeted consortia-level sequencing approach revealed significant diversity in the ANME-bacterial associations in situ as well as insights into the potential syntrophic mechanisms underpinning these enigmatic methane-fueled partnerships.

  12. Cold-seep-driven carbonate deposits at the Central American forearc: contrasting evolution and timing in escarpment and mound settings

    NASA Astrophysics Data System (ADS)

    Liebetrau, V.; Augustin, N.; Kutterolf, S.; Schmidt, M.; Eisenhauer, A.; Garbe-Schönberg, D.; Weinrebe, W.

    2014-10-01

    Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (-43 to -56 ‰ PDB) than for mound samples (-22 to -36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2-5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.

  13. New Isotopic Constraints on the Sources of Methane at Sites of Active Continental Serpentinization

    NASA Astrophysics Data System (ADS)

    Wang, D. T.; Gruen, D.; Morrill, P. L.; Rietze, A.; Nealson, K. H.; Kubo, M. D.; Cardace, D.; Schrenk, M. O.; Hoehler, T. M.; McCollom, T. M.; Etiope, G.; Hosgormez, H.; Schoell, M.; Ono, S.

    2014-12-01

    At continental sites of serpentinization, high concentrations of reduced gases (e.g., H2, CH4) are frequently found in association with highly-alkaline groundwater. Identification of the process(es) responsible for the generation of methane—as well as the source(s) of C & H—in these environments has been challenging. The difficulty is due to both the wide range of processes (microbial, thermal, abiotic) that could be involved, and the limited number of parameters that are accessible to currently-available analytical technologies (e.g., δ13C, δD). The recent development of a new technique based on tunable infrared laser spectroscopy [1] has enabled the fully-resolved quantification of four isotopologues of methane: 12CH4, 13CH4, 12CH3D, and 13CH3D, a doubly-substituted ("clumped") isotopologue. We used this technique to measure 13CH3D in gases sampled from continental sites of serpentinization, in order to provide independent constraints on C-H bond-forming processes involved in the generation of the methane found in these systems. Our study sites are hosted in ultramafic units that are presently undergoing serpentinization. These include The Cedars peridotite body (Calif., USA) [2], the Coast Range Ophiolite Microbial Observatory (Calif., USA) [3], and the Chimaera seep (Tekirova Ophiolite, Turkey) [4]. Preliminary measurements indicate that Δ13CH3D (the deviation of the abundance of 13CH3D from the stochastic distribution) in methane sampled from these sites spans nearly the entire range of thermodynamically-predicted values, from >+5‰ (13CH3D-based apparent equilibrium temperature < 45 °C) to ~0‰ (Tapparent → ∞). The new 13CH3D data is complemented by conventional geochemical analyses (e.g., dissolved ions/organics, δ13C, δD) on samples collected during the same field campaigns. Our study demonstrates that the measurement of 13CH3D provides a new dimension of isotopic constraints for unraveling the complex processes controlling the distribution

  14. Carbon, oxygen and strontium isotopic constraints on fluid sources, temperatures and biogeochemical processes during the formation of seep carbonates - Secchia River site, Northern Apennines

    NASA Astrophysics Data System (ADS)

    Viola, Irene; Capozzi, Rossella; Bernasconi, Stefano M.; Rickli, Jörg

    2017-07-01

    Understanding authigenic seep carbonate formation provides clues for hydrocarbon exploration and insights into contributions to gas budgets of marine environments and the atmosphere. Seep carbonates discovered in the outcropping succession along the Secchia riverbanks (near Modena, Italy) belong to the Argille Azzurre Formation of Early Pleistocene age deposited in an upper shelf environment overlying the Miocene foredeep successions, which include hydrocarbon fields. The fluid migration from the hydrocarbon fields, up to the surface, is presently active on land and started in the marine succession during the Late Miocene. Authigenic globular carbonate concretions and carbonate chimneys are interspersed along the strata throughout the section. A comprehensive geochemical characterisation of the carbonates has been carried out to understand the processes leading to their formation. The carbonate concretions are the record of past hydrocarbon vents linked to the Miocene petroleum system of the Northern Apennines. The samples are composed of > 50% microcrystalline dolomite. The δ13C signatures identify two groups in the samples according to different type of formation processes. Globular concretions have positive values that suggest an influence of CO2 associated to secondary methanogenesis due to microbial degradation of higher hydrocarbons. The analysed chimney, with negative δ13C values, is interpreted as former conduit where carbonate precipitation is promoted by Anaerobic Oxidation of Methane coupled with Sulfate Reduction. The δ18O range, coupled with 87/86Sr signatures, indicate that the contribution of deep connate water from the Miocene reservoirs is up to 23% during the formation of the globular concretions. The connate water occurrence is also documented by higher ambient temperatures. The different isotope signatures in seep carbonates result from the relative contribution of the recognised gas and water components, linked to different plumbing systems

  15. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.

    PubMed

    van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2010-08-01

    Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.

  16. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skennerton, Connor T.; Chourey, Karuna; Iyer, Ramsunder

    The anaerobic oxidation of methane by anaerobic methanotrophic (ANME) archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria (SRB) is the primary mechanism for methane removal in ocean sediments. The mechanism of their syntrophy has been the subject of much research as traditional intermediate compounds, such as hydrogen and formate, failed to decouple the partners. Recent findings have indicated the potential for extracellular electron transfer from ANME archaea to SRB, though it is unclear how extracellular electrons are integrated into the metabolism of the SRB partner. We used metagenomics to reconstruct eight genomes from the globally distributed SEEP-SRB1 clade of ANMEmore » partner bacteria to determine what genomic features are required for syntrophy. The SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in previously described free-living SRB and also lack periplasmic hydrogenases that may prevent an independent lifestyle without an extracellular source of electrons from ANME archaea. Metaproteomics revealed the expression of these cytochromes at in situ methane seep sediments from three sites along the Pacific coast of the United States. Phylogenetic analysis showed that these cytochromes appear to have been horizontally transferred from metal-respiring members of the Deltaproteobacteria such as Geobacter and may allow these syntrophic SRB to accept extracellular electrons in place of other chemical/organic electron donors. Some archaea, known as anaerobic methanotrophs, are capable of converting methane into carbon dioxide when they are growing syntopically with sulfate-reducing bacteria. This partnership is the primary mechanism for methane removal in ocean sediments; however, there is still much to learn about how this syntrophy works. Previous studies have failed to identify the metabolic intermediate, such as hydrogen or formate, that is passed between partners. However, recent analysis of

  17. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea.

    PubMed

    Skennerton, Connor T; Chourey, Karuna; Iyer, Ramsunder; Hettich, Robert L; Tyson, Gene W; Orphan, Victoria J

    2017-08-01

    The anaerobic oxidation of methane by anaerobic methanotrophic (ANME) archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria (SRB) is the primary mechanism for methane removal in ocean sediments. The mechanism of their syntrophy has been the subject of much research as traditional intermediate compounds, such as hydrogen and formate, failed to decouple the partners. Recent findings have indicated the potential for extracellular electron transfer from ANME archaea to SRB, though it is unclear how extracellular electrons are integrated into the metabolism of the SRB partner. We used metagenomics to reconstruct eight genomes from the globally distributed SEEP-SRB1 clade of ANME partner bacteria to determine what genomic features are required for syntrophy. The SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in previously described free-living SRB and also lack periplasmic hydrogenases that may prevent an independent lifestyle without an extracellular source of electrons from ANME archaea. Metaproteomics revealed the expression of these cytochromes at in situ methane seep sediments from three sites along the Pacific coast of the United States. Phylogenetic analysis showed that these cytochromes appear to have been horizontally transferred from metal-respiring members of the Deltaproteobacteria such as Geobacter and may allow these syntrophic SRB to accept extracellular electrons in place of other chemical/organic electron donors. IMPORTANCE Some archaea, known as anaerobic methanotrophs, are capable of converting methane into carbon dioxide when they are growing syntopically with sulfate-reducing bacteria. This partnership is the primary mechanism for methane removal in ocean sediments; however, there is still much to learn about how this syntrophy works. Previous studies have failed to identify the metabolic intermediate, such as hydrogen or formate, that is passed between partners. However, recent analysis of

  18. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea

    DOE PAGES

    Skennerton, Connor T.; Chourey, Karuna; Iyer, Ramsunder; ...

    2017-08-01

    The anaerobic oxidation of methane by anaerobic methanotrophic (ANME) archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria (SRB) is the primary mechanism for methane removal in ocean sediments. The mechanism of their syntrophy has been the subject of much research as traditional intermediate compounds, such as hydrogen and formate, failed to decouple the partners. Recent findings have indicated the potential for extracellular electron transfer from ANME archaea to SRB, though it is unclear how extracellular electrons are integrated into the metabolism of the SRB partner. We used metagenomics to reconstruct eight genomes from the globally distributed SEEP-SRB1 clade of ANMEmore » partner bacteria to determine what genomic features are required for syntrophy. The SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in previously described free-living SRB and also lack periplasmic hydrogenases that may prevent an independent lifestyle without an extracellular source of electrons from ANME archaea. Metaproteomics revealed the expression of these cytochromes at in situ methane seep sediments from three sites along the Pacific coast of the United States. Phylogenetic analysis showed that these cytochromes appear to have been horizontally transferred from metal-respiring members of the Deltaproteobacteria such as Geobacter and may allow these syntrophic SRB to accept extracellular electrons in place of other chemical/organic electron donors. Some archaea, known as anaerobic methanotrophs, are capable of converting methane into carbon dioxide when they are growing syntopically with sulfate-reducing bacteria. This partnership is the primary mechanism for methane removal in ocean sediments; however, there is still much to learn about how this syntrophy works. Previous studies have failed to identify the metabolic intermediate, such as hydrogen or formate, that is passed between partners. However, recent analysis of

  19. Dissolved methane in New York groundwater, 1999-2011

    USGS Publications Warehouse

    Kappel, William M.; Nystrom, Elizabeth A.

    2012-01-01

    New York State is underlain by numerous bedrock formations of Cambrian to Devonian age that produce natural gas and to a lesser extent oil. The first commercial gas well in the United States was dug in the early 1820s in Fredonia, south of Buffalo, New York, and produced methane from Devonian-age black shale. Methane naturally discharges to the land surface at some locations in New York. At Chestnut Ridge County Park in Erie County, just south of Buffalo, N.Y., several surface seeps of natural gas occur from Devonian black shale, including one behind a waterfall. Methane occurs locally in the groundwater of New York; as a result, it may be present in drinking-water wells, in the water produced from those wells, and in the associated water-supply systems (Eltschlager and others, 2001). The natural gas in low-permeability bedrock formations has not been accessible by traditional extraction techniques, which have been used to tap more permeable sandstone and carbonate bedrock reservoirs. However, newly developed techniques involving horizontal drilling and high-volume hydraulic fracturing have made it possible to extract previously inaccessible natural gas from low-permeability bedrock such as the Marcellus and Utica Shales. The use of hydraulic fracturing to release natural gas from these shale formations has raised concerns with water-well owners and water-resource managers across the Marcellus and Utica Shale region (West Virginia, Pennsylvania, New York and parts of several other adjoining States). Molofsky and others (2011) documented the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus gas-development activities, although pre-development samples were not available for comparison. In order to manage water resources in areas of gas-well drilling and hydraulic

  20. Discovery of asphalt seeps in the deep Southwest Atlantic off Brazil

    NASA Astrophysics Data System (ADS)

    Fujikura, Katsunori; Yamanaka, Toshiro; Sumida, Paulo Y. G.; Bernardino, Angelo F.; Pereira, Olivia S.; Kanehara, Toshiyuki; Nagano, Yuriko; Nakayama, Cristina R.; Nobrega, Marcos; Pellizari, Vivian H.; Shigeno, Shuichi; Yoshida, Takao; Zhang, Jing; Kitazato, Hiroshi

    2017-12-01

    The discovery and description of cold seeps with deep-sea chemosynthetic communities in the Southwest Atlantic Ocean are still incomplete, despite the large proven oil and gas reserves off the coast of Brazil. In the southeastern Brazilian continental margin, where over 71% of the country's oil and gas production takes place, there are previous geological and qualitative biological evidence of seep biota associated with pockmarks on the upper slope of the Santos Basin. In order to further study seep ecosystems on the Brazilian margin, a deep-sea investigation named Iatá-Piúna cruise was conducted using the human-occupied vehicle Shinkai 6500 off Brazil's southeast continental margin. Asphalt seeps were discovered on the seafloor of the North São Paulo Plateau from depths of 2652-2752 m, representing only the third discovery of this type of seep worldwide, following those in the Gulf of Mexico and off Angola. Video and isotopic analyses indicated a number of megabenthic animals in the asphalt seeps in the North São Paulo Plateau and revealed typical deep-sea heterotrophic and photosynthesis-based fauna occupying hard substrates provided by the asphalt seep. There was no evidence of chemosynthesis-based megabenthic fauna such as vesicomyid clams, Bathymodiolus mussels, and siboglinid tube worms, or any sediment bacterial mats, gas seepage, and carbonate rock in/around the seeps. The benthic fauna was composed mainly of sponges (ca. 15 species), such as the hexactinellids Caulophacus sp., Poliopogon amadou, Saccocalyx pedunculatus, Farrea occa and cf. Chonelasma choanoides; besides typical deep-sea isidid octocorals, brisingid starfishes and galatheid crabs. The δ13C values of poriferan sponges suggested a heterotrophic and pelagic nutrition. Geochemical analyses of asphalt revealed a heavy biodegradation of hydrocarbon molecules, supported by the depletion of light n-alkanes and other labile compounds. This advanced asphalt biodegradation is the likely reason

  1. Investigating the organic carbon cycle and the anaerobic oxidation of methane in the Guaymas Basin: a biogeochemical approach

    NASA Astrophysics Data System (ADS)

    Cathalot, C.; Decker, C.; Caprais, J.; Ruffine, L.; Le Bruchec, J.; Olu, K.

    2013-12-01

    The Guaymas Basin is a pretty unique environment located in the Gulf of California and characterized by the emanation of fluids enriched in hydrocarbon, mainly methane, and sulfides. In this peculiar environment, both cold seeps and hydrothermal vents co-exist very closely, and are separated only by a few kilometers. In addition, highly productive surface waters and strong terrestrial inputs are responsible for strong sedimentation rates in this area. This special geological system allows for the development of various and complex macrofaunal and/or bacterial assemblages, based on chemosynthetic activity. These sea-bottom communities have been previously described [1,2] and several studies have demonstrated the occurrence of Anaerobic Oxidation of Methane (AOM) in the shallow sediment layers. Nevertheless, the quantification of the biogeochemical processes (e.g. rates, relative proportions) involved in both ecosystems in relation with the associated communities, and their role in the local organic carbon (OC) cycle is still lacking. Using a diagenetic modeling approach, this study aims at studying the OC production and recycling processes by describing the biogeochemical pathways and their associated rates in the ecosystems from the Guaymas Basin. Twelve stations presenting distinct biological assemblages (microbial mats, vesicomyids and bare sediment) were selected among both cold-seeps and hydrothermal vents sites from the Guaymas basin. A transport-reaction model including respiration, sulfate reduction, methanogenesis and AOM was developed and applied to each station. To constrain the model, at each station, cores were sampled using an ROV and the pore-waters extracted using Rhizon syringes. Pore-water concentrations of CH4, SO42-, Cl- and H2S were then measured. In addition, ex situ O2 microprofiles equipped with microsensors and in situ incubations using benthic chambers were performed to estimate the sediment uptake rates (O2, H2S, CH4). The overall dataset

  2. When Organic-Rich Turbidites Reach 5000 m: "Cold-Seep Like" Life in the Congo Deep-Sea Fan

    NASA Astrophysics Data System (ADS)

    Pastor, L.; Toffin, L.; Cathalot, C.; Olu, K.; Brandily, C.; Bessette, S.; Lesongeur, F.; Godfroy, A.; Khripounoff, A.; Decker, C.; Taillefert, M.; Rabouille, C.

    2016-12-01

    The Congo canyon, located on the west coast of Africa, is a unique example of a canyon directly connected to a major river (The Congo River). Turbidites are responsible for a large input of terrestrial organic matter at depths up to 5000 m. These high inputs led to global high organic matter mineralization rates, with very localized hot spots that were visually observed and specifically sampled with a ROV. These hot spots, featuring substantial concentration of reduced compounds, mainly methane and sulfides, were recognizable in surface by the presence of reduced sediment patches, bacterial mats, and/or vesicomyid bivalves that host bacterial endosymbionts able to process H2S. In this paper we present geochemical sediment profiles of sulfate, methane, sulfide and dissolved iron together with phylogenetic diversity of 16S rRNA communities. This will give a first understanding of biogeochemical processes occurring in this peculiar ecosystem, mainly sulfate reduction, methanogenesis and subsequent anaerobic oxidation of methane with bacterial and archaeal assemblages similar to cold seeps environments. Iron also seems to play a major role in this system and iron/sulfur interactions as a sink for H2S can probably compete with H2S consumption by chemosynthetic bivalves, estimated at one site by vesicomyds gills incubations in a sulfide-rich solution.

  3. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.

    PubMed

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-05-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

  4. Geology and biology of North Pacific cold seep communities

    NASA Astrophysics Data System (ADS)

    Robison, Bruce H.; Greene, H. Gary

    Because of crushing pressure, low temperature, and stygian darkness, the floor of the deep sea is one of the most hostile habitats on Earth. Until recently it was widely believed that the base of the food chain for all deep-sea communities was plant life in the ocean's sunlit upper layer. With the discovery of hydrothermal vent and cold-seep communities, which are based on chemical rather than solar energy, those beliefs were overturned. New studies focused on the animals that inhabit cold seep regions have begun to throw light on the geological basis of chemosynthetic communities. The initial results suggest a strong relationship between geologically determined fluid flux, and the diversity and abundance of animals at the seeps.

  5. Assessing the health risks of natural CO2 seeps in Italy

    PubMed Central

    Roberts, Jennifer J.; Wood, Rachel A.; Haszeldine, R. Stuart

    2011-01-01

    Industrialized societies which continue to use fossil fuel energy sources are considering adoption of Carbon Capture and Storage (CCS) technology to meet carbon emission reduction targets. Deep geological storage of CO2 onshore faces opposition regarding potential health effects of CO2 leakage from storage sites. There is no experience of commercial scale CCS with which to verify predicted risks of engineered storage failure. Studying risk from natural CO2 seeps can guide assessment of potential health risks from leaking onshore CO2 stores. Italy and Sicily are regions of intense natural CO2 degassing from surface seeps. These seeps exhibit a variety of expressions, characteristics (e.g., temperature/flux), and location environments. Here we quantify historical fatalities from CO2 poisoning using a database of 286 natural CO2 seeps in Italy and Sicily. We find that risk of human death is strongly influenced by seep surface expression, local conditions (e.g., topography and wind speed), CO2 flux, and human behavior. Risk of accidental human death from these CO2 seeps is calculated to be 10-8 year-1 to the exposed population. This value is significantly lower than that of many socially accepted risks. Seepage from future storage sites is modeled to be less that Italian natural flux rates. With appropriate hazard management, health risks from unplanned seepage at onshore storage sites can be adequately minimized. PMID:21911398

  6. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event.

    PubMed

    Petrenko, Vasilii V; Smith, Andrew M; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F; Severinghaus, Jeffrey P

    2017-08-23

    Methane (CH 4 ) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane ( 14 CH 4 ) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  7. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event

    NASA Astrophysics Data System (ADS)

    Petrenko, Vasilii V.; Smith, Andrew M.; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F.; Severinghaus, Jeffrey P.

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (14CH4) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today’s natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  8. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Use of LANDSAT-1 data for the detection and mapping of saline seeps in Montana

    NASA Technical Reports Server (NTRS)

    May, G. A. (Principal Investigator); Petersen, G. W.

    1976-01-01

    The author has identified the following significant results. April, May, and August are the best times to detect saline seeps. Specific times within these months would be dependent upon weather, phenology, and growth conditions. Saline seeps can be efficiently and accurately mapped, within resolution capabilities, from merged May and August LANDSAT 1 data. Seeps were mapped by detecting salt crusts in the spring and indicator plants in the fall. These indicator plants were kochia, inkweed, and foxtail barley. The total hectares of the mapped saline seeps were calculated and tabulated. Saline seeps less than two hectares in size or that have linear configurations less than 200 meters in width were not mapped using the LANDSAT 1 data. Saline seep signatures developed in the Coffee Creek test site were extended to map saline seeps located outside this area.

  10. Formation of gas Hydrate and Carbonate Nodules Around Active Seeps of Thermogenic Methane at Eastern Margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Hiruta, A.; Matsumoto, R.; Ishida, Y.; Tomaru, H.; Snyder, G.; Aoyama, C.; Hiromatsu, M.

    2005-12-01

    A number of pockmarks, mounds, magnificent flares of gas plumes have been observed on a spur (Umitaka Spur) off Naoetsu in the eastern margin of Japan Sea during the cruises of UT04 (R and T/V Umitaka-maru, 2004) and NT05-09 (Natsushima, 2005). Fifteen piston cores, 5.5 m long, were deployed either on the mounds, into the pockmarks, or on a flat basin floor far from the plumes. Sediment cores are grey to olive black, silty clay. Thirteen cores among 15 are made up of an alternation of bioturbated and laminated units. Piston core PC15 successfully recovered white massive gas hydrate, ca. 2 m long, and carbonate nodules, ca.5 cm in diameter. PC05 and a grab sampler near PC15 also recovered carbonate nodules. Carbonate nodules are composed of calcite and/or aragonite. Microscopic observations have clearly demonstrated aragonite needles. δ13C are from -32.8 to -33.6 ‰ vs. PDB for calcite, from -8.2 to -23.5 ‰ for aragonite and from -11.4 to -16.6 ‰ for the mixture of both. d13C values are a bit heavier than methane of gas hydrate (-38.9 to -39.4 ‰). d18O value are from 3.0 to 3.1 permil for calcite, from 2.9 to 4.9 permil for aragonite and from 3.6 to 5.2 permil for the mixture of both. Ion concentration of the interstitial waters showed that sulfate-methane interface (SMI) range between 1.5 to 3 m. These are remarkably shallow when compared with the SMI on the Blake Ridge (5.0m to 20m, Borowski et al., 1999) and Nankai Trough (4.0m to 63m; Matsumoto and Chen, 2003). Methane flux on and around the spur are thought to be very strong. The shallowest SMI (ca.1.5m) were observed at PC03 and 04, both were located close to gas plumes. Interstitial water chemistry of PC01 decreases with depth, as 550 mM at 0 mbsf and 482 mM at 4 mbsf, whereas at PC03 illustrates an increase of chlorine concentration from 550 mM at 0 mbsf to 750 mM at 4 mbsf. Freshening of I. W at PC01 indicates existence of gas hydrate, Sh=0~12%, in sediments pore space. To the contrary, hyper

  11. Patterns of methane-related carbonate formation in the black sea

    NASA Astrophysics Data System (ADS)

    Reitner, J.; Peckmann, J.; Reimer, A.; Thiel, V.

    2003-04-01

    Methane seeps on the northwestern Black Sea shelf were investigated during the GHOSTDABS expedition in 2001. Seep areas close to the Dniepr Canyon are sites of intense carbonate formation. In anoxic waters, at depths between 200 and 400 m, we found three different modes of seepage-induced carbonate precipitation. The most spectacular type comprises up to 4 m high Ca-carbonate towers flushed by methane gas (type 1). These buildups are constructed of cm to dm-scale calcified hollow spheres which are made and later surrounded by microbial mats. At the base of these microbial mats the spheres are stabilized by a continuous rim of carbonate cement. At a later stage, the fragile spheres are entirely cemented by fibrous aragonite and Mg calcite. The towers harbour a highly diverse microbial community, which are, at least in part, based on the anaerobic oxidation of methane (AOM). A second variety of methane-derived carbonates was observed in the vicinity of the large carbonate towers and consists of lenticular concretions growing within the sediment (type 2). The concretions are up to several decimeters in size and consist of Mg calcite crystal aggregates that progressively fuse together, thereby incorporating ambient sedimentary matter. Associated biofilms surrounding the concretions clearly show AOM related populations but exhibit a different community structure and a smaller microbial diversity than type 1 carbonates. Type 3 encompasses background sediments irregularly cemented with microcrystalline Mg-calcite (automicrite). These precipitates may show very thin internal biofilms, and are further characterized by small, “birds eye”-type cavities. These cavities appear to arise from ascending gas bubbles, and are partly cemented by granular to blocky Mg calcites. The internal surfaces are frequently coated by thin biofilms resembling those found associated with type 2 concretions. All studied Ca-carbonates have low d13C values (-25 to -35 permille vs. PDB) and show

  12. Emission of Methane and Heavier Alkanes From the La Brea Tar Pits Seepage Area, Los Angeles

    NASA Astrophysics Data System (ADS)

    Etiope, G.; Doezema, L. A.; Pacheco, C.

    2017-11-01

    Natural hydrocarbon (oil and gas) seeps are widespread in Los Angeles, California, due to gas migration, along faults, from numerous subsurface petroleum fields. These seeps may represent important natural contributors of methane (CH4) and heavier alkanes (C2-C4) to the atmosphere, in addition to anthropogenic fossil fuel and biogenic sources. We measured the CH4 flux by closed-chamber method from the La Brea Tar Pits park (0.1 km2), one of the largest seepage sites in Los Angeles. The gas seepage occurs throughout the park, not only from visible oil-asphalt seeps but also diffusely from the soil, affecting grass physiology. About 500 kg CH4 d-1 is emitted from the park, especially along a belt of enhanced degassing that corresponds to the 6th Street Fault. Additional emissions are from bubble plumes in the lake within the park (order of 102-103 kg d-1) and at the intersection of Wilshire Boulevard and Curson Avenue (>130 kg d-1), along the same fault. The investigated area has the highest natural gas flux measured thus far for any onshore seepage zone in the USA. Gas migration, oil biodegradation, and secondary methanogenesis altered the molecular composition of the original gas accumulated in the Salt Lake Oil Field (>300 m deep), leading to high C1/C2+ and i-butane/n-butane ratios. These molecular alterations can be important tracers of natural seepage and should be considered in the atmospheric modeling of the relative contribution of fossil fuel (anthropogenic fugitive emission and natural geologic sources) versus biogenic sources of methane, on local and global scales.

  13. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  14. Adaptation to the deep-sea hydrothermal vents and cold seeps: Insights from the transcriptomes of Alvinocaris longirostris in both environments

    NASA Astrophysics Data System (ADS)

    Hui, Min; Cheng, Jiao; Sha, Zhongli

    2018-05-01

    Alvinocaris longirostris Kikuchi and Ohta, 1995 is one of the few species co-distributed in deep-sea hydrothermal vent and cold seep environments. We performed the transcriptome analysis for A. longirostris and identified differentially expressed genes (DEGs) between samples from the Iheya North hydrothermal vent (HV) and a methane seep in the South China Sea (MS). From the 57,801 annotated unigenes, multi-copies of enzyme family members for eliminating toxic xenobiotics were isolated and seven putatively duplicated gene clusters of cytochrome P450s were discovered, which may contribute to adaptation to the harsh conditions. Eight single amino acid substitutions of a Rhodopsin gene with low expression in two deep-sea alvinocaridid species were positively selected when compared with shallow water shrimps, which may be the result of adaptation to the dim-light environment in deep sea. 408 DEGs were identified with 53 and 355 up-regulated in HV and MS, respectively. Various genes associated with sulfur metabolism, detoxification and mitochondria were included, revealing different mechanisms of adaptation to the two types of extreme environments. All results are expected to serve as important basis for the further study.

  15. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps

    NASA Astrophysics Data System (ADS)

    Munday, Philip L.; Cheal, Alistair J.; Dixson, Danielle L.; Rummer, Jodie L.; Fabricius, Katharina E.

    2014-06-01

    Experiments have shown that the behaviour of reef fishes can be seriously affected by projected future carbon dioxide (CO2) concentrations in the ocean. However, whether fish can acclimate to elevated CO2 over the longer term, and the consequences of altered behaviour on the structure of fish communities, are unknown. We used marine CO2 seeps in Papua New Guinea as a natural laboratory to test these questions. Here we show that juvenile reef fishes at CO2 seeps exhibit behavioural abnormalities similar to those seen in laboratory experiments. Fish from CO2 seeps were attracted to predator odour, did not distinguish between odours of different habitats, and exhibited bolder behaviour than fish from control reefs. High CO2 did not, however, have any effect on metabolic rate or aerobic performance. Contrary to expectations, fish diversity and community structure differed little between CO2 seeps and nearby control reefs. Differences in abundances of some fishes could be driven by the different coral community at CO2 seeps rather than by the direct effects of high CO2. Our results suggest that recruitment of juvenile fish from outside the seeps, along with fewer predators within the seeps, is currently sufficient to offset any negative effects of high CO2 within the seeps. However, continuous exposure does not reduce the effect of high CO2 on behaviour in natural reef habitat, and this could be a serious problem for fish communities in the future when ocean acidification becomes widespread as a result of continued uptake of anthropogenic CO2 emissions.

  16. Microbial mats in the Black Sea that anaerobically oxidise methane

    NASA Astrophysics Data System (ADS)

    Nauhaus, K.; Knittel, K.; Krüger, M.; Boetius, A.; Michaelis, W.; Widdel, F.

    2003-04-01

    Reef-forming microbial mats were recovered from methane seeps in anoxic waters of the northwestern Black Sea (BS) shelf. The microbial mats consist mainly of archaea (ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). Laboratory incubations with homogenized subsamples of the mats revealed their ability for the anaerobic oxidation of methane (AOM). The phylogentic relationship of the sulfate reducing partner is the same as in the AOM consortia studied in sediment samples from a methane hydrate area (Hydrate Ridge (HR), Oregon, USA (1,2)). The archaeal partner however belongs to a different cluster than in the HR samples (ANME-2). Methane oxidation is coupled to sulfate reduction in a 1:1 stoichiometry. Elevated methane partial pressures (0.1 to 1.1 MPa) increased the sulfate reduction rates in the Black Sea samples only two-fold in contrast to 5-fold in HR samples. The optimal temperature for the BS samples is between 10 and 25^oC. In both samples AOM was not taking place if typical inhibitors for sulfate-reduction or methanogenesis were added, thus indicating a syntrophic relationship between the partner organisms. The intermediate that is exchanged between the methane oxidizing archaea and the sulfate-reducing bacterium is still unknown. Additions of the possible intermediates (Acetate, Formate, Hydrogen) did not result in higher sulfate reduction rates in the absence of methane. (1) Boetius, A. et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 407: 623--626 (2) Nauhaus, K., Boetius, A., Krüger, M., Widdel, F. (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4 (5): 296--305

  17. Improved detection and mapping of deepwater hydrocarbon seeps: optimizing multibeam echosounder seafloor backscatter acquisition and processing techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, Garrett A.; Orange, Daniel L.; Gharib, Jamshid J.; Kennedy, Paul

    2018-06-01

    Marine seep hunting surveys are a current focus of hydrocarbon exploration surveys due to recent advances in offshore geophysical surveying, geochemical sampling, and analytical technologies. Hydrocarbon seeps are ephemeral, small, discrete, and therefore difficult to sample on the deep seafloor. Multibeam echosounders are an efficient seafloor exploration tool to remotely locate and map seep features. Geophysical signatures from hydrocarbon seeps are acoustically-evident in bathymetric, seafloor backscatter, midwater backscatter datasets. Interpretation of these signatures in backscatter datasets is a fundamental component of commercial seep hunting campaigns. Degradation of backscatter datasets resulting from environmental, geometric, and system noise can interfere with the detection and delineation of seeps. We present a relative backscatter intensity normalization method and an oversampling acquisition technique that can improve the geological resolvability of hydrocarbon seeps. We use Green Canyon (GC) Block 600 in the Northern Gulf of Mexico as a seep calibration site for a Kongsberg EM302 30 kHz MBES prior to the start of the Gigante seep hunting program to analyze these techniques. At GC600, we evaluate the results of a backscatter intensity normalization, assess the effectiveness of 2X seafloor coverage in resolving seep-related features in backscatter data, and determine the off-nadir detection limits of bubble plumes using the EM302. Incorporating these techniques into seep hunting surveys can improve the detectability and sampling of seafloor seeps.

  18. Application of Satellite SAR for Discovery and Quantification of Natural Marine Oil Seeps

    NASA Astrophysics Data System (ADS)

    Amos, J.; Lai, R.; Zimmer, B.; Leiva, A.; MacDonald, I.

    2006-12-01

    Natural marine oil seeps discharge gassy drops from the seafloor. Oil drops and gas bubbles reach the surface from water depths as great as 3000m. The oil spreads rapidly, forming an invisible layer that drifts down-wind and down-current in long, linear streaks called slicks. Oil slicks are visible in SAR data because the surfactant dampens capillary waves and reduces backscatter. Application of SAR as an exploration tool in energy prospecting is well-established. We have applied this technique for discovering the chemosynthetic communities that colonize the seafloor in the vicinity of deep-water seeps on the continental margin of the Gulf of Mexico. The management goal for this effort is to prevent harmful impact to these communities resulting from exploration or production activities. The scientific goals are to delineate the zoogeography of the chemosynthetic fauna, which is widespread on continental margins, and to establish study sites where their life history can be investigated. In the course of an ongoing, multidisciplinary study in the spring and summer of 2006, we explored 20 possible sites where SAR and geophysical data indicated seeps might occur. SAR was only partly diagnostic: all sites with SAR-detected slicks were found to have biologic communities, but communities were also found at geophysical anomalies that did not produce slicks. We acquired over 60 RADARSAT SAR images from the northern Gulf of Mexico in cooperation with the Alaska Satellite Facility. The ship RV ATLANTIS was at sea during the acquisition and collected synoptic weather and oceanographic data. To automate interpretation of large image dataset we have employed texture recognition with use of a library of textons applied iteratively to the images. This treatment shows promise in distinguishing floating oil from false targets generated by rain fronts and other phenomena. One goal of the analysis is to delineate bounding boxes to quantify the ocean area covered by the thin oil layer

  19. Further Interpretation of the Relationship between Faunal Community and Seafloor Geology at Southern Hydrate Ridge, Cascadia Margin: Exploring Machine Learning

    NASA Astrophysics Data System (ADS)

    Bigham, K.; Kelley, D. S.; Marburg, A.; Delaney, J. R.

    2017-12-01

    In 2011, high-resolution, georeferenced photomoasiacs were taken of Einstein's Grotto, an active methane hydrate seep within the field at Southern Hydrate Ridge located 90 km west of Newport, Oregon at a water depth of 800 m. Methods used to analyze the relationships between the seep site, seafloor geology, and the spatial distribution and abundances of microbial and macrofaunal communities at Einstein's Grotto were expanded to three other sites over the 200 by 300 m active seep field. These seeps were documented in the same survey in 2011 conducted by the remotely operated vehicle ROPOS on board the R/V Thompson. Over 10,000 high definition images allowed for the further quantification and characterization of the diversity and structure of the faunal community at this seep field. The new results support the study's initial findings of high variability in the distribution and abundance of seep organisms across the field, with correlation to seafloor geology. The manual classification of organisms was also used to train a series of convolutional neural networks in Nvidia DIGITS and Google Tensorflow environments for automated identification. The developed networks proved highly accurate at background/non-background segmentation ( 96%) and slightly less reliable for fauna identification ( 89%). This study provides a baseline for the faunal community at the Southern Hydrate Ridge methane seeps and a more efficient computer assisted method for processing follow on studies.

  20. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea

    NASA Astrophysics Data System (ADS)

    Guan, H.; Feng, D.

    2015-12-01

    Authigenic carbonate rocks from an active seep (Site F) at 1120 m water depth of the South China Sea (SCS) were studied using mineralogical and lipid biomarker analyses. Carbonate mineral compositions, in specific samples, were predominantly aragonite, high-Mg calcite (HMC), or a mixture of both. Abundant 13C-depleted lipid biomarkers (various isoprenoids) diagnostic for archaea provide evidence that anaerobic oxidation of methane (AOM) mediated by anaerobic methane oxidizing archaea (ANME) and their bacterial partners is the major process leading to formation of the carbonates. Nearly a pure suite of AOM biomarkers was preserved in aragonitic carbonate in which predominant consortia were most likely ANME-2/Desulfosarcina & Desulfococcus (DSS) assemblages and a mixture of ANME-2/DSS and ANME-1/DSS consortia in the mixed mineral sample, the predominant consortia are in good accordance with the point that the relative higher methane seepage intensity favors the precipitation of aragonite over HMC. In contrast, the completely different biomarker patterns in HMC sample were mainly composed terrestrial organic matter and marine Thaumarchaea, which most likely originally within sediments accompanied with high organic matter input and low methane supply. This environment is known to be favored for archaea of ANME-1 and precipitation of HMC. High concentrations of 13C-depleted hopanoids, including diplopterol, hopanoic acids and hopanols were observed in the aragonite sample that may be sourced by the intermittent presence of oxic conditions in an overall anoxic condition, which was possibly induced by changing seepage intensities.

  1. Influence of seep emission on the non-symbiont-bearing fauna and vagrant species at an active giant pockmark in the Gulf of Guinea (Congo-Angola margin)

    NASA Astrophysics Data System (ADS)

    Olu, K.; Caprais, J. C.; Galéron, J.; Causse, R.; von Cosel, R.; Budzinski, H.; Ménach, K. Le; Roux, C. Le; Levaché, D.; Khripounoff, A.; Sibuet, M.

    2009-12-01

    Detailed surveying with an ROV found that a dense and diverse cold-seep community colonises a giant pockmark located at 3200 m depth, 8 km north from the deep Congo channel. Several types of assemblages, either dominated by Mytilidae and Vesicomyidae bivalves or Siboglinidae polychaetes, are distributed on the 800-m diameter active area. The site is characterised by a most active central zone in a depression with abundant carbonate concretions and high methane fluxes where high-density clusters of mussels and siboglinids dominate. In contrast, the peripheral zones display large fields of dead and live vesicomyids on soft sediment, with a lower mean density and lower methane concentration in seawater. The associated megafauna includes Alvinocarididae shrimps, echinoids, holothurians of the family Synaptidae, several species of gastropods, two species of galatheids, and Zoarcidae and Ophidiidae fishes. Multivariate analyses of video transect data show that the distribution of these major megafauna species at the pockmark scale is influenced by the habitat heterogeneity due to fluid or gas emission, occurrence of hydrates, substratum variability and by the presence of large symbiont-bearing species. Several assemblages dominated either by mytilids, vesicomyids, or siboglinids have been sampled for megafauna densities and biomass estimations and stable isotope measurements ( δ13C and δ15N) of dominant species and food sources. The highest estimates of megafauna densities have been obtained in mytilid beds. According to their stable isotopes values, non-symbiont-bearing species mainly rely on chemosynthesis-originated carbon, either as primary consumers of chemoautotrophic microorganisms, or at higher trophic level recycling organic matter, or relying on bivalve and tubeworm production. Most of them likely feed on different sources like shrimps, but differences according to habitat have been evidenced. Carbon and nitrogen isotope ratios of galatheids and benthic or

  2. The Paleoecology, Habitats, and Stratigraphic Range of the Enigmatic Cretaceous Brachiopod Peregrinella

    PubMed Central

    Kiel, Steffen; Glodny, Johannes; Birgel, Daniel; Bulot, Luc G.; Campbell, Kathleen A.; Gaillard, Christian; Graziano, Roberto; Kaim, Andrzej; Lazăr, Iuliana; Sandy, Michael R.; Peckmann, Jörn

    2014-01-01

    Modern and Cenozoic deep-sea hydrothermal-vent and methane-seep communities are dominated by large tubeworms, bivalves and gastropods. In contrast, many Early Cretaceous seep communities were dominated by the largest Mesozoic rhynchonellid brachiopod, the dimerelloid Peregrinella, the paleoecologic and evolutionary traits of which are still poorly understood. We investigated the nature of Peregrinella based on 11 occurrences world wide and a literature survey. All in situ occurrences of Peregrinella were confirmed as methane-seep deposits, supporting the view that Peregrinella lived exclusively at methane seeps. Strontium isotope stratigraphy indicates that Peregrinella originated in the late Berriasian and disappeared after the early Hauterivian, giving it a geologic range of ca. 9.0 (+1.45/–0.85) million years. This range is similar to that of rhynchonellid brachiopod genera in general, and in this respect Peregrinella differs from seep-inhabiting mollusks, which have, on average, longer geologic ranges than marine mollusks in general. Furthermore, we found that (1) Peregrinella grew to larger sizes at passive continental margins than at active margins; (2) it grew to larger sizes at sites with diffusive seepage than at sites with advective fluid flow; (3) despite its commonly huge numerical abundance, its presence had no discernible impact on the diversity of other taxa at seep sites, including infaunal chemosymbiotic bivalves; and (4) neither its appearance nor its extinction coincides with those of other seep-restricted taxa or with global extinction events during the late Mesozoic. A preference of Peregrinella for diffusive seepage is inferred from the larger average sizes of Peregrinella at sites with more microcrystalline carbonate (micrite) and less seep cements. Because other seep-inhabiting brachiopods occur at sites where such cements are very abundant, we speculate that the various vent- and seep-inhabiting dimerelloid brachiopods since Devonian time

  3. Sulfur isotope and porewater geochemistry of Florida escarpment seep sediments

    USGS Publications Warehouse

    Chanton, J.P.; Martens, C.S.; Paull, C.K.; Coston, J.A.

    1993-01-01

    Distributions of porewater constituents, SO4=, NH4+, Cl-, ???CO2, and H2S, solid phase iron, and sulfur concentrations, and the sulfur isotopic composition of dissolved and solid phases were investigated in sediments from abyssal seeps at the base of the Florida escarpment. Despite the apparent similarity of seep sediment porewater chemistry to that of typical marine sediments undergoing early diagenesis, relationships between chemical distributions and isotopic measurements revealed that the distribution of pore fluid constituents was dominated by processes occurring within the platform rather than by in situ microbial processes. Ammonium and sulfate concentrations were linearly correlated with chloride concentrations, indicating that variations in porewater chemistry were controlled by the admixture of seawater and a sulfate depleted brine with a chlorinity of 27.5 ?? 1.9%. and 2.2 ?? 1.3 mM ammonium concentration. At sites dominated by seepage, dissolved sulfate isotopic composition remained near seawater values despite depletion in porewater concentrations. Porewater ???CO2 concentrations were found to be elevated relative to seawater, but not to the extent predicted from the observed sulfate depletion. Sediment solid phase sulfur was predominantly pyrite, at concentrations as high as 20% S by weight. In contrast to typical marine deposits, pyrite concentrations were not related to the quantity of sedimentary organic matter. Pyrite ??34S values ranged from -29%. to + 21%. (CDT). However, only positive ??34S values were observed at sites associated with high pyrite concentrations. Isotopically heavy pyrite was observed at sites with porewater sulfate of seawater-like isotopic composition. Isotopically light pyrite was associated with sites where porewater sulfate exhibited ??34S values greater than those in seawater, indicating the activity of in situ microbial sulfate reduction. Thus, dual sulfide sources are suggested to explain the range in sediment pyrite

  4. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-21

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  5. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    PubMed Central

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  6. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  7. Hydrologic investigation and remediation of a post-remining acidic seep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljoe, W.W.; Linberg, N.A.

    1996-12-31

    Surface remining of coal pillars in abandoned underground workings in the Pittsburgh seam in southwestern Pennsylvania has often resulted in post-remining discharges whose water quality is the same or better than the pre-existing discharges. However, at one such operation in Washington County, PA, an increase in contaminant loading occurred at an outcrop seep after remining. This problem was believed to be at least partly related to a small unstrapped area of the old deep mine workings immediately upgradient from the seep. A hydrologic investigation that included a chemical tracer test, slug tests in the remined spoil, and water quality monitoringmore » indicated that the mine pool in the old workings discharged through the seep. However, the water in the mine pool and much of the remined spoil was consistently alkaline; this suggested that the acidic water may have originated in other areas of the spoil and old workings, and passed rapidly to the seep through a highly transmissive portion of the spoil. Acting on this assumption, the mine operator successfully implemented a remediation scheme in which the spoil was excavated to intercept the acidic spoil water. The excavation was then re-emplaced with an anoxic limestone drain at its base. The drain now serves both to add alkalinity to the water and to divert the seep to an area where metals can be removed easily via precipitation in wetlands.« less

  8. Biogeography and Potential Exchanges Among the Atlantic Equatorial Belt Cold-Seep Faunas

    PubMed Central

    Olu, Karine; Cordes, Erik E.; Fisher, Charles R.; Brooks, James M.; Sibuet, Myriam; Desbruyères, Daniel

    2010-01-01

    Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000m, with the middle slope sites either grouped with those deeper than 2000m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as “stepping stones” for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further

  9. From the Belly of the Beast: Biogeochemistry and geomicrobiology of a fluid seep at Chimaera [Yanartas], Turkey

    NASA Astrophysics Data System (ADS)

    Woycheese, K. M.; Yargicoglu, E. N.; Cardace, D.; Meyer-Dombard, D. R.

    2012-12-01

    Serpentinization is proposed to support chemolithotrophic growth of microorganisms in surface and subsurface environments1. Abiotic CH4 production associated with terrestrial ophiolitic outcrops has been reported in southeastern Turkey2. The Yanartas (Chimaera) seep, located within the Tekirova ophiolite in Çirali, Antalya, Turkey, is one of the largest onshore CH4 seeps documented2-5. The seep consists of dozens of flames erupting from fractures within the ophiolite outcrop that burn continuously on CH4 (80-90% of gas composition2) produced by subsurface serpentinization reactions. Previous studies have focused on gas geochemistry from these seeps2, 4, 5. While past reports have not found active fluid seeps at Yanartas2, in February 2012, a fluid seep (possibly ephemeral) originating from a fracture was identified, which supported microbial mats over an outflow channel several m in length. This is the first investigation of the biogeochemical and geomicrobiological properties of this newly-discovered fluid seep. The fluid seep emits from a fracture that is actively burning, and travels down slope along the ophiolite outcrop for ~10 m. Sediment temperatures under the vent source were 50-60°C, while fluid emitting from the fracture was 18.5°C. The pH of the fluid at the vent source was 11.9, indicative of subterranean serpentinization. Approximately 7.3 m downstream, the pH dropped to 9.4, potentially due to meteoric water mixing. Fluid samples were collected along the outflow channel for major ion analysis, trace element analysis, dissolved inorganic carbon (DIC), and dissolved organic carbon (DOC). Biofilm and biomineralized microbial mats were collected for bulk C and N composition, 13C and 15N isotopes, and microscopy. Weight % total C (CT) in solids generally increases with distance from the source, while weight % organic C (Corg) decreases, reflective of a higher degree of carbonate biomineralization downstream. δ13C of solids indicates a general trend of

  10. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    PubMed

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Transport processes in intertidal sand flats

    NASA Astrophysics Data System (ADS)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  12. Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas.

    PubMed

    Marlow, Jeffrey J; Kumar, Amit; Enalls, Brandon C; Reynard, Linda M; Tuross, Noreen; Stephanopoulos, Gregory; Girguis, Peter

    2018-06-01

    Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy-rich, yet the most efficient methane-activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by-products at a comparable rate and in near-stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost-effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep-sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep-sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full-scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane-oxidizing, sulfide-generating mesocosm incubations. Metabolic activity required >∼40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane-dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth-based communities were substantially streamlined and were

  13. Using Multi-Disciplinary Data to Compile a Hydrocarbon Budget for GC600, a Natural Seep in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Johansen, C.; Marty, E.; Natter, M.; Silva, M.; Hill, J. C.; Viso, R. F.; Lobodin, V.; Diercks, A. R.; Woolsey, M.; Macelloni, L.; Shedd, W. W.; Joye, S. B.; Abrams, M.

    2016-12-01

    Fluid exchange between the deep subsurface and the overlying ocean and atmosphere occurs at hydrocarbon seeps along continental margins. Seeps are key features that alter the seafloor morphology and geochemically affect the sediments that support chemosynthetic communities. However, the dynamics and discharge rates of hydrocarbons at cold seeps remain largely unconstrained. Here we merge complementary geochemical (oil fingerprinting), geophysical (seismic, subbottom, backscatter, multibeam) and video/imaging (Video Time Lapse Camera, DSV ALVIN video) data sets to constrain pathways and magnitudes of hydrocarbon fluxes from the source rock to the seafloor at a well-studied, prolific seep site in the Northern Gulf of Mexico (GC600). Oil fingerprinting showed compositional similarities for samples from the following collections: the reservoir, an active vent, and the sea-surface. This was consistent with reservoir structures and pathways identified in seismic data. Video data, which showed the spatial distribution of seep indicators such as bacteria mats, or hydrate outcrops at the sediment interface, were combined with known hydrocarbon fluxes from the literature and used to quantify the total hydrocarbon fluxes in the seep domain. Using a systems approach, we combined data sets and published values at various scales and resolutions to compile a preliminary hydrocarbon budget for the GC600 seep site. Total estimated in-flow of hydrocarbons was 2.07 x 109 mol/yr. The combined total of out-flow and sequestration amounted to 7.56 x 106 mol/yr leaving a potential excess (in-flow - out-flow) of 2.06 x 109 mol/yr. Thus quantification of the potential out-flow from the seep domains based on observable processes does not equilibrate with the theoretical inputs from the reservoir. Processes that might balance this budget include accumulation of gas hydrate and sediment free-gas, as well as greater efficiency of biological sinks.

  14. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III - Sulfate- and methane- based microbial processes

    NASA Astrophysics Data System (ADS)

    Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.

    2017-08-01

    Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.

  15. Hydrocarbon Seeps Formations: a Study Using 3-D Seismic Attributes in Combination with Satellite Data

    NASA Astrophysics Data System (ADS)

    Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.

    2011-12-01

    Analyzing the magnitude of oil discharges from natural hydrocarbon seeps is important in improving our understanding of carbon contribution as oil migrates from deeper sediments to the water column, and then eventually to the atmosphere. Liquid hydrocarbon seepage in the deep water of the Gulf of Mexico (GOM) is associated with deep cutting faults, associated with vertical salt movement, that provide conduits for the upward migration of oil and gas. Seeps transform surface geology and generate prominent geophysical targets that can be identified on 3-D seismic data as seafloor amplitude anomalies maps that correlate with the underlying deep fault systems. Using 3D seismic data, detailed mapping of the northern GOM has identified more than 21,000 geophysical anomalies across the basin. In addition to seismic data, Synthetic Aperture Radar (SAR) images have proven to be a reliable tool for localizing natural seepage of oil. We used a Texture Classifier Neural Network Algorithm (TCNNA) to process more than 1200 SAR images collected over the GOM. We quantified more than 900 individual seep formations distributed along the continental shelf and in deep water. Comparison of the geophysical anomalies with the SAR oil slick targets shows good general agreement between the distributions of the two indicators. However, there are far fewer active oil slicks than geophysical anomalies, most of which are probably associated with gas seepage. By examining several sites where the location of active venting can be determined by submersibles observations, we found that the active oily vents are often spatially offset from the most intense geophysical targets (i.e. GC600, GC767, GC204, etc). In addition to the displacement of the oil by deep sea currents, we propose that during the 100K years of activity, the location of the vents on the seafloor probably migrate as carbonate cementation reduces the permeability of the upper sediment. Many of the geophysical targets may represent

  16. Quantifying Methane Emissions from the Arctic Ocean Seabed to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Platt, Stephen; Pisso, Ignacio; Schmidbauer, Norbert; Hermansen, Ove; Silyakova, Anna; Ferré, Benedicte; Vadakkepuliyambatta, Sunil; Myhre, Gunnar; Mienert, Jürgen; Stohl, Andreas; Myhre, Cathrine Lund

    2016-04-01

    Large quantities of methane are stored under the seafloor in the shallow waters of the Arctic Ocean. Some of this is in the form of hydrates which may be vulnerable to deomposition due to surface warming. The Methane Emissions from Arctic Ocean to Atmosphere MOCA, (http://moca.nilu.no/) project was established in collaboration with the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE, https://cage.uit.no/). In summer 2014, and summer and autumn 2015 we deployed oceanographic CTD (Conductivity, Temperature, Depth) stations and performed state-of-the-art atmospheric measurements of CH4, CO2, CO, and other meteorological parameters aboard the research vessel Helmer Hanssen west of Prins Karl's Forland, Svalbard. Air samples were collected for isotopic analysis (13C, 2H) and quantification of other hydrocarbons (ethane, propane, etc.). Atmospheric measurements are also available from the nearby Zeppelin Observatory at a mountain close to Ny-Ålesund, Svalbard. We will present data from these measurements that show an upper constraint of the methane flux in measurement area in 2014 too low to influence the annual CH4 budget. This is further supported by top-down constraints (maximum release consistent with observations at the Helmer Hansen and Zeppelin Observatory) determined using FLEXPART foot print sensitivities and the OsloCTM3 model. The low flux estimates despite the presence of active seeps in the area (numerous gas flares were observed using echo sounding) were apparently due to the presence of a stable ocean pycnocline at ~50 m.

  17. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [Cu IIOH] + species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [Cu IIOH] + active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu] 2+ and Cu 3O 3 motifs.« less

  18. Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event

    NASA Astrophysics Data System (ADS)

    Lyons, W. Berry; Welch, Kathleen A.; Carey, Anne E.; Doran, Peter T.; Wall, Diana H.; Virginia, Ross A.; Fountain, Andrew G.; Csathó, Bea M.; Tremper, Catherine M.

    The 2001/02 austral summer was the warmest summer on record in Taylor Valley, Antarctica, (˜78° S) since continuous records of temperature began in 1985. The highest stream-flows ever recorded in the Onyx River, Wright Valley, were also recorded that year (the record goes back to the 1969/70 austral summer). In early January 2002, a groundwater seep was observed flowing in the southwest portion of Taylor Valley. This flow has been named 'Wormherder Creek' (WHC) and represents an unusual event, probably occurring on a decadal time-scale. The physical characteristics of this feature suggest that it may have flowed at other times in the past. Other groundwater seeps, emanating from the north-facing slope of Taylor Valley, were also observed. Little work has been done previously on these very ephemeral seeps, and the source of water is unknown. These features, resembling recently described features on Mars, represent the melting of subsurface ice. The Martian features have been interpreted as groundwater seeps. In this paper we compare the chemistry of the WHC groundwater seep to that of the surrounding streams that flow every austral summer. The total dissolved solids content of WHC was ˜6 times greater than that of some nearby streams. The Na : Cl and SO4 : Cl ratios of the seep waters are higher than those of the streams, but the Mg : Cl and HCO3 : Cl ratios are lower, indicating different sources of solutes to the seeps compared to the streams. The enrichment of Na and SO4 relative to Cl may suggest significant dissolution of mirabilite within the previously unwetted soil. The proposed occurrence of abundant mirabilite in higher-elevation soils of the dry valley region agrees with geochemical models developed, but not tested, in the late 1970s. The geochemical data demonstrate that these seeps could be important in 'rinsing' the soils by dissolving and redistributing the long-term accumulation of salts, and perhaps improving habitat suitability for soil biota

  19. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    USGS Publications Warehouse

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  20. Stable isotope trophic patterns in echinoderm megafauna in close proximity to and remote from Gulf of Mexico lower slope hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Carney, Robert Spencer

    2010-11-01

    Hydrocarbon-seep communities in the Gulf of Mexico have a high biomass that is exploited as a food source to varying degrees by the photosynthesis-dependent fauna inhabiting the surrounding mud bottom. A decline concurrent with ocean depth in detritus influx to that background habitat results in a much lower background biomass. The biomass contrast between population-rich seeps and depauperate mud bottom leads to the prediction that seep utilization by the background fauna should be extensive at all depths and should increase with depth. Species depth zonation makes like-species comparisons over the full depth of the Gulf of Mexico impossible. Seeps and normal bottom above 1000 m have different fauna from those below 1000 m. Lower slope seeps are surrounded by a fauna rich in echinoderm species, especially asteroids, ophiuroids, and holothuroids. All three taxa have species that are abundant within seeps and are probably endemic to them. They also contain species found only in mud background or within mud and seeps backgrounds. Tissue analyses of δ13C and δ15N of echinoderms collected by ROV within seeps and trawling away from seeps indicate a pattern of utilization similar to that found in upper slope seeps exploited by different taxa. Seastar and ophiuroid species abundant in or endemic to seeps have tissue isotope values reflecting seep chemosynthetic input via a free-living microbial detritus or predation. A single seep-endemic deposit-feeding holothuroid showed distinct seep tissue values. Background deposit-feeding holothuroids collected within seeps showed either no or only minor incorporation of seep carbon, indicating either a lack of access to seep detritus or short feeding times within the seep. A predicted extensive utilization of seep productivity at the deeper seeps was not found. Seeps may be relatively closed systems that require special adaptations of species in order for them to enter, exploit, and survive. Alternately, the surrounding deep

  1. Estimation of methane concentrations and loads in groundwater discharge to Sugar Run, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.

    2014-01-01

    A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load

  2. Detection of Natural Oil Seeps in the Atlantic Ocean Using MODIS

    NASA Technical Reports Server (NTRS)

    Reahard, Ross; Jones, Jason B.; Mitchell, Mark

    2010-01-01

    Natural oil seepage is the release of crude oil into the ocean from fissures in the seabed. Oil seepage is a major contributor to the total amount of oil entering the world s oceans. According to a 2003 study by the National Academy of Sciences (NAS), 47 percent of oil entering the world s oceans is from natural seeps, and 53 percent is from human sources (extraction, transportation, and consumption). Oil seeps cause smooth oil slicks to form on the water s surface. Oil seeps can indicate the location of stores of fossil fuel beneath the ocean floor. Knowledge of the effect of oil seepage on marine life and marine ecosystems remains limited. In the past, remote sensing has been used to detect oil seeps in the Gulf of Mexico and off of the coast of southern California. This project utilized sun glint MODIS imagery to locate oil slicks off of the Atlantic coast, an area that had not previously been surveyed for natural oil seeps using remote sensing. Since 1982, the Atlantic Ocean has been closed to any oil and gas drilling. Recently, however, the U.S. Minerals Management Services (MMS) has proposed a lease for oil and gas drilling off the coasts of Virginia and North Carolina. Determining the location of seepage sites in the Atlantic Ocean will help MMS locate potential deposits of oil and natural gas, thereby reducing the risk of leasing areas for petroleum extraction that do not contain these natural resources.

  3. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.

    2016-12-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ˜ 2 kg/h to 5 kg/h through ˜ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, natural seeps and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. We will summarize the campaign results and provide an overview of how airborne remote sensing can be used to detect and infer methane fluxes over widespread geographic areas and how new instrumentation could be used to perform similar observations from space.

  4. Activities That Reduce Global Anthropogenic Methane Emissions Grant - Closed Announcement FY 2012

    EPA Pesticide Factsheets

    Grant to fund eligible projects for activities that advance near-term, cost-effective methane abatement or recovery and use as a clean energy source, and support the goals of of theGlobal Methane Initiative.

  5. Seep and stream nitrogen dynamics in two adjacent mixed land use watersheds

    USDA-ARS?s Scientific Manuscript database

    In many headwater catchments, streamflow originates from surface seeps and springs. The objective of this study was to determine the influence of seeps on nitrogen (N) dynamics within the stream and at the outlet of two adjacent mixed land use watersheds. Nitrogen concentrations in stream water were...

  6. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners revealed by integrated multimodal analytical microscopy.

    PubMed

    McGlynn, Shawn E; Chadwick, Grayson L; O'Neill, Ariel; Mackey, Mason; Thor, Andrea; Deerinck, Thomas J; Ellisman, Mark H; Orphan, Victoria J

    2018-04-06

    Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multi-celled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches including correlative f luorescence i n s itu h ybridization - e lectron m icroscopy (FISH-EM), t ransmission e lectron m icroscopy (TEM), and s erial b lock face scanning e lectron m icroscopy 3D reconstructions (SBEM). FISH-EM of methane seep derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortia types revealed cellular volumes of ANME and their symbiotic partners which were larger than previous estimates based on light microscopy. Phosphorous granule containing ANME (tentatively ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell and the volume of the cell was larger in proportion to the number of granules inside it, but the percent of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their capability of performing anaerobic methane oxidation. Importance Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known as to the distinguishing characteristics of these groups. Here we applied imaging approaches to better understand the

  7. Binding of methane to activated mineral surfaces - a methane sink on Mars?

    NASA Astrophysics Data System (ADS)

    Nørnberg, P.; Knak Jensen, S. J.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, Ebbe; Iversen, J. J.; Kondrup, J. C.

    2015-10-01

    Tumbling experiments that simulate the wind erosion of quartz grains in an atmosphere of 13 C-enriched methane are reported. The eroded grains are analyzed by 13C and 29 Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250oC. These findings offer a model for a methane sink that might explain the fast disappearance of methane on Mars.

  8. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Roberts, Harry H.

    2011-09-01

    Although less common than the occurrence of authigenic carbonate, barite has been observed frequently at cold seeps on continental margins worldwide. It is understood that barite forms by the interaction of barium-rich and sulfate-free seeping fluids with dissolved sulfate of pore water near the seafloor, but questions remain about the geochemical processes and mode(s) of the barite formation. Here, we report geochemical characteristics of barite deposits at 11 cold seep locations from the northern Gulf of Mexico continental slope. Samples from these sites of fluid and gas expulsion provide environmental information on barite formation. Seafloor observations and samples acquired indicate that barites occur as chimneys, cones, crusts, irregular mound-like buildups up to 2-meters high, and as a material disseminated in host sediment. Most barite samples are white-to-gray and usually have a porous fabric and layered internal structure. Mineralogically, samples of barite may contain a significant amounts of carbonate minerals, such as calcite and dolomite, but aragonite is absent in all samples analyzed in this study. Negative δ 13C values (as low as - 46.4‰ V-PDB) of the associated carbonates strongly suggests that methane is the primary carbon source. The δ 34S and δ 18O values of the barites have large variations, ranging from 18‰ to 80.4‰ V-CDT, and 7.5‰ to 26.7‰ V-SMOW, respectively. On δ 34S versus δ 18O plots, many barite deposits show a linear trend that projects down toward the isotopic composition of seawater sulfate. The trend suggests that barite formed from seawater sulfate that has been isotopically modified to varying degrees by biological sulfate reduction. The δ 34S/δ 18O ratios vary between 2.4 and 4.1. The variations are interpreted to reflect local controls on the flux of barium-rich seep fluids, changes in the rate of bacterial sulfate reduction, and/or the openness of pore fluid system. The 87Sr/ 86Sr values of the barites

  9. Seep and stream nitrogen dynamics in two adjacent mixed land use watersheds

    USDA-ARS?s Scientific Manuscript database

    In many headwater catchments, stream flow originates from surface seeps and springs. The objective of this study was to determine the influence of seeps on nitrogen (N) dynamics within the stream and at the outlet of two adjacent mixed land use watersheds. Nitrogen concentrations in stream water wer...

  10. Bivalve shell horizons in seafloor pockmarks of the last glacial-interglacial transition: a thousand years of methane emissions in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ambrose, William G.; Panieri, Giuliana; Schneider, Andrea; Plaza-Faverola, Andreia; Carroll, Michael L.; Åström, Emmelie K. L.; Locke, William L.; Carroll, JoLynn

    2015-12-01

    We studied discrete bivalve shell horizons in two gravity cores from seafloor pockmarks on the Vestnesa Ridge (˜1200 m water depth) and western Svalbard (79°00' N, 06°55' W) to provide insight into the temporal and spatial dynamics of seabed methane seeps. The shell beds, dominated by two genera of the family Vesicomyidae: Phreagena s.l. and Isorropodon sp., were 20-30 cm thick and centered at 250-400 cm deep in the cores. The carbon isotope composition of inorganic (δ13C from -13.02‰ to +2.36‰) and organic (δ13C from -29.28‰ to -21.33‰) shell material and a two-end member mixing model indicate that these taxa derived between 8% and 43% of their nutrition from chemosynthetic bacteria. In addition, negative δ13C values for planktonic foraminifera (-6.7‰ to -3.1‰), concretions identified as methane-derived authigenic carbonates, and pyrite-encrusted fossil worm tubes at the shell horizons indicate a sustained paleo-methane seep environment. Combining sedimentation rates with 14C ages for bivalve material from the shell horizons, we estimate the horizons persisted for about 1000 years between approximately 17,707 and 16,680 years B.P. (corrected). The seepage event over a 1000 year time interval was most likely associated with regional stress-related faulting and the subsequent release of overpressurized fluids.

  11. Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes

    PubMed Central

    Yanagawa, Katsunori; Morono, Yuki; de Beer, Dirk; Haeckel, Matthias; Sunamura, Michinari; Futagami, Taiki; Hoshino, Tatsuhiko; Terada, Takeshi; Nakamura, Ko-ichi; Urabe, Tetsuro; Rehder, Gregor; Boetius, Antje; Inagaki, Fumio

    2013-01-01

    Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and p

  12. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    PubMed

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  13. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    PubMed Central

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244

  14. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  15. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Jessica L.; Mangarella, Michael C.; D’Amico, Andrew D.

    In this paper, the Pechini synthesis was used to prepare nickel aluminate catalysts with the compositions NiAl 4O 7, NiAl 2O 4, and Ni 2Al 2O 5. The samples have been characterized by N 2 physisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Characterization results indicate unique structural properties and excellent regeneration potential of nickel aluminates. Prepared samples were tested when unreduced and reduced prior to reaction for methane dry reforming and methane steam reforming reactivity. NiAl 2O 4 in the reduced and unreduced statemore » as well as NiAl 4O 7 in the reduced state are active and stable for methane dry reforming due to the presence of 4-fold coordinated oxidized nickel. The limited amount of metallic nickel in these samples minimizes carbon deposition. Finally, on the other hand, the presence of metallic nickel is required for methane steam reforming. Ni 2Al 2O 5 in the reduced and unreduced states and NiAl 2O 4 in the reduced state are found to be active for methane steam reforming due to the presence of sufficiently small nickel nanoparticles that catalyze the reaction without accumulating carbonaceous deposits.« less

  16. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts

    DOE PAGES

    Rogers, Jessica L.; Mangarella, Michael C.; D’Amico, Andrew D.; ...

    2016-07-20

    In this paper, the Pechini synthesis was used to prepare nickel aluminate catalysts with the compositions NiAl 4O 7, NiAl 2O 4, and Ni 2Al 2O 5. The samples have been characterized by N 2 physisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Characterization results indicate unique structural properties and excellent regeneration potential of nickel aluminates. Prepared samples were tested when unreduced and reduced prior to reaction for methane dry reforming and methane steam reforming reactivity. NiAl 2O 4 in the reduced and unreduced statemore » as well as NiAl 4O 7 in the reduced state are active and stable for methane dry reforming due to the presence of 4-fold coordinated oxidized nickel. The limited amount of metallic nickel in these samples minimizes carbon deposition. Finally, on the other hand, the presence of metallic nickel is required for methane steam reforming. Ni 2Al 2O 5 in the reduced and unreduced states and NiAl 2O 4 in the reduced state are found to be active for methane steam reforming due to the presence of sufficiently small nickel nanoparticles that catalyze the reaction without accumulating carbonaceous deposits.« less

  17. US Atlantic Margin Methane Plumes Identified From Water Column Backscatter Data Acquired by NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    Kodis, M.; Skarke, A. D.; Ruppel, C. D.; Weber, T.; Lobecker, E.; Malik, M.

    2013-12-01

    The NOAA Office of Ocean Exploration and Research routinely uses NOAA Ship Okeanos Explorer to collect EM302 (30 kHz) multibeam bathymetric data and water column backscatter imagery. These backscatter data have been used to identify gas plumes associated with seafloor methane seeps as part of previous investigations in the Gulf of Mexico and at Blake Ridge. Here, we use QPS Fledermaus Midwater software to analyze over 200,000 km2 of multibeam data acquired on the continental slope and outer shelf of the US Atlantic margin in 2011, 2012, and 2013. Preliminary application of this analytical methodology in late 2012 revealed the first deepwater (> 1000 m water depth) cold seeps found on the US Atlantic margin north of Cape Hatteras as well as 47 new upper slope seeps (http://www.noaanews.noaa.gov/stories2012/20121219_gas_seeps.html). In this new analysis, we identify over 500 water column backscatter anomalies (WCA) originating at the seafloor and extending to various heights in the water column between Cape Hatteras and the Nantucket margin. Data set quality control was achieved through secondary independent analysis of all WCA backscatter records by a highly experienced researcher who assigned a quality factor to each anomaly. Additionally, a subset of the data was analyzed using a Matlab code designed to automatically detect WCA in backscatter data. These quality-control and WCA comparison procedures provide confidence that several hundred of the WCA are robust picks. The observed WCA are structurally consistent with previously confirmed gas bubble plumes, being vertically elongate, rooted at the seafloor, and deflected by currents. They are not structurally consistent with other common WCA such as schooling or swarming organisms. Additionally, the bases of selected WCA that were identified in this analysis have recently been visually and acoustically confirmed to be associated with emission of gas bubbles from the seafloor by the NOAA remotely operated vehicle

  18. Bimetallo-radical carbon-hydrogen bond activation of methanol and methane.

    PubMed

    Cui, Weihong; Zhang, X Peter; Wayland, Bradford B

    2003-04-30

    Carbon-hydrogen bond cleavage reactions of CH3OH and CH4 by a dirhodium(II) diporphyrin complex with a m-xylyl tether (.Rh(m-xylyl)Rh.(1)) are reported. Kinetic-mechanistic studies show that the substrate reactions are bimolecular and occur through the use of two Rh(II) centers in the molecular unit of 1. Second-order rate constants (T = 296 K) for the reactions of 1 with methanol (k(CH3OH) = 1.45 x 10-2 M-1 s-1) and methane (k(CH4) = 0.105 M-1 s-1) show a clear kinetic preference for the methane activation process. The methanol and methane reactions with 1 have large kinetic isotope effects (k(CH3OH)/k(CD3OD) = 9.7 +/- 0.8, k(CH4)/k(CD4) = 10.8 +/- 1.0, T = 296 K), consistent with a rate-limiting step of C-H bond homolysis through a linear transition state. Activation parameters for reaction of 1 with methanol (DeltaH = 15.6 +/- 1.0 kcal mol-1; DeltaS = -14 +/- 5 cal K-1 mol-1) and methane (DeltaH = 9.8 +/- 0.5 kcal mol-1; DeltaS = -30 +/- 3 cal K-1 mol-1) are reported.

  19. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.

    PubMed

    Kennedy, Martin; Mrofka, David; von der Borch, Chris

    2008-05-29

    The start of the Ediacaran period is defined by one of the most severe climate change events recorded in Earth history--the recovery from the Marinoan 'snowball' ice age, approximately 635 Myr ago (ref. 1). Marinoan glacial-marine deposits occur at equatorial palaeolatitudes, and are sharply overlain by a thin interval of carbonate that preserves marine carbon and sulphur isotopic excursions of about -5 and +15 parts per thousand, respectively; these deposits are thought to record widespread oceanic carbonate precipitation during postglacial sea level rise. This abrupt transition records a climate system in profound disequilibrium and contrasts sharply with the cyclical stratigraphic signal imparted by the balanced feedbacks modulating Phanerozoic deglaciation. Hypotheses accounting for the abruptness of deglaciation include ice albedo feedback, deep-ocean out-gassing during post-glacial oceanic overturn or methane hydrate destabilization. Here we report the broadest range of oxygen isotope values yet measured in marine sediments (-25 per thousand to +12 per thousand) in methane seeps in Marinoan deglacial sediments underlying the cap carbonate. This range of values is likely to be the result of mixing between ice-sheet-derived meteoric waters and clathrate-derived fluids during the flushing and destabilization of a clathrate field by glacial meltwater. The equatorial palaeolatitude implies a highly volatile shelf permafrost pool that is an order of magnitude larger than that of the present day. A pool of this size could have provided a massive biogeochemical feedback capable of triggering deglaciation and accounting for the global postglacial marine carbon and sulphur isotopic excursions, abrupt unidirectional warming, cap carbonate deposition, and a marine oxygen crisis. Our findings suggest that methane released from low-latitude permafrost clathrates therefore acted as a trigger and/or strong positive feedback for deglaciation and warming. Methane hydrate

  20. Quantifying sources of methane and light alkanes in the Los Angeles Basin, California

    NASA Astrophysics Data System (ADS)

    Peischl, Jeff; Ryerson, Thomas; Atlas, Elliot; Blake, Donald; Brioude, Jerome; Daube, Bruce; de Gouw, Joost; Frost, Gregory; Gentner, Drew; Gilman, Jessica; Goldstein, Allen; Harley, Robert; Holloway, John; Kuster, William; Santoni, Gregory; Trainer, Michael; Wofsy, Steven; Parrish, David

    2013-04-01

    We use ambient measurements to apportion the relative contributions of different source sectors to the methane (CH4) emissions budget of a U.S. megacity. This approach uses ambient measurements of methane and C2-C5 alkanes (ethane through pentanes) and includes source composition information to distinguish between methane emitted from landfills and feedlots, wastewater treatment plants, tailpipe emissions, leaks of dry natural gas in pipelines and/or local seeps, and leaks of locally produced (unprocessed) natural gas. Source composition information can be taken from existing tabulations or developed by direct sampling of emissions using a mobile platform. By including C2-C5 alkane information, a linear combination of these source signatures can be found to match the observed atmospheric enhancement ratios to determine relative emissions strengths. We apply this technique to apportion CH4 emissions in Los Angeles, CA (L.A.) using data from the CalNex field project in 2010. Our analysis of L.A. atmospheric data shows the two largest CH4 sources in the city are emissions of gas from pipelines and/or from geologic seeps (47%), and emissions from landfills (40%). Local oil and gas production is a relatively minor source of CH4, contributing 8% of total CH4 emissions in L.A. Absolute CH4 emissions rates are derived by multiplying the observed CH4/CO enhancement ratio by State of California inventory values for carbon monoxide (CO) emissions in Los Angeles. Apportioning this total suggests that emissions from the combined natural and anthropogenic gas sources account for the differences between top-down and bottom-up CH4 estimates previously published for Los Angeles. Further, total CH4 emission attributed in our analysis to local gas extraction represents 17% of local production. While a derived leak rate of 17% of local production may seem unrealistically high, it is qualitatively consistent with the 12% reported in a recent state inventory survey of the L.A. oil and

  1. Methane Hydrate Recovered From A Mud Volcano in Santa Monica Basin, Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Normark, W. R.; Hein, J. R.; Powell, C. L.; Lorenson, T. D.; Lee, H. J.; Edwards, B. D.

    2003-12-01

    In July 2003, a short (2.1 m) piston core from the summit of a mud volcano recovered methane hydrate at a water depth of 813 m in Santa Monica Basin. The discovery core penetrated into in the hydrate as evidenced by chunks of ice and violent degassing of the core section between 162 and 212 cm depth. The core consists of shell hash and carbonate clasts (to 7-cm long) in silty mud. The methanogenic carbonates are of two types: massive, recrystallized nodular masses with an outer mm-thick sugary patina and a bivalve coquina with carbonate cement. Living clams including the genus Vesicomya, commonly found at cold-seep sites elsewhere, were recovered from the top of the core. Further sampling attempts using piston, gravity, and box corers, all of which were obtained within 15 m of the discovery core, recovered olive-brown silty mud with variable amounts of whole and fragmented bivalve shells and methanogenic carbonate fragments characteristic of cold-seep environments. Gases collected in cores adjacent to the discovery core contain elevated amounts of methane and trace amounts of heavier hydrocarbon gases, indicating some component from thermogenic sources. Hydrogen sulfide was also detected in these sediment samples. Vertical channels in one core may have served as fluid pathways. The existence of hydrate at such a shallow depth in the sediment was unexpected, however, the presence of Vesicomya and hydrogen sulfide indicate that the mud volcano is a site of active methane venting. The mud volcano, which is about 24 km west-southwest of Redondo Beach, is about 300 m in diameter at the base. No internal structure is resolved on either high resolution deep-tow boomer or single-channel air-gun profiles, most likely as a result of the gas content and sediment deformation. The diapiric structure has ascended through well-bedded sediment on the lower slope of the basin, producing as much as 30 m of bathymetric relief. It is located in an area where strike-slip motion along

  2. H2S mediated thermal and photochemical methane activation

    PubMed Central

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  3. H2S-mediated thermal and photochemical methane activation.

    PubMed

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V

    2013-12-02

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  5. Metagenomes from two microbial consortia associated with Santa Barbara seep oil.

    PubMed

    Hawley, Erik R; Malfatti, Stephanie A; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Foster, Brian; Copeland, Alexander; del Rio, Tijana Glavina; Pati, Amrita; Jansson, Janet R; Gilbert, Jack A; Tringe, Susannah Green; Lorenson, Thomas D; Hess, Matthias

    2014-12-01

    The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Applications of multi-frequency single beam sonar fisheries analysis methods for seep quantification and characterization

    NASA Astrophysics Data System (ADS)

    Price, V.; Weber, T.; Jerram, K.; Doucet, M.

    2016-12-01

    The analysis of multi-frequency, narrow-band single-beam acoustic data for fisheries applications has long been established, with methodology focusing on characterizing targets in the water column by utilizing complex algorithms and false-color time series data to create and compare frequency response curves for dissimilar biological groups. These methods were built on concepts developed for multi-frequency analysis of satellite imagery for terrestrial analysis and have been applied to a broad range of data types and applications. Single-beam systems operating at multiple frequencies are also used for the detection and identification of seeps in water column data. Here we incorporate the same analysis and visualization techniques used for fisheries applications to attempt to characterize and quantify seeps by creating and comparing frequency response curves and applying false coloration to shallow and deep multi-channel seep data. From this information, we can establish methods to differentiate bubble size in the echogram and differentiate seep composition. These techniques are also useful in differentiating plume content from biological noise (volume reverberation) created by euphausid layers and fish with gas-filled swim bladders. The combining of the multiple frequencies using false coloring and other image analysis techniques after applying established normalization and beam pattern correction algorithms is a novel approach to quantitatively describing seeps. Further, this information could be paired with geological models, backscatter, and bathymetry data to assess seep distribution.

  7. The vesicomyid bivalve habitat at cold seeps supports heterogeneous and dynamic macrofaunal assemblages

    NASA Astrophysics Data System (ADS)

    Guillon, Erwan; Menot, Lénaïck; Decker, Carole; Krylova, Elena; Olu, Karine

    2017-02-01

    The high biodiversity found at cold seeps, despite elevated concentrations of methane and hydrogen sulfide, is attributed to multiple sources of habitat heterogeneity. In addition to geological and geochemical processes, biogenic habitats formed by large symbiont-bearing taxa, such as bivalves and siboglinid tubeworms, or by microbial mats drive the biodiversity of small-sized fauna. However, because these habitat-forming species also depend on geochemical gradients, the respective influence of abiotic and biotic factors in structuring associated macrofaunal communities is often unresolved. The giant pockmark Regab located at 3200 m depth on the Congo margin is characterized by different fluid-flow regimes, providing a mosaic of the most common biogenic habitats encountered at seeps: microbial mats, mussel beds, and vesicomyid clam beds; the latter being distributed along a gradient of environmental conditions from the center to the periphery of the pockmark. Here, we examined the structure of macrofaunal communities in biogenic habitats formed in soft sediment to (1) determine the influence of the habitats on the associated macrofaunal communities (inter-habitat comparison), (2) describe how macrofaunal communities vary among vesicomyid clam beds (intra-habitat comparison) and (3) assess the inter-annual variation in vesicomyid beds based on repeated sampling at a three-year interval. The highest densities were found in the microbial mat communities in intermediate fluid-flow areas, but they had low diversity - also observed in the sediment close to mussel beds. In contrast, vesicomyid beds harbored the highest diversity. The vesicomyid beds did not show a homogeneous macrofaunal community across sampled areas; instead, density and composition of macrofauna varied according to the location of the beds inside the pockmark. The clam bed sampled in the most active, central part of the pockmark resembled bacterial mat communities by the presence of highly sulfide

  8. Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850 m water depth

    NASA Astrophysics Data System (ADS)

    Greinert, Jens; Bohrmann, Gerhard; Elvert, Marcus

    2002-08-01

    Methane seepage leads to Mg-calcite and aragonite precipitation at a depth of 4,850 m on the Aleutian accretionary margin. Stromatolitic and oncoid growth structures imply encrustation of microorganisms (microbial mats) in the host sediment with a unique growth direction downward into the sediment, forming crust-shaped lithologies. Biomarker investigations of the residue after carbonate dissolution show strong enrichments in crocetane and archaeol, which contain extremely low δ13C values. This indicates the presence of methane-consuming archaea, and δ13C values of -42 to -51‰ PDB indicate that methane is the carbon source for the carbonate crusts. Thus, it appears that stromatolitic encrustations of methanotrophic anaerobic archaea probably occurs in a consortium with sulphate-reducing bacteria and that carbonate precipitation proceeds downward into the sediment, where ascending cold fluids provide a methane source. Strontium and oxygen isotope analyses as well as 14C ages of the carbonates suggest that the fluids come from deep within the sediment and that carbonate precipitation began about 3,000 years ago.

  9. Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery

    USGS Publications Warehouse

    Wood, W.T.; Hart, P.E.; Hutchinson, D.R.; Dutta, N.; Snyder, F.; Coffin, R.B.; Gettrust, J.F.

    2008-01-01

    To determine the impact of seeps and focused flow on the occurrence of shallow gas hydrates, several seafloor mounds in the Atwater Valley lease area of the Gulf of Mexico were surveyed with a wide range of seismic frequencies. Seismic data were acquired with a deep-towed, Helmholz resonator source (220-820 Hz); a high-resolution, Generator-Injector air-gun (30-300 Hz); and an industrial air-gun array (10-130 Hz). Each showed a significantly different response in this weakly reflective, highly faulted area. Seismic modeling and observations of reversed-polarity reflections and small scale diffractions are consistent with a model of methane transport dominated regionally by diffusion but punctuated by intense upward advection responsible for the bathymetric mounds, as well as likely advection along pervasive filamentous fractures away from the mounds.

  10. A case study of methane gas migration through sealed mine GOB into active mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, F.; McCall, F.E.; Trevits, M.A.

    1995-12-31

    The U.S. Bureau of Mines investigated the influence of atmospheric pressure changes on methane gas migration through mine seals at a mine site located in the Pittsburgh Coalbed. The mine gained access to a coal reserve through part of an abandoned mine and constructed nine seals to isolate the extensive old workings from the active mine area. Underground problems were experienced when atmospheric pressure fell, causing methane gas to migrate around the seals and into the active workings. During mining operations, methane gas levels exceeded legal limits and coal production was halted until the ventilation system could be improved. Whenmore » mining resumed with increased air flow, methane gas concentrations occasionally exceeded the legal limits and production had to be halted until the methane level fell within the mandated limit. To assist the ventilation system, a pressure relief borehole located in the abandoned workings near the mine seals was proposed. Preliminary estimates by a gob gas simulator (computer model) suggested that a 0.76 m (2.5 ft) diameter pressure relief borehole with an exhaust fan would be necessary to remove enough methane from the abandoned area so that the ventilation system could dilute the gas in the active workings. However, by monitoring methane gas emissions and seal pressure, during periods of low atmospheric pressure, the amount of methane gas that migrated into the active mine workings was calculated. Researchers then determined that a relief borehole, 20.3 cm (8-in) with an exhaust fan could remove at least twice the maximum measured volume of migrating methane gas. Because gas concentrations in the abandoned workings could potentially reach explosive limits, it was proposed that the mine eliminate the exhaust fan. Installation of the recommended borehole and enlarging two other ventilation boreholes located In the abandoned area reduced methane gas leakage through the seals by at least 63%.« less

  11. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Li, Jiwei; Peng, Xiaotong; Bai, Shijie; Chen, Zhiyan; Van Nostrand, Joy D.

    2018-02-01

    Authigenic carbonates are one type of conspicuous manifestation in seep environments that can provide long-term archives of past seepage activity and methane cycling in the oceans. Comprehensive investigations of the microbial community functional structure and their roles in the process of carbonate formation are, however, lacking. In this study, the mineralogical, geochemical, and microbial functional composition were examined in seep carbonate deposits collected from the west slope of the northern section of the Okinawa Trough (OT). The aim of this work was to explore the correspondence between the mineralogical phases and microbial metabolism during carbonate deposit formation. The mineralogical analyses indicated that authigenic carbonate minerals (aragonite, magnesium-rich calcite, dolomite, ankerite and siderite) and iron-bearing minerals (limonite, chlorite, and biotite) were present in these carbonate samples. The carbon and oxygen isotopic values of the carbonate samples varied between -51.1‰ to -4.7‰ and -4.8‰ to 3.7‰, respectively. A negative linear correlation between carbon and oxygen isotopic compositions was found, indicating a mixture of methane-derived diagenetic (low δ13C/high 18O) carbonates and detrital origin (high δ13C/low 18O) carbonates at the OT. GeoChip analyses suggested that various metabolic activities of microorganisms, including methanogenesis, methane oxidation, sulfite oxidation, sulfate reduction, and metal biotransformations, all occurred during the formation process. On the basis of these findings, the following model for the methane cycle and seep carbonate deposit formation in the sediment column at the OT is proposed: (1) in the upper oxidizing zone, aerobic methane oxidation was the main way of methane consumption; (2) in the sulfate methane transition zone, sulfate-dependent AOM (anaerobic oxidation of methane) consumes methane, and authigenic minerals such as aragonite, magnesium-calcite, and sulfide minerals

  12. Microbial iron redox cycling in a circumneutral-pH groundwater seep.

    PubMed

    Blöthe, Marco; Roden, Eric E

    2009-01-01

    The potential for microbially mediated redox cycling of iron (Fe) in a circumneutral-pH groundwater seep in north central Alabama was studied. Incubation of freshly collected seep material under anoxic conditions with acetate-lactate or H(2) as an electron donor revealed the potential for rapid Fe(III) oxide reduction (ca. 700 to 2,000 micromol liter(-1) day(-1)). Fe(III) reduction at lower but significant rates took place in unamended controls (ca. 300 micromol liter(-1) day(-1)). Culture-based enumerations (most probable numbers [MPNs]) revealed significant numbers (10(2) to 10(6) cells ml(-1)) of organic carbon- and H(2)-oxidizing dissimilatory Fe(III)-reducing microorganisms. Three isolates with the ability to reduce Fe(III) oxides by dissimilatory or fermentative metabolism were obtained (Geobacter sp. strain IST-3, Shewanella sp. strain IST-21, and Bacillus sp. strain IST-38). MPN analysis also revealed the presence of microaerophilic Fe(II)-oxidizing microorganisms (10(3) to 10(5) cells ml(-1)). A 16S rRNA gene library from the iron seep was dominated by representatives of the Betaproteobacteria including Gallionella, Leptothrix, and Comamonas species. Aerobic Fe(II)-oxidizing Comamonas sp. strain IST-3 was isolated. The 16S rRNA gene sequence of this organism is 100% similar to the type strain of the betaproteobacterium Comamonas testosteroni (M11224). Testing of the type strain showed no Fe(II) oxidation. Collectively our results suggest that active microbial Fe redox cycling occurred within this habitat and support previous conceptual models for how microbial Fe oxidation and reduction can be coupled in surface and subsurface sedimentary environments.

  13. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    NASA Astrophysics Data System (ADS)

    Mendes, Stephanie D.; Redmond, Molly C.; Voigritter, Karl; Perez, Christian; Scarlett, Rachel; Valentine, David L.

    2015-03-01

    Simple hydrocarbon gases containing two to four carbons (ethane, propane, and butane) are among the most abundant compounds present in petroleum reservoirs, and are introduced into the ocean through natural seepage and industrial discharge. Yet little is known about the bacterial consumption of these compounds in ocean waters. To assess the timing by which microbes metabolize these gases, we conducted a three-phase study that tested and applied a radiotracer-based method to quantify the oxidation rates of ethane, propane, and butane in fresh seawater samples. Phase 1 involved the synthesis of tritiated ethane, propane, and butane using Grignard reagents and tritiated water. Phase 2 was a systematic assessment of experimental conditions, wherein the indigenous microbial community was found to rapidly oxidize ethane, propane, and butane. Phase 3 was the application of this tritium method near the Coal Oil Point seeps, offshore California. Spatial and temporal patterns of ethane, propane, and butane oxidation down current from the hydrocarbon seeps demonstrated that >99% of these gases are metabolized within 1.3 days following initial exposure. The oxidation of ethane outpaced oxidation of propane and butane with patterns indicating the microbial community responded to these gases by rapid adaptation or growth. Methane oxidation responded the slowest in plume waters. Estimates based on the observed metabolic rates and carbon mass balance suggest that ethane, propane, and butane-consuming microorganisms may transiently account for a majority of the total microbial community in these impacted waters.

  14. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds

    PubMed Central

    Vincent, Warwick F.; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie

    2017-01-01

    Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic. PMID:29182670

  15. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie

    2017-01-01

    Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic.

  16. SURVEY OF LOW FLOW DRAINAGES AND SEEPS IN COLORADO TO ASSESS IMPLEMENTABILITY OF PASSIVE TREATMENT OPTIONS

    EPA Science Inventory

    Low flow drainages and seeps are typically not evaluated for mitigation due to the perceived low impact on the watershed. However, localized metals concentrations and acidity can be at levels of concern. Future passage of a “Good Samaritan Act” should increase activity at curren...

  17. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  18. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  19. High Resolution Seafloor Environmental Characterization of Methane Seeps in the Mississippi Canyon Near Atwater Valley 13/14, Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Hagen, R.; Hart, P.; Czarnecki, M.; Nishimura, C.; Hutchinson, D. R.

    2005-12-01

    The purpose of this project was to conduct detailed surface mapping of one of the areas drilled by the Joint Industry Project with ChevronTexaco to understand gas hydrates in the Gulf of Mexico. The gently sloping, mostly flat floor of the Mississippi Canyon is interrupted by mounds and depressions that presumably reflect the complex geology and geohydrology related to turbidite deposition and pervasive salt tectonism. The seafloor mounds we mapped in this study occur in approximately 1300 water depth along the floor of the Mississippi Canyon in lease block areas Atwater Valley 13 and 14. High resolution sidescan sonar (100 kHz and 500 kHz) backscatter imagery, and chirp sub-bottom profiler data were collected using the DT1 deep-towed oceanographic mapping instrument, concentrating on the region directly adjacent to and surrounding two mounds identified as, mounds D and F, and in the region directly adjacent to and surrounding the mounds. The backscatter data have been mosaiced and normalized to provide information on the shape and extent of the mounds, the possible lateral extent of fauna, such as mussel and clam fields on the mounds, possible seep related flows and the occurrence of carbonate material. The extent of a mudflow can be mapped on the southeastern side of mound F. Previously collected bottom camera images have been used to ground-truth the backscatter information. Coincident with the collection of backscatter information was the collection of very high-resolution bathymetric data. Together, the backscatter and bathymetric data show extremely high-resolution detail about the shape, relief, and morphology of the mounds. This information, coupled with porewater chemistry and heatflow data form a coherent picture of possible mechanics for fluid venting and flora/fauna of the seeps in this region.

  20. Evidence of Extensive Gas Venting at the Blake Ridge and Cape Fear Diapirs

    NASA Astrophysics Data System (ADS)

    Brothers, L.; Van Dover, C. L.; German, C. R.; Yoerger, D. R.; Kaiser, C. L.; Lobecker, M.; Skarke, A. D.; Ruppel, C. D.

    2012-12-01

    Despite the important geologic, geotechnical and biogeochemical implications of seabed fluid escape, the abundance and global distribution of cold seeps remain poorly characterized. Globally, seabed fluid escape is sometimes associated with chemosynthetic communities. Fluid escape on continental margins has also been invoked as a possible trigger for submarine slope failures and seafloor collapse. Along the U.S. Atlantic Margin, acoustic and geochemical water column anomalies have been observed in the Hudson Canyon, the mid-Atlantic shelf break, and the Blake Ridge Diapir (ODP Leg 164 site 996). Of these areas, only the Blake Ridge Diapir site is known to host chemosynthetic communities, a strong seafloor indicator of active seabed fluid flow. In July 2012, NOAA Ocean Exploration Program expedition EX1205L1 identified and characterized cold seeps within the Blake Ridge gas hydrate province, using the platform Okeanos Explorer and the Autonomous Underwater Vehicle (AUV) Sentry. The expedition observed seven spatially distinct water column anomalies using shipboard EM302 30 kHz multibeam and EK60 18 kHz single beam echosounders. These anomalies originate at the seabed and extend up to 900 m above the seafloor. Interpreted as bubble plumes, these anomalies correspond in six locations to Sentry-collected photos documenting chemosynthetic organisms (e.g. mussels and clams). Three plumes are associated with the known Blake Ridge Diapir seep site, while two additional plumes and newly discovered seep communities occur within 2 km of the original site. For the first time, a gas plume and associated seep community were also observed on the main Cape Fear Diapir. Co-located 3.5 kHz subbottom data, including lines that re-occupy a 3D survey conducted in 2003 across the Blake Ridge Diapir (doi:10.1029/2006GL028859), reveal subsurface conduits presently associated with these seeps and should allow us to constrain the plumbing systems in two and three dimensions. No methane

  1. The Importance of Chemosynthetic Communities and 'Seep-Hunting' to Deepwater Oil and Gas Exploration

    NASA Astrophysics Data System (ADS)

    McConnell, D.; Gharib, J. J.; Orange, D.; Henderson, J.; Danque, H.; Digby, A.

    2007-12-01

    Seafloor surveying techniques have often evolved as the industry's needs have evolved. Oil and gas exploration costs have escalated over the last several years, both as a result of increasing offshore overhead costs as well as the increased demand being met by offshore service-related companies. Consequently, more companies are prospecting using inexpensive techniques that rely on scientific expertise, such as seep-hunting, as a means of identifying reservoirs, and the past few years have seen several large-scale industrial deepwater surveys with locating hydrocarbon seeps as a primary goal. The identification of seeps is also a necessity for many pre-drilling operations, as many potential developers must conform to local regulations protecting chemosynthetic communities (eg MMS NTL 2000-G20 for Gulf of Mexico development). In addition to identifying chemosynthetic communities for permitting issues, as prospecting has moved into deeper water the ability to identify seep-related drilling hazards, such as hardgrounds or shallow gas (and hydrates) has also increased in importance. The specialized field of identifying seeps, and related chemosynthetics, hardgrounds, etc., is rapidly growing, aided by advances in mapping technology, such as multibeam backscatter and interferometry, among others. Today all of the geophysical data can be brought into a common interpretation environment providing multiple perspectives, different data overlays, and/or 3D visualizations. Using these techniques, high resolution multibeam and/or side-scan surveys rapidly cover large swaths of seafloor and identify potential seeps in real- time. These targets can then be examined geochemically with a coring program, potentially working simultaneously with the multibeam program. Modern USBL navigation can position a deepwater core in <10m diameter targets. Much of the geochemistry can be analyzed in near-real time at sea (eg headspace/interstitial gas, trace/minor/major ions in porefluids, etc

  2. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines)

    PubMed Central

    Woycheese, Kristin M.; Meyer-Dombard, D'Arcy R.; Cardace, Dawn; Argayosa, Anacleto M.; Arcilla, Carlo A.

    2015-01-01

    In the Zambales ophiolite range, terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca2+-OH−-type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (DIC) (<0.5 ppm). Influx of atmospheric carbon dioxide (CO2) affects the solubility of calcium carbonate as distance from the source increases, triggering the formation of meter-scale travertine terraces. Samples were collected at the source and along the outflow channel to determine subsurface microbial community response to surface exposure. DNA was extracted and submitted for high-throughput 16S rRNA gene sequencing on the Illumina MiSeq platform. Taxonomic assignment of the sequence data indicates that 8.1% of the total sequence reads at the source of the seep affiliate with the genus Methanobacterium. Other major classes detected at the source include anaerobic taxa such as Bacteroidetes (40.7% of total sequence reads) and Firmicutes (19.1% of total reads). Hydrogenophaga spp. increase in relative abundance as redox potential increases. At the carbonate terrace, 45% of sequence reads affiliate with Meiothermus spp. Taxonomic observations and geochemical data suggest that several putative metabolisms may be favorable, including hydrogen oxidation, H2-associated sulfur cycling, methanogenesis, methanotrophy, nitrogen fixation, ammonia oxidation, denitrification, nitrate respiration, methylotrophy, carbon monoxide respiration, and ferrous iron oxidation, based on capabilities of nearest known neighbors. Scanning electron microscopy and energy dispersive X-ray spectroscopy suggest that microbial activity produces chemical and physical traces in the precipitated carbonates forming downstream of the seep's source. These data provide context for future serpentinizing seep ecosystem studies, particularly with regards to tropical biomes. PMID:25745416

  3. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines).

    PubMed

    Woycheese, Kristin M; Meyer-Dombard, D'Arcy R; Cardace, Dawn; Argayosa, Anacleto M; Arcilla, Carlo A

    2015-01-01

    In the Zambales ophiolite range, terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca(2+)-OH(-)-type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (DIC) (<0.5 ppm). Influx of atmospheric carbon dioxide (CO2) affects the solubility of calcium carbonate as distance from the source increases, triggering the formation of meter-scale travertine terraces. Samples were collected at the source and along the outflow channel to determine subsurface microbial community response to surface exposure. DNA was extracted and submitted for high-throughput 16S rRNA gene sequencing on the Illumina MiSeq platform. Taxonomic assignment of the sequence data indicates that 8.1% of the total sequence reads at the source of the seep affiliate with the genus Methanobacterium. Other major classes detected at the source include anaerobic taxa such as Bacteroidetes (40.7% of total sequence reads) and Firmicutes (19.1% of total reads). Hydrogenophaga spp. increase in relative abundance as redox potential increases. At the carbonate terrace, 45% of sequence reads affiliate with Meiothermus spp. Taxonomic observations and geochemical data suggest that several putative metabolisms may be favorable, including hydrogen oxidation, H2-associated sulfur cycling, methanogenesis, methanotrophy, nitrogen fixation, ammonia oxidation, denitrification, nitrate respiration, methylotrophy, carbon monoxide respiration, and ferrous iron oxidation, based on capabilities of nearest known neighbors. Scanning electron microscopy and energy dispersive X-ray spectroscopy suggest that microbial activity produces chemical and physical traces in the precipitated carbonates forming downstream of the seep's source. These data provide context for future serpentinizing seep ecosystem studies, particularly with regards to tropical biomes.

  4. Biogeochemical and Microbial Survey of Gravity Cores from the Guaymas Basin and Sonora Margin

    NASA Astrophysics Data System (ADS)

    Buckley, A.; Mckay, L. J.; Chanton, J.; Hensen, C.; Turner, T.; Aiello, I. W.; Ravelo, A. C.; Mortera, C.; Teske, A.

    2015-12-01

    During the cruise "Guaymas14" with RV El Puma (Oct. 14-25, 2014), 15 sediment cores were obtained from the Guaymas Basin Ridge flanks and the Sonora Margin, to contrast the shallow subsurface sediments of the seafloor set at this spreading center and its adjacent continental margin. Here we present biogeochemical profiles of porewater dissolved gases and stable ions, along with high-throughout 16S rRNA gene sequencing of selected samples. Cores from the NW and SE ends of the Guaymas Basin ridge flanks were not sulfidic, and showed neither sulfate depletion nor methane accumulation. In contrast, samples of compression-impacted Sonora Margin on the NE edge of Guaymas Basin and from the upper Sonora Margin beneath the oxygen minimum zone showed an abundance of sulfide, DIC with sulfate depletion, and accumulation of biogenic methane (δ13C-CH4 ca. -85 to -88 ‰) at supersaturated concentrations below sulfate-replete sediment. Samples from an attenuated off-axis seep site on the NW flank of Guaymas Basin differed from both Sonora Margin and Guaymas Basin. The off-axis seep sediments contained 1 to 1.5 mM methane, with distinct δ13C -isotopic content (δ13C-CH4 near -60 ‰); intermediate to the biogenic methane of the Sonora Margin and the hydrothermally produced methane at Guaymas Basin. Unaltered sulfate and low sulfide concentrations indicate insufficiently reduced conditions, suggesting the methane was not produced in situ. Porewater DIC concentrations in the old seep site and the control site were similar to each other (3-5 mM), and lower than in the Sonora Margin sites (ca. 20-40 mM), indicating low bioremineralization in the old seep site and control sediments. Diverse seafloor habitats are expected to result in distinct microbiota that range from strictly anaerobic seep specialists and methane-cycling archaea in the Sonora Margin to diversified heterotrophic communities in the off-axis ridge flank sediments of Guaymas Basin; high-throughput sequencing should

  5. Coalbed Methane Outreach Program

    EPA Pesticide Factsheets

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  6. Carbon monoxide and methane adsorption of crude oil refinery using activated carbon from palm shells as biosorbent

    NASA Astrophysics Data System (ADS)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo

    2018-03-01

    Carbon monoxide and methane gas are widely present in oil refineries. Off-potential gas is used as raw material for the petrochemical industry. In order for this off-gas to be utilized, carbon monoxide and methane must be removed from off-gas. This study aims to adsorb carbon monoxide and methane using activated carbon of palm shells and commercial activated carbon simultaneously. This research was conducted in 2 stages: 1) Preparation and characterization of activated carbon, 2) Carbon monoxide and methane adsorption test. The activation experiments using carbon dioxide at a flow rate of 150 ml/min yielded a surface area of 978.29 m2/g, Nitrogen at flow rate 150 ml/min yielded surface area 1241.48 m2/g, and carbon dioxide and nitrogen at a flow rate 200 ml/min yielded a surface area 300.37 m2/g. Adsorption of carbon monoxide and methane on activated carbon of palm shell systems yielded results in the amount of 0.5485 mg/g and 0.0649 mg/g and using commercial activated carbon yielded results in the amount of 0.5480 mg/g and 0.0650 mg/g

  7. Associations of the Van Dyke's salamander (Plethodon vandykei) with geomorphic conditions in headwall seeps of the Cascade Range, Washington State.

    Treesearch

    A.P. McIntyre; R.A. Schmitz; C.M. Crisafulli

    2006-01-01

    We explored the association between Van Dyke's salamander (Plethodon vandykei) and hydrologic condition, geomorphology, and vegetation structure in headwall seeps in the Cascade Range of Washington State. We modeled occurrence of P. vandykei at three site scales: between seeps, within seeps, and between microhabitat sites...

  8. Predicting the fate of methane emanating from the seafloor using a marine two-phase gas model in one dimension (M2PG1) - Example from a known Arctic methane seep site offshore Svalbard

    NASA Astrophysics Data System (ADS)

    Jansson, Pär; Ferré, Benedicte

    2017-04-01

    Transport of methane in seawater occurs by diffusion and advection in the dissolved phase, and/or as free gas in form of bubbles. The fate of methane in bubbles emitted from the seafloor depends on both bubble size and ambient conditions. Larger bubbles can transport methane higher into the water column, potentially reaching the atmosphere and contributing to greenhouse gas concentrations and impacts. Single bubble or plume models have been used to predict the fate of bubble mediated methane gas emissions. Here, we present a new process based two-phase (free and dissolved) gas model in one dimension, which has the capability to dynamically couple water column properties such as temperature, salinity and dissolved gases with the free gas species contained in bubbles. The marine two-phase gas model in one dimension (M2PG1) uses a spectrum of bubbles and an Eulerian formulation, discretized on a finite-volume grid. It employs the most up-to-date equations for solubility and compressibility of the included gases, nitrogen, oxygen, carbon dioxide and methane. M2PG1 is an extension of PROBE (Omstedt, 2011), which facilitates atmospheric coupling and turbulence closures to realistically predict vertical mixing of all properties, including dissolved methane. This work presents the model's first application in an Arctic Ocean environment at the landward limit of the methane-hydrate stability zone west of Svalbard, where we observe substantial methane bubble release over longer time periods. The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT. Omstedt, A. (2011). Guide to process based modeling of lakes and coastal seas: Springer.

  9. Effect of packing material on methane activation in a dielectric barrier discharge reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo

    2013-12-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using γ-Al{sub 2}O{sub 3} (sphere), α-Al{sub 2}O{sub 3} (sphere), and γ-Al{sub 2}O{sub 3} (16–20 mesh). Investigations on the surface properties and shape of the three packing materials clearly indicate that methane activation is considerably affected by the material used. Capacitances inside the discharge gap are estimated from charge–voltage plots, and a comparison of the generated and transferred charges for different packing conditions show that the difference in surface properties between γ- and α-phase Al{sub 2}O{sub 3} affects the discharge characteristics. Moreover, all packing conditions show different chargemore » characteristics that are related to the electron density. Finally, the packing material's shape affects the local electron temperature, which is strongly related to methane conversion. The combined results indicate that both microscale and macroscale variations in a packing material affect the discharge characteristics, and a packing material should be considered carefully for effective methane activation.« less

  10. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Further results indicate that this newly discovered Bubble Shuttle transport mechanism might influence the distribution pattern of methanotrophic microorganisms in the water column and even at the air-sea interface. Methane seep areas are often characterized

  11. Exploration and Discovery of Hydrocarbon Seeps, Coral Ecosystems, and Shipwrecks in the Deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Hsing, P.; Carney, R. S.; Herrera, S.; Heyl, T.; Munro, C.; Bors, E.; Kiene, W.; Vecchione, M.; Evans, A.; Irion, J.; Warren, D.; Malik, M.; Lobecker, M.; Potter, J.

    2012-12-01

    Between March 20 and April 6, 2012, the NOAA Ship Okeanos Explorer served as a platform for ship-board and shore-side scientists to explore the deep Gulf of Mexico, targeting the northern West Florida Escarpment, DeSoto Canyon, the vicinity (within 11km) of the Deepwater Horizon (DWH) well, and deepwater shipwrecks. We systematically explored and discovered natural hydrocarbon seeps, diverse coral ecosystems, wooden and iron-hulled shipwrecks more than 100 years old colonized by coral communities, and sperm whale habitat between 600 and 1200m. A total of sixteen dives took advantage of new and recent maps to explore and groundtruth both hard and soft-bottom habitats, from cretaceous carbonates to mounds of coral rubble. The final ROV dive successfully groundtruthed expected methane-release areas imaged by the ship's mapping systems up to 1150m above the seafloor. The source of the mapping imagery was a stream of bubbles issuing from beneath thriving seep mussel communities. We visited five sites in the Mississippi Canyon (MC) area (lease blocks MC294, MC297, MC388, MC255, and MC036; the DWH incident took place in MC252). These sites were 11.3 km SW, 6.8 km SW, 7.6 km SW, 25.7 km E, and 27.4 km to the NE of the DWH, respectively. We used high-definition imaging systems on the Little Hercules ROV and Seirios camera platform to document more than 130 coral colonies and over 400 associated individual animals to continue to assessing the impact of the Deepwater Horizon oil spill. All of these efforts were conducted to provide fundamental knowledge of unknown and poorly known regions, ecosystems, and items of historical significance in the deep Gulf of Mexico.

  12. Reconstructing Methane Emission Events in the Arctic Ocean: Observations from the Past to Present

    NASA Astrophysics Data System (ADS)

    Panieri, G.; Mienert, J.; Fornari, D. J.; Torres, M. E.; Lepland, A.

    2015-12-01

    Methane hydrates are ice-like crystals that are present along continental margins, occurring in the pore space of deep sediments or as massive blocks near the seafloor. They form in high pressure and low temperature environments constrained by thermodynamic stability, and supply of methane. In the Arctic, gas hydrates are abundant, and the methane released by their destabilization can affect local to global carbon budgets and cycles, ocean acidification, and benthic community survival. With the aim to locate in space and time the periodicity of methane venting, CAGE is engaged in a vast research program in the Arctic, a component of which comprises the analyses of numerous sediment cores and correlative geophysical and geochemical data from different areas. Here we present results from combined analyses of biogenic carbonate archives along the western Svalbard Margin, which reveal past methane venting events in this region. The reconstruction of paleo-methane discharge is complicated by precipitation of secondary carbonate on foraminifera shells, driven by an increase in alkalinity during anaerobic oxidation of methane (AOM). The biogeochemical processes involved in methane cycling and processes that drive methane migration affect the depth where AOM occurs, with relevance to secondary carbonate formation. Our results show the value and complexity of separating primary vs. secondary signals in bioarchives with relevance to understanding fluid-burial history in methane seep provinces. Results from our core analyses are integrated with observations made during the CAGE15-2 cruise in May 2015, when we deployed a towed vehicle equipped with camera, multicore and water sampling capabilities. The instrument design was based on the Woods Hole Oceanographic Institution (WHOI) MISO TowCam sled equipped with a deep-sea digital camera and CTD real-time system. Sediment sampling was visually-guided using this system. In one of the pockmarks along the Vestnesa Ridge where high

  13. An evaluation of petrogenic hydrocarbons in northern Gulf of Alaska continental shelf sediments - The role of coastal oil seep inputs

    USGS Publications Warehouse

    Short, J.W.; Kolak, J.J.; Payne, J.R.; Van Kooten, G. K.

    2007-01-01

    We compared hydrocarbons in water, suspended particulate matter (SPM), and riparian sediment collected from coastal watersheds along the Yakataga foreland with corresponding hydrocarbons in Gulf of Alaska benthic sediments. This comparison allows an evaluation of hydrocarbon contributions to marine sediments from natural oil seeps, coal and organic matter (e.g., kerogen) associated with eroding siliciclastic rocks. The samples from oil seeps show extensive loss of low-molecular weight n-alkanes (seeps. After entering the fluvial systems, hydrocarbons from seep oils are rapidly diluted, and associate with the SPM phase as oil-mineral-aggregates (OMA). Johnston Creek, the watershed containing the most prolific seep, conveys detectable seep-derived hydrocarbons to the Gulf of Alaska, but overall seep inputs are largely attenuated by the (non-seep) petrogenic hydrocarbon content of the high SPM loads. In contrast to the geochemical signature of seep oil, Gulf of Alaska benthic sediments are characterized by abundant alkylated naphthalene homologues, relatively smooth n-alkane envelopes (n-C9 through n-C34, but with elevated levels of n-C27, n-C29, and n-C31), and small UCMs. Further, hydrocarbons in benthic sediments are highly intercorrelated. Taken together, these characteristics indicate that seep oil is a negligible petrogenic hydrocarbon source to the Gulf of Alaska continental shelf. Coaly material separated from the benthic sediment samples using a dense liquid (???2.00 g cm-3) also accounted for a minor portion of the total PAH (1-6%) and total n-alkanes (0.4-2%) in the benthic samples. Most of the hydrocarbon burden in the sediments is found in the denser sediment fraction and likely derives from organic matter contributed by denudation of siliciclastic formations in

  14. Fe-rich carbonate chimney in Okinawa Trough Implication for Fe-driven Microbial Anaerobic Oxidation of Methane (AMO)

    NASA Astrophysics Data System (ADS)

    Peng, X.; Guo, Z.

    2016-12-01

    Marine sediments associated with cold seeps at continental margins discharge substantial amounts of methane. Microbial anaerobic oxidation of methane (AMO) is a key biogeochemical process in these environments, which can trigger the formation of carbonate chimneys within sediments. The exact biogeochemical mechanism of how AMO control the formation of carbonate chimneys and influence their mineralogy and chemistry remains poorly constrained. Here, we use nano-scale secondary ion mass spectrometry to characterize the petrology and geochemistry of methane-derived Fe-rich carbonate chimneys formed between 5-7 Ma in the Northern Okinawa Trough. We find abundant framboid pyrites formed in the authigenic carbonates in the chimneys, indicating a non-Fe limitation sedimentary system. The δ13C values of carbonate (-18.9‰ to -45.9‰, PDB) show their probable origin from a mixing source of biogenic and thermogenic methane. The δ34S values range from -3.9 ± 0.5‰ to 23.2 ± 0.5‰ (VCDT), indicative of a strong exhaustion of sulfates in a local sulfate pool. We proposed that Fe-rich carbonate chimneys formed at the bottom of the sulfate-methane transition zone, beneath which Fe-driven AOM may happen and provide available ferrous for the extensive precipitation of pyrite in carbonate chimneys. The accumulation of reductive Fe in sediments via this process may widely occur in other analogous settings, with important application for Fe and S biogeochemical cycling within deep sediments at continental margins.

  15. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria

    PubMed Central

    Szafranski, Kamil M.; Deschamps, Philippe; Cunha, Marina R.; Gaudron, Sylvie M.; Duperron, Sébastien

    2015-01-01

    Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblages colonizing plant-derived substrates using a standardized approach over a geographic area spanning the North-East Atlantic and Mediterranean. Wood and alfalfa substrates in colonization devices were deployed for different periods at 8 deep-sea chemosynthesis-based sites in four distinct geographic areas. Pyrosequencing of a fragment of the 16S rRNA-encoding gene was used to describe bacterial communities. Colonization occurred within the first 14 days. The diversity was higher in samples deployed for more than 289 days. After 289 days, no relation was observed between community richness and deployment duration, suggesting that diversity may have reached saturation sometime in between. Communities in long-term deployments were different, and their composition was mainly influenced by the geographical location where devices were deployed. Numerous sequences related to horizontally-transmitted chemosynthetic symbionts of metazoans were identified. Their potential status as free-living forms of these symbionts was evaluated based on sequence similarity with demonstrated symbionts. Results suggest that some free-living forms of metazoan symbionts or their close relatives, such as Epsilonproteobacteria associated with the shrimp Rimicaris exoculata, are efficient colonizers of plant substrates at vents and seeps. PMID:25774156

  16. Comparison of proton-specific ATPase activities in plume and root tissues of two co-occurring hydrocarbon seep tubeworm species Lamellibrachia luymesi and Seepiophila jonesi.

    PubMed

    Dattagupta, Sharmishtha; Redding, Meredith; Luley, Kathryn; Fisher, Charles

    2009-01-01

    Lamellibrachia luymesi and Seepiophila jonesi are co-occurring species of vestimentiferan tubeworms found at hydrocarbon seepage sites on the upper Louisiana slope of the Gulf of Mexico. Like all vestimentiferans, they rely on internal sulfide-oxidizing symbiotic bacteria for nutrition. These symbionts produce hydrogen ions as a byproduct of sulfide oxidation, which the host tubeworm needs to eliminate to prevent acidosis. The hydrothermal vent tubeworm Riftia pachyptila uses a high activity of P- and V-type H + -ATPases located in its plume epithelium to excrete protons. Unlike R. pachyptila , the seep species grow a posterior root, which they can use in addition to their plumes as a nutrient exchange surface. In this study we measured the ATPase activities of plume and root tissues collected from L. luymesi and S. jonesi , and used a combination of inhibitors to determine the relative activities of P- and V-type H + -ATPases. We found that the total H + -ATPase activity of their plumes was approximately 14 μmol h -1  g -1 wet weight, and that of their roots was between 5 and 7 μmol h -1  g -1 wet weight. These activities were more than ten times lower than those measured in R. pachyptila . We suggest that seep tubeworms might use passive channels to eliminate protons across their roots, in addition to ATP-dependant proton pumps located in their plumes and roots. In addition, we found strong differences between the types of ATPase activities in the plumes of L. luymesi and S. jonesi . While the H + -ATPase activity of L. luymesi plumes is dominated by P-type ATPases, S. jonesi has an unusually high activity of V-type H + -ATPases. We suggest that S. jonesi relies on its high V-type H + -ATPase activity to drive carbon dioxide uptake across its plume surface. L. luymesi , on the other hand, might rely partially on bicarbonate uptake across its root.

  17. Influence of parasitism in controlling the health, reproduction and PAH body burden of petroleum seep mussels

    NASA Astrophysics Data System (ADS)

    Powell, Eric N.; Barber, Robert D.; Kennicutt, Mahlon C., II; Ford, Susan E.

    1999-12-01

    Petroleum seep mussels are often exposed to high hydrocarbon concentrations in their natural habitat and, thus, offer the opportunity to examine the relationship between parasitism, disease and contaminant exposure under natural conditions. This is the first report on the histopathology of cold-seep mussels. Seep mussels were collected by submersible from four primary sites in the Gulf of Mexico, lease blocks Green Canyon (GC) 184, GC-234, GC-233, and Garden Banks 425 in 550-650 m water depth. Five types of parasites were identified in section: (1) gill "rosettes" of unknown affinity associated with the gill bacteriocytes, (2) gill "inclusions" similar to chlamydia/rickettsia inclusions, (3) extracellular gill ciliates, (4) body "inclusions" that also resemble chlamydial/rickettsial inclusions, and (5) Bucephalus-like trematodes. Comparison to shallow-water mytilids demonstrates that: (1) both have similar parasite faunas; (2) seep mytilids are relatively heavily parasitized; and (3) infection intensities are extremely high in comparison to shallow-water mytilids for Bucephalus and chlamydia/rickettsia. In this study, the lowest prevalence for chlamydia/rickettsia was 67%. Prevalences of 100% were recorded from three populations. Bucephalus prevalence was ⩾70% in three of 10 populations. The parasite fauna was highly variable between populations. Some important parasites were not observed in some primary sites. Even within primary sites, some important parasites were not observed in some populations. Bucephalus may exert a significant influence on seep mussel population dynamics. Forty percent of the populations in this study are severely reproductively compromised by Bucephalus infection. Only a fraction of petroleum seep mussel populations are maintaining the entire beta-level population structure of this species. Variation in two parasites, gill ciliates and Bucephalus, explained most of the variation in PAH body burden between mussel populations. PAHs are

  18. Tectono-Stratigraphy of the Seeps on the Guaymas Basin at the Sonora Margin, Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Figueroa Albornoz, L. J.; Mortera-Gutierrez, C. A.; Bandy, W. L.; Escobar-Briones, E. G.; Godfroy, A.; Fouquet, Y.

    2013-05-01

    Recently several hydrothermal and gas seeps systems has been located precisely at the Sonora margin within the Guaymas Basin (GB), Gulf of California. Since late 1970's , several marine studies had reported two main hydrothermal systems in the Guaymas Rift (one at the Northern Rift, and other at the Southern Rift) and a cold seeps system at the Satellite Basin in the Sonora-margin lower edge. During the campaign BIG10, onboard the IFREMER vessel, NO L'Atalante, the EM122 echo-sounder log more than 30,000 water column acoustic images, which allows us to create a data base of the bubble plumes active systems on the northern part of the GB and the Sonora Margin. These plumes are the expression on the water column of an active seeps site during the cruise time. These images document the presence of the cold seep activity around the scarp of the Guaymas Transform Fault (GTF), and within the Satellite Basin. Few active plumes are first located off-axis, on both sides of the Northern Rift. Although it is not observed any plume within NR. Sub-bottom profiles and bathymetric data logged during the campaign GUAYRIV10, onboard the UNAM vessel, BO EL PUMA, are analyzed to determine the shallow tectonic-stratigraphy of GB near the Sonora Margin. We analyze 17 high-resolution seismic profiles (13 with NE-SW strike and 3 with NW-SE strike). From this data set, the continental shelf stratigraphy at the Sonora Margin tilts toward the slope, showing 3 low angle unconformities due to tectonics and slope angle changes. The strata slope changes angle up to 60°. However, the constant trans-tension shear along the GTF causes gravitation instability on the slope, generating a few submarine landslides close to the Northern Rift, and the rotation of blocks, tilting toward the shelf. To the north, the GTF splits in two fault escarpments, forming a narrow pull-apart basin, known as Satellite Basin. The submarine canyon from the Sonora River flows through the Satellite Basin into the GB

  19. Landsat detection of oil from natural seeps

    USGS Publications Warehouse

    Deutsch, M.; Estes, J.E.

    1980-01-01

    Oil on the ocean surface from the natural seeps in the Santa Barbara Channel, California, could not be detected on frames of any of the four bands of standard Landsat positive or negative film transparencies, nor could the slicks be detected using digital scaling, density slicing, or ratioing techniques. Digital contrast-stretch enhancement, however, showed the distribution of oil on the surface. - from Authors

  20. Methane sources and production in the northern Cascadia margin gas hydrate system

    USGS Publications Warehouse

    Pohlman, J.W.; Kaneko, M.; Heuer, V.B.; Coffin, R.B.; Whiticar, M.

    2009-01-01

    The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The ??13C values of methane range from a minimum value of - 82.2??? on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of - 39.5??? at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from - 22.5??? to +25.7???. The magnitude of the carbon isotope separation between methane and CO2 (??c = 63.8 ?? 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform ??DCH4 values (- 172??? ?? 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5???. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25??? and increases to ~ 40??? at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C

  1. Methane sources and production in the northern Cascadia margin gas hydrate system

    USGS Publications Warehouse

    Pohlman, John; Kaneko, Masanori; Heuer, Verena B.; Coffin, Richard B.; Whiticar, Michael

    2009-01-01

    The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The δ13C values of methane range from a minimum value of − 82.2‰ on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of − 39.5‰ at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from − 22.5‰ to +25.7‰. The magnitude of the carbon isotope separation between methane and CO2 (εc = 63.8 ± 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform δDCH4 values (− 172‰ ± 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5‰. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25‰ and increases to ~ 40‰ at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C

  2. High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey

    PubMed Central

    Meyer-Dombard, D'Arcy R.; Woycheese, Kristin M.; Yargıçoğlu, Erin N.; Cardace, Dawn; Shock, Everett L.; Güleçal-Pektas, Yasemin; Temel, Mustafa

    2015-01-01

    Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ13C ratios of the organic carbon fraction of solids are depleted (−25 to −28‰) relative to the carbonates (−11 to −20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ15N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions

  3. High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey.

    PubMed

    Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Yargıçoğlu, Erin N; Cardace, Dawn; Shock, Everett L; Güleçal-Pektas, Yasemin; Temel, Mustafa

    2014-01-01

    Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ(13)C ratios of the organic carbon fraction of solids are depleted (-25 to -28‰) relative to the carbonates (-11 to -20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ(15)N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions.

  4. Methane Emissions from Landfill: Isotopic Evidence for Low Percentage of Oxidation from Gas Wells, Active and Closed Cells

    NASA Astrophysics Data System (ADS)

    Lowry, David; Fisher, Rebecca; Zazzeri, Giulia; al-Shalaan, Aalia; France, James; Lanoisellé, Mathias; Nisbet, Euan

    2017-04-01

    Large landfill sites remain a significant source of methane emissions in developed and developing countries, with a global estimated flux of 29 Tg / yr in the EDGAR 2008 database. This is significantly lower than 20 years ago due to the introduction of gas extraction systems, but active cells still emit significant amounts of methane before the gas is ready for extraction. Historically the methane was either passively oxidized through topsoil layers or flared. Oxidation is still the primary method of methane removal in many countries, and covered, remediated cells across the world continue to emit small quantities of methane. The isotopic signatures of methane from landfill gas wells, and that emitted from active and closed cells have been characterized for more than 20 UK landfills since 2011, with more recent work in Kuwait and Hong Kong. Since 2013 the emission plumes have been identified by a mobile measurement system (Zazzeri et al., 2015). Emissions in all 3 countries have a characteristic δ13C signature of -58 ± 3 ‰ dominated by emissions from the active cells, despite the hot, dry conditions of Kuwait and the hot, humid conditions of Hong Kong. Gas well samples define a similar range. Surface emissions from closed cells and closed landfills are mostly in the range -56 to -52 ‰Ṫhese are much more depleted values than those observed in the 1990s (up to -35 ) when soil oxidation was the dominant mechanism of methane removal. Calculations using isotopic signatures of the amount of methane oxidised in these closed areas before emission to atmosphere range from 5 to 15%, but average less than 10%, and are too small to calculate from the high-emitting active cells. Compared to other major methane sources, landfills have the most consistent isotopic signature globally, and are distinct from the more 13C-enriched natural gas, combustion and biomass burning sources. Zazzeri, G. et al. (2015) Plume mapping and isotopic characterization of anthropogenic methane

  5. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    PubMed

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Acoustical Surveys Of Methane Plumes By Using The Quantitative Echo Sounder In The Eastern Margin Of The Sea of Japan

    NASA Astrophysics Data System (ADS)

    Aoyama, C.; Matsumoto, R.; Okuda, Y.; Ishida, Y.; Hiruta, A.; Sunamura, M.; Numanami, H.; Tomaru, H.; Snyder, G.; Komatsubara, J.; Takeuchi, R.; Hiromatsu, M.; Aoyama, D.; Koike, Y.; Takeda, S.; Hayashi, T.; Hamada, H.

    2004-12-01

    The reseach and trainning/V, Umitaka-maru sailed to the methane seep area on a small ridge in the eastern margin of the Sea of Japan on July to August 2004 to survey the ocean floor gas hydrate and related acoustic signatures of methane plumes by using a quantitative echo sounder. Detailed bathymetric profiles have revealed a number of mounds, pockmarks and collapse structures within 3km x 4km on the ridge at the water depth of 910m to 980m. We mapped minutely methane plumes by using a quantitative echo sounder with positioning data from GPS. We also measured averaged echo intensity from the methane plumes both in every 100m range and every one minute by the echo integrator. We obtained the following results from the present echo-sounder survey. 1) We checked 36 plumes on echogram, ranging 100m to 200m in diameter and 600m to 700m in height, reaching up to 200m to 300m below sea level. 2) We measured the averaged volume backscattering strength (SV) of each methane plume. The strongest SV, -45dB, of the plumes was stronger than SV of fish school. 3) Averaged SV tend to show the highest values around the middle of plumes, whereas the SVs are relatively low at the bottom and the top of plumes. 4) Some of the plumes were observed to show daily fluctuation in height and width. 5) We recovered several fist-sized chunks of methane hydrate by piston coring at the area where we observed methane plumes. As a following up project, we are planning to measure SV of methane bubbles and methane hydrate floating in water columns through an experimental studies in a large water tanks.

  7. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: Does a sulfate-methane transition require anaerobic oxidation of methane?

    USGS Publications Warehouse

    Malinverno, A.; Pohlman, J.W.

    2011-01-01

    The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1-30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate at and above the SMT, anaerobic oxidation of methane (AOM) and organoclastic sulfate reduction (OSR). Differentiating the relative contribution of each process is critical to estimate methane flux into the SMT, which, in turn, is necessary to predict deeper occurrences of gas hydrates in continental margin sediments. To evaluate the relative importance of these two sulfate reduction pathways, we developed a diagenetic model to compute the pore water concentrations of sulfate, methane, and dissolved inorganic carbon (DIC). By separately tracking DIC containing 12C and 13C, the model also computes ??13C-DIC values. The model reproduces common observations from methane-rich sediments: a well-defined SMT with no methane above and no sulfate below and a ??13C-DIC minimum at the SMT. The model also highlights the role of upward diffusing 13C-enriched DIC in contributing to the carbon isotope mass balance of DIC. A combination of OSR and AOM, each consuming similar amounts of sulfate, matches observations from Site U1325 (Integrated Ocean Drilling Program Expedition 311, northern Cascadia margin). Without AOM, methane diffuses above the SMT, which contradicts existing field data. The modeling results are generalized with a dimensional analysis to the range of SMT depths and sedimentation rates typical of continental margins. The modeling shows that AOM must be active to establish an SMT wherein methane is quantitatively consumed and the ??13C-DIC minimum occurs. The presence of an SMT generally requires active AOM. Copyright 2011 by the American Geophysical Union.

  8. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  9. Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park

    PubMed Central

    Hamamura, Natsuko; Olson, Sarah H.; Ward, David M.; Inskeep, William P.

    2005-01-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the α-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils. PMID:16204508

  10. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park.

    PubMed

    Hamamura, Natsuko; Olson, Sarah H; Ward, David M; Inskeep, William P

    2005-10-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the alpha-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils.

  11. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia

    PubMed Central

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; Malmstrom, Rex R.; Woyke, Tanja; Orphan, Victoria J.

    2016-01-01

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought. PMID:27357680

  12. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probemore » the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of > 16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.« less

  13. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia

    DOE PAGES

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; ...

    2016-06-28

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probemore » the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of > 16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.« less

  14. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H2

    PubMed Central

    Pedersen, Karsten

    2013-01-01

    It was previously concluded that opposing gradients of sulphate and methane, observations of 16S ribosomal DNA sequences displaying great similarity to those of anaerobic methane-oxidizing Archaea and a peak in sulphide concentration in groundwater from a depth of 250–350 m in Olkiluoto, Finland, indicated proper conditions for methane oxidation with sulphate. In the present research, pressure-resistant, gas-tight circulating systems were constructed to enable the investigation of attached and unattached anaerobic microbial populations from a depth of 327 m in Olkiluoto under in situ pressure (2.4 MPa), diversity, dissolved gas and chemistry conditions. Three parallel flow cell cabinets were configured to allow observation of the influence on microbial metabolic activity of 11 mℳ methane, 11 mℳ methane plus 10 mℳ H2 or 2.1 mℳ O2 plus 7.9 mℳ N2 (that is, air). The concentrations of these gases and of organic acids and carbon, sulphur chemistry, pH and Eh, ATP, numbers of cultivable micro-organisms, and total numbers of cells and bacteriophages were subsequently recorded under batch conditions for 105 days. The system containing H2 and methane displayed microbial reduction of 0.7 mℳ sulphate to sulphide, whereas the system containing only methane resulted in 0.2 mℳ reduced sulphate. The system containing added air became inhibited and displayed no signs of microbial activity. Added H2 and methane induced increasing numbers of lysogenic bacteriophages per cell. It appears likely that a microbial anaerobic methane-oxidizing process coupled to acetate formation and sulphate reduction may be ongoing in aquifers at a depth of 250–350 m in Olkiluoto. PMID:23235288

  15. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    USGS Publications Warehouse

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  16. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    PubMed Central

    Bomberg, Malin; Nyyssönen, Mari; Pitkänen, Petteri; Lehtinen, Anne; Itävaara, Merja

    2015-01-01

    Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems. PMID:26425566

  17. Potential sources of hydrocarbons and their microbial degradation in sediments from the deep geothermal Lusi site, Indonesia

    NASA Astrophysics Data System (ADS)

    Krueger, Martin; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin

    2017-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems, which started in 2006 following an earthquake on Java Island. Since then it has been continuously producing hot and hydrocarbon rich mud from a central crater with peaks reaching 180.000 m3 per day. Numerous investigations focused on the study of microbial communities which thrive at offshore methane and oil seeps and mud volcanoes, however very little has been done on onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 as well as of liquid hydrocarbons originating from one or more km below the surface. While the source of the methane at Lusi is unambiuous, the origin of the seeping oil is still discussed. Both, source and maturity estimates from biomarkers, are in favor of a type II/III organic matter source. Likely the oils were formed from the studied black shales (deeper Ngimbang Fm.) which contained a Type III component in the Type II predominated organic matter. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade different hydrocarbons. The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms. First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.

  18. Martian methane plume models for defining Mars rover methane source search strategies

    NASA Astrophysics Data System (ADS)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  19. Formation of methane and nitrous oxide in plants

    NASA Astrophysics Data System (ADS)

    Keppler, Frank; Lenhart, Katharina

    2017-04-01

    Methane, the second important anthropogenic greenhouse gas after carbon dioxide, is the most abundant reduced organic compound in the atmosphere and plays a central role in atmospheric chemistry. The global atmospheric methane budget is determined by many natural and anthropogenic terrestrial and aquatic surface sources, balanced primarily by one major sink (hydroxyl radicals) in the atmosphere. Natural sources of atmospheric methane in the biosphere have until recently been attributed to originate solely from strictly anaerobic microbial processes in wetland soils and rice paddies, the intestines of termites and ruminants, human and agricultural waste, and from biomass burning, fossil fuel mining and geological sources including mud volcanoes and seeps. However, recent studies suggested that terrestrial vegetation, fungi and mammals may also produce methane without the help of methanogens and under aerobic conditions (e.g. Keppler et al. 2009, Wang et al. 2013). These novel sources have been termed "aerobic methane production" to distinguish them from the well-known anaerobic methane production pathway. Nitrous oxide is another important greenhouse gas and major source of ozone-depleting nitric oxide. About two thirds of nitrous oxide emissions are considered to originate from anthropogenic and natural terrestrial sources, and are almost exclusively related to microbial processes in soils and sediments. However, the global nitrous oxide budget still has major uncertainties since it is unclear if all major sources have been identified but also the emission estimates of the know sources and stratospheric sink are afflicted with high uncertainties. Plants contribute, although not yet quantified, to nitrous oxide emissions either indirectly as conduits of soil derived nitrous oxide (Pihlatie et al. 2005), or directly via generation of nitrous oxide in leaves (Dean & Harper 1986) or on the leaf surface induced by UV irradiation (Bruhn et al. 2014). Moreover, lichens

  20. Ecosystem Modelling for Impact Assessment of Possible Methane Leakage during Methane Hydrate Utilization

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Nakano, Y.; Monoe, D.; Oomi, T.; Doi, T.; Nakata, K.; Fukushima, T.

    2005-05-01

    Natural methane hydrate has been scientifically studied as a carbon reservoir globally. However, in Japan, the potential for energy resource has been industrially highlighted. There is less domestic oil and natural gas resources in Japan, but many potential deposition areas for methane hydrate in ocean around Japan are the reasons. Less CO2 discharge from methane compared with coal, oil and conventional natural gas when the same calorie value we get is considered as the advantage for energy resource. However, because methane hydrate distributes in shallower sediment layer in ocean floor, accidental leakage of methane may occur while we utilize methane hydrate. Methane itself has 21-times impact on the greenhouse effect, if it reaches the atmosphere. Therefore, it is necessary to estimate the behavior in the environment after the leakage, if we want to use methane hydrate as energy resource. The mass balance after leakage of methane on seafloor and in water column is numerically studied through the analyses of methane emissions from natural cold seepages and hydrothermal activities in this research. The outline structure of mass balance ecosystem model creating is introduced and some preliminary examination results from the test calculation are discussed.

  1. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    PubMed

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  2. Root-Associated Methane Oxidation and Methanogenesis: Key Determinants of Wetland Methane Emissions

    NASA Technical Reports Server (NTRS)

    King, G. M.

    1997-01-01

    During the award period, we have assessed the extent and controls of methane oxidation in north temperate wetlands. It is evident that wetlands have been a major global source of atmospheric methane in the past, and are so at present. It is also evident that microbial methane oxidation consumes a variable fraction of total wetland methane production, perhaps 10%-90%. Methane oxidation is thus a potentially important control of wetland methane emission. Our efforts have been designed to determine the extent of the process, its controls, and possible relationships to changes that might be expected in wetlands as a consequence of anthropogenic or climate-related disturbances. Current work, has emphasized controls of methane oxidation associated with rooted aquatic plants. As for the sediment-water interface, we have observed that oxygen availability is a primary limiting factor. Our conclusion is based on several different lines of evidence obtained from in vitro and in situ analyses. First, we have measured the kinetics of methane oxidation by intact plant roots harboring methane-oxidizing bacteria, as well as the kinetics of the methanotrophs themselves. Values for the half-saturation constant (apparent K(sub m)) are approximately 5 microns. These values are roughly equivalent to, or much less than porewater methane concentrations, indicating that uptake is likely saturated with respect to methane, and that some other parameter must limit activity. Methane concentrations in the lacunar spaces at the base of plant stems are also comparable to the half-saturation constants (when expressed as equivalent dissolved concentrations), providing further support for limitation of uptake by parameters other than methane.

  3. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    PubMed

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of Zinc on Particulate Methane Monooxygenase Activity and Structure*

    PubMed Central

    Sirajuddin, Sarah; Barupala, Dulmini; Helling, Stefan; Marcus, Katrin; Stemmler, Timothy L.; Rosenzweig, Amy C.

    2014-01-01

    Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Zinc is a known inhibitor of pMMO, but the details of zinc binding and the mechanism of inhibition are not understood. Metal binding and activity assays on membrane-bound pMMO from Methylococcus capsulatus (Bath) reveal that zinc inhibits pMMO at two sites that are distinct from the copper active site. The 2.6 Å resolution crystal structure of Methylocystis species strain Rockwell pMMO reveals two previously undetected bound lipids, and metal soaking experiments identify likely locations for the two zinc inhibition sites. The first is the crystallographic zinc site in the pmoC subunit, and zinc binding here leads to the ordering of 10 previously unobserved residues. A second zinc site is present on the cytoplasmic side of the pmoC subunit. Parallels between these results and zinc inhibition studies of several respiratory complexes suggest that zinc might inhibit proton transfer in pMMO. PMID:24942740

  5. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    NASA Astrophysics Data System (ADS)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  7. Limitations of microbial hydrocarbon degradation at the Amon Mud Volcano (Nile Deep Sea Fan)

    NASA Astrophysics Data System (ADS)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-01-01

    The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.

  8. Sources and flux of natural gases from Mono Lake, California

    USGS Publications Warehouse

    Oremland, R.S.; Miller, L.G.; Whiticar, Michael J.

    1987-01-01

    The ability to identify a formation mechanism for natural gas in a particular environment requires consideration of several geochemical factors when there are multiple sources present. Four primary sources of methane have been identified in Mono Lake. Two of these sources were associated with numerous natural gas seeps which occur at various locations in the lake and extend beyond its present boundary; the two other gas sources result from current microbiological processes. In the natural gas seeps, we observed flow rates as high as 160 moles CH4 day-1, and estimate total lakewide annual seep flux to be 2.1 ?? 106 moles CH4. Geochemical parameters (??13CH4,??DCH4,CH4/[C2H6+ C3H8]) and ??14CH4measurements revealed that most of the seeps originate from a paleo-biogenic (??13CH4 = about -70%.). natural gas deposit of Pleistocene age which underlies the current and former lakebed. Gas seeps in the vicinity of hot springs had, in combination with the biogenic gas, a prominent thermogenic gas component resulting from hydrothermal alteration of buried organic matter. Current microbiological processes responsible for sources of natural gas in the lake included pelagic meth- anogenesis and decomposition of terrestrial grasses in the littoral zone. Methanogenesis in the pelagic sediments resulted in methane saturation (2-3 mM at 50 cm; ??13CH4 = about -85%.). Interstitial sulfate decreased from 133 mM at the surface to 35 mM by 110 cm depth, indicating that sulfate-reduction and methanogenesis operated concurrently. Methane diffused out of the sediments resulting in concentrations of about 50 ??M in the anoxic bottom waters. Methane oxidation in the oxic/anoxic boundry lowered the concentration by >98%, but values in surface waters (0.1-1.3??M) were supersaturated with respect to the atmosphere. The ??13CH4 (range = -21.8 to -71.8%.) of this unoxidized residual methane was enriched in 13C relative to methane in the bottom water and sediments. Average outward flux of this

  9. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    NASA Astrophysics Data System (ADS)

    Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.

    2017-10-01

    At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  10. Investigation of shallow gas hydrate occurrence and gas seep activity on the Sakhalin continental slope, Russia

    NASA Astrophysics Data System (ADS)

    Jin, Young Keun; Baranov, Boris; Obzhirov, Anatoly; Salomatin, Alexander; Derkachev, Alexander; Hachikubo, Akihiro; Minami, Hrotsugu; Kuk Hong, Jong

    2016-04-01

    The Sakhalin continental slope has been a well-known gas hydrate area since the first finding of gas hydrate in 1980's. This area belongs to the southernmost glacial sea in the northern hemisphere where most of the area sea is covered by sea ice the winter season. Very high organic carbon content in the sediment, cold sea environment, and active tectonic regime in the Sakhalin slope provide a very favorable condition for occurring shallow gas hydrate accumulation and gas emission phenomena. Research expeditions under the framework of a Korean-Russian-Japanese long-term international collaboration projects (CHAOS, SSGH-I, SSGH-II projects) have been conducted to investigate gas hydrate occurrence and gas seepage activities on the Sakhalin continental slope, Russia from 2003 to 2015. During the expeditions, near-surface gas hydrate samples at more than 30 sites have been retrieved and hundreds of active gas seepage structures on the seafloor were newly registered by multidisciplinary surveys. The gas hydrates occurrence at the various water depths from about 300 m to 1000 m in the study area were accompanied by active gas seepage-related phenomena in the sub-bottom, on the seafloor, and in the water column: well-defined upward gas migration structures (gas chimney) imaged by high-resolution seismic, hydroacoustic anomalies of gas emissions (gas flares) detected by echosounders, seafloor high backscatter intensities (seepage structures) imaged by side-scan sonar and bathymetric structures (pockmarks and mounds) mapped by single/multi-beam surveys, and very shallow SMTZ (sulphate-methane transition zone) depths, strong microbial activities and high methane concentrations measured in sediment/seawater samples. The highlights of the expeditions are shallow gas hydrate occurrences around 300 m in the water depth which is nearly closed to the upper boundary of gas hydrate stability zone in the area and a 2,000 m-high gas flare emitted from the deep seafloor.

  11. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  12. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE PAGES

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    2017-07-17

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  13. Matching Deep Tow Camera study and Sea Floor geochemical characterization of gas migration at the Tainan Ridge, South China Sea

    NASA Astrophysics Data System (ADS)

    Fan, L. F.; Lien, K. L.; Hsieh, I. C.; Lin, S.

    2017-12-01

    Methane seep in deep sea environment could lead to build up of chemosynthesis communities, and a number of geological and biological anomalies as compare to the surrounding area. In order to examine the linkage between seep anomalies and those at the vicinity background area, and to detail mapping those spatial variations, we used a deep towed camera system (TowCam) to survey seafloor on the Tainan Ridge, Northeastern South China Sea (SCS). The underwater sea floor pictures could provide better spatial variations to demonstrate impact of methane seep on the sea floor. Water column variations of salinity, temperature, dissolved oxygen were applied to delineate fine scale variations at the study area. In addition, sediment cores were collected for chemical analyses to confirm the existence of local spatial variations. Our results show large spatial variations existed as a result of differences in methane flux. In fact, methane is the driving force for the observed biogeochemical variations in the water column, on the sea floor, and in the sediment. Of the area we have surveyed, there are approximately 7% of total towcam survey data showing abnormal water properties. Corresponding to the water column anomalies, underwater sea floor pictures taken from those places showed that chemosynthetic clams and muscles could be identified, together with authigenic carbonate buildups, and bacterial mats. Moreover, sediment cores with chemical anomalies also matched those in the water column and on the sea floor. These anomalies, however, represent only a small portion of the area surveyed and could not be identified with typical (random) coring method. Methane seep, therefore, require tedious and multiple types of surveys to better understand the scale and magnitude of seep and biogeochemical anomalies those were driven by gas migrations.

  14. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent

    2012-07-01

    Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Population genetic structure in Sabatieria (Nematoda) reveals intermediary gene flow and admixture between distant cold seeps from the Mediterranean Sea.

    PubMed

    De Groote, Annelies; Hauquier, Freija; Vanreusel, Ann; Derycke, Sofie

    2017-07-01

    There is a general lack of information on the dispersal and genetic structuring for populations of small-sized deep-water taxa, including free-living nematodes which inhabit and dominate the seafloor sediments. This is also true for unique and scattered deep-sea habitats such as cold seeps. Given the limited dispersal capacity of marine nematodes, genetic differentiation between such geographically isolated habitat patches is expected to be high. Against this background, we examined genetic variation in both mitochondrial (COI) and nuclear (18S and 28S ribosomal) DNA markers of 333 individuals of the genus Sabatieria, abundantly present in reduced cold-seep sediments. Samples originated from four Eastern Mediterranean cold seeps, separated by hundreds of kilometers, and one seep in the Southeast Atlantic. Individuals from the Mediterranean and Atlantic were divided into two separate but closely-related species clades. Within the Eastern Mediterranean, all specimens belonged to a single species, but with a strong population genetic structure (Φ ST  = 0.149). The haplotype network of COI contained 19 haplotypes with the most abundant haplotype (52% of the specimens) shared between all four seeps. The number of private haplotypes was high (15), but the number of mutations between haplotypes was low (1-8). These results indicate intermediary gene flow among the Mediterranean Sabatieria populations with no evidence of long-term barriers to gene flow. The presence of shared haplotypes and multiple admixture events indicate that Sabatieria populations from disjunct cold seeps are not completely isolated, with gene flow most likely facilitated through water current transportation of individuals and/or eggs. Genetic structure and molecular diversity indices are comparable to those of epiphytic shallow-water marine nematodes, while no evidence of sympatric cryptic species was found for the cold-seep Sabatieria.

  16. Geology and structure of the Pine River, Florida River, Carbon Junction, and Basin Creek gas seeps, La Plata County, Colorado

    USGS Publications Warehouse

    Fassett, James E.; Condon, Steven M.; Huffman, A. Curtis; Taylor, David J.

    1997-01-01

    Introduction: This study was commissioned by a consortium consisting of the Bureau of Land Management, Durango Office; the Colorado Oil and Gas Conservation Commission; La Plata County; and all of the major gas-producing companies operating in La Plata County, Colorado. The gas-seep study project consisted of four parts; 1) detailed surface mapping of Fruitland Formation coal outcrops in the above listed seep areas, 2) detailed measurement of joint and fracture patterns in the seep areas, 3) detailed coal-bed correlation of Fruitland coals in the subsurface adjacent to the seep areas, and 4) studies of deep-seated seismic patterns in those seep areas where seismic data was available. This report is divided into three chapters labeled 1, 2, and 3. Chapter 1 contains the results of the subsurface coal-bed correla-tion study, chapter 2 contains the results of the surface geologic mapping and joint measurement study, and chapter 3, contains the results of the deep-seismic study. A preliminary draft of this report was submitted to the La Plata County Group in September 1996. All of the members of the La Plata Group were given an opportunity to critically review the draft report and their comments were the basis for revising the first draft to create this final version of a geologic report on the major La Plata County gas seeps located north of the Southern Ute Indian Reservation.

  17. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments.

    PubMed

    Trembath-Reichert, Elizabeth; Case, David H; Orphan, Victoria J

    2016-01-01

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co

  18. Impact of different antibiotics on methane production using waste-activated sludge: mechanisms and microbial community dynamics.

    PubMed

    Mustapha, Nurul Asyifah; Sakai, Kenji; Shirai, Yoshihito; Maeda, Toshinari

    2016-11-01

    Anaerobic digestion is an effective method for reducing the by-product of waste-activated sludge (WAS) from wastewater treatment plants and for producing bioenergy from WAS. However, only a limited number of studies have attempted to improve anaerobic digestion by targeting the microbial interactions in WAS. In this study, we examined whether different antibiotics positively, negatively, or neutrally influence methane fermentation by evaluating changes in the microbial community and functions in WAS. Addition of azithromycin promoted the microbial communities related to the acidogenic and acetogenic stages, and a high concentration of soluble proteins and a high activity of methanogens were detected. Chloramphenicol inhibited methane production but did not affect the bacteria that contribute to the hydrolysis, acidogenesis, and acetogenesis digestion stages. The addition of kanamycin, which exhibits the same methane productivity as a control (antibiotic-free WAS), did not affect all of the microbial communities during anaerobic digestion. This study demonstrates the simultaneous functions and interactions of diverse bacteria and methanogenic Archaea in different stages of the anaerobic digestion of WAS. The ratio of Caldilinea, Methanosarcina, and Clostridium may correspond closely to the trend of methane production in each antibiotic. The changes in microbial activities and function by antibiotics facilitate a better understanding of bioenergy production.

  19. Evidence for methane in Martian meteorites

    PubMed Central

    Blamey, Nigel J. F.; Parnell, John; McMahon, Sean; Mark, Darren F.; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R. M.; Banerjee, Neil R.; Flemming, Roberta L.

    2015-01-01

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity. PMID:26079798

  20. Evidence for methane in Martian meteorites.

    PubMed

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  1. High Concentration of Methane and Magnificent gas Plumes Over gas Hydrate Field in the Eastern Margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Matsumoto, R.; Hiruta, A.; Aoyama, C.; Tomaru, H.; Hiromatsu, M.

    2005-12-01

    Gas hydrates and prominent pockmarks have been observed on the Umitaka Spur in the eastern margin of Japan Sea, at the depth of about 900 m.Magnificent methane plumes, 550 to 600 m high, were detected by echo sounder for fish school, and massive gas hydrates were recovered by piston coring during the UT04 cruise of R/V Umitaka-maru (2004). The seawater over this area was collected by CTD and the samples of interstitial waters were extracted from sediment cores by hydraulic squeezer. The ratio of methane to ethane concentration (C1/C2) and the isotopic (δ 13C) composition of methane in the plume sites are less than 103 and from -40 to -50 (‰ PDB) respectively, suggesting that the origin of such gases are mostly thermogenic, whereas the gases in the sediments away from plumes are mostly microbial. The seawater samples demonstrated anomalously high concentration of methane over the plume sites. Maximum concentration is 160nmol/L above the methane plume site. The methane concentration values of most samples ranged from 4 to 6nmol/L. When it compared with the Nankai Trough (1 to 4nmol/L), even the base level methane is quite high. Seawater samples collected at the depth of 200 m exhibit sharp anomalies of 16 to 34nmol/L. With the intension to check the possibility of the inflow from the shelf and river waters, we collected surface waters far away from the Umitaka spur. Methane concentration was only 7nmol/L. Therefore, we conclude that anomalously high concentration at 200 m level over the spur is not likely to be explained by inflow of shelf waters, but also by methane seeps. The temperature of waters are extremely low from 0.25°C to 1.0°C below 300 m, then abruptly increases in shallow waters to about 25°C at surface water. Thus, bottom and intermediate waters are within the stability condition of methane hydrate. Under these conditions, gases from the sea floor would form gas hydrate within bottom water mass. Gas hydrate crystals would float up shallow to the

  2. Catchment-scale variation in the nitrate concentrations of groundwater seeps in the Catskill Mountains, New York, U.S.A.

    USGS Publications Warehouse

    West, A.J.; Findlay, S.E.G.; Burns, Douglas A.; Weathers, K.C.; Lovett, Gary M.

    2001-01-01

    Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3-) concentrations. Large contributions from deep groundwater with high NO3- concentrations have been invoked to explain high NO3- concentrations in stream water during the growing season. To determine whether variable contributions of groundwater could explain among-catchment differences in streamwater, we measured NO3- concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and bedding planes and had consistently lower temperatures than adjacent streamwaters. Nitrate concentrations in seeps ranged from near detection limits (0.005 mg NO3--N/L) to 0.75 mg NO3--N/L. Within individual catchments, groundwater residence time does not seem to strongly affect NO3- concentrations because in three out of four catchments there were non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, and seep NO3- concentrations. Across catchments, there was a significant but weak negative relationship between NO3- and SiO2 concentrations. The large range in NO3- concentrations of seeps across catchments suggests: 1) the principal process generating among-catchment differences in streamwater NO3- concentrations must influence water before it enters the groundwater flow system and 2) this process must act at large spatial scales because among-catchment variability is much greater than intra-catchment variability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3- concentrations among catchments in the Catskill Mountains.

  3. From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity.

    PubMed

    Ro, Soo Y; Ross, Matthew O; Deng, Yue Wen; Batelu, Sharon; Lawton, Thomas J; Hurley, Joseph D; Stemmler, Timothy L; Hoffman, Brian M; Rosenzweig, Amy C

    2018-05-08

    Particulate methane monooxygenase (pMMO) is a copper-dependent, integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. Studies of isolated pMMO have been hindered by loss of enzymatic activity upon its removal from the native membrane. To characterize pMMO in a membrane-like environment, we reconstituted pMMOs from Methylococcus ( Mcc. ) capsulatus (Bath) and Methylomicrobium ( Mm. ) alcaliphilum 20Z into bicelles. Reconstitution into bicelles recovers methane oxidation activity lost upon detergent solubilization and purification without substantial alterations to copper content or copper electronic structure as observed by electron paramagnetic resonance (EPR) spectroscopy.. These findings suggest that loss of pMMO activity upon isolation is due to removal from the membranes rather than caused by loss of the catalytic copper ions. A 2.7 Å resolution crystal structure of pMMO from Mm. alcaliphilum 20Z revealed a mononuclear copper center in the PmoB subunit and indicated that the transmembrane PmoC subunit may be conformationally flexible. Finally, results from extended X-ray absorption fine structure (EXAFS) analysis of pMMO from Mm. alcaliphilum 20Z were consistent with the observed monocopper center in the PmoB subunit. These results underscore the importance of studying membrane proteins in a membrane-like environment, and provide valuable insight into pMMO function. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion.

    PubMed

    Lu, Xueqin; Zhen, Guangyin; Liu, Yuan; Hojo, Toshimasa; Estrada, Adriana Ledezma; Li, Yu-You

    2014-10-01

    Long-term experiments herein were conducted to investigate the effect of cefalexin (CLX) on methane production during waste activated sludge (WAS) anaerobic digestion. CLX exhibited a considerable inhibition in methane production during the initial 25 days while the negative effect attenuated subsequently and methane production recovered depending on CLX doses used (600 and 1000 mg/L). The highest methane yield reached 450 mL at 1000 mg-CLX/L after 157 days of digestion, 63.8% higher than CLX-free one. Stimulated excretion of extracellular polymeric substances (EPS) by CLX served as microbial protecting layers, creating a suitable environment for microbes' growth and fermentation. Further examination via ultraviolet visible (UV-Vis) spectra also verified the elevated slime EPS, LB-EPS and TB-EPS indicated by UV-254 in the presence of CLX. Unlike the commonly accepted adverse effect, this study demonstrated the beneficial role of CLX in methane production, providing new insights into its true environmental impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Microbial anaerobic methane cycling in the subseafloor at the Von Damm hydrothermal vent field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.

    2013-12-01

    The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest hydrothermal vents (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the venting fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, activity, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in hydrothermal fluids venting at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of vents. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all vent sites with both 16S rRNA tag sequencing and single cell sorting. Other

  6. Archaea in metazoan diets: implications for food webs and biogeochemical cycling

    PubMed Central

    Thurber, Andrew R; Levin, Lisa A; Orphan, Victoria J; Marlow, Jeffrey J

    2012-01-01

    Although the importance of trophic linkages, including ‘top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk δ13C=−92±4‰ polar lipids −116‰) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as ‘archivory'. PMID:22402398

  7. Archaea in metazoan diets: implications for food webs and biogeochemical cycling.

    PubMed

    Thurber, Andrew R; Levin, Lisa A; Orphan, Victoria J; Marlow, Jeffrey J

    2012-08-01

    Although the importance of trophic linkages, including 'top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk δ(13)C=-92±4‰; polar lipids -116‰) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as 'archivory'.

  8. Maps showing sedimentary basins, surface thermal maturity, and indications of petroleum in the Central Alaska Province

    USGS Publications Warehouse

    Troutman, Sandra M.; Stanley, Richard G.

    2003-01-01

    This publication includes two maps (at 1:2,500,000 scale) and a pamphlet that describe sedimentary basins, surface thermal maturity, and 95 reported occurrences of petroleum in natural seeps, wells, and rock outcrops in central Alaska. No commercial petroleum production has been obtained from central Alaska, in contrast to the prolific deposits of oil and gas that have been found and developed in northern Alaska and the Cook Inlet region. Nevertheless, confirmed indications of petroleum in central Alaska include (1) natural seeps of methane gas on the Yukon Delta; (2) occurrences of methane gas in wells in the Bethel, Kotzebue, Nenana, Northway, and Yukon Flats basins; (3) oil and methane gas in seeps and wells in Norton Sound; (4) small quantities of liquid and solid hydrocarbons associated with mercury ore in the Kuskokwim Mountains; (5) oil shale and numerous occurrences of bitumen in the Kandik area; and (6) tasmanite, a form of oil shale, in the uplands north of Yukon Flats.

  9. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    PubMed

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Final Scientific/Technical Report: Characterizing the Response of the Cascadia Margin Gas Hydrate Reservoir to Bottom Water Warming Along the Upper Continental Slope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Evan A.; Johnson, H. Paul; Salmi, Marie

    along the continental shelf at water depths <180 m and at the upper limit of methane hydrate stability along the Washington margin. 5) The majority of the seeps cored during the 2014 research expedition on the R/V Thompson contained abundant authigenic carbonate indicating that they are locations of long-lived seepage rather than emergent seep systems related to methane hydrate dissociation. Despite the evidence for enhanced methane seepage at the upper limit of methane hydrate stability along the Washington margin, we found no unequivocal evidence for active methane hydrate dissociation as a source of fluid and gas at the seeps surveyed. The pore fluid and bottom water chemistry shows that the seeps are fed by a variety of fluid and methane sources, but that methane hydrate dissociation, if occurring, is not widespread and is only a minor source (below the detection limit of our methods). Collectively, these results provide a significant advance in our understanding of the thermal structure of the Cascadia subduction zone and the fluid and methane sources feeding seeps along the upper continental slope of the Washington-sector of the Cascadia margin. Though we did not find unequivocal evidence for methane hydrate dissociation as a source of water and methane at the upper pressure-temperature limit of methane hydrate stability at present, continued warming of North Pacific Intermediate Water in the future has the potential to impact the methane hydrate reservoir in sediments at greater depths along the slope. Thus, this study provides a strong foundation and the necessary characterization of the background state of seepage at the upper limit of methane hydrate stability for future investigations of this important process.« less

  11. Methane emissions from different coastal wetlands in New England, US

    NASA Astrophysics Data System (ADS)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  12. Transcontinental Surface Validation of Satellite Observations of Enhanced Methane Anomalies Associated with Fossil Fuel Industrial Methane Emissions

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.

    2012-12-01

    A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI

  13. Quantifying Nitrogen Transport from Riparian Groundwater Seeps to a Headwater Stream in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Redder, B.; Buda, A. R.; Kennedy, C. D.; Folmar, G.; DeWalle, D. R.; Boyer, E. W.

    2017-12-01

    Headwater streams in the Northeast region of the United States typically receive more than 50% of their base flow from groundwater, either by diffuse discharge through the streambed or by localized discharge through riparian seeps. It is very difficult to separate the individual contributions of these two groundwater fluxes to streamflow. Furthermore, riparian seeps show significant variability in discharge and nutrient concentration, adding uncertainty to estimates of groundwater-based nitrogen inputs to streams. In this study, we combined stream measurements at two different scales to quantify groundwater discharge by matrix flow through the streambed and by macropore flow through the riparian zone. The study site was a 175-m stream reach located in a heavily cultivated 45-hectare watershed in east-central Pennsylvania. Differential streamflow gauging and streambed measurements of hydraulic head gradient, hydraulic conductivity, and groundwater chemistry were used to solve for the riparian groundwater flux in a reach mass balance equation. Adopting a mass balance approach, riparian groundwater fluxes ranged from 115-205 m3 d-1, transporting 2-4 kg N d-1 of nitrate from the fractured bedrock aquifer to the stream. Air-water manometer readings from short-screened piezometers installed in the shallow streambed (30 cm) indicated slightly losing head gradients between the stream and groundwater, despite substantial (36-66%) increases in stream flow along the stream reach. Preliminary chemical data for the stream, streambed, and shallow ground water suggest that the stream is partially disconnected from the underlying aquifer and that riparian groundwater seeps supply essentially all water and nitrogen to the system. These results, along with the comparison of shallow and deep aquifer water with seep chemistry, provide insight into sources of water to riparian groundwater seeps and allow us to determine the transport and fate of nitrogen in a fractured aquifer system

  14. A giant oil seep at a salt-induced escarpment of the São Paulo Plateau, Espírito Santo Basin, off Brazil: Host rock characteristics and geochemistry

    NASA Astrophysics Data System (ADS)

    Freire, Antonio Fernando Menezes; Iemini, Juliana Andrade; Viana, Adriano Roessler; Magnavita, Luciano Portugal; Dehler, Nolan Maia; Kowsmann, Renato Oscar; Miller, Dennis James; Bezerra, Sabrina Helena Diniz Gilaberte; Zerfass, Geise de Santana dos Anjos; Shimabukuro, Seirin; Nóbrega, Marcos, II

    2017-12-01

    An international research cruise named Iatá-Piuna took place on the São Paulo Plateau on May 2013 in the Campos and Espírito Santo basins, off Brazil. The cruise was carried ou on board the research vessel (R/V) Yokosuka that hosts the human operated vehicle (HOV) SHINKAI 6500. It aimed at finding chemosynthetic communities, composed of organisms capable of generating their own vital energy by metabolizing organic and inorganic compounds related to seeps. Identification of these organisms could provide information for understanding the origin of life, since they may resemble primitive organisms that existed in the initial stages of life on Earth. During Leg 2 (May 10-24, 2013), however, dives on the northern part of the São Paulo Plateau at the Espírito Santo Basin led to the discovery of a giant oil seep. The seep, ca. 3 nautical miles (ca. 5.6 km) in length is located along an outcrop of Eocene rocks on a salt-induced escarpment of the plateau and at a water depth of ca. 2700 m. The 200 m relief of the seafloor suggests that the seep takes place along an active fault system driven by salt diapirism. The oil was analyzed and identified as a severely biodegraded marine oil, generated by carbonate rocks within a minibasin located to the east of the escarpment. This represents valuable exploratory information because it proves that an active petroleum system is present in the context of minibasins associated with salt diapirism in the area.

  15. Morphology of Florida Escarpment chemosynthetic brine seep community sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paull, C.K.; Spiess, F.N.; Curray, J.R.

    1988-01-01

    The Florida Escarpment near 26/sup 0/N was surveyed with Deep-Two, Seabeam, and GLORIA in the area where chemosynthetic communities were discovered via ALVIN in the abyssal Gulf of Mexico. Seabeam bathymetry and GLORIA images indicate that the escarpment is a generally straight cliff with average slopes of about 45/sup 0/ from 2,200 to more than 3,250 m. The escarpment's face is cut by 2-km wide box canyons whose head walls are as steep as the intervening escarpment's face. The shapes of these canyons are difficult to explain with the traditional models of canyon formation. Sidescan sonar images and bottom photographsmore » reveal that the escarpment's face is composed of a series of long, straight bedding-plane terraces which are truncated along nearly vertical orthogonal joints. Exposure of these truncated strata indicate the face of the escarpment is eroded. The contact between the basal escarpment and the flat-lying abyssal hemipelagic sediments is abrupt. Apparently, chemosynthetic communities line extensive sections of the escarpment base where reduced brines seep out into the sea floor. The morphology suggests joints and deep seeps are controlling factors in scarp retreat.« less

  16. Could Fluid Seeps Originate from the Seismogenic Zone? Evidence from Southern Costa Rica

    NASA Astrophysics Data System (ADS)

    Silver, E. A.; Kluesner, J. W.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.; Ranero, C. R.; Tryon, M. D.; Spinelli, G. A.; Rathburn, T.; von Huene, R.

    2013-12-01

    The prevailing conceptual model of convergent margin hydrogeology is one in which fluid sourced from porosity loss and dehydration reactions seaward of the updip limit of the seismogenic zone reach the seafloor via relatively low angle splay faults that act as high permeability conduits through an otherwise nearly impermeable upper plate [e.g., Lauer and Saffer, GRL, 39:L13604, 2012; Saffer and Tobin, Ann. Rev. Earth Planet. Sci., 39:157-186, 2011]. Interpretation of newly acquired 3D seismic reflection data and high resolvability multibeam and backscatter data, showing evidence for abundant potential fluid seeps sourced beneath the sediment cover and farther landward than previously thought possible, may require reevaluation of this concept. Kluesner et al. [2013, G3, doi:10.1002/ggge.20058], identified 160 potential fluid seeps in an 11 km wide swath off southern Costa Rica, based on pockmarks and high backscatter mounds, each showing subsurface indicators of fluid migration in the seismic data. Approximately half of these potential seeps are on the outer continental shelf; these are landward of the updip limit of the seismogenic zone, as estimated by both the transition from high to low reflectivity of the plate boundary and the intersection of the 150°C isotherm with the plate boundary [Ranero et al., 2008, G3, doi:10.1029/2007GC001679; Bangs et al., 2012, AGU Fall Meeting, T13A-2587; Bangs et al., this meeting]. We have mapped high probability fluid pathways beneath these potential seeps, based on seismic meta-attribute volumes calculated using user-trained neural network algorithms [Kluesner et al., this meeting]. The mapped fluid pathways are high-angle through the sedimentary section, and they root into basement highs and basement faults. Fluids could originate along the plate interface, where potential sources and pathways are known (Mid-slope sites: Hensen et al., 2004, Geology, 32:201-204), or above or below the interface, although sources from these

  17. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  18. Megafauna recovered from a cold hydrocarbon seep in the deep Alaskan Beaufort Sea, including a new species of Axinus (Thracidae: Bivalvia: Mollusca)

    NASA Astrophysics Data System (ADS)

    Powell, C. L.; Valentich-Scott, P.; Lorenson, T. D.; Edwards, B. D.

    2011-12-01

    Several specimens of a new species of Axinus and a single well-worn gastropod columella provisionally assigned to the genus Neptunea (Buccinidae: Gastropoda: Mollusca) were recently recovered from at least two cores, the longest of which is 5.72 m long, from a large seafloor mound, informally named the Canning Seafloor Mound (CSM). The CSM is located at 2,530 m water depth on the Alaskan Beaufort Sea slope north of Camden Bay and is a fluid explosion feature containing methane hydrate and methane-saturated sediments overlying a folded and faulted deep basin. Only two modern species of Axinus are currently known. Axinus grandis (Verrill & Smith, 1885) is a northern Atlantic species and the recently described species, A. cascadiensis Oliver and Holmes (2007), is only known from Baby Bare Seamount, Cascadia Basin, northeastern Pacific Ocean. Common fragments, single valves, and a single articulated specimen represent this new Axinus species. These shells were distributed over nearly the entire length of the primary core. All specimens show wear and (or) dissolution. The age of these specimens is unknown and no living representatives were encountered. The genus Axinus has a fossil record back to the early Eocene in England and the Paleocene and Eocene in Egypt. Biogeographically the genus appears to have originated in the Tethys Sea and became established in the Atlantic Ocean during the Eocene, spreading across the Arctic Ocean in the late Tertiary. With the opening of the Bering Strait in the latest Miocene or early Pliocene the genus Axinus migrated southwest into the northeast Pacific. Interestingly, hydrocarbon seep deposits are also present on the adjacent North Slope of Alaska in the Marsh Anticline at Carter Creek, Camden Bay. These rocks, the Nuwok beds, contain abundant Thracidae bivalve of the genus Thracia, but not Axinus, however the rocks also represent cold seep deposits. These rocks have been variously dated from Oligocene to Pliocene and the exact age

  19. Diazotrophy in the Deep: An analysis of the distribution, magnitude, geochemical controls, and biological mediators of deep-sea benthic nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Dekas, Anne Elizabeth

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. Although nitrogen fixation was once thought to be negligible in non-photosynthetically driven benthic ecosystems, the present study demonstrates the occurrence and expression of a diversity of nifH genes (those necessary for nitrogen fixation), as well as a widespread ability to fix nitrogen at high rates in these locations. The following research explores the distribution, magnitude, geochemical controls, and biological mediators of nitrogen fixation at several deep-sea sediment habitats, including active methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA), whale-fall sites (Monterey Canyon, CA), and background deep-sea sediment (off-site Mound 12 Costa Rica, off-site Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). The first of the five chapters describes the FISH-NanoSIMS method, which we optimized for the analysis of closely associated microbial symbionts in marine sediments. The second describes an investigation of methane seep sediment from the Eel River Basin, where we recovered nifH sequences from extracted DNA, and used FISH-NanoSIMS to identify methanotrophic archaea (ANME-2) as diazotrophs, when associated with functional sulfate-reducing bacterial symbionts. The third and fourth chapters focus on the distribution and diversity of active diazotrophs (respectively) in methane seep sediment from Mound 12, Costa Rica, using a combination of 15N-labeling experiments, FISH-NanoSIMS, and RNA and DNA analysis. The fifth chapter expands the scope of the investigation by targeting diverse samples from methane

  20. Carbon Dioxide Methanation for Human Exploration of Mars: A Look at Catalyst Longevity and Activity Using Supported Ruthenium

    NASA Technical Reports Server (NTRS)

    Petersen, Elspeth M.; Meier, Anne J.; Tessonnier, Jean-Philippe

    2018-01-01

    Overarching Purpose: To design a carbon dioxide methanation/Sabatier reaction catalyst able to withstand variable conditions including fluctuations in bed temperature and feed flow rates for 480 days of remote operation to produce seven tons of methane. Current Study Purpose: Examine supported Ruthenium as a carbon dioxide methanation catalyst to determine the effects support properties have on the active phase by studying activity and selectivity. Objective: The remote operation of the Mars ISRU (In Situ Resources Utilization) lander to produce rocket fuel prior to crew arrival on the planet to power an ascent vehicle. Constraints: Long-term operation (480 days); Variable conditions: Feed gas flow rates, Feed gas flow ratios, Reactor bed temperature.

  1. Families of miocene monterey crude oil, seep, and tarball samples, coastal California

    USGS Publications Warehouse

    Peters, K.E.; Hostettler, F.D.; Lorenson, T.D.; Rosenbauer, R.J.

    2008-01-01

    calcareous-siliceous member (tribe 3) because the latter is thinner and less oil-prone than the overlying members. Tribe 3 occurs mainly north of Point Conception where shallow burial caused preferential generation from the underlying lower calcareous-siliceous member or another unit with similar characteristics. In a test of the decision tree, 10 tarball samples collected from beaches in Monterey and San Mateo counties in early 2007 were found to originate from natural seeps representing different organofacies of Monterey Formation source rock instead from one anthropogenic pollution event. The seeps apparently became more active because of increased storm activity. Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  2. Improved methane production from waste activated sludge with low organic content by alkaline pretreatment at pH 10.

    PubMed

    Feng, L Y; Yang, L Q; Zhang, L X; Chen, H L; Chen, J

    2013-01-01

    Sludge with low organic content always results in an unsatisfactory performance, even failure of anaerobic digestion. The alkaline pretreatment effect on anaerobic digestion of sludge with low organic content has seldom been studied although it gives many benefits for sludge with high organic content. In this study the influence of alkaline pretreatment (pH 10, an effective alkaline pH) on the solubilization and methane production from waste activated sludge (WAS) with low organic content was investigated. Results from biochemical methane potential (BMP) experiments showed that anaerobic biodegradability of WAS was greatly improved by alkaline pretreatment at pH 10. Methane production from the current WAS under conditions of pretreatment time 4 h and digestion time 15 d was 139.6 mL/g VS (volatile solids), much higher than that from the unpretreated WAS with digestion time of 20 d (75.2 mL/g VS). Also, the solubilization of WAS was significantly accelerated by alkaline pretreatment. Mechanism exploration indicated that the general activities of anaerobic microorganisms, specific activities of key enzymes and the amounts of methanogens were enhanced by alkaline pretreatment at pH 10, showing good agreement with methane production.

  3. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation.

    PubMed

    Wang, Liping; Yao, Ying; He, Rong; Meng, Yan; Li, Na; Zhang, Dan; Xu, Jiajun; Chen, Ouyang; Cui, Jin; Bian, Jinjun; Zhang, Yan; Chen, Guozhong; Deng, Xiaoming

    2017-02-01

    Methane is reported to have antioxidant, anti-inflammatory and anti-apoptotic properties. We investigated the potential neuroprotective effects of methane-rich saline (MS) on spinal cord ischemia-reperfusion injury and determined that its therapeutic benefits are associated with the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Rats received 9min of spinal cord ischemia induced by occlusion of the descending thoracic aorta plus systemic hypotension followed by a single MS treatment (10ml/kg, ip) and 72h reperfusion. MS treatment attenuated motor sensory deficits and produced high concentrations of methane in spinal cords during reperfusion, which increased Nrf2 expression and transcriptional activity in neurons, microglia and astrocytes in the ventral, intermediate and dorsal gray matter of lumbar segments. Heme oxygenase-1, superoxide dismutase, catalase and glutathione were upregulated; and glutathione disulfide, superoxide, hydrogen peroxide, malondialdehyde, 8-hydroxy-2-deoxyguanosine and 3-nitrotyrosine were downregulated in MS-treated spinal cords. MS treatment reduced neuronal apoptosis in gray matter zones, which was consistent with the suppression of cytochrome c release to the cytosol from the mitochondria and the activation of caspase-9 and -3. Throughout the gray matter, the activation of microglia and astrocytes was inhibited; the nuclear accumulation of phosphorylated nuclear factor-kappa B p65 was reduced; and tumor necrosis factor α, interleukin 1β, chemokine (C-X-C motif) ligand 1, intercellular adhesion molecule 1 and myeloperoxidase were decreased. MS treatment attenuated blood-spinal cord barrier dysfunction by preventing the expression and activity of matrix metallopeptidase-9 and disrupting tight junction proteins. Consecutive intrathecal injection of specific siRNAs targeting Nrf2 at 24-h intervals 3 days before ischemia reduced the beneficial effects of MS. Our data indicate that MS treatment prevents IR-induced spinal

  4. Geological Characteristics of Active Methane Expulsion In Accretionary Prism Kaoping Slope Off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, C.; Chien, C.; Yang, T. F.; Lin, S.

    2005-12-01

    The Kaoping Slope off SW Taiwan represents the syn-collision accretionary prism characterized by active NW-trending folding - thrusting structures and high sedimentation rate favoring the formation of gas hydrate. For an assessment of gas hydrate potential in the Kaoping Slope off SW Taiwan, sedimentology, paleontology and geochemistry in box cores and piston cores were studied. BSRs are commonly found in seismic profiles in 400-600 m below seafloor of water depth 2500-1000 m. Active expulsions of methane were found along active thrust faults where sulfate/methane interface could be as shallow as 30 cm and the methane concentration of dissolved gases in bottom water and in pore-space of drilled core samples could be three-four order higher than the normal marine environments. Occurrences of authigenic carbonate and elongated pyrite tubes are correlated with shallow SMI depth and high methane content in bottom water and pore-space of sediment cores. Authigenic carbonates were found in seafloor surface and in 20-25 meters below seafloor. The authigenic carbonate nodules are characterized by irregular shape, whitish color, no visible microfossil, containing native sulfur, pyrites, gypsum, small open spaces, and very depleted carbon isotope (-54 ~ -43 per mil PDB). Tiny native sulfur and gypsum crystals were commonly found either on surface of foraminiferal tests and elongated pyrite tubes or in the authigenic carbonate nodules. Morphological measurements of elongated pyrite tubes show that they could represent pseudomorphs after three types of Pogonophora tube worm. Foraminifers are commonly filled by rhomboidal pyrites or cemented by pyrite crystals. Normal marine benthic foraminifers predominated by calcareous tests of slope fauna are associated with authigenic carbonate nodules in the study area, suggesting no major geochemistry effect on distribution of benthic foraminifers. Integrating sedimentology, paleontology and geochemistry characters, there could be high

  5. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.

    PubMed

    Reumer, Max; Harnisz, Monika; Lee, Hyo Jung; Reim, Andreas; Grunert, Oliver; Putkinen, Anuliina; Fritze, Hannu; Bodelier, Paul L E; Ho, Adrian

    2018-02-01

    Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA -based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities. IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment

  6. On morphology of methane-derived authigenic carbonates

    NASA Astrophysics Data System (ADS)

    Logvina, E.; Matveeva, T.

    2009-04-01

    carbonate chimneys were observed in the NE Atlantic, in the Gulf of Cadiz (Diaz del Rio et al., 2003), offshore Morocco (Magalhães et al., 2002), at northern Kattegat (Jensen et al., 1992), in the Pobitite Kamani area, in north-eastern Bulgaria (Botz et al., 1993). Clathrites (gas hydrate carbonates) are formed at the seawater/sediment interface or within the sediment in close contact with gas hydrates and bacterial mats. This type of the authigenic carbonates in direct contact with gas hydrates were identified and described by G. Bohrmann at Hydrate Ridge in 1998. According to (Bohrmann et al., 1998), they characterize by carbonate-cemented breccia composed of angular clasts cementing by Mg-calcite and aragonite. The brecciated structure causes by gas hydrate formation processes. A pure aragonite layers which form in elongated pores formerly occupied by gas hydrate are typical. This pseudomorphism resembles gas hydrate bubble structures. As a whole, clathrites are associated with bacterial mats on the seafloor next to gas hydrates and within the gas hydrate pore structure. References: G. Bohrmann, J. Greinert, E. Suess and M. Torres. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability: Geology, 1998, v. 26, pp. 647-650. J. Greinert, G. Bohrmann, and E. Suess. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: Classification, distribution, and origin of authigenic lithologies, in Paull, C. and Dillon W.P. ed., Natural gas hydrates: Occurrence, distribution, and detection: Geophysical Monograph 124: 87-98, American Geophysical Union, 2001, pp. 99-113. J. Greinert, G. Bohrmann, and M. Elvert Stromatolitic fabric of authigenic carbonate crusts in 4850 m water depth, Aleutian accretionary margin: Result of anaerobic methane oxidation by Archaea at cold seeps. International Journal of Earth Sciences, 2002, 91, pp. 698-711. P. Aharon. Carbon and oxygen isotope tracers of submarine hydrocarbon emissions

  7. Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox.

    PubMed

    Cai, Chen; Hu, Shihu; Chen, Xueming; Ni, Bing-Jie; Pu, Jiaoyang; Yuan, Zhiguo

    2018-10-15

    Complete nitrogen removal has recently been demonstrated by integrating anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) processes. In this work, the effect of methane partial pressure on the performance of a membrane biofilm reactor (MBfR) consisting of DAMO and anammox microorganisms was evaluated. The activities of DAMO archaea and DAMO bacteria in the biofilm increased significantly with increased methane partial pressure, from 367 ± 9 and 58 ± 22 mg-N L -1 d -1 to 580 ± 12 and 222 ± 22 mg-N L -1 d -1 , respectively, while the activity of anammox bacteria only increased slightly, when the methane partial pressure was elevated from 0.24 to 1.39 atm in the short-term batch tests. The results were supported by a long-term (seven weeks) continuous test, when the methane partial pressure was dropped from 1.39 to 0.78 atm. The methane utilization efficiency was always above 96% during both short-term and long-term tests. Taken together, nitrogen removal rate (especially the nitrate reduction rate by DAMO archaea) and methane utilization efficiency could be maintained at high levels in a broad range of methane partial pressure (0.24-1.39 atm in this study). In addition, a previously established DAMO/anammox biofilm model was used to analyze the experimental data. The observed impacts of methane partial pressure on biofilm activity were well explained by the modeling results. These results suggest that methane partial pressure can potentially be used as a manipulated variable to control reaction rates, ultimately to maintain high nitrogen removal efficiency, according to nitrogen loading rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Dry reforming of methane on a highly-active Ni-CeO 2 catalyst: Effects of metal-support interactions on C–H bond breaking

    DOE PAGES

    Liu, Zongyuan; Grinter, David C.; Lustemberg, Pablo G.; ...

    2016-05-04

    Ni-CeO 2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO 2 at temperatures as low as 300 K, generating CH x and CO x species on the surface of the catalyst. Strong metal–support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) tomore » only 0.15 eV on Ni/CeO 2–x(111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CH x or C species are detected in the C1s XPS region. As a result, the reforming of methane proceeds in a clean and efficient way.« less

  10. Offshore springs and seeps are focus of working group

    NASA Astrophysics Data System (ADS)

    Burnett, Bill

    People have been curious about offshore springs and seeps since at least the days of the Romans. In spite of many centuries of both casual and serious observations, there has been relatively little scientific study concerning the magnitude and effects of groundwater flow into the sea. Rather, studies were performed mostly to address water resource issues. Investigations over the past decade or so have now shown that groundwater discharge, at least in some cases, may be important for geochemical budgets and ecological effects.The Scientific Committee on Oceanic Research (SCOR) and the Land-Ocean Interactions in the Coastal Zone (LOICZ) Project of the International Geosphere-Biosphere Program have recently established a working group of experts to examine questions relating specifically to groundwater discharge in the coastal zone. Direct groundwater flow into the ocean is known to occur as springs and seeps in near-shore areas in many parts of the world. Submarine springs, for example, are well known off both coasts of Florida; Mexico's Yucatan Peninsula; in several areas around the Pacific rim including Chile, Hawaii, Guam, American Samoa, and Australia; in the Persian Gulf near Bahrain; in the Mediterranean Sea off Spain, France, Italy, Greece, Syria, Lebanon, Israel, and Libya; and in many other locations.

  11. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    NASA Astrophysics Data System (ADS)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  12. The hydraulic connectivity, perennial warming and relationship to seismicity of the Davis-Schrimpf Seep Field, Salton Trough, California from new and recent temperature time-series

    NASA Astrophysics Data System (ADS)

    Rao, Amar P.

    The Davis-Schrimpf Seep Field is a cluster of about 50 transtension-related geothermal seeps in the Imperial Valley, southeastern California. Five temperature time-series were collected from four features and compared to one another, against prior time-series, and to local seismicity. Loggers placed in separate vents within one seep returned moderate anti-correlation. Vents may selectively clog and unclog. Clogging frequencies explaining the observed level of negative correlation were given. Loggers placed in the same vent produced 87-92% positive correlation. It is therefore likely that the vast majority of temperature data measured with loggers possesses meaningful accuracy. Loggers placed in separate seeps exhibited correlation close to or greater than the statistically significant 60% threshold. I propose two lineaments provide a hydraulic connection between these seeps. Two Mw>3.0 earthquake swarms, including one Mw>4.0 event, within 24 kilometers showed possible linkage with >5 degree Celsius temperature perturbations. Seepage warmed 14.5-36.8 degrees Celsius over 5-7 years.

  13. An efficient method to improve the production of methane from anaerobic digestion of waste activated sludge.

    PubMed

    Li, Xiaolan; Xu, Xueqin; Huang, Shansong; Zhou, Yun; Jia, Haijiang

    2017-10-01

    Methane production from waste activated sludge (WAS) anaerobic digestion is always low due to slow hydrolysis rate and inappropriate ratio of carbon to nitrogen (C/N). In this work, a novel approach, i.e., co-digestion of WAS and tobacco waste (TW) using ozone pretreatment, to greatly enhance the production of methane is reported. Experimental results showed the optimal C/N and ozone dosage for methane production was 24:1 and 90 mg/g suspended solids, and the corresponding methane production was 203.6 mL/g volatile suspended solids, which was 1.3-fold that in mono-WAS digestion. Further investigation showed the co-digestion of WAS and TW was beneficial to the consumptions of protein and cellulose; also, the presence of ozone enhanced the disruption of organic substrates and production of short chain fatty acids, which provided sufficient digestion substrates for methane generation. Analysis of microbial community structure suggested that members of the phyla Bacteroidetes and Firmicutes were the dominant species when ozone pretreatment was applied. The findings obtained in this work might be of great importance for the treatment of WAS and TW.

  14. Ultrahigh-Resolution 3-Dimensional Seismic Imaging of Seeps from the Continental Slope of the Northern Gulf of Mexico: Subsurface, Seafloor and Into the Water Column

    NASA Astrophysics Data System (ADS)

    Brookshire, B. N., Jr.; Mattox, B. A.; Parish, A. E.; Burks, A. G.

    2016-02-01

    Utilizing recently advanced ultrahigh-resolution 3-dimensional (UHR3D) seismic tools we have imaged the seafloor geomorphology and associated subsurface aspects of seep related expulsion features along the continental slope of the northern Gulf of Mexico with unprecedented clarity and continuity. Over an area of approximately 400 km2, over 50 discrete features were identified and three general seafloor geomorphologies indicative of seep activity including mounds, depressions and bathymetrically complex features were quantitatively characterized. Moreover, areas of high seafloor reflectivity indicative of mineralization and areas of coherent seismic amplitude anomalies in the near-seafloor water column indicative of active gas expulsion were identified. In association with these features, shallow source gas accumulations and migration pathways based on salt related stratigraphic uplift and faulting were imaged. Shallow, bottom simulating reflectors (BSRs) interpreted to be free gas trapped under near seafloor gas hydrate accumulations were very clearly imaged.

  15. Assessment of shallow methane (CH4) gas using stable carbon and hydrogen isotopes in the sediments of the Gunsan Basin, eastern-central Yellow Sea, off the southwest of Korea

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Jeong, K. S.; Woo, H. J.; Kang, J.; Tsunogai, U.

    2016-12-01

    In the Gunsan Basin, eastern-central Yellow Sea (YS), gas seepages were observed from the uppermost sedimentary layer charged locally with gases that are important indicators of marine resources, environmental changes, and geo-hazards. Methane (CH4) among the gases is the most abundant organic compound in the Earth's atmosphere, where it acts as a greenhouse gas and thus has implications for global climate change. Headspace CH4 was determined in surface and core sediments in order to understand the C- and H- isotopes signatures in the Gunsan Basin that were collected onboard R/V Onnuri and Eardo in 2013 to 2015. The surface sediments contain 0.2 to 16.9 µM CH4 that are mostly produced by microbial fermentation of organic materials in shallow depth, as indicated by the light values of δ13CCH4 (-70.2 -50.7‰ VPDB). CH4 is actively seeping mainly in the western central part of the Gunsan Basin where the underlying sedimentary layers are thick and heavily faulted. In the cores, CH4 is concentrated 1 to 20 μM through the core depths without any relationships to grain size, organic matter contents. Largely different from those, δ13CCH4 ranges in -62.0 -18.0‰ VPDB (δ2DCH4 range in -296.0 -144.0‰ VSMOW), that is, strongly mixed CH4 of thermogenic and biogenic origins in the core sediments. The CH4 flux at the sediment-water interface (SWI) using Fick's first law of diffusion was calculated 2 29 µM·m-2·day-1 (12 µM·m-2·day-1 on the average) by a careful examination of methane distribution within the uppermost 10 cm sediment layer of 8 box cores. It seems that CH4 flux into the water layer in the Gunsan Basin is less significant than other seep areas such as of the Black Sea, Gulf of Mexico, the Bohai Sea. However, detailed and repeated CH4 observation is needed in the Gunsan Basin, as suggested by temporarily but active gas seepage in a wide regional scale.

  16. Methane production and consumption in an active volcanic environment of Southern Italy.

    PubMed

    Castaldi, Simona; Tedesco, Dario

    2005-01-01

    Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.

  17. Organic geochemical signatures controlling methane outgassing at active mud volcanoes in the Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    DongHun, Lee; YoungKeun, Jin; JungHyun, Kim; Heldge, Niemann; JongKu, Gal; BoHyung, Choi

    2016-04-01

    Based on the water column acoustic anomalies related to active methane (CH4) venting, numerous active Mud Volcanoes (MVs) were recently identified at ~282, ~420, and ~740 m water depths on the continental slope of the Canadian Beaufort Sea (Paull et al., 2015). While geophysical aspects such as the multibeam bathymetric mapping are thoroughly investigated, biogeochemical processes controlling outgassing CH4 at the active MVs are not well constrained. Here, we investigated three sediment cores from the active MVs and one sediment core from a non-methane influenced reference site recovered during the ARA-05C expedition with the R/V ARAON in 2014. We analyzed lipid biomarkers and their stable carbon isotopic values (δ13C) in order to determine key biogeochemical processes involved in CH4 cycling in the MV sediments. Downcore CH4 and sulphate (SO42-) concentration measurements revealed a distinct sulfate-methane transition zone (SMTZ) at the shallow sections of the cores (15 - 45 cm below seafloor (cm bsf) at 282 m MV, 420 m MV, and 740 m MV). The most abundant diagnostic lipid biomarkers in the SMTZ were sn-2-hydroxyarchaeol (-94‰) and archaeol (-66‰) with the sn-2-hydroxyarchaeol: archaeol ratio of 1.1 to 5, indicating the presence of ANME-2 or -3. However, we also found substantial amounts of monocyclic biphytane-1 (BP-1, -118‰), which is rather indicative for ANME-1. Nevertheless, the concentration of sn-2-hydroxyarchaeol was 2-fold higher than any other archaeal lipids, suggesting a predominant ANME-2 or -3 rather than ANME-1 as a driving force for the anaerobic methane oxidation (AOM) in these systems. We will further investigate the microbial community at the active MVs using nucleic acid (RNA and DNA) sequence analyses in near future. Our study provides first biogeochemical data set of the active MVs in the Canadian Beaufort Sea, which helps to better understand CH4 cycling mediated in these systems. Reference Paull, C.K., et al. (2015), Active mud

  18. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  19. Methane emission during municipal wastewater treatment.

    PubMed

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Methane related changes in prokaryotic activity along geochemical profiles in sediments of Lake Kinneret (Israel)

    NASA Astrophysics Data System (ADS)

    Bar Or, I.; Ben-Dov, E.; Kushmaro, A.; Eckert, W.; Sivan, O.

    2014-06-01

    Microbial methane oxidation process (methanotrophy) is the primary control on the emission of the greenhouse gas methane (CH4) to the atmosphere. In terrestrial environments, aerobic methanotrophic bacteria are mainly responsible for oxidizing the methane. In marine sediments the coupling of the anaerobic oxidation of methane (AOM) with sulfate reduction, often by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria, was found to consume almost all the upward diffusing methane. Recently, we showed geochemical evidence for AOM driven by iron reduction in Lake Kinneret (LK) (Israel) deep sediments and suggested that this process can be an important global methane sink. The goal of the present study was to link the geochemical gradients found in the porewater (chemical and isotope profiles) with possible changes in microbial community structure. Specifically, we examined the possible shift in the microbial community in the deep iron-driven AOM zone and its similarity to known sulfate driven AOM populations. Screening of archaeal 16S rRNA gene sequences revealed Thaumarchaeota and Euryarchaeota as the dominant phyla in the sediment. Thaumarchaeota, which belongs to the family of copper containing membrane-bound monooxgenases, increased with depth while Euryarchaeota decreased. This may indicate the involvement of Thaumarchaeota, which were discovered to be ammonia oxidizers but whose activity could also be linked to methane, in AOM in the deep sediment. ANMEs sequences were not found in the clone libraries, suggesting that iron-driven AOM is not through sulfate. Bacterial 16S rRNA sequences displayed shifts in community diversity with depth. Proteobacteria and Chloroflexi increased with depth, which could be connected with their different dissimilatory anaerobic processes. The observed changes in microbial community structure suggest possible direct and indirect mechanisms for iron-driven AOM in deep sediments.

  1. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming.

    PubMed

    Aghayan, M; Potemkin, D I; Rubio-Marcos, F; Uskov, S I; Snytnikov, P V; Hussainova, I

    2017-12-20

    Efficient capture and recycling of CO 2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO 2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl 2 O 4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.

  2. [Sources of Methane in the Boreal Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition

  3. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    NASA Astrophysics Data System (ADS)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  4. A paradox resolved: Sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy

    PubMed Central

    Freytag, John K.; Girguis, Peter R.; Bergquist, Derk C.; Andras, Jason P.; Childress, James J.; Fisher, Charles R.

    2001-01-01

    Vestimentiferan tubeworms, symbiotic with sulfur-oxidizing chemoautotrophic bacteria, dominate many cold-seep sites in the Gulf of Mexico. The most abundant vestimentiferan species at these sites, Lamellibrachia cf. luymesi, grows quite slowly to lengths exceeding 2 meters and lives in excess of 170–250 years. L. cf. luymesi can grow a posterior extension of its tube and tissue, termed a “root,” down into sulfidic sediments below its point of original attachment. This extension can be longer than the anterior portion of the animal. Here we show, using methods optimized for detection of hydrogen sulfide down to 0.1 μM in seawater, that hydrogen sulfide was never detected around the plumes of large cold-seep vestimentiferans and rarely detectable only around the bases of mature aggregations. Respiration experiments, which exposed the root portions of L. cf. luymesi to sulfide concentrations between 51–561 μM, demonstrate that L. cf. luymesi use their roots as a respiratory surface to acquire sulfide at an average rate of 4.1 μmol⋅g−1⋅h−1. Net dissolved inorganic carbon uptake across the plume of the tubeworms was shown to occur in response to exposure of the posterior (root) portion of the worms to sulfide, demonstrating that sulfide acquisition by roots of the seep vestimentiferan L. cf. luymesi can be sufficient to fuel net autotrophic total dissolved inorganic carbon uptake. PMID:11687647

  5. Termites Facilitate Methane Oxidation and Shape the Methanotrophic Community

    PubMed Central

    Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Van Ranst, Eric

    2013-01-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population. PMID:24038691

  6. Termites facilitate methane oxidation and shape the methanotrophic community.

    PubMed

    Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric

    2013-12-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.

  7. An Evaluation of Subsurface Plumbing of a Hydrothermal Seep Field and Possible Influence from Local Seismicity from New Time-Series Data Collected at the Davis-Schrimpf Seep Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Rao, A.; Onderdonk, N.

    2016-12-01

    The Davis­-Schrimpf Seep Field (DSSF) is a group of approximately 50 geothermal mud seeps (gryphons) in the Salton Trough of southeastern California. Its location puts it in line with the mapped San Andreas Fault, if extended further south, as well as within the poorly-understood Brawley Seismic Zone. Much of the geomorphology, geochemistry, and other characteristics of the DSSF have been analyzed, but its subsurface structure remains unknown. Here we present data and interpretations from five new temperature time­series from four separate gryphons at the DSSF, and compare them both amongst themselves, and within the context of all previously collected data to identify possible patterns constraining the subsurface dynamics. Simultaneously collected time-series from different seeps were cross-correlated to quantify similarity. All years' time-series were checked against the record of local seismicity to identify any seismic influence on temperature excursions. Time-series captured from the same feature in different years were statistically summarized and the results plotted to examine their evolution over time. We found that adjacent vents often alternate in temperature, suggesting a switching of flow path of the erupted mud at the scale of a few meters or less. Noticeable warming over time was observed in most of the features with time-series covering multiple years. No synchronicity was observed between DSSF features' temperature excursions, and seismic events within a 24 kilometer radius covering most of the width of the surrounding Salton Trough.

  8. Stable isotopes provide new insights into vestimentiferan physiological ecology at Gulf of Mexico cold seeps.

    PubMed

    Becker, Erin Leigh; Macko, Stephen A; Lee, Raymond W; Fisher, Charles R

    2011-02-01

    On the otherwise low-biomass seafloor of the Gulf of Mexico (GoM) continental slope, natural oil and gas seeps are oases of local primary production that support lush animal communities. Hundreds of seep communities have been documented on the continental slope, and nutrition derived from seeps could be an important link in the overall GoM food web. Here, we present a uniquely large and cohesive data set of δ(13)C, δ(15)N, and δ(34)S compositions of the vestimentiferan tubeworms Escarpia laminata and Lamellibrachia sp. 1, which dominate biomass at GoM seeps and provide habitat for hundreds of other species. Our sampling design encompassed an entire region of the GoM lower slope, allowing us for the first time to assess spatial variability in isotope compositions and to robustly address long-standing hypotheses about how vestimentiferans acquire and cycle nutrients over their long lifespan (200+ years). Tissue δ(13)C values provided strong evidence that larger adult vestimentiferans use their buried roots to take up dissolved inorganic carbon from sediment pore water, while very small individuals use their plume to take up carbon dioxide from the seawater. δ(34)S values were extremely variable among individuals of the same species within one location (<1 m(2) area), indicating high variability in the inorganic sulfur pools on a very small spatial scale. This finding supports the hypothesis that vestimentiferans use their roots to cycle sulfate and sulfide between their symbionts and free-living consortia of sulfate-reducing archaea in the sediment. Finally, consistent differences in δ(15)N between two cooccurring vestimentiferan species provided the first strong evidence for partitioning of inorganic resources, which has significant implications for the ecology and evolution of this taxonomic group.

  9. Stable isotopes provide new insights into vestimentiferan physiological ecology at Gulf of Mexico cold seeps

    NASA Astrophysics Data System (ADS)

    Becker, Erin Leigh; Macko, Stephen A.; Lee, Raymond W.; Fisher, Charles R.

    2011-02-01

    On the otherwise low-biomass seafloor of the Gulf of Mexico (GoM) continental slope, natural oil and gas seeps are oases of local primary production that support lush animal communities. Hundreds of seep communities have been documented on the continental slope, and nutrition derived from seeps could be an important link in the overall GoM food web. Here, we present a uniquely large and cohesive data set of δ13C, δ15N, and δ34S compositions of the vestimentiferan tubeworms Escarpia laminata and Lamellibrachia sp. 1, which dominate biomass at GoM seeps and provide habitat for hundreds of other species. Our sampling design encompassed an entire region of the GoM lower slope, allowing us for the first time to assess spatial variability in isotope compositions and to robustly address long-standing hypotheses about how vestimentiferans acquire and cycle nutrients over their long lifespan (200+ years). Tissue δ13C values provided strong evidence that larger adult vestimentiferans use their buried roots to take up dissolved inorganic carbon from sediment pore water, while very small individuals use their plume to take up carbon dioxide from the seawater. δ34S values were extremely variable among individuals of the same species within one location (<1 m2 area), indicating high variability in the inorganic sulfur pools on a very small spatial scale. This finding supports the hypothesis that vestimentiferans use their roots to cycle sulfate and sulfide between their symbionts and free-living consortia of sulfate-reducing archaea in the sediment. Finally, consistent differences in δ15N between two cooccurring vestimentiferan species provided the first strong evidence for partitioning of inorganic resources, which has significant implications for the ecology and evolution of this taxonomic group.

  10. Lower Carboniferous Siderites: A Product of Bottom Seeps and Bacterial Metanogenesis (Subpolar Urals)

    NASA Astrophysics Data System (ADS)

    Antoshkina, A. I.; Ryabinkina, N. N.

    2018-02-01

    Complex modern micro- and spectroscopic methods for study of siderite concretions in the Lower Carboniferous terrigenous strata on the Kozhym River (Subpolar Urals) have shown that its formation was caused by destruction of clay minerals due to the activity of bacterial communities. The abundance of these bacteria was caused by gas-fluid seeps and bacterial methanogenesis processes in bottom deposits. In basins with normal marine fauna, this led to local desalination, hydrogen sulfide contamination, mass collapse of primary organisms, and the development of element-specific bacteria. The occurrence of these bacteria caused the formation of specific authigenic mineralization in the concretion of sideritic bacteriolites: the framboidal pyrite, sphalerite, galenite, barite, sulfoselenides, and tellurides.

  11. Biomimetic methane oxidation

    NASA Astrophysics Data System (ADS)

    Watkins, B. E.; Droege, M. W.; Taylor, R. T.; Satcher, J. H.

    1992-06-01

    Methane monooxygenase (MMO) is an enzyme found in methanotrophs that catalyses the selective oxidation of methane to methanol. MMO is protein complex one component of which is a binuclear metal center containing oxygenase. We have completed one round of a design/synthesis/evaluation cycle in the development of coordination complexes that mimic the structure/function of the MMO active site. One of these, a binuclear, coordinately-asymmetric copper complex, is capable of oxidizing cyclohexane to a mixture of cyclohexanol and cyclohexanone in the presence of hydrogen peroxide.

  12. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  13. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    PubMed Central

    Lee, On On; Wang, Yong; Tian, Renmao; Zhang, Weipeng; Shek, Chun Shum; Bougouffa, Salim; Al-Suwailem, Abdulaziz; Batang, Zenon B.; Xu, Wei; Wang, Guang Chao; Zhang, Xixiang; Lafi, Feras F.; Bajic, Vladmir B.; Qian, Pei-Yuan

    2014-01-01

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development. PMID:24399144

  14. In situ Raman-based detections of the hydrothermal vent and cold seep fluids

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Du, Zengfeng; Zheng, Ronger; Luan, Zhendong; Qi, Fujun; Cheng, Kai; Wang, Bing; Ye, Wangquan; Liu, Xiaorui; Chen, Changan; Guo, Jinjia; Li, Ying; Yan, Jun

    2016-04-01

    Hydrothermal vents and cold seeps, and their associated biological communities play an important role in global carbon and sulphur biogeochemical cycles. Most of the studies of fluid composition geochemistry are based on recovered samples, both with gas-tight samplers and as open specimens, but the in situ conditions are difficult to maintain in recovered samples. Determination in situ of the chemical signals of the emerging fluids are challenging due to the high pressure, often strongly acidic and temperature in which few sensors can survive. Most of those sensors used so far are based on electrochemistry, and can typically detect only a few chemical species. Here we show that direct measurement of critical chemical species of hydrothermal vents and cold seeps can be made rapidly and in situ by means of a new hybrid version of earlier deep-sea pore water Raman probe carried on the ROV (Remote Operated Vehicle) Faxian. The fluid was drawn through the probe by actuating a hydraulic pump on the ROV, and measured at the probe optical cell through a sapphire window. We have observed the concentrations of H2S, HS-, SO42-, HSO4-, CO2, and H2 in hydrothermal vent fluids from the Pacmanus and Desmos vent systems in the Manus back-arc basin, Papua New Guinea. Two black smokers (279° C and 186° C) at the Pacmanus site showed the characteristic loss of SO42-, and the increase of CO2 and well resolved H2S and HS- peaks. At the white smoker of Onsen site the strong HSO4-peak observed at high temperature quickly dropped with strong accompanying increase of SO42-and H2 peaks when the sample contained in the Raman sensing cell was removed from the hot fluid due to rapid thermal deprotonation. We report here also the finding of a new lower temperature (88° C) white smoker "Kexue" field at the Desmos site with strong H2S, HS- and CO2 signals. We also have detected the concentrations of CH4,H2S, HS-, SO42-, and S8 in cold seep fluids and the surrounding sediment pore water from

  15. Influence of headspace flushing on methane production in Biochemical Methane Potential (BMP) tests.

    PubMed

    Koch, Konrad; Bajón Fernández, Yadira; Drewes, Jörg E

    2015-06-01

    The influence of headspace flushing on the specific methane (CH4) production of blank samples with just inoculum in Biochemical Methane Potential (BMP) tests was studied. The three most common ways were applied: flushing with nitrogen (N2) gas, flushing with a mixture of N2 and CO2 (80/20 v/v), and no flushing. The results revealed that removing the oxygen is crucial to avoid aerobic respiration, which caused both hindered activity of methanogens and loss of methane potential. Furthermore it was demonstrated that 20% of CO2 in the flush gas increased significantly the methane production by over 20% compared to the flushing with pure N2. In order to mimic the same headspace conditions as in full-scale treatment plants, using a flush gas with a similar CO2 concentration as the expected biogas is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Temporal variability of submarine groundwater discharge: Assessments via radon and seep meters, the southern carmel coast, Israel

    USGS Publications Warehouse

    Weinstein, Y.; Shalem, Y.; Burnett, W.C.; Swarzenski, P.W.; Herut, B.

    2007-01-01

    Seep meter data from Dor Bay, Israel, showed a steady decrease in submarine groundwater discharge (SGD) rates between March and July 2006 (averages of 34, 10.4 and 1.5 cm d-1 in March, May and July, respectively), while estimates based on radon time series showed remarkably uniform averages (8 cm d-1). The May seep meter data show a rough positive correlation with sea level, unlike the negative correlation shown by the Rn-calculated rates. Smaller-size meters, deployed in July adjacent to the regular-size ones, showed significantly higher rates (10 cm d-1), which negatively correlated with salinity. It is suggested that the decreased rates documented by the seep meters are the result of an increased shallow seawater recharge in the bay (due to decreasing hydraulic gradients). This is not captured by the radon, since recharging water is radon-poor. The positive correlation of discharge with sea level is due to increased seawater recycling in times of high sea stand. Copyright ?? 2007 IAHS Press.

  17. Dynamics of cell proliferation and apoptosis reflect different life strategies in hydrothermal vent and cold seep vestimentiferan tubeworms.

    PubMed

    Pflugfelder, Bettina; Cary, S Craig; Bright, Monika

    2009-07-01

    Deep-sea vestimentiferan tubeworms, which live in symbiosis with bacteria, exhibit different life strategies according to their habitat. At unstable and relatively short-lived hydrothermal vents, they grow extremely fast, whereas their close relatives at stable and long-persisting cold seeps grow slowly and live up to 300 years. Growth and age differences are thought to occur because of ecological and physiological adaptations. However, the underlying mechanisms of cell proliferation and death, which are closely linked to homeostasis, growth, and longevity, are unknown. Here, we show by immunohistochemical and ultrastructural cell cycle analyses that cell proliferation activities of the two species studied are higher than in any other characterized invertebrate, being only comparable with tumor and wound-healing processes. The slow growth in Lamellibrachia luymesi from cold seeps results from balanced activities of proliferation and apoptosis in the epidermis. In contrast, Riftia pachyptila from hydrothermal vents grows fast because apoptosis is down-regulated in this tissue. The symbiont-housing organ, the trophosome, exhibits a complex cell cycle and terminal differentiation pattern in both species, and growth is regulated by proliferation. These mechanisms have similarities to the up- and down-regulation of proliferation or apoptosis in various types of tumor, although they occur in healthy animals in this study, thus providing significant insights into the underlying mechanisms of growth and longevity.

  18. Printable enzyme-embedded materials for methane to methanol conversion

    PubMed Central

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.

    2016-01-01

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions. PMID:27301270

  19. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trembath-Reichert, Elizabeth; Case, David H.; Orphan, Victoria J.

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range ofDeltaproteobacteriadiversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seepmore » sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. In addition, many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed

  20. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    DOE PAGES

    Trembath-Reichert, Elizabeth; Case, David H.; Orphan, Victoria J.

    2016-04-18

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range ofDeltaproteobacteriadiversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seepmore » sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. In addition, many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed

  1. A Possible Sink for Methane on Mars

    NASA Astrophysics Data System (ADS)

    Nørnberg, P.; Jensen, S. J. K.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, E.; Iversen, J. J.; Kondrup, J. C.

    2014-07-01

    Mechanical simulated wind activation of mineral surfaces act as a trap for Methane through formation of covalent Si-C bonds stable up to temperatures above 250 C. This mechanism is proposed as a Methane sink on Mars.

  2. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    NASA Astrophysics Data System (ADS)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    The rate of CH4 release from thawing permafrost in the Arctic has been regarded as one of the determining factors on future global climate. It is uncertain how indigenous microorganisms would interact with such changing environmental conditions and hence their impact on the fate of carbon compounds that are sequestered in the cryosol. Multitudinous studies of pristine surface cryosol (top 5 cm) and microcosm experiments have provided growing evidence of effective methanotrophy. Cryosol samples corresponding to active layer were sampled from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45) before the onset of annual thaw. Pyrosequencing of 16S rRNA gene indicated the occurrence of methanotroph-containing bacterial families as minor components (~5%) in pristine cryosol including Bradyrhizobiaceae, Methylobacteriaceae and Methylocystaceae within alpha-Proteobacteria, and Methylacidiphilaceae within Verrucomicrobia. The potential of methanotrophy is supported by preliminary analysis of metagenome data, which indicated putative methane monooxygenase gene sequences relating to Bradyrhizobium sp. and Pseudonocardia sp. are present. Proteome profiling in general yielded minute traces of proteins, which likely hints at dormant nature of the soil microbial consortia. The lack of specific protein database for permafrost posted additional challenge to protein identification. Only 35 proteins could be identified in the pristine cryosol and of which 60% belonged to Shewanella sp. Most of the identified proteins are known to be involved in energy metabolism or post-translational modification of proteins. Microcosms amended with sodium acetate exhibited a net methane consumption of ~65 ngC-CH4 per gram (fresh weight) of soil over 16 days of aerobic incubation at room temperature. The pH in microcosm materials remained acidic (decreased from initial 4.7 to 4.5). Protein extraction and

  3. Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.

    2016-02-01

    The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.

  4. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Greg

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Projectmore » Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.« less

  5. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    PubMed Central

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  6. Printable enzyme-embedded materials for methane to methanol conversion

    DOE PAGES

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; ...

    2016-06-15

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  7. Printable enzyme-embedded materials for methane to methanol conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  8. Clumped Isotope Values from the Doushantuo Formation of South China: Evaluation of Hydrothermal Influence, Disequilibria and Diagenetic Effects

    NASA Astrophysics Data System (ADS)

    Foster, I. S.; Zhu, M.; Lu, M.; Bristow, T.; Bonifacie, M.; Tripati, A.

    2015-12-01

    The Ediacaran Doushantuo Formation (635 - 551 Ma) of southern China is a phosphate-dolostone-black shale sequence following the Marinoan "Snowball Earth" episode that represents an important period in Earth history. It contains abundant phosphate-preserved microfossils, and extremely low carbon isotope values in the cap dolostone unit that have been interpreted to reflect formation in a methane seep environment [1]. Previous clumped isotope analysis of 13C-depleted carbonate veins from the basal Doushantuo samples have been interpreted to reflect hydrothermally-derived thermogenic methane oxidation [2], however recent work on modern and ancient cold seep samples suggests clumped isotope signatures in these environments are influenced by disequilibria effects [3] and are vulnerable to post-depositional diagenesis via internal reordering at temperatures exceeding ~ 100 - 120 ˚C [4]. Here we present initial data from the cap-carbonates overlying the Nantuo diamictite. Our analysis includes a variety of micro-facies from the cap-carbonate including pure calcite and micrite, with a range of carbonate carbon isotopic values. Data presented here will be used to attempt to determine if the samples exhibit disequilibria effects such as those observed in modern cold seep environments, as well as to evaluate the role of hydrothermal activity in the Doushantuo Formation. [1] Jiang, G., Kennedy, M.J., Christie-Blick, N., 2003. Stable isotope evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822-826. [2] Bristow, T.F., Bonifacie, M., Derkowski, A., Eiler, J.M., Grotzinger, J.P., 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature 474, 68-72. [3] Loyd, S., Sample, J.C., Orphan, V.J., Marlow, J., Eagle, R., Tripati, A.K., 2012. Clumped isotope analyses of cold seep carbonates: Insights into formation environment and mechanisms. Abstract B51G-0639 presented at 2012 Fall Meeting, AGU, San Francisco

  9. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Myhre, Cathrine Lund; Platt, Stephen Matthew; Eckhardt, Sabine; Hermansen, Ove; Schmidbauer, Norbert; Mienert, Jurgen; Vadakkepuliyambatta, Sunil; Bauguitte, Stephane; Pitt, Joseph; Allen, Grant; Bower, Keith; O'Shea, Sebastian; Gallagher, Martin; Percival, Carl; Pyle, John; Cain, Michelle; Stohl, Andreas

    2017-04-01

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (FAAM) and a ship (Helmer Hansen) during the Summer 2014, and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol / m s in the stability model scenario. The Zeppelin Observatory data for 2014 suggests CH4 fluxes from the Svalbard continental platform below 0.2 Tg/yr . All estimates are in the lower range of values previously reported.

  10. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  11. Long-lasting Microbial Methane Release at the Aquitaine Shelf Break (Bay of Biscay): Relation with the (Plio)-Pleistocene Sedimentary Progradation of the Continental Margin

    NASA Astrophysics Data System (ADS)

    Dupré, S.; Michel, G.; Pierre, C.; Ruffine, L.; Scalabrin, C.; Ehrhold, A.; Loubrieu, B.; Gautier, E.; Baltzer, A.; Imbert, P.; Battani, A.; Deville, E.; Dupont, P.; Thomas, Y.; Théréau, E.

    2017-12-01

    The recent identification of acoustic and visual gas release in the water column at the Aquitaine Shelf (140 and 220 m water depths) led to the discovery of a 200 km2 fluid system at the seafloor with 3000 bubbling sites associated with microbial methane (Dupré et al 2014; Ruffine et al. 2017). The moderate methane fluxes (measured in situ, on average 200 mLn/min per bubbling site) contribute to the formation of small-scale sub-circular authigenic carbonate mounds (with reliefs < 1 m in height) (Pierre et al. 2017). The emitted gases have neither a genetic link with thermogenic hydrocarbons from the Parentis Basin beneath, nor are issued from gas hydrate dissociation, but originate from microbial CO2 reduction. Based on estimated thickness and growth rate of authigenic carbonates, this system has lasted for at least several tens to possibly hundreds of kyears with a volume of escaping methane reaching 3.1012 Ln per 10 kyr. Seismic evidences for gas-charged layers and fossil authigenic carbonates point to organic matter source levels within the sedimentary deposits of the Late Pleistocene progradation system. The Aquitaine Shelf fluid system highlights the edge of continental shelves as preferential areas for bio-geological processes. The GAZCOGNE project is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. References Dupré S, Berger L, Le Bouffant N, Scalabrin C, Bourillet J-F (2014) Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): a biogenic origin or the expression of hydrocarbon leakage? Cont. Shelf Res. 88:24-33 Pierre C, Demange J, Blanc-Valleron M-M, Dupré S (2017) Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of Biscay, France): Evidence for anaerobic oxidation of biogenic methane and submarine groundwater discharge during formation. Cont. Shelf Res. 133:13-25 Ruffine L, Donval J-P, Croguennec C, Bignon L, Birot D, Battani A, Bayon

  12. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    PubMed

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  13. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    NASA Astrophysics Data System (ADS)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  14. A laboratory study of anaerobic oxidation of methane in the presence of methane hydrate

    NASA Astrophysics Data System (ADS)

    Solem, R.; Bartlett, D.; Kastner, M.; Valentine, D.

    2003-12-01

    In order to mimic and study the process of anaerobic methane oxidation in methane hydrate regions we developed four high-pressure anaerobic bioreactors, designed to incubate environmental sediment samples, and enrich for populations of microbes associated with anaerobic methane oxidation (AMO). We obtained sediment inocula from a bacterial mat at the southern Hydrate Ridge, Cascadia, having cell counts approaching 1010 cells/cc. Ultimately, our goal is to produce an enriched culture of these microbes for characterization of the biochemical processes and chemical fluxes involved, as well as the unique adaptations required for, AMO. Molecular phylogenetic information along with results from fluorescent in situ hybridization indicate that consortia of Archaea and Bacteria are present which are related to those previously described for marine sediment AMO environments. Using a medium of enriched seawater and sediment in a 3:1 ratio, the system was incubated at 4° C under 43 atm of methane pressure; the temperature and pressure were kept constant. We have followed the reactions for seven months, particularly the vigorous consumption rates of dissolved sulfate and alkalinity production, as well as increases in HS-, and decreases in Ca concentrations. We also monitored the dissolved inorganic C (DIC) δ 13C values. The data were reproduced, and indicated that the process is extremely sensitive to changes in methane pressure. The rates of decrease in sulfate and increase in alkalinity concentrations were complimentary and showed considerable linearity with time. When the pressure in the reactor was decreased below the methane hydrate stability field, following the methane hydrate dissociation, sulfate reduction abruptly decreased. When the pressure was restored all the reactions returned to their previous rates. Much of the methane oxidation activity in the reactor is believed to occur in association with the methane hydrate. Upon the completion of one of the experiments

  15. Petroleum surface oil seeps from Palaeoproterozoic petrified giant oilfield

    NASA Astrophysics Data System (ADS)

    Melezhik, V.; Fallick, A.; Filippov, M.; Lepland, A.; Rychanchik, D.; Deines, Yu.; Medvedev, P.; Romashkin, A.; Strauss, H.

    2009-04-01

    Evidence of petroleum generation and migration has been previously reported from rocks dating as early as 3.25 Ga. Micron-size carbonaceous streaks and bitumen micronodules were found in abundance in Archaean rocks across the Pilbara craton in Australia suggesting pervasive petroleum generation and migration. However, none of the Archaean petroleum deposits has been reported to be preserved in quantity due to destructive effects of deformation and thermal obliteration during metamorphism. During the Palaeoproterozoic, unprecedented accumulation of Corg-rich rocks worldwide, known as the 2.0 Ga Shunga Event, occurred during the early stage of progressive oxidation of terrestrial environments, and in the aftermath of the Lomagundi-Jatuli isotopic event, which based on the magnitude and duration of positive d13C was the greatest perturbation of the global carbon cycle in Earth history. C. 2.0 Ga Zaonezhskaya Formation (ZF) rocks from the Onega Basin in Russian Fennoscandia contain evidence for substantial accumulation and preservation of organic matter (up to 75 wt.-% total organic carbon) with an estimated original petroleum potential comparable to a modern supergiant oilfield. The basin contains a uniquely preserved petrified oilfield including evidence of oil traps and oil migration pathways. Here, we report the discovery of the surface expression of a migration pathway, along which petroleum was flowing from the sub-surface. This surface oil seep, the first occurrence ever reported from the Palaeoproterozoic, appears as originally bitumen clasts redeposited in Palaeoproterozoic lacustrine turbidites of the Kondopozhskaya Formation. The d13Corg of clastic pyrobitumen ranges between -35.4 and -36.0 per mill (n = 14) which is within the range of interbed- and vein-trapped fossil oil (-46 and -24 per mill), suggesting similar source. Biogenic organic matter, whose isotopic composition was modified during thermal maturation, is the likely source for the migrated

  16. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number

  17. A recent investigation of gas hydrate as a factor in northern Cascadia accretionary margin frontal ridge slope failures and cold seep biogeochemistry

    NASA Astrophysics Data System (ADS)

    Haacke, R.; Riedel, M.; Pohlman, J.; Rose, K.; Lapham, L.; Hamilton, T. S.; Enkin, R.; Spence, G.; Hyndman, R.

    2008-12-01

    seeps of active methane venting (seen as bubble-plumes in echo-sounder data). A series of cores were taken from Bullseye Vent, Barkley Canyon and a newly discovered vent 10 km west of Bullseye Vent. These investigations are closely linked to the NEPTUNE project that will deploy long-term monitoring stations on the N. Cascadia margin in 2009 for methane hydrate studies. Shipboard scientific party in alphabetical order: R. Enkin (NRCan), L. Esteban (NRCan), R. Haacke (NRCan), T.S. Hamilton (Camosun), M. Hogg (Camosun), L. Lapham (Florida State), G. Middleton (NRCan), P. Neelands (NRCan), J. Pohlman (USGS), M. Riedel (McGill), K. Rose (USDOE), A. Schlesinger (UVic), G. Standen (Geoforce), A. Stephenson (UVic), S. Taylor (NRCan), W. Waite (USGS), X. Wang (McGill)

  18. Low upper limit to methane abundance on Mars.

    PubMed

    Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Flesch, Gregory J; Farley, Kenneth A

    2013-10-18

    By analogy with Earth, methane in the Martian atmosphere is a potential signature of ongoing or past biological activity. During the past decade, Earth-based telescopic observations reported "plumes" of methane of tens of parts per billion by volume (ppbv), and those from Mars orbit showed localized patches, prompting speculation of sources from subsurface bacteria or nonbiological sources. From in situ measurements made with the Tunable Laser Spectrometer (TLS) on Curiosity using a distinctive spectral pattern specific to methane, we report no detection of atmospheric methane with a measured value of 0.18 ± 0.67 ppbv corresponding to an upper limit of only 1.3 ppbv (95% confidence level), which reduces the probability of current methanogenic microbial activity on Mars and limits the recent contribution from extraplanetary and geologic sources.

  19. Methane on Mars: Measurements and Possible Origins

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.; Radeva, Yana L.; Kaufl, H. Ulrich; Tokunaga, Alan; Encrenaz, Therese; Hartogh, Paul

    2011-01-01

    The presence of abundant methane in Earth's atmosphere (1.6 parts per million) requires sources other than atmospheric chemistry. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane has been sought for nearly 40 years because of its potential biological significance, but it was detected only recently [1-5]. Its distribution on the planet is found to be patchy and to vary with time [1,2,4,5], suggesting that methane is released recently from the subsurface in localized areas, and is then rapidly destroyed [1,6]. Before 2000, searchers obtained sensitive upper limits for methane by averaging over much of Mars' dayside hemisphere, using data acquired by Marsorbiting spacecraft (Mariner 9) and Earth-based observatories (Kitt Peak National Observatory, Canada- France-Hawaii Telescope, Infrared Space Observatory). These negative findings suggested that methane should be searched at higher spatial resolution since the local abundance could be significantly larger at active sites. Since 2001, searches for methane have emphasized spatial mapping from terrestrial observatories and from Mars orbit (Mars Express).

  20. Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Aquilina, Alfred; Woulds, Clare; Glover, Adrian G.; Little, Crispin T. S.; Reid, William D. K.; Hepburn, Laura E.; Newton, Jason; Mills, Rachel A.

    2016-09-01

    Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe-metazoan interactions.

  1. Martian Methane From a Cometary Source: A Hypothesis

    NASA Technical Reports Server (NTRS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  2. Catalytic conversion of methane to methanol using Cu-zeolites.

    PubMed

    Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2012-01-01

    The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.

  3. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    PubMed Central

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  4. Using mobile, internet connected deep sea crawlers for spatial and temporal analysis of cold seep ecosystems and the collection of real-time classroom data for extreme environment education.

    NASA Astrophysics Data System (ADS)

    Purser, Autun; Kwasnitschka, Tom; Duda, Alexander; Schwendner, Jakob; Bamberg, Marlene; Sohl, Frank; Doya, Carol; Aguzzi, Jacopo; Best, Mairi; Llovet, Neus Campanya I.; Scherwath, Martin; Thomsen, Laurenz

    2015-04-01

    Cabled internet and power connectivity with the deep sea allow instruments to operate in the deep sea at higher temporal resolutions than was possible historically, with the reliance on battery life and data storage capacities. In addition to the increase in sensor temporal frequency, cabled infrastructures now allow remote access to and control of mobile platforms on the seafloor. Jacobs University Bremen, in combination with collaborators from the Robotic Exploration of Extreme Environments (ROBEX) project, CSIC Barcelona and Ocean Networks Canada have been operating tracked deep sea crawler vehicles at ~890 m depth at the dynamic Barkley Canyon methane seep site, Pacific Canada during the last ~4 years. The vehicle has been able to explore an area of ~50 m radius, allowing repeated visits to numerous microhabitats. Mounting a range of sensors, including temperature, pressure, conductivity, fluorescence, turbidity, flow and methane concentration sensors, as well as various camera systems a large dataset has been compiled. Several methane pockmarks are present in the survey area, and geological, biological and oceanographic changes have been monitored over a range of timescales. Several publications have been produced, and in this presentation we introduce further data currently under analysis. Cabled internet connectivity further allows mobile platforms to be used directly in education. As part of the ROBEX project, researchers and students from both terrestrial and planetary sciences are using the crawler in an ongoing study project. Students are introduced to statistical methods from both fields during the course and in later stages they can plan their own research using the in-situ crawler, and follow the progress of their investigations live, then analyse the collected data using the techniques introduced during the course. Cabled infrastructures offer a unique facility for spatial investigation of extreme ecosystems over time, and for the 'hands on

  5. Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs.

    PubMed

    Daelman, Matthijs R J; Van Eynde, Tamara; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2014-12-01

    Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Management of Herbaceous Seeps and Wet Savannas for Threatened and Endangered Species.

    DTIC Science & Technology

    1998-04-01

    This document covers the ecology of, impacts to, and management for imbedded (or " inclusional ") wetland communities within the matrix. These wetland...Figure 3. Costal Plain depression pond in Georgia. These inclusional communities usually are not treated separately in literature syntheses regarding...Associated Plant Communities Herbaceous hillside seeps, wet savannas, and small depression ponds exist as inclusional communities within more extensive

  7. Relative acoustic frequency response of induced methane, carbon dioxide and air gas bubble plumes, observed laterally.

    PubMed

    Kubilius, Rokas; Pedersen, Geir

    2016-10-01

    There is an increased need to detect, identify, and monitor natural and manmade seabed gas leaks. Fisheries echosounders are well suited to monitor large volumes of water and acoustic frequency response [normalized acoustic backscatter, when a measure at one selected frequency is used as a denominator, r(f)] is commonly used to identify echoes from fish and zooplankton species. Information on gas plume r(f) would be valuable for automatic detection of subsea leaks and for separating bubble plumes from natural targets such as swimbladder-bearing fish. Controlled leaks were produced with a specially designed instrument frame suspended in mid-water in a sheltered fjord. The frame was equipped with echosounders, stereo-camera, and gas-release nozzles. The r(f) of laterally observed methane, carbon dioxide, and air plumes (0.040-29 l/min) were measured at 70, 120, 200, and 333 kHz, with bubble sizes determined optically. The observed bubble size range (1-25 mm) was comparable to that reported in the literature for natural cold seeps of methane. A negative r(f) with increasing frequency was observed, namely, r(f) of about 0.7, 0.6, and 0.5 at 120, 200, and 333 kHz when normalized to 70 kHz. Measured plume r(f) is also compared to resolved, single bubble target strength-based, and modeled r(f).

  8. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats.

    PubMed

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2015-12-03

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm(-2)). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5's common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi's closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  9. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  10. Microbial processes and communities in sediment samples along a transect across the Lusi mud volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Krueger, Martin; Straaten, Nontje; Mazzini, Adriano

    2015-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems. This eruption started in 2006 following to a 6.3 M earthquake that stroke Java Island. Since then it has been spewing boiling mud from a central crater with peaks reaching 180.000 m3 per day. Today an area of about 8 km2 is covered by locally dried mud breccia where a network of hundreds of satellite seeping pools is active. Numerous investigations focused on the study of offshore microbial colonies that commonly thrive at offshore methane seeps and mud volcanoes, however very little has been done for onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 and CO2 as well as of heavier liquid hydrocarbons originating from several km below the surface. We conducted a sampling campaign at the Lusi site collecting samples of fresh mud close to the erupting crater using a remote controlled drone. In addition we completed a transect towards outer parts of the crater to collect older, weathered samples for comparison. In all samples active microorganisms were present. The highest activities for CO2 and CH4 production as well as for CH4 oxidation and hydrocarbon degradation were observed in medium-age mud samples collected roughly in the middle of the transect. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade hydrocarbons (oils, alkanes, BTEX tested). The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Currently, the microbial communities in the different sediment samples are analyzed using quantitative PCR and T-RFLP combined with MiSeq sequencing. This study represents an initial step to better understand onshore seepage

  11. The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep

    PubMed Central

    Roden, Eric E.; McBeth, Joyce M.; Blöthe, Marco; Percak-Dennett, Elizabeth M.; Fleming, Emily J.; Holyoke, Rebecca R.; Luther, George W.; Emerson, David; Schieber, Juergen

    2012-01-01

    Evidence for microbial Fe redox cycling was documented in a circumneutral pH groundwater seep near Bloomington, Indiana. Geochemical and microbiological analyses were conducted at two sites, a semi-consolidated microbial mat and a floating puffball structure. In situ voltammetric microelectrode measurements revealed steep opposing gradients of O2 and Fe(II) at both sites, similar to other groundwater seep and sedimentary environments known to support microbial Fe redox cycling. The puffball structure showed an abrupt increase in dissolved Fe(II) just at its surface (∼5 cm depth), suggesting an internal Fe(II) source coupled to active Fe(III) reduction. Most probable number enumerations detected microaerophilic Fe(II)-oxidizing bacteria (FeOB) and dissimilatory Fe(III)-reducing bacteria (FeRB) at densities of 102 to 105 cells mL−1 in samples from both sites. In vitro Fe(III) reduction experiments revealed the potential for immediate reduction (no lag period) of native Fe(III) oxides. Conventional full-length 16S rRNA gene clone libraries were compared with high throughput barcode sequencing of the V1, V4, or V6 variable regions of 16S rRNA genes in order to evaluate the extent to which new sequencing approaches could provide enhanced insight into the composition of Fe redox cycling microbial community structure. The composition of the clone libraries suggested a lithotroph-dominated microbial community centered around taxa related to known FeOB (e.g., Gallionella, Sideroxydans, Aquabacterium). Sequences related to recognized FeRB (e.g., Rhodoferax, Aeromonas, Geobacter, Desulfovibrio) were also well-represented. Overall, sequences related to known FeOB and FeRB accounted for 88 and 59% of total clone sequences in the mat and puffball libraries, respectively. Taxa identified in the barcode libraries showed partial overlap with the clone libraries, but were not always consistent across different variable regions and sequencing platforms. However, the barcode

  12. Quantifying sources of methane using light alkanes in the Los Angeles basin, California

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Ryerson, T. B.; Brioude, J.; Aikin, K. C.; Andrews, A. E.; Atlas, E.; Blake, D.; Daube, B. C.; de Gouw, J. A.; Dlugokencky, E.; Frost, G. J.; Gentner, D. R.; Gilman, J. B.; Goldstein, A. H.; Harley, R. A.; Holloway, J. S.; Kofler, J.; Kuster, W. C.; Lang, P. M.; Novelli, P. C.; Santoni, G. W.; Trainer, M.; Wofsy, S. C.; Parrish, D. D.

    2013-05-01

    Methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and C2-C5 alkanes were measured throughout the Los Angeles (L.A.) basin in May and June 2010. We use these data to show that the emission ratios of CH4/CO and CH4/CO2 in the L.A. basin are larger than expected from population-apportioned bottom-up state inventories, consistent with previously published work. We use experimentally determined CH4/CO and CH4/CO2 emission ratios in combination with annual State of California CO and CO2 inventories to derive a yearly emission rate of CH4 to the L.A. basin. We further use the airborne measurements to directly derive CH4 emission rates from dairy operations in Chino, and from the two largest landfills in the L.A. basin, and show these sources are accurately represented in the California Air Resources Board greenhouse gas inventory for CH4. We then use measurements of C2-C5 alkanes to quantify the relative contribution of other CH4 sources in the L.A. basin, with results differing from those of previous studies. The atmospheric data are consistent with the majority of CH4 emissions in the region coming from fugitive losses from natural gas in pipelines and urban distribution systems and/or geologic seeps, as well as landfills and dairies. The local oil and gas industry also provides a significant source of CH4 in the area. The addition of CH4 emissions from natural gas pipelines and urban distribution systems and/or geologic seeps and from the local oil and gas industry is sufficient to account for the differences between the top-down and bottom-up CH4 inventories identified in previously published work.

  13. Methane-derived authigenic carbonates along the North Anatolian fault system in the Sea of Marmara (Turkey)

    NASA Astrophysics Data System (ADS)

    Crémière, Antoine; Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Zitter, Tiphaine; Çağatay, M. Namik; Henry, Pierre

    2012-08-01

    The Marnaut cruise (May-June 2007) investigated the submerged part of the North Anatolian fault system, an active tectonic area in the Sea of Marmara. Already known and new fluid venting sites along the fault system were visited by submersible diving. Cold seeps present a considerable diversity of geochemical background associated with occurrences of authigenic carbonate crusts outcropping at the seafloor. Buried carbonate concretions were also recovered by coring within the sediments of the Tekirdağ Basin and of the Western-High ridge that separates the Tekirdağ and Central Basins. Interestingly, numerous of these early diagenetic carbonates were found within the transitional sediments from lacustrine to marine environment deposited after the late glacial maximum. The authigenic carbonates are mainly composed of aragonite, Mg-calcite and minor amounts of dolomite, and are often associated with pyrite and barite. The carbon isotopic compositions of carbonates present a wide range of values from -50.6‰ to +14.2‰ V-PDB indicating different diagenetic settings and complex mixtures of dissolved inorganic carbon from different sources. The low δ13C values of the seafloor crusts and of most buried concretions indicate that the carbon source was a mixture of microbial and thermogenic methane and possibly other hydrocarbons that were oxidized by anaerobic microbial processes. The positive δ13C values of a few buried concretions from the Western-High ridge reflect the mineralization of heavy CO2, which is thought to represent the residual by-product of oil biodegradation in a subsurface petroleum reservoir that migrated up with brines. Most of the oxygen isotopic compositions of seafloor carbonates are close to the isotopic equilibrium with the present-day bottom water conditions but a few values as low as -1.9‰ V-PDB indicate precipitation from brackish waters. In buried carbonate concretions, δ18O values as high as +4.9‰ V-PDB reflect the contribution of

  14. Activated carbon derived from waste coffee grounds for stable methane storage.

    PubMed

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  15. Activated carbon derived from waste coffee grounds for stable methane storage

    NASA Astrophysics Data System (ADS)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  16. Methane emission from flooded soils - from microorganisms to the atmosphere

    NASA Astrophysics Data System (ADS)

    Conrad, Ralf

    2016-04-01

    Methane is an important greenhouse gas that is affected by anthropogenic activity. The annual budget of atmospheric methane, which is about 600 million tons, is by more than 75% produced by methanogenic archaea. These archaea are the end-members of a microbial community that degrades organic matter under anaerobic conditions. Flooded rice fields constitute a major source (about 10%) of atmospheric methane. After flooding of soil, anaerobic processes are initiated, finally resulting in the disproportionation of organic matter to carbon dioxide and methane. This process occurs in the bulk soil, on decaying organic debris and in the rhizosphere. The produced methane is mostly ventilated through the plant vascular system into the atmosphere. This system also allows the diffusion of oxygen into the rizosphere, where part of the produced methane is oxidized by aerobic methanotrophic bacteria. More than 50% of the methane production is derived from plant photosynthetic products and is formed on the root surface. Methanocellales are an important group of methanogenic archaea colonizing rice roots. Soils lacking this group seem to result in reduced root colonization and methane production. In rice soil methane is produced by two major paths of methanogenesis, the hydrogenotrophic one reducing carbon dioxide to methane, and the aceticlastic one disproportionating acetate to methane and carbon dioxide. Theoretically, at least two third of the methane should be produced by aceticlastic and the rest by hydrogenotrophic methanogenesis. In nature, however, the exact contribution of the two paths can vary from zero to 100%. Several environmental factors, such as temperature and quality of organic matter affect the path of methane production. The impact of these factors on the composition and activity of the environmental methanogenic microbial community will be discussed.

  17. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds

    USDA-ARS?s Scientific Manuscript database

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...

  18. Bubble composition of natural gas seeps discovered along the Cascadia Continental Margin

    NASA Astrophysics Data System (ADS)

    Baumberger, T.; Merle, S. G.; Embley, R. W.; Seabrook, S.; Raineault, N.; Lilley, M. D.; Evans, L. J.; Walker, S. L.; Lupton, J. E.

    2016-12-01

    Gas hydrates and gas-filled pockets present in sedimentary deposits have been recognized as large reservoirs for reduced carbon in the Earth's crust. This is particularly relevant in geological settings with high carbon input, such as continental margins. During expedition NA072 on the E/V Nautilus (operated by the Ocean Exploration Trust Inc.) in June 2016, the U.S. Cascadia Continental Margin (Washington, Oregon and northern California) was explored for gas seepage from sediments. During this expedition, over 400 bubble plumes at water depths ranging from 125 and 1640 m were newly discovered, and five of them were sampled for gas bubble composition using specially designed gas tight fluid samplers mounted on the Hercules remotely operated vehicle (ROV). These gas bubble samples were collected at four different depths, 494 m (rim of Astoria Canyon), 615 and 620 m (SW Coquille Bank), 849 m (floor of Astoria Canyon) and 1227 m (Heceta SW). At the two deeper sites, exposed hydrate was present in the same area where bubbles were seeping out from the seafloor. Other than the escaping gas bubbles, no other fluid flow was visible. However, the presence of bacterial mats point to diffuse fluid flow present in the affected area. In this study we present the results of the currently ongoing geochemical analysis of the gas bubbles released at the different sites and depths. Noble gas analysis, namely helium and neon, will give information about the source of the helium as well as about potential fractionation between helium and neon associated with gas hydrates. The characterization of these gas samples will also include total gas (CO2, H2, N2, O2, Ar, CH4 and other hydrocarbons) and stable isotope analysis (C and H). This dataset will reveal the chemical composition of the seeping bubbles as well as give information about the possible sources of the carbon contained in the seeping gas.

  19. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  20. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling.

    PubMed

    Pisso, I; Myhre, C Lund; Platt, S M; Eckhardt, S; Hermansen, O; Schmidbauer, N; Mienert, J; Vadakkepuliyambatta, S; Bauguitte, S; Pitt, J; Allen, G; Bower, K N; O'Shea, S; Gallagher, M W; Percival, C J; Pyle, J; Cain, M; Stohl, A

    2016-12-16

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH 4 mixing ratios measured by the different platforms. To address uncertainty about where CH 4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH 4 emission areas. We found small differences between the CH 4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH 4 fluxes. The CH 4 flux during the campaign was small, with an upper limit of 2.5 nmol m -2  s -1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH 4 fluxes from the Svalbard continental platform below 0.2 Tg yr -1 . All estimates are in the lower range of values previously reported.