Science.gov

Sample records for active pharmaceutical ingredient

  1. Active Pharmaceutical Ingredients and Aquatic Organisms

    EPA Science Inventory

    The presence of active pharmaceuticals ingredients (APIs) in aquatic systems in recent years has led to a burgeoning literature examining environmental occurrence, fate, effects, risk assessment, and treatability of these compounds. Although APIs have received much attention as ...

  2. Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients.

    PubMed

    Carlsson, Carina; Johansson, Anna-Karin; Alvan, Gunnar; Bergman, Kerstin; Kühler, Thomas

    2006-07-01

    As part of achieving national environmental goals, the Swedish Government commissioned an official report from the Swedish Medical Products Agency on environmental effects of pharmaceuticals. Considering half-lives/biodegradability, environmental occurrence, and Swedish sales statistics, 27 active pharmaceutical ingredients were selected for environmental hazard and risk assessments. Although there were large data gaps for many of the compounds, nine ingredients were identified as dangerous for the aquatic environment. Only the sex hormones oestradiol and ethinyloestradiol were considered to be associated with possible aquatic environmental risks. We conclude that risk for acute toxic effects in the environment with the current use of active pharmaceutical ingredients is unlikely. Chronic environmental toxic effects, however, cannot be excluded due to lack of chronic ecotoxicity data. Measures to reduce potential environmental impact posed by pharmaceutical products must be based on knowledge on chronic ecotoxic effects of both active pharmaceutical ingredients as well as excipients. We believe that the impact pharmaceuticals have on the environment should be further studied and be given greater attention such that informed assessments of hazards as well as risks can be done. PMID:16257037

  3. Source characterization of nervous system active pharmaceutical ingredients in healthcare wastewaters

    EPA Science Inventory

    Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metaboli...

  4. Impurity profile tracking for active pharmaceutical ingredients: case reports.

    PubMed

    Zhou, Lili; Mao, Bing; Reamer, Robert; Novak, Tom; Ge, Zhihong

    2007-06-28

    Tracking the impurity profile of an active pharmaceutical ingredient (API) is a very important task for all stages of drug development. A systematic approach for tracking impurity profile of API is described. Various real pharmaceutical applications are presented through successful examples of impurity profile tracking for three different novel APIs. These include MK-0969, an M3 antagonist; MK-0677, an oral-active growth hormone secretagogue and API-A, a cathepsin K inhibitor. A general strategy including selection of a reversed phase high performance liquid chromatographic (RP-HPLC) impurity profile method based on screening various stationary phases and changing the pH of the mobile phase and elucidation of impurity structures through the utilization of LC-MS, preparative-LC and NMR is demonstrated. A series of studies were conducted on the peak purity check by using the LC-UV diode-array and LC-MS detections. The advantages and disadvantages of each technique in the evaluation of peak purity are discussed. PMID:17142001

  5. Terahertz study on porosity and mass fraction of active pharmaceutical ingredient of pharmaceutical tablets.

    PubMed

    Bawuah, Prince; Tan, Nicholas; Tweneboah, Samuel Nana A; Ervasti, Tuomas; Axel Zeitler, J; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2016-08-01

    In this study, terahertz time-domain spectroscopic (THz-TDS) technique has been used to ascertain the change in the optical properties, as a function of changing porosity and mass fraction of active pharmaceutical ingredient (API), of training sets of pharmaceutical tablets. Four training sets of pharmaceutical tablets were compressed with microcrystalline cellulose (MCC) excipient and indomethacin API by varying either the porosity, height, and API mass fraction or all three tablet parameters. It was observed, as far as we know, for the first time, that the THz time-domain and frequency-domain effective refractive index, as well as, the frequency-domain effective absorption coefficient both show linear correlations with the porosity and API mass fraction for training sets of real pharmaceutical tablets. We suggest that, the observed linear correlations can be useful in basic research and quality inspection of pharmaceutical tablets. Additionally, we propose a novel optical strain parameter, based on THz measurement, which yields information on the conventional strain parameter of a tablet as well as on the change of fill fraction of solid material during compression of porous pharmaceutical tablets. We suggest that the THz measurement and proposed method of data analysis, in addition to providing an efficient tool for basic research of porous media, can serve as one of the novel quality by design (QbD) implementation techniques to predict critical quality attributes (CQA) such as porosity, API mass fraction and strain of flat-faced pharmaceutical tablets before production. PMID:27288937

  6. Quality investigation of hydroxyprogesterone caproate active pharmaceutical ingredient and injection

    PubMed Central

    Chollet, John L.; Jozwiakowski, Michael J.

    2012-01-01

    The purpose of this study was to investigate the quality of hydroxyprogesterone caproate (HPC) active pharmaceutical ingredient (API) sources that may be used by compounding pharmacies, compared to the FDA-approved source of the API; and to investigate the quality of HPC injection samples obtained from compounding pharmacies in the US, compared to the FDA-approved product (Makena®). Samples of API were obtained from every source confirmed to be an original manufacturer of the drug for human use, which were all companies in China that were not registered with FDA. Eight of the ten API samples (80%) did not meet the impurity specifications required by FDA for the API used in the approved product. One API sample was found to not be HPC at all; additional laboratory testing showed that it was glucose. Thirty samples of HPC injection obtained from com pounding pharmacies throughout the US were also tested, and eight of these samples (27%) failed to meet the potency requirement listed in the USP monograph for HPC injection and/or the HPLC assay. Sixteen of the thirty injection samples (53%) exceeded the impurity limit setforthe FDA-approved drug product. These results confirm the inconsistency of compounded HPC Injections and suggest that the risk-benefit ratio of using an unapproved compounded preparation, when an FDA-approved drug product is available, is not favorable. PMID:22329865

  7. Effects of active pharmaceutical ingredients mixtures in mussel Mytilus galloprovincialis.

    PubMed

    Gonzalez-Rey, M; Mattos, J J; Piazza, C E; Bainy, A C D; Bebianno, M J

    2014-08-01

    Active pharmaceutical ingredients (APIs) are emergent environmental contaminants widely detected in surface waters as result of incomplete waste water treatment plant (WWTP) removal processes and improper disposal. The assessment of potential effects of APIs on non-target organisms is still scarce since besides presenting multiple chemical structures, properties and modes of action, these compounds occur as complex mixtures. This study comprises a 15-day exposure of mussels Mytilus galloprovincialis to mixtures (at environmentally relevant nominal concentrations) of non-steroidal inflammatory drugs ibuprofen (IBU) and diclofenac (DCF) (250 ng L(-1) each) and selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX) (75 ng L(-1)) (MIX 1) along with the addition of classical pro-oxidant copper (Cu) (5 μg L(-1)) (MIX 2). The goals included the assessment of oxidative stress, neurotoxic and endocrine effects on this sentinel species applying both a multibiomarker and gene expression (here and later gene expression is taken as synonym to gene transcription, although it is acknowledged that it is also affected by, e.g. translation, and mRNA and protein stability) analysis approaches. The results revealed a swifter antioxidant response in digestive glands than in gills induced by MIX 1, nevertheless the presence of Cu in MIX 2 promoted a higher lipid peroxidation (LPO) induction. Neither mixture altered acetylcholinesterase (AChE) activity, while both triggered the formation of vitellogenin-like proteins in females confirming the xenoestrogenic effect of mixtures. All these results varied with respect to those obtained in previous single exposure essays. Moreover, RT-PCR analysis revealed a catalase (CAT) and CYP4Y1 gene expression down- and upregulation, respectively, with no significant changes in mRNA levels of genes encoding superoxide dismutase (SOD) and glutathione-S-transferase (GST). Finally, this study highlights variable tissue and time-specific biomarker

  8. Fixed-Dose Combination Drug Approvals, Patents and Market Exclusivities Compared to Single Active Ingredient Pharmaceuticals

    PubMed Central

    Hao, Jing; Rodriguez-Monguio, Rosa; Seoane-Vazquez, Enrique

    2015-01-01

    Introduction Fixed-dose combinations (FDC) contain two or more active ingredients. The effective patent and exclusivity life of FDC compared to single active ingredient has not been assessed. Objectives Trends in FDA approved FDC in the period 1980–2012 and time lag between approval of FDC and single active ingredients in the combination were assessed, and the effective patent and exclusivity life of FDC was compared with their single active ingredients. Materials and Methods New molecular entities (NMEs), new therapeutic biologics license applications (BLAs) and FDC data were collected from the FDA Orange Book and Drugs@FDA. Analysis included FDC containing one or more NMEs or BLAs at first FDA approval (NMEs-FDC) and only already marketed drugs (Non-NMEs-FDC). Descriptive, Kruskal-Wallis and Wilcoxon Rank Sum analyses were performed. Results During the study period, the FDA approved 28 NMEs-FDC (3.5% of NMEs) and 117 non-NMEs-FDC. FDC approvals increased from 12 in the 1980s to 59 in the 2000s. Non-NMEs-FDC entered the market at a median of 5.43 years (interquartile range 1.74, 10.31) after first FDA approval of single active ingredients in the combination. The Non-NMEs-FDC entered the market at a median of 2.33 years (-7.55, 2.39) before approval of generic single active ingredient. Non-NME-FDC added a median of 9.70 (2.75, 16.24) years to the patent and exclusivity life of the single active ingredients in the combination. Conclusion FDC approvals significantly increased over the last twenty years. Pharmaceutical companies market FDC drugs shortly before the generic versions of the single ingredients enter the market extending the patent and exclusivity life of drugs included in the combination. PMID:26469277

  9. The role of degradant profiling in active pharmaceutical ingredients and drug products.

    PubMed

    Alsante, Karen M; Ando, Akemi; Brown, Roland; Ensing, Janice; Hatajik, Todd D; Kong, Wei; Tsuda, Yoshiko

    2007-01-10

    Forced degradation studies are used to facilitate the development of analytical methodology, to gain a better understanding of active pharmaceutical ingredient (API) and drug product (DP) stability, and to provide information about degradation pathways and degradation products. In order to fulfill development and regulatory needs, this publication provides a roadmap for when and how to perform studies, helpful tools in designing rugged scientific studies, and guidance on how to record and communicate results. PMID:17187892

  10. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs).

    PubMed

    Tan, Davin; Loots, Leigh; Friščić, Tomislav

    2016-06-14

    This overview highlights the emergent area of mechanochemical reactions for making active pharmaceutical ingredients (APIs), and covers the latest advances in the recently established area of mechanochemical screening and synthesis of pharmaceutical solid forms, specifically polymorphs, cocrystals, salts and salt cocrystals. We also provide an overview of the most recent developments in pharmaceutical uses of mechanochemistry, including real-time reaction monitoring, techniques for polymorph control and approaches for continuous manufacture using twin screw extrusion, and more. Most importantly, we show how the overlap of previously unrelated areas of mechanochemical screening for API solid forms, organic synthesis by milling, and mechanochemical screening for molecular recognition, enables the emergence of a new research discipline in which different aspects of pharmaceutical and medicinal chemistry are addressed through mechanochemistry rather than through conventional solution-based routes. The emergence of such medicinal mechanochemistry is likely to have a strong impact on future pharmaceutical and medicinal chemistry, as it offers not only access to materials and reactivity that are sometimes difficult or even impossible to access from solution, but can also provide a general answer to the demands of the pharmaceutical industry for cleaner, safer and efficient synthetic solutions. PMID:27185190

  11. Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design.

    PubMed

    Ticehurst, Martyn David; Marziano, Ivan

    2015-06-01

    This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised. A truly holistic strategy for drug product development should focus on connecting solid form selection, particle engineering and formulation design to both exploit opportunities to access simpler manufacturing operations and prevent failures. Modelling and predictive tools that assist in establishing these links early in product development are discussed. In addition, the potential for differences between the ingoing API physical properties and those in the final product caused by drug product processing is considered. The focus of this review is on oral solid dosage forms and dry powder inhaler products for lung delivery. PMID:25677227

  12. Determination of nickel in active pharmaceutical ingredients by electrothermal atomic absorption spectrometry.

    PubMed

    Bubnič, Zoran; Urleb, Uroš; Kreft, Katjuša; Veber, Marjan

    2010-03-01

    An electrothermal atomic absorption spectrometric procedure for the determination of nickel in active pharmaceutical ingredients was developed. Since the recoveries of nickel by the direct dissolution of samples in diluted nitric acid were low and caused errors in the determination of Ni in pharmaceutical samples, different approaches for sample pre-treatment were examined. It was found that the microwave digestion was the most suitable way for sample preparation. Various combinations of digestion agents and different microwave conditions were tested. The combination of nitric acid and hydrogen peroxide was found to be the most appropriate. The validity of the method was evaluated by recovery studies of spiked samples and by the comparison of the results obtained by inductively coupled plasma mass spectrometry (ICP-MS). The recovery ranged from 87.5 to 104.0% and a good agreement was achieved between both methods. The detection limit and the limit of quantification were 0.6 and 2.1 µg g-1 respectively. The precision of the method was confirmed by the determination of Ni in the spiked samples and was below 4%, expressed in terms of a relative standard deviation. The method was applied to the determination of nickel in production samples of active pharmaceutical ingredients and intermediates. PMID:24061653

  13. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients

    NASA Astrophysics Data System (ADS)

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-01

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.

  14. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients.

    PubMed

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-21

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases. PMID:21341864

  15. Stability Assessment of 10 Active Pharmaceutical Ingredients Compounded in SyrSpend SF.

    PubMed

    Geiger, Christine M; Sorenson, Bridget; Whaley, Paul

    2015-01-01

    The stability of 10 active pharmaceutical ingredients was studied in SyrSpend SF PH4 or SyrSpend SF Alka at room and/or refrigerated temperature (2°C to 8°C). An oral suspension of each active pharmaceutical ingredient was compounded in low actinic plastic bottles at a specific concentration in SyrSpend SF PH4 or SyrSpend SF Alka. Samples were assessed for stability immediately after preparation (day 0) followed by storage at room temperature and/or at refrigerated temperature. At set time points, the samples were removed from storage and assayed using a high-performance liquid chromatographic stability- indicating method. The active pharmaceutical ingredient was considered stable if the suspension retained 90% to 110% of the initial concentration. Furosemide was stable for at least 14 days in SyrSpend SF Alka at refrigerated conditions. Prednisolone sodium phosphate in SyrSpend SF PH4 was stable for at least 30 days at room temperature and refrigerated conditions. Ranitidine hydrochloride suspensions in SyrSpend SF PH4 at room temperature and refrigerated conditions were stable for at least 30 days and 58 days, respectively. Hydrocortisone hemisuccinate and sodium phosphate retained greater than 90% for at least 60 days at both room temperature and refrigerated samples in SyrSpend SF PH4. Amiodarone hydrochloride and nifedipine suspensions at both room temperature and refrigerated conditions retained greater than 90% of the initial concentrations for at least 90 days in SyrSpend SF PH4. Refrigerated samples of simvastatin in SyrSpend SF PH4 were stable for at least 90 days. Spironolactone in SyrSpend SF PH4 at room temperature retained more than 90% of the initial concentration for at least 90 days. Phenobarbital in SyrSpend SF PH4 retained above 90% of initial concentration for at least 154 days at room temperature. This study demonstrated the stability of a wide range of frequently used active pharmaceutical ingredients, tested in SyrSpend SF PH4 and Syr

  16. A risk-based approach to managing active pharmaceutical ingredients in manufacturing effluent.

    PubMed

    Caldwell, Daniel J; Mertens, Birgit; Kappler, Kelly; Senac, Thomas; Journel, Romain; Wilson, Peter; Meyerhoff, Roger D; Parke, Neil J; Mastrocco, Frank; Mattson, Bengt; Murray-Smith, Richard; Dolan, David G; Straub, Jürg Oliver; Wiedemann, Michael; Hartmann, Andreas; Finan, Douglas S

    2016-04-01

    The present study describes guidance intended to assist pharmaceutical manufacturers in assessing, mitigating, and managing the potential environmental impacts of active pharmaceutical ingredients (APIs) in wastewater from manufacturing operations, including those from external suppliers. The tools are not a substitute for compliance with local regulatory requirements but rather are intended to help manufacturers achieve the general standard of "no discharge of APIs in toxic amounts." The approaches detailed in the present study identify practices for assessing potential environmental risks from APIs in manufacturing effluent and outline measures that can be used to reduce the risk, including selective application of available treatment technologies. These measures either are commonly employed within the industry or have been implemented to a more limited extent based on local circumstances. Much of the material is based on company experience and case studies discussed at an industry workshop held on this topic. PMID:26183919

  17. Automated sample preparation for ICP analysis of active pharmaceutical ingredients and intermediates.

    PubMed

    Sims, Jonathan; Smith, Andrew; Patel, Dharmista; Batchelor, Richard; Carreira, Judith

    2011-10-01

    Routine testing of active pharmaceutical ingredients (APIs) for metal residues is an expectation of regulatory bodies such as the FDA (U.S. Food and Drug Administration). Sample preparation techniques are the rate-limiting step in the testing process and can be variable depending on the specific characteristics of the API under test. Simplification and standardization of the routine preparation of inductively coupled plasma spectroscopy sample solutions of organic compounds has been developed using a commercially available robotic workstation. Contamination from the metal components of the instrument and from sample tubes used in the methodology has been studied using a Design of Experiments approach. The optimized method described can be used for the measurement of trace metals in Pharmaceuticals at levels compliant with European and U.S. regulatory requirements. PMID:21906564

  18. Co-Crystals: A Novel Approach to Modify Physicochemical Properties of Active Pharmaceutical Ingredients

    PubMed Central

    Yadav, A. V.; Shete, A. S.; Dabke, A. P.; Kulkarni, P. V.; Sakhare, S. S.

    2009-01-01

    Crystal form can be crucial to the performance of a dosage form. This is especially true for compounds that have intrinsic barriers to drug delivery, such as low aqueous solubility, slow dissolution in gastrointestinal media, low permeability and first-pass metabolism. The nature of the physical form and formulation tends to exhibit the greatest effect on bioavailability parameters of water insoluble compounds that need to be given orally in high doses. An alternative approach available for the enhancement of drug solubility, dissolution and bioavailability is through the application of crystal engineering of co-crystals. The physicochemical properties of the active pharmaceutical ingredients and the bulk material properties can be modified, whilst maintaining the intrinsic activity of the drug molecule. This article covers the advantages of co-crystals over salts, solvates (hydrates), solid dispersions and polymorphs, mechanism of formation of co-crystals, methods of preparation of co-crystals and application of co-crystals to modify physicochemical characteristics of active pharmaceutical ingredients along with the case studies. The intellectual property implications of creating co-crystals are also highly relevant. PMID:20502540

  19. Electrochemical flow injection analysis of hydrazine in an excess of an active pharmaceutical ingredient: achieving pharmaceutical detection limits electrochemically.

    PubMed

    Channon, Robert B; Joseph, Maxim B; Bitziou, Eleni; Bristow, Anthony W T; Ray, Andrew D; Macpherson, Julie V

    2015-10-01

    The quantification of genotoxic impurities (GIs) such as hydrazine (HZ) is of critical importance in the pharmaceutical industry in order to uphold drug safety. HZ is a particularly intractable GI and its detection represents a significant technical challenge. Here, we present, for the first time, the use of electrochemical analysis to achieve the required detection limits by the pharmaceutical industry for the detection of HZ in the presence of a large excess of a common active pharmaceutical ingredient (API), acetaminophen (ACM) which itself is redox active, typical of many APIs. A flow injection analysis approach with electrochemical detection (FIA-EC) is utilized, in conjunction with a coplanar boron doped diamond (BDD) microband electrode, insulated in an insulating diamond platform for durability and integrated into a two piece flow cell. In order to separate the electrochemical signature for HZ such that it is not obscured by that of the ACM (present in excess), the BDD electrode is functionalized with Pt nanoparticles (NPs) to significantly shift the half wave potential for HZ oxidation to less positive potentials. Microstereolithography was used to fabricate flow cells with defined hydrodynamics which minimize dispersion of the analyte and optimize detection sensitivity. Importantly, the Pt NPs were shown to be stable under flow, and a limit of detection of 64.5 nM or 0.274 ppm for HZ with respect to the ACM, present in excess, was achieved. This represents the first electrochemical approach which surpasses the required detection limits set by the pharmaceutical industry for HZ detection in the presence of an API and paves the wave for online analysis and application to other GI and API systems. PMID:26302058

  20. Application of instrumented nanoindentation in preformulation studies of pharmaceutical active ingredients and excipients.

    PubMed

    Egart, Mateja; Janković, Biljana; Srčič, Stane

    2016-09-01

    Nanoindentation allows quantitative determination of a material's response to stress such as elastic and plastic deformation or fracture tendency. Key instruments that have enabled great advances in nanomechanical studies are the instrumented nanoindenter and atomic force microscopy. The versatility of these instruments lies in their capability to measure local mechanical response, in very small volumes and depths, while monitoring time, displacement and force with high accuracy and precision. This review highlights the application of nanoindentation for mechanical characterization of pharmaceutical materials in the preformulation phase (primary investigation of crystalline active ingredients and excipients). With nanoindentation, mechanical response can be assessed with respect to crystal structure. The technique is valuable for mechanical screening of a material at an early development phase in order to predict and better control the processes in which a material is exposed to stress such as milling and compression. PMID:27383883

  1. Use of prediction methods to estimate true density of active pharmaceutical ingredients.

    PubMed

    Cao, Xiaoping; Leyva, Norma; Anderson, Stephen R; Hancock, Bruno C

    2008-05-01

    True density is a fundamental and important property of active pharmaceutical ingredients (APIs). Using prediction methods to estimate the API true density can be very beneficial in pharmaceutical research and development, especially when experimental measurements cannot be made due to lack of material or sample handling restrictions. In this paper, two empirical prediction methods developed by Girolami and Immirzi and Perini were used to estimate the true density of APIs, and the estimation results were compared with experimentally measured values by helium pycnometry. The Girolami method is simple and can be used for both liquids and solids. For the tested APIs, the Girolami method had a maximum error of -12.7% and an average percent error of -3.0% with a 95% CI of (-3.8, -2.3%). The Immirzi and Perini method is more involved and is mainly used for solid crystals. In general, it gives better predictions than the Girolami method. For the tested APIs, the Immirzi and Perini method had a maximum error of 9.6% and an average percent error of 0.9% with a 95% CI of (0.3, 1.6%). PMID:18242023

  2. Consequences of New Approach to Chemical Stability Tests to Active Pharmaceutical Ingredients

    PubMed Central

    Jamrógiewicz, Marzena

    2016-01-01

    There is a great need of broaden look on stability tests of active pharmaceutical ingredients (APIs) in comparison with current requirements contained in pharmacopeia. By usage of many modern analytical methods the conception of monitoring the changes of APIs during initial stage of their exposure to harmful factors has been developed. New knowledge must be acquired in terms of identification of each degradation products, especially volatile ones. Further research as toxicology prediction during in silico studies of determined and identified degradation products is necessary. In silico methods are known as computational toxicology or computer-assisted technologies which are used for predicting toxicology of pharmaceutical substances such as impurities or degradation products. This is a specialized software and databases intended to calculate probability of genotoxicity or mutagenicity of these substances through a chemical structure-based screening process and algorithm specific to a given software program. Applying of new analytical approach is proposed as the usage of PAT tools, XRD, HS-SPME GC-MS/MS, LC-MS/MS for stability testing. Described improvements should be taken into account in case of each drug existing already in the market as well as being implemented as new one. PMID:26955356

  3. Consequences of New Approach to Chemical Stability Tests to Active Pharmaceutical Ingredients.

    PubMed

    Jamrógiewicz, Marzena

    2016-01-01

    There is a great need of broaden look on stability tests of active pharmaceutical ingredients (APIs) in comparison with current requirements contained in pharmacopeia. By usage of many modern analytical methods the conception of monitoring the changes of APIs during initial stage of their exposure to harmful factors has been developed. New knowledge must be acquired in terms of identification of each degradation products, especially volatile ones. Further research as toxicology prediction during in silico studies of determined and identified degradation products is necessary. In silico methods are known as computational toxicology or computer-assisted technologies which are used for predicting toxicology of pharmaceutical substances such as impurities or degradation products. This is a specialized software and databases intended to calculate probability of genotoxicity or mutagenicity of these substances through a chemical structure-based screening process and algorithm specific to a given software program. Applying of new analytical approach is proposed as the usage of PAT tools, XRD, HS-SPME GC-MS/MS, LC-MS/MS for stability testing. Described improvements should be taken into account in case of each drug existing already in the market as well as being implemented as new one. PMID:26955356

  4. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection.

    PubMed

    Kim, Sanghong; Kano, Manabu; Nakagawa, Hiroshi; Hasebe, Shinji

    2011-12-15

    Development of quality estimation models using near infrared spectroscopy (NIRS) and multivariate analysis has been accelerated as a process analytical technology (PAT) tool in the pharmaceutical industry. Although linear regression methods such as partial least squares (PLS) are widely used, they cannot always achieve high estimation accuracy because physical and chemical properties of a measuring object have a complex effect on NIR spectra. In this research, locally weighted PLS (LW-PLS) which utilizes a newly defined similarity between samples is proposed to estimate active pharmaceutical ingredient (API) content in granules for tableting. In addition, a statistical wavelength selection method which quantifies the effect of API content and other factors on NIR spectra is proposed. LW-PLS and the proposed wavelength selection method were applied to real process data provided by Daiichi Sankyo Co., Ltd., and the estimation accuracy was improved by 38.6% in root mean square error of prediction (RMSEP) compared to the conventional PLS using wavelengths selected on the basis of variable importance on the projection (VIP). The results clearly show that the proposed calibration modeling technique is useful for API content estimation and is superior to the conventional one. PMID:22001843

  5. Direct analysis of palladium in active pharmaceutical ingredients by anodic stripping voltammetry.

    PubMed

    Rosolina, Samuel M; Chambers, James Q; Xue, Zi-Ling

    2016-03-31

    Anodic stripping voltammetry, a classical electroanalytical method has been optimized to analyze trace Pd(II) in active pharmaceutical ingredient matrices. The electroanalytical approach with an unmodified glassy carbon electrode was performed in both aqueous and 95% DMSO/5% water (95/5 DMSO/H2O) solutions, without pretreatment such as acid digestion or dry ashing to remove the organics. Limits of detection (LODs) in the presence of caffeine and ketoprofen were determined to be 11 and 9.6 μg g(-1), with a relative standard deviation (RSD) of 5.7% and 2.3%, respectively. This method is simple, highly reproducible, sensitive, and robust. The instrumentation has the potential to be portable and the obviation of sample pretreatment makes it an ideal approach for determining lost catalytic metals in pharmaceutical-related industries. Furthermore, the simultaneous detection of Pd(II) with Cd(II) and Pb(II) in the low μg L(-1) range indicates that this system is capable of simultaneous multi-analyte analysis in a variety of matrices. PMID:26965326

  6. Core-Shell Composite Hydrogels for Controlled Nanocrystal Formation and Release of Hydrophobic Active Pharmaceutical Ingredients.

    PubMed

    Badruddoza, Abu Zayed Md; Godfrin, P Douglas; Myerson, Allan S; Trout, Bernhardt L; Doyle, Patrick S

    2016-08-01

    Although roughly 40% of pharmaceuticals being developed are poorly water soluble, this class of drugs lacks a formulation strategy capable of producing high loads, fast dissolution kinetics, and low energy input. In this work, a novel bottom-up approach is developed for producing and formulating nanocrystals of poorly water-soluble active pharmaceutical ingredients (APIs) using core-shell composite hydrogel beads. Organic phase nanoemulsion droplets stabilized by polyvinyl alcohol (PVA) and containing a model hydrophobic API (fenofibrate) are embedded in the alginate hydrogel matrix and subsequently act as crystallization reactors. Controlled evaporation of this composite material produces core-shell structured alginate-PVA hydrogels with drug nanocrystals (500-650 nm) embedded within the core. Adjustable loading of API nanocrystals up to 83% by weight is achieved with dissolution (of 80% of the drug) occurring in as little as 30 min. A quantitative model is also developed and experimentally validated that the drug release patterns of the fenofibrate nanocrystals can be modulated by controlling the thickness of the PVA shell and drug loading. Thus, these composite materials offer a "designer" drug delivery system. Overall, our approach enables a novel means of simultaneous controlled crystallization and formulation of hydrophobic drugs that circumvents energy intensive top-down processes in traditional manufacturing. PMID:27249402

  7. Quantitative determination of residual active pharmaceutical ingredients and intermediates on equipment surfaces by ion mobility spectrometry.

    PubMed

    Qin, C; Granger, A; Papov, V; McCaffrey, J; Norwood, D L

    2010-01-01

    Ion mobility spectrometry (IMS) is an analytical technique that separates ions based on their gas phase mobility at atmospheric pressure. Since gas phase ion mobility is a function of the shape and structure of the ion, this technique has the potential to provide unique specificity and selectivity. Furthermore, IMS is very sensitive (subnanogram detection limits for many small molecules), and a single analysis is typically completed within 1 min. In principle, these features of IMS should make it an ideal choice for use in cleaning verification analysis of pharmaceutical manufacturing equipment. This report describes the successful development and validation of three different equipment cleaning verification methods using IMS. The methods were developed for a specific intermediate (Compound A) in the synthetic route for a drug substance as well as for final drug substances (active pharmaceutical ingredients Compounds B and C). The cleaning verification methods were validated with respect to specificity, linearity, precision, accuracy, stability, and limit-of-quantitation. In all cases, the limits-of-quantitation were determined to be at the nanogram or sub-nanogram level. Both swab and rinse samples collected from the equipment surfaces were successfully analyzed and manufacturing equipment down-time was significantly minimized due to the reduction in cleaning verification analysis time (for example, the total analysis time for more than 30 samples using IMS was reduced to less than 2h). PMID:19758781

  8. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems.

    PubMed

    Aroso, Ivo M; Silva, João C; Mano, Francisca; Ferreira, Ana S D; Dionísio, Madalena; Sá-Nogueira, Isabel; Barreiros, Susana; Reis, Rui L; Paiva, Alexandre; Duarte, Ana Rita C

    2016-01-01

    A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems. PMID:26586342

  9. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin. PMID:27209695

  10. Managing emissions of active pharmaceutical ingredients from manufacturing facilities: an environmental quality standard approach.

    PubMed

    Murray-Smith, Richard J; Coombe, Vyvyan T; Grönlund, Marie Haag; Waern, Fredrik; Baird, James A

    2012-04-01

    Active pharmaceutical ingredient (API) residues have been found to be widespread in the aquatic environment, albeit in most cases at trace levels, with the route to the environment predominantly being via therapeutic use and subsequent excretion to sewer. Although manufacturing discharges may be a low overall contributor to environmental concentrations, they need to be managed effectively so that they do not adversely affect the local receiving environment. In order to achieve this, a risk-based approach is proposed that identifies the long-term and short-term concentrations, referred to as environmental reference concentrations (ERCs) and maximum tolerable concentrations (MTCs), respectively, of an API which should not be exceeded in the aquatic environment receiving effluent from pharmaceutical manufacturing sites. The ERC approach is based on established environmental quality standard concepts currently used in much national and international legislation. Building on these concepts, the approach takes into account indirect exposure of potential consumers such as fish-eating mammals and humans, as well as primary producers (e.g., algae) and primary and secondary consumers (e.g., invertebrates and fish). Although chronic toxicity data are preferred for ERC derivation, acute data, with appropriate considerations of uncertainty, may be used when chronic data are not available. This approach takes all available information into account, particularly for older established medicines that may predate current regulatory requirements for environmental data, and consequently helps prioritize resources for environmental testing. The ERC approach has been applied to 30 of AstraZeneca's APIs. Merits of the approach are discussed together with opportunities for potential future refinement. PMID:22057894

  11. Challenges in the analytical method development and validation for an unstable active pharmaceutical ingredient.

    PubMed

    Sajonz, Peter; Wu, Yan; Natishan, Theresa K; McGachy, Neil T; Detora, David

    2006-03-01

    A sensitive high-performance liquid chromatography (HPLC) impurity profile method for the antibiotic ertapenem is developed and subsequently validated. The method utilizes an Inertsil phenyl column at ambient temperature, gradient elution with aqueous sodium phosphate buffer at pH 8, and acetonitrile as the mobile phase. The linearity, method precision, method ruggedness, limit of quantitation, and limit of detection of the impurity profile HPLC method are found to be satisfactory. The method is determined to be specific, as judged by resolving ertapenem from in-process impurities in crude samples and degradation products that arise from solid state thermal and light stress, acid, base, and oxidative stressed solutions. In addition, evidence is obtained by photodiode array detection studies that no degradate or impurity having a different UV spectrum coeluted with the major component in stressed or unstressed samples. The challenges during the development and validation of the method are discussed. The difficulties of analyzing an unstable active pharmaceutical ingredient (API) are addressed. Several major impurities/degradates of the API have very different UV response factors from the API. These impurities/degradates are synthesized or prepared by controlled degradation and the relative response factors are determined. PMID:16620508

  12. Towards integrated drug substance and drug product design for an active pharmaceutical ingredient using particle engineering.

    PubMed

    Kougoulos, Eleftherios; Smales, Ian; Verrier, Hugh M

    2011-03-01

    A novel experimental approach describing the integration of drug substance and drug production design using particle engineering techniques such as sonocrystallization, high shear wet milling (HSWM) and dry impact (hammer) milling were used to manufacture samples of an active pharmaceutical ingredient (API) with diverse particle size and size distributions. The API instability was addressed using particle engineering and through judicious selection of excipients to reduce degradation reactions. API produced using a conventional batch cooling crystallization process resulted in content uniformity issues. Hammer milling increased fine particle formation resulting in reduced content uniformity and increased degradation compared to sonocrystallized and HSWM API in the formulation. To ensure at least a 2-year shelf life based on predictions using an Accelerated Stability Assessment Program, this API should have a D [v, 0.1] of 55 μm and a D [v, 0.5] of 140 μm. The particle size of the chief excipient in the drug product formulation needed to be close to that of the API to avoid content uniformity and stability issues but large enough to reduce lactam formation. The novel methodology described here has potential for application to other APIs. PMID:21246419

  13. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents.

    PubMed

    Daouk, Silwan; Chèvre, Nathalie; Vernaz, Nathalie; Bonnabry, Pascal; Dayer, Pierre; Daali, Youssef; Fleury-Souverain, Sandrine

    2015-09-01

    The important number of active pharmaceutical ingredients (API) available on the market along with their potential adverse effects in the aquatic ecosystems, lead to the development of prioritization methods, which allow choosing priority molecules to monitor based on a set of selected criteria. Due to the large volumes of API used in hospitals, an increasing attention has been recently paid to their effluents as a source of environmental pollution. Based on the consumption data of a Swiss university hospital, about hundred of API has been prioritized following an OPBT approach (Occurrence, Persistence, Bioaccumulation and Toxicity). In addition, an Environmental Risk Assessment (ERA) allowed prioritizing API based on predicted concentrations and environmental toxicity data found in the literature for 71 compounds. Both prioritization approaches were compared. OPBT prioritization results highlight the high concern of some non steroidal anti-inflammatory drugs and antiviral drugs, whereas antibiotics are revealed by ERA as potentially problematic to the aquatic ecosystems. Nevertheless, according to the predicted risk quotient, only the hospital fraction of ciprofloxacin represents a risk to the aquatic organisms. Some compounds were highlighted as high-priority with both methods: ibuprofen, trimethoprim, sulfamethoxazole, ritonavir, gabapentin, amoxicillin, ciprofloxacin, raltegravir, propofol, etc. Analyzing consumption data and building prioritization lists helped choosing about 15 API to be monitored in hospital wastewaters. The API ranking approach adopted in this study can be easily transposed to any other hospitals, which have the will to look at the contamination of their effluents. PMID:26144564

  14. Development of a solvate as an active pharmaceutical ingredient: Developability, crystallisation and isolation challenges

    NASA Astrophysics Data System (ADS)

    Douillet, Julien; Stevenson, Neil; Lee, Mei; Mallet, Franck; Ward, Richard; Aspin, Peter; Dennehy, Daniel Robert; Camus, Laure

    2012-03-01

    The preclinical development of an active pharmaceutical ingredient (API) begins with the selection of a solid state form. A solvate may be selected for development if it is sufficiently stable and if the solvent quantity administered to the patient is lower than the tolerated potential daily exposure (PDE). The selection and process development of a solvate is presented here. The initial crystallisation process gave poor control over the particle size distribution (PSD) and inclusion of additional crystallisation solvent in the crystal lattice. These two API attributes were controlled using micronised seeds and optimising the crystallisation conditions. After filtration, slurry washing with a second solvent was used to replace the high boiling point crystallisation solvent to improve the drying efficiency. The slurry washing was modelled and studied in the laboratory to control the level of unbound crystallisation solvent in the API. The API desolvation during slurry washing was studied by considering thermodynamics, by construction of the ternary phase diagram, and kinetics aspects. This work provides useful approaches and considerations to assess the risks specific to the controlled production of a solvate that are rarely presented in the literature.

  15. Active Pharmaceutical Ingredients: Prediction of Physical-Chemical Properties from First Principles

    NASA Astrophysics Data System (ADS)

    Valenzano, Loredana

    2013-03-01

    Polymorphism in active pharmaceutical ingredients (APIs) plays a crucial role both for medical and intellectual property concerns but despite ongoing efforts, experimental and computational investigations of the existence and the physical-chemical properties of the same compound in different forms is still an open question.While comparison between computed and experimental values for properties derived from differences between states is often promising (such as bulk modulus), results are disappointing for absolute values (such as density). Quantum mechanical computational methods describe the systems at 0K, experimentally properties are often evaluated at room temperature. Therefore it is not surprising that results determined from first principles dramatically differ from those obtained experimentally. By applying a quantum mechanical periodic approach that takes into account long range London dispersion forces fitted for solid materials, and by imposing different cell volumes corresponding to different thermodynamic conditions, we show how results from calculations at 0K (structures, vibrational spectra, elastic constants) may be compared to experimental values at higher temperatures, helping to foster a stronger linkage between computational and experimental work on systems such as APIs. Where experimental results are not available, our work represents an innovative approach in addressing the properties of APIs. Our results can also serve as foundation for the developing of new force fields to be adopted within a multi-scale computational approach.

  16. Quantification of active pharmaceutical ingredient and impurities in sildenafil citrate obtained from the Internet

    PubMed Central

    Nutan, Mohammad T.; Dodla, Uday Krishna Reddy

    2014-01-01

    Background: The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. Objective: The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. Methods: A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Results: Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Conclusions: Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug

  17. The significance of different health institutions and their respective contributions of active pharmaceutical ingredients to wastewater.

    PubMed

    Herrmann, Manuel; Olsson, Oliver; Fiehn, Rainer; Herrel, Markus; Kümmerer, Klaus

    2015-12-01

    Active pharmaceutical ingredients (APIs) have been frequently found in the environment. It is, however, still not quite clear who is mainly responsible for API emissions. Hospitals have been considered to be the main contributing point sources for wastewater (WW) discharge of APIs. However, recent studies have shown that the contribution of hospitals to the input of APIs into the aquatic environment is quite low. Due to demographic change and the increase of psychiatric diseases, health institutions (HIs) such as psychiatric hospitals and nursing homes are likely to be important sources as well, but no data is available in this respect. This study aims to assess the impact of HIs and to provide a methodology to measure their respective contributions. Drawing on pharmaceutical consumption data for the years 2010, 2011, and 2012, this study identified API usage patterns for a psychiatric hospital (146 beds), a nursing home (286 inhabitants), and a general hospital (741 beds), the latter of which comprises three separate locations. All the HIs are located in two sub-regions of a county district with about 400,000 citizens in southwestern Germany. A selection of neurological drugs was quantified in the sewer of these facilities to evaluate the correlation between consumption and emission. The API contribution of HIs was assessed by comparing the specific consumption in the facilities with the consumption in households, expressed as the emission potential (IEP). The study shows that the usage patterns of APIs in the psychiatric hospital and the nursing home were different from the general hospital. Neurological drugs such as anticonvulsants, psycholeptics, and psychoanaleptics were mainly consumed in the psychiatric hospital and the nursing home (74% and 65%, respectively). Predicted and average measured concentrations in the effluent of the investigated HIs differed mostly by less than one order of magnitude. Therefore, the consumption-based approach is a useful method

  18. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients.

    PubMed

    Ajazuddin; Alexander, Amit; Qureshi, Azra; Kumari, Leena; Vaishnav, Pramudita; Sharma, Mukesh; Saraf, Swarnlata; Saraf, Shailendra

    2014-09-01

    The current review emphasizes on the herbal bioenhancers which themselves do not possess inherent pharmacological activity of their own but when co-administered with Active Pharmaceutical Ingredients (API), enhances their bioavailability and efficacy. Herbal bioenhancers play a crucial role in enhancing the bioavailability and bioefficacy of different classes of drugs, such as antihypertensives, anticancer, antiviral, antitubercular and antifungal drugs at low doses. This paper highlights various natural compounds that can be utilized as an efficient bioenhancer. Several herbal compounds including piperine, quercetin, genistein, naringin, sinomenine, curcumin, and glycyrrhizin have demonstrated capability to improve the pharmacokinetic parameters of several potent API. This article also focuses on various United States patents on herbal bioenhancers, which has proved to be beneficial in improving oral absorption of nutraceuticals like vitamins, minerals, amino acids and certain herbal compounds. The present paper also describes proposed mechanism of action, which mainly includes absorption process, drug metabolism, and action on drug target. The herbal bioenhancers are easily available, safe, free from side effects, minimizes drug toxicity, shortens the duration of treatment, lowers the drug resistance problems and minimizes the cost of treatment. Inspite of the fact that herbal bioenhancers provide an innovative concept for enhancing the bioavailability of several potent drugs, there are numerous bioenhancers of herbal origin that are yet to be explored in several vital areas. These bioenhancers must also be implied to enhance the bioavailability and bioefficacy through routes other than the oral route of drug delivery. There is a vast array of unexploited plants which can be investigated for their drug bioenhancing potency. The toxicity profiles of these herbal bioenhancers must not be overlooked. Researches must be carried out to solve these issues and to

  19. 78 FR 3900 - Generic Drug User Fee-Active Pharmaceutical Ingredient and Finished Dosage Form Facility Fee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ...The Food and Drug Administration (FDA) is announcing the rate for the generic drug active pharmaceutical ingredient (API) and finished dosage form (FDF) facilities user fees for fiscal year (FY) 2013. The Federal Food, Drug, and Cosmetic Act (the FD&C Act), as amended by the Generic Drug User Fee Amendments of 2012 (GDUFA), enacted the Food and Drug Administration Safety and Innovation Act, as......

  20. Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields

    NASA Astrophysics Data System (ADS)

    Greiner, Maximilian; Elts, Ekaterina; Schneider, Julian; Reuter, Karsten; Briesen, Heiko

    2014-11-01

    The CHARMM, general Amber and OPLS force fields are evaluated for their suitability in simulating the molecular dynamics of the dissolution of the hydrophobic, small-molecule active pharmaceutical ingredients aspirin, ibuprofen, and paracetamol in aqueous media. The force fields are evaluated by comparison with quantum chemical simulations or experimental references on the basis of the following capabilities: accurately representing intra- and intermolecular interactions, appropriately reproducing crystal lattice parameters, adequately describing thermodynamic properties, and the qualitative description of the dissolution behavior. To make this approach easily accessible for evaluating the dissolution properties of novel drug candidates in the early stage of drug development, the force field parameter files are generated using online resources such as the SWISS PARAM servers, and the software packages ACPYPE and Maestro. All force fields are found to reproduce the intermolecular interactions with a reasonable degree of accuracy, with the general Amber and CHARMM force fields showing the best agreement with quantum mechanical calculations. A stable crystal bulk structure is obtained for all model substances, except for ibuprofen, where the reproductions of the lattice parameters and observed crystal stability are considerably poor for all force fields. The heat of solution used to evaluate the solid-to-solution phase transitions is found to be in qualitative agreement with the experimental data for all combinations tested, with the results being quantitatively optimum for the general Amber and CHARMM force fields. For aspirin and paracetamol, stable crystal-water interfaces were obtained. The (100), (110), (011) and (001) interfaces of aspirin or paracetamol and water were simulated for each force field for 30 ns. Although generally expected as a rare event, in some of the simulations, dissolution is observed at 310 K and ambient pressure conditions.

  1. Investigations of the use of bioavailability data to adjust occupational exposure limits for active pharmaceutical ingredients.

    PubMed

    Naumann, Bruce D; Weideman, Patricia A; Sarangapani, Ramesh; Hu, Shu-Cheih; Dixit, Rakesh; Sargent, Edward V

    2009-11-01

    Occupational exposure limits (OELs) for active pharmaceutical ingredients have traditionally been established using no-observed-adverse-effect levels derived from clinical studies employing po and iv routes of administration and by applying default uncertainty factors or chemical-specific adjustment factors. However, exposure by the inhalation or dermal route is more relevant in terms of occupational safety. In this investigation, to explore new methods for route-to-route extrapolation, the bioavailability of MK-0679, a leukotriene D(4) receptor antagonist, was compared following iv, po, intranasal (in), or intratracheal (it) administration. The relative bioavailability of MK-0679 was iv congruent with it > po congruent with in. Bioavailability correction factors (BCFs) of 2.0 and 0.6 were derived from these data to adjust a hypothetical OEL of 0.1 mg/m(3) for MK-0679 with particle sizes of 10 and 50 mum, respectively. These BCFs were used to adjust the OEL established using po clinical data, to reflect the differences in bioavailability following deposition in different regions of the respiratory tract. To further investigate how bioavailability data could be used in setting OELs, a preliminary pharmacokinetic (PK) model was developed to describe the time course of plasma concentrations using the data from the route comparison study. An inhalation study was then performed to test the validity of using either empirical data or modeling approaches to derive BCFs when setting OELs. These investigations demonstrated how the use of route-specific PK data could reduce some of the uncertainties associated with route-to-route extrapolation and allow for improved precision and quantitative adjustments when establishing OELs. Further investigations are needed to better understand the factors responsible for differences in systemic uptake following deposition in different regions of the respiratory tract and how these can be generalized across different classes of soluble

  2. Active pharmaceutical ingredients for antiretroviral treatment in low- and middle-income countries: a survey

    PubMed Central

    Fortunak, Joseph M; de Souza, Rodrigo OMA; Kulkarni, Amol A; King, Christopher L; Ellison, Tiffany; Miranda, Leandro SM

    2015-01-01

    Active pharmaceutical ingredients (APIs) are the molecular entities that exert the therapeutic effects of medicines. This article provides an overview of the major APIs that are entered into antiretroviral therapy (ART), outlines how APIs are manufactured, and examines the regulatory and cost frameworks of manufacturing ART APIs used in low- and middle-income countries (LMICs). Almost all APIs for ART are prepared by chemical synthesis. Roughly 15 APIs account for essentially all of the ARTs used in LMICs. Nearly all of the ART APIs purchased through the Global Fund for AIDS, TB and Malaria (GFATM) or the United States President’s Emergency Plan for AIDS Relief (PEPFAR) are produced by generic companies. API costs are very important because they are the largest contribution to the overall cost of ART. Efficient API production requires substantial investment in chemical manufacturing technologies and the ready availability of raw materials and energy at competitive prices. Generic API production is practiced in only a limited number of countries; the API market for ART is dominated by Indian companies. The quality of these APIs is ensured by manufacturing under good manufacturing practice (GMP), including process validation, testing against previously established specifications and the demonstration of clinical bioequivalence. The investment and personnel costs of a quality management system for GMP contribute significantly to the cost of API production. Chinese companies are the major suppliers for many advanced intermediates in API production. Improved chemistry of manufacturing, economies of scale and optimization of procurement have enabled drastic cost reductions for many ART APIs. The available capacity for global production of quality-assured APIs is likely adequate to meet forecasted demand for 2015. The increased use of ART for paediatric treatment, for second-line and salvage therapy, and the introduction of new APIs and combinations are important

  3. Active pharmaceutical ingredients for antiretroviral treatment in low- and middle-income countries: a survey.

    PubMed

    Fortunak, Joseph M; de Souza, Rodrigo O M A; Kulkarni, Amol A; King, Christopher L; Ellison, Tiffany; Miranda, Leandro S M

    2014-01-01

    Active pharmaceutical ingredients (APIs) are the molecular entities that exert the therapeutic effects of medicines. This article provides an overview of the major APIs that are entered into antiretroviral therapy (ART), outlines how APIs are manufactured, and examines the regulatory and cost frameworks of manufacturing ART APIs used in low- and middle-income countries (LMICs). Almost all APIs for ART are prepared by chemical synthesis. Roughly 15 APIs account for essentially all of the ARTs used in LMICs. Nearly all of the ART APIs purchased through the Global Fund for AIDS, TB and Malaria (GFATM) or the United States President's Emergency Plan for AIDS Relief (PEPFAR) are produced by generic companies. API costs are very important because they are the largest contribution to the overall cost of ART. Efficient API production requires substantial investment in chemical manufacturing technologies and the ready availability of raw materials and energy at competitive prices. Generic API production is practiced in only a limited number of countries; the API market for ART is dominated by Indian companies. The quality of these APIs is ensured by manufacturing under good manufacturing practice (GMP), including process validation, testing against previously established specifications and the demonstration of clinical bioequivalence. The investment and personnel costs of a quality management system for GMP contribute significantly to the cost of API production. Chinese companies are the major suppliers for many advanced intermediates in API production. Improved chemistry of manufacturing, economies of scale and optimization of procurement have enabled drastic cost reductions for many ART APIs. The available capacity for global production of quality-assured APIs is likely adequate to meet forecasted demand for 2015. The increased use of ART for paediatric treatment, for second-line and salvage therapy, and the introduction of new APIs and combinations are important factors

  4. Determination of platinum group metal catalyst residues in active pharmaceutical ingredients by means of total reflection X-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Marguí, Eva; Queralt, Ignasi; Hidalgo, Manuela

    2013-08-01

    The control of metal catalyst residues (i.e., platinum group metals (PGMs)) in different stages of the manufacturing processes of the active pharmaceutical ingredients (APIs) and, especially, in the final product is crucial. For API specimens, there are strict guidelines to limit the levels of metal residues based on their individual levels of safety concern. For PGMs the concentration limit has been established at 10 mg/kg in the API. Therefore great effort is currently being devoted to the development of new and simple procedures to control metals in pharmaceuticals. In the present work, an analytical methodology based on benchtop total reflection X-ray fluorescence spectrometry (TXRF) has been developed for the rapid and simple determination of some PGM catalyst impurities (Rh, Pd, Ir and Pt) in different types of API samples. An evaluation of different sample treatments (dissolution and digestion of the solid pharmaceutical samples) has been carried out and the developed methodologies have been validated according to the analytical parameters to be considered and acceptance criteria for PGM determination according to the United States Pharmacopeia (USP). Limits of quantification obtained for PGM metals were in the range of 2-4 mg/kg which are satisfactory according to current legislation. From the obtained results it is shown that the developed TXRF method can be implemented in the pharmaceutical industries to increase productivity of the laboratory; offering an interesting and complementary analytical tool to other atomic spectroscopic methods.

  5. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    PubMed

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. PMID:27460503

  6. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

    PubMed Central

    2015-01-01

    Summary The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process. PMID:26425178

  7. Optimization of HS-GC-FID-MS Method for Residual Solvent Profiling in Active Pharmaceutical Ingredients Using DoE.

    PubMed

    Poceva Panovska, Ana; Acevska, Jelena; Stefkov, Gjoshe; Brezovska, Katerina; Petkovska, Rumenka; Dimitrovska, Aneta

    2016-02-01

    Within this research, a headspace (HS) gas chromatography-flame ionization detector-mass spectrometry method was developed for profiling of residual solvents (RSs) in active pharmaceutical ingredients (APIs). Design of experiment was used for optimization of sample preparation, as well as for robustness testing of the method. HS equilibration temperature and dilution medium were detected as parameters with greater impact on the sensitivity, compared with the time used for equilibration of the samples. Regardless of the sample solubility, the use of water for sample preparation was found to be crucial for better sensitivity. The use of a well-designed strategy for method development and robustness testing, additional level of identification confidence, as well as use of internal standard provided a strong and reliable analytical tool for API fingerprinting, thus enabling the authentication of the substance based on the RS profile. PMID:26290585

  8. Water determination in active pharmaceutical ingredients using ionic liquid headspace gas chromatography and two different detection protocols.

    PubMed

    Frink, Lillian A; Weatherly, Choyce A; Armstrong, Daniel W

    2014-06-01

    A rapid, accurate, precise and versatile analytical method was developed for the detection and quantification of water in solid active pharmaceutical ingredients (APIs). The headspace gas chromatography (HSGC) method utilized an ionic liquid (IL) based open tubular capillary GC column to increase sensitivity and ruggedness of this method. ILs are also utilized as the headspace solvent because of their low vapor pressure, unique physiochemical properties and high thermal stability. This method is not affected by side reactions and solubility problems which are common with Karl Fischer Titration (KFT) methods. Nor is it as limited as weight loss on drying approaches. The ability to use either/both modern thermal conductivity or barrier ion discharge GC detection provides flexibility, different dynamic ranges and sensitivity. The developed method also was shown to be broadly applicable. PMID:24561336

  9. A Tape Method for Fast Characterization and Identification of Active Pharmaceutical Ingredients in the 2-18 THz Spectral Range

    NASA Astrophysics Data System (ADS)

    Kissi, Eric Ofosu; Bawuah, Prince; Silfsten, Pertti; Peiponen, Kai-Erik

    2015-03-01

    In order to find counterfeit drugs quickly and reliably, we have developed `tape method' a transmission spectroscopic terahertz (THz) measurement technique and compared it with a standard attenuated total reflection (ATR) THz spectroscopic measurement. We used well-known training samples, which include commercial paracetamol and aspirin tablets to check the validity of these two measurement techniques. In this study, the spectral features of some active pharmaceutical ingredients (APIs), such as aspirin and paracetamol are characterized for identification purpose. This work covers a wide THz spectral range namely, 2-18 THz. This proposed simple but novel technique, the tape method, was used for characterizing API and identifying their presence in their dosage forms. By comparing the spectra of the APIs to their dosage forms (powder samples), all distinct fingerprints present in the APIs are also present in their respective dosage forms. The positions of the spectral features obtained with the ATR techniques were akin to that obtained from the tape method. The ATR and the tape method therefore, complement each other. The presence of distinct fingerprints in this spectral range has highlighted the possibility of developing fast THz sensors for the screening of pharmaceuticals. It is worth noting that, the ATR method is applicable to flat faced tablets whereas the tape method is suitable for powders in general (e.g. curved surface tablets that require milling before measurement). Finally, we have demonstrated that ATR techniques can be used to screen counterfeit antimalarial tablets.

  10. Direct determination of ECD in ECD Kit: a solid sample quantitation method for active pharmaceutical ingredient in drug product.

    PubMed

    Chao, Ming-Yu; Liu, Kung-Tien; Hsia, Yi-Chih; Liao, Mei-Hsiu; Shen, Lie-Hang

    2011-01-01

    Technetium-99m ethyl cysteinate dimer (Tc-99m-ECD) is an essential imaging agent used in evaluating the regional cerebral blood flow in patients with cerebrovascular diseases. Determination of active pharmaceutical ingredient, that is, L-Cysteine, N, N'-1,2-ethanediylbis-, diethyl ester, dihydrochloride (ECD) in ECD Kit is a relevant requirement for the pharmaceutical quality control in processes of mass fabrication. We here presented a direct solid sample determination method of ECD in ECD Kit without sample dissolution to avoid the rapid degradation of ECD. An elemental analyzer equipped with a nondispersive infrared detector and a calibration curve of coal standard was used for the quantitation of sulfur in ECD Kit. No significant matrix effect was found. The peak area of coal standard against the amount of sulfur was linear over the range of 0.03-0.10 mg, with a correlation coefficient (r) of 0.9993. Method validation parameters were achieved to demonstrate the potential of this method. PMID:21687539

  11. Supramolecular hydrogen-bonding patterns of co-crystals containing the active pharmaceutical ingredient (API) phloroglucinol and N-heterocycles.

    PubMed

    Cvetkovski, Aleksandar; Bertolasi, Valerio; Ferretti, Valeria

    2016-06-01

    The active pharmaceutical ingredient phloroglucinol (PHL) has been taken as an illustrative molecule to explore the intermolecular interactions which can be established with other molecular entities to build PHL pharmaceutical co-crystals. The crystal structures of five newly synthesized co-crystals are reported, where PHL is crystallized with N-heterocycles, namely 2-hydroxy-6-methylpyridine (1), 2,4-dimethyl-6-hydroxypyrimidine (2), 4-phenylpyridine (3), 2-hydroxypyridine (4) and 2,3,5,6-tetramethylpyrazine (5). The structural characteristics of these co-crystals, as far as the hydrogen-bonding networks and the crystalline architectures are concerned, are strongly dependent on the chemical features of the coformer molecules, as well as on their size and shape. A detailed analysis of the intermolecular interactions established in all the PHL co-crystals of known structures has allowed the recognition of some regularities in the packing modes that can be useful in the design of new supramolecular adducts forming predictable structural motifs. PMID:27240764

  12. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.

    PubMed

    Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver

    2015-06-01

    In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. PMID:25989203

  13. Measurement of low amounts of amorphous content in hydrophobic active pharmaceutical ingredients with dynamic organic vapor sorption.

    PubMed

    Müller, Thorsten; Schiewe, Jörg; Smal, Rüdiger; Weiler, Claudius; Wolkenhauer, Markus; Steckel, Hartwig

    2015-05-01

    Today, a variety of devices for dry powder inhalers (DPIs) is available and many different formulations for optimized deposition in the lung are developed. However, during the production of powder inhalers, processing steps may induce changes to both, the carrier and active pharmaceutical ingredients (APIs). It is well known that standard pharmaceutical operations may lead to structural changes, crystal defects and amorphous regions. Especially operations such as milling, blending and even sieving generate these effects. These disorders may induce re-crystallization and particle size changes post-production which have a huge influence on drug delivery and product stability. In this study, pilot tests with a polar solvent (water) and hydrophilic drug (Salbutamol sulfate) were performed to receive a first impression on further possible implementation of hydrophobic samples with organic solvents. Thereafter, a reliable method for the accurate detection of low amounts of amorphous content is described up to a limit of quantification (LOQ) of 0.5% for a hydrophobic model API (Ciclesonide). The organic vapor sorption method which is a gravimetric method quantifies exactly these low amounts of amorphous content in the hydrophobic powder once the suitable solvent (isopropanol), the correct p/p0 value (0.1) and the exact temperature (25°C) have been found. Afterward it was possible to quantitate low amorphous amounts in jet-milled powders (0.5-17.0%). In summary, the data of the study led to a clearer understanding in what quantity amorphous parts were generated in single production steps and how variable these parts behave to fully crystalline material. Nevertheless it showed how difficult it was to re-crystallize hydrophobic material with water vapor over a short period. For the individual samples it was possible to determine the single humidity at which the material starts to re-crystallize, the behavior against different nonpolar solvents and the calculation of the

  14. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    NASA Astrophysics Data System (ADS)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  15. Risk of error estimated from Palestine pharmacists’ knowledge and certainty on the adverse effects and contraindications of active pharmaceutical ingredients and excipients

    PubMed Central

    2016-01-01

    Purpose: This study aimed to investigate community pharmacists’ knowledge and certainty of adverse effects and contraindications of pharmaceutical products to estimate the risk of error. Factors influencing their knowledge and certainty were also investigated. Methods: The knowledge of community pharmacists was assessed in a cross-sectional design using a multiple-choice questions test on the adverse effects and contraindications of active pharmaceutical ingredients and excipients from May 2014 to March 2015. Self-rated certainty scores were also recorded for each question. Knowledge and certainty scores were combined to estimate the risk of error. Results: Out of 315 subjects, 129 community pharmacists (41.0%) completed the 30 multiple-choice questions test on active ingredients and excipients. Knowledge on active ingredients was associated with the year of graduation and obtaining a licence to practice pharmacy. Knowledge on excipients was associated with the degree obtained. There was higher risk of error in items on excipients than those on ingredients (P<0.01). Conclusion: The knowledge of community pharmacists in Palestine was insufficient with high risk of errors. Knowledge of community pharmacists on the safety issues of active ingredients and excipients need to be improved. PMID:26743774

  16. Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system.

    PubMed

    Lindberg, Richard H; Östman, Marcus; Olofsson, Ulrika; Grabic, Roman; Fick, Jerker

    2014-07-01

    The concentrations and behaviour of 105 different active pharmaceutical ingredients (APIs) in the aqueous phase of sewage water within a municipal sewer collection system have been investigated. Sewage water samples were gathered from seven pump stations (one of which was located within a university hospital) and from sewage water treatment influent and effluent. The targeted APIs were quantified using a multi-residue method based on online solid phase extraction liquid chromatography tandem mass spectrometry. The method was thoroughly validated and complies with EU regulations on sample handling, limits of quantification, quality control and selectivity. 51 APIs, including antibiotics, antidepressants, hypertension drugs, analgesics, NSAIDs and psycholeptics, were found frequently within the sewer collection system. API concentrations and mass flows were evaluated in terms of their frequency of detection, daily variation, median/minimum/maximum/average concentrations, demographic dissimilarities, removal efficiencies, and mass flow profiles relative to municipal sales data. Our results suggest that some APIs are removed from, or introduced to, the aqueous phase of sewage waters within the studied municipal collection system. PMID:24768701

  17. Quantitation of active pharmaceutical ingredients and excipients in powder blends using designed multivariate calibration models by near-infrared spectroscopy.

    PubMed

    Li, Weiyong; Worosila, Gregory D

    2005-05-13

    This research note demonstrates the simultaneous quantitation of a pharmaceutical active ingredient and three excipients in a simulated powder blend containing acetaminophen, Prosolv and Crospovidone. An experimental design approach was used in generating a 5-level (%, w/w) calibration sample set that included 125 samples. The samples were prepared by weighing suitable amount of powders into separate 20-mL scintillation vials and were mixed manually. Partial least squares (PLS) regression was used in calibration model development. The models generated accurate results for quantitation of Crospovidone (at 5%, w/w) and magnesium stearate (at 0.5%, w/w). Further testing of the models demonstrated that the 2-level models were as effective as the 5-level ones, which reduced the calibration sample number to 50. The models had a small bias for quantitation of acetaminophen (at 30%, w/w) and Prosolv (at 64.5%, w/w) in the blend. The implication of the bias is discussed. PMID:15848006

  18. The application of atomic absorption spectrometry for the determination of residual active pharmaceutical ingredients in cleaning validation samples.

    PubMed

    Bubnič, Zoran; Urleb, Uroš; Kreft, Katjuša; Veber, Marjan

    2011-03-01

    The objective of this work was the development and validation of atomic absorption spectrometric (AAS) methods for the determination of residual active pharmaceutical ingredients (API) in rinse samples for cleaning validation. AAS as an indirect method for the determination of API in rinse samples can be applied when it is in the form of salt with metal ions or when the metal ion is a part of the API's structure. The electrothermal AAS methods (aqueous and ethanol medium) for the determination of magnesium in esomeprazole magnesium and the flame AAS method for the determination of lithium in lithium carbonate in rinse samples were developed. Various combinations of solvents were tested and a combination of 1% aqueous or ethanol solution of nitric acid for esomeprazole magnesium and 0.1% aqueous solution of nitric acid for lithium carbonate were found to be the most suitable. The atomization conditions in the graphite furnace and in the flame were carefully studied to avoid losses of analyte and to achieve suitable sensitivity. The cleaning verification methods were validated with respect to accuracy, precision, linearity, limit of detection, and quantification. In all the cases, the limits of detection were at the microgram level. The methods were successfully applied for the determination of esomeprazole magnesium and lithium carbonate in rinse samples from cleaning procedures. PMID:20923390

  19. Development and validation of a stability-indicating reverse phase ultra performance liquid chromatographic method for the estimation of nebivolol impurities in active pharmaceutical ingredients and pharmaceutical formulation.

    PubMed

    Thummala, Veera Raghava Raju; Lanka, Mohana Krishna

    2015-10-01

    A sensitive, stability-indicating gradient reverse phase ultra performance liquid chromatographic method has been developed for the quantitative estimation of nebivolol impurities in active pharmaceutical ingredient (API) and pharmaceutical formulation. Efficient chromatographic separation was achieved on an Acquity BEH C18 column (100 mm x 2.1 mm, 1.7 μm) with mobile phase of a gradient mixture. The flow rate of the mobile phase was 0.18 mL/min with column temperature of 30 degrees C and detection wavelength of 281 nm. The relative response factor values of (R*)-2-( benzylamino)-1-((S*)-6-fluorochroman-2-yl) ethanol ((R x S*) NBV-), (R)-1-((R)-6-fluorochroman-2-yl)-2-((S)-2-((S)-6-fluoro-chroman-2-yl)-2-hydroxyethyl-amino) ethanol ((RRSS) NBV-3), 1-(chroman-2-yl)-2-(2-(6-fluorochroman-2-yl)-2-hydroxyethyl amino) ethanol (monodesfluoro impurity), (S)-1-((R)-6-fluorochroman-2-yl)-2-((R)-2 (S*)-6-fluoro-chroman-2-yl)-2-hydroxyethylamino) ethanol hydrochloride ((RSRS) NBV-3) and (R*)-1-((S*)-6-fluorochroman-2-yl)-2-((S*)-2-((S*)-6-fluoro-chroman-2-yl)-2-hydroxyethylamino) ethanol ((R* S* S* S*) NBV-2) were 0.65, 0.91, 0.68, 0.92 and 0.91 respectively. Nebivolol formulation sample was subjected to the stress conditions of acid, base, oxidative, hydrolytic, thermal, humidity and photolytic degradation. Nebivolol was found to degrade significantly under peroxide stress condition. The degradation products were well resolved from nebivolol and its impurities. The peak purity test results confirmed that the nebivolol peak was homogenous and pure in all stress samples and the mass balance was found to be more than 98%, thus proving the stability-indicating power of the method. The developed method was validated according to International Conference on Hormonization (ICH) guidelines with respect to specificity, linearity, limits of detection and quantification, accuracy, precision and robustness. PMID:26930962

  20. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging.

    PubMed

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-01-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously "eluted" with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method. PMID:27439589

  1. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging

    PubMed Central

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-01-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously “eluted” with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method. PMID:27439589

  2. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-07-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously “eluted” with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method.

  3. Thermal, mechanical and drug release characteristics of an acrylic film using active pharmaceutical ingredient as non-traditional plasticizer.

    PubMed

    Wiranidchapong, Chutima; Kieongarm, Waraporn; Managit, Chittima; Phrompittayarat, Watoo

    2016-01-01

    The objective of this study was to investigate thermal and mechanical properties as well as in vitro drug release of Eudragit® RL (ERL) film using chlorpheniramine maleate (CPM) as either active pharmaceutical ingredient or non-traditional plasticizer. Differential scanning calorimeter was used to measure the glass transition temperature (Tg) of 0-100% w/w CPM in ERL physical mixture. Instron testing machine was used to investigate Young's modulus, tensile stress and tensile strain (%) of ERL film containing 20-60% w/w CPM. Finally, a Franz diffusion cell was used to study drug release from ERL films obtained from four formulations, i.e. CRHP0/0, CRHP0/5, CRHP2/0 and CRHP2/5. The Tg of ERL was decreased when the weight percentage of CPM increased. The reduction of the Tg could be described by Kwei equation, indicating the interaction between CPM and ERL. Modulus and tensile stress decreased whereas tensile strain (%) increased when weight percentage of CPM increased. The change of mechanical properties was associated with the reduction of the Tg when weight percentage of CPM increased. ERL films obtained from four formulations could release the drug in no less than 10 h. Cumulative amount of drug release per unit area of ERL film containing only CPM (CRHP0/0) was lower than those obtained from the formulations containing traditional plasticizer (CRHP0/5), surfactant (CRHP2/0) or both of them (CRHP2/5). The increase of drug release was a result of the increase of drug permeability through ERL film and drug solubility based on traditional plasticizer and surfactant, respectively. PMID:26133082

  4. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries.

    PubMed

    Kookana, Rai S; Williams, Mike; Boxall, Alistair B A; Larsson, D G Joakim; Gaw, Sally; Choi, Kyungho; Yamamoto, Hiroshi; Thatikonda, Shashidhar; Zhu, Yong-Guan; Carriquiriborde, Pedro

    2014-11-19

    Active pharmaceutical ingredients (APIs) can enter the natural environment during manufacture, use and/or disposal, and consequently public concern about their potential adverse impacts in the environment is growing. Despite the bulk of the human population living in Asia and Africa (mostly in low- or middle-income countries), limited work relating to research, development and regulations on APIs in the environment have so far been conducted in these regions. Also, the API manufacturing sector is gradually shifting to countries with lower production costs. This paper focuses mainly on APIs for human consumption and highlights key differences between the low-, middle- and high-income countries, covering factors such as population and demographics, manufacture, prescriptions, treatment, disposal and reuse of waste and wastewater. The striking differences in populations (both human and animal), urbanization, sewer connectivity and other factors have revealed that the environmental compartments receiving the bulk of API residues differ markedly between low- and high-income countries. High sewer connectivity in developed countries allows capture and treatment of the waste stream (point-source). However, in many low- or middle-income countries, sewerage connectivity is generally low and in some areas waste is collected predominantly in septic systems. Consequently, the diffuse-source impact, such as on groundwater from leaking septic systems or on land due to disposal of raw sewage or septage, may be of greater concern. A screening level assessment of potential burdens of APIs in urban and rural environments of countries representing low- and middle-income as well as high-income has been made. Implications for ecological risks of APIs used by humans in lower income countries are discussed. PMID:25405973

  5. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries

    PubMed Central

    Kookana, Rai S.; Williams, Mike; Boxall, Alistair B. A.; Larsson, D. G. Joakim; Gaw, Sally; Choi, Kyungho; Yamamoto, Hiroshi; Thatikonda, Shashidhar; Zhu, Yong-Guan; Carriquiriborde, Pedro

    2014-01-01

    Active pharmaceutical ingredients (APIs) can enter the natural environment during manufacture, use and/or disposal, and consequently public concern about their potential adverse impacts in the environment is growing. Despite the bulk of the human population living in Asia and Africa (mostly in low- or middle-income countries), limited work relating to research, development and regulations on APIs in the environment have so far been conducted in these regions. Also, the API manufacturing sector is gradually shifting to countries with lower production costs. This paper focuses mainly on APIs for human consumption and highlights key differences between the low-, middle- and high-income countries, covering factors such as population and demographics, manufacture, prescriptions, treatment, disposal and reuse of waste and wastewater. The striking differences in populations (both human and animal), urbanization, sewer connectivity and other factors have revealed that the environmental compartments receiving the bulk of API residues differ markedly between low- and high-income countries. High sewer connectivity in developed countries allows capture and treatment of the waste stream (point-source). However, in many low- or middle-income countries, sewerage connectivity is generally low and in some areas waste is collected predominantly in septic systems. Consequently, the diffuse-source impact, such as on groundwater from leaking septic systems or on land due to disposal of raw sewage or septage, may be of greater concern. A screening level assessment of potential burdens of APIs in urban and rural environments of countries representing low- and middle-income as well as high-income has been made. Implications for ecological risks of APIs used by humans in lower income countries are discussed. PMID:25405973

  6. Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability.

    PubMed

    Paluch, Krzysztof J; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2013-10-01

    In order to investigate the effect of using different solid state forms and specific surface area (TBET) of active pharmaceutical ingredients on tabletability and dissolution performance, the mono- and dihydrated crystalline forms of chlorothiazide sodium and chlorothiazide potassium (CTZK) salts were compared to alternative anhydrous and amorphous forms, as well as to amorphous microparticles of chlorothiazide sodium and potassium which were produced by spray drying and had a large specific surface area. The tablet hardness and tensile strength, porosity, and specific surface area of single-component, convex tablets prepared at different compression pressures were characterized. Results confirmed the complexity of the compressibility mechanisms. In general it may be concluded that factors such as solid-state form (crystalline vs amorphous), type of hydration (presence of interstitial molecules of water, dehydrates), or specific surface area of the material have a direct impact on the tabletability of the powder. It was observed that, for powders of the same solid state form, those with a larger specific surface area compacted well, and better than powders of a lower surface area, even at relatively low compression pressures. Compacts prepared at lower compression pressures from high surface area porous microparticles presented the shortest times to dissolve, when compared with compacts made of equivalent materials, which had to be compressed at higher compression pressures in order to obtain satisfactory compacts. Therefore, materials composed of nanoparticulate microparticles (NPMPs) may be considered as suitable for direct compaction and possibly for inclusion in tablet formulations as bulking agents, APIs, carriers, or binders due to their good compactibility performance. PMID:23961942

  7. The effect of microcrystalline cellulose crystallinity on the hydrophilic property of tablets and the hydrolysis of acetylsalicylic acid as active pharmaceutical ingredient inside tablets.

    PubMed

    Awa, Kimie; Shinzawa, Hideyuki; Ozaki, Yukihiro

    2015-08-01

    The crystal structures of active pharmaceutical ingredients and excipients should be strictly controlled because they influence pharmaceutical properties of products which cause the change in the quality or the bioavailability of the products. In this study, we investigated the effects of microcrystalline cellulose (MCC) crystallinity on the hydrophilic properties of tablets and the hydrolysis of active pharmaceutical ingredient, acetylsalicylic acid (ASA), inside tablets by using tablets containing 20% MCC as an excipient. Different levels of grinding were applied to MCC prior to tablet formulation, to intentionally cause structural variation in the MCC. The water penetration and moisture absorbability of the tablets increased with decreasing the crystallinity of MCC through higher level of grinding. More importantly, the hydrolysis of ASA inside tablets was also accelerated. These results indicate that the crystallinity of MCC has crucial effects on the pharmaceutical properties of tablets even when the tablets contain a relatively small amount of MCC. Therefore, controlling the crystal structure of excipients is important for controlling product qualities. PMID:25583304

  8. A survey of the syntheses of active pharmaceutical ingredients for antiretroviral drug combinations critical to access in emerging nations.

    PubMed

    Pinheiro, Eloan Dos Santos; Antunes, Octavio Augusto Ceva; Fortunak, Joseph M D

    2008-09-01

    irrelevant, except for "advanced salvage" drugs such as enfuvirtide. In resource-poor settings cost is a huge factor that limits drug access, resulting in high rates of new infection and subsequent mortality. IP coverage, where granted, can keep access prices for essential ARVs higher than would otherwise be the case. Large, innovator companies have made drugs available at prices very close to the cost of manufacturing for "lowest income" countries. Generic providers in India and elsewhere provide the largest supply of drugs for the developing world. The recent issuance of Voluntary and Compulsory Licenses (VLs, CLs) through the World Trade Organization's TRIP (Treaty Respecting Intellectual Property) provisions arguably contribute to bringing down access prices. The utilization of improved science, pooled purchasing and intelligent procurement practices all definitely contribute to access. This work surveys the production processes for several critical ARVs. These are discussed in terms of scale up, raw material/intermediates and active pharmaceutical ingredient (API) costs. In some cases new routes to APIs or critical intermediates are needed. Based on potential new chemistries, there are significant opportunities to reduce cost for a number of critical ARVs. PMID:18571246

  9. Creation of a tablet database containing several active ingredients and prediction of their pharmaceutical characteristics based on ensemble artificial neural networks.

    PubMed

    Takagaki, Keisuke; Arai, Hiroaki; Takayama, Kozo

    2010-10-01

    A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40 degrees C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. PMID:20310024

  10. Atmospheric identification of active ingredients in over-the-counter pharmaceuticals and drugs of abuse by atmospheric pressure glow discharge mass spectrometry (APGD-MS).

    PubMed

    Brewer, Tim M; Verkouteren, Jennifer R

    2011-09-15

    Atmospheric pressure glow discharge mass spectrometry was used to characterize the active ingredients in pharmaceutical over-the-counter (OTC) drug formulations (Tylenol Allergy, Alka-Seltzer Plus Nighttime, Sudafed, Aleve and Mucinex DM) and drugs of abuse (crack cocaine, methamphetamine, MDMA (ecstasy) and hydrocodone). Material was desorbed and directly ionized under atmospheric conditions by allowing the substance to come in direct contact with the plasma followed by mass spectrometric detection. With this technique, controlled substances and OTC medications were readily distinguished from one another. Characteristic mass spectra were identified for the active ingredients in the OTC and drugs of abuse. Importantly, all drug compounds studied here, both OTC and illicit, demonstrated signals for either molecular ions or protonated molecules as well as fragmentation patterns that are readily identified in the National Institute of Standards and Technology (NIST) electron ionization (EI) mass spectral library. It is believed that this technique holds promise for forensic and law enforcement communities for real-time atmospheric analysis of drugs with database-searchable spectra of controlled substances. PMID:21818799

  11. Quantitative HPLC analysis of active pharmaceutical ingredients in syrup vehicle using centrifugal filter devices and determination of xanthan gum in syrup vehicle using rheometry.

    PubMed

    Chen, Yong; Tadey, Tanya; Hu, Mougang; Carr, Geoff; Guo, Junan

    2010-02-01

    Using rapid centrifugal filtration (active pharmaceutical ingradients of interest. Two model active pharmaceutical ingredients, L-arginine and amphotericin B, were quantitatively recovered from the diluted syrup vehicle after centrifugation with the filter devices. The reproducibility [% relative standard deviation (RSD), peak area] of the filtered samples was less than 0.5%. For amphotericin B samples. The linear range was 0.28 microg/mL to 28.2 microg/mL. The limit of detection was 0.06 microg/mL. The limit of quantification was 0.28 microg/mL. The viscosity of a syrup vehicle changed linearly with the concentration of xanthan gum. A method was thus developed to determine xanthan gum in the syrup vehicle. The accuracy was within 95.0% to 105.0% at different concentration levels. PMID:20109286

  12. Study and determination of elemental impurities by ICP-MS in active pharmaceutical ingredients using single reaction chamber digestion in compliance with USP requirements.

    PubMed

    Muller, Aline L H; Oliveira, Jussiane S S; Mello, Paola A; Muller, Edson I; Flores, Erico M M

    2015-05-01

    In this work a method for active pharmaceutical ingredients (APIs) digestion using the single reaction chamber (SRC-UltraWave™) system was proposed following the new recommendations of United States Pharmacopeia (USP). Levodope (LEVO), primaquine diphosphate (PRIM), propranolol hydrochloride (PROP) and sulfamethoxazole (SULF) were used to evaluate the digestion efficiency of the proposed method. A comparison of digestion efficiency was performed by measuring the carbon content and residual acidity in digests obtained using SRC and in digests obtained using conventional microwave-assisted digestion system (Multiwave(TM)). Three digestion solutions (concentrated HNO3, aqua regia or inverse aqua regia) were evaluated for digestion of APIs. The determination of Cd, Ir, Mn, Mo, Ni, Os, Pb, Pd, Pt, Rh, Ru was performed using inductively coupled plasma mass spectrometry (ICP-MS) in standard mode. Dynamic reaction cell (DRC) mode was used for the determination of (51)V, (52)Cr, (53)Cr, (63)Cu and (65)Cu in order to solve polyatomic ion interferences. Arsenic and Hg were determined using chemical vapor generation coupled to ICP-MS (FI-CVG-ICP-MS). Masses of 500mg of APIs were efficiently digested in a SRC-UltraWave™ system using only HNO3 and allowing a carbon content lower than 250mg L(-1) in final digests. Inverse aqua regia was suitable for digestion of sample masses up to 250mg allowing the determination of Ir, Pd, Pt, Rh and Ru. By using HNO3 or inverse aqua regia, suitable recoveries were obtained (between 91 and 109%) for all analytes (exception for Os). Limits of quantification were in agreement with USP requirements and they ranged from 0.001 to 0.015µg g(-1) for all elemental impurities (exception for Os). The proposed method was suitable for elemental impurities determination in APIs and it can be used in routine analysis for quality control in pharmaceutical industries. PMID:25702998

  13. Comparison of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases and their use in active pharmaceutical ingredient and counterion determinations.

    PubMed

    Liu, Xiaodong; Pohl, Christopher A

    2012-04-01

    This study involved three commercial reversed-phase (RP)/anion-exchange (AEX)/cation-exchange (CEX) trimodal columns, namely Acclaim Trinity P1 (Thermo Fisher Scientific), Obelisc R (SIELC Technologies) and Scherzo SM-C18 (Imtakt). Their chromatographic properties were compared in details with respect to hydrophobicity, anion-exchange capacity, cation-exchange capacity, and selectivity, by studying retention behavior dependency on organic solvent, buffer concentration and pH. It was found that their remarkably different column chemistries resulted in distinctive chromatography properties. Trinity P1 exhibited strong anion-exchange and cation-exchange interactions but low RP retention while Scherzo SM-C18 showed strong reversed-phase retention with little cation-exchange and anion-exchange capacities. For Obelisc R, its reversed-phase capacity was weaker than Scherzo SM-C18 but slightly higher than Trinity P1, and its ion-exchange retentions were between Trinity P1 and Scherzo SM-C18. In addition, their difference in selectivity was demonstrated by examples of determining the active pharmaceutical ingredient (API) and counterion of drug products. PMID:22209548

  14. Investigation of solubilising effects of bile salts on an active pharmaceutical ingredient with unusual pH dependent solubility by NMR spectroscopy.

    PubMed

    Vogtherr, M; Marx, A; Mieden, A-C; Saal, C

    2015-05-01

    The interaction between an ampholytic and amphiphilic Active Pharmaceutical Ingredient (API) showing unusual pH dependent solubility and Fasted State Simulated Intestinal Fluid (FaSSIF) was studied by NMR spectroscopy. Solubility in FaSSIF was drastically increased, about 30 fold, compared to simulated gastrointestinal fluid without bile salts. Our studies aimed at understanding the mechanisms that lead to this drastic enhancement. All species present in solution at various concentrations of API were characterised by Diffusion Ordered Spectroscopy (DOSY) NMR measurements. These indicated the presence of mixed taurocholate-lecithin and pure taurocholate micelles in pure FaSSIF, and formation of mixed taurocholate-API micelles after addition of API. The formation of taurocholate-API micelles was also supported by Nuclear Overhauser Effect/Enhancement (NOE) contacts between taurocholate and the API. Formation of mixed taurocholate-API micelles took place at the expense of pure taurocholate micelles, whereas mixed taurocholate-lecithin micelles remained uninfluenced by the presence of API. Our results showed that the increase in solubility was due to similar amphiphilic properties of the API and taurocholate which enabled formation of mixed taurocholate-API micelles. From results of determination of solubility as well as NMR experiments a phase diagram comprising several micellar species was derived. PMID:25720817

  15. Isotopic finger-printing of active pharmaceutical ingredients by 13C NMR and polarization transfer techniques as a tool to fight against counterfeiting.

    PubMed

    Bussy, Ugo; Thibaudeau, Christophe; Thomas, Freddy; Desmurs, Jean-Roger; Jamin, Eric; Remaud, Gérald S; Silvestre, Virginie; Akoka, Serge

    2011-09-30

    The robustness of adiabatic polarization transfer methods has been evaluated for determining the carbon isotopic finger-printing of active pharmaceutical ingredients. The short time stabilities of the adiabatic DEPT and INEPT sequences are very close to that observed with the one pulse sequence, but the DEPT long time stability is not sufficient for isotopic measurements at natural abundance or low enrichment. Using the INEPT sequence for (13)C isotopic measurements induces a dramatic reduction in the experimental time without deterioration in short time or long time stability. It appears, therefore, to be a method of choice for obtaining the isotopic finger-print of different ibuprofen samples in a minimum time. The results obtained on 13 commercial ibuprofen samples from different origins show that this strategy can be used effectively to determine (13)C distribution within a given molecule and to compare accurately differences in the isotopic distribution between different samples of the given molecule. The present methodology is proposed as a suitable tool to fight against counterfeiting. PMID:21872037

  16. Completeness assessment of type II active pharmaceutical ingredient drug master files under generic drug user fee amendment: review metrics and common incomplete items.

    PubMed

    Zhang, Huyi; Li, Haitao; Song, Wei; Shen, Diandian; Skanchy, David; Shen, Kun; Lionberger, Robert A; Rosencrance, Susan M; Yu, Lawrence X

    2014-09-01

    Under the Generic Drug User Fee Amendments (GDUFA) of 2012, Type II active pharmaceutical ingredient (API) drug master files (DMFs) must pay a user fee and pass a Completeness Assessment (CA) before they can be referenced in an Abbreviated New Drug Application (ANDA), ANDA amendment, or ANDA prior approval supplement (PAS). During the first year of GDUFA implementation, from October 1, 2012 to September 30, 2013, approximately 1,500 Type II API DMFs received at least one cycle of CA review and more than 1,100 Type II DMFs were deemed complete and published on FDA's "Available for Reference List". The data from CA reviews were analyzed for factors that influenced the CA review process and metrics, as well as the areas of DMF submissions which most frequently led to an incomplete CA status. The metrics analysis revealed that electronic DMFs appear to improve the completeness of submission and shorten both the review and response times. Utilizing the CA checklist to compile and proactively update the DMFs improves the chance for the DMFs to pass the CA in the first cycle. However, given that the majority of DMFs require at least two cycles of CA before being deemed complete, it is recommended that DMF fees are paid 6 months in advance of the ANDA submissions in order to avoid negatively impacting the filling status of the ANDAs. PMID:25034968

  17. Comprehensive quantification of tablets with multiple active pharmaceutical ingredients using transmission Raman spectroscopy--a proof of concept study.

    PubMed

    Griffen, Julia; Owen, Andrew; Matousek, Pavel

    2015-11-10

    Transmission Raman spectroscopy is a potent new tool for content uniformity testing in pharmaceutical manufacturing enabling rapid bulk sampling of a material by non-destructive means. In this proof-of-concept study, we present, for the first time, comprehensive quantification of all the constituents in a set of tablets consisting of 5 components (3 APIs and 2 excipients) by this method. The nominal concentration of individual components ranged from 1 to 85% (w/w). Two multivariate partial least-squares approaches have been used to calibrate concentration models consisting of 40 handmade tablets covering 20 sample points. These models successfully predicted all the components in a set of 10 validation tablets covering 5 different sample points. A single model for all components (PLS2) and 5 individual models each optimised for one component (PLS1) performed similarity and have been used to demonstrate that specificity of prediction has been achieved through using a multifactor orthogonal DoE for sample preparation. The ability to determine multiple analyte concentrations in one single measurement further establishes this procedure and its benefits for assay and content uniformity testing. PMID:26263055

  18. Method for the determination of Pd-catalyst residues in active pharmaceutical ingredients by means of high-energy polarized-beam energy dispersive X-ray fluorescence.

    PubMed

    Marguí, E; Van Meel, K; Van Grieken, R; Buendía, A; Fontàs, C; Hidalgo, M; Queralt, I

    2009-02-15

    In medicinal chemistry, Pd is perhaps the most-widely utilized precious metal, as catalyst in reactions which represent key transformations toward the synthesis of new active pharmaceutical ingredients (APIs). The disadvantage of this metal-catalyzed chemistry is that expensive and toxic metal residues are invariably left bound to the desired product. Thus, stringent regulatory guidelines exist for the amount of residual Pd that a drug candidate is allowed to contain. In this work, a rapid and simple method for the determination of Pd in API samples by high-energy polarized-beam energy dispersive X-ray fluorescence spectrometry has been developed and validated according to the specification limits of current legislation (10 mg kg(-1) Pd) and the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH guidelines). Sample and calibration standards preparation includes a first step of homogenization and then, in a second step, the pressing of the powdered material into pellets without any chemical treatment. The use of several synthetic calibration standards made of cellulose to simulate the API matrix appears to be an effective means to obtain reliable calibration curves with a good spread of data points over the working range. With the use of the best measuring conditions, the limit of detection (0.11 mg kg(-1) Pd) as well as the limit of quantitation (0.37 mg kg(-1) Pd) achieved meet rigorous requirements. The repeatability of the XRF measurement appeared to be less than 2%, while the precision of the whole method was around 7%. Trueness was evaluated by analyzing spiked API samples at the level of the specification limit and calculating the recovery factor, which was better than 95%. To study the applicability of the developed methodology for the intended purpose, three batches of the studied API were analyzed for their Pd content, and the attained results were comparable to those obtained by the

  19. Pharmaceutical Ingredients in Drinking Water: Overview of Occurrence and Significance of Human Exposure

    EPA Science Inventory

    A comprehensive examination of the data published through most of 2009 on the active pharmaceutical ingredients (APIs) that have been reported in finished drinking water (FDW) is presented. A synoptic review reveals that published quantitative data for FDW exists for 61 APIs and ...

  20. Dynamics of active pharmaceutical ingredients loads in a Swiss university hospital wastewaters and prediction of the related environmental risk for the aquatic ecosystems.

    PubMed

    Daouk, Silwan; Chèvre, Nathalie; Vernaz, Nathalie; Widmer, Christèle; Daali, Youssef; Fleury-Souverain, Sandrine

    2016-03-15

    The wastewater contamination of a Swiss university hospital by active pharmaceutical ingredient (API) residues was evaluated with a three months monitoring campaign at the outlet of the main building. Flow-proportional samples were collected with an automatic refrigerated sampler and analyzed for 15 API, including antibiotics, analgesics, antiepileptic and anti-inflammatory drugs, by using a validated LC-MS/MS method. The metals Gd and Pt were also analyzed using ICP-MS. Measured concentrations were compared to the predicted ones calculated after the drug average consumption data obtained from the hospital pharmacy. The hospital contribution to the total urban load was calculated according to the consumption data obtained from city pharmacies. Lastly, the environmental hazard and risk quotients (RQ) related to the hospital fraction and the total urban consumption were calculated. Median concentrations of the 15 selected compounds were ranging from 0.04 to 675 μg/L, with a mean detection frequency of 84%. The ratio between predicted and measured environmental concentrations (PEC/MEC) has shown a good accuracy for 5 out of 15 compounds, revealing over- and under-estimations of the PEC model. Mean daily loads were ranging between 0.01 and 14.2g/d, with the exception of paracetamol (109.7 g/d). The hospital contribution to the total urban loads varied from 2.1 to 100% according to the compound. While taking into account dilution and removal efficiencies in wastewater treatment plant, only the hospital fraction of the antibiotics ciprofloxacin and sulfamethoxazole showed, respectively, a high (RQ>1) and moderate (RQ>0.1) risk for the aquatic ecosystems. Nevertheless, when considering the total urban consumption, 7 compounds showed potential deleterious effects on aquatic organisms (RQ>1): gabapentin, sulfamethoxazole, ciprofloxacin, piperacillin, ibuprofen, diclofenac and mefenamic acid. In order to reduce inputs of API residues originating from hospitals various

  1. Encapsulation of new active ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The organic construct consumed as food comes packaged in units that carry the active components, protects the entrapped active materials until delivered to targeted human organ. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in process...

  2. Root Uptake of Pharmaceuticals and Personal Care Product Ingredients.

    PubMed

    Miller, Elizabeth L; Nason, Sara L; Karthikeyan, K G; Pedersen, Joel A

    2016-01-19

    Crops irrigated with reclaimed wastewater or grown in biosolids-amended soils may take up pharmaceuticals and personal care product ingredients (PPCPs) through their roots. The uptake pathways followed by PPCPs and the propensity for these compounds to bioaccumulate in food crops are still not well understood. In this critical review, we discuss processes expected to influence root uptake of PPCPs, evaluate current literature on uptake of PPCPs, assess models for predicting plant uptake of these compounds, and provide recommendations for future research, highlighting processes warranting study that hold promise for improving mechanistic understanding of plant uptake of PPCPs. We find that many processes that are expected to influence PPCP uptake and accumulation have received little study, particularly rhizosphere interactions, in planta transformations, and physicochemical properties beyond lipophilicity (as measured by Kow). Data gaps and discrepancies in methodology and reporting have so far hindered development of models that accurately predict plant uptake of PPCPs. Topics warranting investigation in future research include the influence of rhizosphere processes on uptake, determining mechanisms of uptake and accumulation, in planta transformations, the effects of PPCPs on plants, and the development of predictive models. PMID:26619126

  3. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  4. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  5. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  6. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  7. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  8. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Resano, Martín; Flórez, María del Rosario; Queralt, Ignasi; Marguí, Eva

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH4F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g- 1 (Pd), 8.3 μg g- 1 (Pt) and 9.3 μg g- 1 (Rh) for catalysts, which decreased to 0.08 μg g- 1 (Pd), 0.15 μg g- 1 (Pt) and 0.10 μg g- 1 (Rh) for pharmaceuticals.

  9. Development of an LC-MS method for ultra trace-level determination of 2,2,6,6-tetramethylpiperidine-1-oxl (TEMPO), a potential genotoxic impurity within active pharmaceutical ingredients.

    PubMed

    Pennington, Justin; Cohen, Ryan D; Tian, Ye; Boulineau, Fabien

    2015-10-10

    TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) is a stable free radical which has been widely used for various research and industrial applications, including the manufacture of many active pharmaceutical ingredients. TEMPO has been identified as a potential genotoxic impurity resulting in the need for analytical methodology to accurately determine its level at several orders of magnitude less than typical impurity quantitation limits. TEMPO can undergo disproportionation to form both oxidized and reduced TEMPO, making individual determination unreliable. To overcome this challenge, all TEMPO related species were converted to the reduced form through reduction with sodium ascorbate. Given the ultra-trace (0.5 ppm) level requirements and the lack of UV response in the reduced form, a single quadrupole mass spectrometer (MS) was utilized. In order to implement a highly sensitive MS method in a GMP environment, several approaches were employed to optimize accuracy and robustness including: internal standard correction for drift elimination, six-level standard addition to reduce matrix effects, and weighted linear regression to cover a broad analytical range. The method was fully validated according to ICH guidelines. The method is specific, linear, accurate, precise, and robust within a range of 0.5-100 ppm. PMID:25921639

  10. Solid-state characterization of novel active pharmaceutical ingredients: cocrystal of a salbutamol hemiadipate salt with adipic acid (2:1:1) and salbutamol hemisuccinate salt.

    PubMed

    Paluch, Krzysztof J; Tajber, Lidia; Elcoate, Curtis J; Corrigan, Owen I; Lawrence, Simon E; Healy, Anne Marie

    2011-08-01

    The production of salt or cocrystalline forms is a common approach to alter the physicochemical properties of pharmaceutical compounds. The goal of this work was to evaluate the impact of anion choice (succinate, adipate, and sulfate) on the physicochemical characteristics of salbutamol forms. Novel crystals of salbutamol were produced by solvent evaporation: a cocrystal of salbutamol hemiadipate with adipic acid (salbutamol adipate, SA), salbutamol hemisuccinate tetramethanolate (SSU.MeOH), and its desolvated form (SSU). The crystalline materials obtained were characterized using thermal, X-ray, nuclear magnetic resonance, Fourier transform infrared spectroscopy, dynamic vapor sorption (DVS), and elemental analysis. The crystal forms of SA and SSU.MeOH were determined to be triclinic, (Pī), and monoclinic, (P2(1) /n), respectively. DVS analysis confirmed that SSU and SA do not undergo hydration under increased relative humidity. Both thermal and elemental analyses confirmed the stoichiometry of the salt forms. The aqueous solubilities of SA and SSU were measured to be 82 ± 2 mg/mL (pH 4.5 ± 0.1) and 334 ± 13 mg/mL (pH 6.6 ± 0.1), respectively. Measured values corresponded well with the calculated pH solubility profiles. The intrinsic dissolution rate of cocrystallized SA was approximately four times lower than that of SSU, suggesting its use as an alternative to more rapidly dissolving salbutamol sulfate. PMID:21472730

  11. PTSD: A Search for "Active Ingredients."

    ERIC Educational Resources Information Center

    Huber, Charles H.

    1997-01-01

    Family counselors working with individuals suffering the effects of trauma are encouraged to consider the "active ingredients" found by Charles Figley and Joyce Carbonell at Florida State University and reported in the two articles reviewed. (Author/MKA)

  12. The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients.

    PubMed

    Dulloo, A G

    2011-10-01

    The concept of managing obesity through the stimulation of thermogenesis is currently a focus of considerable attention by the pharmaceutical, nutraceutical and functional food industries. This paper first reviews the landmark discoveries that have fuelled the search for thermogenic anti-obesity products that range from single-target drugs to multi-target functional foods. It subsequently analyses the thermogenic and fat-oxidizing potentials of a wide array of bioactive food ingredients which are categorized under methylxanthines, polyphenols, capsaicinoids/capsinoids, minerals, proteins/amino acids, carbohydrates/sugars and fats/fatty acids. The main outcome of this analysis is that the compounds or combination of compounds with thermogenic and fat-oxidizing potentials are those that possess both sympathomimetic stimulatory activity and acetyl-coA carboxylase inhibitory property, and are capable of targeting both skeletal muscle and brown adipose tissue. The thermogenic potentials of products so far tested in humans range from marginal to modest, i.e. 2-5% above daily energy expenditure. With an increasing number of bioactive food ingredients awaiting screening in humans, there is hope that this thermogenic potential could be safely increased to 10-15% above daily energy expenditure - which would have clinically significant impact on weight management, particularly in the prevention of obesity and in improving the long-term prognosis of post-slimming weight maintenance. PMID:21951333

  13. 21 CFR 352.10 - Sunscreen active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Sunscreen active ingredients. 352.10 Section 352...) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 352.10 Sunscreen active ingredients. The active ingredient of the product consists of any of the following,...

  14. 21 CFR 352.10 - Sunscreen active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Sunscreen active ingredients. 352.10 Section 352...) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 352.10 Sunscreen active ingredients. The active ingredient of the product consists of any of the following,...

  15. 21 CFR 352.10 - Sunscreen active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Sunscreen active ingredients. 352.10 Section 352...) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 352.10 Sunscreen active ingredients. The active ingredient of the product consists of any of the following,...

  16. 21 CFR 352.10 - Sunscreen active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Sunscreen active ingredients. 352.10 Section 352...) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 352.10 Sunscreen active ingredients. The active ingredient of the product consists of any of the following,...

  17. 21 CFR 352.10 - Sunscreen active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Sunscreen active ingredients. 352.10 Section 352...) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 352.10 Sunscreen active ingredients. The active ingredient of the product consists of any of the following,...

  18. 21 CFR 331.10 - Antacid active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Antacid active ingredients. 331.10 Section 331.10... FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.10 Antacid active ingredients. (a) The active antacid ingredients of the product consist of one or more...

  19. 21 CFR 331.10 - Antacid active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Antacid active ingredients. 331.10 Section 331.10... FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.10 Antacid active ingredients. (a) The active antacid ingredients of the product consist of one or more...

  20. 21 CFR 331.10 - Antacid active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Antacid active ingredients. 331.10 Section 331.10... FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.10 Antacid active ingredients. (a) The active antacid ingredients of the product consist of one or more...

  1. 21 CFR 331.10 - Antacid active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Antacid active ingredients. 331.10 Section 331.10... FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.10 Antacid active ingredients. (a) The active antacid ingredients of the product consist of one or more...

  2. 21 CFR 331.10 - Antacid active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Antacid active ingredients. 331.10 Section 331.10... FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.10 Antacid active ingredients. (a) The active antacid ingredients of the product consist of one or more...

  3. Improved metabolites of pharmaceutical ingredient grade Ginkgo biloba and the correlated proteomics analysis.

    PubMed

    Zheng, Wen; Li, Ximin; Zhang, Lin; Zhang, Yanzhen; Lu, Xiaoping; Tian, Jingkui

    2015-06-01

    Ginkgo biloba is an attractive and traditional medicinal plant, and has been widely used as a phytomedicine in the prevention and treatment of cardiovascular and cerebrovascular diseases. Flavonoids and terpene lactones are the major bioactive components of Ginkgo, whereas the ginkgolic acids (GAs) with strong allergenic properties are strictly controlled. In this study, we tested the content of flavonoids and GAs under ultraviolet-B (UV-B) treatment and performed comparative proteomic analyses to determine the differential proteins that occur upon UV-B radiation. That might play a crucial role in producing flavonoids and GAs. Our phytochemical analyses demonstrated that UV-B irradiation significantly increased the content of active flavonoids, and decreased the content of toxic GAs. We conducted comparative proteomic analysis of both whole leaf and chloroplasts proteins. In total, 27 differential proteins in the whole leaf and 43 differential proteins in the chloroplast were positively identified and functionally annotated. The proteomic data suggested that enhanced UV-B radiation exposure activated antioxidants and stress-responsive proteins as well as reduced the rate of photosynthesis. We demonstrate that UV-B irradiation pharmaceutically improved the metabolic ingredients of Ginkgo, particularly in terms of reducing GAs. With high UV absorption properties, and antioxidant activities, the flavonoids were likely highly induced as protective molecules following UV-B irradiation. PMID:25604066

  4. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  5. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  6. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  7. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  8. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  9. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  10. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  11. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  12. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  13. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure...

  14. 21 CFR 346.14 - Protectant active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Protectant active ingredients. 346.14 Section 346... Protectant active ingredients. (a) The following active ingredients may be used as the sole protectant active... solution so that the final product contains not less than 10 and not more than 45 percent glycerin...

  15. 21 CFR 333.120 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... First Aid Antibiotic Drug Products § 333.120 Permitted combinations of active ingredients. The following... with a suitable filler. (b) Combinations of first aid antibiotic active ingredients and...

  16. 21 CFR 333.120 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... First Aid Antibiotic Drug Products § 333.120 Permitted combinations of active ingredients. The following... with a suitable filler. (b) Combinations of first aid antibiotic active ingredients and...

  17. 21 CFR 333.120 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... First Aid Antibiotic Drug Products § 333.120 Permitted combinations of active ingredients. The following... with a suitable filler. (b) Combinations of first aid antibiotic active ingredients and...

  18. 21 CFR 333.120 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... First Aid Antibiotic Drug Products § 333.120 Permitted combinations of active ingredients. The following... with a suitable filler. (b) Combinations of first aid antibiotic active ingredients and...

  19. Expanding the analytical toolbox for identity testing of pharmaceutical ingredients: Spectroscopic screening of dextrose using portable Raman and near infrared spectrometers.

    PubMed

    Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D

    2016-03-31

    In the pharmaceutical industry, dextrose is used as an active ingredient in parenteral solutions and as an inactive ingredient (excipient) in tablets and capsules. In order to address the need for more sophisticated analytical techniques, we report our efforts to develop enhanced identification methods to screen pharmaceutical ingredients at risk for adulteration or substitution using field-deployable spectroscopic screening. In this paper, we report our results for a study designed to evaluate the performance of field-deployable Raman and near infrared (NIR) methods to identify dextrose samples. We report a comparison of the sensitivity of the spectroscopic screening methods against current compendial identification tests that rely largely on a colorimetric assay. Our findings indicate that NIR and Raman spectroscopy are both able to distinguish dextrose by hydration state and from other sugar substitutes with 100% accuracy for all methods tested including spectral correlation based library methods, principal component analysis and classification methods. PMID:26965331

  20. 21 CFR 347.10 - Skin protectant active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Skin protectant active ingredients. 347.10 Section 347.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 347.10 Skin protectant active ingredients. The active ingredients of the product consist of any of...

  1. 21 CFR 347.12 - Astringent active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Astringent active ingredients. 347.12 Section 347.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 347.12 Astringent active ingredients. The active ingredient of the product consists of any one of...

  2. 21 CFR 347.10 - Skin protectant active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Skin protectant active ingredients. 347.10 Section 347.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 347.10 Skin protectant active ingredients. The active ingredients of the product consist of any of...

  3. 21 CFR 347.12 - Astringent active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Astringent active ingredients. 347.12 Section 347.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 347.12 Astringent active ingredients. The active ingredient of the product consists of any one of...

  4. 21 CFR 347.12 - Astringent active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Astringent active ingredients. 347.12 Section 347.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 347.12 Astringent active ingredients. The active ingredient of the product consists of any one of...

  5. 21 CFR 347.10 - Skin protectant active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Skin protectant active ingredients. 347.10 Section 347.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 347.10 Skin protectant active ingredients. The active ingredients of the product consist of any of...

  6. 21 CFR 347.12 - Astringent active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Astringent active ingredients. 347.12 Section 347.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 347.12 Astringent active ingredients. The active ingredient of the product consists of any one of...

  7. 21 CFR 347.12 - Astringent active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Astringent active ingredients. 347.12 Section 347.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 347.12 Astringent active ingredients. The active ingredient of the product consists of any one of...

  8. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Local anesthetic active ingredients. 346.10 Section 346.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any...

  9. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Local anesthetic active ingredients. 346.10 Section 346.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any...

  10. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Local anesthetic active ingredients. 346.10 Section 346.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any...

  11. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Local anesthetic active ingredients. 346.10 Section 346.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any...

  12. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Local anesthetic active ingredients. 346.10 Section 346.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any...

  13. 21 CFR 344.12 - Ear drying aid active ingredient.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Ear drying aid active ingredient. 344.12 Section 344.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....12 Ear drying aid active ingredient. The active ingredient of the product consists of...

  14. 21 CFR 344.12 - Ear drying aid active ingredient.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Ear drying aid active ingredient. 344.12 Section 344.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....12 Ear drying aid active ingredient. The active ingredient of the product consists of...

  15. 21 CFR 344.12 - Ear drying aid active ingredient.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Ear drying aid active ingredient. 344.12 Section 344.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....12 Ear drying aid active ingredient. The active ingredient of the product consists of...

  16. 21 CFR 344.12 - Ear drying aid active ingredient.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Ear drying aid active ingredient. 344.12 Section 344.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....12 Ear drying aid active ingredient. The active ingredient of the product consists of...

  17. 21 CFR 344.12 - Ear drying aid active ingredient.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Ear drying aid active ingredient. 344.12 Section 344.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....12 Ear drying aid active ingredient. The active ingredient of the product consists of...

  18. 21 CFR 333.310 - Acne active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Acne active ingredients. 333.310 Section 333.310... FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Acne Drug Products § 333.310 Acne active ingredients. The active ingredient of the product consists of any of...

  19. 21 CFR 333.310 - Acne active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Acne active ingredients. 333.310 Section 333.310... FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Acne Drug Products § 333.310 Acne active ingredients. The active ingredient of the product consists of any of...

  20. 21 CFR 333.310 - Acne active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Acne active ingredients. 333.310 Section 333.310... FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Acne Drug Products § 333.310 Acne active ingredients. The active ingredient of the product consists of any of...

  1. 21 CFR 333.310 - Acne active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Acne active ingredients. 333.310 Section 333.310... FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Acne Drug Products § 333.310 Acne active ingredients. The active ingredient of the product consists of any of...

  2. 21 CFR 333.310 - Acne active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Acne active ingredients. 333.310 Section 333.310... FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Topical Acne Drug Products § 333.310 Acne active ingredients. The active ingredient of the product consists of any of...

  3. 21 CFR 341.40 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ingredients, or any aspirin and antacid combination provided that the product is labeled according to § 341.85... combination of acetaminophen with other analgesic-antipyretic active ingredients, or any aspirin and antacid... other analgesic-antipyretic active ingredients, or any aspirin and antacid combination provided that...

  4. 21 CFR 341.40 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredients, or any aspirin and antacid combination provided that the product is labeled according to § 341.85... combination of acetaminophen with other analgesic-antipyretic active ingredients, or any aspirin and antacid... other analgesic-antipyretic active ingredients, or any aspirin and antacid combination provided that...

  5. 21 CFR 341.40 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredients, or any aspirin and antacid combination provided that the product is labeled according to § 341.85... combination of acetaminophen with other analgesic-antipyretic active ingredients, or any aspirin and antacid... other analgesic-antipyretic active ingredients, or any aspirin and antacid combination provided that...

  6. 21 CFR 341.40 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ingredients, or any aspirin and antacid combination provided that the product is labeled according to § 341.85... combination of acetaminophen with other analgesic-antipyretic active ingredients, or any aspirin and antacid... other analgesic-antipyretic active ingredients, or any aspirin and antacid combination provided that...

  7. Polyphenols as active ingredients for cosmetic products.

    PubMed

    Zillich, O V; Schweiggert-Weisz, U; Eisner, P; Kerscher, M

    2015-10-01

    Polyphenols are secondary plant metabolites with antioxidant, anti-inflammatory and anti-microbial activity. They are ubiquitously distributed in the plant kingdom; high amounts contain, for example, green tea and grape seeds. Polyphenolic extracts are attractive ingredients for cosmetics and pharmacy due to their beneficial biological properties. This review summarizes the effects of polyphenols in the context of anti-ageing activity. We have explored in vitro studies, which investigate antioxidant activity, inhibition of dermal proteases and photoprotective activity, mostly studied using dermal fibroblasts or epidermal keratinocytes cell lines. Possible negative effects of polyphenols were also discussed. Further, some physicochemical aspects, namely the possible interactions with emulsifiers and the influence of the cosmetic formulation on the skin delivery, were reported. Finally, few clinical studies, which cover the anti-ageing action of polyphenols on the skin after topical application, were reviewed. PMID:25712493

  8. Evaporation drift of pesticides active ingredients.

    PubMed

    De Schampheleire, M; Nuyttens, D; De Keyser, D; Spanoghe, P

    2008-01-01

    Losses of pesticide active ingredients (a.i.) into the atmosphere can occur through several pathways. A main pathway is evaporation drift. The evaporation process of pesticide a.i., after application, is affected by three main factors: Physicochemical properties of the pesticide a.i., weather conditions and crop structure. The main physicochemical parameters are the Henry coefficient, which is a measure for the volatilization tendency of the pesticide a.i. from a dilute aqueous solution, and the vapour pressure, which is a measure for the volatilization tendency of the pesticide a.i. from the solid phase. Five pesticide a.i., with various Henry coefficients and various vapour pressures, were selected to conduct laboratory experiments: metalaxyl-m, dichlorovos, diazinon, Lindane and trifluralin. Evaporation experiments were conducted in a volatilization chamber. It was found that the evaporation tendencies significantly differed according to the physicochemical properties of the a.i. PMID:19226822

  9. 21 CFR 352.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active... measured by the testing procedures established in subpart D of this part. (a) Combinations of sunscreen active ingredients. (1) Two or more sunscreen active ingredients identified in § 352.10(a), (c), (e),...

  10. 21 CFR 352.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active... measured by the testing procedures established in subpart D of this part. (a) Combinations of sunscreen active ingredients. (1) Two or more sunscreen active ingredients identified in § 352.10(a), (c), (e),...

  11. 21 CFR 352.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active... measured by the testing procedures established in subpart D of this part. (a) Combinations of sunscreen active ingredients. (1) Two or more sunscreen active ingredients identified in § 352.10(a), (c), (e),...

  12. 21 CFR 352.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active... measured by the testing procedures established in subpart D of this part. (a) Combinations of sunscreen active ingredients. (1) Two or more sunscreen active ingredients identified in § 352.10(a), (c), (e),...

  13. 21 CFR 352.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE SUNSCREEN DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active... measured by the testing procedures established in subpart D of this part. (a) Combinations of sunscreen active ingredients. (1) Two or more sunscreen active ingredients identified in § 352.10(a), (c), (e),...

  14. 21 CFR 347.10 - Skin protectant active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Skin protectant active ingredients. 347.10 Section 347.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE SKIN PROTECTANT DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 347.10 Skin protectant active...

  15. Endocrine-Active Pharmaceuticals: An Environmental Concern?

    EPA Science Inventory

    Recently, there has been growing interest in pharmaceuticals that are specifically designed to have endocrine activity, such as the estrogens used in birth control pills, exerting unintended effects on fish and other aquatic organisms. These pharmaceuticals may not be persistent...

  16. 21 CFR 341.14 - Antitussive active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Antitussive active ingredients. 341.14 Section 341.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients §...

  17. 21 CFR 333.110 - First aid antibiotic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false First aid antibiotic active ingredients. 333.110... (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE First Aid Antibiotic Drug Products § 333.110 First aid antibiotic active ingredients. The product consists of any...

  18. 21 CFR 333.110 - First aid antibiotic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false First aid antibiotic active ingredients. 333.110... (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE First Aid Antibiotic Drug Products § 333.110 First aid antibiotic active ingredients. The product consists of any...

  19. 21 CFR 333.110 - First aid antibiotic active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false First aid antibiotic active ingredients. 333.110... (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE First Aid Antibiotic Drug Products § 333.110 First aid antibiotic active ingredients. The product consists of any...

  20. 21 CFR 333.110 - First aid antibiotic active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false First aid antibiotic active ingredients. 333.110... (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE First Aid Antibiotic Drug Products § 333.110 First aid antibiotic active ingredients. The product consists of any...

  1. 21 CFR 331.15 - Combination with nonantacid active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.15 Combination with nonantacid active ingredients. (a) An antacid may contain any generally... antacid. No labeling claim of the laxative effect may be used for such a product. (b) An antacid...

  2. 21 CFR 331.15 - Combination with nonantacid active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.15 Combination with nonantacid active ingredients. (a) An antacid may contain any generally... antacid. No labeling claim of the laxative effect may be used for such a product. (b) An antacid...

  3. 21 CFR 331.15 - Combination with nonantacid active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.15 Combination with nonantacid active ingredients. (a) An antacid may contain any generally... antacid. No labeling claim of the laxative effect may be used for such a product. (b) An antacid...

  4. 21 CFR 331.15 - Combination with nonantacid active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.15 Combination with nonantacid active ingredients. (a) An antacid may contain any generally... antacid. No labeling claim of the laxative effect may be used for such a product. (b) An antacid...

  5. 21 CFR 331.15 - Combination with nonantacid active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) DRUGS FOR HUMAN USE ANTACID PRODUCTS FOR OVER-THE-COUNTER (OTC) HUMAN USE Active Ingredients § 331.15 Combination with nonantacid active ingredients. (a) An antacid may contain any generally... antacid. No labeling claim of the laxative effect may be used for such a product. (b) An antacid...

  6. Choleretic Activity of Turmeric and its Active Ingredients.

    PubMed

    Wang, Yonglu; Wang, Liyao; Zhu, Xinyi; Wang, Dong; Li, Xueming

    2016-07-01

    Turmeric, a rhizome of Curcumin longa L. is widely used as both a spice and an herbal medicine. The traditional use of turmeric in gastroenterology is mainly based on its choleretic activity. The aim of this study is to determine the effects of turmeric on bile flow (BF) and total bile acids (TBAs) excretion in a bile fistula rat model after acute duodenal administration. A significant dose-dependent enhancement in both BF and TBAs was detected after treatment with the turmeric decoctions which suggested the choleretic activity was bile acid-dependent secretion. In order to direct the active group of compounds, aqueous (AE), ethyl acetate (EtOAc), and petroleum ether (PE) extracts were investigated. The EtOAc and PE extracts showing high effects were purified to locate the active ingredients. Three curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) and 2 sesquiterpenes (bisacurone B and ar-turmerone) were isolated. It was found Bisacurone B was the most potent choleretic ingredient followed by ar-turmerone, bisdemethoxycurcumin demethoxycurcumin, and then curcumin. The amounts of the active ingredients were quantitatively analyzed by high-performance liquid chromatography. The EtOAc and PE extracts had high sesquiterpenes and curcuminoids content, while the AE extract had poor content of sesquiterpenes and curcuminoids which affected neither BF nor TBAs. Based on the results of multiple linear regression analysis, the content of BIS and TUR were dominant factors (P < 0.01) of controlling BL and TBAs in EtOAC and PE extracts. PMID:27228476

  7. 75 FR 6386 - Pesticide Products; Registration Applications for a New Active Ingredient Chemical; Demiditraz

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... AGENCY Pesticide Products; Registration Applications for a New Active Ingredient Chemical; Demiditraz.... Product name: Demiditraz Technical. Active ingredient: Insecticide and Demiditraz at 100%. Proposed...., Kalamazoo, MI 49001. Product name: CA Acaricide. Active ingredient: Insecticide and Demiditraz at...

  8. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  9. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  10. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  11. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  12. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  13. Pharmacokinetics in the oral cavity: fluoride and other active ingredients.

    PubMed

    Duckworth, Ralph M

    2013-01-01

    Modern commercial toothpastes contain therapeutic ingredients to combat various oral conditions, for example, caries, gingivitis, calculus and tooth stain. The efficient delivery and retention of such ingredients in the mouth is essential for good performance. The aim of this chapter is to review the literature on the oral pharmacokinetics of, primarily, fluoride but also other active ingredients, mainly anti-plaque agents. Elevated levels of fluoride have been found in saliva, plaque and the oral soft tissues after use of fluoridated toothpaste, which persist at potentially active concentrations for hours. Both experiment and mathematical modelling suggest that the soft tissues are the main oral reservoir for fluoride. Qualitatively similar observations have been made for anti-plaque agents such as triclosan and metal cations, though their oral substantivity is generally greater. Scope for improved retention and subsequent efficacy exists. PMID:23817065

  14. 21 CFR 346.16 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 346.16 Section 346.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ingredients § 346.16 Analgesic, anesthetic, and antipruritic active ingredients. The active ingredient of...

  15. 21 CFR 346.16 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 346.16 Section 346.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ingredients § 346.16 Analgesic, anesthetic, and antipruritic active ingredients. The active ingredient of...

  16. 21 CFR 346.16 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 346.16 Section 346.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ingredients § 346.16 Analgesic, anesthetic, and antipruritic active ingredients. The active ingredient of...

  17. 21 CFR 346.16 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 346.16 Section 346.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ingredients § 346.16 Analgesic, anesthetic, and antipruritic active ingredients. The active ingredient of...

  18. 21 CFR 346.16 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 346.16 Section 346.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ingredients § 346.16 Analgesic, anesthetic, and antipruritic active ingredients. The active ingredient of...

  19. 77 FR 60124 - Draft Guidance for Industry on Initial Completeness Assessments for Type II Active Pharmaceutical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ...The Food and Drug Administration (FDA or the Agency) is announcing the availability of a draft guidance for industry entitled ``Initial Completeness Assessments for Type II API DMFs Under GDUFA.'' Under the Generic Drug User Fee Amendments of 2012 (GDUFA), holders of certain drug master files, namely, Type II active pharmaceutical ingredient (API) drug master files (DMFs) that are referenced......

  20. 21 CFR 358.720 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Permitted combinations of active ingredients. 358.720 Section 358.720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Drug Products for the Control of...

  1. 21 CFR 358.720 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Permitted combinations of active ingredients. 358.720 Section 358.720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Drug Products for the Control of...

  2. 21 CFR 358.310 - Ingrown toenail relief active ingredient.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Ingrown toenail relief active ingredient. 358.310 Section 358.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Ingrown Toenail Relief Drug Products §...

  3. 21 CFR 341.20 - Nasal decongestant active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Nasal decongestant active ingredients. 341.20 Section 341.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS...

  4. 21 CFR 341.16 - Bronchodilator active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Bronchodilator active ingredients. 341.16 Section 341.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  5. 21 CFR 341.18 - Expectorant active ingredient.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Expectorant active ingredient. 341.18 Section 341.18 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  6. 21 CFR 341.12 - Antihistamine active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Antihistamine active ingredients. 341.12 Section 341.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  7. 21 CFR 331.11 - Listing of specific active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ion; maximum daily dosage limit 200 mEq. for persons up to 60 years old and 100 mEq. for persons 60...., 8 grams calcium carbonate). (e) Citrate-containing active ingredients: Citrate ion, as citric acid... effervescent preparation); maximum daily dosage limit 200 mEq. of bicarbonate ion for persons up to 60...

  8. 21 CFR 331.11 - Listing of specific active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ion; maximum daily dosage limit 200 mEq. for persons up to 60 years old and 100 mEq. for persons 60...., 8 grams calcium carbonate). (e) Citrate-containing active ingredients: Citrate ion, as citric acid... effervescent preparation); maximum daily dosage limit 200 mEq. of bicarbonate ion for persons up to 60...

  9. 21 CFR 331.11 - Listing of specific active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ion; maximum daily dosage limit 200 mEq. for persons up to 60 years old and 100 mEq. for persons 60...., 8 grams calcium carbonate). (e) Citrate-containing active ingredients: Citrate ion, as citric acid... effervescent preparation); maximum daily dosage limit 200 mEq. of bicarbonate ion for persons up to 60...

  10. 21 CFR 331.11 - Listing of specific active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ion; maximum daily dosage limit 200 mEq. for persons up to 60 years old and 100 mEq. for persons 60...., 8 grams calcium carbonate). (e) Citrate-containing active ingredients: Citrate ion, as citric acid... effervescent preparation); maximum daily dosage limit 200 mEq. of bicarbonate ion for persons up to 60...

  11. 21 CFR 331.11 - Listing of specific active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ion; maximum daily dosage limit 200 mEq. for persons up to 60 years old and 100 mEq. for persons 60...., 8 grams calcium carbonate). (e) Citrate-containing active ingredients: Citrate ion, as citric acid... effervescent preparation); maximum daily dosage limit 200 mEq. of bicarbonate ion for persons up to 60...

  12. 21 CFR 341.16 - Bronchodilator active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Bronchodilator active ingredients. 341.16 Section 341.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  13. 21 CFR 341.16 - Bronchodilator active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Bronchodilator active ingredients. 341.16 Section 341.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  14. 21 CFR 341.20 - Nasal decongestant active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Nasal decongestant active ingredients. 341.20 Section 341.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS...

  15. 21 CFR 341.16 - Bronchodilator active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Bronchodilator active ingredients. 341.16 Section 341.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  16. 21 CFR 341.20 - Nasal decongestant active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Nasal decongestant active ingredients. 341.20 Section 341.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS...

  17. 21 CFR 341.12 - Antihistamine active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Antihistamine active ingredients. 341.12 Section 341.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  18. 21 CFR 341.12 - Antihistamine active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Antihistamine active ingredients. 341.12 Section 341.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  19. 21 CFR 341.16 - Bronchodilator active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Bronchodilator active ingredients. 341.16 Section 341.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  20. 21 CFR 341.12 - Antihistamine active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Antihistamine active ingredients. 341.12 Section 341.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  1. 21 CFR 341.12 - Antihistamine active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Antihistamine active ingredients. 341.12 Section 341.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  2. 21 CFR 341.20 - Nasal decongestant active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Nasal decongestant active ingredients. 341.20 Section 341.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS...

  3. 21 CFR 341.18 - Expectorant active ingredient.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Expectorant active ingredient. 341.18 Section 341.18 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  4. 21 CFR 341.18 - Expectorant active ingredient.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Expectorant active ingredient. 341.18 Section 341.18 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  5. 21 CFR 341.20 - Nasal decongestant active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Nasal decongestant active ingredients. 341.20 Section 341.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS...

  6. 21 CFR 341.18 - Expectorant active ingredient.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Expectorant active ingredient. 341.18 Section 341.18 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  7. 21 CFR 341.18 - Expectorant active ingredient.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Expectorant active ingredient. 341.18 Section 341.18 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE COLD, COUGH, ALLERGY, BRONCHODILATOR, AND ANTIASTHMATIC DRUG PRODUCTS FOR...

  8. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Cholecystokinetic active ingredients. 357.210 Section 357.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE MISCELLANEOUS INTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Cholecystokinetic Drug Products §...

  9. 21 CFR 350.10 - Antiperspirant active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... any buffer component present in the compound, in an aerosol or nonaerosol dosage form. The..., omitting from the calculation any buffer component present in the compound, in a nonaerosol dosage form. The labeled declaration of the percentage of the active ingredient should exclude any water,...

  10. 21 CFR 350.10 - Antiperspirant active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... any buffer component present in the compound, in an aerosol or nonaerosol dosage form. The..., omitting from the calculation any buffer component present in the compound, in a nonaerosol dosage form. The labeled declaration of the percentage of the active ingredient should exclude any water,...

  11. 21 CFR 350.10 - Antiperspirant active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... any buffer component present in the compound, in an aerosol or nonaerosol dosage form. The..., omitting from the calculation any buffer component present in the compound, in a nonaerosol dosage form. The labeled declaration of the percentage of the active ingredient should exclude any water,...

  12. 21 CFR 350.10 - Antiperspirant active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... any buffer component present in the compound, in an aerosol or nonaerosol dosage form. The..., omitting from the calculation any buffer component present in the compound, in a nonaerosol dosage form. The labeled declaration of the percentage of the active ingredient should exclude any water,...

  13. 21 CFR 350.10 - Antiperspirant active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... any buffer component present in the compound, in an aerosol or nonaerosol dosage form. The..., omitting from the calculation any buffer component present in the compound, in a nonaerosol dosage form. The labeled declaration of the percentage of the active ingredient should exclude any water,...

  14. 21 CFR 333.320 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Permitted combinations of active ingredients. 333.320 Section 333.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN...

  15. 21 CFR 333.320 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Permitted combinations of active ingredients. 333.320 Section 333.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN...

  16. 21 CFR 333.210 - Antifungal active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE...

  17. 21 CFR 333.320 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Permitted combinations of active ingredients. 333.320 Section 333.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN...

  18. 21 CFR 333.210 - Antifungal active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE...

  19. 21 CFR 333.320 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Permitted combinations of active ingredients. 333.320 Section 333.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN...

  20. 21 CFR 333.210 - Antifungal active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE...

  1. 21 CFR 333.210 - Antifungal active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE...

  2. 21 CFR 333.320 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Permitted combinations of active ingredients. 333.320 Section 333.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN...

  3. 21 CFR 333.210 - Antifungal active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE...

  4. 21 CFR 358.720 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Permitted combinations of active ingredients. 358.720 Section 358.720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Drug Products for the Control of...

  5. 21 CFR 358.720 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Permitted combinations of active ingredients. 358.720 Section 358.720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Drug Products for the Control of...

  6. 21 CFR 333.110 - First aid antibiotic active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false First aid antibiotic active ingredients. 333.110 Section 333.110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE First Aid Antibiotic Drug Products § 333.110...

  7. 21 CFR 333.120 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Permitted combinations of active ingredients. 333.120 Section 333.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE TOPICAL ANTIMICROBIAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE First Aid Antibiotic Drug Products §...

  8. 21 CFR 358.110 - Wart remover active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Wart remover active ingredients. 358.110 Section 358.110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Wart Remover Drug Products § 358.110 Wart remover...

  9. 21 CFR 358.720 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Permitted combinations of active ingredients. 358.720 Section 358.720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Drug Products for the Control of...

  10. 78 FR 10167 - Pesticide Products; Registration Applications for a New Active Ingredient

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... AGENCY Pesticide Products; Registration Applications for a New Active Ingredient AGENCY: Environmental... products containing an active ingredient not included in any currently registered pesticide products... agricultural producer, food manufacturer, or pesticide manufacturer. The following list of North...

  11. Solubility Prediction of Active Pharmaceutical Compounds with the UNIFAC Model

    NASA Astrophysics Data System (ADS)

    Nouar, Abderrahim; Benmessaoud, Ibtissem; Koutchoukali, Ouahiba; Koutchoukali, Mohamed Salah

    2016-03-01

    The crystallization from solution of an active pharmaceutical ingredient requires the knowledge of the solubility in the entire temperature range investigated during the process. However, during the development of a new active ingredient, these data are missing. Its experimental determination is possible, but tedious. UNIFAC Group contribution method Fredenslund et al. (Vapor-liquid equilibria using UNIFAC: a group contribution method, 1977; AIChE J 21:1086, 1975) can be used to predict this physical property. Several modifications on this model have been proposed since its development in 1977, modified UNIFAC of Dortmund Weidlich et al. (Ind Eng Chem Res 26:1372, 1987), Gmehling et al. (Ind Eng Chem Res 32:178, 1993), Pharma-modified UNIFAC Diedrichs et al. (Evaluation und Erweiterung thermodynamischer Modelle zur Vorhersage von Wirkstofflöslichkeiten, PhD Thesis, 2010), KT-UNIFAC Kang et al. (Ind Eng Chem Res 41:3260, 2002), ldots In this study, we used UNIFAC model by considering the linear temperature dependence of interaction parameters as in Pharma-modified UNIFAC and structural groups as defined by KT-UNIFAC first-order model. More than 100 binary datasets were involved in the estimation of interaction parameters. These new parameters were then used to calculate activity coefficient and solubility of some molecules in various solvents at different temperatures. The model gives better results than those from the original UNIFAC and shows good agreement between the experimental solubility and the calculated one.

  12. Evaluation of P-Listed Pharmaceutical Residues in Empty Pharmaceutical Containers

    EPA Science Inventory

    Under the Resource Conservation and Recovery Act (RCRA), some pharmaceuticals are considered acute hazardous wastes because their sole active pharmaceutical ingredients are P-listed commercial chemical products (40 CFR 261.33). Hospitals and other healthcare facilities have stru...

  13. 21 CFR 348.10 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 348.10 Section 348.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Active Ingredients § 348.10 Analgesic, anesthetic, and antipruritic active ingredients. The...

  14. 21 CFR 348.10 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 348.10 Section 348.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Active Ingredients § 348.10 Analgesic, anesthetic, and antipruritic active ingredients. The...

  15. 21 CFR 348.10 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 348.10 Section 348.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Active Ingredients § 348.10 Analgesic, anesthetic, and antipruritic active ingredients. The...

  16. 21 CFR 348.10 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 348.10 Section 348.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Active Ingredients § 348.10 Analgesic, anesthetic, and antipruritic active ingredients. The...

  17. 21 CFR 348.10 - Analgesic, anesthetic, and antipruritic active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Analgesic, anesthetic, and antipruritic active ingredients. 348.10 Section 348.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Active Ingredients § 348.10 Analgesic, anesthetic, and antipruritic active ingredients. The...

  18. Risks to aquatic organisms posed by human pharmaceutical use

    EPA Science Inventory

    In order to help prioritize future research efforts within the US, risks associated with exposure to human prescription pharmaceutical residues in wastewater were estimated from marketing and pharmacological data. Masses of 371 active pharmaceutical ingredients (APIs) dispensed ...

  19. Predicting variability of aquatic concentrations of human pharmaceuticals

    EPA Science Inventory

    Potential exposure to active pharmaceutical ingredients (APIs) in the aquatic environment is a subject of ongoing concern. We recently estimated maximum likely potency-normalized exposure rates at the national level for several hundred commonly used human prescription pharmaceut...

  20. Prioritizing pharmaceuticals in municipal wastewater

    EPA Science Inventory

    Oral presentation at SETAC North America 32nd annual meeting, describing our prioritization of active pharmaceutical ingredients (APIs), based on estimates of risks posed by API residues originating from municipal wastewater. Goals of this project include prioritization of APIs f...

  1. Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries--a review.

    PubMed

    Eshun, Kojo; He, Qian

    2004-01-01

    Scientific investigations on Aloe vera have gained more attention over the last several decades due to its reputable medicinal properties. Some publications have appeared in reputable Scientific Journals that have made appreciable contributions to the discovery of the functions and utilizations of Aloe--"nature's gift." Chemical analysis reveals that Aloe vera contains various carbohydrate polymers, notably glucomannans, along with a range of other organic and inorganic components. Although many physiological properties of Aloe vera have been described, it still remains uncertain as to which of the component(s) is responsible for these physiological properties. Further research needs to be done to unravel the myth surrounding the biological activities and the functional properties of A. vera. Appropriate processing techniques should be employed during the stabilization of the gel in order to affect and extend its field of utilization. PMID:15116756

  2. 78 FR 64937 - Pesticide Products; Registration Applications for New Active Ingredients

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... 20240. Active ingredient: Male sea lamprey pheromone (3-ketopetromyzonol-24-sulfate). Product type: Biochemical pheromone. Proposed uses: Mating disruptor for sea lamprey control. (BPPD) 3. EPA File...

  3. The THz fingerprint spectra of the active ingredients of a TCM medicine: Herba Ephedrae

    NASA Astrophysics Data System (ADS)

    Ma, Shihua; Liu, Guifeng; Zhang, Peng; Song, Xiyu; Ji, Te; Wang, Wenfeng

    2008-12-01

    In this paper, THz-TDS has been used to measure the spectral properties of two active ingredients of Herba Ephedrae: ephedrine and pseudoephedrine, which exist in hydrochloride salts. The THz spectra of the sole-ingredient, twoingredient and three-ingredient compounds are studied. We obtained the finger-print spectra of the net active ingredients of the medicine, and also measured the mixtures of by two or three active ingredients at the different ratios. At the same time, theoretical analysis and quantitative analysis is applied to foretell the different THz spectra, identify the ingredients and infer the contents of principal components in samples. The THz spectroscopy is a potential and promising technique in evaluating and inspecting the quality of the drugs in the TCM field.

  4. 21 CFR 358.110 - Wart remover active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredient. (a) Salicylic acid 12 to 40 percent in a plaster vehicle. (b) Salicylic acid 5 to 17 percent in a collodion-like vehicle. (c) Salicylic acid 15 percent in a karaya gum, glycol plaster vehicle....

  5. 21 CFR 358.110 - Wart remover active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredient. (a) Salicylic acid 12 to 40 percent in a plaster vehicle. (b) Salicylic acid 5 to 17 percent in a collodion-like vehicle. (c) Salicylic acid 15 percent in a karaya gum, glycol plaster vehicle....

  6. 21 CFR 358.110 - Wart remover active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ingredient. (a) Salicylic acid 12 to 40 percent in a plaster vehicle. (b) Salicylic acid 5 to 17 percent in a collodion-like vehicle. (c) Salicylic acid 15 percent in a karaya gum, glycol plaster vehicle....

  7. 21 CFR 358.110 - Wart remover active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ingredient. (a) Salicylic acid 12 to 40 percent in a plaster vehicle. (b) Salicylic acid 5 to 17 percent in a collodion-like vehicle. (c) Salicylic acid 15 percent in a karaya gum, glycol plaster vehicle....

  8. Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis.

    PubMed

    Zhou, Xiaoxia; Luo, Liping; Dressel, Waike; Shadier, Gulibahaer; Krumbiegel, Doreen; Schmidtke, Peter; Zepp, Fred; Meyer, Claudius U

    2008-01-01

    We have reported that cordycepin, an adenosine derivative from the fungus Cordyceps, increased interleukin (IL)-10 expression, decreased IL-2 expression and suppressed T lymphocyte activity. In the present study, we further characterized the regulatory effects of cordycepin on human immune cells. Moreover, a traditional Chinese drug, Cordyceps sinensis (CS) that contains cordycepin, was also investigated. Cytometric Bead Array (CBA) was used to determine the concentrations of IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, TNF-alpha and IFN-gamma in culture of peripheral blood mononuclear cells (PBMCs). The results showed that both cordycepin and CS up-regulated IL-10, IL-1beta, IL-6, IL-8 and TNF-alpha; at the same time, they suppressed phytohemagglutinin (PHA)-induced production of IL-2, IL-4, IL-5, IFN-gamma and IL-12. As compared to cordycepin, CS displayed its regulatory effects on IL-2 and IL-10 in a similar dose-dependent manner even with higher efficiency. The binding activity of transcription factors in a human monocytic cell line THP-1 was tested by the trans-AM method, and a higher binding activity of SP1 and SP3 was observed in cordycepin or CS treated cells compared to the control. These results led to the opinion that cordycepin and CS pleiotropically affected the actions of immune cells and cytokine network in a similar fashion. Cordycepin could be an important immunoregulatory active ingredient in Cordyceps sinensis. In addition, CS may contain substances which possess synergism with cordycepin, as CS showed a higher efficiency in the production of IL-10 and IL-2 than cordycepin. However, merits of these effects in pharmacology and clinical medicine have yet to be proven and the precise mechanism of these immune regulatory actions should be researched. PMID:19051361

  9. One-pot β-cyclodextrin-assisted extraction of active ingredients from Xue-Zhi-Ning basing its encapsulated ability.

    PubMed

    Zhang, Hui-Jie; Liu, Ya-Nan; Wang, Meng; Wang, Yue-Fei; Deng, Yan-Ru; Cui, Ming-Lei; Ren, Xiao-Liang; Qi, Ai-Di

    2015-11-01

    Xue-Zhi-Ning (XZN) is a traditional Chinese medicine formula, containing active ingredients with poor solubility in water, which has been demonstrated to be helpful for patients with hyperlipidemia. One-pot β-cyclodextrin (β-CD)-assisted extraction of active ingredients from XZN has been carried out to develop an efficient and eco-friendly extraction process. Five active compounds--rubrofusarin gentiobioside, 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside, emodin, nuciferine and quercetin--were identified by UPLC/DAD/MS and used as indexes to evaluate the process optimized by an orthogonal test. The results showed that addition of β-CD significantly enhanced the extraction ratios of all five components. The enhancement of extraction ratios was positively correlated with the apparent formation constants between β-CD and the compounds. The study also showed that the stabilities and dissolution rates of the active ingredients were improved in the presence of β-CD. This one-pot β-cyclodextrin-assisted extraction has the potential to be applied in pharmaceutical preparations directly. PMID:26256368

  10. 21 CFR 358.510 - Corn and callus remover active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Corn and callus remover active ingredients. 358.510 Section 358.510 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... USE Corn and Callus Remover Drug Products § 358.510 Corn and callus remover active ingredients....