Sample records for active normal modes

  1. Normal Modes Expose Active Sites in Enzymes.

    PubMed

    Glantz-Gashai, Yitav; Meirson, Tomer; Samson, Abraham O

    2016-12-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.

  2. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  3. Normalized modes at selected points without normalization

    NASA Astrophysics Data System (ADS)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  4. Helicon normal modes in Proto-MPEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.

    Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less

  5. Helicon normal modes in Proto-MPEX

    DOE PAGES

    Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.; ...

    2018-05-22

    Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less

  6. Normal modes of weak colloidal gels

    NASA Astrophysics Data System (ADS)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer

  7. Normal mode analysis and applications in biological physics.

    PubMed

    Dykeman, Eric C; Sankey, Otto F

    2010-10-27

    Normal mode analysis has become a popular and often used theoretical tool in the study of functional motions in enzymes, viruses, and large protein assemblies. The use of normal modes in the study of these motions is often extremely fruitful since many of the functional motions of large proteins can be described using just a few normal modes which are intimately related to the overall structure of the protein. In this review, we present a broad overview of several popular methods used in the study of normal modes in biological physics including continuum elastic theory, the elastic network model, and a new all-atom method, recently developed, which is capable of computing a subset of the low frequency vibrational modes exactly. After a review of the various methods, we present several examples of applications of normal modes in the study of functional motions, with an emphasis on viral capsids.

  8. Normal mode study of the earth's rigid body motions

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1983-01-01

    In this paper it is shown that the earth's rigid body (rb) motions can be represented by an analytical set of eigensolutions to the equation of motion for elastic-gravitational free oscillations. Thus each degree of freedom in the rb motion is associated with a rb normal mode. Cases of both nonrotating and rotating earth models are studied, and it is shown that the rb modes do incorporate neatly into the earth's system of normal modes of free oscillation. The excitation formula for the rb modes are also obtained, based on normal mode theory. Physical implications of the results are summarized and the fundamental differences between rb modes and seismic modes are emphasized. In particular, it is ascertained that the Chandler wobble, being one of the rb modes belonging to the rotating earth, can be studied using the established theory of normal modes.

  9. Helicon normal modes in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Green, D. L.; Goulding, R. H.; Lau, C.; Caughman, J. B. O.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    The Proto-MPEX helicon source has been operating in a high electron density ‘helicon-mode’. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the ‘helicon-mode’. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besides directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region. ).

  10. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  11. Normal modes of a small gamelan gong.

    PubMed

    Perrin, Robert; Elford, Daniel P; Chalmers, Luke; Swallowe, Gerry M; Moore, Thomas R; Hamdan, Sinin; Halkon, Benjamin J

    2014-10-01

    Studies have been made of the normal modes of a 20.7 cm diameter steel gamelan gong. A finite-element model has been constructed and its predictions for normal modes compared with experimental results obtained using electronic speckle pattern interferometry. Agreement was reasonable in view of the lack of precision in the manufacture of the instrument. The results agree with expectations for an axially symmetric system subject to small symmetry breaking. The extent to which the results obey Chladni's law is discussed. Comparison with vibrational and acoustical spectra enabled the identification of the small number of modes responsible for the sound output when played normally. Evidence of non-linear behavior was found, mainly in the form of subharmonics of true modes. Experiments using scanning laser Doppler vibrometry gave satisfactory agreement with the other methods.

  12. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.

    PubMed

    Levitt, M; Sander, C; Stern, P S

    1985-02-05

    We have developed a new method for modelling protein dynamics using normal-mode analysis in internal co-ordinates. This method, normal-mode dynamics, is particularly well suited for modelling collective motion, makes possible direct visualization of biologically interesting modes, and is complementary to the more time-consuming simulation of molecular dynamics trajectories. The essential assumption and limitation of normal-mode analysis is that the molecular potential energy varies quadratically. Our study starts with energy minimization of the X-ray co-ordinates with respect to the single-bond torsion angles. The main technical task is the calculation of second derivative matrices of kinetic and potential energy with respect to the torsion angle co-ordinates. These enter into a generalized eigenvalue problem, and the final eigenvalues and eigenvectors provide a complete description of the motion in the basic 0.1 to 10 picosecond range. Thermodynamic averages of amplitudes, fluctuations and correlations can be calculated efficiently using analytical formulae. The general method presented here is applied to four proteins, trypsin inhibitor, crambin, ribonuclease and lysozyme. When the resulting atomic motion is visualized by computer graphics, it is clear that the motion of each protein is collective with all atoms participating in each mode. The slow modes, with frequencies of below 10 cm-1 (a period of 3 ps), are the most interesting in that the motion in these modes is segmental. The root-mean-square atomic fluctuations, which are dominated by a few slow modes, agree well with experimental temperature factors (B values). The normal-mode dynamics of these four proteins have many features in common, although in the larger molecules, lysozyme and ribonuclease, there is low frequency domain motion about the active site.

  13. Instantaneous Normal Modes and the Protein Glass Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Roland; Krishnan, Marimuthu; Daidone, Isabella

    2009-01-01

    In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at ~ 220more » K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.« less

  14. Instantaneous Normal Modes and the Protein Glass Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Roland; Krishnan, Marimuthu; Daidone, Isabella

    2009-01-01

    In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at 220 K.more » The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.« less

  15. Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme

    NASA Astrophysics Data System (ADS)

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2012-08-01

    Information on the electronic structure of a molecule and its chemical bonds is encoded in the molecular normal vibrational modes. However, normal vibrational modes result from a coupling of local vibrational modes, which means that only the latter can provide detailed insight into bonding and other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)], 10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0 represent a unique set of local modes that is directly related to the normal vibrational modes. The missing link between these two sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode frequencies of any molecule can be converted into its normal mode frequencies with the help of an adiabatic connection scheme that defines the coupling of the local modes in terms of coupling frequencies and reveals how avoided crossings between the local modes lead to changes in the character of the normal modes.

  16. Normal mode-guided transition pathway generation in proteins

    PubMed Central

    Lee, Byung Ho; Seo, Sangjae; Kim, Min Hyeok; Kim, Youngjin; Jo, Soojin; Choi, Moon-ki; Lee, Hoomin; Choi, Jae Boong

    2017-01-01

    The biological function of proteins is closely related to its structural motion. For instance, structurally misfolded proteins do not function properly. Although we are able to experimentally obtain structural information on proteins, it is still challenging to capture their dynamics, such as transition processes. Therefore, we need a simulation method to predict the transition pathways of a protein in order to understand and study large functional deformations. Here, we present a new simulation method called normal mode-guided elastic network interpolation (NGENI) that performs normal modes analysis iteratively to predict transition pathways of proteins. To be more specific, NGENI obtains displacement vectors that determine intermediate structures by interpolating the distance between two end-point conformations, similar to a morphing method called elastic network interpolation. However, the displacement vector is regarded as a linear combination of the normal mode vectors of each intermediate structure, in order to enhance the physical sense of the proposed pathways. As a result, we can generate more reasonable transition pathways geometrically and thermodynamically. By using not only all normal modes, but also in part using only the lowest normal modes, NGENI can still generate reasonable pathways for large deformations in proteins. This study shows that global protein transitions are dominated by collective motion, which means that a few lowest normal modes play an important role in this process. NGENI has considerable merit in terms of computational cost because it is possible to generate transition pathways by partial degrees of freedom, while conventional methods are not capable of this. PMID:29020017

  17. Normal modes of the shallow water system on the cubed sphere

    NASA Astrophysics Data System (ADS)

    Kang, H. G.; Cheong, H. B.; Lee, C. H.

    2017-12-01

    Spherical harmonics expressed as the Rossby-Haurwitz waves are the normal modes of non-divergent barotropic model. Among the normal modes in the numerical models, the most unstable mode will contaminate the numerical results, and therefore the investigation of normal mode for a given grid system and a discretiztaion method is important. The cubed-sphere grid which consists of six identical faces has been widely adopted in many atmospheric models. This grid system is non-orthogonal grid so that calculation of the normal mode is quiet challenge problem. In the present study, the normal modes of the shallow water system on the cubed sphere discretized by the spectral element method employing the Gauss-Lobatto Lagrange interpolating polynomials as orthogonal basis functions is investigated. The algebraic equations for the shallow water equation on the cubed sphere are derived, and the huge global matrix is constructed. The linear system representing the eigenvalue-eigenvector relations is solved by numerical libraries. The normal mode calculated for the several horizontal resolution and lamb parameters will be discussed and compared to the normal mode from the spherical harmonics spectral method.

  18. Mean flow generation mechanism by inertial waves and normal modes

    NASA Astrophysics Data System (ADS)

    Will, Andreas; Ghasemi, Abouzar

    2016-04-01

    The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2

  19. A new method to real-normalize measured complex modes

    NASA Technical Reports Server (NTRS)

    Wei, Max L.; Allemang, Randall J.; Zhang, Qiang; Brown, David L.

    1987-01-01

    A time domain subspace iteration technique is presented to compute a set of normal modes from the measured complex modes. By using the proposed method, a large number of physical coordinates are reduced to a smaller number of model or principal coordinates. Subspace free decay time responses are computed using properly scaled complex modal vectors. Companion matrix for the general case of nonproportional damping is then derived in the selected vector subspace. Subspace normal modes are obtained through eigenvalue solution of the (M sub N) sup -1 (K sub N) matrix and transformed back to the physical coordinates to get a set of normal modes. A numerical example is presented to demonstrate the outlined theory.

  20. Normal modes and mode transformation of pure electron vortex beams

    PubMed Central

    Thirunavukkarasu, G.; Mousley, M.; Babiker, M.

    2017-01-01

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre–Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite–Gaussian beams. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069769

  1. Normal modes and mode transformation of pure electron vortex beams.

    PubMed

    Thirunavukkarasu, G; Mousley, M; Babiker, M; Yuan, J

    2017-02-28

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  2. Normal-mode selectivity in ultrafast Raman excitations in C60

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; George, Thomas F.

    2006-01-01

    Ultrafast Raman spectra are a powerful tool to probe vibrational excitations, but inherently they are not normal-mode specific. For a system as complicated as C60 , there is no general rule to target a specific mode. A detailed study presented here aims to investigate normal-mode selectivity in C60 by an ultrafast laser. To accurately measure mode excitation, we formally introduce the kinetic-energy-based normal-mode analysis which overcomes the difficulty with the strong lattice anharmonicity and relaxation. We first investigate the resonant excitation and find that mode selectivity is normally difficult to achieve. However, for off-resonant excitations, it is possible to selectively excite a few modes in C60 by properly choosing an optimal laser pulse duration, which agrees with previous experimental and theoretical findings. Going beyond the phenomenological explanation, our study shines new light on the origin of the optimal duration: The phase matching between the laser field and mode vibration determines which mode is strongly excited or suppressed. This finding is very robust and should be a useful guide for future experimental and theoretical studies in more complicated systems.

  3. Normal mode selectivity in ultrafast Raman excitations in C60

    NASA Astrophysics Data System (ADS)

    Zhang, Guoping; George, Thomas F.

    2006-05-01

    Ultrafast Raman spectra are a powerful tool to probe vibrational excitations, but inherently they are not normal-mode specific. For a system as complicated as C60, there is no general rule to target a specific mode. A detailed study presented here aims to investigate normal mode selectivity in C60 by an ultrafast laser. To accurately measure mode excitation, we formally introduce the kinetic energy-based normal mode analysis which overcomes the difficulty with the strong lattice anharmonicity and relaxation. We first investigate the resonant excitation and find that mode selectivity is normally difficult to achieve. However, for off-resonant excitations, it is possible to selectively excite a few modes in C60 by properly choosing an optimal laser pulse duration, which agrees with previous experimental and theoretical findings. Going beyond the phenomenological explanation, our study shines new light on the origin of the optimal duration: The phase matching between laser field and mode vibration determines which mode is strongly excited or suppressed. This finding is very robust and may be a useful guide for future experimental and theoretical studies in more complicated systems.

  4. Quasi-Normal Modes of Stars and Black Holes.

    PubMed

    Kokkotas, Kostas D; Schmidt, Bernd G

    1999-01-01

    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordström, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.

  5. Normal mode Rossby waves observed in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Hirooka, T.; Hirota, I.

    1985-01-01

    In recent years, observational evidence has been obtained for westward traveling planetary waves in the middle atmosphere with the aid of global data from satellites. There is no doubt that the fair portion of the observed traveling waves can be understood as the manifestation of the normal mode Rossby waves which are theoretically derived from the tidal theory. Some observational aspects of the structure and behavior of the normal model Rossby waves in the upper stratosphere are reported. The data used are the global stratospheric geopotential thickness and height analyses which are derived mainly from the Stratospheric Sounding Units (SSUs) on board TIROS-N and NOAA satellites. A clear example of the influence of the normal mode Rossby wave on the mean flow is reported. The mechanism considered is interference between the normal mode Rossby wave and the quasi-stationary wave.

  6. Quasi-normal modes from non-commutative matrix dynamics

    NASA Astrophysics Data System (ADS)

    Aprile, Francesco; Sanfilippo, Francesco

    2017-09-01

    We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.

  7. Normal Mode Analysis of Polytheonamide B

    NASA Astrophysics Data System (ADS)

    Mori, Takaharu; Kokubo, Hironori; Shimizu, Hirofumi; Iwamoto, Masayuki; Oiki, Shigetoshi; Okamoto, Yuko

    2007-09-01

    Polytheonamide B is a linear 48-residue peptide which forms a single β-helix structure with alternating d- and l-amino acids and contains methylated and hydroxy variants of proteinogenic amino acids. To investigate the dynamical properties of polytheonamide B we perform the normal mode analysis. Root-mean-square displacements of all backbone atoms, root-mean-square fluctuations of the backbone dihedral angles (φ,\\psi), and correlation factors for the Cα atom fluctuations and for the dihedral angle fluctuations are calculated. The normal mode analysis reveals that polytheonamide B shows the elastic rod behavior in the very low-frequency regions and that librational motions of backbone amide planes have the modes with relatively low frequencies, which is relevant to the function of polytheonamide B. In addition, these librational motions occur almost independently and weakly anticorrelate with those of the hydrogen-bonded neighboring amide planes. Calculations of the backbone fluctuations show that the flexibility of polytheonamide B is roughly uniform over the entire helix. We compare our results with those of gramicidin A, the analogue of polytheonamide B, to discuss the structures and functions, and obtain some common features in the flexibilities and dynamics of the backbone atoms. These results present important clues for clarifying the function of polytheonamide B at the atomic level.

  8. Stability of strongly nonlinear normal modes

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoffrey; Rand, Richard

    2007-10-01

    It is shown that a transformation of time can allow the periodic solution of a strongly nonlinear oscillator to be written as a simple cosine function. This enables the stability of strongly nonlinear normal modes in multidegree of freedom systems to be investigated by standard procedures such as harmonic balance.

  9. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion

    NASA Astrophysics Data System (ADS)

    Jang, Jae K.; Okawachi, Yoshitomo; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2016-12-01

    We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.

  10. Nonlinear normal modes in electrodynamic systems: A nonperturbative approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudrin, A. V., E-mail: kud@rf.unn.ru; Kudrina, O. A.; Petrov, E. Yu.

    2016-06-15

    We consider electromagnetic nonlinear normal modes in cylindrical cavity resonators filled with a nonlinear nondispersive medium. The key feature of the analysis is that exact analytic solutions of the nonlinear field equations are employed to study the mode properties in detail. Based on such a nonperturbative approach, we rigorously prove that the total energy of free nonlinear oscillations in a distributed conservative system, such as that considered in our work, can exactly coincide with the sum of energies of the normal modes of the system. This fact implies that the energy orthogonality property, which has so far been known tomore » hold only for linear oscillations and fields, can also be observed in a nonlinear oscillatory system.« less

  11. Normal-Mode Splitting in a Weakly Coupled Optomechanical System

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David

    2018-02-01

    Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.

  12. An approach to the quantization of black hole quasi-normal modes

    NASA Astrophysics Data System (ADS)

    Pal, Soham; Rajeev, Karthik; Shankaranarayanan, S.

    2015-07-01

    In this work, we derive the asymptotic quasi-normal modes of a Banados-Teitelboim-Zanelli (BTZ) black hole using a quantum field theoretic Lagrangian. The BTZ black hole is a very popular system in the context of 2 + 1-dimensional quantum gravity. However, to our knowledge the quasi-normal modes of the BTZ black hole have been studied only in the classical domain. Here we show a way to quantize the quasi-normal modes of the BTZ black hole by mapping it to the Bateman-Feschbach-Tikochinsky oscillator and the Caldirola-Kanai oscillator. We have also discussed a couple of other black hole potentials to which this method can be applied.

  13. Normal modes of synchronous rotation

    NASA Astrophysics Data System (ADS)

    Varadi, Ferenc; Musotto, Susanna; Moore, William; Schubert, Gerald

    2005-07-01

    The dynamics of synchronous rotation and physical librations are revisited in order to establish a conceptually simple and general theoretical framework applicable to a variety of problems. Our motivation comes from disagreements between the results of numerical simulations and those of previous theoretical studies, and also because different theoretical studies disagree on basic features of the dynamics. We approach the problem by decomposing the orientation matrix of the body into perfectly synchronous rotation and deviation from the equilibrium state. The normal modes of the linearized equations are computed in the case of a circular satellite orbit, yielding both the periods and the eigenspaces of three librations. Libration in longitude decouples from the other two, vertical modes. There is a fast vertical mode with a period very close to the average rotational period. It corresponds to tilting the body around a horizontal axis while retaining nearly principal-axis rotation. In the inertial frame, this mode appears as nutation and free precession. The other vertical mode, a slow one, is the free wobble. The effects of the nodal precession of the orbit are investigated from the point of view of Cassini states. We test our theory using numerical simulations of the full equations of the dynamics and discuss the disagreements among our study and previous ones. The numerical simulations also reveal that in the case of eccentric orbits large departures from principal-axis rotation are possible due to a resonance between free precession and wobble. We also revisit the history of the Moon's rotational state and show that it switched from one Cassini state to another when it was at 46.2 Earth radii. This number disagrees with the value 34.2 derived in a previous study.

  14. Nonlinear normal modes modal interactions and isolated resonance curves

    DOE PAGES

    Kuether, Robert J.; Renson, L.; Detroux, T.; ...

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweepmore » excitations of increasing amplitudes.« less

  15. Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes

    DOE PAGES

    Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; ...

    2015-09-15

    Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinearmore » normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.« less

  16. Fast normal mode computations of capsid dynamics inspired by resonance

    NASA Astrophysics Data System (ADS)

    Na, Hyuntae; Song, Guang

    2018-07-01

    Increasingly more and larger structural complexes are being determined experimentally. The sizes of these systems pose a formidable computational challenge to the study of their vibrational dynamics by normal mode analysis. To overcome this challenge, this work presents a novel resonance-inspired approach. Tests on large shell structures of protein capsids demonstrate that there is a strong resonance between the vibrations of a whole capsid and those of individual capsomeres. We then show how this resonance can be taken advantage of to significantly speed up normal mode computations.

  17. Wormhole potentials and throats from quasi-normal modes

    NASA Astrophysics Data System (ADS)

    Völkel, Sebastian H.; Kokkotas, Kostas D.

    2018-05-01

    Exotic compact objects refer to a wide class of black hole alternatives or effective models to describe phenomenologically quantum gravitational effects on the horizon scale. In this work we show how the knowledge of the quasi-normal mode spectrum of non-rotating wormhole models can be used to reconstruct the effective potential that appears in perturbation equations. From this it is further possible to obtain the parameters that characterize the specific wormhole model, which in this paper was chosen to be the one by Damour and Solodukhin. We also address the question whether one can distinguish such type of wormholes from ultra compact stars, if only the quasi-normal mode spectrum is known. We have proven that this is not possible by using the trapped modes only, but requires additional information. The inverse method presented here is an extension of work that has previously been developed and applied to the oscillation spectra of ultra compact stars and gravastars. However, it is not limited to the study of exotic compact objects, but applicable to symmetric double barrier potentials that appear in one-dimensional wave equations. Therefore we think it can be of interest for other fields too.

  18. Large-amplitude nonlinear normal modes of the discrete sine lattices.

    PubMed

    Smirnov, Valeri V; Manevitch, Leonid I

    2017-02-01

    We present an analytical description of the large-amplitude stationary oscillations of the finite discrete system of harmonically coupled pendulums without any restrictions on their amplitudes (excluding a vicinity of π). Although this model has numerous applications in different fields of physics, it was studied earlier in the infinite limit only. The discrete chain with a finite length can be considered as a well analytical analog of the coarse-grain models of flexible polymers in the molecular dynamics simulations. The developed approach allows to find the dispersion relations for arbitrary amplitudes of the nonlinear normal modes. We emphasize that the long-wavelength approximation, which is described by well-known sine-Gordon equation, leads to an inadequate zone structure for the amplitudes of about π/2 even if the chain is long enough. An extremely complex zone structure at the large amplitudes corresponds to multiple resonances between nonlinear normal modes even with strongly different wave numbers. Due to the complexity of the dispersion relations the modes with shorter wavelengths may have smaller frequencies. The stability of the nonlinear normal modes under condition of the resonant interaction are discussed. It is shown that this interaction of the modes in the vicinity of the long wavelength edge of the spectrum leads to the localization of the oscillations. The thresholds of instability and localization are determined explicitly. The numerical simulation of the dynamics of a finite-length chain is in a good agreement with obtained analytical predictions.

  19. Relationships between nonlinear normal modes and response to random inputs

    NASA Astrophysics Data System (ADS)

    Schoneman, Joseph D.; Allen, Matthew S.; Kuether, Robert J.

    2017-02-01

    The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). This work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing. Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited.

  20. Relationships between nonlinear normal modes and response to random inputs

    DOE PAGES

    Schoneman, Joseph D.; Allen, Matthew S.; Kuether, Robert J.

    2016-07-25

    The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). Here, this work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing.more » Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited.« less

  1. Comparative study of various normal mode analysis techniques based on partial Hessians.

    PubMed

    Ghysels, An; Van Speybroeck, Veronique; Pauwels, Ewald; Catak, Saron; Brooks, Bernard R; Van Neck, Dimitri; Waroquier, Michel

    2010-04-15

    Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and application field but guidelines for the most suitable choice are lacking. We have investigated several partial Hessian methods, including the Partial Hessian Vibrational Analysis (PHVA), the Mobile Block Hessian (MBH), and the Vibrational Subsystem Analysis (VSA). In this article, we focus on the benefits and drawbacks of these methods, in terms of the reproduction of localized modes, collective modes, and the performance in partially optimized structures. We find that the PHVA is suitable for describing localized modes, that the MBH not only reproduces localized and global modes but also serves as an analysis tool of the spectrum, and that the VSA is mostly useful for the reproduction of the low frequency spectrum. These guidelines are illustrated with the reproduction of the localized amine-stretch, the spectrum of quinine and a bis-cinchona derivative, and the low frequency modes of the LAO binding protein. 2009 Wiley Periodicals, Inc.

  2. Comparative Study of Various Normal Mode Analysis Techniques Based on Partial Hessians

    PubMed Central

    GHYSELS, AN; VAN SPEYBROECK, VERONIQUE; PAUWELS, EWALD; CATAK, SARON; BROOKS, BERNARD R.; VAN NECK, DIMITRI; WAROQUIER, MICHEL

    2014-01-01

    Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and application field but guidelines for the most suitable choice are lacking. We have investigated several partial Hessian methods, including the Partial Hessian Vibrational Analysis (PHVA), the Mobile Block Hessian (MBH), and the Vibrational Subsystem Analysis (VSA). In this article, we focus on the benefits and drawbacks of these methods, in terms of the reproduction of localized modes, collective modes, and the performance in partially optimized structures. We find that the PHVA is suitable for describing localized modes, that the MBH not only reproduces localized and global modes but also serves as an analysis tool of the spectrum, and that the VSA is mostly useful for the reproduction of the low frequency spectrum. These guidelines are illustrated with the reproduction of the localized amine-stretch, the spectrum of quinine and a bis-cinchona derivative, and the low frequency modes of the LAO binding protein. PMID:19813181

  3. S-Wave Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2010-01-01

    Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.

  4. Normal modes of the world's oceans: A numerical investigation using Proudman functions

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Morrow, Dennis

    1993-01-01

    The numerical modeling of the normal modes of the global oceans is addressed. The results of such modeling could be expected to serve as a guide in the analysis of observations and measurements intended to detect these modes. The numerical computation of normal modes of the global oceans is a field in which several investigations have obtained results during the past 15 years. The results seem to be model-dependent to an unsatisfactory extent. Some modeling areas, such as higher resolution of the bathymetry, inclusion of self-attraction and loading, the role of the Arctic Ocean, and systematic testing by means of diagnostic models are addressed. The results show that the present state of the art is such that a final solution to the normal mode problem still lies in the future. The numerical experiments show where some of the difficulties are and give some insight as to how to proceed in the future.

  5. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    NASA Astrophysics Data System (ADS)

    Asafi, M. S.; Yildirim, A.; Tekpinar, M.

    2016-04-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated.

  6. Computational aspects of the nonlinear normal mode initialization of the GLAS 4th order GCM

    NASA Technical Reports Server (NTRS)

    Navon, I. M.; Bloom, S. C.; Takacs, L.

    1984-01-01

    Using the normal modes of the GLAS 4th Order Model, a Machenhauer nonlinear normal mode initialization (NLNMI) was carried out for the external vertical mode using the GLAS 4th Order shallow water equations model for an equivalent depth corresponding to that associated with the external vertical mode. A simple procedure was devised which was directed at identifying computational modes by following the rate of increase of BAL sub M, the partial (with respect to the zonal wavenumber m) sum of squares of the time change of the normal mode coefficients (for fixed vertical mode index) varying over the latitude index L of symmetric or antisymmetric gravity waves. A working algorithm is presented which speeds up the convergence of the iterative Machenhauer NLNMI. A 24 h integration using the NLNMI state was carried out using both Matsuno and leap-frog time-integration schemes; these runs were then compared to a 24 h integration starting from a non-initialized state. The maximal impact of the nonlinear normal mode initialization was found to occur 6-10 hours after the initial time.

  7. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.

    2012-08-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  8. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE PAGES

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; ...

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  9. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibaev, M.; Crittenden, D. L., E-mail: deborah.crittenden@canterbury.ac.nz

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm{sup −1} in fundamental frequencies, on average, across a sizable testmore » set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/.« less

  10. Linear perturbations of black holes: stability, quasi-normal modes and tails

    NASA Astrophysics Data System (ADS)

    Zhidenko, Alexander

    2009-03-01

    Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordstrom-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically.

  11. Topography-coupled resonance between Mars normal-modes and the tidal force of the Phobos

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.

    2016-12-01

    Phobos is the largest moon of Mars. The gravity attraction of Phobos to Mars is a periodic force, which may excite seismic waves inside Mars. Since Phobos is below the synchronous orbit, its orbit is continuously decreasing due to the tidal effect. This will result in a monotonic increase in its orbital frequency, which may eventually intrude into the seismic normal-mode frequency range to cause resonance. The objective of this research is to investigate whether such a resonance phenomenon can occur and what the consequence is. As we know, resonance happens when the periodic tidal force has a similar frequency as that of martian normal modes. It can be shown that such a resonance will not occur if Mars is perfectly spherical because the tidal force can only excite modes of the same angular order. For the same angular order, the tidal force frequencies are always smaller than those of the normal modes. However, when we consider the effect of topography of Mars, the resonance can occur because of coupling of normal modes. We use numerical method to calculate when the resonance will occur. We firstly solve for the normal modes of Mars by idealizing it as a solid elastic sphere. At the second step, we calculate the excitation effect of gravitational force from Phobos on each individual normal mode. For example, the gravity tidal force F at L=5, m=5 F55 can excite a normal mode 0S5 which can be coupled to 0T2. The third step is to calculate the frequency that the resonance will happen. For example, when the rotation frequency of Phobos increase to 0.8 mRad/s, the tidal force at L=5, m=5 can reach 4mRad/s which is the eigen-frequency of 0T2. Since we have calculated the coupling factors between each individual mode, the amplitude coefficients can be solved by a linear equation. We can observe a 100 times of amplitude increase of mode 0T2, which convince us the resonance will happen. The resonance may cause large amplitude of ground vibration of Mars. From our calculation

  12. Normal Modes of a Lagrangian System Constrained in a Potential Well.

    DTIC Science & Technology

    1983-12-01

    A’ -137 948 NORMAL MODES OF A LFHbRANGIAN SYSTEM CONSTRAINED INvi P0TENTIAL WELL(U WISCONSNN UNIV-MADISON MATHEMATICS RESEARCH CENTER V EN DEC F1...Carolina 27709 DT FLE OP Y UNIVERSITY OF WISCONSIN-MADISON MATHEMATICS RESEARCH CENTER NORMAL MODES OF A LAGRANGIAN SYSTEM CONSTRAINED IN A POTENTIAL WELL...respect to the norm lYE [f i + 2 yi )dtl/ 0 Since H I(S’ 1 n’) C CO(S, fle ), then the set A 1 0 is an open set in H1 (lf’) The periodic solution of

  13. Fast Eigensolver for Computing 3D Earth's Normal Modes

    NASA Astrophysics Data System (ADS)

    Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.

    2017-12-01

    We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.

  14. Vocal fold contact patterns based on normal modes of vibration.

    PubMed

    Smith, Simeon L; Titze, Ingo R

    2018-05-17

    The fluid-structure interaction and energy transfer from respiratory airflow to self-sustained vocal fold oscillation continues to be a topic of interest in vocal fold research. Vocal fold vibration is driven by pressures on the vocal fold surface, which are determined by the shape of the glottis and the contact between vocal folds. Characterization of three-dimensional glottal shapes and contact patterns can lead to increased understanding of normal and abnormal physiology of the voice, as well as to development of improved vocal fold models, but a large inventory of shapes has not been directly studied previously. This study aimed to take an initial step toward characterizing vocal fold contact patterns systematically. Vocal fold motion and contact was modeled based on normal mode vibration, as it has been shown that vocal fold vibration can be almost entirely described by only the few lowest order vibrational modes. Symmetric and asymmetric combinations of the four lowest normal modes of vibration were superimposed on left and right vocal fold medial surfaces, for each of three prephonatory glottal configurations, according to a surface wave approach. Contact patterns were generated from the interaction of modal shapes at 16 normalized phases during the vibratory cycle. Eight major contact patterns were identified and characterized by the shape of the flow channel, with the following descriptors assigned: convergent, divergent, convergent-divergent, uniform, split, merged, island, and multichannel. Each of the contact patterns and its variation are described, and future work and applications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Instantaneous normal mode analysis of the vibrational relaxation of the amide I mode of alanine dipeptide in water.

    PubMed

    Farag, Marwa H; Zúñiga, José; Requena, Alberto; Bastida, Adolfo

    2013-05-28

    Nonequilibrium Molecular Dynamics (MD) simulations coupled to instantaneous normal modes (INMs) analysis are used to study the vibrational relaxation of the acetyl and amino-end amide I modes of the alanine dipeptide (AlaD) molecule dissolved in water (D2O). The INMs are assigned in terms of the equilibrium normal modes using the Effective Atomic Min-Cost algorithm as adapted to make use of the outputs of standard MD packages, a method which is well suited for the description of flexible molecules. The relaxation energy curves of both amide I modes show multiexponential decays, in good agreement with the experimental findings. It is found that ~85%-90% of the energy relaxes through intramolecular vibrational redistribution. The main relaxation pathways are also identified. The rate at which energy is transferred into the solvent is similar for the acetyl-end and amino-end amide I modes. The conformational changes occurring during relaxation are investigated, showing that the populations of the alpha and beta region conformers are altered by energy transfer in such a way that it takes 15 ps for the equilibrium conformational populations to be recovered after the initial excitation of the AlaD molecule.

  16. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.

    PubMed

    Ahmed, Aqeel; Villinger, Saskia; Gohlke, Holger

    2010-12-01

    A large-scale comparison of essential dynamics (ED) modes from molecular dynamic simulations and normal modes from coarse-grained normal mode methods (CGNM) was performed on a dataset of 335 proteins. As CGNM methods, the elastic network model (ENM) and the rigid cluster normal mode analysis (RCNMA) were used. Low-frequency normal modes from ENM correlate very well with ED modes in terms of directions of motions and relative amplitudes of motions. Notably, a similar performance was found if normal modes from RCNMA were used, despite a higher level of coarse graining. On average, the space spanned by the first quarter of ENM modes describes 84% of the space spanned by the five ED modes. Furthermore, no prominent differences for ED and CGNM modes among different protein structure classes (CATH classification) were found. This demonstrates the general potential of CGNM approaches for describing intrinsic motions of proteins with little computational cost. For selected cases, CGNM modes were found to be more robust among proteins that have the same topology or are of the same homologous superfamily than ED modes. In view of recent evidence regarding evolutionary conservation of vibrational dynamics, this suggests that ED modes, in some cases, might not be representative of the underlying dynamics that are characteristic of a whole family, probably due to insufficient sampling of some of the family members by MD. Copyright © 2010 Wiley-Liss, Inc.

  17. Normal modes in an overmoded circular waveguide coated with lossy material

    NASA Technical Reports Server (NTRS)

    Lee, C. S.; Lee, S. W.; Chuang, S. L.

    1985-01-01

    The normal modes in an overmoded waveguide coated with a lossy material are analyzed, particularly for their attenuation properties as a function of coating material, layer thickness, and frequency. When the coating material is not too lossy, the low-order modes are highly attenuated even with a thin layer of coating. This coated guide serves as a mode suppressor of the low-order modes, which can be particularly useful for reducing the radar cross section (RCS) of a cavity structure such as a jet inlet. When the coating material is very lossy, low-order modes fall into two distinct groups: highly and lowly attenuated modes. However, as a/lambda (a = radius of the cylinder; lambda = the free-space wavelength) increases, the separation between these two groups becomes less distinctive. The attenuation constants of most of the low-order modes become small, and decrease as a function of lambda sup 2/a sup 3.

  18. Higher order mode couplers for normal conducting DORIS 5-cell cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewersteg, B.; Seesselberg, E.; Zolfaghari, A.

    1985-10-01

    The beam intensity of the DORIS e -e storage ring is limited to about 100 mA average circulation current as a result of instabilities driven by higher order rf cavity modes. Thus an investigation has been made of the higher order mode impedances of the DORIS rf accelerator cavities. These cavities are the same as the normally conducting inductively coupled 500 MHz 5-cell structures used in PETRA. The results of the investigation were applied for the construction of inductive and capacitive attenuation antennae corresponding to specific mode spectra and mode impedances. The antennae must fit into the existing 35 mmmore » pick up flanges of the cavities and in spite of these size and position limitations they must be efficient in reducing the shunt impedances of the dangerous modes.« less

  19. Design of a linear projector for use with the normal modes of the GLAS 4th order GCM

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.

    1984-01-01

    The design of a linear projector for use with the normal modes of a model of atmospheric circulation is discussed. A central element in any normal mode initialization scheme is the process by which a set of data fields - winds, temperatures or geopotentials, and surface pressures - are expressed ("projected') in terms of the coefficients of a model's normal modes. This process is completely analogous to the Fourier decomposition of a single field (indeed a FFT applied in the zonal direction is a part of the process). Complete separability in all three spatial dimensions is assumed. The basis functions for the modal expansion are given. An important feature of the normal modes is their coupling of the structures of different fields, thus a coefficient in a normal mode expansion would contain both mass and momentum information.

  20. Mixing induced by a propagating normal mode in long term experiments

    NASA Astrophysics Data System (ADS)

    Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry

    2017-04-01

    The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are numerous. The triadic resonant instability (TRI) is an intrinsic destabilization process that can lead to mixing away from topographies. It consists in the destabilization of a primary internal wave generation leading to the radiation of two secondary waves of lower frequencies and different wave vectors. In the process, internal wave energy is carried down to smaller scales. A previous study focused on the assessment of instantaneous turbulent fluxes fields associated with the TRI process in laboratory experiments [1]. The present study investigates the integrated impact of mixing processes induced by a propagative normal mode over long term experiments using a similar setup. Configurations for which the TRI process is either favored or inhibited are tackled. Optical measurements using the light attenuation technique allow to follow the internal waves dynamics and the evolution of the density profile between two runs of one hour typical duration. The horizontally averaged turbulent diffusivity Kt(z) and the mixing efficiency Γ are assessed. One finds values up to Kt = 10-6 m2/s and Γ = 11 %, with slightly larger values in the presence of TRI. The maximum value for Kt is measured at the position(s) of the maximum shear normal mode shear for both normal modes 1 and 2. The development of staircases in the density profile is observed after several hours of forcing. This mechanism can be explained by Phillips' argument by which sharp interfaces can form due to vertical variations of the buoyancy flux. The staircases are responsible for large variations in the vertical distribution of turbulent diffusivity. These results could help to refine parameterizations of the impact of low order normal modes in ocean mixing. Reference : [1] Dossmann et al. 2016, Mixing by internal waves quantified using combined PIV/PLIF technique, Experiments in Fluids, 57, 132.

  1. High-frequency Born synthetic seismograms based on coupled normal modes

    USGS Publications Warehouse

    Pollitz, Fred F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).

  2. High-frequency Born synthetic seismograms based on coupled normal modes

    USGS Publications Warehouse

    Pollitz, F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ~4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD). ?? The Author Geophysical Journal International ?? 2011 RAS.

  3. Normal Mode Analysis on the Relaxation of AN Excited Nitromethane Molecule in Argon Bath

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis A.; Wagner, Albert F.

    2017-06-01

    In our previous work [Rivera-Rivera et al. J. Chem. Phys. 142, 014303 (2015).] classical molecular dynamics simulations followed, in an Ar bath, the relaxation of nitromethane (CH_3NO_2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. The 300 K Ar bath was at pressures of 10 to 400 atm. Both rotational and vibrational energies exhibited multi-exponential decay. This study explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997).], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. Then the saved CH_3NO_2 positions and momenta can be converted into mode-specific energies whose decay over 1000 ps can be monitored. The results identify vibrational and rotational modes that promote/resist energy lost and drive multi-exponential behavior. In addition to mode-specificity, the results show disruption of IVR with increasing pressure.

  4. Quantum control of the normal modes of benzene with ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Sauer, Petra; Dou, Yusheng; Torralva, Ben; Allen, Roland

    2005-03-01

    Remarkable innovations in laser technology have made it possible to create laser pulses with ultrashort durations (below 100 femtoseconds) and ultrahigh intensities (above 1 terawatt per cm^2). To understand the behavior of complex molecules and materials in this new regime of physics, chemistry, biology, and materials science requires innovative techniques which complement experiment and standard theory, and which can treat situations in which conventional approximations like the Born- Oppenheimer approximation, the Franck-Condon principle, and Fermi's golden rule are no longer valid. In this talk we describe a method that we are developing, semiclassical electron-radiation-ion dyanmics (SERID), which can be used to perform simulations of the coupled dynamics of electrons and nuclei in an intense radiation field. We have employed this technique in studying the normal modes of benzene, and the possibility of controlling these modes by optimizing the laser pulses that are applied to the molecule. Animations will be shown of particular normal modes, including the breathing and beating modes, illustrating their symmetries and other properties, and of the photodissociation of benzene when the laser pulse exceeds a threshold intensity.

  5. Quasi-normal modes of extremal BTZ black holes in TMG

    NASA Astrophysics Data System (ADS)

    Afshar, Hamid R.; Alishahiha, Mohsen; Mosaffa, Amir E.

    2010-08-01

    We study the spectrum of tensor perturbations on extremal BTZ black holes in topologically massive gravity for arbitrary values of the coefficient of the Chern-Simons term, μ. Imposing proper boundary conditions at the boundary of the space and at the horizon, we find that the spectrum contains quasi-normal modes.

  6. Acyl carrier protein structural classification and normal mode analysis

    PubMed Central

    Cantu, David C; Forrester, Michael J; Charov, Katherine; Reilly, Peter J

    2012-01-01

    All acyl carrier protein primary and tertiary structures were gathered into the ThYme database. They are classified into 16 families by amino acid sequence similarity, with members of the different families having sequences with statistically highly significant differences. These classifications are supported by tertiary structure superposition analysis. Tertiary structures from a number of families are very similar, suggesting that these families may come from a single distant ancestor. Normal vibrational mode analysis was conducted on experimentally determined freestanding structures, showing greater fluctuations at chain termini and loops than in most helices. Their modes overlap more so within families than between different families. The tertiary structures of three acyl carrier protein families that lacked any known structures were predicted as well. PMID:22374859

  7. Harmonic Dynamics of Proteins: Normal Modes and Fluctuations in Bovine Pancreatic Trypsin Inhibitor

    NASA Astrophysics Data System (ADS)

    Brooks, Bernard; Karplus, Martin

    1983-11-01

    A normal mode analysis making use of an empirical potential function including local and nonlocal (nonbonded) interactions is performed for the bovine pancreatic trypsin inhibitor in the full conformational space of the molecule (1,740 degrees of freedom); that is, all bond lengths and angles, as well as dihedral angles, are included for the 580-atom system consisting of all heavy atoms and polar hydrogens. The heavy-atom frequency spectrum shows a dense distribution between 3 and 1,800 cm-1, with 350 modes below 216 cm-1. Most of the low-frequency modes, of which many have significant anharmonic character, are found to be delocalized over the protein. The root-mean-square amplitudes of the atomic fluctuations are calculated at 300 K from the normal modes and compared with those obtained from a solution molecular dynamics simulation based on the same potential function; very good agreement is obtained for the variation in the main-chain fluctuations as a function of residue number, though larger differences occur for the side chains. The fluctuations are generally, though not always, dominated by frequencies below 30 cm-1, in accord with the results of the dynamics simulation. The vibrational contributions to the thermodynamic properties of the protein are calculated as a function of temperature; the effects of perturbations on the spectrum, suggested for ligand or substrate binding, are examined. The analysis demonstrates that, in spite of the anharmonic contributions to the potential, a normal mode description can provide useful results concerning the internal motions of proteins.

  8. Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation

    NASA Astrophysics Data System (ADS)

    Biton, Yaacov; Rabinovitch, Avinoam; Braunstein, Doron; Aviram, Ira; Campbell, Katherine; Mironov, Sergey; Herron, Todd; Jalife, José; Berenfeld, Omer

    2018-01-01

    Cardiac fibrillation is a major clinical and societal burden. Rotors may drive fibrillation in many cases, but their role and patterns are often masked by complex propagation. We used Singular Value Decomposition (SVD), which ranks patterns of activation hierarchically, together with Wiener-Granger causality analysis (WGCA), which analyses direction of information among observations, to investigate the role of rotors in cardiac fibrillation. We hypothesized that combining SVD analysis with WGCA should reveal whether rotor activity is the dominant driving force of fibrillation even in cases of high complexity. Optical mapping experiments were conducted in neonatal rat cardiomyocyte monolayers (diameter, 35 mm), which were genetically modified to overexpress the delayed rectifier K+ channel IKr only in one half of the monolayer. Such monolayers have been shown previously to sustain fast rotors confined to the IKr overexpressing half and driving fibrillatory-like activity in the other half. SVD analysis of the optical mapping movies revealed a hierarchical pattern in which the primary modes corresponded to rotor activity in the IKr overexpressing region and the secondary modes corresponded to fibrillatory activity elsewhere. We then applied WGCA to evaluate the directionality of influence between modes in the entire monolayer using clear and noisy movies of activity. We demonstrated that the rotor modes influence the secondary fibrillatory modes, but influence was detected also in the opposite direction. To more specifically delineate the role of the rotor in fibrillation, we decomposed separately the respective SVD modes of the rotor and fibrillatory domains. In this case, WGCA yielded more information from the rotor to the fibrillatory domains than in the opposite direction. In conclusion, SVD analysis reveals that rotors can be the dominant modes of an experimental model of fibrillation. Wiener-Granger causality on modes of the rotor domains confirms their

  9. Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.

    2016-12-01

    The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk

  10. Functional Dynamics of PDZ Binding Domains: A Normal-Mode Analysis

    PubMed Central

    De Los Rios, Paolo; Cecconi, Fabio; Pretre, Anna; Dietler, Giovanni; Michielin, Olivier; Piazza, Francesco; Juanico, Brice

    2005-01-01

    Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains are relatively small (80–120 residues) protein binding modules central in the organization of receptor clusters and in the association of cellular proteins. Their main function is to bind C-terminals of selected proteins that are recognized through specific amino acids in their carboxyl end. Binding is associated with a deformation of the PDZ native structure and is responsible for dynamical changes in regions not in direct contact with the target. We investigate how this deformation is related to the harmonic dynamics of the PDZ structure and show that one low-frequency collective normal mode, characterized by the concerted movements of different secondary structures, is involved in the binding process. Our results suggest that even minimal structural changes are responsible for communication between distant regions of the protein, in agreement with recent NMR experiments. Thus, PDZ domains are a very clear example of how collective normal modes are able to characterize the relation between function and dynamics of proteins, and to provide indications on the precursors of binding/unbinding events. PMID:15821164

  11. Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael

    2009-11-01

    The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)

  12. Free and forced Rossby normal modes in a rectangular gulf of arbitrary orientation

    NASA Astrophysics Data System (ADS)

    Graef, Federico

    2016-09-01

    A free Rossby normal mode in a rectangular gulf of arbitrary orientation is constructed by considering the reflection of a Rossby mode in a channel at the head of the gulf. Therefore, it is the superposition of four Rossby waves in an otherwise unbounded ocean with the same frequency and wavenumbers perpendicular to the gulf axis whose difference is equal to 2mπ/W, where m is a positive integer and W the gulf's width. The lower (or higher) modes with small m (or large m) are oscillatory (evanescent) in the coordinate along the gulf; these are elucidated geometrically. However for oceanographically realistic parameter values, most of the modes are evanescent. When the gulf is forced at the mouth with a single Fourier component, the response is in general an infinite sum of modes that are needed to match the value of the streamfunction at the gulf's entrance. The dominant mode of the response is the resonant one, which corresponds to forcing with a frequency ω and wavenumber normal to the gulf axis η appropriate to a gulf mode: η =- β sin α/(2ω) ± Mπ/W, where α is the angle between the gulf's axis and the eastern direction (+ve clockwise) and M the resonant's mode number. For zonal gulfs ω drops out of the resonance condition. For the special cases η = 0 in which the free surface goes up and down at the mouth with no flow through it, or a flow with a sinusoidal profile, resonant modes can get excited for very specific frequencies (only for non-zonal gulfs in the η = 0 case). The resonant mode is around the annual frequency for a wide range of gulf orientations α ∈ [40°, 130°] or α ∈ [220°, 310°] and gulf widths between 150 and 200 km; these include the Gulf of California and the Adriatic Sea. If η is imaginary, i.e. a flow with an exponential profile, there is no resonance. In general less modes get excited if the gulf is zonally oriented.

  13. A normal mode treatment of semi-diurnal body tides on an aspherical, rotating and anelastic Earth

    NASA Astrophysics Data System (ADS)

    Lau, Harriet C. P.; Yang, Hsin-Ying; Tromp, Jeroen; Mitrovica, Jerry X.; Latychev, Konstantin; Al-Attar, David

    2015-08-01

    Normal mode treatments of the Earth's body tide response were developed in the 1980s to account for the effects of Earth rotation, ellipticity, anelasticity and resonant excitation within the diurnal band. Recent space-geodetic measurements of the Earth's crustal displacement in response to luni-solar tidal forcings have revealed geographical variations that are indicative of aspherical deep mantle structure, thus providing a novel data set for constraining deep mantle elastic and density structure. In light of this, we make use of advances in seismic free oscillation literature to develop a new, generalized normal mode theory for the tidal response within the semi-diurnal and long-period tidal band. Our theory involves a perturbation method that permits an efficient calculation of the impact of aspherical structure on the tidal response. In addition, we introduce a normal mode treatment of anelasticity that is distinct from both earlier work in body tides and the approach adopted in free oscillation seismology. We present several simple numerical applications of the new theory. First, we compute the tidal response of a spherically symmetric, non-rotating, elastic and isotropic Earth model and demonstrate that our predictions match those based on standard Love number theory. Second, we compute perturbations to this response associated with mantle anelasticity and demonstrate that the usual set of seismic modes adopted for this purpose must be augmented by a family of relaxation modes to accurately capture the full effect of anelasticity on the body tide response. Finally, we explore aspherical effects including rotation and we benchmark results from several illustrative case studies of aspherical Earth structure against independent finite-volume numerical calculations of the semi-diurnal body tide response. These tests confirm the accuracy of the normal mode methodology to at least the level of numerical error in the finite-volume predictions. They also demonstrate

  14. iMODS: internal coordinates normal mode analysis server.

    PubMed

    López-Blanco, José Ramón; Aliaga, José I; Quintana-Ortí, Enrique S; Chacón, Pablo

    2014-07-01

    Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Evidence for distinct modes of solar activity

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Hulot, G.; Gallet, Y.; Roth, R.; Licht, A.; Joos, F.; Kovaltsov, G. A.; Thébault, E.; Khokhlov, A.

    2014-02-01

    Aims: The Sun shows strong variability in its magnetic activity, from Grand minima to Grand maxima, but the nature of the variability is not fully understood, mostly because of the insufficient length of the directly observed solar activity records and of uncertainties related to long-term reconstructions. Here we present a new adjustment-free reconstruction of solar activity over three millennia and study its different modes. Methods: We present a new adjustment-free, physical reconstruction of solar activity over the past three millennia, using the latest verified carbon cycle, 14C production, and archeomagnetic field models. This great improvement allowed us to study different modes of solar activity at an unprecedented level of details. Results: The distribution of solar activity is clearly bi-modal, implying the existence of distinct modes of activity. The main regular activity mode corresponds to moderate activity that varies in a relatively narrow band between sunspot numbers 20 and 67. The existence of a separate Grand minimum mode with reduced solar activity, which cannot be explained by random fluctuations of the regular mode, is confirmed at a high confidence level. The possible existence of a separate Grand maximum mode is also suggested, but the statistics is too low to reach a confident conclusion. Conclusions: The Sun is shown to operate in distinct modes - a main general mode, a Grand minimum mode corresponding to an inactive Sun, and a possible Grand maximum mode corresponding to an unusually active Sun. These results provide important constraints for both dynamo models of Sun-like stars and investigations of possible solar influence on Earth's climate. Data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/L10

  16. Calculation of normal modes of the closed waveguides in general vector case

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Sevastianov, L. A.; Tiutiunnik, A. A.

    2018-04-01

    The article is devoted to the calculation of normal modes of the closed waveguides with an arbitrary filling ɛ, μ in the system of computer algebra Sage. Maxwell equations in the cylinder are reduced to the system of two bounded Helmholtz equations, the notion of weak solution of this system is given and then this system is investigated as a system of ordinary differential equations. The normal modes of this system are an eigenvectors of a matrix pencil. We suggest to calculate the matrix elements approximately and to truncate the matrix by usual way but further to solve the truncated eigenvalue problem exactly in the field of algebraic numbers. This approach allows to keep the symmetry of the initial problem and in particular the multiplicity of the eigenvalues. In the work would be presented some results of calculations.

  17. Polyad breaking phenomenon associated with a local-to-normal mode transition and suitability to estimate force constants

    NASA Astrophysics Data System (ADS)

    Bermúdez-Montaña, M.; Lemus, R.; Castaños, O.

    2017-12-01

    In a system of two interacting harmonic oscillators a local-to-normal mode transition is manifested as a polyad breaking phenomenon. This phenomenon is associated with the suitability to estimate zeroth-order force constants in the framework of a local mode description. This transition is also exhibited in two interacting Morse oscillators. To study this case, an appropriate parameterisation going from a molecule with local mode behaviour (H2O) to a molecule presenting a normal mode behaviour (CO2) is introduced. Concepts from quantum mechanics like fidelity, entropy and probability density, as well from nonlinear classical mechanics like Poincaré sections are used to detect the transition region. It is found that fidelity and entropy are sensitive complementary properties to detect the local-to-normal transition. Poincaré sections allow the local-to-normal transition to be detected through the appearance of chaos as a consequence of the polyad breaking phenomenon. In addition, two kinds of avoided energy crossings are identified in accordance with the different regions of the spectrum.

  18. Plantar fascia softening in plantar fasciitis with normal B-mode sonography.

    PubMed

    Wu, Chueh-Hung; Chen, Wen-Shiang; Wang, Tyng-Guey

    2015-11-01

    To investigate plantar fascia elasticity in patients with typical clinical manifestations of plantar fasciitis but normal plantar fascia morphology on B-mode sonography. Twenty patients with plantar fasciitis (10 unilateral and 10 bilateral) and 30 healthy volunteers, all with normal plantar fascia morphology on B-mode sonography, were included in the study. Plantar fascia elasticity was evaluated by sonoelastographic examination. All sonoelastograms were quantitatively analyzed, and less red pixel intensity was representative of softer tissue. Pixel intensity was compared among unilateral plantar fasciitis patients, bilateral plantar fasciitis patients, and healthy volunteers by one-way ANOVA. A post hoc Scheffé's test was used to identify where the differences occurred. Compared to healthy participants (red pixel intensity: 146.9 ± 9.1), there was significantly less red pixel intensity in the asymptomatic sides of unilateral plantar fasciitis (140.4 ± 7.3, p = 0.01), symptomatic sides of unilateral plantar fasciitis (127.1 ± 7.4, p < 0.001), and both sides of bilateral plantar fasciitis (129.4 ± 7.5, p < 0.001). There were no significant differences in plantar fascia thickness or green or blue pixel intensity among these groups. Sonoelastography revealed that the plantar fascia is softer in patients with typical clinical manifestations of plantar fasciitis, even if they exhibit no abnormalities on B-mode sonography.

  19. Normal mode analysis on the relaxation of an excited nitromethane molecule in argon bath

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis; Wagner, Albert

    In our previous work [J. Chem. Phys. 142, 014303 (2015)] classical molecular dynamics simulations followed in an Ar bath the relaxation of nitromethane (CH3NO2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. The 300 K Ar bath was at pressures of 10 to 400 atm, a range spanning the breakdown of the isolated binary collision approximation. Both rotational and vibrational energies exhibit multi-exponential decay. This study explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997)], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. Then the saved CH3NO2 positions and momenta can be converted into mode-specific energies whose decay over 1000 ps can be monitored. The results identify vibrational and rotational modes that promote/resist energy lost and drive multi-exponential behavior. Increasing pressure can be shown to increasingly interfere with post-collision IVR. The work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  20. "Good Vibrations": A workshop on oscillations and normal modes

    NASA Astrophysics Data System (ADS)

    Barbieri, Sara; Carpineti, Marina; Giliberti, Marco; Rigon, Enrico; Stellato, Marco; Tamborini, Marina

    2016-05-01

    We describe some theatrical strategies adopted in a two hour workshop in order to show some meaningful experiments and the underlying useful ideas to describe a secondary school path on oscillations, that develops from harmonic motion to normal modes of oscillations, and makes extensive use of video analysis, data logging, slow motions and applet simulations. Theatre is an extremely useful tool to stimulate motivation starting from positive emotions. That is the reason why the theatrical approach to the presentation of physical themes has been explored by the group "Lo spettacolo della Fisica" (http://spettacolo.fisica.unimi.it) of the Physics Department of University of Milano for the last ten years (Carpineti et al., JCOM, 10 (2011) 1; Nuovo Cimento B, 121 (2006) 901) and has been inserted also in the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated, see http://teachingmysteries.eu/en) which involves 13 different partners coming from 11 European countries, among which the Italian (Milan) group. According to the TEMI guidelines, this workshop has a written script based on emotionally engaging activities of presenting mysteries to be solved while participants have been involved in nice experiments following the developed path.

  1. Strain partitioning and deformation mode analysis of the normal faults at Red Mountain, Birmingham, Alabama

    NASA Astrophysics Data System (ADS)

    Wu, Schuman

    1989-12-01

    In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow

  2. Time-dependent local-to-normal mode transition in triatomic molecules

    NASA Astrophysics Data System (ADS)

    Cruz, Hans; Bermúdez-Montaña, Marisol; Lemus, Renato

    2018-01-01

    Time-evolution of the vibrational states of two interacting harmonic oscillators in the local mode scheme is presented. A local-to-normal mode transition (LNT) is identified and studied from temporal perspective through time-dependent frequencies of the oscillators. The LNT is established as a polyad-breaking phenomenon from the local standpoint for the stretching degrees of freedom in a triatomic molecule. This study is carried out in the algebraic representation of bosonic operators. The dynamics of the states are determined via the solutions of the corresponding nonlinear Ermakov equation and a local time-dependent polyad is obtained as a tool to identify the LNT. Applications of this formalism to H2O, CO2, O3 and NO2 molecules in the adiabatic, sudden and linear regime are considered.

  3. A phylogenetic analysis of normal modes evolution in enzymes and its relationship to enzyme function

    PubMed Central

    Lai, Jason; Jin, Jing; Kubelka, Jan; Liberles, David A.

    2012-01-01

    Since the dynamic nature of protein structures is essential for enzymatic function, it is expected that the functional evolution can be inferred from the changes in the protein dynamics. However, dynamics can also diverge neutrally with sequence substitution between enzymes without changes of function. In this study, a phylogenetic approach is implemented to explore the relationship between enzyme dynamics and function through evolutionary history. Protein dynamics are described by normal mode analysis based on a simplified harmonic potential force field applied to the reduced Cα representation of the protein structure while enzymatic function is described by Enzyme Commission (EC) numbers. Similarity of the binding pocket dynamics at each branch of the protein family’s phylogeny was analyzed in two ways: 1) explicitly by quantifying the normal mode overlap calculated for the reconstructed ancestral proteins at each end and 2) implicitly using a diffusion model to obtain the reconstructed lineage-specific changes in the normal modes. Both explicit and implicit ancestral reconstruction identified generally faster rates of change in dynamics compared with the expected change from neutral evolution at the branches of potential functional divergences for the alpha-amylase, D-isomer specific 2-hydroxyacid dehydrogenase, and copper-containing amine oxidase protein families. Normal modes analysis added additional information over just comparing the RMSD of static structures. However, the branch-specific changes were not statistically significant compared to background function-independent neutral rates of change of dynamic properties and blind application of the analysis would not enable prediction of changes in enzyme specificity. PMID:22651983

  4. A phylogenetic analysis of normal modes evolution in enzymes and its relationship to enzyme function.

    PubMed

    Lai, Jason; Jin, Jing; Kubelka, Jan; Liberles, David A

    2012-09-21

    Since the dynamic nature of protein structures is essential for enzymatic function, it is expected that functional evolution can be inferred from the changes in protein dynamics. However, dynamics can also diverge neutrally with sequence substitution between enzymes without changes of function. In this study, a phylogenetic approach is implemented to explore the relationship between enzyme dynamics and function through evolutionary history. Protein dynamics are described by normal mode analysis based on a simplified harmonic potential force field applied to the reduced C(α) representation of the protein structure while enzymatic function is described by Enzyme Commission numbers. Similarity of the binding pocket dynamics at each branch of the protein family's phylogeny was analyzed in two ways: (1) explicitly by quantifying the normal mode overlap calculated for the reconstructed ancestral proteins at each end and (2) implicitly using a diffusion model to obtain the reconstructed lineage-specific changes in the normal modes. Both explicit and implicit ancestral reconstruction identified generally faster rates of change in dynamics compared with the expected change from neutral evolution at the branches of potential functional divergences for the α-amylase, D-isomer-specific 2-hydroxyacid dehydrogenase, and copper-containing amine oxidase protein families. Normal mode analysis added additional information over just comparing the RMSD of static structures. However, the branch-specific changes were not statistically significant compared to background function-independent neutral rates of change of dynamic properties and blind application of the analysis would not enable prediction of changes in enzyme specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Evaluation of diaphragmatic motion in normal and diaphragmatic paralyzed dogs using M-mode ultrasonography.

    PubMed

    Choi, Mihyun; Lee, Namsoon; Kim, Ahyoung; Keh, Seoyeon; Lee, Jinsoo; Kim, Hyunwook; Choi, Mincheol

    2014-01-01

    Diagnosis of unilateral diaphragmatic paralysis in dogs is currently based on fluoroscopic detection of unequal movement between the crura. Bilateral paralysis may be more difficult to confirm with fluoroscopy because diaphragmatic movement is sometimes produced by compensatory abdominal muscle contractions. The purpose of this study was to develop a new method to evaluate diaphragmatic movement using M-mode ultrasonography and to describe findings for normal and diaphragmatic paralyzed dogs. Fifty-five clinically normal dogs and two dogs with diaphragmatic paralysis were recruited. Thoracic radiographs were acquired for all dogs and fluoroscopy studies were also acquired for clinically affected dogs. Two observers independently measured diaphragmatic direction of motion and amplitude of excursion using M-mode ultrasonography for dogs meeting study inclusion criteria. Eight of the clinically normal dogs were excluded due to abnormal thoracic radiographic findings. For the remaining normal dogs, the lower limit values of diaphragmatic excursion were 2.85-2.98 mm during normal breathing. One dog with bilateral diaphragmatic paralysis showed paradoxical movement of both crura at the end of inspiration. One dog with unilateral diaphragmatic paralysis had diaphragmatic excursion values of 2.00 ± 0.42 mm on the left side and 4.05 ± 1.48 mm on the right side. The difference between left and right diaphragmatic excursion values was 55%. Findings indicated that M-mode ultrasonography is a relatively simple and objective method for measuring diaphragmatic movement in dogs. Future studies are needed in a larger number of dogs with diaphragmatic paralysis to determine the diagnostic sensitivity of this promising new technique. © 2013 American College of Veterinary Radiology.

  6. Atmospheric resonances of the Rayleigh and tsunami normal modes and its sensitivity to local time and geographical location.

    NASA Astrophysics Data System (ADS)

    Rakoto, V.; Astafyeva, E.; Lognonne, P. H.

    2017-12-01

    It is known that natural hazard events, such as earthquakes, tsunamis, volcano eruptions, etc. can generate atmospheric/ionospheric perturbations. During earthquakes, vertical displacements of the ground or of the ocean floor generate acoustic-gravity waves that further propagate upward in the upper atmosphere and ionosphere. In turn, tsunamis propagating in the open sea, generate gravity waves which propagate obliquely and reach the ionosphere in 45-60 min. The properties of the atmospheric "channel" in the vertical and oblique propagation depend on a variety of factors such as solar and geomagnetic conditions, latitude, local time, season, and their influence on propagation and properties of co-seismic and co-tsunamic perturbations is not well understood yet. In this work, we use present a detailed study of the coupling efficiency between solid earth, ocean and atmosphere. For this purpose, we use the normal mode technique extended to the whole solid Earth-ocean-atmosphere system. In our study, we focus on the Rayleigh modes (solid modes) and tsunami modes (oceanic modes). As the normal modes amplitude are also depending on the spatial and temporal variation of the structure of the atmosphere, we also performed a sensitivity study location of the normal modes amplitude with local time and geographical position.

  7. Anisotropy of the innermost inner core from body wave and normal mode observations

    NASA Astrophysics Data System (ADS)

    Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.

    2016-12-01

    It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.

  8. On the identification of normal modes of oscillation from observations of the solar periphery

    NASA Technical Reports Server (NTRS)

    Gough, D. O.; Latour, J.

    1984-01-01

    The decomposition of solar oscillations into their constituent normal modes requires a knowledge of both the spatial and temporal variation of the perturbation to the sun's surface. The task can be especially difficult when only limited spatial information is available. Observations of the limb-darkening function, for example, are probably sensitive to too large a number of modes to permit most of the modes to be identified in a power spectrum of measurements at only a few points on the limb, unless the results are combined with other data. In this paper a procedure is considered by which the contributions from quite small groups of modes to spatially well resolved data obtained at any instant can be extracted from the remaining modes. Combining these results with frequency information then permits the modes to be identified, at least if their frequencies are low enough to ensure that modes of high degree do not contribute substantially to the signal.

  9. On the identification of normal modes of oscillation from observations of the solar periphery

    NASA Technical Reports Server (NTRS)

    Gough, D. D.; Latour, J.

    1984-01-01

    The decomposition of solar oscillations into their constituent normal modes requires a knowledge of both the spatial and temporal variation of the perturbation to the Sun's surface. The task is especially difficult when only limited spatial information is available. Observations of the limb darkening function, for example, are probably sensitive to too large a number of modes to permit most of the modes to be identified in a power spectrum of measurements at only a few points on the limb, unless the results are combined with other data. A procedure was considered by which the contributions from quite small groups of modes to spatially well resolved data obtained at any instant can be extracted from the remaining modes. Combining these results with frequency information then permits the modes to be identified, at least if their frequencies are low enough to ensure that modes of high degree do not contribute substantially to the signal.

  10. Comments on compressible effects on Alfven normal modes in nonuniform plasmas

    NASA Technical Reports Server (NTRS)

    Mok, Y.; Einaudi, G.

    1990-01-01

    The paper discusses the regime of validity of the theory of dissipative Alfven normal modes presented by Mok and Einaudi (1985) and Einaudi and Mok (1985), which was based on the incompressible closure of the system of ideal MHD equations. Some simple extensions of the earlier results to the compressible case are described. In addition, certain misunderstandings of this work, which have appeared in other papers, are clarified.

  11. Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.

    2013-10-01

    Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.

  12. Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.

    Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.

  13. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution.

    PubMed

    Chen, Xuehui; Sun, Yunxiang; An, Xiongbo; Ming, Dengming

    2011-10-14

    Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another. © 2011 American Institute of Physics

  14. Antidepressants normalize the default mode network in patients with dysthymia.

    PubMed

    Posner, Jonathan; Hellerstein, David J; Gat, Inbal; Mechling, Anna; Klahr, Kristin; Wang, Zhishun; McGrath, Patrick J; Stewart, Jonathan W; Peterson, Bradley S

    2013-04-01

    The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain's DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown. To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity. After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011. University research institute. Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex. We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain's DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity. Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain's DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity. The baseline imaging findings are consistent with those found in patients with major

  15. Antidepressants Normalize the Default Mode Network in Patients With Dysthymia

    PubMed Central

    Posner, Jonathan; Hellerstein, David J.; Gat, Inbal; Mechling, Anna; Klahr, Kristin; Wang, Zhishun; McGrath, Patrick J.; Stewart, Jonathan W.; Peterson, Bradley S.

    2014-01-01

    Importance The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain’s DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown. Objective To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity. Design After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011. Setting University research institute. Participants Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex. Main Outcome Measures We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain’s DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity. Results Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain’s DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity

  16. High-latitude filtering in a global grid-point model using model normal modes. [Fourier filters for synoptic weather forecasting

    NASA Technical Reports Server (NTRS)

    Takacs, L. L.; Kalnay, E.; Navon, I. M.

    1985-01-01

    A normal modes expansion technique is applied to perform high latitude filtering in the GLAS fourth order global shallow water model with orography. The maximum permissible time step in the solution code is controlled by the frequency of the fastest propagating mode, which can be a gravity wave. Numerical methods are defined for filtering the data to identify the number of gravity modes to be included in the computations in order to obtain the appropriate zonal wavenumbers. The performances of the model with and without the filter, and with a time tendency and a prognostic field filter are tested with simulations of the Northern Hemisphere winter. The normal modes expansion technique is shown to leave the Rossby modes intact and permit 3-5 day predictions, a range not possible with the other high-latitude filters.

  17. Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro

    2018-03-01

    We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.

  18. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  19. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

  20. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  1. Possibility of observation of polaron normal modes at the far-infrared spectrum of acetanilide and related organics

    NASA Astrophysics Data System (ADS)

    Kalosakas, G.; Aubry, S.; Tsironis, G. P.

    1998-10-01

    We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.

  2. Normal Mode Derived Models of the Physical Properties of Earth's Outer Core

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.

    2017-12-01

    Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.

  3. Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime

    NASA Astrophysics Data System (ADS)

    Latiff, A. A.; Rusdi, M. F. M.; Hisyam, M. B.; Ahmad, H.; Harun, S. W.

    2016-11-01

    This paper reports a few-layer black phosphorus (BP) as a saturable absorber (SA) or phase-locker in generating modelocked pulses from a double-clad ytterbium-doped fiber laser (YDFL). We mechanically exfoliated the BP flakes from BP crystal through a scotch tape, and repeatedly press until the flakes thin and spread homogenously. Then, a piece of BP tape was inserted in the cavity between two fiber connectors end facet. Under 810 mW to 1320 mW pump power, stable mode-locked operation at 1085 nm with a repetition rate of 13.4 MHz is successfully achieved in normal dispersion regime. Before mode-locked operation disappears above maximum pump, the output power and pulse energy is about 80 mW and 6 nJ, respectively. This mode-locked laser produces peak power of 0.74 kW. Our work may validates BP SA as a phase-locker related to two-dimensional nanomaterials and pulsed generation in normal dispersion regime.

  4. Theory of psychological adaptive modes.

    PubMed

    Lehti, Juha

    2016-05-01

    When an individual is facing a stressor and normal stress-response mechanism cannot guarantee sufficient adaptation, special emotional states, adaptive modes, are activated (for example a depressive reaction). Adaptive modes are involuntary states of mind, they are of comprehensive nature, they interfere with normal functioning, and they cannot be repressed or controlled the same way as many emotions. Their transformational nature differentiates them from other emotional states. The object of the adaptive mode is to optimize the problem-solving abilities according to the situation that has provoked the mode. Cognitions and emotions during the adaptive mode are different than in a normal mental state. These altered cognitions and emotional reactions guide the individual to use the correct coping skills in order to deal with the stressor. Successful adaptation will cause the adaptive mode to fade off since the adaptive mode is no longer necessary, and the process as a whole will lead to raised well-being. However, if the adaptation process is inadequate, then the transformation period is prolonged, and the adaptive mode will turn into a dysfunctional state. Many psychiatric disorders are such maladaptive processes. The maladaptive processes can be turned into functional ones by using adaptive skills that are used in functional adaptive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. On the mode-coupling treatment of collective density fluctuations for quantum liquids: para-hydrogen and normal liquid helium.

    PubMed

    Kletenik-Edelman, Orly; Reichman, David R; Rabani, Eran

    2011-01-28

    A novel quantum mode coupling theory combined with a kinetic approach is developed for the description of collective density fluctuations in quantum liquids characterized by Boltzmann statistics. Three mode-coupling approximations are presented and applied to study the dynamic response of para-hydrogen near the triple point and normal liquid helium above the λ-transition. The theory is compared with experimental results and to the exact imaginary time data generated by path integral Monte Carlo simulations. While for liquid para-hydrogen the combination of kinetic and quantum mode-coupling theory provides semi-quantitative results for both short and long time dynamics, it fails for normal liquid helium. A discussion of this failure based on the ideal gas limit is presented.

  6. An approach to detect afterslips in giant earthquakes in the normal-mode frequency band

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Ji, Chen; Igarashi, Mitsutsugu

    2012-08-01

    An approach to detect afterslips in the source process of giant earthquakes is presented in the normal-mode frequency band (0.3-2.0 mHz). The method is designed to avoid a potential systematic bias problem in the determination of earthquake moment by a typical normal-mode approach. The source of bias is the uncertainties in Q (modal attenuation parameter) which varies by up to about ±10 per cent among published studies. A choice of Q values within this range affects amplitudes in synthetic seismograms significantly if a long time-series of about 5-7 d is used for analysis. We present an alternative time-domain approach that can reduce this problem by focusing on a shorter time span with a length of about 1 d. Application of this technique to four recent giant earthquakes is presented: (1) the Tohoku, Japan, earthquake of 2011 March 11, (2) the 2010 Maule, Chile earthquake, (3) the 2004 Sumatra-Andaman earthquake and (4) the Solomon earthquake of 2007 April 1. The Global Centroid Moment Tensor (GCMT) solution for the Tohoku earthquake explains the normal-mode frequency band quite well. The analysis for the 2010 Chile earthquake indicates that the moment is about 7-10 per cent higher than the moment determined by its GCMT solution but further analysis shows that there is little evidence of afterslip; the deviation in moment can be explained by an increase of the dip angle from 18° in the GCMT solution to 19°. This may be a simple trade-off problem between the moment and dip angle but it may also be due to a deeper centroid in the normal-mode frequency band data, as a deeper source could have steeper dip angle due to changes in geometry of the Benioff zone. For the 2004 Sumatra-Andaman earthquake, the five point-source solution by Tsai et al. explains most of the signals but a sixth point-source with long duration improves the fit to the normal-mode frequency band data. The 2007 Solomon earthquake shows that the high-frequency part of our analysis (above 1 mHz) is

  7. Travel mode and physical activity at Sydney University.

    PubMed

    Rissel, Chris; Mulley, Corinne; Ding, Ding

    2013-08-09

    How staff and students travel to university can impact their physical activity level. An online survey of physical activity and travel behaviour was conducted in early November 2012 to inform planning of physical activity and active travel promotion programs at the University of Sydney, Australia as part of the "Sit Less, Move More" sub-committee of the Healthy University Initiative, and as baseline data for evaluation. There were 3,737 useable responses, 60% of which were from students. Four out of five respondents travelled to the University on the day of interest (Tuesday, November 30, 2012). The most frequently used travel modes were train (32%), car as driver (22%), bus (17%), walking (17%) and cycling (6%). Staff were twice as likely to drive as students, and also slightly more likely to use active transport, defined as walking and cycling (26% versus 22%). Overall, 41% of respondents were sufficiently active (defined by meeting physical activity recommendations of 150 min per week). Participants were more likely to meet physical activity recommendations if they travelled actively to the University. With a high proportion of respondents using active travel modes or public transport already, increasing the physical activity levels and increasing the use of sustainable travel modes would mean a mode shift from public transport to walking and cycling for students is needed and a mode shift from driving to public transport or active travel for University staff. Strategies to achieve this are discussed.

  8. Travel Mode and Physical Activity at Sydney University

    PubMed Central

    Rissel, Chris; Mulley, Corinne; Ding, Ding

    2013-01-01

    How staff and students travel to university can impact their physical activity level. An online survey of physical activity and travel behaviour was conducted in early November 2012 to inform planning of physical activity and active travel promotion programs at the University of Sydney, Australia as part of the “Sit Less, Move More” sub-committee of the Healthy University Initiative, and as baseline data for evaluation. There were 3,737 useable responses, 60% of which were from students. Four out of five respondents travelled to the University on the day of interest (Tuesday, November 30, 2012). The most frequently used travel modes were train (32%), car as driver (22%), bus (17%), walking (17%) and cycling (6%). Staff were twice as likely to drive as students, and also slightly more likely to use active transport, defined as walking and cycling (26% versus 22%). Overall, 41% of respondents were sufficiently active (defined by meeting physical activity recommendations of 150 min per week). Participants were more likely to meet physical activity recommendations if they travelled actively to the University. With a high proportion of respondents using active travel modes or public transport already, increasing the physical activity levels and increasing the use of sustainable travel modes would mean a mode shift from public transport to walking and cycling for students is needed and a mode shift from driving to public transport or active travel for University staff. Strategies to achieve this are discussed. PMID:23939390

  9. Conjugate gradient filtering of instantaneous normal modes, saddles on the energy landscape, and diffusion in liquids.

    PubMed

    Chowdhary, J; Keyes, T

    2002-02-01

    Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.

  10. [Ecological demonstration activity and eco-civilization construction mode: review and prospects].

    PubMed

    Mao, Hui-ping; He, Xuan; He, Jia; Niu, Dong-jie; Bao, Cun-kuan

    2013-04-01

    Ecological civilization is to normalize human development behaviors to harmonize the relationships between social and ecological development and eco-environment protection. In this paper, a comparative analysis was made on the ecological demonstration activities of ecological demonstration areas led by the Ministry of Environmental Protection, exemplar cities of national environmental protection, and ecological provinces, cities, and counties. It was considered that all the ecological demonstration activities had the problems of lacking pertinence of construction goals, disordered construction subjects, inefficient construction processes, and lacking continuous incentive mechanisms of assessment. In the meantime, through the analysis of the connotations of eco-civilization, the relationships between eco-civilization and eco-demonstration constructions were approached, and the eco-civilization construction mode was put forward in terms of construction goal, construction subject, and construction processes and assessment. The construction mode included the construction goal based on regional characteristics; the synergistic cooperation of construction subjects, the expanding ways of public participation, and the establishment of evaluation system for comprehensively measuring the 'actions and results'.

  11. Vibrational dynamics of vocal folds using nonlinear normal modes.

    PubMed

    Pinheiro, Alan P; Kerschen, Gaëtan

    2013-08-01

    Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical modeling of these folds have tried to gain a profound understanding of the observed nonlinear phenomena. In this context, the present work uses the nonlinear normal mode theory to investigate the nonlinear modal behavior of 16 subjects using a two-mass mechanical modeling of the vocal folds. The free response of the conservative system at different energy levels is considered to assess the impact of the structural nonlinearity of the vocal fold tissues. The results show very interesting and complex nonlinear phenomena including frequency-energy dependence, subharmonic regimes and, in some cases, modal interactions, entrainment and bifurcations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis.

    PubMed

    Greener, Joe G; Sternberg, Michael J E

    2015-10-23

    Despite being hugely important in biological processes, allostery is poorly understood and no universal mechanism has been discovered. Allosteric drugs are a largely unexplored prospect with many potential advantages over orthosteric drugs. Computational methods to predict allosteric sites on proteins are needed to aid the discovery of allosteric drugs, as well as to advance our fundamental understanding of allostery. AlloPred, a novel method to predict allosteric pockets on proteins, was developed. AlloPred uses perturbation of normal modes alongside pocket descriptors in a machine learning approach that ranks the pockets on a protein. AlloPred ranked an allosteric pocket top for 23 out of 40 known allosteric proteins, showing comparable and complementary performance to two existing methods. In 28 of 40 cases an allosteric pocket was ranked first or second. The AlloPred web server, freely available at http://www.sbg.bio.ic.ac.uk/allopred/home, allows visualisation and analysis of predictions. The source code and dataset information are also available from this site. Perturbation of normal modes can enhance our ability to predict allosteric sites on proteins. Computational methods such as AlloPred assist drug discovery efforts by suggesting sites on proteins for further experimental study.

  13. The signal of mantle anisotropy in the coupling of normal modes

    NASA Astrophysics Data System (ADS)

    Beghein, Caroline; Resovsky, Joseph; van der Hilst, Robert D.

    2008-12-01

    We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl - 0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy.

  14. Computational modes and the Machenauer N.L.N.M.I. of the GLAS 4th order model. [NonLinear Normal Mode Initialization in numerical weather forecasting

    NASA Technical Reports Server (NTRS)

    Navon, I. M.; Bloom, S.; Takacs, L. L.

    1985-01-01

    An attempt was made to use the GLAS global 4th order shallow water equations to perform a Machenhauer nonlinear normal mode initialization (NLNMI) for the external vertical mode. A new algorithm was defined for identifying and filtering out computational modes which affect the convergence of the Machenhauer iterative procedure. The computational modes and zonal waves were linearly initialized and gravitational modes were nonlinearly initialized. The Machenhauer NLNMI was insensitive to the absence of high zonal wave numbers. The effects of the Machenhauer scheme were evaluated by performing 24 hr integrations with nondissipative and dissipative explicit time integration models. The NLNMI was found to be inferior to the Rasch (1984) pseudo-secant technique for obtaining convergence when the time scales of nonlinear forcing were much smaller than the time scales expected from the natural frequency of the mode.

  15. Estimation of splitting functions from Earth's normal mode spectra using the neighbourhood algorithm

    NASA Astrophysics Data System (ADS)

    Pachhai, Surya; Tkalčić, Hrvoje; Masters, Guy

    2016-01-01

    The inverse problem for Earth structure from normal mode data is strongly non-linear and can be inherently non-unique. Traditionally, the inversion is linearized by taking partial derivatives of the complex spectra with respect to the model parameters (i.e. structure coefficients), and solved in an iterative fashion. This method requires that the earthquake source model is known. However, the release of energy in large earthquakes used for the analysis of Earth's normal modes is not simple. A point source approximation is often inadequate, and a more complete account of energy release at the source is required. In addition, many earthquakes are required for the solution to be insensitive to the initial constraints and regularization. In contrast to an iterative approach, the autoregressive linear inversion technique conveniently avoids the need for earthquake source parameters, but it also requires a number of events to achieve full convergence when a single event does not excite all singlets well. To build on previous improvements, we develop a technique to estimate structure coefficients (and consequently, the splitting functions) using a derivative-free parameter search, known as neighbourhood algorithm (NA). We implement an efficient forward method derived using the autoregresssion of receiver strips, and this allows us to search over a multiplicity of structure coefficients in a relatively short time. After demonstrating feasibility of the use of NA in synthetic cases, we apply it to observations of the inner core sensitive mode 13S2. The splitting function of this mode is dominated by spherical harmonic degree 2 axisymmetric structure and is consistent with the results obtained from the autoregressive linear inversion. The sensitivity analysis of multiple events confirms the importance of the Bolivia, 1994 earthquake. When this event is used in the analysis, as little as two events are sufficient to constrain the splitting functions of 13S2 mode. Apart from

  16. Identification of nonlinear normal modes of engineering structures under broadband forcing

    NASA Astrophysics Data System (ADS)

    Noël, Jean-Philippe; Renson, L.; Grappasonni, C.; Kerschen, G.

    2016-06-01

    The objective of the present paper is to develop a two-step methodology integrating system identification and numerical continuation for the experimental extraction of nonlinear normal modes (NNMs) under broadband forcing. The first step processes acquired input and output data to derive an experimental state-space model of the structure. The second step converts this state-space model into a model in modal space from which NNMs are computed using shooting and pseudo-arclength continuation. The method is demonstrated using noisy synthetic data simulated on a cantilever beam with a hardening-softening nonlinearity at its free end.

  17. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  18. A Pictorial Visualization of Normal Mode Vibrations of the Fullerene (C[subscript 60]) Molecule in Terms of Vibrations of a Hollow Sphere

    ERIC Educational Resources Information Center

    Dunn, Janette L.

    2010-01-01

    Understanding the normal mode vibrations of a molecule is important in the analysis of vibrational spectra. However, the complicated 3D motion of large molecules can be difficult to interpret. We show how images of normal modes of the fullerene molecule C[subscript 60] can be made easier to understand by superimposing them on images of the normal…

  19. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  20. Normal mode analysis of the IUS/TDRS payload in a payload canister/transporter environment

    NASA Technical Reports Server (NTRS)

    Meyer, K. A.

    1980-01-01

    Special modeling techniques were developed to simulate an accurate mathematical model of the transporter/canister/payload system during ground transport of the Inertial Upper Stage/Tracking and Data Relay Satellite (IUS/TDRS) payload. The three finite element models - the transporter, the canister, and the IUS/TDRS payload - were merged into one model and used along with the NASTRAN normal mode analysis. Deficiencies were found in the NASTRAN program that make a total analysis using modal transient response impractical. It was also discovered that inaccuracies may exist for NASTRAN rigid body modes on large models when Given's method for eigenvalue extraction is employed. The deficiencies as well as recommendations for improving the NASTRAN program are discussed.

  1. Normalized Legal Drafting and the Query Method.

    ERIC Educational Resources Information Center

    Allen, Layman E.; Engholm, C. Rudy

    1978-01-01

    Normalized legal drafting, a mode of expressing ideas in legal documents so that the syntax that relates the constituent propositions is simplified and standardized, and the query method, a question-asking activity that teaches normalized drafting and provides practice, are examined. Some examples are presented. (JMD)

  2. Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis.

    PubMed

    Demerdash, Omar N A; Mitchell, Julie C

    2012-07-01

    Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is largely due to the advent of coarse-graining techniques, particularly Hooke's Law-based potentials and the rotational-translational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients, which we call Density-Cluster RTB (DCRTB). The method reduces the number of degrees of freedom by 85-90% compared with the standard blocking approaches. We compared the normal modes from DCRTB against standard RTB using 1-4 residues in sequence in a single block, with good agreement between the two methods. We also show that Density-Cluster RTB and standard RTB perform well in capturing the experimentally determined direction of conformational change. Significantly, we report superior correlation of DCRTB with B-factors compared with 1-4 residue per block RTB. Finally, we show significant reduction in computational cost for Density-Cluster RTB that is nearly 100-fold for many examples. Copyright © 2012 Wiley Periodicals, Inc.

  3. Time-domain study of acoustic pulse propagation in an ocean waveguide using a new normal mode model

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia Anatol'evna

    1997-11-01

    This study is focused on issues of numerical modeling of sound propagation in diverse ocean waveguides. A new normal mode acoustical model (Shallow Water Acoustic Mode Propagation-SWAMP) has been developed. The algorithm for obtaining the vertical modal solution is based on a warping matrix transformation of the solution of an isovelocity (reference) waveguide to one of arbitrary velocity profile. An efficient mode coupling scheme with an adaptive step-size in range has been implemented for range-dependent environments. The new algorithm allows fairly arbitrary ocean layering and readily works at high frequency. An important advantage of the new procedure is that vertical modal eigenfunctions can easily be transformed to a spherical representation suitable for coupling in object scattering problems. Benchmarking results of the new code against established acoustic models based on parabolic equation and existing normal mode approaches show good agreement for range-independent and up-slope and down-slope bathymetries and a very competitive calculation speed. Broad-band pulse propagation in deep and shallow water with double (surface and bottom) ducts has been modeled using the new normal mode model for a variety of ocean waveguide parameters and different frequency bands. The surface duct generates a series of the surface-duct-trapped- modes, which form amplitude-modulated precursors in the far field pulse response. It has been found that the arrival times of the precursors could not be explained by the conventional concept of group velocity so that a more general principle based on the rate of energy transfer has been used. The Airy function solution was found to explain the amplitude modulation of the precursors. It has been learned from the numerical simulation that for a range-independent environment the time separation between precursors is fixed and any variations from this have been a result of range-dependence and mode coupling in the model. The time

  4. An instrument for direct observations of seismic and normal-mode rotational oscillations of the Earth

    PubMed Central

    Cowsik, R.

    2007-01-01

    The rotations around the vertical axis associated with the normal mode oscillations of the Earth and those induced by the seismic and other disturbances have been very difficult to observe directly. Such observations will provide additional information for 3D modeling of the Earth and for understanding earthquakes and other underground explosions. In this paper, we describe the design of an instrument capable of measuring the rotational motions associated with the seismic oscillations of the Earth, including the lowest frequency normal mode at ν ≈ 3.7 × 10−4 Hz. The instrument consists of a torsion balance with a natural frequency of ν0 ≈ 1.6 × 10−4 Hz, which is observed by an autocollimating optical lever of high angular resolution and dynamic range. Thermal noise limits the sensitivity of the apparatus to amplitudes of ≈ 1.5 × 10−9 rad at the lowest frequency normal mode and the sensitivity improves as ν−3/2 with increasing frequency. Further improvements in sensitivity by about two orders of magnitude may be achieved by operating the balance at cryogenic temperatures. Alternatively, the instrument can be made more robust with a reduced sensitivity by increasing ν0 to ≈10−2 Hz. This instrument thus complements the ongoing effort by Igel and others to study rotational motions using ring laser gyroscopes and constitutes a positive response to the clarion call for developments in rotation seismology by Igel, Lee, and Todorovska [H. Igel, W.H.K. Lee and M.I. Todorovska, AGU Fall Meeting 2006, Rotational Seismology Sessions: S22A,S23B, Inauguration of the International Working Group on Rotational Seismology (IWGoRS)]. PMID:17438268

  5. Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form

    NASA Astrophysics Data System (ADS)

    Denis, V.; Jossic, M.; Giraud-Audine, C.; Chomette, B.; Renault, A.; Thomas, O.

    2018-06-01

    In this article, we address the model identification of nonlinear vibratory systems, with a specific focus on systems modeled with distributed nonlinearities, such as geometrically nonlinear mechanical structures. The proposed strategy theoretically relies on the concept of nonlinear modes of the underlying conservative unforced system and the use of normal forms. Within this framework, it is shown that without internal resonance, a valid reduced order model for a nonlinear mode is a single Duffing oscillator. We then propose an efficient experimental strategy to measure the backbone curve of a particular nonlinear mode and we use it to identify the free parameters of the reduced order model. The experimental part relies on a Phase-Locked Loop (PLL) and enables a robust and automatic measurement of backbone curves as well as forced responses. It is theoretically and experimentally shown that the PLL is able to stabilize the unstable part of Duffing-like frequency responses, thus enabling its robust experimental measurement. Finally, the whole procedure is tested on three experimental systems: a circular plate, a chinese gong and a piezoelectric cantilever beam. It enable to validate the procedure by comparison to available theoretical models as well as to other experimental identification methods.

  6. Topological Edge Modes in Active Mikado Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Leyou; Mao, Xiaoming

    Mechanical properties of disordered fiber networks are not only important in understanding a broad range of natural (such as the cytoskeleton and the extracellular matrix) and manmade materials (such as aerogels and porous media) but also exhibit interesting and rich physics. In this talk, we discuss how topological floppy edge modes can emerge from these fiber networks as a result of active driving. It is known that straight fibers in a network carries a state of self-stress and bears a bulk floppy mode. We find that, interestingly, by driving the network with a tiny perturbation, the bulk modes evolve into edge modes. We introduce a new transfer matrix formulation that can be applied to this strongly disordered system, to characterize the topological edge modes. We also discuss possible implications of these edge modes in biological processes. NSF-DMR-1609051.

  7. Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol.

    PubMed

    Sorzano, Carlos Oscar S; de la Rosa-Trevín, José Miguel; Tama, Florence; Jonić, Slavica

    2014-11-01

    This article presents an integral graphical interface to the Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) approach that was developed for capturing continuous motions of large macromolecular complexes from single-particle EM images. HEMNMA was shown to be a good approach to analyze multiple conformations of a macromolecular complex but it could not be widely used in the EM field due to a lack of an integral interface. In particular, its use required switching among different software sources as well as selecting modes for image analysis was difficult without the graphical interface. The graphical interface was thus developed to simplify the practical use of HEMNMA. It is implemented in the open-source software package Xmipp 3.1 (http://xmipp.cnb.csic.es) and only a small part of it relies on MATLAB that is accessible through the main interface. Such integration provides the user with an easy way to perform the analysis of macromolecular dynamics and forms a direct connection to the single-particle reconstruction process. A step-by-step HEMNMA protocol with the graphical interface is given in full details in Supplementary material. The graphical interface will be useful to experimentalists who are interested in studies of continuous conformational changes of macromolecular complexes beyond the modeling of continuous heterogeneity in single particle reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Active vs. spectator modes in nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22A(3s) Rydberg state

    NASA Astrophysics Data System (ADS)

    Xie, Changjian; Guo, Hua

    2018-01-01

    The choice of the active degrees of freedom (DOFs) is a pivotal issue in a reduced-dimensional model of quantum dynamics when a full-dimensional one is not feasible. Here, several five-dimensional (5D) models are used to investigate the nonadiabatic photodissociation dynamics of the hydroxymethyl (CH2OH) radical, which possesses nine internal DOFs, in its lowest absorption band. A normal-mode based scheme is used to identify the active and spectator modes, and its predictions are confirmed by 5D quantum dynamical calculations. Our results underscore the important role of the CO stretching mode in the photodissociation dynamics of CH2OH, originating from the photo-induced promotion of an electron from the half-occupied π*CO antibonding orbital to a carbon Rydberg orbital.

  9. Even and odd normalized zero modes in random interacting Majorana models respecting the parity P and the time-reversal-symmetry T

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2018-06-01

    For random interacting Majorana models where the only symmetries are the parity P and the time-reversal-symmetry T, various approaches are compared to construct exact even and odd normalized zero modes Γ in finite size, i.e. Hermitian operators that commute with the Hamiltonian, that square to the identity, and that commute (even) or anticommute (odd) with the parity P. Even normalized zero-modes are well known under the name of ‘pseudo-spins’ in the field of many-body-localization or more precisely ‘local integrals of motion’ (LIOMs) in the many-body-localized-phase where the pseudo-spins happens to be spatially localized. Odd normalized zero-modes are popular under the name of ‘Majorana zero modes’ or ‘strong zero modes’. Explicit examples for small systems are described in detail. Applications to real-space renormalization procedures based on blocks containing an odd number of Majorana fermions are also discussed.

  10. Physical Activity Mode and Mental Distress in Adulthood.

    PubMed

    Sciamanna, Christopher N; Smyth, Joshua M; Doerksen, Shawna E; Richard, Barrett R; Kraschnewski, Jennifer L; Mowen, Andrew J; Hickerson, Benjamin D; Rovniak, Liza S; Lehman, Erik B; Yang, Chengwu

    2017-01-01

    Nearly one fifth of American adults suffer from mental health issues, yet many treatments have side effects and stigma attached. Physical activity can be an effective treatment for mental health disorders, but most promotion efforts fail. One understudied aspect of physical activity is the specific mode, including if it engages others, and how this may relate to mental health. This study examined the potential relationship between different modes of physical activity and the frequency of mental distress. Data from the 2000 Behavioral Risk Factor Surveillance System were analyzed in 2015 to determine the relationship between participation in different modes of physical activity and frequent mental distress. Data were obtained on physical activity and frequent mental distress from 183,341 adults (aged 18-99 years, 51.9% female, 57.4% overweight/obese, 9.5% frequent mental distress). Prevalence of mental distress for those reporting activities was contrasted against walking alone. People who participated in tennis had 46% lower odds (95% CI=0.35, 0.84) of frequent mental distress. Approaching significance, non-team play sports were associated with 18% lower odds (95% CI=0.66, 1.01) of frequent mental distress, compared with walking alone. Activity modes are associated with mental health outcomes above and beyond the frequency and duration of activity. Given the social and play nature of the activities, this may reflect the relational aspect, enjoyment, or a combination of both. These results suggest that adding social or affective components to physical activity may enhance engagement and retention in activity promotion efforts and their benefits on mental health. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Comparative analysis of guide mode of government - oriented industry guidance funds under china’s new normal of economic growth

    NASA Astrophysics Data System (ADS)

    Sun, Chunling; Cheng, Xuemei

    2017-11-01

    The government-oriented industry guidance Funds solve the problem of financing difficulty and high innovation under the background of China’s new normal. Through the provinces and cities of the policies and regulations of the collation and comparative analysis, it will be divided into three modes. And then compare among three modes and analyze applicability to guide the construction of provinces and cities.

  12. Modeling protein conformational changes by iterative fitting of distance constraints using reoriented normal modes.

    PubMed

    Zheng, Wenjun; Brooks, Bernard R

    2006-06-15

    Recently we have developed a normal-modes-based algorithm that predicts the direction of protein conformational changes given the initial state crystal structure together with a small number of pairwise distance constraints for the end state. Here we significantly extend this method to accurately model both the direction and amplitude of protein conformational changes. The new protocol implements a multisteps search in the conformational space that is driven by iteratively minimizing the error of fitting the given distance constraints and simultaneously enforcing the restraint of low elastic energy. At each step, an incremental structural displacement is computed as a linear combination of the lowest 10 normal modes derived from an elastic network model, whose eigenvectors are reorientated to correct for the distortions caused by the structural displacements in the previous steps. We test this method on a list of 16 pairs of protein structures for which relatively large conformational changes are observed (root mean square deviation >3 angstroms), using up to 10 pairwise distance constraints selected by a fluctuation analysis of the initial state structures. This method has achieved a near-optimal performance in almost all cases, and in many cases the final structural models lie within root mean square deviation of 1 approximately 2 angstroms from the native end state structures.

  13. Normal-Mode Analysis of Circular DNA at the Base-Pair Level. 2. Large-Scale Configurational Transformation of a Naturally Curved Molecule.

    PubMed

    Matsumoto, Atsushi; Tobias, Irwin; Olson, Wilma K

    2005-01-01

    Fine structural and energetic details embedded in the DNA base sequence, such as intrinsic curvature, are important to the packaging and processing of the genetic material. Here we investigate the internal dynamics of a 200 bp closed circular molecule with natural curvature using a newly developed normal-mode treatment of DNA in terms of neighboring base-pair "step" parameters. The intrinsic curvature of the DNA is described by a 10 bp repeating pattern of bending distortions at successive base-pair steps. We vary the degree of intrinsic curvature and the superhelical stress on the molecule and consider the normal-mode fluctuations of both the circle and the stable figure-8 configuration under conditions where the energies of the two states are similar. To extract the properties due solely to curvature, we ignore other important features of the double helix, such as the extensibility of the chain, the anisotropy of local bending, and the coupling of step parameters. We compare the computed normal modes of the curved DNA model with the corresponding dynamical features of a covalently closed duplex of the same chain length constructed from naturally straight DNA and with the theoretically predicted dynamical properties of a naturally circular, inextensible elastic rod, i.e., an O-ring. The cyclic molecules with intrinsic curvature are found to be more deformable under superhelical stress than rings formed from naturally straight DNA. As superhelical stress is accumulated in the DNA, the frequency, i.e., energy, of the dominant bending mode decreases in value, and if the imposed stress is sufficiently large, a global configurational rearrangement of the circle to the figure-8 form takes place. We combine energy minimization with normal-mode calculations of the two states to decipher the configurational pathway between the two states. We also describe and make use of a general analytical treatment of the thermal fluctuations of an elastic rod to characterize the

  14. Search for Long Period Solar Normal Modes in Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Caton, R.; Pavlis, G. L.

    2016-12-01

    We search for evidence of solar free oscillations (normal modes) in long period seismic data through multitaper spectral analysis of array stacks. This analysis is similar to that of Thomson & Vernon (2015), who used data from the most quiet single stations of the global seismic network. Our approach is to use stacks of large arrays of noisier stations to reduce noise. Arrays have the added advantage of permitting the use of nonparametic statistics (jackknife errors) to provide objective error estimates. We used data from the Transportable Array, the broadband borehole array at Pinyon Flat, and the 3D broadband array in Homestake Mine in Lead, SD. The Homestake Mine array has 15 STS-2 sensors deployed in the mine that are extremely quiet at long periods due to stable temperatures and stable piers anchored to hard rock. The length of time series used ranged from 50 days to 85 days. We processed the data by low-pass filtering with a corner frequency of 10 mHz, followed by an autoregressive prewhitening filter and median stack. We elected to use the median instead of the mean in order to get a more robust stack. We then used G. Prieto's mtspec library to compute multitaper spectrum estimates on the data. We produce delete-one jackknife error estimates of the uncertainty at each frequency by computing median stacks of all data with one station removed. The results from the TA data show tentative evidence for several lines between 290 μHz and 400 μHz, including a recurring line near 379 μHz. This 379 μHz line is near the Earth mode 0T2 and the solar mode 5g5, suggesting that 5g5 could be coupling into the Earth mode. Current results suggest more statistically significant lines may be present in Pinyon Flat data, but additional processing of the data is underway to confirm this observation.

  15. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  16. Normal-mode-based analysis of electron plasma waves with second-order Hermitian formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, J. J.; White, R. L.

    The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint problem with a continuum spectrum of real and positive squared frequencies. The corresponding complete basis of singular normal modes is obtained, along with their orthogonality relation. This yields easily the general expression of the time-reversal-invariant solution for any initial-value problem. Examples are then given for specific initial conditions that illustrate different behaviors of the Landau-damped macroscopic moments of the perturbations.

  17. Normal-mode-based analysis of electron plasma waves with second-order Hermitian formalism

    DOE PAGES

    Ramos, J. J.; White, R. L.

    2018-03-01

    The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint problem with a continuum spectrum of real and positive squared frequencies. The corresponding complete basis of singular normal modes is obtained, along with their orthogonality relation. This yields easily the general expression of the time-reversal-invariant solution for any initial-value problem. Examples are then given for specific initial conditions that illustrate different behaviors of the Landau-damped macroscopic moments of the perturbations.

  18. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  19. Adaptive Batch Mode Active Learning.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  20. Atmospheric Excitation of Planetary Normal Modes

    NASA Technical Reports Server (NTRS)

    Tanimoto, Toshiro

    2001-01-01

    The objectives of this study were to: (1) understand the phenomenon of continuous free oscillations of the Earth and (2) examine the idea of using this phenomenon for planetary seismology. We first describe the results on (1) and present our evaluations of the idea (2) in the final section. In 1997, after almost forty years since the initial attempt by Benioff et al, continuous free oscillations of the Earth were discovered. Spheroidal fundamental modes between 2 and 7 millihertz are excited continuously with acceleration amplitudes of about 0.3-0.5 nanogals. The signal is now commonly found in virtually all data recorded by STS-1 type broadband seismometers at quiet sites. Seasonal variation in amplitude and the existence of two coupled modes between the atmosphere and the solid Earth support that these oscillations are excited by the atmosphere. Stochastic excitation due to atmospheric turbulence is a favored mechanism, providing a good match between theory and data. The atmosphere has ample energy to support this theory because excitation of these modes require only 500-10000 W whereas the atmosphere contains about 117 W of kinetic energy. An application of this phenomenon includes planetary seismology, because other planets may be oscillating due to atmospheric excitation. The interior structure of planets could be learned by determining the eigenfrequencies in the continuous free oscillations. It is especially attractive to pursue this idea for tectonically quiet planets, since quakes may be too infrequent to be recorded by seismic instruments.

  1. Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang

    2018-01-01

    Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.

  2. Characterizing structure connectivity correlation with the default mode network in Alzheimer's patients and normal controls

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Peng; Song, Chao; Yao, Li; Zhao, Xiaojie

    2012-03-01

    Magnetic resonance diffusion tensor imaging (DTI) is a kind of effective measure to do non-invasive investigation on brain fiber structure at present. Studies of fiber tracking based on DTI showed that there was structural connection of white matter fiber among the nodes of resting-state functional network, denoting that the connection of white matter was the basis of gray matter regions in functional network. Nevertheless, relationship between these structure connectivity regions and functional network has not been clearly indicated. Moreover, research of fMRI found that activation of default mode network (DMN) in Alzheimer's disease (AD) was significantly descended, especially in hippocampus and posterior cingulated cortex (PCC). The relationship between this change of DMN activity and structural connection among functional networks needs further research. In this study, fast marching tractography (FMT) algorithm was adopted to quantitative calculate fiber connectivity value between regions, and hippocampus and PCC which were two important regions in DMN related with AD were selected to compute white matter connection region between them in elderly normal control (NC) and AD patient. The fiber connectivity value was extracted to do the correlation analysis with activity intensity of DMN. Results showed that, between PCC and hippocampus of NC, there exited region with significant high connectivity value of white matter fiber whose performance has relatively strong correlation with the activity of DMN, while there was no significant white matter connection region between them for AD patient which might be related with reduced network activation in these two regions of AD.

  3. Normal modes and frequencies from covariances in molecular dynamics or Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Strachan, Alejandro

    2004-01-01

    We propose a simple method to obtain normal modes (NMs) and their characteristic frequencies from molecular dynamics or Monte Carlo simulations at any temperature. The resulting NM are consistent with the vibrational density of states (DOS) (every feature of the DOS can be attributed to one or few NMs). At low temperatures they coincide with the ones obtained from the Hessian matrix. We define the NMs (ρi) by imposing the condition that their velocities be uncorrelated to each other: <ρ˙i(t)ρ˙j(t)>∝δij, where < > denotes time average and δij is Kronecker's delta. With this definition the modes are the eigenvectors of the matrix Kijv=1/2<√mimj vivj> [i, j=1,…,3N (N being the number of atoms); m are masses and v atomic velocities]. The eigenvalues of Kijv, λiv, represent the kinetic energy in each NM. The ratio between the eigenvalues (λiv) and those obtained using positions (λir), accelerations (λia) in Kijv instead of velocities are a very good approximation to the mode frequencies: 2πνi˜(λiv/λix)(1/2)˜(λia/λix)(1/4). We demonstrate the new method using with two cases: an isolated water molecule and a crystalline polymer.

  4. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    NASA Astrophysics Data System (ADS)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  5. Plasma Modes

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  6. NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins.

    PubMed

    Krüger, Dennis M; Ahmed, Aqeel; Gohlke, Holger

    2012-07-01

    The NMSim web server implements a three-step approach for multiscale modeling of protein conformational changes. First, the protein structure is coarse-grained using the FIRST software. Second, a rigid cluster normal-mode analysis provides low-frequency normal modes. Third, these modes are used to extend the recently introduced idea of constrained geometric simulations by biasing backbone motions of the protein, whereas side chain motions are biased toward favorable rotamer states (NMSim). The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. On a data set of proteins with experimentally observed conformational changes, the NMSim approach has been shown to be a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or more sophisticated sampling techniques. The web server output is a trajectory of generated conformations, Jmol representations of the coarse-graining and a subset of the trajectory and data plots of structural analyses. The NMSim webserver, accessible at http://www.nmsim.de, is free and open to all users with no login requirement.

  7. Statistical-mechanics theory of active mode locking with noise.

    PubMed

    Gordon, Ariel; Fischer, Baruch

    2004-05-01

    Actively mode-locked lasers with noise are studied employing statistical mechanics. A mapping of the system to the spherical model (related to the Ising model) of ferromagnets in one dimension that has an exact solution is established. It gives basic features, such as analytical expressions for the correlation function between modes, and the widths and shapes of the pulses [different from the Kuizenga-Siegman expression; IEEE J. Quantum Electron. QE-6, 803 (1970)] and reveals the susceptibility to noise of mode ordering compared with passive mode locking.

  8. Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharyash, V F; Kashirsky, A V; Klementyev, V M

    We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)

  9. Probabilistic estimation of splitting coefficients of normal modes of the Earth, and their uncertainties, using an autoregressive technique

    NASA Astrophysics Data System (ADS)

    Pachhai, S.; Masters, G.; Laske, G.

    2017-12-01

    Earth's normal-mode spectra are crucial to studying the long wavelength structure of the Earth. Such observations have been used extensively to estimate "splitting coefficients" which, in turn, can be used to determine the three-dimensional velocity and density structure. Most past studies apply a non-linear iterative inversion to estimate the splitting coefficients which requires that the earthquake source is known. However, it is challenging to know the source details, particularly for big events as used in normal-mode analyses. Additionally, the final solution of the non-linear inversion can depend on the choice of damping parameter and starting model. To circumvent the need to know the source, a two-step linear inversion has been developed and successfully applied to many mantle and core sensitive modes. The first step takes combinations of the data from a single event to produce spectra known as "receiver strips". The autoregressive nature of the receiver strips can then be used to estimate the structure coefficients without the need to know the source. Based on this approach, we recently employed a neighborhood algorithm to measure the splitting coefficients for an isolated inner-core sensitive mode (13S2). This approach explores the parameter space efficiently without any need of regularization and finds the structure coefficients which best fit the observed strips. Here, we implement a Bayesian approach to data collected for earthquakes from early 2000 and more recent. This approach combines the data (through likelihood) and prior information to provide rigorous parameter values and their uncertainties for both isolated and coupled modes. The likelihood function is derived from the inferred errors of the receiver strips which allows us to retrieve proper uncertainties. Finally, we apply model selection criteria that balance the trade-offs between fit (likelihood) and model complexity to investigate the degree and type of structure (elastic and anelastic

  10. ECHOCARDIOGRAPHIC FINDINGS OF BIDIMENSIONAL MODE, M-MODE, AND DOPPLER OF CLINICALLY NORMAL BLACK-RUMPED AGOUTI (DASYPROCTA PRYMNOLOPHA, WAGLER 1831).

    PubMed

    Diniz, Anaemilia das Neves; Pessoa, Gerson Tavares; da Silva Moura, Laecio; de Sousa, André Braga; Sousa, Francisco das Chagas Araújo; de Sá Rodrigues, Renan Paraguassu; da Silva Barbosa, Maria Angélica Parente; de Almeida, Hatawa Melo; Freire, Larisse Danielle Silva; Sanches, Marina Pinto; Júnior, Antônio Augusto Nascimento Machado; Guerra, Porfírio Candanedo; Neves, Willams Costa; de Sousa, João Macedo; Bolfer, Luiz; Giglio, Robson Fortes; Alves, Flávio Ribeiro

    2017-06-01

    The black-rumped agouti ( Dasyprocta prymnolopha , Wagler 1831) is currently under intense ecologic pressure, which has resulted in its disappearance from some regions of Brazil. Echocardiography is widely used in veterinary medicine but it is not yet part of the clinical routine for wild animals. The objective of the present study was to assess the applicability of the echocardiographic exam in nonanesthetized agouti and to establish normal reference values for echocardiographic measurements in bidimensional mode (2D), M-mode, and Doppler for this species, and a lead II electrocardiogram was simultaneously recorded. Twenty agouti were used in this study. All the echocardiographic measurements were positively correlated with weight (P < 0.05), and there were no significant differences between sexes (P > 0.05). Blood flow velocities in the pulmonary and aortic artery ranged from 67.32-71.28 cm/sec and 79.22-101.84 cm/sec, respectively. The isovolumic relaxation time was assessed in all the animals and ranged from 38.5 to 56.6 ms. The maximum value for the nonfused E and A waves and the Et and At waves was 158 beats/min for both. The results obtained for the morphologic and heart hemodynamic measurements can guide future studies and help in the clinical management of these animals in captivity.

  11. Shear-coupled grain-boundary migration dependence on normal strain/stress

    NASA Astrophysics Data System (ADS)

    Combe, N.; Mompiou, F.; Legros, M.

    2017-08-01

    In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.

  12. Simultaneous chiral discrimination of multiple profens by cyclodextrin-modified capillary electrophoresis in normal and reversed polarity modes.

    PubMed

    La, Sookie; Kim, Jiyung; Kim, Jung-Han; Goto, Junichi; Kim, Kyoung-Rae

    2003-08-01

    Simultaneous enantioseparations of nine profens for their accurate chiral discrimination were achieved by capillary electrophoresis (CE) in the normal polarity (NP) mode with a single cyclodextrin (CD) system and in the reversed polarity (RP) mode with a dual CD system. The single CD system in the NP mode employed heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD) added at 75 mM-100 mM 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) as the optimum run buffer. The dual CD system operated in the RP mode used 30 mM TMbetaCD and 1.0% anionic carboxymethyl-beta-cyclodextrin dissolved in pH 3.0, 100 mM phosphoric acid-triethanolamine buffer containing 0.01% hexadimethrine bromide added to reverse the electroosmotic flow. Fairly good enantiomeric resolutions and the opposite enantiomer migration orders were achieved in the two modes. Relative migration times to internal standard under respective optimum conditions were characteristic of each enantiomer with good precision (< 2% relative standard deviation, RSD), thereby enabling to crosscheck the chemical identification of profens and also their accurate chiralities. The method linearity in the two modes was found to be adequate (r > or = 0.9991) for the chiral assay of the profens investigated. Simultaneous enantiomeric purity test of ibuprofen, ketoprofen and flurbiprofen in a mixture was feasible in a single analysis by the present method.

  13. Vibrational normal modes of diazo-dimedone: A comparative study by Fourier infrared/Raman spectroscopies and conformational analysis by MM/QM

    NASA Astrophysics Data System (ADS)

    Téllez Soto, C. A.; Ramos, J. M.; Rianelli, R. S.; de Souza, M. C. B. V.; Ferreira, V. F.

    2007-07-01

    The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione ( 3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -C dbnd N dbnd N oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm -1 in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled ν(N dbnd N) + ν(C dbnd N) vibrational mode with higher participation of the N dbnd N stretching. A 2188 cm -1 (IR) and at 2186 cm -1 (R) can be assigned as a overtone of one of ν(CC) normal mode or to a combination band of the fundamentals δ(CCH) found at 1169 cm -1 and the δ (CC dbnd N) found at 1017 cm -1 enhanced by Fermi resonance.

  14. Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle

    NASA Astrophysics Data System (ADS)

    Charland, J.; Rey, V.; Touboul, J.

    2012-04-01

    Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle Jenna Charland *1, Vincent Rey *2, Julien Touboul *2 *1 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. Centre National de la Recherche Scientifique, Délégation Normandie. Projet soutenu financièrement par la Délégation Générale de l'Armement. *2 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. During the last decades various studies have been performed to understand the wave propagation over varying bathymetries. Few answers related to this non linear problem were given by the Patarapanich's studies which described the reflection coefficient of a submerged plate as a function of the wavelength. Later Le-Thi-Minh [2] demonstrated the necessity of taking into account the evanescent modes to better describe the propagation of waves over a varying bathymetry. However, all these studies stare at pseudo-stationary state that allows neither the comprehension of the transient behaviour of propagative modes nor the role of the evanescent modes in this unstationnary process. Our study deals with the wave establishment over a submerged plate or step and focuses on the evanescent modes establishment. Rey [3] described the propagation of a normally incident surface gravity wave over a varying topography on the behaviour of the fluid using a linearized potential theory solved by a numerical model using an integral method. This model has a large field of application and has been adapted to our case. This code still solves a stationary problem but allows us to calculate the contribution of the evanescent modes in the energy layout around a submerged plate or a submerged step. The results will show the importance of the trapped energy

  15. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  16. Determination of low-frequency normal modes and structure coefficients using optimal sequence stacking method and autoregressive method in frequency domain

    NASA Astrophysics Data System (ADS)

    Majstorovic, J.; Rosat, S.; Lambotte, S.; Rogister, Y. J. G.

    2017-12-01

    Although there are numerous studies about 3D density Earth model, building an accurate one is still an engaging challenge. One procedure to refine global 3D Earth density models is based on unambiguous measurements of Earth's normal mode eigenfrequencies. To have unbiased eigenfrequency measurements one needs to deal with a variety of time records quality and especially different noise sources, while standard approaches usually include signal processing methods such as Fourier transform. Here we present estimate of complex eigenfrequencies and structure coefficients for several modes below 1 mHz (0S2, 2S1, etc.). Our analysis is performed in three steps. The first step includes the use of stacking methods to enhance specific modes of interest above the observed noise level. Out of three trials the optimal sequence estimation turned out to be the foremost compared to the spherical harmonic stacking method and receiver strip method. In the second step we apply an autoregressive method in the frequency domain to estimate complex eigenfrequencies of target modes. In the third step we apply the phasor walkout method to test and confirm our eigenfrequencies. Before conducting an analysis of time records, we evaluate how the station distribution and noise levels impact the estimate of eigenfrequencies and structure coefficients by using synthetic seismograms calculated for a 3D realistic Earth model, which includes Earth's ellipticity and lateral heterogeneity. Synthetic seismograms are computed by means of normal mode summation using self-coupling and cross-coupling of modes up to 1 mHz. Eventually, the methods tested on synthetic data are applied to long-period seismometer and superconducting gravimeter data recorded after six mega-earthquakes of magnitude greater than 8.3. Hence, we propose new estimates of structure coefficients dependent on the density variations.

  17. Active/passive mode-locked laser oscillator

    DOEpatents

    Fountain, William D.; Johnson, Bertram C.

    1977-01-01

    A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.

  18. Normal modes from the 2013 Sea of Okhotsk earthquake, the largest deep event ever recorded

    NASA Astrophysics Data System (ADS)

    Okal, E. A.

    2013-12-01

    With a moment of 4.1 10**28 dyn*cm, the Sea of Okhotsk earthquake of 24 May 2013 is the largest deep event ever recorded. This provides a unique opportunity to study the excitation of low-frequency normal modes, including overtone and radial ones. The principal questions addressed will be the possible existence of a slow component to the source, which is not warranted by preliminary results; and the possible presence of an isotropic component to the moment tensor of its source. The latter was strongly debated in the case of the 1970 Colombian event (Gilbert and Dziewonski, 1973; Okal and Geller, 1979), and clearly found absent from the source of the 1994 Bolivian one (Kikuchi and Kanamori, 1994; Okal, 1996). Critical in this respect will be the investigation of the relative excitation of the the radial modes, and in particular, the fundamental 0s0, for which a sufficiently long (90 days) time series was not available by the submission deadline.

  19. Active chiral control of GHz acoustic whispering-gallery modes

    NASA Astrophysics Data System (ADS)

    Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu

    2017-10-01

    We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.

  20. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes

    NASA Astrophysics Data System (ADS)

    Park, Jinhyuk; Yoon, Gun-Ha; Kang, Je-Won; Choi, Seung-Bok

    2016-08-01

    This paper proposes a new prosthesis operated in two different modes; the semi-active and active modes. The semi-active mode is achieved from a flow mode magneto-rheological (MR) damper, while the active mode is obtained from an electronically commutated (EC) motor. The knee joint part of the above knee prosthesis is equipped with the MR damper and EC motor. The MR damper generates reaction force by controlling the field-dependent yield stress of the MR fluid, while the EC motor actively controls the knee joint angle during gait cycle. In this work, the MR damper is designed as a two-end type flow mode mechanism without air chamber for compact size. On other hand, in order to predict desired knee joint angle to be controlled by EC motor, a polynomial prediction function using a statistical method is used. A nonlinear proportional-derivative controller integrated with the computed torque method is then designed and applied to both MR damper and EC motor to control the knee joint angle. It is demonstrated that the desired knee joint angle is well achieved in different walking velocities on the ground ground.

  1. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    NASA Astrophysics Data System (ADS)

    Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.

    2011-07-01

    We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  2. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.

    PubMed

    Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea

    2017-01-01

    Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson's disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological

  3. Actively mode-locked fiber laser using a deformable micromirror.

    PubMed

    Fabert, Marc; Kermène, Vincent; Desfarges-Berthelemot, Agnès; Blondy, Pierre; Crunteanu, Aurelian

    2011-06-15

    We present what we believe to be the first fiber laser system that is actively mode-locked by a deformable micromirror. The micromirror device is placed within the laser cavity and performs a dual function of modulator and end-cavity mirror. The mode-locked laser provides ~1-ns-long pulses with 20 nJ/pulse energy at 5 MHz repetition rates.

  4. Normal Mode Analysis in Zeolites: Toward an Efficient Calculation of Adsorption Entropies.

    PubMed

    De Moor, Bart A; Ghysels, An; Reyniers, Marie-Françoise; Van Speybroeck, Veronique; Waroquier, Michel; Marin, Guy B

    2011-04-12

    An efficient procedure for normal-mode analysis of extended systems, such as zeolites, is developed and illustrated for the physisorption and chemisorption of n-octane and isobutene in H-ZSM-22 and H-FAU using periodic DFT calculations employing the Vienna Ab Initio Simulation Package. Physisorption and chemisorption entropies resulting from partial Hessian vibrational analysis (PHVA) differ at most 10 J mol(-1) K(-1) from those resulting from full Hessian vibrational analysis, even for PHVA schemes in which only a very limited number of atoms are considered free. To acquire a well-conditioned Hessian, much tighter optimization criteria than commonly used for electronic energy calculations in zeolites are required, i.e., at least an energy cutoff of 400 eV, maximum force of 0.02 eV/Å, and self-consistent field loop convergence criteria of 10(-8) eV. For loosely bonded complexes the mobile adsorbate method is applied, in which frequency contributions originating from translational or rotational motions of the adsorbate are removed from the total partition function and replaced by free translational and/or rotational contributions. The frequencies corresponding with these translational and rotational modes can be selected unambiguously based on a mobile block Hessian-PHVA calculation, allowing the prediction of physisorption entropies within an accuracy of 10-15 J mol(-1) K(-1) as compared to experimental values. The approach presented in this study is useful for studies on other extended catalytic systems.

  5. Active Noise Control of Low Speed Fan Rotor-Stator Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Hu, Ziqiang; Pla, Frederic G.; Heidelberg, Laurence J.

    1996-01-01

    This report describes the Active Noise Cancellation System designed by General Electric and tested in the NASA Lewis Research Center's 48 inch Active Noise Control Fan. The goal of this study was to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for active noise cancellation of fan tones. The control system is based on a modal control approach. A known acoustic mode propagating in the fan duct is cancelled using an array of flush-mounted compact sound sources. Controller inputs are signals from a shaft encoder and a microphone array which senses the residual acoustic mode in the duct. The canceling modal signal is generated by a modal controller. The key results are that the (6,0) mode was completely eliminated at 920 Hz and substantially reduced elsewhere. The total tone power was reduced 9.4 dB. Farfield 2BPF SPL reductions of 13 dB were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB modal PWL decrease. Global attenuation of PWL was obtained using an actuator and sensor system totally contained within the duct.

  6. A novel broadband bi-mode active frequency selective surface

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Gao, Jinsong; Xu, Nianxi; Shan, Dongzhi; Song, Naitao

    2017-05-01

    A novel broadband bi-mode active frequency selective surface (AFSS) is presented in this paper. The proposed structure is composed of a periodic array of convoluted square patches and Jerusalem Crosses. According to simulation results, the frequency response of AFSS definitely exhibits a mode switch feature between band-pass and band-stop modes when the diodes stay in ON and OFF states. In order to apply a uniform bias to each PIN diode, an ingenious biasing network based on the extension of Wheatstone bridge is adopted in prototype AFSS. The test results are in good agreement with the simulation results. A further physical mechanism of the bi-mode AFSS is shown by contrasting the distribution of electric field on the AFSS patterns for the two working states.

  7. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins.

    PubMed

    Ahmed, Aqeel; Rippmann, Friedrich; Barnickel, Gerhard; Gohlke, Holger

    2011-07-25

    A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constrained geometric simulations of diffusive motions in proteins by biasing backbone motions of the protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are similar (root-mean-square deviation = 1.0-3.1 Å) to ligand bound conformations. An NMSim generated pathway of conformational change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated sampling techniques.

  8. Normal vibrational modes of phospholipid bilayers observed by low-frequency Raman scattering

    NASA Astrophysics Data System (ADS)

    Surovtsev, N. V.; Dmitriev, A. A.; Dzuba, S. A.

    2017-03-01

    Low-frequency Raman spectra of multilamellar vesicles made either of 1-palmitoyl-2-oleoyl-s n -glycero-3-phosphocholine (POPC) or 1,2-dipalmitoyl-s n -glycero-3-phosphocholine (DPPC) have been studied in a wide temperature range. Below 0 ∘C two peaks are found at frequencies around 8-9 and 14 -17 c m -1 and attributed to the normal vibrational modes of the phospholipid bilayer, which are determined by the bilayer thickness and stiffness (elastic modulus). The spectral positions of the peaks depend on the temperature and the bilayer composition. It is suggested that the ratio of the intensities of the first and second peaks can serve as a measure of the interleaflet elastic coupling. The addition of cholesterol to the phospholipid bilayer leads to peak shift and broadening, which may be assigned to the composition heterogeneities commonly attributed to the lipid raft formation.

  9. Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment.

    PubMed

    Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang

    2017-09-01

    Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.

  10. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point force actuators.

    PubMed

    Sanada, Akira; Tanaka, Nobuo

    2012-08-01

    This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10 dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.

  11. Southern Annular Mode drives multicentury wildfire activity in southern South America.

    PubMed

    Holz, Andrés; Paritsis, Juan; Mundo, Ignacio A; Veblen, Thomas T; Kitzberger, Thomas; Williamson, Grant J; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E; Grau, H Ricardo; Quezada, Juan M

    2017-09-05

    The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531-2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37-54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665-1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century.

  12. Southern Annular Mode drives multicentury wildfire activity in southern South America

    PubMed Central

    Paritsis, Juan; Mundo, Ignacio A.; Veblen, Thomas T.; Kitzberger, Thomas; Williamson, Grant J.; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E.; Grau, H. Ricardo; Quezada, Juan M.

    2017-01-01

    The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531–2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37–54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665–1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century. PMID:28827329

  13. Quantized mode of a leaky cavity

    NASA Astrophysics Data System (ADS)

    Dutra, S. M.; Nienhuis, G.

    2000-12-01

    We use Thomson's classical concept of mode of a leaky cavity to develop a quantum theory of cavity damping. This theory generalizes the conventional system-reservoir theory of high-Q cavity damping to arbitrary Q. The small system now consists of damped oscillators corresponding to the natural modes of the leaky cavity rather than undamped oscillators associated with the normal modes of a fictitious perfect cavity. The formalism unifies semiclassical Fox-Li modes and the normal modes traditionally used for quantization. It also lays the foundations for a full quantum description of excess noise. The connection with Siegman's semiclassical work is straightforward. In a wider context, this theory constitutes a radical departure from present models of dissipation in quantum mechanics: unlike conventional models, system and reservoir operators no longer commute with each other. This noncommutability is an unavoidable consequence of having to use natural cavity modes rather than normal modes of a fictitious perfect cavity.

  14. The Properties of Large Amplitude Whistler Mode Waves in the Magnetosphere: Propagation and Relationship with Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Wygant, J. R.; Goetz, K.; Breneman, A.; Kersten, K.

    2011-01-01

    Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons.

  15. Angular dependence of source-target-detector in active mode standoff infrared detection

    NASA Astrophysics Data System (ADS)

    Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Aparicio-Bolaños, Joaquín. A.; Hernández-Rivera, Samuel P.

    2013-06-01

    Active mode standoff measurement using infrared spectroscopy were carried out in which the angle between target and the source was varied from 0-70° with respect to the surface normal of substrates containing traces of highly energetic materials (explosives). The experiments were made using three infrared sources: a modulated source (Mod-FTIR), an unmodulated source (UnMod-FTIR) and a scanning quantum cascade laser (QCL), part of a dispersive mid infrared (MIR) spectrometer. The targets consisted of PENT 200 μg/cm2 deposited on aluminum plates placed at 1 m from the sources. The evaluation of the three modalities was aimed at verifying the influence of the highly collimated laser beam in the detection in comparison with the other sources. The Mod-FTIR performed better than QCL source in terms of the MIR signal intensity decrease with increasing angle.

  16. Combination of DTI and fMRI reveals the white matter changes correlating with the decline of default-mode network activity in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Wu, Xianjun; Di, Qian; Li, Yao; Zhao, Xiaojie

    2009-02-01

    Recently, evidences from fMRI studies have shown that there was decreased activity among the default-mode network in Alzheimer's disease (AD), and DTI researches also demonstrated that demyelinations exist in white matter of AD patients. Therefore, combining these two MRI methods may help to reveal the relationship between white matter damages and alterations of the resting state functional connectivity network. In the present study, we tried to address this issue by means of correlation analysis between DTI and resting state fMRI images. The default-mode networks of AD and normal control groups were compared to find the areas with significantly declined activity firstly. Then, the white matter regions whose fractional anisotropy (FA) value correlated with this decline were located through multiple regressions between the FA values and the BOLD response of the default networks. Among these correlating white matter regions, those whose FA values also declined were found by a group comparison between AD patients and healthy elderly control subjects. Our results showed that the areas with decreased activity among default-mode network included left posterior cingulated cortex (PCC), left medial temporal gyrus et al. And the damaged white matter areas correlated with the default-mode network alterations were located around left sub-gyral temporal lobe. These changes may relate to the decreased connectivity between PCC and medial temporal lobe (MTL), and thus correlate with the deficiency of default-mode network activity.

  17. Tunable deformation modes shape contractility in active biopolymer networks

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Banerjee, Shiladitya; Weirich, Kim; Freedman, Simon; Dinner, Aaron; Gardel, Margaret

    Biological polymer-based materials remodel under active, molecular motor-driven forces to perform diverse physiological roles, such as force transmission and spatial self-organization. Critical to understanding these biomaterials is elucidating the role of microscopic polymer deformations, such as stretching, bending, buckling, and relative sliding, on material remodeling. Here, we report that the shape of motor-driven deformations can be used to identify microscopic deformation modes and determine how they propagate to longer length scales. In cross-linked actin networks with sufficiently low densities of the motor protein myosin II, microscopic network deformations are predominantly uniaxial, or dominated by sliding. However, longer-wavelength modes are mostly biaxial, or dominated by bending and buckling, indicating that deformations with uniaxial shapes do not propagate across length scales significantly larger than that of individual polymers. As the density of myosin II is increased, biaxial modes dominate on all length scales we examine due to buildup of sufficient stress to produce smaller-wavelength buckling. In contrast, when we construct networks from unipolar, rigid actin bundles, we observe uniaxial, sliding-based contractions on 1 to 100 μm length scales. Our results demonstrate the biopolymer mechanics can be used to tune deformation modes which, in turn, control shape changes in active materials.

  18. Physical activity patterns in morbidly obese and normal-weight women.

    PubMed

    Kwon, Soyang; Mohammad, Jamal; Samuel, Isaac

    2011-01-01

    To compare physical activity patterns between morbidly obese and normal-weight women. Daily physical activity of 18 morbidly obese and 7 normal-weight women aged 30-58 years was measured for 2 days using the Intelligent Device for Energy Expenditure and Activity (IDEEA) device. The obese group spent about 2 hr/day less standing and 30 min/day less walking than did the normal-weight group. Time spent standing (standing time) was positively associated with time spent walking (walking time). Age- and walking time-adjusted standing time did not differ according to weight status. Promoting standing may be a strategy to increase walking.

  19. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C–H Region of DMSO as a Case Study

    DOE PAGES

    Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; ...

    2015-07-29

    Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation (SFG) spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. Here in this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effectsmore » in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes challenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show significant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.« less

  20. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia.

    PubMed

    Garami, Andras; Shimansky, Yury P; Pakai, Eszter; Oliveira, Daniela L; Gavva, Narender R; Romanovsky, Andrej A

    2010-01-27

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia.

  1. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia

    PubMed Central

    Garami, Andras; Shimansky, Yury P.; Pakai, Eszter; Oliveira, Daniela L.; Gavva, Narender R.; Romanovsky, Andrej A.

    2010-01-01

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We have found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia. PMID:20107070

  2. Impact of Distance on Mode of Active Commuting in Chilean Children and Adolescents.

    PubMed

    Rodríguez-Rodríguez, Fernando; Cristi-Montero, Carlos; Celis-Morales, Carlos; Escobar-Gómez, Danica; Chillón, Palma

    2017-11-02

    Active commuting could contribute to increasing physical activity. The objective of this study was to characterise patterns of active commuting to and from schools in children and adolescents in Chile. A total of 453 Chilean children and adolescents aged between 10 and 18 years were included in this study. Data regarding modes of commuting and commuting distance was collected using a validated questionnaire. Commuting mode was classified as active commuting (walking and/or cycling) or non-active commuting (car, motorcycle and/or bus). Commuting distance expressed in kilometres was categorised into six subgroups (0 to 0.5, 0.6 to 1, 1.1 to 2, 2.1 to 3, 3.1 to 5 and >5 km). Car commuting was the main mode for children (to school 64.9%; from school 51.2%) and adolescents (to school 50.2%; from school 24.7%). Whereas public bus commuting was the main transport used by adolescents to return from school. Only 11.0% and 24.8% of children and adolescents, respectively, walk to school. The proportion of children and adolescents who engage in active commuting was lower in those covering longer distances compared to a short distance. Adolescents walked to and from school more frequently than children. These findings show that non-active commuting was the most common mode of transport and that journey distances may influence commuting modes in children and adolescents.

  3. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture

    PubMed Central

    Lei, Xianqi; Li, Congling; Shi, Xinghua; Xu, Xianghong; Wei, Yujie

    2015-01-01

    It is generally observed that the existence of geometrical discontinuity like notches in materials will lead to strength weakening, as a resultant of local stress concentration. By comparing the influence of notches to the strength of three typical materials, aluminum alloys with intermediate tensile ductility, metallic glasses with no tensile ductility, and brittle ceramics, we observed strengthening in aluminum alloys and metallic glasses: Tensile strength of the net section in circumferentially notched cylinders increases with the constraint quantified by the ratio of notch depth over notch root radius; in contrast, the ceramic exhibit notch weakening. The strengthening in the former two is due to resultant deformation transition: Shear failure occurs in intact samples while samples with deep notches break in normal mode fracture. No such deformation transition was observed in the ceramic, and stress concentration leads to its notch weakening. The experimental results are confirmed by theoretical analyses and numerical simulation. The results reported here suggest that the conventional criterion to use brittleness and/or ductility to differentiate notch strengthening or weakening is not physically sound. Notch strengthening or weakening relies on the existence of failure mode transition and materials exhibiting shear failure while subjected to tension will notch strengthen. PMID:26022892

  4. Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure

    NASA Astrophysics Data System (ADS)

    Nazri, N. A.; Sani, M. S. M.

    2017-10-01

    Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.

  5. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  6. Theoretical study of mode evolution in active long tapered multimode fiber.

    PubMed

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng

    2016-08-22

    A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers.

  7. Normal modes of a superconducting transmission-line resonator with embedded lumped element circuit components

    NASA Astrophysics Data System (ADS)

    Mortensen, Henrik Lund; Mølmer, Klaus; Andersen, Christian Kraglund

    2016-11-01

    We present a method to identify the coupled, normal modes of a superconducting transmission line with an embedded lumped element circuit. We evaluate the effective transmission-line nonlinearities in the case of Kerr-like Josephson interactions in the circuit and in the case where the embedded circuit constitutes a qubit degree of freedom, which is Rabi coupled to the field in the transmission line. Our theory quantitatively accounts for the very high and positive Kerr nonlinearities observed in a recent experiment [M. Rehák, P. Neilinger, M. Grajcar, G. Oelsner, U. Hübner, E. Il'ichev, and H.-G. Meyer, Appl. Phys. Lett. 104, 162604 (2014), 10.1063/1.4873719], and we can evaluate the accomplishments of modified versions of the experimental circuit.

  8. Measurement of nonlinear normal modes using multi-harmonic stepped force appropriation and free decay

    NASA Astrophysics Data System (ADS)

    Ehrhardt, David A.; Allen, Matthew S.

    2016-08-01

    Nonlinear Normal Modes (NNMs) offer tremendous insight into the dynamic behavior of a nonlinear system, extending many concepts that are familiar in linear modal analysis. Hence there is interest in developing methods to experimentally and numerically determine a system's NNMs for model updating or simply to characterize its dynamic response. Previous experimental work has shown that a mono-harmonic excitation can be used to isolate a system's dynamic response in the neighborhood of a NNM along the main backbones of a system. This work shows that a multi-harmonic excitation is needed to isolate a NNM when well separated linear modes of a structure couple to produce an internal resonance. It is shown that one can tune the multiple harmonics of the input excitation using a plot of the input force versus the response velocity until the area enclosed by the force-velocity curve is minimized. Once an appropriated NNM is measured, one can increase the force level and retune the frequency to obtain a NNM at a higher amplitude or remove the excitation and measure the structure's decay down a NNM backbone. This work explores both methods using simulations and measurements of a nominally-flat clamped-clamped beam excited at a single point with a magnetic force. Numerical simulations are used to validate the method in a well defined environment and to provide comparison with the experimentally measured NNMs. The experimental results seem to produce a good estimate of two NNMs along their backbone and part of an internal resonance branch. Full-field measurements are then used to further explore the couplings between the underlying linear modes along the identified NNMs.

  9. Characterization of Ventilatory Modes in Dragonfly Nymph

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Saxton-Fox, Theresa; Gharib, Morteza

    2013-11-01

    A dragonfly nymph's highly modified hindgut has multiple ventilatory modes: hyperventilation (i.e. jet propulsion), gulping ventilation (extended expiratory phase) and normal ventilation. Each mode involves dynamic manipulation of the exit diameter and pressure. To study the different fluid dynamics associated with the three modes, Anisopteran larvae of the family Aeshnidae were tethered onto a rod for flow visualization. The result showed distinct flow structures. The hyperventilation showed a highly turbulent and powerful jet that occurred at high frequency. The gulping ventilation produced a single vortex at a moderate frequency. The normal ventilation showed two distinct vortices, a low-Reynolds number vortex, followed by a high-Reynolds number vortex. Furthermore, a correlation of the formation of the vortices with the movement of the sternum showed that the dragonfly is actively controlling the timing and the speed of the vortices to have them at equal distance from the jet exit at the onset of inspiration. This behavior prevents inspiration of the oxygen deficient expirated water, resulting in the maximization of the oxygen intake. Supported by NSF GRFP.

  10. Guided-mode interactions in thin films with surface corrugation

    NASA Astrophysics Data System (ADS)

    Seshadri, S. R.

    1994-12-01

    The guided modes in a thin-film planar dielectric waveguide sandwiched between a cover and a substrate (two different dielectrics) are considered. The interface between the cover and the film has a smooth corrugation in the longitudinal direction. For weak corrugations, the guided-mode interactions are investigated using the expansion in terms of ideal normal modes. A corresponding treament is given for the not-so-weak corrugations using the expansion in terms of local normal modes. The coupling coefficients are evaluated and reduced to simple forms. The theories are specialized for the treatment of contradirectional coupling between two guided modes taking place selectively in the neighborhood of the Bragg frequency. The coupled-mode equations governing the contradirectional interaction obtained from the local normal mode expansion procedure, in the limit of weak periodic corrugations, are identical to those deduced directly using the ideal normal mode expansion technique. The treatments for both the transverse electric and the transvers magnetic modes are included.

  11. RESONATORS. MODES: Modes of a plano - spherical laser resonator with the Gaussian gain distribution of the active medium

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2007-03-01

    Modes of a laser with plano-spherical degenerate and nondegenerate resonators are calculated upon diode pumping producing the Gaussian gain distribution in the active medium. Axially symmetric and off-axis pumpings are considered. It is shown that in the first case the lowest Hermite-Gaussian mode is excited with the largest weight both in the degenerate and nondegenerate resonator if the pump level is sufficiently high or the characteristic size wg of the amplifying region greatly exceeds the mode radius w0. The high-order Ince-Gaussian modes are excited upon weak off-axis pumping in the nondegenerate resonator both in the absence and presence of the symmetry of the gain distribution with respect to the resonator axis. It is found that when the level of off-axis symmetric pumping of the resonator is high enough, modes with the parameters of the TEM00 mode periodically propagating over a closed path in the resonator can exist. The explanation of this effect is given.

  12. Vertical normal modes of a mesoscale model using a scaled height coordinate

    NASA Technical Reports Server (NTRS)

    Lipton, A. E.; Pielke, R. A.

    1986-01-01

    Vertical modes were derived for a version of the Colorado State Regional Atmospheric Mesoscale Modeling System. The impacts of three options for dealing with the upper boundary of the model were studied. The standard model formulation holds pressure constant at a fixed altitude near the model top, and produces a fastest mode with a speed of about 90 m/sec. An alternative formulation, which allows for an external mode, could require recomputation of vertical modes for every surface elevation on the horizontal grid unless the modes are derived in a particular way. These results have bearing on the feasibility of applying vertical mode initialization to models with scaled height coordinates.

  13. On the tunability of quality-factor for optical Tamm plasmon modes

    NASA Astrophysics Data System (ADS)

    Kumar, Samir; Das, Ritwick

    2017-09-01

    We present a comprehensive investigation to ascertain the impact of gold and silver films on modifying the quality-factor (Q-factor) of optical Tamm-plasmon (OTP) resonance in a metal-distributed Bragg reflector (M-DBR) geometry. Here, OTP mode is excited using direct incidence of white-light-source at normal incidence as well as oblique incidence on M-DBR geometry. The lifetime of OTP in gold and silver deposited films on DBR mirror was determined from OTP resonance linewidth. The lifetime and the Q-factor of OTP modes are found to depend on DBR bilayers, metal film thickness as well as on different plasmon active metals. This finding would facilitate tuning the Q-factor and consequently, the lifetime of OTP modes for various applications in all-optical switches and modulators. In addition, we discuss the spectral characteristics of OTP modes excited using normal and oblique incident of source.

  14. Modeling the Internal Structure of Mars Using Normal Mode Relaxation Theory

    NASA Astrophysics Data System (ADS)

    Pithawala, T. M.; Ghent, R. R.; Bills, B. G.

    2010-12-01

    We seek to resolve an apparent paradox between two sets of observations, which seem to suggest quite different thermal structures for the deep interior of Mars. The orbit of Phobos is observed to be accelerating along-track at a rate of (273.4 ± 1.2) 10^(-5) deg/yr^(2), which implies that the orbit is shrinking at (4.03 ± 0.03) cm/yr, and losing energy at a rate of 3.4 MW. The most likely sink for that energy is tidal dissipation within Mars, seemingly requiring a warm interior. However, static support of the gravity and topography of Mars requires a thick elastic lithosphere, indicating a relatively cool (and therefore stiff) mantle. Using normal mode relaxation theory we model the internal viscosity structure of Mars by analyzing its response to tidal forcing from Phobos. We investigate spherical axisymmetric layered viscoelastic models, seeking to satisfy what is known about planetary differentiation, to support large-scale topography via a thick elastic lithosphere, and to yield the observed tidal dissipation rate. We present a family of 4-layer models (core, mantle, lithosphere, and thin weak layer) that satisfy these constraints, and discuss the implications for Mars’ internal structure.

  15. Transient behavior of an actively mode-locked semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Bergman, L. A.; Johnston, A. R.

    1982-01-01

    Experimental investigation was carried out to study the transient regimes during the buildup and decay of the active mode-locked state in a laser diode. The mode locking was achieved through a sinusoidal modulation of the diode current with the laser in an external cavity. The pulse shape evolution and the time constants for the buildup and decay were determined.

  16. Impact of Distance on Mode of Active Commuting in Chilean Children and Adolescents

    PubMed Central

    Cristi-Montero, Carlos; Escobar-Gómez, Danica; Chillón, Palma

    2017-01-01

    Active commuting could contribute to increasing physical activity. The objective of this study was to characterise patterns of active commuting to and from schools in children and adolescents in Chile. A total of 453 Chilean children and adolescents aged between 10 and 18 years were included in this study. Data regarding modes of commuting and commuting distance was collected using a validated questionnaire. Commuting mode was classified as active commuting (walking and/or cycling) or non-active commuting (car, motorcycle and/or bus). Commuting distance expressed in kilometres was categorised into six subgroups (0 to 0.5, 0.6 to 1, 1.1 to 2, 2.1 to 3, 3.1 to 5 and >5 km). Car commuting was the main mode for children (to school 64.9%; from school 51.2%) and adolescents (to school 50.2%; from school 24.7%). Whereas public bus commuting was the main transport used by adolescents to return from school. Only 11.0% and 24.8% of children and adolescents, respectively, walk to school. The proportion of children and adolescents who engage in active commuting was lower in those covering longer distances compared to a short distance. Adolescents walked to and from school more frequently than children. These findings show that non-active commuting was the most common mode of transport and that journey distances may influence commuting modes in children and adolescents. PMID:29099044

  17. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krausz, F.; Turi, L.; Kuti, C.

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less

  18. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    NASA Astrophysics Data System (ADS)

    Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.

    1990-04-01

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.

  19. Distinct modes of gene regulation by a cell-specific transcriptional activator.

    PubMed

    Sengupta, Tanushri; Cohet, Nathalie; Morlé, François; Bieker, James J

    2009-03-17

    The architectural layout of a eukaryotic RNA polymerase II core promoter plays a role in general transcriptional activation. However, its role in tissue-specific expression is not known. For example, differing modes of its recognition by general transcription machinery can provide an additional layer of control within which a single tissue-restricted transcription factor may operate. Erythroid Kruppel-like factor (EKLF) is a hematopoietic-specific transcription factor that is critical for the activation of subset of erythroid genes. We find that EKLF interacts with TATA binding protein-associated factor 9 (TAF9), which leads to important consequences for expression of adult beta-globin. First, TAF9 functionally supports EKLF activity by enhancing its ability to activate the beta-globin gene. Second, TAF9 interacts with a conserved beta-globin downstream promoter element, and ablation of this interaction by beta-thalassemia-causing mutations decreases its promoter activity and disables superactivation. Third, depletion of EKLF prevents recruitment of TAF9 to the beta-globin promoter, whereas depletion of TAF9 drastically impairs beta-promoter activity. However, a TAF9-independent mode of EKLF transcriptional activation is exhibited by the alpha-hemoglobin-stabilizing protein (AHSP) gene, which does not contain a discernable downstream promoter element. In this case, TAF9 does not enhance EKLF activity and depletion of TAF9 has no effect on AHSP promoter activation. These studies demonstrate that EKLF directs different modes of tissue-specific transcriptional activation depending on the architecture of its target core promoter.

  20. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers.

    PubMed

    Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S

    2016-05-01

    Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea.

  1. Nonlinear acoustic experiments for landmine detection: the significance of the top-plate normal modes

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Alberts, W. C. K., II; Sabatier, James M.

    2004-09-01

    In nonlinear acoustic detection experiments involving a buried inert VS 2.2 anti-tank landmine, airborne sound at two closely spaced primary frequencies f1 and f2 couple into the ground and interact nonlinearly with the soil-top pressure plate interface. Scattering generates soil vibration at the surface at the combination frequencies | m f1 +- n f2 | , where m and n are integers. The normal component of the particle velocity at the soil surface has been measured with a laser Doppler velocimeter (LDV) and with a geophone by Sabatier et. al. [SPIE Proceedings Vol. 4742, (695-700), 2002; Vol. 5089, (476-486), 2003] at the gravel lane test site. Spatial profiles of the particle velocity measured for both primary components and for various combination frequencies indicate that the modal structure of the mine is playing an important role. Here, an experimental modal analysis is performed on a VS 1.6 inert anti-tank mine that is resting on sand but is not buried. Five top-plate mode shapes are described. The mine is then buried in dry finely sifted natural loess soil and excited at f1 = 120 Hz and f2 = 130 Hz. Spatial profiles at the primary components and the nonlinearly generated f1 - (f2 - f1) component are characterized by a single peak. For the 2f1+f2 and 2f2 + f1 components, the doubly peaked profiles can be attributed to the familiar mode shape of a timpani drum (that is shifted lower in frequency due to soil mass loading). Other nonlinear profiles appear to be due to a mixture of modes. This material is based upon work supported by the U. S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate under Contract DAAB15-02-C-0024.

  2. FIBER AND INTEGRATED OPTICS: Propagation of radiation in a light-induced active waveguide

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Anatolii A.; Samson, B. A.; Drits, V. V.; Yukhimenko, S. I.; Yakite, R. V.

    1990-10-01

    An investigation is reported of the properties of the normal modes of an active light-induced waveguide. It is shown that, in contrast to a dielectric waveguide, the presence of the active component may increase considerably the number of the normal modes and the angles of their scattering. In the case of an active light-induced waveguide in the form of a thin filament the normal modes exist and are amplified only in the case when the nonlinear correction to the refractive index is positive.

  3. Quasi-normal modes of holographic system with Weyl correction and momentum dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Pin; Liu, Peng

    2018-05-01

    We study the charge response in complex frequency plane and the quasi-normal modes (QNMs) of the boundary quantum field theory with momentum dissipation dual to a probe generalized Maxwell system with Weyl correction. When the strength of the momentum dissipation α ˆ is small, the pole structure of the conductivity is similar to the case without the momentum dissipation. The qualitative correspondence between the poles of the real part of the conductivity of the original theory and the ones of its electromagnetic (EM) dual theory approximately holds when γ → - γ with γ being the Weyl coupling parameter. While the strong momentum dissipation alters the pole structure such that most of the poles locate at the purely imaginary axis. At this moment, the correspondence between the poles of the original theory and its EM dual one is violated when γ → - γ. In addition, for the dominant pole, the EM duality almost holds when γ → - γ for all α ˆ except for a small region of α ˆ .

  4. Landsat-5 bumper-mode geometric correction

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

  5. Distinct effects of reminding mortality and physical pain on the default-mode activity and activity underlying self-reflection.

    PubMed

    Shi, Zhenhao; Han, Shihui

    2018-06-01

    Behavioral research suggests that reminding both mortality and negative affect influences self-related thoughts. Using functional magnetic resonance imaging (MRI), we tested the hypothesis that reminders of mortality and physical pain decrease brain activity underlying self-related thoughts. Three groups of adults underwent priming procedures during which they answered questions pertaining to mortality, physical pain, or leisure time, respectively. Before and after priming, participants performed personality trait judgments on oneself or a celebrity, identified the font of words, or passively viewed a fixation. The default-mode activity and neural activity underlying self-reflection were identified by contrasting viewing a fixation vs. font judgment and trait judgments on oneself vs. a celebrity, respectively. The analyses of the pre-priming functional MRI (fMRI) data identified the default-mode activity in the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (MPFC), and parahippocampal gyrus, and the activity underlying instructed self-reflection in both the ventral and dorsal regions of the MPFC. The analyses of the post-priming fMRI data revealed that, relative to leisure time priming, reminding mortality significantly reduced the default-mode PCC activity, and reminding physical pain significantly decreased the dorsal MPFC activity during instructed self-reflection. Our findings suggest distinct neural underpinnings of the effect of reminding morality and aversive emotion on default-mode and instructed self-reflection.

  6. From sedentary to active school commute: Multi-level factors associated with travel mode shifts.

    PubMed

    Lee, Chanam; Yoon, Jeongjae; Zhu, Xuemei

    2017-02-01

    Previous research has examined personal, social, and environmental correlates of active commuting to school, but most were cross-sectional and mode choice studies. This exploratory case study utilized a retrospective natural experiment opportunity, where a group of students transferred to a new school, and therefore experienced changes in their home-to-school travel environments. It examined whether such changes led to mode shifts from sedentary (car or school bus) to active (walking and bicycling) and what factors were associated with those shifts. Retrospective parental survey data (n=165, response rate=46%) were collected in 2011 from a new elementary school that opened in 2010 in Austin, Texas. The survey asked about the child's school travel mode and parental perceptions of home-to-school travel environments before and after the transfer, as well as personal and social factors. Multivariate logistic regressions were used to predict the odds of shifting from sedentary to active modes, using personal, social, and physical environmental variables. Sixty-eight (41.2%) respondents reported a sedentary-to-active mode shift for school commuting. Such shifts were associated with changes in school travel environments (e.g., shorter travel distance, improved safety, and decreased availability of bike lanes/paths) and relevant programs/services (e.g., increase in walking-promotion programs, and decrease in school bus service due to shortened distances). Targeting the current sedentary mode users is important to bring health benefits through increased physical activity and environmental benefits from reduced automobile use. Sedentary-to-active mode shifts may be encouraged by providing walking-promotion programs and by reducing travel distances and safety threats en route to school. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Actively mode-locked erbium fiber ring laser using a Fabry-Perot semiconductor modulator as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-05-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.

  8. Anharmonic Normal Mode Analysis of Elastic Network Model Improves the Modeling of Atomic Fluctuations in Protein Crystal Structures

    PubMed Central

    Zheng, Wenjun

    2010-01-01

    Abstract Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the Cα-only elastic network models, which assume elastic interactions between pairs of residues whose Cα atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between Cα atoms or heavy atoms derived from a large set of protein crystal structures. PMID:20550915

  9. Detecting atmospheric normal modes with periods less than 6 h by barometric observations

    NASA Astrophysics Data System (ADS)

    Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.

    2018-04-01

    The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.

  10. The effects of solvent on the conformation and the collective motions of protein: Normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum

    NASA Astrophysics Data System (ADS)

    Kitao, Akio; Hirata, Fumio; Gō, Nobuhiro

    1991-12-01

    The effects of solvent on the conformation and dynamics of protein is studied by computer simulation. The dynamics is studied by focusing mainly on collective motions of the protein molecule. Three types of simulation, normal mode analysis, molecular dynamics in vacuum, and molecular dynamics in water are applied to melittin, the major component of bee venom. To define collective motions principal, component analysis as well as normal mode analysis has been carried out. The principal components with large fluctuation amplitudes have a very good correspondence with the low-frequency normal modes. Trajectories of the molecular dynamics simulation are projected onto the principal axes. From the projected motions time correlation functions are calculated. The results indicate that the very-low-frequency modes, whose frequencies are less than ≈ 50 cm -1, are overdamping in water with relaxation times roushly twice as long as the period of the oscillatory motion. Effective Langevin mode analysis is carried out by using the friction coefficient matrix determined from the velocity correlation function calculated from the molecular dynamics trajectory in water. This analysis reproduces the results of the simulation in water reasonably well. The presence of the solvent water is found also to affect the shape of the potential energy surface in such a way that it produces many local minima with low-energy barriers in between, the envelope of which is given by the surface in vacuum. Inter-minimum transitions endow the conformational dynamics of proteins in water another diffusive character, which already exists in the intra-minimum collective motions.

  11. Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

    PubMed Central

    Pinnock, Farena; Parlar, Melissa; Hawco, Colin; Hanford, Lindsay; Hall, Geoffrey B.

    2017-01-01

    This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB) composite score (T = 50 ± 10) and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n = 39) had greater cortical thickness than both cognitively normal (n = 17) and below-normal range (n = 49) patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n = 24) or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment. PMID:28348889

  12. A theory for protein dynamics: Global anisotropy and a normal mode approach to local complexity

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Romano, Pablo; Guenza, Marina

    2014-03-01

    We propose a novel Langevin equation description for the dynamics of biological macromolecules by projecting the solvent and all atomic degrees of freedom onto a set of coarse-grained sites at the single residue level. We utilize a multi-scale approach where molecular dynamic simulations are performed to obtain equilibrium structural correlations input to a modified Rouse-Zimm description which can be solved analytically. The normal mode solution provides a minimal basis set to account for important properties of biological polymers such as the anisotropic global structure, and internal motion on a complex free-energy surface. This multi-scale modeling method predicts the dynamics of both global rotational diffusion and constrained internal motion from the picosecond to the nanosecond regime, and is quantitative when compared to both simulation trajectory and NMR relaxation times. Utilizing non-equilibrium sampling techniques and an explicit treatment of the free-energy barriers in the mode coordinates, the model is extended to include biologically important fluctuations in the microsecond regime, such as bubble and fork formation in nucleic acids, and protein domain motion. This work supported by the NSF under the Graduate STEM Fellows in K-12 Education (GK-12) program, grant DGE-0742540 and NSF grant DMR-0804145, computational support from XSEDE and ACISS.

  13. Exact mode volume and Purcell factor of open optical systems

    NASA Astrophysics Data System (ADS)

    Muljarov, E. A.; Langbein, W.

    2016-12-01

    The Purcell factor quantifies the change of the radiative decay of a dipole in an electromagnetic environment relative to free space. Designing this factor is at the heart of photonics technology, striving to develop ever smaller or less lossy optical resonators. The Purcell factor can be expressed using the electromagnetic eigenmodes of the resonators, introducing the notion of a mode volume for each mode. This approach allows an analytic treatment, reducing the Purcell factor and other observables to sums over eigenmode resonances. Calculating the mode volumes requires a correct normalization of the modes. We introduce an exact normalization of modes, not relying on perfectly matched layers. We present an analytic theory of the Purcell effect based on this exact mode normalization and the resulting effective mode volume. We use a homogeneous dielectric sphere in vacuum, which is analytically solvable, to exemplify these findings. We furthermore verify the applicability of the normalization to numerically determined modes of a finite dielectric cylinder.

  14. School travel mode, parenting practices and physical activity among UK Year 5 and 6 children

    PubMed Central

    2014-01-01

    Background School travel mode and parenting practices have been associated with children’s physical activity (PA). The current study sought to examine whether PA parenting practices differ by school travel mode and whether school travel mode and PA parenting practices are associated with PA. Methods 469 children (aged 9-11) wore accelerometers from which mean weekday and after-school (3.30 to 8.30 pm) minutes of moderate-to-vigorous intensity PA (MVPA) and counts per minute (CPM) were derived. Mode of travel to and from school (passive vs. active) and PA parenting practices (maternal and paternal logistic support and modelling behaviour) were child-reported. Results Children engaged in an average of 59.7 minutes of MVPA per weekday. Active travel to school by girls was associated with 5.9 more minutes of MVPA per day compared with those who travelled to school passively (p = 0.004). After-school CPM and MVPA did not differ by school travel mode. There was no evidence that physical activity parenting practices were associated with school travel mode. Conclusions For girls, encouraging active travel to school is likely to be important for overall PA. Further formative research may be warranted to understand how both parental logistic support and active travel decisions are operationalized in families as a means of understanding how to promote increased PA among pre-adolescent children. PMID:24739338

  15. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  16. Mitral annulus motion as determined by M-mode echocardiography in normal dogs and dogs with cardiac disease.

    PubMed

    Schober, K E; Fuentes, V L

    2001-01-01

    M-mode echocardiography was used to assess apical mitral annulus motion (MAM) in 103 normal dogs and 101 dogs with cardiac disease, to obtain information on systolic left ventricular long axis function. In normal dogs, a close relationship was found between MAM and body weight (r = 0.80, P < 0.001). There was a weak correlation between MAM and heart rate (r = -0.25, P < 0.05), but no correlation between MAM and age or left ventricular shortening fraction (P > 0.05). Mean MAM (95% confidence intervals) were established for normal dogs of differing body weight, and were 0.70 cm (0.65 to 0.75) in dogs < 15 kg, 1.08 cm (1.03 to 1.13) in dogs weighing 15 to 40 kg, and 1.51 cm (1.21 to 1.81) in dogs > 40 kg. "Cut-off" values to define decreased MAM for normal dogs of differing body weight were 0.45 cm (dogs < 15 kg), 0.80 cm (dogs 15-40 kg), and 1.20 cm (dogs > 40 kg). In dogs with cardiac disease, median MAM was normal in mitral valve endocardiosis or aortic stenosis, but significantly decreased (P < 0.05) in dilated cardiomyopathy. All dogs with mitral valve endocardiosis (n = 54) or aortic stenosis (n = 26) had MAM above the above-mentioned "cut-off" values, suggesting normal or increased left ventricular longitudinal systolic shortening, whereas 81% (17/21) of dogs with dilated cardiomyopathy had MAM below the "cut-off" value, indicating decreased long axis systolic function. It is concluded that MAM may be used to evaluate systolic left ventricular long axis performance in dogs and may add useful information on global left ventricular contraction dynamics.

  17. Observations of the azimuthal dependence of normal mode coupling below 4 mHz at the South Pole and its nearby stations: Insights into the anisotropy beneath the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Hu, Xiao Gang

    2016-08-01

    Normal mode coupling pair 0S26-0T26 and 0S27-0T27 are significantly present at the South Pole station QSPA after the 2011/03/11 Mw9.1 Tohoku earthquake. In an attempt to determine the mechanisms responsible for the coupling pairs, I first investigate mode observations at 43 stations distributed along the polar great-circle path for the earthquake and observations at 32 Antarctic stations. I rule out the effect of Earth's rotation as well as the effect of global large-scale lateral heterogeneity, but argue instead for the effect of small-scale local azimuthal anisotropy in a depth extent about 300 km. The presence of quasi-Love waveform in 2-5 mHz at QSPA and its nearby stations confirms the predication. Secondly, I analyze normal mode observations at the South Pole location after 28 large earthquakes from 1998 to 2015. The result indicates that the presence of the mode coupling is azimuthal dependent, which is related to event azimuths in -46° to -18°. I also make a comparison between the shear-wave splitting measurements of previous studies and the mode coupling observations of this study, suggesting that their difference can be explained by a case that the anisotropy responsible for the mode coupling is not just below the South Pole location but located below region close to the Transantarctic Mountains (TAM). Furthermore, more signals of local azimuthal anisotropy in normal-mode observations at QSPA and SBA, such as coupling of 0S12-0T11 and vertical polarization anomaly for 0T10, confirms the existence of deep anisotropy close to TAM, which may be caused by asthenospheric mantle flow and edge convection around cratonic keel of TAM.

  18. Environmental stability of actively mode locked fibre lasers

    NASA Astrophysics Data System (ADS)

    Hill, Calum H.; Lee, Stephen T.; Reid, Derryck T.; Baili, Ghaya; Davies, John

    2016-10-01

    Lasers developed for defence related applications typically encounter issues with reliability and meeting desired specification when taken from the lab to the product line. In particular the harsh environmental conditions a laser has to endure can lead to difficulties. This paper examines a specific class of laser, namely actively mode-locked fibre lasers (AMLFLs), and discusses the impact of environmental perturbations. Theoretical and experimental results have assisted in developing techniques to improve the stability of a mode-locked pulse train for continuous operation. Many of the lessons learned in this research are applicable to a much broader category of lasers. The AMLFL consists of a fibre ring cavity containing a semiconductor optical amplifier (SOA), an isolator, an output coupler, a circulator, a bandpass filter and a modulator. The laser produces a train of 6-ps pulses at 800 nm with a repetition rate in the GHz regime and a low-noise profile. This performance is realisable in a laboratory environment. However, even small changes in temperature on the order of 0.1 °C can cause a collapse of mode-locked dynamics such that the required stability cannot be achieved without suitable feedback. Investigations into the root causes of this failure were performed by changing the temperature of components that constitute the laser resonator and observing their properties. Several different feedback mechanisms have been investigated to improve laser stability in an environment with dynamic temperature changes. Active cavity length control will be discussed along with DC bias control of the Mach-Zehnder modulator (MZM).

  19. Robust Seismic Normal Modes Computation in Radial Earth Models and A Novel Classification Based on Intersection Points of Waveguides

    NASA Astrophysics Data System (ADS)

    Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    We develop a robust algorithm to compute seismic normal modes in a spherically symmetric, non-rotating Earth. A well-known problem is the cross-contamination of modes near "intersections" of dispersion curves for separate waveguides. Our novel computational approach completely avoids artificial degeneracies by guaranteeing orthonormality among the eigenfunctions. We extend Wiggins' and Buland's work, and reformulate the Sturm-Liouville problem as a generalized eigenvalue problem with the Rayleigh-Ritz Galerkin method. A special projection operator incorporating the gravity terms proposed by de Hoop and a displacement/pressure formulation are utilized in the fluid outer core to project out the essential spectrum. Moreover, the weak variational form enables us to achieve high accuracy across the solid-fluid boundary, especially for Stoneley modes, which have exponentially decaying behavior. We also employ the mixed finite element technique to avoid spurious pressure modes arising from discretization schemes and a numerical inf-sup test is performed following Bathe's work. In addition, the self-gravitation terms are reformulated to avoid computations outside the Earth, thanks to the domain decomposition technique. Our package enables us to study the physical properties of intersection points of waveguides. According to Okal's classification theory, the group velocities should be continuous within a branch of the same mode family. However, we have found that there will be a small "bump" near intersection points, which is consistent with Miropol'sky's observation. In fact, we can loosely regard Earth's surface and the CMB as independent waveguides. For those modes that are far from the intersection points, their eigenfunctions are localized in the corresponding waveguides. However, those that are close to intersection points will have physical features of both waveguides, which means they cannot be classified in either family. Our results improve on Okal

  20. Local vibrational modes of the water dimer - Comparison of theory and experiment

    NASA Astrophysics Data System (ADS)

    Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.

    2012-12-01

    Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.

  1. Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite-Gaussian modes for free-space optical communication.

    PubMed

    Ndagano, Bienvenu; Mphuthi, Nokwazi; Milione, Giovanni; Forbes, Andrew

    2017-10-15

    There is interest in using orbital angular momentum (OAM) modes to increase the data speed of free-space optical communication. A prevalent challenge is the mitigation of mode-crosstalk and mode-dependent loss that is caused by the modes' lateral displacement at the data receiver. Here, the mode-crosstalk and mode-dependent loss of laterally displaced OAM modes (LG 0,+1 , LG 0,-1 ) are experimentally compared to that of a Hermite-Gaussian (HG) mode subset (HG 0,1 , HG 1,0 ). It is shown, for an aperture larger than the modes' waist sizes, some of the HG modes can experience less mode-crosstalk and mode-dependent loss when laterally displaced along a symmetry axis. It is also shown, over a normal distribution of lateral displacements whose standard deviation is 2× the modes' waist sizes, on average, the HG modes experience 66% less mode-crosstalk and 17% less mode-dependent loss.

  2. Brain cholinesterase activity of apparently normal wild birds

    USGS Publications Warehouse

    Hill, E.F.

    1988-01-01

    Organophosphorus and carbamate pesticides are potent anticholinesterase substances that have killed large numbers of wild birds of various species. Cause of death is diagnosed by demonstration of depressed brain cholinesterase (ChE) activity in combination with chemical detection of anticholinesterase residue in the affected specimen. ChE depression is determined by comparison of the affected specimen to normal ChE activity for a sample of control specimens of the same species, but timely procurement of controls is not always possible. Therefore, a reference file of normal whole brain ChE activity is provided for 48 species of wild birds from North America representing 11 orders and 23 families for use as emergency substitutes in diagnosis of anticholinesterase poisoning. The ChE values, based on 83 sets of wild control specimens from across the United States, are reproducible provided the described procedures are duplicated. Overall, whole brain ChE activity varied nearly three-fold among the 48 species represented, but it was usually similar for closely related species. However, some species were statistically separable in most families and some species of the same genus differed as much as 50%.

  3. Time reversal imaging and cross-correlations techniques by normal mode theory

    NASA Astrophysics Data System (ADS)

    Montagner, J.; Fink, M.; Capdeville, Y.; Phung, H.; Larmat, C.

    2007-12-01

    Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and recently to seismic waves in seismology for earthquake imaging. The increasing power of computers and numerical methods (such as spectral element methods) enables one to simulate more and more accurately the propagation of seismic waves in heterogeneous media and to develop new applications, in particular time reversal in the three-dimensional Earth. Generalizing the scalar approach of Draeger and Fink (1999), the theoretical understanding of time-reversal method can be addressed for the 3D- elastic Earth by using normal mode theory. It is shown how to relate time- reversal methods on one hand, with auto-correlation of seismograms for source imaging and on the other hand, with cross-correlation between receivers for structural imaging and retrieving Green function. The loss of information will be discussed. In the case of source imaging, automatic location in time and space of earthquakes and unknown sources is obtained by time reversal technique. In the case of big earthquakes such as the Sumatra-Andaman earthquake of december 2004, we were able to reconstruct the spatio-temporal history of the rupture. We present here some new applications at the global scale of these techniques on synthetic tests and on real data.

  4. Comparative study of cluster Ag17Cu2 by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation.

    PubMed

    Tang, Ping-Han; Wu, Ten-Ming; Yen, Tsung-Wen; Lai, S K; Hsu, P J

    2011-09-07

    We perform isothermal Brownian-type molecular dynamics simulations to obtain the velocity autocorrelation function and its time Fourier-transformed power spectral density for the metallic cluster Ag(17)Cu(2). The temperature dependences of these dynamical quantities from T = 0 to 1500 K were examined and across this temperature range the cluster melting temperature T(m), which we define to be the principal maximum position of the specific heat is determined. The instantaneous normal mode analysis is then used to dissect the cluster dynamics by calculating the vibrational instantaneous normal mode density of states and hence its frequency integrated value I(j) which is an ensemble average of all vibrational projection operators for the jth atom in the cluster. In addition to comparing the results with simulation data, we look more closely at the entities I(j) of all atoms using the point group symmetry and diagnose their temperature variations. We find that I(j) exhibit features that may be used to deduce T(m), which turns out to agree very well with those inferred from the power spectral density and specific heat. © 2011 American Institute of Physics

  5. Liquid crystal mediated active nano-plasmonic based on the formation of hybrid plasmonic-photonic modes

    NASA Astrophysics Data System (ADS)

    Mehrzad, Hossein; Mohajerani, Ezeddin

    2018-02-01

    The present study aims to demonstrate how active hybrid nano-plasmonic modes become excited due to the coupling of localized plasmonic resonance and Fabry-Perot (FP) optical modes. The proposed structure includes an integration of a micro-cavity filled with liquid crystals with high anisotropy and a layer of gold nanoislands (NIs). The optical absorption of NI is controllably discretized to the narrow-width modes, called "hybrid modes (HM)," due to the interplay between FP and plasmonic modes. HM could demonstrate a strongly intensified and diminished absorption, compared to the absorption of the bare gold layer. Based on the active plasmonic experiments, the HM boosted the figure of merit related to activation capability up to 40 times and subsequently experienced impressive spectral shifts, leading to very wavelength-selective changes. The theoretical simulation of the HM is provided to suggest relevant insights into the experimental results.

  6. Investigation of Antihyperglycaemic Activity of Banana (Musa sp. Var. Nanjangud rasa bale) Flower in Normal and Diabetic Rats.

    PubMed

    Ramu, Ramith; Shirahatti, Prithvi S; Dhanabal, S P; Zameer, Farhan; Dhananjaya, B L; Nagendra Prasad, M N

    2017-10-01

    The vital enzymes of starch digestion and absorption are intestinal α-glucosidases and their inhibition improves postprandial hyperglycaemia, constituting an effective mode of therapy in diabetes. The present study was designed to assess the inhibitory potential of ethanol extract of banana flower (EF) on mammalian α-glucosidases and its pharmacological effects on postprandial hyperglycaemia in normal and alloxan-induced diabetic rats. EF was evaluated for its inhibitory potential and mode of inhibition on mammalian α-glucosidases. Further, the role of EF and its constituents Umbelliferone (C1) and Lupeol (C2) on glucose uptake using isolated rat hemi-diaphragm and insulinotropic activity using RINm5F (rat insulinoma) cell lines were determined. The phytocomponents in EF were also evaluated using GC-MS. EF illustrated a dose-dependent inhibition for rat intestinal sucrase, maltase and p -nitrophenyl-α-D-glucopyranoside (pNPG) hydrolysis (IC 50 values: 18.76±0.22, 25.54±0.10 and 76.42±1.12 µg/ml, respectively) and the mode of inhibition was non-competitive with low Ki values. Oral administration (100-200 mg/kg b.wt.) of EF significantly improved the maltose/glucose-induced postprandial hyperglycaemia in normal and alloxan-induced diabetic rats. EF, C1 and C2 exhibited stimulation of glucose uptake and a dose-dependent glucose-induced insulin secretion at both 4.5 and 16.7 mM glucose concentrations. Further, GC-MS analysis revealed significant levels of steroids (25.61%), diazoprogesterone (21.31%), sesquiterpene (11.78%) and other phytocomponents. EF inhibited α-glucosidases besides promoting glucose uptake and insulin secretion, resulting in antihyperglycaemic effect determining EF as a potent anti-diabetic agent. Abbreviations used: mg/dl: milligramsper deciliter, mM: millimolar, b.wt.: body weight.

  7. Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease.

    PubMed

    Grafton, S T; Turner, R S; Desmurget, M; Bakay, R; Delong, M; Vitek, J; Crutcher, M

    2006-04-25

    To test whether therapeutic unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson disease (PD) leads to normalization in the pattern of brain activation during movement execution and control of movement extent. Six patients with PD were imaged off medication by PET during performance of a visually guided tracking task with the DBS voltage programmed for therapeutic (effective) or subtherapeutic (ineffective) stimulation. Data from patients with PD during ineffective stimulation were compared with a group of 13 age-matched control subjects to identify sites with abnormal patterns of activation. Conjunction analysis was used to identify those areas in patients with PD where activity normalized when they were treated with effective stimulation. For movement execution, effective DBS caused an increase of activation in the supplementary motor area (SMA), superior parietal cortex, and cerebellum toward a more normal pattern. At rest, effective stimulation reduced overactivity of SMA. Therapeutic stimulation also induced reductions of movement related "overactivity" compared with healthy subjects in prefrontal, temporal lobe, and basal ganglia circuits, consistent with the notion that many areas are recruited to compensate for ineffective motor initiation. Normalization of activity related to the control of movement extent was associated with reductions of activity in primary motor cortex, SMA, and basal ganglia. Effective subthalamic nucleus stimulation leads to task-specific modifications with appropriate recruitment of motor areas as well as widespread, nonspecific reductions of compensatory or competing cortical activity.

  8. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  9. Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.

    PubMed

    Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J

    2006-10-01

    We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.

  10. Reliable before-fabrication forecasting of normal and touch mode MEMS capacitive pressure sensor: modeling and simulation

    NASA Astrophysics Data System (ADS)

    Jindal, Sumit Kumar; Mahajan, Ankush; Raghuwanshi, Sanjeev Kumar

    2017-10-01

    An analytical model and numerical simulation for the performance of MEMS capacitive pressure sensors in both normal and touch modes is required for expected behavior of the sensor prior to their fabrication. Obtaining such information should be based on a complete analysis of performance parameters such as deflection of diaphragm, change of capacitance when the diaphragm deflects, and sensitivity of the sensor. In the literature, limited work has been carried out on the above-stated issue; moreover, due to approximation factors of polynomials, a tolerance error cannot be overseen. Reliable before-fabrication forecasting requires exact mathematical calculation of the parameters involved. A second-order polynomial equation is calculated mathematically for key performance parameters of both modes. This eliminates the approximation factor, and an exact result can be studied, maintaining high accuracy. The elimination of approximation factors and an approach of exact results are based on a new design parameter (δ) that we propose. The design parameter gives an initial hint to the designers on how the sensor will behave once it is fabricated. The complete work is aided by extensive mathematical detailing of all the parameters involved. Next, we verified our claims using MATLAB® simulation. Since MATLAB® effectively provides the simulation theory for the design approach, more complicated finite element method is not used.

  11. [Intravesical active prostate bleeding diagnosed in B-mode ultrasound].

    PubMed

    Kirchgesner, T; Danse, E; Tombal, B

    2013-09-01

    Hematuria is one of the most frequent minor complications after prostatic biopsy. We would like to report the case of a 68-year-old patient with massive hematuria after prostatic biopsy and intravesical active prostate bleeding diagnosed in B-mode ultrasonography. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Active mode locking of quantum cascade lasers in an external ring cavity.

    PubMed

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  13. Active mode locking of quantum cascade lasers in an external ring cavity

    PubMed Central

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  14. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization – Mass Spectrometry Imaging

    PubMed Central

    Pirro, Valentina; Hattab, Eyas M.; Cohen-Gadol, Aaron A.; Cooks, R. Graham

    2016-01-01

    Desorption electrospray ionization—mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component–linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component–linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins. PMID:27658243

  15. Intrinsic hybrid modes in a corrugated conical horn

    NASA Astrophysics Data System (ADS)

    Dendane, A.; Arnold, J. M.

    1988-08-01

    Computational requirements for the generation of intrinsic modes in a nonseparable waveguide geometry requiring a full vector field description with anistropic impedance boundaries were derived. Good agreement is shown between computed and measured radiation patterns in copolar and crosspolar configurations. This agreement establishes that the intrinsic mode correctly accounts for the local normal mode conversion which takes place along the horn in a conventional mode coupling scheme, at least for cone semiangles up to 15 deg. The advantage of the intrinsic mode formulation over the conventional mode-coupling theory is that, to construct a single intrinsic mode throughout the horn, only one local normal mode field is required at each cross section, whereas mode conversion from the HE11 mode would require all the HE1n modes to be known at each cross section. The intrinsic mode accounts also for fields which would appear as backward modes in coupled-mode theory. A complete coupled-mode theory solution requires the inversion of a large matrix at each cross section, whereas the intrinsic mode can be constructed explicitly using a simple Fourier-like integral; the perturbation solution of Dragone (1977) is difficult to make rigorous.

  16. Super Normal Vector for Human Activity Recognition with Depth Cameras.

    PubMed

    Yang, Xiaodong; Tian, YingLi

    2017-05-01

    The advent of cost-effectiveness and easy-operation depth cameras has facilitated a variety of visual recognition tasks including human activity recognition. This paper presents a novel framework for recognizing human activities from video sequences captured by depth cameras. We extend the surface normal to polynormal by assembling local neighboring hypersurface normals from a depth sequence to jointly characterize local motion and shape information. We then propose a general scheme of super normal vector (SNV) to aggregate the low-level polynormals into a discriminative representation, which can be viewed as a simplified version of the Fisher kernel representation. In order to globally capture the spatial layout and temporal order, an adaptive spatio-temporal pyramid is introduced to subdivide a depth video into a set of space-time cells. In the extensive experiments, the proposed approach achieves superior performance to the state-of-the-art methods on the four public benchmark datasets, i.e., MSRAction3D, MSRDailyActivity3D, MSRGesture3D, and MSRActionPairs3D.

  17. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent

    PubMed Central

    Bonenfant, Débora; Rubert, Joëlle; Vangrevelinghe, Eric; Scheufler, Clemens; Marque, Fanny; Régnier, Catherine H.; De Pover, Alain; Ryckelynck, Hugues; Bhagwat, Neha; Koppikar, Priya; Goel, Aviva; Wyder, Lorenza; Tavares, Gisele; Baffert, Fabienne; Pissot-Soldermann, Carole; Manley, Paul W.; Gaul, Christoph; Voshol, Hans; Levine, Ross L.; Sellers, William R.; Hofmann, Francesco; Radimerski, Thomas

    2016-01-01

    JAK inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type-I binding mode leads to an increase in JAK activation-loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type-II inhibition acts in the opposite manner, leading to a loss of activation-loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation-loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation-loop may or may not be elicited. PMID:22684457

  18. Attitude toward physical activity in normal-weight, overweight and obese adolescents.

    PubMed

    Deforche, Benedicte I; De Bourdeaudhuij, Ilse M; Tanghe, Ann P

    2006-05-01

    To investigate differences in physical activity and attitude toward physical activity in adolescents with different degrees of overweight and explore whether the prediction of physical activity by attitude is moderated by level of overweight. Subjects were divided into a normal-weight group (n = 37, 18.8 +/- 1.2 kg/m2), an overweight group (n = 28, 25.9 +/- 1.3 kg/m2), and an obese group (n = 24, 33.7 +/- 4.1 kg/m2). Mean age was 14.6 +/- 1.2 years, with 72% girls. Physical activity was estimated using the Baecke Questionnaire. Attitude was measured by assessing perceived benefits and barriers. Participation in sports was higher in normal-weight compared with overweight (p < .05) and obese (p < .01) subjects. There was no difference in leisure-time physical activity between groups. Perceived benefits did not differ between groups, but normal-weight subjects perceived less barriers ('physical complaints', 'not being good at it', 'insecure about appearance', 'not liking it') than their overweight (p < .05) and obese (p < .001) counterparts. Obese adolescents had a less positive attitude compared with their normal-weight (p < .001) and overweight (p < .05) peers. Sport participation was significantly predicted by the perceived benefit 'pleasure' (p < .05) and by the perceived barrier 'not liking it' (p < .001), after taking into account level of overweight. The association between sport participation and attitude was not moderated by level of overweight. This study demonstrates that overweight and obese adolescents show lower sport participation and have a less positive attitude toward physical activity. Interventions in youngsters with weight problems should try to increase participation in sports by making activities more fun and attractive for these youngsters.

  19. Playing in parallel: the effects of multiplayer modes in active video game on motivation and physical exertion.

    PubMed

    Peng, Wei; Crouse, Julia

    2013-06-01

    Although multiplayer modes are common among contemporary video games, the bulk of game research focuses on the single-player mode. To fill the gap in the literature, the current study investigated the effects of different multiplayer modes on enjoyment, future play motivation, and the actual physical activity intensity in an active video game. One hundred sixty-two participants participated in a one-factor between-subject laboratory experiment with three conditions: (a) single player: play against self pretest score; (b) cooperation with another player in the same physical space; (c) parallel competition with another player in separated physical spaces. We found that parallel competition in separate physical spaces was the optimal mode, since it resulted in both high enjoyment and future play motivation and high physical intensity. Implications for future research on multiplayer mode and play space as well as active video game-based physical activity interventions are discussed.

  20. Kelvin waves: a comparison study between SABER and normal mode analysis of ECMWF data

    NASA Astrophysics Data System (ADS)

    Blaauw, Marten; Garcia, Rolando; Zagar, Nedjeljka; Tribbia, Joe

    2014-05-01

    Equatorial Kelvin waves spectra are sensitive to the multi-scale variability of their source of tropical convective forcing. Moreover, Kelvin wave spectra are modified upward by changes in the background winds and stability. Recent high resolution data from observations as well as analyses are capable of resolving the slower Kelvin waves with shorter vertical wavelength near the tropical tropopause. In this presentation, results from a quantitive comparison study of stratospheric Kelvin waves in satellite data (SABER) and analysis data from the ECMWF operational archive will be shown. Temperature data from SABER is extracted over a six year period (2007-2012) with an effective vertical resolution of 2 km. Spectral power of stratospheric Kelvin waves in SABER data is isolated by selecting symmetric and eastward spectral components in the 8-20 days range. Global data from ECMWF operational analysis is extracted for the same six years on 91 model levels (top level at 0.01 hPa) and 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, the input mass and wind data from ECMWF is projected onto balanced rotational modes and unbalanced inertia-gravity modes, including spectral data for pure Kelvin waves. The results show good agreement between Kelvin waves in SABER and ECMWF analyses data for: (i) the frequency shift of Kelvin wave variance with height and (ii) vertical wavelengths. Variability with respect to QBO will also be discussed. In a previous study, discrepancies in the upper stratosphere were found to be 60% and are found here to be 10% (8-20 day averaged value), which can be explained by the better stratosphere representation in the 91 model level version of the ECMWF operational model. New discrepancies in Kelvin wave variance are found in the lower stratosphere at 20 km. Averaged spectral power over the 8-20 day range is found to be 35% higher in ECMWF compared to SABER data. We compared results at 20 km with additional

  1. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones.

    PubMed

    Lu, Dang-Nhac; Nguyen, Duc-Nhan; Nguyen, Thi-Hau; Nguyen, Ha-Nam

    2018-03-29

    In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS), that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers' vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features) as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine) contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97.33% that is

  2. Rapid detection of microorganisms based on active and passive modes of QCM.

    PubMed

    Farka, Zdeněk; Kovář, David; Skládal, Petr

    2014-12-23

    Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter) and passive (impedance analyzer) modes of quartz crystal microbalance (QCM) were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo-SMCC was most effective achieving the limit of detection (LOD) 8 × 104 CFU·mL-1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes.

  3. Activation of normal neutrophils by anti-neutrophil cytoplasm antibodies.

    PubMed Central

    Keogan, M T; Esnault, V L; Green, A J; Lockwood, C M; Brown, D L

    1992-01-01

    Anti-neutrophil cytoplasm antibodies (ANCA) are markers of systemic vasculitis for which a pathogenetic role has been postulated. We have examined the effect of these autoantibodies on the function of normal human neutrophils in vitro. In the presence of ANCA positive sera luminol-amplified chemiluminescence was significantly increased compared to the values seen in the presence of normal or anti-double stranded DNA positive sera (P < 0.01). Five of six ANCA positive F(ab)2 preparations also produced significant neutrophil activation as demonstrated by the chemiluminescence response. This response was totally abrogated by the addition of neutrophil cytoplasm extract, containing the ANCA antigen. Addition of inhibitors to the chemiluminescence system demonstrated that the chemiluminescence response was inhibited by azide and salicylhydroxamic acid and reduced by histidine, suggesting that the chemiluminescence response was due to activation of myeloperoxidase, with generation of singlet oxygen. The chemotactic response to f-Met-Leu-Phe, a bacterial chemotactic peptide, was significantly augmented in the presence of ANCA. Chemotaxis to zymosan-activated serum and chemokinesis was not affected. Phagocytosis was also unaffected. We propose that neutrophil activation and modulation of neutrophil migration by ANCA may be of pathogenetic significance in systemic vasculitis. PMID:1424279

  4. Modes of hurricane activity variability in the eastern Pacific: Implications for the 2016 season

    NASA Astrophysics Data System (ADS)

    Boucharel, Julien; Jin, Fei-Fei; England, Matthew H.; Lin, I. I.

    2016-11-01

    A gridded product of accumulated cyclone energy (ACE) in the eastern Pacific is constructed to assess the dominant mode of tropical cyclone (TC) activity variability. Results of an empirical orthogonal function decomposition and regression analysis of environmental variables indicate that the two dominant modes of ACE variability (40% of the total variance) are related to different flavors of the El Niño-Southern Oscillation (ENSO). The first mode, more active during the later part of the hurricane season (September-November), is linked to the eastern Pacific El Niño through the delayed oceanic control associated with the recharge-discharge mechanism. The second mode, dominant in the early months of the hurricane season, is related to the central Pacific El Niño mode and the associated changes in atmospheric variability. A multilinear regression forecast model of the dominant principal components of ACE variability is then constructed. The wintertime subsurface state of the eastern equatorial Pacific (characterizing ENSO heat discharge), the east-west tilt of the thermocline (describing ENSO phase transition), the anomalous ocean surface conditions in the TC region in spring (portraying atmospheric changes induced by persistence of local surface anomalies), and the intraseasonal atmospheric variability in the western Pacific are found to be good predictors of TC activity. Results complement NOAA's official forecast by providing additional spatial and temporal information. They indicate a more active 2016 season ( 2 times the ACE mean) with a spatial expansion into the central Pacific associated with the heat discharge from the 2015/2016 El Niño.

  5. Whistler mode waves observed by MGF search coil magnetometer -Polarization and wave normal features of upstream waves near the bow-shock

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.

    1994-12-01

    Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.

  6. 78 FR 7939 - Energy Conservation Program: Test Procedures for Microwave Ovens (Active Mode)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...The U.S. Department of Energy (DOE) proposes to revise its test procedures for microwave ovens established under the Energy Policy and Conservation Act. The proposed amendments would add provisions for measuring the active mode energy use for microwave ovens, including both microwave-only ovens and convection microwave ovens. Specifically, DOE is proposing provisions for measuring the energy use of the microwave-only cooking mode for both microwave-only ovens and convection microwave ovens based on the testing methods in the latest draft version of the International Electrotechnical Commission Standard 60705, ``Household microwave ovens--Methods for measuring performance.'' DOE is proposing provisions for measuring the energy use of the convection-only cooking mode for convection microwave ovens based on the DOE test procedure for conventional ovens in our regulations. DOE is also proposing to calculate the energy use of the convection-microwave cooking mode for convection microwave ovens by apportioning the microwave-only mode and convection-only mode energy consumption measurements based on typical consumer use.

  7. Multi-mode radio frequency device

    DOEpatents

    Gilbert, Ronald W [Morgan Hill, CA; Carrender, Curtis Lee [Morgan Hill, CA; Anderson, Gordon A [Benton City, WA; Steele, Kerry D [Kennewick, WA

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  8. A Comparison of the Bounded Derivative and the Normal Mode Initialization Methods Using Real Data

    NASA Technical Reports Server (NTRS)

    Semazzi, F. H. M.; Navon, I. M.

    1985-01-01

    Browning et al. (1980) proposed an initialization method called the bounded derivative method (BDI). They used analytical data to test the new method. Kasahara (1982) theoretically demonstrated the equivalence between BDI and the well known nonlinear normal mode initialization method (NMI). The purposes of this study are the extension of the application of BDI to real data and comparison with NMI. The unbalanced initial state (UBD) is data of January, 1979 OOZ which were interpolated from the adjacent sigma levels of the GLAS GCM to the 300 mb surface. The global barotropic model described by Takacs and Balgovind (1983) is used. Orographic forcing is explicitly included in the model. Many comparisons are performed between various quantities. However, we only present a comparison of the time evolution at two grid points A(50 S, 90 E) and B(10 S, 20 E) which represent low and middle latitude locations. To facilitate a more complete comparison an initialization experiment based on the classical balance equation (CBE) was also included.

  9. Physical activity during pregnancy in obese and normal-weight women as assessed by pedometer.

    PubMed

    Renault, Kristina; Nørgaard, Kirsten; Andreasen, Kirsten Riis; Secher, Niels Jørgen; Nilas, Lisbeth

    2010-07-01

    To compare physical activity as assessed by a pedometer in obese and normal-weight pregnant women at different gestational ages. To evaluate the use of a pedometer in pregnancy. Cross-sectional study. Department of obstetrics and gynecology in a university hospital in Copenhagen. 338 pregnant women, 175 normal-weight women with body mass index (BMI) 20-25 kg/m(2) and 163 obese women with BMI > or = 30 kg/m(2). Physical activity was assessed by a pedometer (Yamax Digiwalker SW-700/701) on seven consecutive days in six different groups: normal-weight or obese at gestational ages 11-13, 18-22, and 36-38, and expressed as median number of daily steps during a whole week, working days, and weekends. Relation between BMI and physical activity during pregnancy and compliance with wearing the pedometer. Noncompliance was more frequent in obese than in normal-weight women (19 vs. 10%, p < 0.001). Physical activity was lower in obese women at all gestational ages (6,482, 7,446, 4,626 steps/day in obese vs. 7,558, 8,865, 6,289 steps/day in normal-weight, p < 0.05-0.11). The greatest difference between obese and normal-weight women was seen during weekends. The level of physical activity was higher in both groups at mid-gestation than during earlier and later gestational ages. Physical activity in pregnant women can be assessed by the pedometer and the method was well accepted by the women; however, the compliance was lower in the obese. The level of physical activity differs between different gestational groups and is lower in obese than in normal-weight women, especially during leisure time.

  10. Physical Activity Patterns in Normal-Weight and Overweight/Obese Pregnant Women

    PubMed Central

    Bacchi, Elisabetta; Bonin, Cecilia; Zanolin, Maria Elisabetta; Zambotti, Francesca; Livornese, Dario; Donà, Silvia; Tosi, Flavia; Baldisser, Giulia; Ihnatava, Tatsiana; Di Sarra, Daniela; Bonora, Enzo; Moghetti, Paolo

    2016-01-01

    The aims of the present study were to assess the volume of physical activity (PA) throughout pregnancy in normal-weight vs overweight/obese women, and to investigate which factors may predict compliance to PA recommendations in these women throughout gestation. In 236 pregnant women, 177 normal-weight and 59 overweight/obese (median[IQR] BMI 21.2[19.9–22.8] vs 26.5[25.5–29.0] kg/m2, respectively), medical history, anthropometry and clinical data, including glucose tolerance, were recorded. In addition, pre-pregnancy PA was estimated by the Kaiser questionnaire, while total, walking and fitness/sport PA during pregnancy were assessed by the Physical Activity Scale for the Elderly (PASE) modified questionnaire, at 14–16, 24–28 and 30–32 weeks of gestation. PA volume was very low in the first trimester of pregnancy in both groups of women. However, it increased in the second and third trimester in normal-weight, but not in overweight/obese subjects. Higher pre-pregnancy PA was a statistically significant predictor of being physically active (>150 minutes of PA per week) during all trimesters of gestation. In conclusion, physical activity volume is low in pregnant women, especially in overweight/obese subjects. PA volume increases during pregnancy only in normal-weight women. Pre-pregnancy PA is an independent predictor of achieving a PA volume of at least 150 min per week during pregnancy. PMID:27829017

  11. Mode coupling in vortex beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2018-05-01

    We examine the mode coupling in vortex beams. Mode coupling also known as the crosstalk takes place due to turbulent characteristics of the atmospheric communication medium. This way, the transmitted intrinsic mode of the vortex beam leaks power to other extrinsic modes, thus preventing the correct detection of the transmitted symbol which is usually encoded into the mode index or the orbital angular momentum state of the vortex beam. Here we investigate the normalized power mode coupling ratios of several types of vortex beams, namely, Gaussian vortex beam, Bessel Gaussian beam, hypergeometric Gaussian beam and Laguerre Gaussian beam. It is found that smaller mode numbers lead to less mode coupling. The same is partially observed for increasing source sizes. Comparing the vortex beams amongst themselves, it is seen that hypergeometric Gaussian beam is the one retaining the most power in intrinsic mode during propagation, but only at lowest mode index of unity. At higher mode indices this advantage passes over to the Gaussian vortex beam.

  12. Motions in the interiors and atmospheres of Jupiter and Saturn. II - Barotropic instabilities and normal modes of an adiabatic planet

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Miller, R. L.

    1986-01-01

    A rotating and adiabatic inviscid fluid planet possesses low frequency motions that are barotropic, quasi-geostrophic and quasi-columnar. The limiting curvature at which flow becomes unstable upon projection onto the planetary surface is negative, with an amplitude that is 3-4 times that for thin atmospheres, in planets in which density linearly decreases to zero at the surface. This result is shown to hold for all quasi-columnar perturbations. Both the phase speed of the normal mode oscillations and the barotropic stability criterion have features in common with Saturn and Jupiter oscillations.

  13. "I Treat Him as a Normal Patient": Unveiling the Normalization Coping Strategy Among Formal Caregivers of Persons With Dementia and Its Implications for Person-Centered Care.

    PubMed

    Bentwich, Miriam Ethel; Dickman, Nomy; Oberman, Amitai; Bokek-Cohen, Ya'arit

    2017-11-01

    Currently, 47 million people have dementia, worldwide, often requiring paid care by formal caregivers. Research regarding family caregivers suggests normalization as a model for coping with negative emotional outcomes in caring for a person with dementia (PWD). The study aims to explore whether normalization coping mechanism exists among formal caregivers, reveal differences in its application among cross-cultural caregivers, and examine how this coping mechanism may be related to implementing person-centered care for PWDs. Content analysis of interviews with 20 formal caregivers from three cultural groups (Jews born in Israel [JI], Arabs born in Israel [AI], Russian immigrants [RI]), attending to PWDs. We extracted five normalization modes, revealing AI caregivers had substantially more utterances of normalization expressions than their colleagues. The normalization modes most commonly expressed by AI caregivers relate to the personhood of PWDs. These normalization modes may enhance formal caregivers' ability to employ person-centered care.

  14. A Multi-Mode Blade Damping Control using Shunted Piezoelectric Transducers with Active Feedback Structure

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Min, James

    2009-01-01

    The Structural Dynamics and. Mechanics branch (RXS) is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this presentation, only one shunted PE transducer was used to demonstrate active control of multi-mode blade resonance damping on a titanium alloy (Ti-6A1-4V) flat plate model, regardless of bending, torsion, and 2-stripe modes. This work would have a significant impact on the conventional passive shunt damping world because the standard feedback control design tools can now be used to design and implement electric shunt for vibration control. In other words, the passive shunt circuit components using massive inductors and. resistors for multi-mode resonance control can be replaced with digital codes. Furthermore, this active approach with multi patches can simultaneously control several modes in the engine operating range. Dr. Benjamin Choi presented the analytical and experimental results from this work at the Propulsion-Safety and. Affordable Readiness (P-SAR) Conference in March, 2009.

  15. Mode of Action of Lactoperoxidase as Related to Its Antimicrobial Activity: A Review

    PubMed Central

    Bafort, F.; Parisi, O.; Perraudin, J.-P.; Jijakli, M. H.

    2014-01-01

    Lactoperoxidase is a member of the family of the mammalian heme peroxidases which have a broad spectrum of activity. Their best known effect is their antimicrobial activity that arouses much interest in in vivo and in vitro applications. In this context, the proper use of lactoperoxidase needs a good understanding of its mode of action, of the factors that favor or limit its activity, and of the features and properties of the active molecules. The first part of this review describes briefly the classification of mammalian peroxidases and their role in the human immune system and in host cell damage. The second part summarizes present knowledge on the mode of action of lactoperoxidase, with special focus on the characteristics to be taken into account for in vitro or in vivo antimicrobial use. The last part looks upon the characteristics of the active molecule produced by lactoperoxidase in the presence of thiocyanate and/or iodide with implication(s) on its antimicrobial activity. PMID:25309750

  16. Diagnostic for two-mode variable valve activation device

    DOEpatents

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  17. Probable neuro sexual mode of action of Casimiroa edulis seed extract versus [correction of verses] sildenafil citrate (Viagra(tm)) on mating behavior in normal male rats.

    PubMed

    Ali, Syed Tabrez; Rakkah, Nabeeh I

    2008-01-01

    The present study deals with the aphrodisiac actions of the aqueous extract of the seeds of the hypotensive plant Casimiroa edulis on the sexual behavior of normal male rats. In this investigation 30 healthy male Wister strain white albino rats showing the brisk sexual activity age 15 weeks, weighing 400-450 grams were included. Female rats were artificially brought into estrous by hormonal treatment. Receptivity was checked by exposing them to the male rats and the most receptive females were selected for the stud The mating responses including Mounting Frequency (MF), Intromission Frequency (IF), Mounting Latency (ML), Intromission Latency (IL), Ejaculatory Latency in first and second series (EL1 and EL2) and Post Ejaculatory Interval (PEI) were recorded after treating the animals with 250 mg/kg casimiroa edulis extract (test reference) and 5 mg/kg sildenafil citrate (standard reference) respectively orally per day for 7 days. Both the groups exhibited a significant increase in Mounting Frequency, Intromission Frequency, and first and second ejaculatory latencies, where as Mounting and Intromission latencies and the Post Ejaculatory Interval showed a significant reduction than the controls. Although a similar pattern of mating behavior was observed among the test and the standard groups, however in all the cases as expected, sildenafil produced greater activity than the casimiroa edulis extract. These results suggest the possibility of a similar mode of action of casimiroa edulis and sildenafil citrate on mating behavior in these animals. Our work reported in this research thus provide preliminary evidence that the aqueous seed extract of casimiroa edulis possesses alphrodisiac activity and may be used as an alternative drug therapy to restore sexual functions probably via a neurogenic mode of action.

  18. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    NASA Astrophysics Data System (ADS)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  19. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    PubMed Central

    Farka, Zdeněk; Kovář, David; Skládal, Petr

    2015-01-01

    Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter) and passive (impedance analyzer) modes of quartz crystal microbalance (QCM) were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‐SMCC was most effective achieving the limit of detection (LOD) 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes. PMID:25545267

  20. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  1. Impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased.

    PubMed

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming; Li, Jian

    2016-06-01

    Groundwater quality deterioration has attracted world-wide concerns due to its importance for human water supply. Although more and more studies have shown that human activities and climate are changing the groundwater status, an investigation on how different groundwater heavy metals respond to human activity modes (e.g. mining, waste disposal, agriculture, sewage effluent and complex activity) in a varying climate has been lacking. Here, for each of six heavy metals (i.e. Fe, Zn, Mn, Pb, Cd and Cu) in groundwater, we use >330 data points together with mixed-effect models to indicate that (i) human activity modes significantly influence the Cu and Mn but not Zn, Fe, Pb and Cd levels, and (ii) annual mean temperature (AMT) only significantly influences Cu and Pb levels, while annual precipitation (AP) only significantly affects Fe, Cu and Mn levels. Given these differences, we suggest that the impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Noise characterization of a pulse train generated by actively mode-locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Salvatore, R.A.; Yariv, A.

    1996-07-01

    We analyze the entire power spectrum of pulse trains generated by a continuously operating actively mode-locked laser in the presence of noise. We consider the effect of amplitude, pulse-shape, and timing-jitter fluctuations that are characterized by stationary processes. Effects of correlations between different parameters of these fluctuations are studied also. The nonstationary timing-jitter fluctuations of passively mode-locked lasers and their influence on the power spectrum is discussed as well. {copyright} {ital 1996 Optical Society of America.}

  3. Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.

    PubMed

    Aubrey, Karin R; Drew, Geoffrey M; Jeong, Hyo-Jin; Lau, Benjamin K; Vaughan, Christopher W

    2017-01-01

    The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca 2+ , and when release probability was reduced by lowering Ca 2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca 2+ . Lowering external Ca 2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca 2+ . The low affinity GABA A receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca 2+ . Together these findings indicate that the normal mode of GABA release is

  4. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation.

    PubMed

    Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey

    2012-11-19

    We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment.

  5. Meditation experience is associated with differences in default mode network activity and connectivity

    PubMed Central

    Brewer, Judson A.; Worhunsky, Patrick D.; Gray, Jeremy R.; Tang, Yi-Yuan; Weber, Jochen; Kober, Hedy

    2011-01-01

    Many philosophical and contemplative traditions teach that “living in the moment” increases happiness. However, the default mode of humans appears to be that of mind-wandering, which correlates with unhappiness, and with activation in a network of brain areas associated with self-referential processing. We investigated brain activity in experienced meditators and matched meditation-naive controls as they performed several different meditations (Concentration, Loving-Kindness, Choiceless Awareness). We found that the main nodes of the default-mode network (medial prefrontal and posterior cingulate cortices) were relatively deactivated in experienced meditators across all meditation types. Furthermore, functional connectivity analysis revealed stronger coupling in experienced meditators between the posterior cingulate, dorsal anterior cingulate, and dorsolateral prefrontal cortices (regions previously implicated in self-monitoring and cognitive control), both at baseline and during meditation. Our findings demonstrate differences in the default-mode network that are consistent with decreased mind-wandering. As such, these provide a unique understanding of possible neural mechanisms of meditation. PMID:22114193

  6. Mode detuning in systems of weakly coupled oscillators

    NASA Astrophysics Data System (ADS)

    Spencer, Ross L.; Robertson, Richard D.

    2001-11-01

    A system of weakly magnetically coupled oscillating blades is studied experimentally, computationally, and theoretically. It is found that when the uncoupled natural frequencies of the blades are nearly equal, the normal modes produced by the coupling are almost impossible to find experimentally if the random variation level in the system parameters is on the order of (or larger than) the relative differences between mode frequencies. But if the uncoupled natural frequencies are made to vary (detuned) in a smooth way such that the total relative spread in natural frequency exceeds the random variations, normal modes are rather easy to find. And if the detuned uncoupled frequencies of the system are parabolically distributed, the modes are found to be shaped like Hermite functions.

  7. Hamilton's principle and normal mode coupling in an aspherical planet with a fluid core

    NASA Astrophysics Data System (ADS)

    Al-Attar, David; Crawford, Ophelia; Valentine, Andrew P.; Trampert, Jeannot

    2018-04-01

    We apply Hamilton's principle to obtain the exact equations of motion for an elastic planet that is rotating, self-gravitating, and comprises both fluid and solid regions. This variational problem is complicated by the occurrence of tangential slip at fluid-solid boundaries, but we show how this can be accommodated both directly and using the method of Lagrange multipliers. A novelty of our approach is that the planet's motion is described relative to an arbitrary reference configuration, with this generality offering advantages for numerical calculations. In particular, aspherical topography on the free surface or internal boundaries of the planet's equilibrium configuration can be converted exactly into effective volumetric heterogeneities within a geometrically spherical reference body by applying a suitable particle relabelling transformation. The theory is then specialised to consider the linearised motion of a planet about a steadily rotating equilibrium configuration, with these results having applications to normal mode coupling calculations used within studies of long period seismology, tidal deformation, and related fields. In particular, we explain how our new theory will, for the first time, allow aspherical boundary topography to be incorporated exactly within such coupling calculations.

  8. Evaluation of gastrointestinal activity patterns in healthy horses using B mode and Doppler ultrasonography

    PubMed Central

    2005-01-01

    Abstract Healthy adult horses were examined by using transabdominal ultrasonography to quantitatively and qualitatively evaluate activity of the jejunum, cecum, and colon with B mode and Doppler techniques. Doppler ultrasound was used to assess jejunal peristaltic activity. Examinations were performed on multiple occasions under imposed colic evaluation conditions, including fasting, nasogastric intubation, and xylazine sedation. In fasted horses, jejunal visibility was increased and jejunal, cecal, and colonic activity was decreased. The stomach was displaced ventrally and was visualized ventral to the costochondral junction. Xylazine sedation in fed horses had minimal effects; however, in fasted horses, xylazine significantly decreased jejunal and cecal activity. Nasogastric intubation in fasted horses had no observable effects on activity, but moved the stomach dorsally. B mode and Doppler jejunal activity were strongly correlated. Prior feeding and sedation status need to be considered when interpreting the results of equine abdominal ultrasound examinations. Doppler techniques may be useful for assessing jejunal activity. PMID:15825515

  9. Application of normal mode theory to seismic source and structure problems: Seismic investigations of upper mantle lateral heterogeneity. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Okal, E. A.

    1978-01-01

    The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.

  10. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  11. Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation, and experiment. I. The normal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandi, G.L.; Chiofalo, M.L.; Toncelli, R.

    Recent theoretical work suggests that violation of the equivalence principle might be revealed in a measurement of the fractional differential acceleration {eta} between two test bodies-of different compositions, falling in the gravitational field of a source mass--if the measurement is made to the level of {eta}{approx_equal}10{sup -13} or better. This being within the reach of ground based experiments gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in a low orbit around the Earth is likely to provide a much better accuracy. We report onmore » the progress made with the 'Galileo Galilei on the ground' (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following articles (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation-in particular, its normal modes (Part I) and rejection of common mode effects (Part II)-can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining a quantitative agreement with the available experimental data on the frequencies of the normal modes and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.« less

  12. Comparing Paper and Tablet Modes of Retrospective Activity Space Data Collection.

    PubMed

    Yabiku, Scott T; Glick, Jennifer E; Wentz, Elizabeth A; Ghimire, Dirgha; Zhao, Qunshan

    2017-01-01

    Individual actions are both constrained and facilitated by the social context in which individuals are embedded. But research to test specific hypotheses about the role of space on human behaviors and well-being is limited by the difficulty of collecting accurate and personally relevant social context data. We report on a project in Chitwan, Nepal, that directly addresses challenges to collect accurate activity space data. We test if a computer assisted interviewing (CAI) tablet-based approach to collecting activity space data was more accurate than a paper map-based approach; we also examine which subgroups of respondents provided more accurate data with the tablet mode compared to paper. Results show that the tablet approach yielded more accurate data when comparing respondent-indicated locations to the known locations as verified by on-the-ground staff. In addition, the accuracy of the data provided by older and less healthy respondents benefited more from the tablet mode.

  13. Comparing Paper and Tablet Modes of Retrospective Activity Space Data Collection*

    PubMed Central

    Yabiku, Scott T.; Glick, Jennifer E.; Wentz, Elizabeth A.; Ghimire, Dirgha; Zhao, Qunshan

    2018-01-01

    Individual actions are both constrained and facilitated by the social context in which individuals are embedded. But research to test specific hypotheses about the role of space on human behaviors and well-being is limited by the difficulty of collecting accurate and personally relevant social context data. We report on a project in Chitwan, Nepal, that directly addresses challenges to collect accurate activity space data. We test if a computer assisted interviewing (CAI) tablet-based approach to collecting activity space data was more accurate than a paper map-based approach; we also examine which subgroups of respondents provided more accurate data with the tablet mode compared to paper. Results show that the tablet approach yielded more accurate data when comparing respondent-indicated locations to the known locations as verified by on-the-ground staff. In addition, the accuracy of the data provided by older and less healthy respondents benefited more from the tablet mode. PMID:29623133

  14. An Experiential Learning Activity Demonstrating Normal and Phobic Anxiety

    ERIC Educational Resources Information Center

    Canu, Will H.

    2008-01-01

    This article describes an activity for an undergraduate abnormal psychology course that used student-generated data to illustrate normal versus clinically significant anxiety responses related to specific phobias. Students (N = 37) viewed 14 images of low- or high-anxiety valence and rated their subjective response to each. Discussion in a…

  15. Theory of active mode locking of a semiconductor laser in an external cavity

    NASA Technical Reports Server (NTRS)

    Yeung, J. A.

    1981-01-01

    An analytical treatment is given for the active mode locking of a semiconductor laser in an external resonator. The width of the mode-locked pulses is obtained as a function of the laser and cavity parameters and the amount of frequency detuning. The effects of self-modulation and saturation are included in the treatment. The pulse output is compared with that obtained by a strong modulation of the laser diode with no external cavity.

  16. Tsunami normal modes with solid earth and atmospheric coupling and inversion of the TEC data to estimate tsunami water height in the case of the Queen Charlotte tsunami.

    NASA Astrophysics Data System (ADS)

    Rakoto, V.; Lognonne, P. H.; Rolland, L.

    2016-12-01

    Large underwater earthquakes (Mw > 7) can transmit part of their energy to the surrounding ocean through large sea-floor motions, generating tsunamis that propagate over long distances. The forcing effect of long period ocean surface vibrations due to tsunami waves on the atmosphere trigger atmospheric internal gravity waves (IGWs) that induce ionospheric disturbances when they reach the upper atmosphere. In this poster, we study the IGWs associated to tsunamis using a normal modes 1D modeling approach. Our model is first applied to the case of the October 2012 Haida Gwaii tsunami observed offshore Hawaii. We found three resonances between tsunami modes and the atmospheric gravity modes occurring around 1.5 mHz, 2 mHz and 2.5 mHz, with a large fraction of the energy of the tsunami modes transferred from the ocean to the atmosphere. At theses frequencies, the gravity branches are interacting with the tsunami one and have large amplitude in the ocean. As opposed to the tsunami, a fraction of their energy is therefore transferred from the atmosphere to the ocean. We also show that the fundamental of the gravity waves should arrive before the tsunami due to higher group velocity below 1.6 mHz. We demonstrate that only the 1.5 mHz resonance of the tsunami mode can trigger observable ionospheric perturbations, most often monitored using GPS dual-frequency measurements. Indeed, we show that the modes at 2 mHz and 2.5 mHz are already evanescent at the height of the F2 peak and have little energy in the ionosphere. This normal modes modeling offers a novel and comprehensive study of the transfer function from a propagating tsunami to the upper atmosphere. In particular, we can invert the perturbed TEC data induced by a tsunami in order to estimate the amplitude of the tsunami waveform using a least square method. This method has been performed in the case of the Haida Gwaii tsunami. The results showed a good agreement with the measurement of the dart buoy.

  17. Default-Mode-Like Network Activation in Awake Rodents

    PubMed Central

    Upadhyay, Jaymin; Baker, Scott J.; Chandran, Prasant; Miller, Loan; Lee, Younglim; Marek, Gerard J.; Sakoglu, Unal; Chin, Chih-Liang; Luo, Feng; Fox, Gerard B.; Day, Mark

    2011-01-01

    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess ‘DMN-like’ functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = −0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks. PMID:22125628

  18. Conformational variability of the stationary phase survival protein E from Xylella fastidiosa revealed by X-ray crystallography, small-angle X-ray scattering studies, and normal mode analysis.

    PubMed

    Machado, Agnes Thiane Pereira; Fonseca, Emanuella Maria Barreto; Reis, Marcelo Augusto Dos; Saraiva, Antonio Marcos; Santos, Clelton Aparecido Dos; de Toledo, Marcelo Augusto Szymanski; Polikarpov, Igor; de Souza, Anete Pereira; Aparicio, Ricardo; Iulek, Jorge

    2017-10-01

    Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein. © 2017 Wiley Periodicals, Inc.

  19. Role of muscle mass and mode of contraction in circulatory responses to exercise

    NASA Technical Reports Server (NTRS)

    Lewis, S. F.; Snell, P. G.; Pettinger, W. A.; Blomqvist, C. G.; Taylor, W. F.; Hamra, M.; Graham, R. M.

    1985-01-01

    The roles of the mode of contraction (dynamic or static) and active muscle mass in determining the cardiovascular response to exercise has been investigated experimentally in six normal men. Exercise consisted of static handgrip and dynamic handgrip exercise, and static and dynamic knee extension for a period of six minutes. Observed increases in mean arterial pressure after exercise were similar for each mode of contraction, but larger for knee extension than handgrip exercise. Cardiac output increased more for dynamic than for static exercise and for each mode more for knee exercise than for handgrip exercise. Systemic resistance was found to be lower for dynamic than for static exercise, and to decrease from resisting levels by about one third during dynamic knee extension. It is shown that the magnitude of cardiovascular response is related to active muscle mass, but is independent of the contraction mode. Equalization of cardiovascular response was achieved by proportionately larger increases in cardiac output during dynamic exercise. The complete experimental results are given in a table.

  20. Microstructural effects on fracture toughness of polycrystalline ceramics in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, D.; Shetty, D. K.

    1988-01-01

    Fracture toughness of polycrystalline alumina and ceria partially-stabilized tetragonal zirconia (CeO2-TZP) ceramics were assessed in combined mode I and mode II loading using precracked disk specimens in diametral compression. Stress states ranging from pure mode I, combined mode I and mode II, and pure mode II were obtained by aligning the center crack at specific angles relative to the loading diameter. The resulting mixed-mode fracture toughness envelope showed significant deviation to higher fracture toughness in mode II relative to the predictions of the linear elastic fracture mechanics theory. Critical comparison with corresponding results on soda-lime glass and fracture surface observations showed that crack surface resistance arising from grain interlocking and abrasion was the main source of the increased fracture toughness in mode II loading of the polycrystalline ceramics. The normalized fracture toughness for pure mode II loading, (KII/KIc), increased with increasing grain size for the CeO2-TZP ceramics. Quantitative fractography confirmed an increased percentage of transgranular fracture of the grains in mode II loading.

  1. Polariton condensation with saturable molecules dressed by vibrational modes

    DOE PAGES

    Cwik, Justyna A.; Reja, Sahinur; Littlewood, Peter B.; ...

    2014-02-01

    Here, polaritons, mixed light-matter quasiparticles, undergo a transition to a condensed, macroscopically coherent state at low temperatures or high densities. Recent experiments show that coupling light to organic molecules inside a microcavity allows condensation at room temperature. The molecules act as saturable absorbers with transitions dressed by molecular vibrational modes. Motivated by this, we calculate the phase diagram and spectrum of a modified Tavis-Cummings model, describing vibrationally dressed two-level systems, coupled to a cavity mode. Coupling to vibrational modes can induce re-entrance, i.e. a normal-condensed-normal sequence with decreasing temperature and can drive the transition first-order.

  2. Attention-related changes in correlated neuronal activity arise from normalization mechanisms

    PubMed Central

    Verhoef, Bram-Ernst; Maunsell, John H.R.

    2017-01-01

    Attention is believed to enhance perception by altering the correlations between pairs of neurons. How attention changes neuronal correlations is unknown. Using multi-electrodes in primate visual cortex, we measured spike-count correlations when single or multiple stimuli were presented, and stimuli were attended or unattended. When stimuli were unattended, adding a suppressive, non-preferred, stimulus beside a preferred stimulus increased spike-count correlations between pairs of similarly-tuned neurons, but decreased spike-count correlations between pairs of oppositely-tuned neurons. These changes are explained by a stochastic normalization model containing populations of oppositely-tuned, mutually-suppressive neurons. Importantly, this model also explains why attention decreased (attend preferred stimulus) or increased (attend non-preferred stimulus) correlations: as an indirect consequence of attention-related changes in the inputs to normalization mechanisms. Our findings link normalization mechanisms to correlated neuronal activity and attention, showing that normalization mechanisms shape response correlations and that these correlations change when attention biases normalization mechanisms. PMID:28553943

  3. A numerical investigation of head waves and leaky modes in fluid- filled boreholes.

    USGS Publications Warehouse

    Paillet, Frederick L.; Cheng, C.H.

    1986-01-01

    Although synthetic borehole seismograms can be computed for a wide range of borehole conditions, the physical nature of shear and compressional head waves in fluid-filled boreholes is poorly understood. Presents a series of numerical experiments designed to explain the physical mechanisms controlling head-wave propagation in boreholes. These calculations demonstrate the existence of compressional normal modes equivalent to shear normal modes, or pseudo-Rayleigh waves, with sequential cutoff frequencies spaced between the cutoff frequencies for the shear normal modes.-from Authors

  4. Upper-Tropospheric Synoptic-Scale Waves. Part II: Maintenance and Excitation of Quasi Modes.

    NASA Astrophysics Data System (ADS)

    Rivest, Chantal; Farrell, Brian F.

    1992-11-01

    In a preceding paper a simple dynamical model for the maintenance of upper-tropospheric waves was proposed: the upper-level Eady normal modes. In this paper it is shown that these modes have counterparts in basic states with positive tropospheric gradients of potential vorticity, and that these counterparts can be maintained and excited on time scales consistent with observations.In the presence of infinitesimal positive tropospheric gradients of potential vorticity, the upper-level normal-mode solutions no longer exist. That the normal-mode solution disappears when gradients are infinitesimal represents an apparent singularity and challenges the interpretation of upper-level synoptic-scale waves as related to the upper-level Eady normal modes. What happens to the upper-level modal solution in the presence of tropospheric gradients of potential vorticity is examined in a series of initial-value experiments. Our results show that they become slowly decaying quasi modes. Mathematically the quasi modes consist of a superposition of singular modes sharply peaked in the phase speed domain, and their decay proceeds as the modes interfere with one another. We repeat these experiments in basic states with a smooth tropopause in the presence of tropospheric and stratospheric gradients, and similar results are obtained.Following a previous study by Farrell, a class of near-optimal initial conditions for the excitation of upper-level waves is identified. The initial conditions consist of upper-tropospheric disturbances that lean against the shear. They strongly excite upper-level waves not only in the absence of tropospheric potential vorticity gradients, but also in their presence. This result is important mathematically since it suggests that quasi modes are as likely to emerge from favorably configured initial disturbances as true normal modes, although the excitation is followed by a slow decay.

  5. Influence of Activity Mode on Feeling States of High School Physical Education Students

    ERIC Educational Resources Information Center

    Hannon, James C.; Pellet, Tracey L.

    2005-01-01

    The purpose of this study was to determine if changes in positive well-being, psychological distress, fatigue, and enjoyment vary as a function of physical activity mode. Fifty-five senior high school students participated in one of four fitness activities including two defined as traditional (running and step-aerobics) and two defined as…

  6. Normal Mode Analysis of Ambient-Noise Induced Free Oscillations of a Slender Medieval Masonry Tower in Bologna (Italy)

    NASA Astrophysics Data System (ADS)

    Morelli, A.; Azzara, R. M.; Cavaliere, A.; Zaccarelli, L.

    2014-12-01

    Analysis of the oscillations of buildings — either excited by earthquakes or by ambient noise — has become an effective tool to evaluate the response of such structures to strong ground motion, and hence to assess their seismic vulnerability. Response to small-amplitude ground motion may also provide crucial information on the elastic and anelastic properties of a structure — essential in the case of historical buildings — and constrain numerical full dynamic structural analyses. We report about an analysis carried out for a tall medieval monumental building in the urban center of the Norther Italian city of Bologna. Seismic monitoring, carried on for six months using field seismic instrumentation, has revealed the response to ambient noise, and has allowed to reconstruct, with high detail, the free oscillation modes of the tower. At 97 meters, the XII-century tower of the Asinelli is the tallest masonry building in Europe, and the most slender. We measured the fundamental, and several higher-order, flexural normal modes of oscillation, as well as the fundamental torsional mode. Asymmetry due to non-coincidence of centers of mass and of stiffness produces slightly different modal frequencies of oscillation in two orthogonal directions, consistently with dynamical modeling. Horizontal particle-motion polarization plots show the cyclic energy transfer between two degrees of freedom of the system. The Asinelli spectral signature can also be easily recognized in the motion recorded at the base of nearby Garisenda. We verify that there is correlation of spectral amplitudes with time of the day — in agreement with expected time-variance of anthropic disturbance —- but also with wind velocity and, intriguingly, with temperature variations inside the buidings. We are using these data to adjust the numerical dynamical models of the buildings, to examine time variations of behavior, and to identify the origin of anthropogenic sources of vibration in view of their

  7. Vibrational Modes of Oblate Clouds of Charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Spencer, Ross L.

    2000-10-01

    When a nonneutral plasma confined in a Penning trap is allowed time to expand, its shape at global thermal equilibrium is that of a thin oblate spheroid [D. L. Paulson et al., Phys. Plasmas 5, 345 (1998)]. Oscillations similar to those of a drumhead can be externally induced in such a plasma. Although a theory developed by Dubin predicts the frequencies of the various normal modes of oscillation [Phys. Rev. Lett. 66, 2076 (1991)], this theory assumes that the plasma has zero temperature and is confined by an ideal quadrupole electric field. Neither of these conditions is strictly true in experiments [C. S. Weimer et al., Phys. Rev. A 49, 3842 (1994)] where physical properties of the plasma are deduced from measurements of these frequencies, causing the measurements and ideal theory to differ by about 20%. We reformulate the problem of the normal oscillatory modes as a principal-value integral eigenvalue equation, including finite-temperature and non-ideal confinement effects. The equation is solved numerically to obtain the plasma's normal mode frequencies and shapes; reasonable agreement with experiment is obtained.

  8. A voice coil actuator driven active vibration isolation system with the consideration of flexible modes.

    PubMed

    Park, Kyihwan; Choi, Dongyoub; Ozer, Abdullah; Kim, Sangyoo; Lee, Yongkwan; Joo, Dongik

    2008-06-01

    We develop a four-mount active vibration isolation system (AVIS) using voice coil actuators. The flexible body modes in the upper plate of the AVIS can cause an instability problem due to control signal whose frequency is close to the resonant frequency of the flexible modes. The loop shaping technique is applied to reduce the amplitude of the control signal. We investigate the performances of the active vibration isolation system proposed in the word in the time domain and frequency domain by comparing to the passive isolation system.

  9. Pathological speech signal analysis and classification using empirical mode decomposition.

    PubMed

    Kaleem, Muhammad; Ghoraani, Behnaz; Guergachi, Aziz; Krishnan, Sridhar

    2013-07-01

    Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.

  10. Color vision predicts processing modes of goal activation during action cascading.

    PubMed

    Jongkees, Bryant J; Steenbergen, Laura; Colzato, Lorenza S

    2017-09-01

    One of the most important functions of cognitive control is action cascading: the ability to cope with multiple response options when confronted with various task goals. A recent study implicates a key role for dopamine (DA) in this process, suggesting higher D1 efficiency shifts the action cascading strategy toward a more serial processing mode, whereas higher D2 efficiency promotes a shift in the opposite direction by inducing a more parallel processing mode (Stock, Arning, Epplen, & Beste, 2014). Given that DA is found in high concentration in the retina and modulation of retinal DA release displays characteristics of D2-receptors (Peters, Schweibold, Przuntek, & Müller, 2000), color vision discrimination might serve as an index of D2 efficiency. We used color discrimination, assessed with the Lanthony Desaturated Panel D-15 test, to predict individual differences (N = 85) in a stop-change paradigm that provides a well-established measure of action cascading. In this task it is possible to calculate an individual slope value for each participant that estimates the degree of overlap in task goal activation. When the stopping process of a previous task goal has not finished at the time the change process toward a new task goal is initiated (parallel processing), the slope value becomes steeper. In case of less overlap (more serial processing), the slope value becomes flatter. As expected, participants showing better color vision were more prone to activate goals in a parallel manner as indicated by a steeper slope. Our findings suggest that color vision might represent a predictor of D2 efficiency and the predisposed processing mode of goal activation during action cascading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.

    PubMed

    Wang, Yongrui; Belyanin, Alexey

    2015-02-23

    We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.

  12. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.

    PubMed

    Skjaerven, Lars; Martinez, Aurora; Reuter, Nathalie

    2011-01-01

    Principal component analysis (PCA) and normal mode analysis (NMA) have emerged as two invaluable tools for studying conformational changes in proteins. To compare these approaches for studying protein dynamics, we have used a subunit of the GroEL chaperone, whose dynamics is well characterized. We first show that both PCA on trajectories from molecular dynamics (MD) simulations and NMA reveal a general dynamical behavior in agreement with what has previously been described for GroEL. We thus compare the reproducibility of PCA on independent MD runs and subsequently investigate the influence of the length of the MD simulations. We show that there is a relatively poor one-to-one correspondence between eigenvectors obtained from two independent runs and conclude that caution should be taken when analyzing principal components individually. We also observe that increasing the simulation length does not improve the agreement with the experimental structural difference. In fact, relatively short MD simulations are sufficient for this purpose. We observe a rapid convergence of the eigenvectors (after ca. 6 ns). Although there is not always a clear one-to-one correspondence, there is a qualitatively good agreement between the movements described by the first five modes obtained with the three different approaches; PCA, all-atoms NMA, and coarse-grained NMA. It is particularly interesting to relate this to the computational cost of the three methods. The results we obtain on the GroEL subunit contribute to the generalization of robust and reproducible strategies for the study of protein dynamics, using either NMA or PCA of trajectories from MD simulations. © 2010 Wiley-Liss, Inc.

  13. Does active application of universal adhesives to enamel in self-etch mode improve their performance?

    PubMed

    Loguercio, Alessandro D; Muñoz, Miguel Angel; Luque-Martinez, Issis; Hass, Viviane; Reis, Alessandra; Perdigão, Jorge

    2015-09-01

    To evaluate the effect of adhesion strategy on the enamel microshear bond strengths (μSBS), etching pattern, and in situ degree of conversion (DC) of seven universal adhesives. 84 extracted third molars were sectioned in four parts (buccal, lingual, proximal) and divided into 21 groups, according to the combination of the main factors adhesive (AdheSE Universal [ADU], All-Bond Universal [ABU], Clearfil Universal [CFU], Futurabond U [FBU], G-Bond Plus [GBP], Prime&Bond Elect (PBE), and Scotchbond Universal Adhesive [SBU]), and adhesion strategy (etch-and-rinse, active self-etch, and passive self-etch). Specimens were stored in water (37°C/24h) and tested at 1.0mm/min (μSBS). Enamel-resin interfaces were evaluated for DC using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a field-emission scanning electron microscope (direct and replica techniques). Data were analyzed with two-way ANOVA and Tukey's test (α=0.05). Active self-etch application increased μSBS and DC for five out of the seven universal adhesives when compared to passive application (p<0.001). A deeper enamel-etching pattern was observed for all universal adhesives in the etch-and-rinse strategy. A slight improvement in etching ability was observed in active self-etch application compared to that of passive self-etch application. Replicas of GBP and PBE applied in active self-etch mode displayed morphological features compatible with water droplets. The DC of GBP and PBE were not affected by the application/strategy mode. In light of the improved performance of universal adhesives when applied actively in SE mode, selective enamel etching with phosphoric acid may not be crucial for their adhesion to enamel. The active application of universal adhesives in self-etch mode may be a practical alternative to enamel etching in specific clinical situations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Fluid involvement in normal faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2000-04-01

    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  15. Peer Popularity and Peer Communication Patterns: Hyperactive versus Active but Normal Boys.

    ERIC Educational Resources Information Center

    King, Cheryl A.; Young, Richard David

    1981-01-01

    Classroom peer perceptions of 18 teacher-nominated hyperactive and 18 teacher-nominated active but normal elementary school-age boys were compared. Results indicated that hyperactives were significantly different from actives on all sociometric measures in that they were perceived more negatively. (Author/SB)

  16. Mode instability in one-dimensional anharmonic lattices: Variational equation approach

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    1999-03-01

    The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.

  17. Cardiorespiratory performance and physical activity in normal weight and overweight Finnish adolescents from 2003 to 2010.

    PubMed

    Palomäki, Sanna; Heikinaro-Johansson, Pilvikki; Huotari, Pertti

    2015-01-01

    We investigated changes in cardiorespiratory performance, BMI and leisure-time physical activity among Finnish adolescents from 2003 to 2010. In addition, we compared cardiorespiratory performance levels between normal weight and overweight adolescents, grouped according to their physical activity. Participants were a national representative samples of 15-16-year-old adolescents in their final (ninth) year of comprehensive school in 2003 (n = 2258) and in 2010 (n = 1301). They performed an endurance shuttle run test and reported their height and weight and leisure time physical activity on a questionnaire. Results showed no significant secular changes in cardiorespiratory performance from 2003 to 2010. The mean BMI increased in boys. Leisure-time physical activity increased among normal weight girls. Adolescents of normal weight had better cardiorespiratory performance than those classified as overweight at both assessment points. BMI-adjusted physical activity was a significant determinant for cardiorespiratory performance among overweight adolescents, and very active overweight adolescents had similar cardiorespiratory performance levels as moderately active adolescents of normal weight. The results of the present study support the idea that the physical activity has the great importance for the cardiorespiratory performance in adolescents. Overweight adolescents, in particular, benefit from higher levels of physical activity.

  18. Vibrational modes of thin oblate clouds of charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Spencer, Ross L.

    2002-07-01

    A numerical method is presented for finding the eigenfunctions (normal modes) and mode frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial thickness is much smaller than their radial size. The plasma may be approximated as a charged disk in this limit; the normal modes and frequencies can be found if the surface charge density profile σ(r) of the disk and the trap bounce frequency profile ωz(r) are known. The dependence of the eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning trap fields is discussed. The results of the calculation are compared with the experimental data of Weimer et al. [Phys. Rev. A 49, 3842 (1994)] and it is shown that the plasma in this experiment was probably hollow and had mode displacement functions that were concentrated near the center of the plasma.

  19. Elevated testosterone and hypergonadotropism in active adolescents of normal weight with oligomenorrhea.

    PubMed

    Singer, K; Rosenthal, A; Kasa-Vubu, Josephine Z

    2009-10-01

    Oligomenorrhea in active adolescent females of normal weight is presumed to be related to hypoestrogenism secondary to physical activity and decreased fat mass. We hypothesized that active adolescents with oligomenorrhea would have lower estrogen levels than normal controls with similar levels of cardiovascular fitness. Twenty healthy participants between the ages of 16 and 20 years were recruited at least 2 years postmenarche. Adolescents reporting fewer than 9 cycles a year (n = 6) were compared to 14 controls with monthly menstrual cycles. Histories of eating disorder, hirsutism, severe acne, depression, or amenorrhea were cause for exclusion. Body composition and bone density were measured by total body dual x-ray absorpitometry. Cardiovascular fitness was evaluated by measuring oxygen consumption during exercise. Control subjects were matched by age, body mass index (BMI), and fitness level. Serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, progesterone, and estradiol were obtained. Statistical analysis was performed using SAS 9.1. Cardiovascular fitness in both groups was within normal limits for age. No significant differences in BMI, estradiol concentrations, or bone density were found, but trunk fat mass was lower in adolescents with oligomenorrhea who also reported more frequent exercise. Testosterone concentrations and LH/FSH ratios were significantly higher in participants with irregular menstrual cycles (P = 0.0018 and <0.001, respectively). Adolescents with oligomenorrhea were leaner, yet they had higher testosterone levels and a greater LH/FSH ratio than their BMI-matched, cyclic counterparts. We hypothesize that, in active adolescents of normal weight, elevated androgen and LH concentrations are linked to ovarian dysfunction, which can masquerade as exercise-induced oligomenorrhea.

  20. Mode shifting in school travel mode: examining the prevalence and correlates of active school transport in Ontario, Canada

    PubMed Central

    2011-01-01

    Background Studies examining the correlates of school transport commonly fail to make the distinction between morning and afternoon school trips. The purpose of this study was to examine the prevalence and correlates of mode shift from passive in the morning to active in the afternoon among elementary and secondary school students in Ontario, Canada. Methods Data were derived from the 2009 cycle of the Ontario Student Drug Use and Health Survey (OSDUHS). 3,633 students in grades 7 through 12 completed self-administered questionnaires. Socio-demographic, behavioural, psychological, and environmental predictors of active school transport (AST) were assessed using logistic regression. Results Overall, 47% and 38% of elementary school students reported AST to and from school, respectively. The corresponding figures were 23% and 32% for secondary school students. The prevalence of AST varied temporarily and spatially. There was a higher prevalence of walking/biking found for elementary school students than for secondary school students, and there was an approximate 10% increase in AST in the afternoon. Different correlates of active school transport were also found across elementary and secondary school students. For all ages, students living in urban areas, with a shorter travel time between home and school, and having some input to the decision making process, were more likely to walk to and from school. Conclusions Future research examining AST should continue to make the analytic distinction between the morning and afternoon trip, and control for the moderating effect of age and geography in predicting mode choice. In terms of practice, these variations highlight the need for school-specific travel plans rather than 'one size fits all' interventions in promoting active school transport. PMID:21812976

  1. Mode shifting in school travel mode: examining the prevalence and correlates of active school transport in Ontario, Canada.

    PubMed

    Wong, Bonny Yee-Man; Faulkner, Guy; Buliung, Ron; Irving, Hyacinth

    2011-08-03

    Studies examining the correlates of school transport commonly fail to make the distinction between morning and afternoon school trips. The purpose of this study was to examine the prevalence and correlates of mode shift from passive in the morning to active in the afternoon among elementary and secondary school students in Ontario, Canada. Data were derived from the 2009 cycle of the Ontario Student Drug Use and Health Survey (OSDUHS). 3,633 students in grades 7 through 12 completed self-administered questionnaires. Socio-demographic, behavioural, psychological, and environmental predictors of active school transport (AST) were assessed using logistic regression. Overall, 47% and 38% of elementary school students reported AST to and from school, respectively. The corresponding figures were 23% and 32% for secondary school students. The prevalence of AST varied temporarily and spatially. There was a higher prevalence of walking/biking found for elementary school students than for secondary school students, and there was an approximate 10% increase in AST in the afternoon. Different correlates of active school transport were also found across elementary and secondary school students. For all ages, students living in urban areas, with a shorter travel time between home and school, and having some input to the decision making process, were more likely to walk to and from school. Future research examining AST should continue to make the analytic distinction between the morning and afternoon trip, and control for the moderating effect of age and geography in predicting mode choice. In terms of practice, these variations highlight the need for school-specific travel plans rather than 'one size fits all' interventions in promoting active school transport.

  2. Physical activity levels of normal-weight and overweight girls and boys during primary school recess.

    PubMed

    Stratton, Gareth; Ridgers, Nicola D; Fairclough, Stuart J; Richardson, David J

    2007-06-01

    This study aimed to compare moderate-to-vigorous physical activity (MVPA) and vigorous physical activity (VPA) in normal-weight and overweight boys and girls during school recess. Four hundred twenty children, age 6 to 10 years, were randomly selected from 25 schools in England. Three hundred seventy-seven children completed the study. BMI was calculated from height and weight measurements, and heart rate reserve thresholds of 50% and 75% reflected children's engagement in MVPA and VPA, respectively. There was a significant main effect for sex and a significant interaction between BMI category and sex for the percent of recess time spent in MVPA and VPA. Normal-weight girls were the least active group, compared with overweight boys and girls who were equally active. Fifty-one boys and 24 girls of normal weight achieved the 40% threshold; of these, 30 boys and 10 girls exceeded 50% of recess time in MVPA. Eighteen overweight boys and 22 overweight girls exceeded the 40% threshold, whereas 8 boys and 8 girls exceeded the 50% threshold. Overweight boys were significantly less active than their normal-weight male counterparts; this difference did not hold true for girls. Even though nearly double the number of normal-weight children achieved the 40% of MVPA during recess compared with overweight children, physical activity promotion in school playgrounds needs to be targeted not only at overweight but at other health parameters, as 40 overweight children met the 40% MVPA target proposed for recess.

  3. Mode-coupling theory for active Brownian particles

    NASA Astrophysics Data System (ADS)

    Liluashvili, Alexander; Ónody, Jonathan; Voigtmann, Thomas

    2017-12-01

    We present a mode-coupling theory (MCT) for the slow dynamics of two-dimensional spherical active Brownian particles (ABPs). The ABPs are characterized by a self-propulsion velocity v0 and by their translational and rotational diffusion coefficients Dt and Dr, respectively. Based on the integration-through-transients formalism, the theory requires as input only the equilibrium static structure factors of the passive system (where v0=0 ). It predicts a nontrivial idealized-glass-transition diagram in the three-dimensional parameter space of density, self-propulsion velocity, and rotational diffusivity that arise because at high densities, the persistence length of active swimming ℓp=v0/Dr interferes with the interaction length ℓc set by the caging of particles. While the low-density dynamics of ABPs is characterized by a single Péclet number Pe=v02/DrDt , close to the glass transition the dynamics is found to depend on Pe and ℓp separately. At fixed density, increasing the self-propulsion velocity causes structural relaxation to speed up, while decreasing the persistence length slows down the relaxation. The active-MCT glass is a nonergodic state that is qualitatively different from the passive glass. In it, correlations of initial density fluctuations never fully decay, but also an infinite memory of initial orientational fluctuations is retained in the positions.

  4. Normal modes of oscillation of the Asinelli and Garisenda towers in Bologna (Italy)

    NASA Astrophysics Data System (ADS)

    Morelli, A.; Azzara, R. M.; Cavaliere, A.; Zaccarelli, L.

    2013-12-01

    The Asinelli and Garisenda medieval towers represent the best-know city landmark in Bologna. Asinelli is also known to physics historians for early experiments on free fall of bodies for the first measurements of g (Giovanni Battista Riccioli, ca. 1650) and proof of Earth rotation (Giovanni Battista Guglielmini, 1791). The Two Towers (as they are commonly known) are essentially tall, square cross-section hollow masonry cuboids. Taller Asinelli, built between 1109 and 1119, is 97 m high, with an overhang of 2.2 m, while more seriously leaning Garisenda has an overhang of 3.2 m with a heigth of 48 m. During the summer of 2012 -- in the aftermath of two M≈6 earthquakes occurred in the proximity of the city -- the permanent engineering monitoring system of the towers has been temporarily supplemented by 6 seismometric stations installed at different levels inside the masonry buildings, to study their dynamical response to induced vibrations. We have thus been able to observe and measure the oscillation of the two towers excited by ambient noise, mostly due to city traffic. The two towers show similar behaviour, more clear in taller Asinelli. The first three flexural normal modes of oscillation, and the first torsional mode, can easily be detected. Their frequencies are split because of the asymmetry due to leaning of the tower. This asymmetry produces slightly different frequencies of oscillation in two orthogonal directions, quite consistent with preliminary dynamical modeling. Horizontal particle-motion polarization plots clearly show the cyclic energy transfer between these two degrees of freedom of the system. Oscillations of taller Asinelli influence its close sister, such that the Asinelli spectral signature can also be easily recognized in the motion recorded at the base of Garisenda, overimposed over Garisenda own free oscillations. Horizontal component polarization analysis done simultaneously at the two ground-level stations often point to a nearby common

  5. Bernstein modes in a non-neutral plasma column

    NASA Astrophysics Data System (ADS)

    Walsh, Daniel; Dubin, Daniel H. E.

    2018-05-01

    This paper presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on finite Larmor radius effects to propagate radially across the column until they are reflected when their frequency matches the upper hybrid frequency. This reflection sets up an internal normal mode on the column and also mode-couples to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, are presented and compared to an analytical Wentzel Kramers Brillouin (WKB) theory. A previous version of the theory [D. H. E. Dubin, Phys. Plasmas 20(4), 042120 (2013)] expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently, its frequency predictions are spuriously shifted with respect to the numerical results presented here. A new version of the WKB theory avoids this approximation using the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The effect of multiple ion species on the mode spectrum is also considered, to make contact with experiments that observe cyclotron modes in a multi-species pure ion plasma [M. Affolter et al., Phys. Plasmas 22(5), 055701 (2015)].

  6. Slow crack growth in glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Shetty, D. K.; Rosenfield, A. R.

    1991-01-01

    Slow crack growth in soda-lime glass under combined mode I and mode II loading was investigated in precracked disk specimens in which pure mode I, pure mode II, and various combinations of mode I and mode II were achieved by loading in diametral compression at selected angles with respect to symmetric radial cracks. It is shown that slow crack growth under these conditions can be described by a simple exponential relationship with elastic strain energy release rate as the effective crack-driving force parameter. It is possible to interpret this equation in terms of theoretical models that treat subcritical crack growth as a thermally activated bond-rupture process with an activation energy dependent on the environment, and the elastic energy release rate as the crack-driving force parameter.

  7. Examining Energy Expenditure in Youth Using XBOX Kinect: Differences by Player Mode.

    PubMed

    Barkman, Jourdin; Pfeiffer, Karin; Diltz, Allie; Peng, Wei

    2016-06-01

    Replacing sedentary time with physical activity through new generation exergames (eg, XBOX Kinect) is a potential intervention strategy. The study's purpose was to compare youth energy expenditure while playing different exergames in single- vs. multiplayer mode. Participants (26 male, 14 female) were 10 to 13 years old. They wore a portable metabolic analyzer while playing 4 XBOX Kinect games for 15 minutes each (2 single-, 2 multiplayer). Repeated-measures ANOVA (with Bonferroni correction) was used to examine player mode differences, controlling for age group, sex, weight status, and game. There was a significant difference in energy expenditure between single player (mean = 15.4 ml/kg/min, SD = 4.5) and multiplayer mode (mean = 16.8 ml/kg/min, SD = 4.7). Overweight and obese participants (mean = 13.7 ml/kg/min, SD = 4.2) expended less energy than normal weight (mean = 17.8 ml/kg/min, SD = 4.5) during multiplayer mode (d = 0.93). Player mode, along with personal factors such as weight status, may be important to consider in energy expenditure during exergames.

  8. High speed strain measurement of active mode locking FBG laser sensor using chirped FBG cavity

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Hun; Kim, Joon Young; Park, Chang Hyun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo

    2017-04-01

    We propose a high speed strain measurement method using an active mode locking (AML) fiber Bragg grating (FBG) laser sensor with a chirped FBG cavity. The mode-locked frequency of the AML laser depends on both the position and Bragg wavelength of the FBG. Thus, the mode-locked frequency of cascaded FBGs can be detected independently along the cavity length of cascaded FBGs. The strain across FBGs can be interrogated dynamically by monitoring the change in mode-locked frequency. In this respect, the chirped FBG critically improves the frequency sensitivity to Bragg wavelength shift as a function of increasing dispersion in the AML cavity. The strain measurement of the FBG sensor shows a highly linear response, with an R-squared value of 0.9997.

  9. Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2018-01-01

    Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.

  10. Information processing of visually presented picture and word stimuli by young hearing-impaired and normal-hearing children.

    PubMed

    Kelly, R R; Tomlison-Keasey, C

    1976-12-01

    Eleven hearing-impaired children and 11 normal-hearing children (mean = four years 11 months) were visually presented familiar items in either picture or word form. Subjects were asked to recognize the stimuli they had seen from cue cards consisting of pictures or words. They were then asked to recall the sequence of stimuli by arranging the cue cards selected. The hearing-impaired group and normal-hearing subjects performed differently with the picture/picture (P/P) and word/word (W/W) modes in the recognition phase. The hearing impaired performed equally well with both modes (P/P and W/W), while the normal hearing did significantly better on the P/P mode. Furthermore, the normal-hearing group showed no difference in processing like modes (P/P and W/W) when compared to unlike modes (W/P and P/W). In contrast, the hearing-impaired subjects did better on like modes. The results were interpreted, in part, as supporting the position that young normal-hearing children dual code their visual information better than hearing-impaired children.

  11. Influence of the normal modes on the plasma uniformity in large scale CCP reactors

    NASA Astrophysics Data System (ADS)

    Eremin, Denis; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Lane, Barton; Matsukuma, Masaaki; Ventzek, Peter

    2016-09-01

    Large scale capacitively coupled plasmas (CCP) driven by sources with high frequency components often exhibit phenomena which are absent in relatively well understood small scale CCPs driven at low frequencies. Of particular interest are such phenomena which affect discharge parameters of direct relevance to the plasma processing applications. One of such parameters is plasma uniformity. By using a self-consistent 2d3v Particle-in-cell/Monte-Carlo (PIC/MCC) code parallelized on GPU we have been able to show that uniformity of the plasma generated is influenced predominantly by two factors, the ionization pattern caused by high-energy electrons and the average temperature of low-energy plasma electrons. The heating mechanisms for these two groups of electrons appear to be different leading to different transversal (radial) profiles of the corresponding factors, which is well captured by the kinetic PIC/MCC code. We find that the heating mechanisms are intrinsically connected with excitation of normal modes inherent to a plasma-filled CCP reactor. In this work we study the wave nature of these phenomena, such as their excitation, propagation, and interaction with electrons. Supported by SFB-TR 87 project of the German Research Foundation and by the ``Experimental and numerical analysis of very high frequency capacitively coupled plasma discharges'' mutual research project between RUB and Tokyo Electron Ltd.

  12. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less

  13. Dendritic Slow Dynamics Enables Localized Cortical Activity to Switch between Mobile and Immobile Modes with Noisy Background Input

    PubMed Central

    Kurashige, Hiroki; Câteau, Hideyuki

    2011-01-01

    Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity – called a bump – can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability. PMID:21931635

  14. Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides.

    PubMed

    Vass, Andrea; Robles-Molina, José; Pérez-Ortega, Patricia; Gilbert-López, Bienvenida; Dernovics, Mihaly; Molina-Díaz, Antonio; García-Reyes, Juan F

    2016-07-01

    The aim of the study was to evaluate the performance of different chromatographic approaches for the liquid chromatography/mass spectrometry (LC-MS(/MS)) determination of 24 highly polar pesticides. The studied compounds, which are in most cases unsuitable for conventional LC-MS(/MS) multiresidue methods were tested with nine different chromatographic conditions, including two different hydrophilic interaction liquid chromatography (HILIC) columns, two zwitterionic-type mixed-mode columns, three normal-phase columns operated in HILIC-mode (bare silica and two silica-based chemically bonded columns (cyano and amino)), and two standard reversed-phase C18 columns. Different sets of chromatographic parameters in positive (for 17 analytes) and negative ionization modes (for nine analytes) were examined. In order to compare the different approaches, a semi-quantitative classification was proposed, calculated as the percentage of an empirical performance value, which consisted of three main features: (i) capacity factor (k) to characterize analyte separation from the void, (ii) relative response factor, and (iii) peak shape based on analytes' peak width. While no single method was able to provide appropriate detection of all the 24 studied species in a single run, the best suited approach for the compounds ionized in positive mode was based on a UHPLC HILIC column with 1.8 μm particle size, providing appropriate results for 22 out of the 24 species tested. In contrast, the detection of glyphosate and aminomethylphosphonic acid could only be achieved with a zwitterionic-type mixed-mode column, which proved to be suitable only for the pesticides detected in negative ion mode. Finally, the selected approach (UHPLC HILIC) was found to be useful for the determination of multiple pesticides in oranges using HILIC-ESI-MS/MS, with limits of quantitation in the low microgram per kilogram in most cases. Graphical Abstract HILIC improves separation of multiclass polar pesticides.

  15. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anglart, Henryk

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  16. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    NASA Astrophysics Data System (ADS)

    Anglart, Henryk

    2012-06-01

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  17. EMG normalization to study muscle activation in cycling.

    PubMed

    Rouffet, David M; Hautier, Christophe A

    2008-10-01

    The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque-velocity test (T-V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque-velocity bicycling tests (T-V). Then, the reference EMG signals obtained from IMVC and T-V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T-V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99+/-43% higher (p<0.001) when measured during T-V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T-V bicycling normalization method (GMAX: 0.33+/-0.16 vs. 1.09+/-0.04, VL: 0.07+/-0.02 vs. 0.64+/-0.14, SOL: 0.07+/-0.03 vs. 1.00+/-0.07, RF: 1.21+/-0.20 vs. 0.92+/-0.13, BF: 1.47+/-0.47 vs. 0.84+/-0.11). It was concluded that T-V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.

  18. An evaluation of transport mode shift policies on transport-related physical activity through simulations based on random forests.

    PubMed

    Brondeel, Ruben; Kestens, Yan; Chaix, Basile

    2017-10-23

    Physical inactivity is widely recognized as one of the leading causes of mortality, and transport accounts for a large part of people's daily physical activity. This study develops a simulation approach to evaluate the impact of the Ile-de-France Urban Mobility Plan (2010-2020) on physical activity, under the hypothesis that the intended transport mode shifts are realized. Based on the Global Transport Survey (2010, n = 21,332) and on the RECORD GPS Study (2012-2013, n = 229) from the French capital region of Paris (Ile-de-France), a simulation method was designed and tested. The simulation method used accelerometer data and random forest models to predict the impact of the transport mode shifts anticipated in the Mobility Plan on transport-related moderate-to-vigorous physical activity (T-MVPA). The transport mode shifts include less private motorized trips in favor of more public transport, walking, and biking trips. The simulation model indicated a mean predicted increase of 2 min per day of T-MVPA, in case the intended transport mode shifts in the Ile-de-France Urban Mobility Plan were realized. The positive effect of the transport mode shifts on T-MVPA would, however, be larger for people with a higher level of education. This heterogeneity in the positive effect would further increase the existing inequality in transport-related physical activity by educational level. The method presented in this paper showed a significant increase in transport-related physical activity in case the intended mode shifts in the Ile-de-France Urban Mobility Plan were realized. This simulation method could be applied on other important health outcomes, such as exposure to noise or air pollution, making it a useful tool to anticipate the health impact of transport interventions or policies.

  19. Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.

    2010-02-01

    We describe a technique for calculating the low-frequency mechanical modes and frequencies of a large symmetric biological molecule where the eigenvectors of the Hessian matrix are determined with full atomic detail. The method, which follows order N methods used in electronic structure theory, determines the subset of lowest-frequency modes while using group theory to reduce the complexity of the problem. We apply the method to three icosahedral viruses of various T numbers and sizes; the human viruses polio and hepatitis B, and the cowpea chlorotic mottle virus, a plant virus. From the normal-mode eigenvectors, we use a bond polarizability model to predict a low-frequency Raman scattering profile for the viruses. The full atomic detail in the displacement patterns combined with an empirical potential-energy model allows a comparison of the fully atomic normal modes with elastic network models and normal-mode analysis with only dihedral degrees of freedom. We find that coarse-graining normal-mode analysis (particularly the elastic network model) can predict the displacement patterns for the first few (˜10) low-frequency modes that are global and cooperative.

  20. Maternal physical activity mode and fetal heart outcome.

    PubMed

    May, Linda E; Suminski, Richard R; Berry, Andrew; Langaker, Michelle D; Gustafson, Kathleen M

    2014-07-01

    Maternal leisure-time physical activity (LTPA) improves cardiac autonomic function in the fetus. The specific physical activity attributes (e.g., mode) that produce this benefit are not well understood. To determine if more time spent performing non-continuous LTPA during pregnancy is significantly associated with lower fetal heart rate (HR) and increased heart rate variability (HRV). This paper presents a retrospective analysis of previously reported data. Fetal magnetocardiograms (MCG) were recorded from 40 pregnant women at 36-wk gestational age. Metrics of fetal HR and HRV, self-reported min of continuous and non-continuous LTPA performed during the 3-months preceding the 36-wk assessment point and covariates (maternal weight change pre to 36-wk, age, and resting HR and fetal activity state during MCG recordings. Positive correlations were significant (p<0.05) between min of continuous LTPA, the time domain metrics that describe fetal overall HRV, short-term HRV and a frequency domain metric that reflects vagal activity. Time spent in non-continuous LTPA was positively correlated (p<0.05) with two HRV metrics that reflect fetal overall HRV. In the multiple regression analyses, minutes of non-continuous LTPA remained associated with fetal vagal activity (p<0.05) and the relationships between minutes of non-continuous LTPA and fetal overall HRV (p<0.005) persisted. These data suggest non-continuous physical activity provides unique benefits to the fetal autonomic nervous system that may give the fetus an adaptive advantage. Further studies are needed to understand the physiological mechanisms and long-term health effects of physical activity (both non-continuous and continuous) performed during pregnancy to both women and their offspring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A simulation study on the mode conversion process from slow Z-mode to LO mode by the tunneling effect and variations of beaming angle

    NASA Astrophysics Data System (ADS)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2014-12-01

    For a particular angle of incidence wave, it is possible for a slow Z-mode wave incident on an inhomogeneous plasma slab to be converted into an LO mode wave. But for another wave normal angle of the incident wave, it has been considered impossible, since an evanescence region exists between two mode branches. In this case we expect that the mode conversion takes place through the tunneling effect. We investigate the effect of the spatial scale of the density gradient on the mode conversion efficiency in an inhomogeneous plasma where the mode conversion can occur only by the tunneling effect. We use the computer simulation solving Maxwell's equations and the motion of a cold electron fluid. By considering the steepness of the density gradient, the simulation results show the efficient mode conversion could be expected even in the case that the mismatch of the refractive indexes prevents the close coupling of plasma waves. Also, we show for these cases the beaming angle does not correspond to Jones' formula. This effect leads to the angles larger and smaller than the angle estimated by the formula. This type of mode conversion process becomes important in a case where the different plasmas form a discontinuity at their contact boundary.

  2. Dynamic modeling and Super-Twisting Sliding Mode Control for Tethered Space Robot

    NASA Astrophysics Data System (ADS)

    Zhao, Yakun; Huang, Panfeng; Zhang, Fan

    2018-02-01

    Recent years, tethered space capturing systems have been considered as one of the most promising solutions for active space debris removal due to the increasing threat of space debris to spacecraft and astronauts. In this paper, one of the tethered space capturing systems, Tethered Space Robot (TSR), is investigated. TSR includes a space platform, a space tether, and a gripper as the terminal device. Based on the assumptions that the platform and the gripper are point masses and the tether is rigid, inextensible and remaining straight, the dynamic model of TSR is presented, in which the disturbances from space environment is considered. According to the previous study, the in-plane and out-of-plane angles of the tether oscillate periodically although the tether is released to the desired length. A super-twisting adaptive sliding mode control scheme is designed for TSR to eliminate the vibration of the tether to assure a successful capture in station-keeping phase. Both uncontrolled and controlled situations are simulated. The simulation results show that the proposed controller is effective. Additionally, after comparing with normal sliding mode control algorithm, it is verified that the proposed control scheme can avoid the chattering of normal sliding mode control and is robust for unknown boundary perturbations.

  3. Theoretical study of the Raman active CDW gap mode in manganites.

    PubMed

    Rout, G C; Panda, Saswati; Behera, S N

    2010-09-22

    We report here the microscopic theory of the Raman spectra of the colossal magnetoresistive (CMR) manganite systems. The system is described by a model Hamiltonian consisting of the double exchange interaction in addition to the charge ordering interaction in the e(g) band and spin-spin interaction among the t(2g) core electrons. Further the phonon coupling to the conduction electron density is incorporated in the model for phonons in the harmonic approximation. The spectral density function for the Raman spectra is calculated from the imaginary part of the phonon Green's function. The calculated spectra display the Raman active bare phonon peak along with the charge ordering peak. The magnetic field and temperature dependence of the charge ordering peak agrees with the 480 cm(-1) JT mode observed in the experiments. The evolution of this mode is investigated in the report.

  4. Macroscopic response in active nonlinear photonic crystals.

    PubMed

    Alagappan, Gandhi; John, Sajeev; Li, Er Ping

    2013-09-15

    We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.

  5. Observations of core-mantle boundary Stoneley modes

    NASA Astrophysics Data System (ADS)

    Koelemeijer, Paula; Deuss, Arwen; Ritsema, Jeroen

    2013-06-01

    Core-mantle boundary (CMB) Stoneley modes represent a unique class of normal modes with extremely strong sensitivity to wave speed and density variations in the D" region. We measure splitting functions of eight CMB Stoneley modes using modal spectra from 93 events with Mw> 7.4 between 1976 and 2011. The obtained splitting function maps correlate well with the predicted splitting calculated for S20RTS+Crust5.1 structure and the distribution of Sdiff and Pdiff travel time anomalies, suggesting that they are robust. We illustrate how our new CMB Stoneley mode splitting functions can be used to estimate density variations in the Earth's lowermost mantle.

  6. Physical activity and cognitive trajectories in cognitively normal adults: the adult children study.

    PubMed

    Pizzie, Rachel; Hindman, Halley; Roe, Catherine M; Head, Denise; Grant, Elizabeth; Morris, John C; Hassenstab, Jason J

    2014-01-01

    Increased physical activity may protect against cognitive decline, the primary symptom of Alzheimer disease. In this study, we examined the relationship between physical activity and trajectories of cognitive functioning over serial assessments. Cognitively normal (Clinical Dementia Rating 0) middle-aged and older adults (N=173; mean age, 60.7 ± 7.8 y) completed a self-report measure of physical activity and a battery of standard neuropsychological tests assessing processing speed, attention, executive functioning, and verbal memory. At baseline, individuals with higher physical activity levels performed better on tests of episodic memory and visuospatial functioning. Over subsequent follow-up visits, higher physical activity was associated with small performance gains on executive functioning and working memory tasks in participants with one or more copies of the apolipoprotein ε4 allele (APOE4). In APOE4 noncarriers, slopes of cognitive performance over time were not related to baseline physical activity. Our results suggest that cognitively normal older adults who report higher levels of physical activity may have slightly better cognitive performance, but the potential cognitive benefits of higher levels of physical activity over time may be most evident in individuals at genetic risk for Alzheimer disease.

  7. Analysis of Coherent Phonon Signals by Sparsity-promoting Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Murata, Shin; Aihara, Shingo; Tokuda, Satoru; Iwamitsu, Kazunori; Mizoguchi, Kohji; Akai, Ichiro; Okada, Masato

    2018-05-01

    We propose a method to decompose normal modes in a coherent phonon (CP) signal by sparsity-promoting dynamic mode decomposition. While the CP signals can be modeled as the sum of finite number of damped oscillators, the conventional method such as Fourier transform adopts continuous bases in a frequency domain. Thus, the uncertainty of frequency appears and it is difficult to estimate the initial phase. Moreover, measurement artifacts are imposed on the CP signal and deforms the Fourier spectrum. In contrast, the proposed method can separate the signal from the artifact precisely and can successfully estimate physical properties of the normal modes.

  8. A reduced order, test verified component mode synthesis approach for system modeling applications

    NASA Astrophysics Data System (ADS)

    Butland, Adam; Avitabile, Peter

    2010-05-01

    Component mode synthesis (CMS) is a very common approach used for the generation of large system models. In general, these modeling techniques can be separated into two categories: those utilizing a combination of constraint modes and fixed interface normal modes and those based on a combination of free interface normal modes and residual flexibility terms. The major limitation of the methods utilizing constraint modes and fixed interface normal modes is the inability to easily obtain the required information from testing; the result of this limitation is that constraint mode-based techniques are primarily used with numerical models. An alternate approach is proposed which utilizes frequency and shape information acquired from modal testing to update reduced order finite element models using exact analytical model improvement techniques. The connection degrees of freedom are then rigidly constrained in the test verified, reduced order model to provide the boundary conditions necessary for constraint modes and fixed interface normal modes. The CMS approach is then used with this test verified, reduced order model to generate the system model for further analysis. A laboratory structure is used to show the application of the technique with both numerical and simulated experimental components to describe the system and validate the proposed approach. Actual test data is then used in the approach proposed. Due to typical measurement data contaminants that are always included in any test, the measured data is further processed to remove contaminants and is then used in the proposed approach. The final case using improved data with the reduced order, test verified components is shown to produce very acceptable results from the Craig-Bampton component mode synthesis approach. Use of the technique with its strengths and weaknesses are discussed.

  9. ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.

    2012-10-01

    Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.

  10. YANA – a software tool for analyzing flux modes, gene-expression and enzyme activities

    PubMed Central

    Schwarz, Roland; Musch, Patrick; von Kamp, Axel; Engels, Bernd; Schirmer, Heiner; Schuster, Stefan; Dandekar, Thomas

    2005-01-01

    Background A number of algorithms for steady state analysis of metabolic networks have been developed over the years. Of these, Elementary Mode Analysis (EMA) has proven especially useful. Despite its low user-friendliness, METATOOL as a reliable high-performance implementation of the algorithm has been the instrument of choice up to now. As reported here, the analysis of metabolic networks has been improved by an editor and analyzer of metabolic flux modes. Analysis routines for expression levels and the most central, well connected metabolites and their metabolic connections are of particular interest. Results YANA features a platform-independent, dedicated toolbox for metabolic networks with a graphical user interface to calculate (integrating METATOOL), edit (including support for the SBML format), visualize, centralize, and compare elementary flux modes. Further, YANA calculates expected flux distributions for a given Elementary Mode (EM) activity pattern and vice versa. Moreover, a dissection algorithm, a centralization algorithm, and an average diameter routine can be used to simplify and analyze complex networks. Proteomics or gene expression data give a rough indication of some individual enzyme activities, whereas the complete flux distribution in the network is often not known. As such data are noisy, YANA features a fast evolutionary algorithm (EA) for the prediction of EM activities with minimum error, including alerts for inconsistent experimental data. We offer the possibility to include further known constraints (e.g. growth constraints) in the EA calculation process. The redox metabolism around glutathione reductase serves as an illustration example. All software and documentation are available for download at . Conclusion A graphical toolbox and an editor for METATOOL as well as a series of additional routines for metabolic network analyses constitute a new user-friendly software for such efforts. PMID:15929789

  11. Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Gallen, S. F.; Wegmann, K. W.; Bohnenstiehl, D. R.; Pazzaglia, F. J.; Brandon, M. T.; Fassoulas, C.

    2014-07-01

    The island of Crete occupies a forearc high in the central Hellenic subduction zone and is characterized by sustained exhumation, surface uplift and extension. The processes governing orogenesis and topographic development here remain poorly understood. Dramatic topographic relief (2-6 km) astride the southern coastline of Crete is associated with large margin-parallel faults responsible for deep bathymetric depressions known as the Hellenic troughs. These structures have been interpreted as both active and inactive with either contractional, strike-slip, or extensional movement histories. Distinguishing between these different structural styles and kinematic histories here allows us to explore more general models for improving our global understanding of the tectonic and geodynamic processes of syn-convergent extension. We present new observations from the south-central coastline of Crete that clarifies the role of these faults in the late Cenozoic evolution of the central Hellenic margin and the processes controlling Quaternary surface uplift. Pleistocene marine terraces are used in conjunction with optically stimulated luminesce dating and correlation to the Quaternary eustatic curve to document coastal uplift and identify active faults. Two south-dipping normal faults are observed, which extend offshore, offset these marine terrace deposits and indicate active N-S (margin-normal) extension. Further, marine terraces preserved in the footwall and hanging wall of both faults demonstrate that regional net uplift of Crete is occurring despite active extension. Field mapping and geometric reconstructions of an active onshore normal fault reveal that the subaqueous range-front fault of south-central Crete is synthetic to the south-dipping normal faults on shore. These findings are inconsistent with models of active horizontal shortening in the upper crust of the Hellenic forearc. Rather, they are consistent with topographic growth of the forearc in a viscous orogenic

  12. Cerebral activation evoked by the mirror illusion of the hand in stroke patients compared to normal subjects.

    PubMed

    Wang, Jing; Fritzsch, Claire; Bernarding, Johannes; Krause, Thomas; Mauritz, Karl-Heinz; Brunetti, Maddalena; Dohle, Christian

    2013-01-01

    Mirror therapy (MT) was found to improve motor function after stroke, but its neural mechanisms remain unclear, especially in single stroke patients. The following imaging study was designed to compare brain activation patterns evoked by the mirror illusion in single stroke patients with normal subjects. Fifteen normal volunteers and five stroke patients with severe arm paresis were recruited. Cerebral activations during movement mirroring by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Single-subject analysis was performed using SPM 8. For normal subjects, ten and thirteen subjects displayed lateralized cerebral activations evoked by the mirror illusion while moving their right and left hand respectively. The magnitude of this effect in the precuneus contralateral to the seen hand was not dependent on movement speed or subjective experience. Negative correlation of activation strength with age was found for the right hand only. The activation pattern in stroke patients is comparable to that of normal subjects and present in four out of five patients. In summary, the mirror illusion can elicit cerebral activation contralateral to the perceived hand in the majority of single normal subjects, but not in all of them. This is similar even in stroke patients with severe hemiparesis.

  13. The effect of frequency and mode of sports activity on the psychological status in tetraplegics and paraplegics.

    PubMed

    Muraki, S; Tsunawake, N; Hiramatsu, S; Yamasaki, M

    2000-05-01

    To examine whether the psychological benefits of sports activity differ between tetraplegics and paraplegics with spinal cord injury, and investigate the effect of frequency and modes of sports activity on the psychological benefits. The Self-rating Depression Scale (SDS), State-Trait Anxiety Inventory (STAI) and Profiles of Mood States (POMS) were administered to 169 male individuals with spinal cord injury (mean age=42.7 years) including 53 tetraplegics and 116 paraplegics. The subjects were divided into four groups according to their frequencies of sports activity; High-active (more than three times a week; n=32), Middle-active (once or twice a week, n=41), Low-active (once to three times a month, n=32), and Inactive (no sports participation, n=64). Analysis of variance revealed significant differences in depression for SDS, trait anxiety for STAI and depression and vigor for POMS among the groups. High-active group showed the lowest scores of depression and trait anxiety and the highest score of vigor among the four groups. In contrast, no significant difference was found for any psychological measurements between tetraplegics and paraplegics. In addition, there was no significant difference for any psychological measurements among modes (wheelchair basketball, wheelchair racing, wheelchair tennis and minor modes). These findings demonstrated that sports activity can improve the psychological status, irrespective of tetraplegics and paraplegics, and that the psychological benefits are emphasized by sports activity at high frequency.

  14. Single-Mode VCSELs

    NASA Astrophysics Data System (ADS)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  15. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    PubMed

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  16. Defect modes in a stacked structure of chiral photonic crystals.

    PubMed

    Chen, Jiun-Yeu; Chen, Lien-Wen

    2005-06-01

    An optical propagation simulation is carried out for the study of photonic defect modes in a stacked structure of cholesteric liquid crystal films with spatially varying pitch. The defects are introduced by a pitch jump and a phase jump in the cholesteric helix. The effect of a finite sample thickness on transmission of the defect mode and on the required polarization of incident light to create the defect mode is discussed. For normal and near-normal incidence of circularly polarized light with the same handedness as structure, the defect caused by a pitch jump results in discrete peaks within a forbidden band in the transmission. The particular spectrum is similar to the feature of a Fabry-Pérot interferometer. By introducing an additional phase jump, linear blueshifts of the defect modes in transmission spectra are correlated with an increase in the twist angle.

  17. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei

    2014-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  18. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  19. Mechanical properties of resin cements with different activation modes.

    PubMed

    Braga, R R; Cesar, P F; Gonzaga, C C

    2002-03-01

    Dual-cured cements have been studied in terms of the hardness or degree of conversion achieved with different curing modes. However, little emphasis is given to the influence of the curing method on other mechanical properties. This study investigated the flexural strength, flexural modulus and hardness of four proprietary resin cements. Materials tested were: Enforce and Variolink II (light-, self- and dual-cured), RelyX ARC (self- and dual-cured) and C & B (self-cured). Specimens were fractured using a three-point bending test. Pre-failure loads corresponding to specific displacements of the cross-head were used for flexural modulus calculation. Knoop hardness (KHN) was measured on fragments obtained after the flexural test. Tests were performed after 24 h storage at 37 degrees C. RelyX ARC dual-cured showed higher flexural strength than the other groups. RelyX ARC and Variolink II depended upon photo-activation to achieve higher hardness values. Enforce showed similar hardness for dual- and self-curing modes. No correlation was found between flexural strength and hardness, indicating that other factors besides the degree of cure (e.g. filler content and monomer type) affect the flexural strength of composites. No statistical difference was detected in the flexural modulus among the different groups.

  20. In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota.

    PubMed

    Weintraub, Andrej; Rashid, Mamun-Ur; Nord, Carl Erik

    2016-12-01

    Solithromycin is a novel fluoroketolide with high activity against bacteria associated with community-acquired respiratory tract infections as well as gonorrhea. However, data on the activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota are scarce. In this study, 1024 Gram-positive and Gram-negative anaerobic isolates from the normal intestinal microbiota were analyzed for in-vitro susceptibility against solithromycin and compared to azithromycin, amoxicillin/clavulanic acid, ceftriaxone, metronidazole and levofloxacin by determining the minimum inhibitory concentration (MIC). Solithromycin was active against Bifidobacteria (MIC 50 , 0.008 mg/L) and Lactobacilli (MIC 50 , 0.008 mg/L). The MIC 50 for Clostridia, Bacteroides, Prevotella and Veillonella were 0.5, 0.5, 0.125 and 0.016 mg/L, respectively. Gram-positive anaerobes were more susceptible to solithromycin as compared to the other antimicrobials tested. The activity of solithromycin against Gram-negative anaerobes was equal or higher as compared to other tested agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Zero group velocity longitudinal modes in an isotropic cylinder

    NASA Astrophysics Data System (ADS)

    Hussain, Takasar; Ahmad, Faiz; Ozair, Muhammad

    2018-06-01

    Zero group velocity (ZGV) modes are studied in an isotropic cylinder. The L(0, 2) mode behaves anomalously for the materials with a value of the bulk velocity ratio, κ , in the range √{2}<κ <2.64 and normally otherwise. All higher modes, except the first few, have no ZGV point for all isotropic materials. This is explained analytically by finding the slope of phase velocity dispersion curves of modes first when the phase velocity equals κ and then at their initial state.

  2. Canine left ventricle electromechanical behavior under different pacing modes.

    PubMed

    Vo Thang, Thanh-Thuy; Thibault, Bernard; Finnerty, Vincent; Pelletier-Galarneau, Matthieu; Khairy, Paul; Grégoire, Jean; Harel, François

    2012-10-01

    Cardiac resynchronization therapy may improve survival and quality of life in patients suffering from heart failure with left ventricular (LV) contraction dyssynchrony. While several studies have investigated electrical or mechanical determinants of synchronous contraction, few have focused on activation contraction coupling at a macroscopic level. The objective of the study was to characterize LV electromechanical behavior and response to pacing in a heart failure model. We analyzed data from 3D electroanatomic non-contact mapping and blood pool SPECT for 12 dogs with right ventricular (RV) tachycardia pacing-induced dilated cardiomyopathy. Surfaces generated by the two modalities were registered. Electrical signals were analyzed, and endocardial wall displacement curves were portrayed. Rapid pacing decreased the mean LV ejection fraction (LVEF) to 20.9 % and prolonged the QRS duration to 79 ± 10 ms (normal range: 40-50 ms). QRS duration remained unchanged with biventricular pacing (88.5 ms), while single site pacing further prolonged the QRS duration (113.3 ms for RV pacing and 111.6 ms for LV pacing). No trend was observed in LV systolic function. Activation duration time was significantly increased with all pacing modes compared to baseline. Finally, electromechanical delay, as defined by the delay between electrical activation and mechanical response, was increased by single site pacing (172.9 ms for RV pacing and 174.6 ms for LV pacing) but not by biventricular pacing (162.4 ms). Combined temporal and spatial coregistration electroanatomic maps and baseline gated blood pool SPECT imaging allowed us to quantify activation duration time, electromechanical delay, and LVEF for different pacing modes. Even if pacing modes did not significantly modify LVEF or activation duration, they produced alterations in electromechanical delay, with biventricular pacing significantly decreasing the electromechanical delay as measured by surface tracings and endocardial

  3. PAF levels and PAF-AH activities in placentas from normal and preeclamptic pregnancies.

    PubMed

    Gu, Y; Burlison, S A; Wang, Y

    2006-01-01

    The aim of this study was to determine: (1) platelet-activating factor (PAF) levels and PAF-acetylhydrolase (PAF-AH) activities in normal and preeclamptic placentas; (2) lipid peroxide production by placental tissues stimulated with PAF. Placentas were obtained immediately after delivery from normal and preeclamptic pregnancies. Tissue pieces were snap frozen in liquid nitrogen and stored at -70 degrees C. One gram of tissue from each placenta was used for PAF extraction and for total RNA isolation. PAF was measured by PAF [3H] scintillation proximity assay (SPA) system. Trophoblast PAF-AH activity was determined by enzyme-linked immunosorbent assay (ELISA). mRNA expression for PAF receptor was assessed by RNase protection assay (RPA). Normal placental explants were incubated with PAF at concentrations of 1 and 10 microg/ml for 48 h. Lipid peroxide productions of 8-isoprostane and malondialdehyde (MDA) were measured by ELISA and thiobarbituric acid reaction, respectively. Data were presented as mean+/-SE and analyzed by nonparametric Mann-Whitney U test and ANOVA. A p level less than 0.05 was considered statistically significant. (1) The mean tissue level for PAF was elevated, but not statistically different, in preeclamptic (n=7) than in normal (n=8) placentas, 6.45+/-1.05 versus 4.47+/-0.60 ng/g, p=0.42. (2) PAF-AH activity was higher in trophoblasts from preeclamptic (n=7) placentas than that in trophoblasts from normal (n=8) placentas, 0.69+/-0.16 versus 0.38+/-0.03 micromol/min/microg protein, p<0.05. (3) The relative mRNA expression for PAF receptor was not different between normal (0.70+/-0.08) and preeclamptic (0.76+/-0.13) placental tissues, p=0.60. (4) Productions of 8-isoprostane and MDA were not increased in tissues with PAF in culture, 8-isoprostane: 0.37+/-0.09 ng/mg (control) versus 0.32+/-0.09 ng/mg (1 microg/ml) and 0.37+/-0.07 ng/mg (10 microg/ml), p>0.5; MDA: 0.62+/-0.05 nmol/mg (control) versus 0.68+/-0.04 nmol/mg (1 microg/ml) and 0

  4. Breathing Mode in Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Fujioka, K.; Henning, C.; Ludwig, P.; Bonitz, M.; Melzer, A.; Vitkalov, S.

    2007-11-01

    The breathing mode is a fundamental normal mode present in Coulomb systems, and may have utility in identifying particle charge and the Debye length of certain systems. The question remains whether this mode can be extended to strongly coupled Yukawa balls [1]. These systems are characterized by particles confined within a parabolic potential well and interacting through a shielded Coulomb potential [2,3]. The breathing modes for a variety of systems in 1, 2, and 3 dimensions are computed by solving the eigenvalue problem given by the dynamical (Hesse) matrix. These results are compared to theoretical investigations that assume a strict definition for a breathing mode within the system, and an analysis is made of the most fitting model to utilize in the study of particular systems of complex plasmas [1,4]. References [1] T.E. Sheridan, Phys. of Plasmas. 13, 022106 (2006)[2] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[3] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[4] C. Henning et al., submitted for publication

  5. Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids

    NASA Astrophysics Data System (ADS)

    Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.

    2004-03-01

    The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.

  6. Physical activity and self-efficacy in normal and over-fat children.

    PubMed

    Suton, Darijan; Pfeiffer, Karin A; Feltz, Deborah L; Yee, Kimbo E; Eisenmann, Joey C; Carlson, Joseph J

    2013-09-01

    To examine the independent and combined association of self-efficacy and fatness with physical activity in 5(th) grade children. Participants were 281 students (10.4 ± 0.7 years). Physical activity was assessed using a self-report question. Self-efficacy to be physically active was assessed using a 5-point scale. Body fatness was assessed by bioelectrical impedance. Descriptive statistics, ANOVA, and t-tests were used. There were no differences in reported days of physical activity between boys and girls, and normal-fat and over-fat children. However, children with high self-efficacy participated in significantly more physical activity compared to their low self-efficacy counterparts (3.4 ± 2.0 days vs. 5.4 ± 1.8 days, respectively, p < .001). Only physical activity self-efficacy was related to physical activity, fatness was not.

  7. Low-frequency oscillations in default mode subnetworks are associated with episodic memory impairments in Alzheimer's disease.

    PubMed

    Veldsman, Michele; Egorova, Natalia; Singh, Baljeet; Mungas, Dan; DeCarli, Charles; Brodtmann, Amy

    2017-11-01

    Disruptions to functional connectivity in subsystems of the default mode network are evident in Alzheimer's disease (AD). Functional connectivity estimates correlations in the time course of low-frequency activity. Much less is known about other potential perturbations to this activity, such as changes in the amplitude of oscillations and how this relates to cognition. We examined the amplitude of low-frequency fluctuations in 44 AD patients and 128 cognitively normal participants and related this to episodic memory, the core deficit in AD. We show higher amplitudes of low-frequency oscillations in AD patients. Rather than being compensatory, this appears to be maladaptive, with greater amplitude in the ventral default mode subnetwork associated with poorer episodic memory. Perturbations to default mode subnetworks in AD are evident in the amplitude of low-frequency oscillations in the resting brain. These disruptions are associated with episodic memory demonstrating their behavioral and clinical relevance in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dark solitons in mode-locked lasers.

    PubMed

    Ablowitz, Mark J; Horikis, Theodoros P; Nixon, Sean D; Frantzeskakis, Dimitri J

    2011-03-15

    Dark soliton formation in mode-locked lasers is investigated by means of a power-energy saturation model that incorporates gain and filtering saturated with energy, and loss saturated with power. It is found that general initial conditions evolve (mode-lock) into dark solitons under appropriate requirements also met in experimental observations. The resulting pulses are essentially dark solitons of the unperturbed nonlinear Schrödinger equation. Notably, the same framework also describes bright pulses in anomalous and normally dispersive lasers.

  9. 29 CFR 778.332 - Awards for activities not normally part of employee's job.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Awards for activities not normally part of employee's job. 778.332 Section 778.332 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... of employee's job. (a) Where the prize is awarded for activities outside the customary working hours...

  10. Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, Scott; Held, Eric

    2013-10-01

    Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.

  11. The interaction between gambling activities and modes of access: a comparison of Internet-only, land-based only, and mixed-mode gamblers.

    PubMed

    Gainsbury, Sally M; Russell, Alex; Blaszczynski, Alex; Hing, Nerilee

    2015-02-01

    Research suggests that Internet-based gambling includes risk factors that may increase gambling problems. The current study aimed to investigate subgroups of gamblers to identify the potential harms associated with various forms and modes of gambling. An online survey was completed by 4,594 respondents identified as Internet-only (IG), land-based only (LBGs), or mixed-mode (MMG) gamblers based on self-reported gambling behaviour in the last 12months. Results showed significant socio-demographic differences between groups, with the LBGs being the oldest and MMGs the youngest. MMGs engaged in the greatest variety of gambling forms, had the highest average problem gambling severity scores, and were more likely to attribute problems to sports betting than the other groups. IGs were involved in the lowest number of divergent gambling activities, most likely to gamble frequently on sports and races, and attribute problems to these forms. Compared to the other groups, LBs had a higher proportion of problem gamblers than IGs and were most likely to play electronic gaming machines weekly, with this form of gambling contributing to problems at a substantially greater rate. This study confirms the importance of considering gambling involvement across subgroups of Internet or land-based gamblers. There is a need to consider the interaction between forms and modes of gambling to advance our understanding of the potential risk of mode of gambling to contribute to problems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Return to normal activities and work after living donor laparoscopic nephrectomy.

    PubMed

    Larson, Dawn B; Jacobs, Cheryl; Berglund, Danielle; Wiseman, Jennifer; Garvey, Catherine; Gillingham, Kristen; Ibrahim, Hassan N; Matas, Arthur J

    2017-01-01

    Transplant programs inform potential donors that they should be able to return to normal activities within ~2 weeks and to work by 6 weeks after laparoscopic nephrectomy. We studied actual time. Between 10/2004 and 9/2014, 911 donors having laparoscopic nephrectomy were surveyed 6 months post-donation. Surveys asked questions specific to their recovery experience, including time to return to normal activities and work and a description of their recovery time relative to pre-donation expectations. Of the 911, 646 (71%) responded: mean age at donation was 43.5±10.6 years; 65% were female, 95% were white, 51% were biologically related to their recipient, and 83% reported education beyond high school. Of the 646 respondents, a total of 35% returned to normal activities by 2 weeks post-donation; 79% by 4 weeks post-donation; 94% by 5-6 weeks; however, 6% took >6 weeks. Of the 646, 551 (85%) were working for pay; of these, mean time to return to work was 5.3±2.8 weeks; median, 5 weeks. Of the 551, a total of 14% returned to work in 1-2 weeks, 46% by 3-4 weeks, and 76% by 5-6 weeks. Importantly, 24% required >6 weeks before returning to work with the highest rates for donors in manual labor or a skilled trade. Significantly longer return to work was reported by females (vs males; P=.01), those without (vs those with) post-high school education (P=.010, those with longer hospital stay (P=.01), and those with a postoperative complication (P=.02). Of respondents, 37% described their recovery time as longer than expected. During the donor informed consent process, additional emphasis on realistic expectations around recovery to baseline activities and return to work is warranted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Evolution of triangular topographic facets along active normal faults

    NASA Astrophysics Data System (ADS)

    Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.

    2011-12-01

    Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric

  14. Resting-state activity in development and maintenance of normal brain function.

    PubMed

    Pizoli, Carolyn E; Shah, Manish N; Snyder, Abraham Z; Shimony, Joshua S; Limbrick, David D; Raichle, Marcus E; Schlaggar, Bradley L; Smyth, Matthew D

    2011-07-12

    One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level-dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization.

  15. Do Participants’ Preferences for Mode of Delivery (Text, Video, or Both) Influence the Effectiveness of a Web-Based Physical Activity Intervention?

    PubMed Central

    Duncan, Mitch J; Plotnikoff, Ronald C; Mummery, W Kerry

    2012-01-01

    Background In randomized controlled trials, participants cannot choose their preferred intervention delivery mode and thus might refuse to participate or not engage fully if assigned to a nonpreferred group. This might underestimate the true effectiveness of behavior-change interventions. Objective To examine whether receiving interventions either matched or mismatched with participants’ preferred delivery mode would influence effectiveness of a Web-based physical activity intervention. Methods Adults (n = 863), recruited via email, were randomly assigned to one of three intervention delivery modes (text based, video based, or combined) and received fully automated, Internet-delivered personal advice about physical activity. Personalized intervention content, based on the theory of planned behavior and stages of change concept, was identical across groups. Online, self-assessed questionnaires measuring physical activity were completed at baseline, 1 week, and 1 month. Physical activity advice acceptability and website usability were assessed at 1 week. Before randomization, participants were asked which delivery mode they preferred, to categorize them as matched or mismatched. Time spent on the website was measured throughout the intervention. We applied intention-to-treat, repeated-measures analyses of covariance to assess group differences. Results Attrition was high (575/863, 66.6%), though equal between groups (t 86 3 =1.31, P =.19). At 1-month follow-up, 93 participants were categorized as matched and 195 as mismatched. They preferred text mode (493/803, 61.4%) over combined (216/803, 26.9%) and video modes (94/803, 11.7%). After the intervention, 20% (26/132) of matched-group participants and 34% (96/282) in the mismatched group changed their delivery mode preference. Time effects were significant for all physical activity outcomes (total physical activity: F 2,801 = 5.07, P = .009; number of activity sessions: F 2,801 = 7.52, P < .001; walking: F 2,801 = 8

  16. Do participants' preferences for mode of delivery (text, video, or both) influence the effectiveness of a Web-based physical activity intervention?

    PubMed

    Vandelanotte, Corneel; Duncan, Mitch J; Plotnikoff, Ronald C; Mummery, W Kerry

    2012-02-29

    In randomized controlled trials, participants cannot choose their preferred intervention delivery mode and thus might refuse to participate or not engage fully if assigned to a nonpreferred group. This might underestimate the true effectiveness of behavior-change interventions. To examine whether receiving interventions either matched or mismatched with participants' preferred delivery mode would influence effectiveness of a Web-based physical activity intervention. Adults (n = 863), recruited via email, were randomly assigned to one of three intervention delivery modes (text based, video based, or combined) and received fully automated, Internet-delivered personal advice about physical activity. Personalized intervention content, based on the theory of planned behavior and stages of change concept, was identical across groups. Online, self-assessed questionnaires measuring physical activity were completed at baseline, 1 week, and 1 month. Physical activity advice acceptability and website usability were assessed at 1 week. Before randomization, participants were asked which delivery mode they preferred, to categorize them as matched or mismatched. Time spent on the website was measured throughout the intervention. We applied intention-to-treat, repeated-measures analyses of covariance to assess group differences. Attrition was high (575/863, 66.6%), though equal between groups (t(86) (3) =1.31, P =.19). At 1-month follow-up, 93 participants were categorized as matched and 195 as mismatched. They preferred text mode (493/803, 61.4%) over combined (216/803, 26.9%) and video modes (94/803, 11.7%). After the intervention, 20% (26/132) of matched-group participants and 34% (96/282) in the mismatched group changed their delivery mode preference. Time effects were significant for all physical activity outcomes (total physical activity: F(2,801) = 5.07, P = .009; number of activity sessions: F(2,801) = 7.52, P < .001; walking: F(2,801) = 8.32, P < .001; moderate physical

  17. ATM activation in normal human tissues and testicular cancer.

    PubMed

    Bartkova, Jirina; Bakkenist, Christopher J; Rajpert-De Meyts, Ewa; Skakkebaek, Niels E; Sehested, Maxwell; Lukas, Jiri; Kastan, Michael B; Bartek, Jiri

    2005-06-01

    The ATM kinase is a tumor suppressor and key regulator of biological responses to DNA damage. Cultured cells respond to genotoxic insults that induce DNA double-strand breaks by prompt activation of ATM through its autophosphorylation on serine 1981. However, whether ATM-S1981 becomes phosphorylated in vivo, for example during physiological processes that generate DSBs, is unknown. Here we produced phospho-specific monoclonal antibodies against S1981-phosphorylated ATM (pS-ATM), and applied them to immunohistochemical analyses of a wide range of normal human tissues and testicular tumors. Our data show that regardless of proliferation and differentiation, most human tissues contain only the S1981-nonphosphorylated, inactive form of ATM. In contrast, nuclear staining for pS-ATM was detected in subsets of bone-marrow lymphocytes and primary spermatocytes in the adult testes, cell types in which DSBs are generated during physiological V(D)J recombination and meiotic recombination, respectively. Among testicular germ-cell tumors, an aberrant constitutive pS-ATM was observed especially in embryonal carcinomas, less in seminomas, and only modestly in teratomas and the pre-invasive carcinoma-in-situ stage. Compared with pS-ATM, phosphorylated histone H2AX (gammaH2AX), another DNA damage marker and ATM substrate, was detected in a higher proportion of cancer cells, and also in normal fetal gonocytes, and a wider range of adult spermatocyte differentiation stages. Collectively, our results strongly support the physiological relevance of the recently proposed model of ATM autoactivation, and provide further evidence for constitutive activation of the DNA damage machinery during cancer development. The new tools characterized here should facilitate monitoring of ATM activation in clinical specimens, and help develop future treatment strategies.

  18. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization.

    PubMed

    Bernardes, Amanda; Souza, Paulo C T; Muniz, João R C; Ricci, Clarisse G; Ayers, Stephen D; Parekh, Nili M; Godoy, André S; Trivella, Daniela B B; Reinach, Peter; Webb, Paul; Skaf, Munir S; Polikarpov, Igor

    2013-08-23

    Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPARα ligands effectively treat dyslipidemia and have significant antiinflammatory and anti-atherosclerotic activities. These effects and their ligand-dependent activity make nuclear receptors obvious targets for drug design. Here, we present the structure of the human PPARα in complex with WY14643, a member of fibrate class of drug, and a widely used PPAR activator. The crystal structure of this complex suggests that WY14643 induces activation of PPARα in an unusual bipartite mechanism involving conventional direct helix 12 stabilization and an alternative mode that involves a second ligand in the pocket. We present structural observations, molecular dynamics and activity assays that support the importance of the second site in WY14643 action. The unique binding mode of WY14643 reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering clues for improving the binding affinity and selectivity of ligand. We show that binding of WY14643 to PPARα was associated with antiinflammatory disease in a human corneal cell model, suggesting possible applications for PPARα ligands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. [Reliability of a questionnaire to assess physical activity in normal weight adolescents and overweight].

    PubMed

    Gómez Campos, Rossana; de Arruda, Miguel; Camargo, Cristiane; Cossio Bolaños, Marco A

    2015-05-01

    In recent years it has reported high levels of obesity associated with low levels of physical activity, which shows the need for assessment as elements of health and quality of life. To verify the ability of reproducibility of a PA questionnaire in school adolescents classified as normal weight, overweight and obese. A descriptive cross-sectional study was conducted in 1306 adolescent students (562 men and 744 women) from three municipal educational institutions of the province of Talca (Chile). The age range was from 12.0 to 17.9 years. Weight and height were assessed and body mass index was calculated. Cutoff points used CDC-2000 for nutritional classification categories (normal weight, overweight and obesity) was used. A survey of physical activity was applied to the three groups studied. 388 men and 533 women with normal weight were identified, 131 men and 169 overweight women, 43 men and 42 women with obesity. Both sexes showed high Cronbach alpha reliability values. In men (0.80 with normal weight, overweight 0.77 and 0.83 with obesity) and women (0.79 with normal weight, overweight 0.77 and 0.76 with obesity). The instrument used showed high reproducibility capacity in both normal weight adolescents, overweight and obesity. These results suggest everyday use in survey to assess the patterns of AF scale, regardless of nutritional status in which they are located. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. A two-pronged approach to detecting ICB Stoneley modes

    NASA Astrophysics Data System (ADS)

    Jasperson, H. A.; Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    Stoneley modes are special kinds of normal modes that are confined to the boundary between a fluid layer and a solid layer inside the Earth. Thus, these modes theoretically occur at the core-mantle boundary (CMB) and inner core boundary (ICB). CMB Stoneley modes were identified in observational data by Koelemeijer, et al. in 2013, but ICB Stoneley modes have remained relatively unexplored. Here we use a joint numerical and data-driven approach to identify ICB Stoneley modes from the deep 2013 Mw 8.3 Sea of Okhotsk earthquake. For the data-driven portion, we use 50 stacked traces from the USArray to identify potential occurrences of ICB Stoneley modes. Next, we verify each occurrence by comparing the spectrum to its equivalent from the shallow 2011 Mw 9.1 Tohoku earthquake. We also develop a novel computational approach to compute normal modes in a spherically symmetric non-rotating Earth building on the work of Wiggins (1976) and Buland and Gilbert (1984). We successfully resolve the clustering eigenvalue problem with non-orthogonal eigenfunctions from which Mineos suffers. By choosing the displacement/pressure formulation in the fluid outer core and handling boundary conditions properly, we remarkably project out the essential spectrum and provide the correct point spectrum. The utilization of weak variational form to perform the Rayleigh-Ritz procedure contributes to preserving the high accuracy across the solid-fluid boundary, which makes it possible to capture Stoneley modes' exponentially decaying behavior across the solid-fluid boundary, leading to more accurate and reliable eigenvalues and eigenfunctions. This allows us to compare the observation data and numerical computations. With this approach, we eliminate false signals from consideration, leaving only true ICB Stoneley mode peaks. In the future, information from these modes can be used to study the properties of the ICB and inner core.

  1. Immunostimulant, cerebroprotective & nootropic activities of Andrographis paniculata leaves extract in normal & type 2 diabetic rats.

    PubMed

    Radhika, P; Annapurna, A; Rao, S Nageswara

    2012-05-01

    A large number of plants have been recognized to be effective in the treatment of diabetes mellitus. Persistent hyperglycaemia is associated with decreased function of immune system and cerebral ischaemia mainly due to increased oxidative stress and inflammatory response. Andrographis paniculata is a medicinal plant widely used in folk medicine for various purposes. In this study the effect of chronic administration (7 days) of methanolic extract of A. paniculata leaves was studied in rats with experimentally induced diabetes, nootropic and immunostimulant activities were evaluated. The effect of acute administration of methanolic extract of A. paniculata leaves was also studied for cerebroprotective activity. Type 2 diabetes was induced in rats by streptozotocin (STZ) (65 mg/kg) + nicotinamide (150 mg/kg). Various biochemical parameters were estimated using standard methods. A significant (P<0.05) increase in cognitive function was observed in both normal and type 2 diabetic rats. Nootropic activity in terms of per cent reduction in latency period was more in type 2 diabetic rats. A significant increase in blood lymphocyte count, splenic lymphocyte count and peritoneal macrophage count was observed in both normal and type 2 diabetic rats. Immunostimulant activity was observed more in type 2 diabetic rats. The per cent decrease in cerebral infarction was more in type 2 diabetic rats when compared to normal rats. The per cent increase in superoxide dismutase (SOD) levels was more in type 2 diabetic rats. The antioxidant activity of the methanolic extract of A. paniculata leaves was evident by decreased tissue malondialdehyde (MDA) levels and increased SOD levels. These properties may be responsible for the observed cerebroprotective activity. The methanolic leaf extract of A. paniculata showed significant immunostimulant, cerebroprotective and nootropic activities in normal and type 2 diabetic rats.

  2. Immunostimulant, cerebroprotective & nootropic activities of Andrographis paniculata leaves extract in normal & type 2 diabetic rats

    PubMed Central

    Radhika, P.; Annapurna, A.; Rao, S. Nageswara

    2012-01-01

    Background & objectives: A large number of plants have been recognized to be effective in the treatment of diabetes mellitus. Persistent hyperglycaemia is associated with decreased function of immune system and cerebral ischaemia mainly due to increased oxidative stress and inflammatory response. Andrographis paniculata is a medicinal plant widely used in folk medicine for various purposes. In this study the effect of chronic administration (7 days) of methanolic extract of A. paniculata leaves was studied in rats with experimentally induced diabetes, nootropic and immunostimulant activities were evaluated. The effect of acute administration of methanolic extract of A. paniculata leaves was also studied for cerebroprotective activity. Methods: Type 2 diabetes was induced in rats by streptozotocin (STZ) (65 mg/kg) + nicotinamide (150 mg/kg). Various biochemical parameters were estimated using standard methods. Results: A significant (P<0.05) increase in cognitive function was observed in both normal and type 2 diabetic rats. Nootropic activity in terms of per cent reduction in latency period was more in type 2 diabetic rats. A significant increase in blood lymphocyte count, splenic lymphocyte count and peritoneal macrophage count was observed in both normal and type 2 diabetic rats. Immunostimulant activity was observed more in type 2 diabetic rats. The per cent decrease in cerebral infarction was more in type 2 diabetic rats when compared to normal rats. The per cent increase in superoxide dismutase (SOD) levels was more in type 2 diabetic rats. Interpretation & conclusions: The antioxidant activity of the methanolic extract of A. paniculata leaves was evident by decreased tissue malondialdehyde (MDA) levels and increased SOD levels. These properties may be responsible for the observed cerebroprotective activity. The methanolic leaf extract of A. paniculata showed significant immunostimulant, cerebroprotective and nootropic activities in normal and type 2 diabetic

  3. Corporate colonization of health activism? Irish health advocacy organizations' modes of engagement with pharmaceutical corporations.

    PubMed

    O'Donovan, Orla

    2007-01-01

    This article is based on a study that aimed to shed light on the "cultures of action" of Irish health advocacy organizations, and particularly their modes of engagement with pharmaceutical corporations. Debates about what some interpret as the "corporate colonization" of health activism provide the backdrop for the analysis. The empirical dimension of the study involved a survey of 112 organizations and in-depth study of a small number of organizations that manifest diverse modes of engagement with the pharmaceutical industry. The varying modes of interaction are plotted along a continuum and characterized as corporatist, cautious cooperation, and confrontational. Evidence is presented of a strong and growing cultural tendency in Irish health advocacy organizations to frame pharmaceutical corporations as allies in their quests for better health. The analysis of four constitutive dimensions of organizations' cultures of action can reveal the legitimating logics underlying their diverging positions around pharmaceutical industry sponsorship. While the research shows that pharmaceutical corporations have largely succeeded in defining themselves as a philanthropic force and rightful players in Irish health activism, it cautions against a simplistic conclusion that this is evidence of corporate colonization.

  4. FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG

    DTIC Science & Technology

    2014-06-01

    is normalized to π. The proposed burst-mode architecture is written in VHDL and verified using Modelsim. The VHDL design is implemented on a Xilinx...Document Number: SET 2014-0043 412TW-PA-14298 FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG June 2014 Final Report Test...To) 9/11 -- 8/14 4. TITLE AND SUBTITLE FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG 5a. CONTRACT NUMBER: W900KK-11-C-0032 5b

  5. Zero-mode waveguides

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2007-02-20

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  6. Reduced salience and default mode network activity in women with anorexia nervosa

    PubMed Central

    McFadden, Kristina L.; Tregellas, Jason R.; Shott, Megan E.; Frank, Guido K.W.

    2014-01-01

    Background The neurobiology of anorexia nervosa is poorly understood. Neuronal networks contributing to action selection, self-regulation and interoception could contribute to pathologic eating and body perception in people with anorexia nervosa. We tested the hypothesis that the salience network (SN) and default mode network (DMN) would show decreased intrinsic activity in women with anorexia nervosa and those who had recovered from the disease compared to controls. The basal ganglia (BGN) and sensorimotor networks (SMN) were also investigated. Methods Between January 2008 and January 2012, women with restricting-type anorexia nervosa, women who recovered from the disease and healthy control women completed functional magnetic resonance imaging during a conditioned stimulus task. Network activity was studied using independent component analysis. Results We studied 20 women with anorexia nervosa, 24 recovered women and 24 controls. Salience network activity in the anterior cingulate cortex was reduced in women with anorexia nervosa (p = 0.030; all results false-discovery rate–corrected) and recovered women (p = 0.039) compared to controls. Default mode network activity in the precuneus was reduced in women with anorexia compared to controls (p = 0.023). Sensorimotor network activity in the supplementary motor area (SMA; p = 0.008), and the left (p = 0.028) and right (p = 0.002) postcentral gyrus was reduced in women with anorexia compared to controls; SMN activity in the SMA (p = 0.019) and the right postcentral gyrus (p = 0.008) was reduced in women with anorexia compared to recovered women. There were no group differences in the BGN. Limitations Differences between patient and control populations (e.g., depression, anxiety, medication) are potential confounds, but were included as covariates. Conclusion Reduced SN activity in women with anorexia nervosa and recovered women could be a trait-related biomarker or illness remnant, altering the drive to approach

  7. Binding Mode and Structure-Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist.

    PubMed

    Dolciami, Daniela; Gargaro, Marco; Cerra, Bruno; Scalisi, Giulia; Bagnoli, Luana; Servillo, Giuseppe; Fazia, Maria Agnese Della; Puccetti, Paolo; Quintana, Francisco J; Fallarino, Francesca; Macchiarulo, Antonio

    2018-02-06

    Discovered as a modulator of the toxic response to environmental pollutants, aryl hydrocarbon receptor (AhR) has recently gained attention for its involvement in various physiological and pathological pathways. AhR is a ligand-dependent transcription factor activated by a large array of chemical compounds, which include metabolites of l-tryptophan (l-Trp) catabolism as endogenous ligands of the receptor. Among these, 2-(1'H-indole-3'-carbonyl)thiazole-4-carboxylic acid methyl ester (ITE) has attracted interest in the scientific community, being endowed with nontoxic, immunomodulatory, and anticancer AhR-mediated functions. So far, no information about the binding mode and interactions of ITE with AhR is available. In this study, we used docking and molecular dynamics to propose a putative binding mode of ITE into the ligand binding pocket of AhR. Mutagenesis studies were then instrumental in validating the proposed binding mode, identifying His 285 and Tyr 316 as important key residues for ligand-dependent receptor activation. Finally, a set of ITE analogues was synthesized and tested to further probe molecular interactions of ITE to AhR and characterize the relevance of specific functional groups in the chemical structure for receptor activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparison of performance of high-power mid-IR QCL modules in actively and passively cooled mode

    NASA Astrophysics Data System (ADS)

    Münzhuber, F.; Denzel, H.; Tholl, H. D.

    2017-10-01

    We report on the effects of active and passive cooling on the performance of high power mid-IR QCL modules (λ ≈ 3.9 μm) in quasi-cw mode. In active cooling mode, a thermo-electrical cooler attached with its hot side to a heat sink of constant temperature, a local thermometer in close proximity to the QCL chip (epi-down mounted) as well as a control unit has been used for temperature control of the QCL submount. In contrast, the passive cooling was performed by attaching the QCL module solely to the heat sink. Electro-optical light-current- (L-I-) curves are measured in a quasi-cw mode, from which efficiencies can be deduced. Waiving of the active cooling elements results in a drop of the maximum intensity of less than 5 %, compared to the case wherein the temperature of the submount is stabilized to the temperature of the heat sink. The application of a model of electro-optical performance to the data shows good agreement and captures the relevant observations. We further determine the heat resistance of the module and demonstrate that the system performance is not limited by the packaging of the module, but rather by the heat dissipation on the QCL chip itself.

  9. Regularized quasinormal modes for plasmonic resonators and open cavities

    NASA Astrophysics Data System (ADS)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  10. Molecular Structures, Vibrational Spectroscopy, and Normal-Mode Analysis of M(2)(C&tbd1;CR)(4)(PMe(3))(4) Dimetallatetraynes. Observation of Strongly Mixed Metal-Metal and Metal-Ligand Vibrational Modes.

    PubMed

    John, Kevin D.; Miskowski, Vincent M.; Vance, Michael A.; Dallinger, Richard F.; Wang, Louis C.; Geib, Steven J.; Hopkins, Michael D.

    1998-12-28

    The nature of the skeletal vibrational modes of complexes of the type M(2)(C&tbd1;CR)(4)(PMe(3))(4) (M = Mo, W; R = H, Me, Bu(t)(), SiMe(3)) has been deduced. Metrical data from X-ray crystallographic studies of Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) reveal that the core bond distances and angles are within normal ranges and do not differ in a statistically significant way as a function of the alkynyl substituent, indicating that their associated force constants should be similarly invariant among these compounds. The crystal structures of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and Mo(2)(C&tbd1;CBu(t)())(4)(PMe(3))(4) are complicated by 3-fold disorder of the Mo(2) unit within apparently ordered ligand arrays. Resonance-Raman spectra ((1)(delta-->delta) excitation, THF solution) of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and its isotopomers (PMe(3)-d(9), C&tbd1;CSiMe(3)-d(9), (13)C&tbd1;(13)CSiMe(3)) exhibit resonance-enhanced bands due to a(1)-symmetry fundamentals (nu(a) = 362, nu(b) = 397, nu(c) = 254 cm(-)(1) for the natural-abundance complex) and their overtones and combinations. The frequencies and relative intensities of the fundamentals are highly sensitive to isotopic substitution of the C&tbd1;CSiMe(3) ligands, but are insensitive to deuteration of the PMe(3) ligands. Nonresonance-Raman spectra (FT-Raman, 1064 nm excitation, crystalline samples) for the Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) compounds and for Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = H, D, Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) exhibit nu(a), nu(b), and nu(c) and numerous bands due to alkynyl- and phosphine-localized modes, the latter of which are assigned by comparisons to FT-Raman spectra of Mo(2)X(4)L(4) (X = Cl, Br, I; L = PMe(3), PMe(3)-d(9))(4) and Mo(2)Cl(4)(AsMe(3))(4). Valence force-field normal-coordinate calculations on the model compound Mo(2)(C&tbd1;CH)(4)P(4), using core force constants transferred from a calculation

  11. Different Identity Revelation Modes in an Online Peer-Assessment Learning Environment: Effects on Perceptions toward Assessors, Classroom Climate and Learning Activities

    ERIC Educational Resources Information Center

    Yu, Fu-Yun; Wu, Chun-Ping

    2011-01-01

    The effects of four different identity revelation modes (three fixed modes: real-name, anonymity, nickname and one dynamic user self-choice mode) on participants' perceptions toward their assessors, classroom climate, and past experience with the learning activity in which they were engaged were examined. A pretest-posttest quasi-experimental…

  12. Effect of damping on excitability of high-order normal modes. [for a large space telescope spacecraft

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.; Gates, R. M.; Straayer, J. W.

    1975-01-01

    The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs.

  13. Qualitative analysis of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia

    2011-02-01

    An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.

  14. Effect of pressure on Zircon's (ZrSiO4) Raman active modes: a first-principles study

    NASA Astrophysics Data System (ADS)

    Sheremetyeva, Natalya; Cherniak, Daniele; Watson, Bruce; Meunier, Vincent

    Zircon is a mineral commonly found in the Earth crust. Its remarkable properties have given rise to considerable attention. This includes possible inclusion of radioactive elements in natural samples, which allows for geochronological investigations. Subsequently, Zircon was proposed as possible host material for radioactive waste management. Internal radiation damage in zircon leads to the destruction of its crystal structure (an effect known as metamictization) which is subject to ongoing research. Recently, the effect of pressure and temperature on synthetic zircon has been analyzed experimentally using Raman spectroscopy which led to the calibration of zircon as a pressure sensor in diamond-anvil cell experiments. While there have been a number of theoretical studies, the effect of pressure on the Raman active modes of zircon has not been investigated theoretically. Here we present a first-principles pressure calibration of the Raman active modes in Zircon employing density-functional theory (DFT). We find excellent quantitative agreement of the slopes ∂ω / ∂P with the experimental ones and are able to rationalize the ω vs. P behavior based on the details of the vibrational modes.

  15. Control of the frequency of the (2,0) mode of liquid bridges using active electrostatic fields

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Thiessen, David B.; Marston, Philip L.

    2004-11-01

    Active control of radial electrostatic fields was previously used to suppress the growth of the Plateau-Rayleigh instability in long liquid bridges in a Plateau tank [1] and (for bridges in air) in low gravity [2]. In the present research we use a Plateau tank bridge system having unusually low damping to explore the shift in the (2,0) mode frequency introduced by amplitude feedback for naturally stable bridges. The shift in the mode frequency is the result of the active stiffening of the bridge through the application of the appropriate Maxwell stress projection proportional to the model amplitude. The technique may be important for reducing the response of capillary systems (such as liquid bridges) to ambient vibrations for situations where a spectral peak of the excitation lies close to the natural frequency of an unstiffened mode. [1] M. J. Marr-Lyon, D. B. Thiessen, F. J. Blonigen, and P. L. Marston, Phys. Fluids 12, 986-995 (2000). [2] D. B. Thiessen, M. J. Marr-Lyon, and P. L. Marston, J. Fluid Mech. 457, 285-294 (2002).

  16. Picosecond ultrasonics study of the vibrational modes of a nanostructure

    NASA Astrophysics Data System (ADS)

    Antonelli, G. Andrew; Maris, Humphrey J.; Malhotra, Sandra G.; Harper, James M. E.

    2002-03-01

    We report experiments in which a subpicosecond pump light pulse is used to excite vibrations in a nanostructure consisting of a periodic array of copper wires embedded in a glass matrix on a silicon substrate. The motion of the wires after excitation is detected using a time-delayed probe light pulse. From the measured data, it is possible to determine the frequencies νn and damping rates Γn of a number of the normal modes of the structure. These modes have frequencies lying in the range 1-30 GHz. By comparison of the measured νn and Γn with the frequencies and damping rates calculated from a computer simulation of the vibrations of the nanostructure, we have been able to deduce the vibration patterns of six of the normal modes.

  17. Learning about Modes in Atomic Force Microscopy by Means of Hands-On Activities Based on a Simple Apparatus

    ERIC Educational Resources Information Center

    Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn

    2009-01-01

    This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…

  18. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  19. Heat Transfer Measurements with Surface Mounted Foil-Sensors in an Active Mode: A Comprehensive Review and a New Design

    PubMed Central

    Mocikat, Horst; Herwig, Heinz

    2009-01-01

    A comprehensive review of film-sensors shows that they are primarily operated in a passive mode, i.e. without being actively heated to an extent, whereby they create a heat transfer situation on their own. Only when these sensors are used for wall shear stress measurements, the detection of laminar/turbulent transition, or the measurement of certain flow velocities, they are operated in an active mode, i.e. heated by an electrical current (after an appropriate calibration). In our study we demonstrate how these R(T)-based sensors (temperature dependence of the electrical resistance R) can also be applied in an active mode for heat transfer measurements. These measurements can be made on cold, unheated bodies, provided certain requirements with respect to the flow field are fulfilled. Our new sensors are laminated nickel- and polyimide-foils manufactured with a special technology, which is also described in detail. PMID:22574060

  20. Polarization Dependent Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  1. Using Acoustic Structure Quantification During B-Mode Sonography for Evaluation of Hashimoto Thyroiditis.

    PubMed

    Rhee, Sun Jung; Hong, Hyun Sook; Kim, Chul-Hee; Lee, Eun Hye; Cha, Jang Gyu; Jeong, Sun Hye

    2015-12-01

    This study aimed to evaluate the usefulness of Acoustic Structure Quantification (ASQ; Toshiba Medical Systems Corporation, Nasushiobara, Japan) values in the diagnosis of Hashimoto thyroiditis using B-mode sonography and to identify a cutoff ASQ level that differentiates Hashimoto thyroiditis from normal thyroid tissue. A total of 186 thyroid lobes with Hashimoto thyroiditis and normal thyroid glands underwent sonography with ASQ imaging. The quantitative results were reported in an echo amplitude analysis (Cm(2)) histogram with average, mode, ratio, standard deviation, blue mode, and blue average values. Receiver operating characteristic curve analysis was performed to assess the diagnostic ability of the ASQ values in differentiating Hashimoto thyroiditis from normal thyroid tissue. Intraclass correlation coefficients of the ASQ values were obtained between 2 observers. Of the 186 thyroid lobes, 103 (55%) had Hashimoto thyroiditis, and 83 (45%) were normal. There was a significant difference between the ASQ values of Hashimoto thyroiditis glands and those of normal glands (P < .001). The ASQ values in patients with Hashimoto thyroiditis were significantly greater than those in patients with normal thyroid glands. The areas under the receiver operating characteristic curves for the ratio, blue average, average, blue mode, mode, and standard deviation were: 0.936, 0.902, 0.893, 0.855, 0.846, and 0.842, respectively. The ratio cutoff value of 0.27 offered the best diagnostic performance, with sensitivity of 87.38% and specificity of 95.18%. The intraclass correlation coefficients ranged from 0.86 to 0.94, which indicated substantial agreement between the observers. Acoustic Structure Quantification is a useful and promising sonographic method for diagnosing Hashimoto thyroiditis. Not only could it be a helpful tool for quantifying thyroid echogenicity, but it also would be useful for diagnosis of Hashimoto thyroiditis. © 2015 by the American Institute of

  2. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.

    PubMed

    Speer, Colenso M; Sun, Chao; Liets, Lauren C; Stafford, Ben K; Chapman, Barbara; Cheng, Hwai-Jong

    2014-11-07

    Spontaneous retinal activity (SRA) is important during eye-specific segregation within the dorsal lateral geniculate nucleus (dLGN), but the feature(s) of activity critical for retinogeniculate refinement are controversial. Pharmacologically or genetically manipulating cholinergic signaling during SRA perturbs correlated retinal ganglion cell (RGC) spiking and disrupts eye-specific retinofugal refinement in vivo, consistent with an instructive role for SRA during visual system development. Paradoxically, ablating the starburst amacrine cells (SACs) that generate cholinergic spontaneous activity disrupts correlated RGC firing without impacting retinal activity levels or eye-specific segregation in the dLGN. Such experiments suggest that patterned SRA during retinal waves is not critical for eye-specific refinement and instead, normal activity levels are permissive for retinogeniculate development. Here we revisit the effects of ablating the cholinergic network during eye-specific segregation and show that SAC ablation disrupts, but does not eliminate, retinal waves with no concomitant impact on normal eye-specific segregation in the dLGN. We induced SAC ablation in postnatal ferret pups beginning at birth by intraocular injection of a novel immunotoxin selective for the ferret vesicular acetylcholine transporter (Ferret VAChT-Sap). Through dual-patch whole-cell and multi-electrode array recording we found that SAC ablation altered SRA patterns and led to significantly smaller retinal waves compared with controls. Despite these defects, eye-specific segregation was normal. Further, interocular competition for target territory in the dLGN proceeded in cases where SAC ablation was asymmetric in the two eyes. Our data demonstrate normal eye-specific retinogeniculate development despite significant abnormalities in patterned SRA. Comparing our current results with earlier studies suggests that defects in retinal wave size, absolute levels of SRA, correlations between RGC

  3. Mode I stress intensity factors of slanted cracks in plates

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Ghazali, Mohd Zubir Mohd; Nor, Nik Hisyamudin Muhd

    2017-01-01

    This paper presents the roles of slanted cracks on the stress intensity factors (SIF) under mode I tension and bending loading. Based on the literature survey, lack of solution of SIFs of slanted cracks in plain strain plates are available. In this work, the cracks are modelled numerically using ANSYS finite element program. There are two important parameters such as slanted angles and relative crack length. SIFs at the crack tips are calculated according to domain integral method. Before the model is further used, it is validated with the existing model. It is found that the present model is well agreed with the previous model. According to finite element analysis, there are not only mode I SIFs produced but also mode II. As expected the SIFs increased as the relative crack length increased. However, when slanted angles are introduced (slightly higher than normal crack), the SIFs increased. Once the angles are further increased, the SIFs decreased gradually however they are still higher than the SIFs of normal cracks. For mode II SIFs, higher the slanted angels higher the SIFs. This is due to the fact that when the cracks are slanted, the cracked plates are not only failed due to mode I but a combination between both modes I and II.

  4. Tailored-waveform Collisional Activation of Peptide Ion Electron Transfer Survivor Ions in Cation Transmission Mode Ion/Ion Reaction Experiments

    PubMed Central

    Han, Hongling; Londry, Frank A.; Erickson, David E.; McLuckey, Scott A.

    2010-01-01

    SUMMARY Broad-band resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 Vp-p, which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument. PMID:19305916

  5. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  6. Analyses of mode filling factor of a laser end-pumped by a LD with high-order transverse modes

    NASA Astrophysics Data System (ADS)

    Han, Juhong; Wang, You; An, Guofei; Rong, Kepeng; Yu, Hang; Wang, Shunyan; Zhang, Wei; Cai, He; Xue, Liangping; Wang, Hongyuan; Zhou, Jie

    2017-05-01

    Although the concept of the mode filling factor (also named as "mode-matching efficiency") has been well discussed decades before, the concept of so-called overlap coefficient is often confused by the laser technicians because there are several different formulae for various engineering purposes. Furthermore, the LD-pumped configurations have become the mainstream of solid-state lasers since their compact size, high optical-to-optical efficiency, low heat generation, etc. As the beam quality of LDs are usually very unsatisfactory, it is necessary to investigate how the mode filling factor of a laser system is affected by a high-powered LD pump source. In this paper, theoretical analyses of an end-pumped laser are carried out based on the normalized overlap coefficient formalism. The study provides a convenient tool to describe the intrinsically complex issue of mode interaction corresponding to a laser and an end-pumped source. The mode filling factor has been studied for many cases in which the pump mode and the laser mode have been considered together in the calculation based on analyses of the rate equations. The results should be applied for analyses of any other types of lasers with the similar optical geometry.

  7. Increased default mode network activity in socially anxious individuals during reward processing

    PubMed Central

    2014-01-01

    Background Social anxiety has been associated with potentiated negative affect and, more recently, with diminished positive affect. It is unclear how these alterations in negative and positive affect are represented neurally in socially anxious individuals and, further, whether they generalize to non-social stimuli. To explore this, we used a monetary incentive paradigm to explore the association between social anxiety and both the anticipation and consumption of non-social incentives. Eighty-four individuals from a longitudinal community sample underwent functional magnetic resonance imaging (fMRI) while participating in a monetary incentive delay (MID) task. The MID task consisted of alternating cues indicating the potential to win or prevent losing varying amounts of money based on the speed of the participant’s response. We examined whether self-reported levels of social anxiety, averaged across approximately 7 years of data, moderated brain activity when contrasting gain or loss cues with neutral cues during the anticipation and outcome phases of incentive processing. Whole brain analyses and analyses restricted to the ventral striatum for the anticipation phase and the medial prefrontal cortex for the outcome phase were conducted. Results Social anxiety did not associate with differences in hit rates or reaction times when responding to cues. Further, socially anxious individuals did not exhibit decreased ventral striatum activity during anticipation of gains or decreased MPFC activity during the outcome of gain trials, contrary to expectations based on literature indicating blunted positive affect in social anxiety. Instead, social anxiety showed positive associations with extensive regions implicated in default mode network activity (for example, precuneus, posterior cingulate cortex, and parietal lobe) during anticipation and receipt of monetary gain. Social anxiety was further linked with decreased activity in the ventral striatum during anticipation

  8. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2007-07-01

    We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.

  9. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers.

    PubMed

    Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2007-07-15

    We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.

  10. Normal postural responses preceding shoulder flexion: co-activation or asymmetric activation of transverse abdominis?

    PubMed

    Davarian, Sanaz; Maroufi, Nader; Ebrahimi, Esmaeil; Parnianpour, Mohammad; Farahmand, Farzam

    2014-01-01

    It is suggested that activation of the transverse abdominis muscle has a stabilizing effect on the lumbar spine by raising intra-abdominal pressure without added disc compression. However, its feedforward activity has remained a controversial issue. In addition, research regarding bilateral activation of trunk muscles during a unilateral arm movement is limited. The aim of this study was to evaluate bilateral anticipatory activity of trunk muscles during unilateral arm flexion. Eighteen healthy subjects (aged 25 ± 3.96 years) participated in this study and performed 10 trials of rapid arm flexion in response to a visual stimulus. The electromyographic activity of the right anterior deltoid (AD) and bilateral trunk muscles including the transverse abdominis/internal oblique (TA/IO), superficial lumbar multifidus (SLM) and lumbar erector spine (LES) was recorded. The onset latency and anticipatory activity of the recorded trunk muscles were calculated. The first muscle activated in anticipation of the right arm flexion was the left TA/IO. The right TA/IO activated significantly later than all other trunk muscles (P < 0.0005). In addition, anticipatory activity of the right TA/IO was significantly lower than all other trunk muscles (P < 0.0005). There was no significant difference in either onset latency or anticipatory activity among other trunk muscles (P > 0.05). Healthy subjects showed no bilateral anticipatory co-activation of TA/IO in unilateral arm elevation. Further investigations are required to delineate normal muscle activation pattern in healthy subjects prior to prescribing bilateral activation training of transverse abdominis for subjects with chronic low back pain.

  11. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber.

    PubMed

    Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi

    2011-12-19

    A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.

  12. On the use of attachment modes in substructure coupling for dynamic analysis

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chang, C.-J.

    1977-01-01

    Substructure coupling or component-mode synthesis may be employed in the solution of dynamics problems for complex structures. Although numerous substructure-coupling methods have been devised, little attention has been devoted to methods employing attachment modes. In the present paper the various mode sets (normal modes, constraint modes, attachment modes) are defined. A generalized substructure-coupling procedure is described. Those substructure-coupling methods which employ attachment modes are described in detail. One of these methods is shown to lead to results (e.g., system natural frequencies) comparable to or better than those obtained by the Hurty (1965) method.

  13. Braking System Integration in Dual Mode Systems

    DOT National Transportation Integrated Search

    1974-05-01

    An optimal braking system for Dual Mode is a complex product of vast number of multivariate, interdependent parameters that encompass on-guideway and off-guideway operation as well as normal and emergency braking. : Details of, and interralations amo...

  14. Partitioning the primary ice formation modes in large eddy simulations of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Hande, Luke B.; Hoose, Corinna

    2017-11-01

    State-of-the-art aerosol-dependent parameterisations describing each heterogeneous ice nucleation mode (contact, immersion, and deposition ice nucleation), as well as homogeneous nucleation, were incorporated into a large eddy simulation model. Several cases representing commonly occurring cloud types were simulated in an effort to understand which ice nucleation modes contribute the most to total concentrations of ice crystals. The cases include a completely idealised warm bubble, semi-idealised deep convection, an orographic cloud, and a stratiform case. Despite clear differences in thermodynamic conditions between the cases, the results are remarkably consistent between the different cloud types. In all the investigated cloud types and under normal aerosol conditions, immersion freezing dominates and contact freezing also contributes significantly. At colder temperatures, deposition nucleation plays only a small role, and homogeneous freezing is important. To some extent, the temporal evolution of the cloud determines the dominant freezing mechanism and hence the subsequent microphysical processes. Precipitation is not correlated with any one ice nucleation mode, instead occurring simultaneously when several nucleation modes are active. Furthermore, large variations in the aerosol concentration do affect the dominant ice nucleation mode; however, they have only a minor influence on the precipitation amount.

  15. EMERALD-NORMAL; PWR activity release and dose. [IBM360,370; FORTRAN IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, S.G.; Brunot, W.K.

    EMERALD-NORMAL is designed for the calculation of radiation releases and exposures resulting from normal operation of a large pressurized water reactor. The approach used is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay, and absorption of radioactivity in that volume. During the course of the analysis, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place in the plant. Some of this activity is thenmore » released to the atmosphere and to the discharge canal. The rates of transfer, leakage, production, cleanup, decay, and release are read as input to the program. Subroutines are also included which calculate the off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the forty isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD-NORMAL program can be used for most calculations involving the production and release of radioactive material. These include design, operation, and licensing studies.IBM360,370; FORTRAN IV; OS/360,370; 576K bytes of memory.« less

  16. Determination of stress intensity factors for interface cracks under mixed-mode loading

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    A simple technique was developed using conventional finite element analysis to determine stress intensity factors, K1 and K2, for interface cracks under mixed-mode loading. This technique involves the calculation of crack tip stresses using non-singular finite elements. These stresses are then combined and used in a linear regression procedure to calculate K1 and K2. The technique was demonstrated by calculating three different bimaterial combinations. For the normal loading case, the K's were within 2.6 percent of an exact solution. The normalized K's under shear loading were shown to be related to the normalized K's under normal loading. Based on these relations, a simple equation was derived for calculating K1 and K2 for mixed-mode loading from knowledge of the K's under normal loading. The equation was verified by computing the K's for a mixed-mode case with equal and normal shear loading. The correlation between exact and finite element solutions is within 3.7 percent. This study provides a simple procedure to compute K2/K1 ratio which has been used to characterize the stress state at the crack tip for various combinations of materials and loadings. Tests conducted over a range of K2/K1 ratios could be used to fully characterize interface fracture toughness.

  17. MHD modeling of DIII-D QH-mode discharges and comparison to observations

    NASA Astrophysics Data System (ADS)

    King, Jacob

    2016-10-01

    MHD modeling of DIII-D QH-mode discharges and comparison to observations Nonlinear NIMROD simulations, initialized from a reconstruction of a DIII-D QH-mode discharge with broadband MHD, saturate into a turbulent state, but do not saturate when flow is not included. This is consistent with the experimental results of the quiescent regime observed on DIII-D with broadband MHD activity [Garofalo et al., PoP (2015) and refs. within]. These ELM-free discharges have the normalized pedestal-plasma confinement necessary for burning-plasma operation on ITER. Relative to QH-mode operation with more coherent MHD activity, operation with broadband MHD tends to occur at higher densities and lower rotation and thus may be more relevant to ITER. The nonlinear NIMROD simulations require highly accurate equilibrium reconstructions. Our equilibrium reconstructions include the scrape-off-layer profiles and the measured toroidal and poloidal rotation profiles. The simulation develops into a saturated turbulent state and the n=1 and 2 modes become dominant through an inverse cascade. Each toroidal mode in the range of n=1-5 is dominant at a different time. The perturbations are advected and sheared apart in the counter-clockwise direction consistent with the direction of the poloidal flow inside the LCFS. Work towards validation through comparison to magnetic coil and Doppler reflectometry measurements is presented. Consistent with experimental observations during QH-mode, the simulated state leads to large particle transport relative to the thermal transport. Analysis shows that the phase of the density and temperature perturbations differ resulting in greater convective particle transport relative to the convective thermal transport. This work supported by the U.S. Department of Energy Office of Science and the SciDAC Center for Extended MHD Modeling under Contract Numbers DE-FC02-06ER54875, DE-FC02-08ER54972 and DE-FC02-04ER54698.

  18. Approximate solution of the mode-mode coupling integral: Application to cytosine and its deuterated derivative.

    PubMed

    Rasheed, Tabish; Ahmad, Shabbir

    2010-10-01

    Ab initio Hartree-Fock (HF), density functional theory (DFT) and second-order Møller-Plesset (MP2) methods were used to perform harmonic and anharmonic calculations for the biomolecule cytosine and its deuterated derivative. The anharmonic vibrational spectra were computed using the vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods. Calculated anharmonic frequencies have been compared with the argon matrix spectra reported in literature. The results were analyzed with focus on the properties of anharmonic couplings between pair of modes. A simple and easy to use formula for calculation of mode-mode coupling magnitudes has been derived. The key element in present approach is the approximation that only interactions between pairs of normal modes have been taken into account, while interactions of triples or more are neglected. FTIR and Raman spectra of solid state cytosine have been recorded in the regions 400-4000 cm(-1) and 60-4000 cm(-1), respectively. Vibrational analysis and assignments are based on calculated potential energy distribution (PED) values. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Telephone-quality pathological speech classification using empirical mode decomposition.

    PubMed

    Kaleem, M F; Ghoraani, B; Guergachi, A; Krishnan, S

    2011-01-01

    This paper presents a computationally simple and effective methodology based on empirical mode decomposition (EMD) for classification of telephone quality normal and pathological speech signals. EMD is used to decompose continuous normal and pathological speech signals into intrinsic mode functions, which are analyzed to extract physically meaningful and unique temporal and spectral features. Using continuous speech samples from a database of 51 normal and 161 pathological speakers, which has been modified to simulate telephone quality speech under different levels of noise, a linear classifier is used with the feature vector thus obtained to obtain a high classification accuracy, thereby demonstrating the effectiveness of the methodology. The classification accuracy reported in this paper (89.7% for signal-to-noise ratio 30 dB) is a significant improvement over previously reported results for the same task, and demonstrates the utility of our methodology for cost-effective remote voice pathology assessment over telephone channels.

  20. Low-frequency, Raman-active vibrational modes of poly(dA).poly(dT)

    NASA Astrophysics Data System (ADS)

    Liu, C.; Edwards, G. S.; Morgan, S.; Silberman, E.

    1989-12-01

    The Raman activity of low-frequency (20-300 cm-1) vibrational modes of dehydrated, oriented fibers of the sodium salts of poly(dA).poly(dT) and random sequenced DNA have been measured. Distinct bands near 60, 75-100, and 125-140 cm-1 are resolved in poly(dA).poly(dT). The Raman activity of the two lowest bands correlate with the previously observed infrared activity of poly(dA).poly(dT). The apparent reduction in spectral line broadening for poly(dA).poly(dT), as demonstrated by this and previous measurements of a number of different polynucleotides, is considered as possible evidence for inhomogeneous line broadening.

  1. Avoidance of tearing mode locking with electro-magnetic torque introduced by feedback-based mode rotation control in DIII-D and RFX-mod

    DOE PAGES

    Okabayashi, M.; Zanca, P.; Strait, E. J.; ...

    2016-11-25

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. We have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance ismore » provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. We define β N as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. Finally, the internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.« less

  2. Avoidance of tearing mode locking with electro-magnetic torque introduced by feedback-based mode rotation control in DIII-D and RFX-mod

    NASA Astrophysics Data System (ADS)

    Okabayashi, M.; Zanca, P.; Strait, E. J.; Garofalo, A. M.; Hanson, J. M.; In, Y.; La Haye, R. J.; Marrelli, L.; Martin, P.; Paccagnella, R.; Paz-Soldan, C.; Piovesan, P.; Piron, C.; Piron, L.; Shiraki, D.; Volpe, F. A.; DIII-D, The; RFX-mod Teams

    2017-01-01

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. Here we have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance is provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. Here β N is defined as β N  =  β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. The internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.

  3. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2015-01-01

    The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.

  4. Calculations of lattice vibrational mode lifetimes using Jazz: a Python wrapper for LAMMPS

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, H.; Daw, M. S.

    2015-06-01

    Jazz is a new python wrapper for LAMMPS [1], implemented to calculate the lifetimes of vibrational normal modes based on forces as calculated for any interatomic potential available in that package. The anharmonic character of the normal modes is analyzed via the Monte Carlo-based moments approximation as is described in Gao and Daw [2]. It is distributed as open-source software and can be downloaded from the website http://jazz.sourceforge.net/.

  5. Multibody dynamics: Modeling component flexibility with fixed, free, loaded, constraint, and residual modes

    NASA Technical Reports Server (NTRS)

    Spanos, John T.; Tsuha, Walter S.

    1989-01-01

    The assumed-modes method in multibody dynamics allows the elastic deformation of each component in the system to be approximated by a sum of products of spatial and temporal functions commonly known as modes and modal coordinates respectively. The choice of component modes used to model articulating and non-articulating flexible multibody systems is examined. Attention is directed toward three classical Component Mode Synthesis (CMS) methods whereby component normal modes are generated by treating the component interface (I/F) as either fixed, free, or loaded with mass and stiffness contributions from the remaining components. The fixed and free I/F normal modes are augmented by static shape functions termed constraint and residual modes respectively. A mode selection procedure is outlined whereby component modes are selected from the Craig-Bampton (fixed I/F plus constraint), MacNeal-Rubin (free I/F plus residual), or Benfield-Hruda (loaded I/F) mode sets in accordance with a modal ordering scheme derived from balance realization theory. The success of the approach is judged by comparing the actuator-to-sensor frequency response of the reduced order system with that of the full order system over the frequency range of interest. A finite element model of the Galileo spacecraft serves as an example in demonstrating the effectiveness of the proposed mode selection method.

  6. Reaction times of normal listeners to laryngeal, alaryngeal, and synthetic speech.

    PubMed

    Evitts, Paul M; Searl, Jeff

    2006-12-01

    The purpose of this study was to compare listener processing demands when decoding alaryngeal compared to laryngeal speech. Fifty-six listeners were presented with single words produced by 1 proficient speaker from 5 different modes of speech: normal, tracheosophageal (TE), esophageal (ES), electrolaryngeal (EL), and synthetic speech (SS). Cognitive processing load was indexed by listener reaction time (RT). To account for significant durational differences among the modes of speech, an RT ratio was calculated (stimulus duration divided by RT). Results indicated that the cognitive processing load was greater for ES and EL relative to normal speech. TE and normal speech did not differ in terms of RT ratio, suggesting fairly comparable cognitive demands placed on the listener. SS required greater cognitive processing load than normal and alaryngeal speech. The results are discussed relative to alaryngeal speech intelligibility and the role of the listener. Potential clinical applications and directions for future research are also presented.

  7. TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.

    PubMed

    Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien; Aarnio-Peterson, Megan; Sanman, Laura; Archer-Hartmann, Stephanie; Azadi, Parastoo; Bogyo, Matthew; Steet, Richard A

    2018-03-13

    Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Synchronization of pulses from mode-locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, G.T.

    A study of the synchronization of mode-locked lasers is presented. In particular, we investigate the timing of the laser output pulses with respect to the radio frequency (RF) signal driving the mode-locking elements in the laser cavity. Two types of mode-locked lasers are considered: a cw loss-modulated mode-locked argon ion laser; and a q-switched active-passive mode-locked Nd:YAG laser. We develop theoretical models for the treatment of laser pulse synchronization in both types of lasers. Experimental results are presented on a combined laser system that synchronizes pulses from both an argon ion and a Nd:YAG laser by using a common RFmore » signal to drive independent mode-lockers in both laser cavities. Shot to shot jitter as low as 18 ps (RMS) was measured between the output pulses from the two lasers. The theory of pulse synchronization for the cw loss-modulated mode-locked argon ion laser is based on the relationship between the timing of the mode-locked laser pulse (with respect to the peak of the RF signal) and the length of the laser cavity. Experiments on the argon laser include the measurement of the phase shift of the mode-locked pulse as a function of cavity length and intracavity intensity. The theory of synchronization of the active-passive mode-locked Nd:YAG laser is an extension of the pulse selection model of the active-passive laser. Experiments on the active-passive Nd:YAG laser include: measurement of the early noise fluctuations; measurement of the duration of the linear build-up stage (time between laser threshold and saturation of the absorber); measurement of jitter as a function of the mode-locker modulation depth; and measurement of the output pulse phase shift as a function of cavity length.« less

  9. Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study

    NASA Astrophysics Data System (ADS)

    Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent

    2018-02-01

    Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.

  10. Application of attachment modes in the control of large space structures

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1989-01-01

    Various ways are examined to obtain reduced order mathematical models of structures for use in dynamic response analyses and in controller design studies. Attachment modes are deflection shapes of a structure subjected to specified unit load distributions. Attachment modes are frequently employed to supplement free-interface normal modes to improve the modeling of components (structures) employed in component mode synthesis analyses. Deflection shapes of structures subjected to generalized loads of some specified distribution and of unit magnitude can also be considered to be attachment modes. Several papers which were written under this contract are summarized herein.

  11. Dynamics of shaping ultrashort optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external long-haul single-mode fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Moreno Zarate, Pedro

    2010-02-01

    We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.

  12. Intensity modulated operating mode of the rotating gamma system.

    PubMed

    Sengupta, Bishwambhar; Gulyas, Laszlo; Medlin, Donald; Koroknai, Tibor; Takacs, David; Filep, Gyorgy; Panko, Peter; Godo, Bence; Hollo, Tamas; Zheng, Xiao Ran; Fedorcsak, Imre; Dobai, Jozsef; Bognar, Laszlo; Takacs, Endre

    2018-05-01

    The purpose of this work was to explore two novel operation modalities of the rotating gamma systems (RGS) that could expand its clinical application to lesions in close proximity to critical organs at risk (OAR). The approach taken in this study consists of two components. First, a Geant4-based Monte Carlo (MC) simulation toolkit is used to model the dosimetric properties of the RGS Vertex 360™ for the normal, intensity modulated radiosurgery (IMRS), and speed modulated radiosurgery (SMRS) operation modalities. Second, the RGS Vertex 360™ at the Rotating Gamma Institute in Debrecen, Hungary is used to collect experimental data for the normal and IMRS operation modes. An ion chamber is used to record measurements of the absolute dose. The dose profiles are measured using Gafchromic EBT3 films positioned within a spherical water equivalent phantom. A strong dosimetric agreement between the measured and simulated dose profiles and penumbra was found for both the normal and IMRS operation modes for all collimator sizes (4, 8, 14, and 18 mm diameter). The simulated falloff and maximum dose regions agree better with the experimental results for the 4 and 8 mm diameter collimators. Although the falloff regions align well in the 14 and 18 mm collimators, the maximum dose regions have a larger difference. For the IMRS operation mode, the simulated and experimental dose distributions are ellipsoidal, where the short axis aligns with the blocked angles. Similarly, the simulated dose distributions for the SMRS operation mode also adopt an ellipsoidal shape, where the short axis aligns with the angles where the orbital speed is highest. For both modalities, the dose distribution is highly constrained with a sharper penumbra along the short axes. Dose modulation of the RGS can be achieved with the IMRS and SMRS modes. By providing a highly constrained dose distribution with a sharp penumbra, both modes could be clinically applicable for the treatment of lesions in close

  13. Is a change in mode of travel to school associated with a change in overall physical activity levels in children? Longitudinal results from the SPEEDY study.

    PubMed

    Smith, Lee; Sahlqvist, Shannon; Ogilvie, David; Jones, Andy; Corder, Kirsten; Griffin, Simon J; van Sluijs, Esther

    2012-11-21

    Children who use active modes of travel (walking or cycling) to school are more physically active than those who use passive (motorised) modes. However, less is known on whether a change in mode of travel to school is associated with a change in children's physical activity levels. The purpose of this analysis was to investigate the association between change in mode of travel to school and change in overall physical activity levels in children. Data from 812 9-10 year old British children (59% girls) who participated in the SPEEDY study were analysed. During the summer terms of 2007 and 2008 participants completed a questionnaire and wore an accelerometer for at least three days. Two-level multiple linear regression models were used to explore the association between change in usual mode of travel to school and change in objectively measured time spent in MVPA. Compared to children whose reported mode of travel did not change, a change from a passive to an active mode of travel was associated with an increase in daily minutes spent in MVPA (boys: beta 11.59, 95% CI 0.94 to 22.24; girls: beta 11.92, 95% CI 5.00 to 18.84). This increase represented 12% of boys' and 13% of girls' total daily time spent in MVPA at follow-up. This analysis provides further evidence that promoting active travel to school may have a role in contributing to increasing physical activity levels in children.

  14. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    PubMed Central

    Sezgin, Necmettin

    2012-01-01

    The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379

  15. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  16. Analysis of Motorcycle Weave Mode by using Energy Flow Method

    NASA Astrophysics Data System (ADS)

    Marumo, Yoshitaka; Katayama, Tsuyoshi

    The activation mechanism of motorcycle weave mode is clarified within the framework of the energy flow method, which calculates energy flow of mechanical forces in each motion. It is demonstrated that only a few mechanical forces affect the stability of the weave mode from among a total of about 40 mechanical forces. The activation of the lateral, yawing and rolling motions destabilize the weave mode, while activation of the steering motion stabilizes the weave mode. A detailed investigation of the energy flow of the steering motion reveals that the steering motion plays an important role in clarifying the characteristics of the weave mode. As activation of the steering motion progresses the phase of the front tire side force, and the weave mode is consequently stabilized. This paper provides a design guide for stabilizing the weave mode and the wobble mode compatibility.

  17. Flow cytometric assessment of activation of peripheral blood platelets in dogs with normal platelet count and asymptomatic thrombocytopenia.

    PubMed

    Żmigrodzka, M; Guzera, M; Winnicka, A

    2016-01-01

    Platelets play a crucial role in hemostasis. Their activation has not yet been evaluated in healthy dogs with a normal and low platelet count. The aim of this study was to determine the influence of activators on platelet activation in dogs with a normal platelet count and asymptomatic thrombocytopenia. 72 clinically healthy dogs were enrolled. Patients were allocated into three groups. Group 1 consisted of 30 dogs with a normal platelet count, group 2 included 22 dogs with a platelet count between 100 and 200×109/l and group 3 consisted of 20 dogs with a platelet count lower than 100×109/l. Platelet rich-plasma (PRP) was obtained from peripheral blood samples using tripotassium ethylenediaminetetraacetic acid (K3-EDTA) as anticoagulant. Next, platelets were stimulated using phorbol-12-myristate-13-acetate or thrombin, stabilized using procaine or left unstimulated. The expression of CD51 and CD41/CD61 was evaluated. Co-expression of CD41/CD61 and Annexin V served as a marker of platelet activation. The expression of CD41/CD61 and CD51 did not differ between the 3 groups. Thrombin-stimulated platelets had a significantly higher activity in dogs with a normal platelet count than in dogs with asymptomatic thrombocytopenia. Procaine inhibited platelet activity in all groups. In conclusion, activation of platelets of healthy dogs in vitro varied depending on the platelet count and platelet activator.

  18. Prestimulus default mode activity influences depth of processing and recognition in an emotional memory task.

    PubMed

    Soravia, Leila M; Witmer, Joëlle S; Schwab, Simon; Nakataki, Masahito; Dierks, Thomas; Wiest, Roland; Henke, Katharina; Federspiel, Andrea; Jann, Kay

    2016-03-01

    Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance. © 2015 Wiley Periodicals, Inc.

  19. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  20. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    NASA Astrophysics Data System (ADS)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  1. Design, synthesis, antiviral activity and mode of action of phenanthrene-containing N-heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine.

    PubMed

    Yu, Xiuling; Wei, Peng; Wang, Ziwen; Liu, Yuxiu; Wang, Lizhong; Wang, Qingmin

    2016-02-01

    The phenanthroindolizidine alkaloid antofine and its analogues have excellent antiviral activity against tobacco mosaic virus (TMV). To simplify the structure and the synthesis of the phenanthroindolizidine alkaloid, a series of phenanthrene-containing N-heterocyclic compounds (compounds 1 to 33) were designed and synthesised, based on the intermolecular interaction of antofine and TMV RNA, and systematically evaluated for their anti-TMV activity. Most of these compounds exhibited good to reasonable anti-TMV activity. The optimum compounds 5, 12 and 21 displayed higher activity than the lead compound antofine and commercial ribavirin. Compound 12 was chosen for field trials of antiviral efficacy against TMV, and was found to exhibit better activity than control plant virus inhibitors. Compounds 5 and 12 were chosen for mode of action studies. The changes in fluorescence intensity of compounds 5 and 12 on separated TMV RNA showed that these small molecules can also bind to TMV RNA, but the mode is very different from that of antofine. The compounds combining phenanthrene and an N-heterocyclic ring could maintain the anti-TMV activity of phenanthroindolizidines, but their modes of action are different from that of antofine. The present study lays a good foundation for us to find more efficient anti-plant virus reagents. © 2015 Society of Chemical Industry.

  2. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Schmidt, Christoph F.; Gladrow, Jannes; Fakhri, Nikta; Mackintosh, Fred C.; Broedersz, Chase

    Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single- walled carbon nanotubes can be used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in biopolymer networks. We analytically calculated shape fluctuations of semi- flexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under non-equilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  3. Analysis of originating ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana

    2010-06-01

    We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.

  4. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    PubMed Central

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  5. Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.

    2017-12-01

    Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults

  6. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraiz, J. L.; Sitek, A., E-mail: sarkadiu@gmail.com

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data,more » which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.« less

  7. Sensitivity estimation in time-of-flight list-mode positron emission tomography.

    PubMed

    Herraiz, J L; Sitek, A

    2015-11-01

    An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  8. Quasi-distributed fiber sensor using active mode locking laser cavity with multiple FBG reflections

    NASA Astrophysics Data System (ADS)

    Park, Chang Hyun; Kim, Gyeong Hun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo

    2017-04-01

    We have demonstrated a quasi-distributed sensor using an active mode-locking (AML) laser with multiple fiber Bragg grating (FBG) reflections of the same center wavelength. We found that variations in the multiple cavity segment lengths between FBGs can be measured by simply sweeping the modulation frequency, because the modulation frequency of the AML laser is proportionally affected by cavity length.

  9. Growth performance, innate immune responses and disease resistance of fingerling blunt snout bream, Megalobrama amblycephala adapted to different berberine-dietary feeding modes.

    PubMed

    Xu, Wei-Na; Chen, Dan-Hong; Chen, Qing-Qing; Liu, Wen-Bin

    2017-09-01

    A 8-week feeding trial was conducted to evaluate the effect of different berberine-dietary feeding modes on growth, non-specific immune responses and disease resistance of blunt snout bream, Megalobrama amblycephala. Fish (average initial weight 4.70 ± 0.02 g) were fed two fat levels (5% and 10%) diets in three berberine-feeding modes (supplementing 50 mg/kg berberine continuously, two-week or four-week intervals) with four replicates, respectively. Then, fish were challenged by Aeromonas hydrophila and mortality was recorded for the next 96 h after feeding trial. The results showed that different feeding modes of berberine significantly influenced growth, innate immunity and antioxidant capability of fish. Fish fed normal diet with 50 mg/kg berberine at two-week interval mode reflected remarkably (P < 0.05) high weight gain (WG). Plasma TC and TG contents were significantly (P < 0.05) decreased. The lysozyme (LYZ) activities, complement component 3 (C3) and complement component 4 (C4) concentrations were significantly (P < 0.05) increased. Fish not only exhibited relatively low hepatopancreas malondialdehyde (MDA) and lipid peroxide (LPO) contents, but also significantly (P < 0.05) improved superoxide dismutase (SOD) and catalase (CAT) activities. Fish mortality after challenged by Aeromonas hydrophila was decreased. Same results were also presented in fish fed high-fat diet with 50 mg/kg berberine at two-week, four-week intervals or continuous feeding modes. Based on fish healthy improvement and feeding cost saving, blunt snout bream fed normal diet with 50 mg/kg berberine at two-week interval or fed high-fat diet with berberine at two-week or four-week intervals were optimal feeding mode, respectively. Copyright © 2017. Published by Elsevier Ltd.

  10. PT-symmetric mode-locking.

    PubMed

    Longhi, S

    2016-10-01

    Parity-time (PT) symmetry is one of the most important accomplishments in optics over the past decade. Here the concept of PT mode-locking (ML) of a laser is introduced, in which active phase-locking of cavity axial modes is realized by asymmetric mode coupling in a complex time crystal. PT ML shows a transition from single- to double-pulse emission as the PT symmetry breaking point is crossed. The transition can show a turbulent behavior, depending on a dimensionless modulation parameter that plays the same role as the Reynolds number in hydrodynamic flows.

  11. Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok

    2011-07-01

    The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

  12. A study of the vibrational modes of a nanostructure with picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Antonelli, G. Andrew; Maris, Humphrey J.; Malhotra, Sandra G.; Harper, James M. E.

    2002-05-01

    We describe experiments in which a sub-picosecond pump light pulse is used to excite vibrations in a nanostructure. The sample consists of a periodic array of copper wires embedded in a glass matrix on a silicon substrate. The motion of the wires after excitation is detected using a time-delayed probe light pulse. From the data, it is possible to determine the frequencies νn and damping rates Γn of a number of the normal modes of the structure. These modes have frequencies lying in the range 1-30 GHz. By comparison of the measured νn and Γn with the frequencies and damping rates calculated from a computer simulation of the vibrations of the nanostructure, we have been able to identify the different normal modes and deduce their vibration patterns.

  13. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predictedmore » wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.« less

  14. Excitation mechanisms for Jovian seismic modes

    NASA Astrophysics Data System (ADS)

    Markham, Steve; Stevenson, Dave

    2018-05-01

    Recent (2011) results from the Nice Observatory indicate the existence of global seismic modes on Jupiter in the frequency range between 0.7 and 1.5 mHz with amplitudes of tens of cm/s. Currently, the driving force behind these modes is a mystery; the measured amplitudes are many orders of magnitude larger than anticipated based on theory analogous to helioseismology (that is, turbulent convection as a source of stochastic excitation). One of the most promising hypotheses is that these modes are driven by Jovian storms. This work constructs a framework to analytically model the expected equilibrium normal mode amplitudes arising from convective columns in storms. We also place rough constraints on Jupiter's seismic modal quality factor. Using this model, neither meteor strikes, turbulent convection, nor water storms can feasibly excite the order of magnitude of observed amplitudes. Next we speculate about the potential role of rock storms deeper in Jupiter's atmosphere, because the rock storms' expected energy scales make them promising candidates to be the chief source of excitation for Jovian seismic modes, based on simple scaling arguments. We also suggest some general trends in the expected partition of energy between different frequency modes. Finally we supply some commentary on potential applications to gravity, Juno, Cassini and Saturn, and future missions to Uranus and Neptune.

  15. Experimental studies of breaking of elastic tired wheel under variable normal load

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The paper analyzes the braking of a vehicle wheel subjected to disturbances of normal load variations. Experimental tests and methods for developing test modes as sinusoidal force disturbances of the normal wheel load were used. Measuring methods for digital and analogue signals were used as well. Stabilization of vehicle wheel braking subjected to disturbances of normal load variations is a topical issue. The paper suggests a method for analyzing wheel braking processes under disturbances of normal load variations. A method to control wheel baking processes subjected to disturbances of normal load variations was developed.

  16. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  17. Top-down regulation of default mode activity in spatial visual attention

    PubMed Central

    Wen, Xiaotong; Liu, Yijun; Yao, Li; Ding, Mingzhou

    2013-01-01

    Dorsal anterior cingulate and bilateral anterior insula form a task control network (TCN) whose primary function includes initiating and maintaining task-level cognitive set and exerting top-down regulation of sensorimotor processing. The default mode network (DMN), comprising an anatomically distinct set of cortical areas, mediates introspection and self-referential processes. Resting-state data show that TCN and DMN interact. The functional ramifications of their interaction remain elusive. Recording fMRI data from human subjects performing a visual spatial attention task and correlating Granger causal influences with behavioral performance and blood-oxygen-level-dependent (BOLD) activity we report three main findings. First, causal influences from TCN to DMN, i.e., TCN→DMN, are positively correlated with behavioral performance. Second, causal influences from DMN to TCN, i.e., DMN→TCN, are negatively correlated with behavioral performance. Third, stronger DMN→TCN are associated with less elevated BOLD activity in TCN, whereas the relationship between TCN→DMN and DMN BOLD activity is unsystematic. These results suggest that during visual spatial attention, top-down signals from TCN to DMN regulate the activity in DMN to enhance behavioral performance, whereas signals from DMN to TCN, acting possibly as internal noise, interfere with task control, leading to degraded behavioral performance. PMID:23575842

  18. The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode

    NASA Astrophysics Data System (ADS)

    Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing

    2017-08-01

    Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.

  19. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure-Part II: Finite element applications

    NASA Astrophysics Data System (ADS)

    Máirtín, Éamonn Ó.; Parry, Guillaume; Beltz, Glenn E.; McGarry, J. Patrick

    2014-02-01

    This paper, the second of two parts, presents three novel finite element case studies to demonstrate the importance of normal-tangential coupling in cohesive zone models (CZMs) for the prediction of mixed-mode interface debonding. Specifically, four new CZMs proposed in Part I of this study are implemented, namely the potential-based MP model and the non-potential-based NP1, NP2 and SMC models. For comparison, simulations are also performed for the well established potential-based Xu-Needleman (XN) model and the non-potential-based model of van den Bosch, Schreurs and Geers (BSG model). Case study 1: Debonding and rebonding of a biological cell from a cyclically deforming silicone substrate is simulated when the mode II work of separation is higher than the mode I work of separation at the cell-substrate interface. An active formulation for the contractility and remodelling of the cell cytoskeleton is implemented. It is demonstrated that when the XN potential function is used at the cell-substrate interface repulsive normal tractions are computed, preventing rebonding of significant regions of the cell to the substrate. In contrast, the proposed MP potential function at the cell-substrate interface results in negligible repulsive normal tractions, allowing for the prediction of experimentally observed patterns of cell cytoskeletal remodelling. Case study 2: Buckling of a coating from the compressive surface of a stent is simulated. It is demonstrated that during expansion of the stent the coating is initially compressed into the stent surface, while simultaneously undergoing tangential (shear) tractions at the coating-stent interface. It is demonstrated that when either the proposed NP1 or NP2 model is implemented at the stent-coating interface mixed-mode over-closure is correctly penalised. Further expansion of the stent results in the prediction of significant buckling of the coating from the stent surface, as observed experimentally. In contrast, the BSG model

  20. Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Reed, P.

    2010-12-01

    The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my

  1. Bartter Syndrome with Normal Aldosterone Level: An Unusual Presentation.

    PubMed

    Huque, S S; Rahman, M H; Khatun, S

    2016-04-01

    Bartter syndrome (BS) is a hereditary disease, with an autosomal recessive or autosomal dominant mode of transmission. It is characterized by salt wasting hypochloraemic, hypokalaemic metabolic alkalosis and hyperreninaemia with normal blood pressure. The primary defect is in the thick ascending limb of loop of Henle (TAL). Herein, we report a case that had typical features of BS like severe dehydration, severe hypokalaemia, metabolic alkalosis and failure to thrive but had normal aldosterone level which is very uncommon.

  2. Extensions to the instantaneous normal mode analysis of cluster dynamics: Diffusion constants and the role of rotations in clusters

    NASA Astrophysics Data System (ADS)

    Adams, John E.; Stratt, Richard M.

    1990-08-01

    For the instantaneous normal mode analysis method to be generally useful in studying the dynamics of clusters of arbitrary size, it ought to yield values of atomic self-diffusion constants which agree with those derived directly from molecular dynamics calculations. The present study proposes that such agreement indeed can be obtained if a sufficiently sophisticated formalism for computing the diffusion constant is adopted, such as the one suggested by Madan, Keyes, and Seeley [J. Chem. Phys. 92, 7565 (1990)]. In order to implement this particular formalism, however, we have found it necessary to pay particular attention to the removal from the computed spectra of spurious rotational contributions. The utility of the formalism is demonstrated via a study of small argon clusters, for which numerous results generated using other approaches are available. We find the same temperature dependence of the Ar13 self-diffusion constant that Beck and Marchioro [J. Chem. Phys. 93, 1347 (1990)] do from their direct calculation of the velocity autocorrelation function: The diffusion constant rises quickly from zero to a liquid-like value as the cluster goes through (the finite-size equivalent of) the melting transition.

  3. Derivation of equations of motion for multi-blade rotors employing coupled modes and including high twist capability

    NASA Technical Reports Server (NTRS)

    Sopher, R.

    1975-01-01

    The equations of motion are derived for a multiblade rotor. A high twist capability and coupled flatwise-edgewise assumed normal modes are employed instead of uncoupled flatwise - edgewise assumed normal models. The torsion mode is uncoupled. Support system models, consisting of complete helicopters in free flight, or grounded flexible supports, arbitrary rotor-induced inflow, and arbitrary vertical gust models are also used.

  4. Frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    NASA Astrophysics Data System (ADS)

    Salabert, D.; Régulo, C.; Pérez Hernández, F.; García, R. A.

    2018-04-01

    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence on radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 μHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main sequence solar-like stars, the F-star HD 49933, and the young 1 Gyr-old solar analog KIC 10644253, although with different amplitudes of the shifts of about 2 μHz and 0.5 μHz, respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l = 0 and l = 1 modes individually. Given the quality of the data, the results could indicate that a physical source of perturbation different from that in the Sun is dominating in this sample of solar-like stars.

  5. Local vibrational modes of the formic acid dimer - the strength of the double hydrogen bond

    NASA Astrophysics Data System (ADS)

    Kalescky, R.; Kraka, E.; Cremer, D.

    2013-07-01

    The 24 normal and 24 local vibrational modes of the formic acid dimer formed by two trans formic acid monomers to a ring (TT1) are analysed utilising preferentially experimental frequencies, but also CCSD(T)/CBS and ωB97X-D harmonic vibrational frequencies. The local hydrogen bond (HB) stretching frequencies are at 676 cm-1 and by this 482 and 412 cm-1 higher compared to the measured symmetric and asymmetric HB stretching frequencies at 264 and 194 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to the topology of dimer TT1, mass coupling, and avoided crossings involving the HṡṡṡOC bending modes. The HB local mode stretching force constant is related to the strength of the HB whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the HB strength. The HB in TT1 is stabilised by electron delocalisation in the O=C-O units fostered by forming a ring via double HBs. This implies that the CO apart from the OH local stretching frequencies reflect the strength of the HB via their red or blue shifts relative to their corresponding values in trans formic acid.

  6. Seismic transmission operator reciprocity - II: impedance-operator symmetry via elastic lateral modes

    NASA Astrophysics Data System (ADS)

    Thomson, C. J.

    2015-08-01

    The properties of the overburden transmission response are of particular interest for the analysis of reflectivity illumination or blurring in seismic depth imaging. The first step to showing a transmission-operator reciprocity property is to identify the symmetry of the so-called displacement-to-traction operators. The latter are analogous to Dirichlet-to-Neumann operators and they may also be called impedance operators. Their symmetry is deduced here after development of a formal spectral or modal theory of lateral wavefunctions in a laterally heterogeneous generally anisotropic elastic medium. The elastic lateral modes are displacement-traction 6-vectors and they are built from two auxiliary 3-vector lateral-mode bases. These auxiliary modes arise from Hermitian and anti-Hermitian operators, so they have familiar properties such as orthogonality. There is no assumption of down/up symmetry of the elasticity tensor, but basic assumptions are made about the existence and completeness of the elastic modes. A point-symmetry property appears and plays a central role. The 6-vector elastic modes have a symplectic orthogonality property, which facilitates the development of modal expansions for 6-vector functions of the lateral coordinates when completeness is assumed. While the elastic modal theory is consistent with the laterally homogeneous case, numerical work would provide confidence that it is correct in general. An appendix contains an introductory overview of acoustic lateral modes that were studied by other authors, given from the perspective of this new work. A distinction is drawn between unit normalization of scalar auxiliary modes and a separate energy-flux normalization of 2-vector acoustic modes. Neither is crucial to the form of acoustic pressure-to-velocity or impedance operators. This statement carries over to the elastic case for the 3-vector auxiliary- and 6-vector elastic-mode normalizations. The modal theory is used to construct the kernel of the

  7. c-Src activity is differentially required by cancer cell motility modes.

    PubMed

    Logue, Jeremy S; Cartagena-Rivera, Alexander X; Chadwick, Richard S

    2018-04-01

    Cancer cell migration requires that cells respond and adapt to their surroundings. In the absence of extracellular matrix cues, cancer cells will undergo a mesenchymal to ameboid transition, whereas a highly confining space will trigger a switch to "leader bleb-based" migration. To identify oncogenic signaling pathways mediating these transitions, we undertook a targeted screen using clinically useful inhibitors. Elevated Src activity was found to change actin and focal adhesion dynamics, whereas inhibiting Src triggered focal adhesion disassembly and blebbing. On non-adherent substrates and in collagen matrices, amoeboid-like, blebbing cells having high Src activity formed protrusions of the plasma membrane. To evaluate the role of Src in confined cells, we use a novel approach that places cells under a slab of polydimethylsiloxane (PDMS), which is held at a defined height. Using this method, we find that leader bleb-based migration is resistant to Src inhibition. High Src activity was found to markedly change the architecture of cortical actomyosin, reduce cell mechanical properties, and the percentage of cells that undergo leader bleb-based migration. Thus, Src is a signal transducer that can potently influence transitions between migration modes with implications for the rational development of metastasis inhibitors.

  8. On the dynamical basis of the classification of normal galaxies

    PubMed Central

    Haass, J.; Bertin, G.; Lin, C. C.

    1982-01-01

    Some realistic galaxy models have been found to support discrete unstable spiral modes. Here, through the study of the relevant physical mechanisms and an extensive numerical investigation of the properties of the dominant modes in a wide class of galactic equilibria, we show how spiral structures are excited with different morphological features, depending on the properties of the equilibrium model. We identify the basic dynamical parameters and mechanisms and compare the resulting morphology of spiral modes with the actual classification of galaxies. The present study suggests a dynamical basis for the transition among various types and subclasses of normal and barred spiral galaxies. Images PMID:16593200

  9. Quasinormal modes of Reissner-Nordstrom black holes

    NASA Technical Reports Server (NTRS)

    Leaver, Edward W.

    1990-01-01

    A matrix-eigenvalue algorithm is presented for accurately computing the quasi-normal frequencies and modes of charged static blackholes. The method is then refined through the introduction of a continued-fraction step. The approach should generalize to a variety of nonseparable wave equations, including the Kerr-Newman case of charged rotating blackholes.

  10. Impact of physical activity on ovarian reserve markers in normal, overweight and obese reproductive age women.

    PubMed

    Surekha, T; Himabindu, Y; Sriharibabu, M; Pandey, Anil Kumar

    2014-01-01

    Physical inactivity is a leading risk factor for overweight and obesity in the society. Prevalence of overweight and obesity in the reproductive age group women not only affects maternal health but also the health of the off spring. Infertility is a common problem in India affecting 13-19 million people at any given time. Even though it is not life threatening, infertility causes intense mental agony and trauma that can only be best described by infertile couples themselves. Infertility is more common in overweight and obese individuals compared to normal weight individuals. Decreasing ovarian reserve is an important factor for infertility in women. This study examined the impact of physical activity on ovarian reserve markers in normal, overweight and obese reproductive age women. The observations made in this study reveal that physical activity improves ovarian reserve markers in all reproductive age women but this improvement is more distinct and statistically significant in overweight and obese women compared to normal weight women.

  11. Resonant Mode-hopping Micromixing

    PubMed Central

    Jang, Ling-Sheng; Chao, Shih-Hui; Holl, Mark R.; Meldrum, Deirdre R.

    2009-01-01

    A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are eliminated by rapidly switching from one discrete resonant mode to another (i.e., resonant mode-hop). Mixer performance is characterized by mixing buffer with a fluorescence tracer containing fluorescein. Movies of the mixing process are analyzed by converting fluorescent images to two-dimensional fluorescein concentration distributions. The results demonstrate that mode-hopping operation rapidly homogenized chamber contents, circumventing diffusion-isolated zones. PMID:19551159

  12. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  13. EFFECT OF LIGHT-CURING UNITS AND ACTIVATION MODE ON POLYMERIZATION SHRINKAGE AND SHRINKAGE STRESS OF COMPOSITE RESINS

    PubMed Central

    Lopes, Lawrence Gonzaga; Franco, Eduardo Batista; Pereira, José Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to evaluate the polymerization shrinkage and shrinkage stress of composites polymerized with a LED and a quartz tungsten halogen (QTH) light sources. The LED was used in a conventional mode (CM) and the QTH was used in both conventional and pulse-delay modes (PD). The composite resins used were Z100, A110, SureFil and Bisfil 2B (chemical-cured). Composite deformation upon polymerization was measured by the strain gauge method. The shrinkage stress was measured by photoelastic analysis. The polymerization shrinkage data were analyzed statistically using two-way ANOVA and Tukey test (p≤0.05), and the stress data were analyzed by one-way ANOVA and Tukey's test (p≤0.05). Shrinkage and stress means of Bisfil 2B were statistically significant lower than those of Z100, A110 and SureFil. In general, the PD mode reduced the contraction and the stress values when compared to CM. LED generated the same stress as QTH in conventional mode. Regardless of the activation mode, SureFil produced lower contraction and stress values than the other light-cured resins. Conversely, Z100 and A110 produced the greatest contraction and stress values. As expected, the chemically cured resin generated lower shrinkage and stress than the light-cured resins. In conclusion, The PD mode effectively decreased contraction stress for Z100 and A110. Development of stress in light-cured resins depended on the shrinkage value. PMID:19089287

  14. Modes of active deformation in Eastern Hispaniola

    NASA Astrophysics Data System (ADS)

    García-Senz, J.; Pérez-Estaún, A.

    2012-04-01

    active fault at surface, the Yabón fault, as a trans pop-up strike-slip fault. 3) The contractive faults and folds that form the Oriental Cordillera disappear to the east replaced by a field of NW-SE to WNW-ESE trending normal faults with fresh scarps up to 75 m high depressing the Late Neogene reef (Punta Cana extended area). In plan form, the faults show multiple relays and transverse ramps at the overlaps. A NE-SW section coast to coast across the Punta Cana area show the Late Neogene reef gently arched and cut by normal faults bounding half-grabens, with the main throw directed to the NE. The amount of extension exceeds 3 km (5% of stretching). A very similar system of normal faults has been documented in seismic lines across the Mona Passage (eg. van Gestel et al., 1998, Mondziel, 2007, Chaytor and ten Brink, 2010) and onshore western Puerto Rico (Hippolyte et al., 2005), which are interpreted by a pinning extension model (Dolan et al., 1998, Mann et al., 2002) or by oblique extension (Chaytor and ten Brink, 2010). Whatever the tectonic model may be, our data places an onshore boundary between transpressional and extensional domains. 4) The retrowedge at the southern margin of Hispaniola form an imbricate of E-W segmented thrusts overriding the Muertos trough (ten Brink et al., 2010). These authors suggest that the transport direction within the Muertos thrust system is southward perpendicular to the regional trend of the belt.

  15. Reverse-mode microdroplet liquid crystal display

    NASA Astrophysics Data System (ADS)

    Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang

    1990-04-01

    This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.

  16. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  17. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity

    PubMed Central

    Cheng, Leo K; Komuro, Rie; Austin, Travis M; Buist, Martin L; Pullan, Andrew J

    2007-01-01

    One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach. PMID:17457969

  18. Optical diagnosis of cervical cancer by intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Pratiher, Sawon; Pratiher, Souvik; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-03-01

    In this paper, we make use of the empirical mode decomposition (EMD) to discriminate the cervical cancer tissues from normal ones based on elastic scattering spectroscopy. The phase space has been reconstructed through decomposing the optical signal into a finite set of bandlimited signals known as intrinsic mode functions (IMFs). It has been shown that the area measure of the analytic IMFs provides a good discrimination performance. Simulation results validate the efficacy of the IMFs followed by SVM based classification.

  19. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  20. Physical activity in normal-weight and overweight youth: associations with weight teasing and self-efficacy.

    PubMed

    Losekam, Stefanie; Goetzky, Benjamin; Kraeling, Svenja; Rief, Winfried; Hilbert, Anja

    2010-08-01

    To examine self-reported physical activity with regard to weight teasing and self-efficacy. Within a cross-sectional study, 321 overweight and normal-weight students, consisting of 51% girls (n = 161) and 49% boys (n = 160) at a mean age of 12.22 years (SD = 1.07), were sampled from German secondary schools. The Perception of Teasing Scale, the Physical Self-Efficacy Scale, and the Leipzig Lifestyle Questionnaire for Adolescents were used to assess experiences with weight-related teasing, self-efficacy, physical activity and social context variables. Self-efficacy, weight teasing and social context variables were related to physical activity within the full sample (R(2) = 0.433). More frequent weight teasing was associated with decreased physical activity in boys, but not in girls. Overweight participants reported more frequent weight teasing experiences and less self-efficacy than participants of normal weight (all p < 0.001), but there was no difference in physical activity (p > 0.05).There were large correlations between self-efficacy and physical activity (r = 0.614, p < 0.01), and medium correlations for male sex and physical activity (r = 0.298, p < 0.01). Weight teasing and self-efficacy were negatively correlated (r = -0.190, p < 0.05). These results suggest that self-efficacy and an encouraging social context are beneficial to physical activity while weight teasing experiences are detrimental. Interventions against weight teasing in youth are needed. Copyright © 2010 S. Karger AG, Basel.

  1. Local phase space and edge modes for diffeomorphism-invariant theories

    NASA Astrophysics Data System (ADS)

    Speranza, Antony J.

    2018-02-01

    We discuss an approach to characterizing local degrees of freedom of a subregion in diffeomorphism-invariant theories using the extended phase space of Donnelly and Freidel [36]. Such a characterization is important for defining local observables and entanglement entropy in gravitational theories. Traditional phase space constructions for subregions are not invariant with respect to diffeomorphisms that act at the boundary. The extended phase space remedies this problem by introducing edge mode fields at the boundary whose transformations under diffeomorphisms render the extended symplectic structure fully gauge invariant. In this work, we present a general construction for the edge mode symplectic structure. We show that the new fields satisfy a surface symmetry algebra generated by the Noether charges associated with the edge mode fields. For surface-preserving symmetries, the algebra is universal for all diffeomorphism-invariant theories, comprised of diffeomorphisms of the boundary, SL(2, ℝ) transformations of the normal plane, and, in some cases, normal shearing transformations. We also show that if boundary conditions are chosen such that surface translations are symmetries, the algebra acquires a central extension.

  2. The effects of the mode of delivery on oxidative-antioxidative balance.

    PubMed

    Mutlu, Birgul; Aksoy, Nurten; Cakir, Hale; Celik, Hakim; Erel, Ozcan

    2011-11-01

    The purpose of this study was to investigate the effects of the mode of delivery on the oxidant and antioxidant systems in mothers and infants and to demonstrate which mode leads more oxidative stress. The participants were divided into two groups according to the mode of their labour and delivery: group 1 (n = 33) women with normal labour and delivery and group 2 (n = 33) with scheduled caesarean section (C/S) and delivery. The maternal, cord, and infant blood samples in both groups were collected. The serum total antioxidant capacity (TAC) and the total oxidant status (TOS) were evaluated by using an automated colorimetric measurement method. The parameters indicating oxidative stress (TOS, oxidative stress index, and lipid hydroperoxide) in maternal, cord, and newborn blood samples were higher in patients delivering with C/S than those normal spontaneous vaginal deliveries (NSVD) patient group, while it was vice versa for TAC. It may be concluded that both the mothers and neonates in C/S group are exposed to higher oxidative stress as compared with those in NSVD group and the antioxidant mechanisms are insufficient to cope with this stress during C/S. This result indicates that the normal delivery through the physiological route is healthier for the bodies of mothers and infants.

  3. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    DOE PAGES

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; ...

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$ e ≈ 7 × 10 19 m ₋3) and normalized Greenwald fraction ($$\\bar{n}$$ e/n G > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q 95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less

  4. Mode-specific tunneling using the Qim path: theory and an application to full-dimensional malonaldehyde.

    PubMed

    Wang, Yimin; Bowman, Joel M

    2013-10-21

    We present a theory of mode-specific tunneling that makes use of the general tunneling path along the imaginary-frequency normal mode of the saddle point, Qim, and the associated relaxed potential, V(Qim) [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. The novel aspect of the theory is the projection of the normal modes of a minimum onto the Qim path and the determination of turning points on V(Qim). From that projection, the change in tunneling upon mode excitation can be calculated. If the projection is zero, no enhancement of tunneling is predicted. In that case vibrationally adiabatic (VA) theory could apply. However, if the projection is large then VA theory is not applicable. The approach is applied to mode-specific tunneling in full-dimensional malonaldehyde, using an accurate full-dimensional potential energy surface. Results are in semi-quantitative agreement with experiment for modes that show large enhancement of the tunneling, relative to the ground state tunneling splitting. For the six out-of-plane modes, which have zero projection on the planar Qim path, VA theory does apply, and results from that theory agree qualitatively and even semi-quantitatively with experiment. We also verify the failure of simple VA theory for modes that show large enhancement of tunneling.

  5. The northern annular mode in summer and its relation to solar activity variations in the GISS ModelE

    NASA Astrophysics Data System (ADS)

    Lee, Jae N.; Hameed, Sultan; Shindell, Drew T.

    2008-03-01

    The northern annular mode (NAM) has been successfully used in several studies to understand the variability of the winter atmosphere and its modulation by solar activity. The variability of summer circulation can also be described by the leading empirical orthogonal function (EOF) of geopotential heights. We compare the annular modes of the summer geopotential heights in the northern hemisphere stratosphere and troposphere in the Goddard Institute for Space Studies (GISS) ModelE with those in the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The temperature fluctuations in simulated solar minimum conditions are greater than in solar maximum throughout the summer stratosphere. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum variability over the Asian monsoon region. The corresponding EOF in ModelE has

  6. Abnormal brain activation in neurofibromatosis type 1: a link between visual processing and the default mode network.

    PubMed

    Violante, Inês R; Ribeiro, Maria J; Cunha, Gil; Bernardino, Inês; Duarte, João V; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.

  7. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function

    PubMed Central

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J.; He, Wei; Voss, Oliver H.; Gonzalez-Mejia, M. Elba; Guttridge, Denis C.; Grotewold, Erich; Doseff, Andrea I.

    2016-01-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors’ accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo. PMID:26938530

  8. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function.

    PubMed

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J; He, Wei; Voss, Oliver H; Gonzalez-Mejia, M Elba; Guttridge, Denis C; Grotewold, Erich; Doseff, Andrea I

    2016-03-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors' accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo.

  9. Frequency-independent radiation modes of interior sound radiation: Experimental study and global active control

    NASA Astrophysics Data System (ADS)

    Hesse, C.; Papantoni, V.; Algermissen, S.; Monner, H. P.

    2017-08-01

    Active control of structural sound radiation is a promising technique to overcome the poor passive acoustic isolation performance of lightweight structures in the low-frequency region. Active structural acoustic control commonly aims at the suppression of the far-field radiated sound power. This paper is concerned with the active control of sound radiation into acoustic enclosures. Experimental results of a coupled rectangular plate-fluid system under stochastic excitation are presented. The amplitudes of the frequency-independent interior radiation modes are determined in real-time using a set of structural vibration sensors, for the purpose of estimating their contribution to the acoustic potential energy in the enclosure. This approach is validated by acoustic measurements inside the cavity. Utilizing a feedback control approach, a broadband reduction of the global acoustic response inside the enclosure is achieved.

  10. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    NASA Astrophysics Data System (ADS)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  11. Drive Train Normal Modes Analysis for the ERDA/NASA 100-Kilowatt Wind Turbine Generator

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Miller, D. R.; Spera, D. A.

    1977-01-01

    Natural frequencies, as a function of power were determined using a finite element model. Operating conditions investigated were operation with a resistive electrical load and operation synchronized to an electrical utility grid. The influence of certain drive train components on frequencies and mode shapes is shown. An approximate method for obtaining drive train natural frequencies is presented.

  12. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  13. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Picosecond laser with active mode locking and calcium lithium niobium gallium disordered Nd3+-activated garnet

    NASA Astrophysics Data System (ADS)

    Basiev, Tasoltan T.; Grudinin, A. B.; Karasik, Aleksandr Ya; Senatorov, A. K.; Sobol, A. A.; Fedorov, V. V.; Shubochkin, R. L.

    1994-01-01

    A laser was constructed in which the active medium was a crystal of calcium lithium niobium gallium garnet activated with Nd3+ ions. An acoustooptic modulator made of an LiNbO3 crystal and a passive LiF switch with F2 colour centres were used in this laser. The combination of active mode locking and Q switching made it possible to generate laser pulses of 10-15 ps duration at the wavelength λ = 1061.2 nm with a peak power of about 15 MW.

  14. Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants.

    PubMed

    Narendra, Ajay; Ribi, Willi A

    2017-12-01

    Insects have exquisitely adapted their compound eyes to suit the ambient light intensity in the different temporal niches they occupy. In addition to the compound eye, most flying insects have simple eyes known as ocelli, which assist in flight stabilisation, horizon detection and orientation. Among ants, typically the flying alates have ocelli while the pedestrian workers lack this structure. The Australian ant genus Myrmecia is one of the few ant genera in which both workers and alates have three ocellar lenses. Here, we studied the variation in the ocellar structure in four sympatric species of Myrmecia that are active at different times of the day. In addition, we took advantage of the walking and flying modes of locomotion in workers and males, respectively, to ask whether the type of movement influences the ocellar structure. We found that ants active in dim light had larger ocellar lenses and wider rhabdoms compared with those in bright-light conditions. In the ocellar rhabdoms of workers active in dim-light habitats, typically each retinula cell contributed microvilli in more than one direction, probably destroying polarisation sensitivity. The organisation of the ocellar retina in the day-active workers and the males suggests that in these animals some cells are sensitive to the pattern of polarised skylight. We found that the night-flying males had a tapetum that reflects light back to the rhabdom, increasing their optical sensitivity. We discuss the possible functions of ocelli to suit the different modes of locomotion and the discrete temporal niches that animals occupy. © 2017. Published by The Company of Biologists Ltd.

  15. Did BICEP2 see vector modes? First B-mode constraints on cosmic defects.

    PubMed

    Moss, Adam; Pogosian, Levon

    2014-05-02

    Scaling networks of cosmic defects, such as strings and textures, actively generate scalar, vector, and tensor metric perturbations throughout the history of the Universe. In particular, vector modes sourced by defects are an efficient source of the cosmic microwave background B-mode polarization. We use the recently released BICEP2 and POLARBEAR B-mode polarization spectra to constrain properties of a wide range of different types of cosmic strings networks. We find that in order for strings to provide a satisfactory fit on their own, the effective interstring distance needs to be extremely large--spectra that fit the data best are more representative of global strings and textures. When a local string contribution is considered together with the inflationary B-mode spectrum, the fit is improved. We discuss implications of these results for theories that predict cosmic defects.

  16. Dynamics of active sites in biological macromolecules using a Green-function approach: An application to heme vibrational dynamics in myoglobin

    NASA Astrophysics Data System (ADS)

    Rai, Brajesh; Prohofsky, Earl

    2003-03-01

    Dynamics of functionally active regions of biological macromolecules can be studied using a Green-function technique. This approach uses the fact that in most cases one has a good set of force constants for active sites, and rather poorly defined force field parameters for other regions of the macromolecule. The Green-function method is applied to study the iron vibrational modes of the heme active site in myoglobin. In this approach, the heme active site is viewed as a system interacting with surrounding globin, which acts as an excitation bath. The normal modes of heme and globin are separately calculated using the best available force fields for the two entities. The iron vibrational spectrum of myoglobin is then obtained using the solutions of the heme and globin, and by considering physically meaningful interactions between the two units. The refinement of the Green-function calculations to the experimental data from an x-ray synchrotron-based Nuclear Resonance Vibrational Spectroscopy provides important insights into the character of iron normal modes of myoglobin.

  17. Study of the spectral width of intermode beats and optical spectrum of an actively mode-locked three-mirror semiconductor laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M

    2005-09-30

    Various oscillation regimes of an actively mode-locked semiconductor laser are studied experimentally. Two types of regimes are found in which the minimal spectral width ({approx}3.5 kHz) of intermode beats is achieved. The width of the optical spectrum of modes is studied as a function of their locking and the feedback coefficients. The maximum width of the spectrum is {approx}3.7 THz. (control of laser radiation parameters)

  18. Transition from normal to ballistic diffusion in a one-dimensional impact system

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Kroetz, Tiago; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2018-03-01

    We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.

  19. Transition from normal to ballistic diffusion in a one-dimensional impact system.

    PubMed

    Livorati, André L P; Kroetz, Tiago; Dettmann, Carl P; Caldas, Iberê L; Leonel, Edson D

    2018-03-01

    We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.

  20. Short cavity active mode locking fiber laser for optical sensing and imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong

    2014-05-01

    We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.

  1. Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis

    NASA Astrophysics Data System (ADS)

    Cai, Zhikun; Zhang, Yang

    Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.

  2. Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states.

    PubMed

    Seravalle, Gino; Lonati, Laura; Buzzi, Silvia; Cairo, Matteo; Quarti Trevano, Fosca; Dell'Oro, Raffaella; Facchetti, Rita; Mancia, Giuseppe; Grassi, Guido

    2015-07-01

    Adrenergic activation and baroreflex dysfunction are common in established essential hypertension, elderly hypertension, masked and white-coat hypertension, resistant hypertension, and obesity-related hypertension. Whether this autonomic behavior is peculiar to established hypertension or is also detectable in the earlier clinical phases of the disease, that is, the high-normal blood pressure (BP) state, is still largely undefined, however. In 24 individuals with optimal BP (age: 37.1  ±  2.1 years, mean  ±  SEM) and in 27 with normal BP and 38 with high-normal BP, age matched with optimal BP, we measured clinic, 24-h and beat-to-beat BP, heart rate (HR), and muscle sympathetic nerve activity (MSNA) at rest and during baroreceptor stimulation and deactivation. Measurements also included anthropometric as well as echocardiographic and homeostasis model assessment (HOMA) index. For similar anthropometric values, clinic, 24-h ambulatory, and beat-to-beat BPs were significantly greater in normal BP than in optimal BP. This was the case when the high-normal BP group was compared to the normal and optimal BP groups. MSNA (but not HR) was also significantly greater in high-normal BP than in normal BP and optimal BP (51.3  ±  2.0 vs. 40.3  ±  2.3 and 41.1 ± 2.6  bursts per 100  heartbeats, respectively, P < 0.01). The sympathetic activation seen in high-normal BP was coupled with an impairment of baroreflex HR control (but not MSNA) and with a significant increase in HOMA Index, which showed a significant direct relationship with MSNA. Thus, independently of which BP the diagnosis is based, high-normal BP is a condition characterized by a sympathetic activation. This neurogenic alteration, which is likely to be triggered by metabolic rather than reflex alterations, might be involved, together with other factors, in the progression of the condition to established hypertension.

  3. Gallesia integrifolia (Spreng.) Harms: In vitro and in vivo antibacterial activities and mode of action.

    PubMed

    Arunachalam, Karuppusamy; Ascêncio, Sérgio Donizeti; Soares, Ilsamar Mendes; Souza Aguiar, Raimundo Wagner; da Silva, Larissa Irene; de Oliveira, Ruberlei Godinho; Balogun, Sikiru Olaitan; de Oliveira Martins, Domingos Tabajara

    2016-05-26

    Gallesia integrifolia (Phytolaccaceae) is commonly known as "pau-d'alho" in Brazil or "garlic plant" due to the strong scent of garlic peculiar to all parts of the plant. The bark decoction is used for the treatment of microbial infections among other diseases by different ethnic groups in Brazil, Peruvian Amazonians, Bolivia and Mosetene Indians. This study aimed to advance in the antibacterial activity and characterize the mode of action of the hydroethanolic extract of the inner stem bark of G. integrifolia (HEGi) using in vivo and in vitro experimental models. The qualitative and quantitative phytochemical analyzes of HEGi were carried out using colorimetric and HPLC technique. The cytotoxic potential of HEGi was evaluated against CHO-K1 cells by Alamar blue assay and its acute toxicity was assessed by the Hippocratic screening test using Swiss-Webster mice. The antibacterial activity was evaluated by micro- dilution method against ten strains of Gram-positive and Gram-negative bacteria. The mode of action of HEGi was investigated by outer membrane permeability, nucleotide leakage and potassium efflux assays. In vivo infection model was established by using Staphylococcus aureus infection model Wistar rats. Qualitative phytochemical analysis of HEGi revealed the presence of saponins, alkaloids, phenolic compounds and flavonoids. Phytochemical quantification of HEGi showed that higher total phenolic (80.10±0.62mg GAE/g) and flavonoid (16.10±0.03mg RE/g) contents. HPLC fingerprint analysis revealed the presence of gallic acid, rutin, and morin. In the Alamar blue assay no cytotoxic effect of HEGi in CHO-K1 cells was observed up to 200µg/mL, and no signs or symptoms of acute toxicity were observed in mice of both sexes at higher doses of up to 2000mg/kg, p.o. HEGi demonstrated bacteriostatic effect against selected Gram positive and Gram negative bacterial pathogens. Its mode of action is associated, at least partly, with changes in the permeability of

  4. A Two-Ended Shooting Technique for Calculating Normal Modes in Underwater Acoustic Propagation,

    DTIC Science & Technology

    1985-09-01

    tnad~ I’or Public rL.00uq cmd ina ts 85 12 _ 8 126 UNLIMITED DISTRIBUTION * I ’ National Defence Defense Nationale Research and Bureau de Recherche...d6crit un algorithme de calcul des modes acoustiques normaux en mer. L’algoritbme est applicable & un prof il arbitraire do densit6 et do vitesse du son... profondeur do roncontre au milieu, habituellement pr&s du point do vitesse du son minimum. on amfiliore par it~ration la solution dlesaai jusqu’& ce

  5. Spectral fitting inversion of low-frequency normal modes with self-coupling and cross-coupling of toroidal and spheroidal multiplets: numerical experiments to estimate the isotropic and anisotropic velocity structures

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2016-06-01

    The aspherical structure of the Earth is described in terms of lateral heterogeneity and anisotropy of the P- and S-wave velocities, density heterogeneity, ellipticity and rotation of the Earth and undulation of the discontinuity interfaces of the seismic wave velocities. Its structure significantly influences the normal mode spectra of the Earth's free oscillation in the form of cross-coupling between toroidal and spheroidal multiplets and self-coupling between the singlets forming them. Thus, the aspherical structure must be conversely estimated from the free oscillation spectra influenced by the cross-coupling and self-coupling. In the present study, we improve a spectral fitting inversion algorithm which was developed in a previous study to retrieve the global structures of the isotropic and anisotropic velocities of the P and S waves from the free oscillation spectra. The main improvement is that the geographical distribution of the intensity of the S-wave azimuthal anisotropy is represented by a nonlinear combination of structure coefficients for the anisotropic velocity structure, whereas in the previous study it was expanded into a generalized spherical harmonic series. Consequently, the improved inversion algorithm reduces the number of unknown parameters that must be determined compared to the previous inversion algorithm and employs a one-step inversion method by which the structure coefficients for the isotropic and anisotropic velocities are directly estimated from the fee oscillation spectra. The applicability of the improved inversion is examined by several numerical experiments using synthetic spectral data, which are produced by supposing a variety of isotropic and anisotropic velocity structures, earthquake source parameters and station-event pairs. Furthermore, the robustness of the inversion algorithm is investigated with respect to the back-ground noise contaminating the spectral data as well as truncating the series expansions by finite terms

  6. Low-power polling mode of the next-generation IMES2 implantable wireless EMG sensor.

    PubMed

    DeMichele, Glenn A; Hu, Zhe; Troyk, Philip R; Chen, Hongnan; Weir, Richard F ff

    2014-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee's voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a low-power polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control.

  7. Accessible cultural mind-set modulates default mode activity: evidence for the culturally situated brain.

    PubMed

    Wang, Chenbo; Oyserman, Daphna; Liu, Qiang; Li, Hong; Han, Shihui

    2013-01-01

    Self-construal priming modulates human behavior and associated neural activity. However, the neural activity associated with the self-construal priming procedure itself remains unknown. It is also unclear whether and how self-construal priming affects neural activity prior to engaging in a particular task. To address this gap, we scanned Chinese adults, using functional magnetic resonance imaging, during self-construal priming and a following resting state. We found that, relative to a calculation task, both interdependent and independent self-construal priming activated the ventral medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC). The contrast of interdependent vs. independent self-construal priming also revealed increased activity in the dorsal MPFC and left middle frontal cortex. The regional homogeneity analysis of the resting-state activity revealed increased local synchronization of spontaneous activity in the dorsal MPFC but decreased local synchronization of spontaneous activity in the PCC when contrasting interdependent vs. independent self-construal priming. The functional connectivity analysis of the resting-state activity, however, did not show significant difference in synchronization of activities in remote brain regions between different priming conditions. Our findings suggest that accessible collectivistic/individualistic mind-set induced by self-construal priming is associated with modulations of both task-related and resting-state activity in the default mode network.

  8. Dirac perturbations on Schwarzschild-anti-de Sitter spacetimes: Generic boundary conditions and new quasinormal modes

    NASA Astrophysics Data System (ADS)

    Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang

    2017-11-01

    We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.

  9. An assessment of the relationship of physical activity, obesity, and chronic diseases/conditions between active/obese and sedentary/ normal weight American women in a national sample.

    PubMed

    Pharr, J R; Coughenour, C A; Bungum, T J

    2018-03-01

    Obesity and physical inactivity are associated with increased rates of chronic diseases and conditions. However, the 'fit but fat' theory posits that cardiopulmonary fitness (or physical activity) can mitigate risks to health associated with obesity. The purpose of this study was to compare chronic diseases and conditions of highly active/obese women with inactive/normal weight women. This was a cross-sectional study of the 2015 Behavioral Risk Factor Surveillance System data. Weighted descriptive statistics were performed to describe the demographic characteristics of the two groups. We calculated odds ratios and adjusted odds ratios for chronic diseases and conditions comparing highly active/obese women with inactive/normal weight women. Highly active/obese women were more likely to report risk factors (hypertension, high cholesterol, and diabetes) for coronary heart disease (CHD) and cardiovascular disease (CVD) than inactive/normal weight women; however, they did not have increased rates of CVD, CHD, or heart attack and had decreased risk for stroke. Highly active/obese women had increased risk for asthma, arthritis, and depression, but not for cancer, kidney disease, or chronic obstructive pulmonary disease. Highly active/obese women appear to be staving off the actual development of CHD and CVD; however, further research is needed to understand the long-term health benefits of physical activity among obese women. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  10. Most Children With Epilepsy Experience Postictal Phenomena, Often Preventing a Return to Normal Activities of Childhood.

    PubMed

    MacEachern, Sarah J; D'Alfonso, Sabrina; McDonald, Roman J; Thornton, Nancy; Forkert, Nils D; Buchhalter, Jeffrey R

    2017-07-01

    After a seizure, individuals with epilepsy have reported diverse symptoms in the postictal period, especially motor and cognitive dysfunction. However, these phenomena have not been well characterized in children, and their impact on patient well-being is not understood. We hypothesized that in a subset of epilepsy patients, postictal symptoms would affect their ability to return to normal childhood activities. To test our hypothesis, a survey-based approach was used to characterize the type, frequency, and duration, as well as the impact of these symptoms on the ability of these children to return to their normal activities. In this prospective study, data were analyzed from 208 patients seen in the pediatric neurology outpatient clinic at the Alberta Children's Hospital. We found that 86% (179 out of 208) of respondents reported postictal symptoms, with the most common symptom category being fatigue, sleepiness, and/or tiredness (90%; 161 of 179). The greatest impact resulted from weakness or being unable to move normally, which prevented 78% of those affected (71 of 91) from returning to normal activities after a seizure. Children who had focal seizures were more likely to experience postictal fatigue, sleepiness, or tiredness (P = 0.01; Bonferroni corrected), but no other postictal symptoms were significantly associated with a specific seizure type or epilepsy syndrome. The results of this study further our understanding of the frequency, type, and duration of symptoms experienced in the postictal period and how these symptoms impact children with epilepsy. It is clear that postictal phenomena often occur after epileptic seizures and have a significant impact on the lives of children with epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The effect of airflow rates and aeration mode on the respiration activity of four organic wastes: Implications on the composting process.

    PubMed

    Mejias, Laura; Komilis, Dimitrios; Gea, Teresa; Sánchez, Antoni

    2017-07-01

    The aim of this study was to assess the effect of the airflow and of the aeration mode on the composting process of non-urban organic wastes that are found in large quantities worldwide, namely: (i) a fresh, non-digested, sewage sludge (FSS), (ii) an anaerobically digested sewage sludge (ADSS), (iii) cow manure (CM) and (iv) pig sludge (PS). This assessment was done using respirometric indices. Two aeration modes were tested, namely: (a) a constant air flowrate set at three different initial fixed airflow rates, and (b) an oxygen uptake rate (OUR)-controlled airflow rate. The four wastes displayed the same behaviour namely a limited biological activity at low aeration, while, beyond a threshold value, the increase of the airflow did not significantly increase the dynamic respiration indices (DRI 1 max , DRI 24 max and AT 4 ). The threshold airflow rate varied among wastes and ranged from 42NL air kg -1 DMh -1 for CM and from 67 to 77NL air kg -1 DMh -1 for FSS, ADSS and PS. Comparing the two aeration modes tested (constant air flow, OUR controlled air flow), no statistically significant differences were calculated between the respiration activity indices obtained at those two aeration modes. The results can be considered representative for urban and non-urban organic wastes and establish a general procedure to measure the respiration activity without limitations by airflow. This will permit other researchers to provide consistent results during the measurement of the respiration activity. Results indicate that high airflows are not required to establish the maximum respiration activity. This can result in energy savings and the prevention of off-gas treatment problems due to the excessive aeration rate in full scale composting plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake.

    PubMed

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B

    2016-11-01

    In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m - 2 ) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m - 2 ), both before and 30 min after consumption of a standardized meal (~260 kcal). Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (P<0.05). This group difference was not altered by food intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (P<0.05); however, these changes did not differ between the BMI groups. Reward-related brain regions are more active under resting-state conditions in obese than in normal-weight females. This difference was independent of food intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.

  13. Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.

    PubMed

    Sharma, A S; Moarref, R; McKeon, B J

    2017-03-13

    Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  14. Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Guo, Zhengru; Zhang, Qingshan

    Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less

  15. Effects of fast ions on interchange modes in the Large Helical Device plasmas

    NASA Astrophysics Data System (ADS)

    Pinon, Jonhathan; Todo, Yasushi; Wang, Hao

    2018-07-01

    Effects of fast ions on the magnetohydrodynamic (MHD) instabilities in a Large Helical Device (LHD) plasma with the central beta value (=pressure normalized by the magnetic pressure) 4% have been investigated with hybrid simulations for energetic particles interacting with an MHD fluid. When fast ions are neglected, it is found that the dominant instability is an ideal interchange mode with the dominant harmonic m/n = 2/1, where m, n are respectively the poloidal and toroidal numbers. The spatial peak location of the m/n = 2/1 harmonic is close to the ι = 1/2 magnetic surface located at r/a = 0.29, where ι is the rotational transform and r/a is the normalized radius. The second unstable mode is a resistive interchange mode with m/n =3/2 that peaks at r/a = 0.65 nearby the ι = 2/3 surface, which grows more slowly than the m/n = 2/1 mode. The nonlinear coupling of the m/n = 3/2 and 2/1 mode results in the growth of the m/n = 5/3 mode and other modes leading to the global reduction and flattening of the pressure profile. When fast ions are considered with the central beta value 0.2% and the total pressure profile is kept the same, the ideal interchange mode with m/n = 2/1 located close to the plasma center is stabilized while the resistive interchange mode with m/n = 3/2 located far from the plasma center is less affected. The stabilization is attributed to the reduction of bulk pressure gradient, which is the dilution of the free energy source, because the energy transfer between the fast ions and the interchange modes is found to be negligible. For higher fast-ion pressure, Alfvén eigenmodes are destabilized by fast ions.

  16. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.

    PubMed

    Nandi, Saroj Kumar; Gov, Nir S

    2017-10-25

    The physics of active systems of self-propelled particles, in the regime of a dense liquid state, is an open puzzle of great current interest, both for statistical physics and because such systems appear in many biological contexts. We develop a nonequilibrium mode-coupling theory (MCT) for such systems, where activity is included as a colored noise with the particles having a self-propulsion force f 0 and a persistence time τ p . Using the extended MCT and a generalized fluctuation-dissipation theorem, we calculate the effective temperature T eff of the active fluid. The nonequilibrium nature of the systems is manifested through a time-dependent T eff that approaches a constant in the long-time limit, which depends on the activity parameters f 0 and τ p . We find, phenomenologically, that this long-time limit is captured by the potential energy of a single, trapped active particle (STAP). Through a scaling analysis close to the MCT glass transition point, we show that τ α , the α-relaxation time, behaves as τ α ∼ f 0 -2γ , where γ = 1.74 is the MCT exponent for the passive system. τ α may increase or decrease as a function of τ p depending on the type of active force correlations, but the behavior is always governed by the same value of the exponent γ. Comparison with the numerical solution of the nonequilibrium MCT and simulation results give excellent agreement with scaling analysis.

  17. Active sources in the cutoff of centrifugal fans to reduce the blade tones at higher-order duct mode frequencies

    NASA Astrophysics Data System (ADS)

    Neise, W.; Koopmann, G. H.

    1991-01-01

    A previously developed (e.g., Neise and Koopmann, 1984; Koopmann et al., 1988) active noise control technique in which the unwanted acoustic signals from centrifugal fans are suppressed by placing two externally driven sources near the cutoff of the casing was applied to the frequency region where not only plane sound waves are propagational in the fan ducts but also higher-order acoustic modes. Using a specially designed fan noise testing facility, the performance of two fans (280-mm impeller diam and 508 mm diam) was monitored with static pressure taps mounted peripherally around the inlet nozzle. Experimental results show that the aerodynamically generated source pressure field around the cutoff is too complex to be successfully counterimaged by only two active sources introduced in this region. It is suggested that, for an efficient application of this noise control technique in the higher-order mode frequency regime, it is neccessary to use an active source involving larger number of individually driven loudspeakers.

  18. Normal weight children have higher cognitive performance - Independent of physical activity, sleep, and diet.

    PubMed

    Hjorth, Mads F; Sørensen, Louise B; Andersen, Rikke; Dyssegaard, Camilla B; Ritz, Christian; Tetens, Inge; Michaelsen, Kim F; Astrup, Arne; Egelund, Niels; Sjödin, Anders

    2016-10-15

    Aside from the health consequences, observational studies indicate that being overweight may also negatively affect cognitive function. However, existing evidence has to a large extent not controlled for the possible confounding effect of having different lifestyles. Therefore, the objective was to examine the independent associations between weight status and lifestyle indicators with cognitive performance in 8-11year old Danish children. The analyses included 828 children (measured in 2011-2012) each having one to three measurement occasions separated by approximately 100days. Dietary intake, physical activity, sedentary time, and sleep duration were measured using dietary records and accelerometers. The Children's Sleep Habits Questionnaire was used to access sleep problems and the Andersen test was carried out to estimate cardio-respiratory fitness (CRF). Weight status (underweight, normal weight, and overweight/obese) was defined according to body mass index and cognitive performance was assessed using the d2-test of attention, a reading test, and a math test. A linear mixed model including a number of fixed and random effects was used to test associations between lifestyle indicators as well as BMI category and cognitive performance. After adjustment for demographics, socioeconomics, and multiple lifestyle indicators, normal weight children had higher cognitive test scores than overweight/obese and underweight children of up to 89% and 48% of expected learning within one school year (P<0.05). Daily breakfast consumption, fewer sleep problems, higher CRF, less total physical activity, more sedentary time, and less light physical activity were associated with higher cognitive performance independently of each other in at least one of the three cognitive tests (P<0.05). Normal weight children had higher cognitive performance compared to overweight/obese as well as underweight children, independent of multiple lifestyle indicators. Copyright © 2016 Elsevier Inc

  19. On new non-modal hydrodynamic stability modes and resulting non-exponential growth rates - a Lie symmetry approach

    NASA Astrophysics Data System (ADS)

    Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan

    2016-11-01

    Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.

  20. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    PubMed

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.