Science.gov

Sample records for active photonic devices

  1. Active photonic crystal devices in self-assembled electro-optic polymeric materials

    NASA Astrophysics Data System (ADS)

    Li, J.; Neyman, P. J.; Vercellino, M.; Heflin, J. R.; Duncan, R.; Evoy, S.

    2004-03-01

    Photonic crystals (PC) offer novel and potent approaches for the control of light compared to traditional technologies. The development of a photonic crystal technology in electro-optic (EO) materials would now provide a novel approach for the development and integration of important "active devices" such as switch, interferometers, etc. We report the development of an active photonic crystal technology that uses ionically self-assembled multilayer (ISAM) as materials platform. Specifically, we concentrate on ISAM film grown from the alternate deposition of individual monolayers of Procion Red MX-5B (PR) and poly(allylamine hydrochloride) (PAH). Films grown with this method show a second harmonic generation (SHG) factor (2) as high as 11 x 10-9 esu, and a r33 coefficient of 3 pm/V. Active photonic crystal are designed and demonstrated in this material using the FEMLAB software. In a first design, a simple switch is implemented by simple shift of the photonic crystal bandgap of a waveguiding structure. A Mach-Zehnder photonic crystal interferometer structure is also demonstrated, in which a 1800 phase shift is obtained between the two arms. We will report on the preliminary realization of active photonic devices using this material self-assembly and nanofabrication platform.

  2. Photonic crystals as templates and active devices for cellular and molecular interactions

    NASA Astrophysics Data System (ADS)

    Sonek, G. J.

    2005-04-01

    Photonic crystals are emerging as an important class of engineered nanophotonic devices that possess unique optical properties and which can also provide textured surfaces for the study and control of cellular and molecular interactions. From among the many types of photonic crystal structures, two-dimensional (2D) and planar (slab) photonic crystals are the most attractive because of their ability to support guided-wave and active optical devices in semiconductor and polymer materials, serve as templates for device replication, and interface with colloidal and nanoparticle systems. This paper reports on the results of modeling and design efforts that show how 2d and slab silicon photonic crystals, based on their in-plane optical waveguiding and out-of-plane radiation properties, might be used to probe surface-bound cells and molecules or perform localized spectroscopy. The results of a parametric analysis show that photonic crystals comprised of high-index contrast materials (e.g. Si, air) are sensitive to geometric and material factors, potentially making them an effective medium to study molecular and cellular interactions critical to a number of biotechnological applications

  3. Passive active resonant coupler (PARC): A new platform for monolithic integration of photonic devices

    NASA Astrophysics Data System (ADS)

    Saini, Simarjeet

    The explosive growth of telecommunications and data traffic in recent years has hastened the emergence of optical communication networks. As the volume and complexity of network traffic increases, efficient methods are required for routing and distributing the associated optical signals. This in turn has put pressure on optical device technologies. Not only are new and more complex devices required, but they must also be manufactured and packaged in a cost-efficient way. Soon, there will be a shift in the paradigm from using discrete packaged devices in a module to monolithically integrated photonic circuits where multiple functions are achieved in a single chip. This offers a considerable challenge and a great opportunity for device engineers. It is the goal of this work to continue and expand the sphere of knowledge and applicability of Photonic Integrated circuits (PIC's) by proposing and demonstrating a new platform technology for monolithically integrating various active and passive optical devices. The platform, which has been named the ``Passive Active Resonant Coupler (PARC)'', utilizes single epitaxial growth and conventional fabrication schemes. PARC devices rely on coupling between vertical waveguides where each waveguide is optimized for its specific functionality. The coupling is achieved by using a new proposed scheme of resonance over some specially designed tapers. It has been shown experimentally for the first time that very high coupling efficiencies (less than 1 dB loss) can be achieved over very short lengths, typically less than 100 μm. Coupling between different kinds of active and passive waveguides has been experimentally demonstrated. A few basic PIC's such as the 1 × 2 optical switch and the 2 × 2 cross-point switch have been demonstrated by integrating active and passive waveguides using the PARC platform. The demonstrated integration work is in the 1.55 μm wavelength range using InP as a substrate. However, the PARC platform is

  4. Photonic crystal and photonic wire device structures

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard; Sorel, Marc; Johnson, Nigel; Rahman, Faiz; Ironside, Charles; Cronin, Lee; Watson, Ian; Martin, Robert; Jin, Chongjun; Pottier, Pierre; Chong, Harold; Gnan, Marco; Jugessur, Aju; Camargo, Edilson; Erwin, Grant; Md Zain, Ahmad; Ntakis, Iraklis; Hobbs, Lois; Zhang, Hua; Armenise, Mario; Ciminelli, Caterina; Coquillat, Dominique

    2005-09-01

    Photonic devices that exploit photonic crystal (PhC) principles in a planar environment continue to provide a fertile field of research. 2D PhC based channel waveguides can provide both strong confinement and controlled dispersion behaviour. In conjunction with, for instance, various electro-optic, thermo-optic and other effects, a range of device functionality is accessible in very compact PhC channel-guide devices that offer the potential for high-density integration. Low enough propagation losses are now being obtained with photonic crystal channel-guide structures that their use in real applications has become plausible. Photonic wires (PhWs) can also provide strong confinement and low propagation losses. Bragg-gratings imposed on photonic wires can provide dispersion and frequency selection in device structures that are intrinsically simpler than 2D PhC channel guides--and can compete with them under realistic conditions.

  5. Nematic and blue phase liquid crystals for temperature stabilization and active optical tuning of silicon photonic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna N.; Khoo, Iam Choon; Fainman, Yeshaiahu

    2015-10-01

    We describe the underlying theories and experimental demonstrations of passive temperature stabilization of silicon photonic devices clad in nematic liquid crystal mixtures, and active optical tuning of silicon photonic resonant structures combined with dye-doped nematic and blue phase liquid crystals. We show how modifications to the resonator device geometry allow for not only enhanced tuning of the resonator response, but also aid in achieving complete athermal operations of silicon photonic circuits. [Ref.: I.C. Khoo, "DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals," Opt. Lett. 40, 60-63 (2015); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals," Opt. Lett. 39, 5435-5438 (2014); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals," Materials 7(3), 2229-2241 (2014)].

  6. Optimization of Micromachined Photon Devices

    SciTech Connect

    Datskos, P.G.; Datskou, I.; Evans, B.M., III; Rajic, S.

    1999-07-18

    The Oak Ridge National Laboratory has been instrumental in developing ultraprecision technologies for the fabrication of optical devices. We are currently extending our ultraprecision capabilities to the design, fabrication, and testing of micro-optics and MEMS devices. Techniques have been developed in our lab for fabricating micro-devices using single point diamond turning and ion milling. The devices we fabricated can be used in micro-scale interferometry, micro-positioners, micro-mirrors, and chemical sensors. In this paper, we focus on the optimization of microstructure performance using finite element analysis and the experimental validation of those results. We also discuss the fabrication of such structures and the optical testing of the devices. The performance is simulated using finite element analysis to optimize geometric and material parameters. The parameters we studied include bimaterial coating thickness effects; device length, width, and thickness effects, as well as changes in the geometry itself. This optimization results in increased sensitivity of these structures to absorbed incoming energy, which is important for photon detection or micro-mirror actuation. We have investigated and tested multiple geometries. The devices were fabricated using focused ion beam milling, and their response was measured using a chopped photon source and laser triangulation techniques. Our results are presented and discussed.

  7. Ultra-large Angle Curved Reflectors and Their Applications to Passive and Active Photonic Integrated Circuit Devices

    NASA Astrophysics Data System (ADS)

    Hou, Zhenyu

    Nanoscale optical components such as waveguides, resonators are the building blocks of integrated optical networks. With the advent of nano-fabrication technologies we are able to realize such components in strongly confined sub-micron dimensions. A photonic integrated circuit (PIC) that contains these components integrates multiple photonic functions on a single chip. Traditionally, functionality of PIC is realized via modification of waveguide structure. on the contrary, reflective components such as curved reflectors propagate light in two dimensional free space thence have many advantages over their refractive counterparts such as tighter space requirement, more flexibility, and lower loss. In this work, we propose curved reflector as an essential component to realize multiple integrated functions in PICs. These functions include spot size conversion, beam turning, waveguide crossing, etc. Waveguide taper, bended waveguide, direct waveguide crossing are the conventional counterparts to realize such functions. In particular, we proposed and realized photonic integrated interconnections using curved reflectors and curved reflector semiconductor optical amplifier (CR-SOA). In this thesis, theoretically analysis of curved reflectors is introduced and discussed in depth. Gaussian beam analysis, in particular, Hermite-Gaussian beam analysis is used to explain light propagation and distortion in interaction with curved reflectors. Theoretical formulation of beam propagation in presence of curved reflector is verified with Finite-Difference Time-Domain (FDTD) method. General design strategies of curved reflectors are proposed. Multiple applications of curved reflector in passive and active devices are introduced. Distortions induced in light beams by curved reflectors, its original, theoretical description, and compensation methods are discussed in details as well. Photonic integrated interconnection based on silicon-on-insulator (SOI) platform and curved reflector

  8. Photonic devices and systems embedded with nanocrystals

    NASA Astrophysics Data System (ADS)

    Demir, Hilmi Volkan; Soganci, Ibrahim Murat; Mutlugun, Evren; Tek, Sumeyra; Huyal, Ilkem Ozge

    2006-10-01

    We review our research work on the development of photonic devices and systems embedded with nanocyrstals for new functionality within EU Phoremost Network of Excellence on nanophotonics. Here we report on CdSe/ZnS nanocrystal-based hybrid optoelectronic devices and systems used for scintillation to enhance optical detection and imaging in the ultraviolet range and for optical modulation via electric field dependent optical absorption and photoluminescence in the visible. In our collaboration with DYO, we also present photocatalytic TiO II nanoparticles incorporated in solgel matrix that are optically activated in the ultraviolet for the purpose of self-cleaning.

  9. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In

  10. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  11. Integrated flexible chalcogenide glass photonic devices

    NASA Astrophysics Data System (ADS)

    Li, Lan; Lin, Hongtao; Qiao, Shutao; Zou, Yi; Danto, Sylvain; Richardson, Kathleen; Musgraves, J. David; Lu, Nanshu; Hu, Juejun

    2014-08-01

    Photonic integration on thin flexible plastic substrates is important for emerging applications ranging from the realization of flexible interconnects to conformal sensors applied to the skin. Such devices are traditionally fabricated using pattern transfer, which is complicated and has limited integration capacity. Here, we report a convenient monolithic approach to realize flexible, integrated high-index-contrast chalcogenide glass photonic devices. By developing local neutral axis designs and suitable fabrication techniques, we realize a suite of photonic devices including waveguides, microdisk resonators, add-drop filters and photonic crystals that have excellent optical performance and mechanical flexibility, enabling repeated bending down to sub-millimetre radii without measurable performance degradation. The approach offers a facile fabrication route for three-dimensional high-index-contrast photonics that are difficult to create using traditional methods.

  12. Liquid crystal devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  13. Cholesteric liquid crystal photonic crystal lasers and photonic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Ying

    This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser

  14. Silicon Photonic Devices for Optical Computing

    NASA Astrophysics Data System (ADS)

    Qiu, Ciyuan

    The requirement for high performance computer will be significantly increased by the fast development of the internet. However, traditional CMOS computer will meet its bottleneck due to the miniaturization problem. Optical computer comes to be the leading candidate to solve this issue. Silicon photonic technology has tremendous developments and thus it becomes an ideal platform to implement optical computing system. In Chapter 1, I will first show the development of the optical computing and silicon photonic technology. I will also discuss some key nonlinear optical effects of silicon photonic devices. Based on the current silicon photonic technology, I will then make a brief introduction on the optical direct logic for the 2D optical computing and spatial light modulator for the 3D optical computing, both of which will be discussed in detail in the followed chapters. In Chapter 2, I will discuss micro-ring resonator which is the key element of optical directed logic circuit discussed in Chapter 3. I will give the analytical model based on photonic circuit to explain the performance of the micro-ring resonator. The group delay and the loss of the micro-ring resonator will be analyzed. And I will also show the active tuning of the transmission spectrum by using the nonlinear effect of silicon. In Chapter 3, I will show a revised optical direct-logic (DL) circuit for 2D optical computer that is well suited for complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonics. It can significantly reduce the latency compared with traditional CMOS computers. For proof of concept, I demonstrated a scalable and reconfigurable optical directed-logic architecture consisting of a regular array of micro-ring resonator based optical on-off switches. The switches are controlled by electrical input logic signals through embedded p-i-n junctions. The circuit can be reconfigured to perform any 2x2 combinational logic operations by thermally tuning the operation modes of

  15. Electro-refractive photonic device

    SciTech Connect

    Zortman, William A.; Watts, Michael R.

    2015-06-09

    The various technologies presented herein relate to phase shifting light to facilitate any of light switching, modulation, amplification, etc. Structures are presented where a second layer is juxtaposed between a first layer and a third layer with respective doping facilitating formation of p-n junctions at the interface between the first layer and the second layer, and between the second layer and the third layer. Application of a bias causes a carrier concentration change to occur at the p-n junctions which causes a shift in the effective refractive index per incremental change in an applied bias voltage. The effective refractive index enhancement can occur in both reverse bias and forward bias. The structure can be incorporated into a waveguide, an optical resonator, a vertical junction device, a horizontal junction device, a Mach-Zehnder interferometer, a tuneable optical filter, etc.

  16. Flexible manufacturing for photonics device assembly

    NASA Technical Reports Server (NTRS)

    Lu, Shin-Yee; Pocha, Michael D.; Strand, Oliver T.; Young, K. David

    1994-01-01

    The assembly of photonics devices such as laser diodes, optical modulators, and opto-electronics multi-chip modules (OEMCM), usually requires the placement of micron size devices such as laser diodes, and sub-micron precision attachment between optical fibers and diodes or waveguide modulators (usually referred to as pigtailing). This is a very labor intensive process. Studies done by the opto-electronics (OE) industry have shown that 95 percent of the cost of a pigtailed photonic device is due to the use of manual alignment and bonding techniques, which is the current practice in industry. At Lawrence Livermore National Laboratory, we are working to reduce the cost of packaging OE devices through the use of automation. Our efforts are concentrated on several areas that are directly related to an automated process. This paper will focus on our progress in two of those areas, in particular, an automated fiber pigtailing machine and silicon micro-technology compatible with an automated process.

  17. Light coupling between vertical III-As nanowires and planar Si photonic waveguides for the monolithic integration of active optoelectronic devices on a Si platform.

    PubMed

    Giuntoni, Ivano; Geelhaar, Lutz; Bruns, Jürgen; Riechert, Henning

    2016-08-01

    We present a new concept for the optical interfacing between vertical III-As nanowires and planar Si waveguides. The nanowires are arranged in a two-dimensional array which forms a grating structure on top of the waveguide. This grating enables light coupling in both directions between the components made from the two different material classes. Numerical simulations show that this concept permits a light extraction efficiency from the waveguide larger than 45% and a light insertion efficiency larger than 35%. This new approach would allow the monolithic integration of nanowire-based active optoelectronics devices, like photodetectors and light sources, on the Si photonics platform. PMID:27505805

  18. Passive silicon photonic devices for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Wu, Jiayang; Peng, Jizong; Liu, Boyu; Pan, Ting; Zhou, Huanying; Mao, Junming; Yang, Yuxing; Qiu, Ciyuan; Su, Yikai

    2016-08-01

    We present our recent progress on microwave signal processing (MSP) using on-chip passive silicon photonic devices, including tunable microwave notch filtering/millimeter-wave (MMW) signal generation based on self-coupled micro-resonators (SCMRs), and tunable radio-frequency (RF) phase shifting implemented by a micro-disk resonator (MDR). These schemes can provide improved flexibility and performances of MSP. The experimental results are in good agreement with theoretical predictions, which validate the effectiveness of the proposed schemes.

  19. Photon-activation therapy

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Photon Activation Therapy (PAT) is a technique in which radiation dose to tumor is enhanced via introduction of stable /sup 127/I in the form of iodinated deoxyuridine (IdUrd). Stimulation of cytotoxic effects from IdUrd is accomplished by activation with external (or implanted) radiation sources. Thus, accumulations of this nucleoside in actively competing cellpools do not preclude therapy in so far as such tissues can be excluded from the radiation field. Calculations show that 5% replacement of thymidine (Tyd) in tumor DNA should enhance the biological effectiveness of a given photon radiotherapy dose by a factor of approx. 3. Proportionally higher gains would result from higher replacements of Tyd and IdUrd. In addition, biological response is enhanced by chemical sensitization with IdUrd. The data indicate that damage from photon activation as well as chemical sensitization does not repair. Thus, at low dose rates, a further increase in therapeutic gain should accrue as normal tissues are allowed to repair and regenerate. A samarium-145 source has been developed for PAT, with activating x-ray energies of from 38 to 45 keV. Favorable clinical results can be expected through the use of IdUrd and protracted irradiations with low energy x-rays. In particular, PAT may provide unique advantages at selected sites such as brain, or head and neck tumors. (ERB)

  20. Carbon-nanotube-based photonic devices

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinji

    2007-11-01

    We recently proposed and demonstrated a saturable absorber (SA) incorporating carbon nanotube (CNT). CNT-based SA offers several key advantages such as: ultra-fast recovery time, polarization insensitivity, high optical damage threshold, mechanical and environmental robustness, chemical stability, and the ability to operate at wide range of wavelength bands. Using the CNT-based SA, we have realized femtosecond fiber pulsed lasers at various wavelengths, as well as the very short-cavity fiber laser having high repetition rate. Besides the saturable absorption, CNT has been shown to have high third-order nonlinearity, which is also attractive for realization of compact and integrated functional photonic devices, such as all-optical switches and wavelength converters. In this paper, we first present photonic properties of CNTs, and review our studies on CNT-based mode-locked fiber lasers. We also refer to fabrication methods of CNT-based photonic devices. We show our recent research progresses on novel photonic devices using evanescent coupling between optical field and CNT.

  1. Contactless heat flux control with photonic devices

    SciTech Connect

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2015-05-15

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  2. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1997-01-01

    The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.

  3. Silicon Photonic Devices and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Ying

    Silicon photonics is the study and application of photonic systems, which use silicon as an optical medium. Data is transferred in the systems by optical rays. This technology is seen as the substitutions of electric computer chips in the future and the means to keep tack on the Moore's law. Cavity optomechanics is a rising field of silicon photonics. It focuses on the interaction between light and mechanical objects. Although it is currently at its early stage of growth, this field has attracted rising attention. Here, we present highly sensitive optical detection of acceleration using an optomechanical accelerometer. The core part of this accelerometer is a slot-type photonic crystal cavity with strong optomechanical interactions. We first discuss theoretically the optomechanical coupling in the air-slot mode-gap photonic crystal cavity. The dispersive coupling gom is numerically calculated. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for the various operating parameters. Experimental results also demonstrated that the cavity has a large optomechanical coupling rate. The optically induced spring effect, damping and amplification of the mechanical modes are observed with measurements both in air and in vacuum. Then, we propose and demonstrate our optomechanical accelerometer. It can operate with a resolution of 730 ng/Hz1/2 (or equivalently 40.1 aN/Hz1/2) and with a transduction bandwidth of ≈ 85 kHz. We also demonstrate an integrated photonics device, an on-chip spectroscopy, in the last part of this thesis. This new type of on-chip microspectrometer is based on the Vernier effect of two cascaded micro-ring cavities. It can measure optical spectrum with a bandwidth of 74nm and a resolution of 0.22 nm in a small footprint of 1.5 mm2.

  4. Photonic processing with polylithic integrated optical devices

    NASA Astrophysics Data System (ADS)

    Bechtel, James H.; Morrison, Charles B.; Shi, Yongqiang

    1998-07-01

    Recent developments in nonlinear optical polymer materials and devices combined with epitaxial liftoff (ELO) and grafting of semiconductor materials are leading to dramatic new possibilities in devices for photonic signal processing. For example, the development of new device architectures is leading to electro-optic modulators that have halfwave voltages of approximately 1V. Applications include very large bandwidth (greater than 100 GHz) electro-optic modulators and high speed (less than 1 ns) switches for programmable optical delay lines for use in phased array systems. Also, with the increase in operating frequency and angular scan resolution, the delay length accuracy can reach magnitudes of micrometers for millimeter wave frequencies. With micro fabrication methods, integrated delay line/switch networks can achieve superior delay performance with a single integrated optic chip that is compact, light weight, and has low optical insertion loss. The use of ELO allows electronic device driver circuits to be integrated with the polymer chip to provide further miniaturization. Also, ELO methods can be used to fabricate very high speed metal-semiconductor-metal (MSM) photodetectors for optical signal detection and monitoring. Here ELO methods can find applications in the fabrication of multispectral detectors and focal plane arrays. Yet other applications include very high speed analog-to-digital converters.

  5. Photonic crystals: Theory and device applications

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui

    In this thesis, first-principle frequency-domain and time-domain methods are developed and applied to investigate various properties and device applications of photonic crystals. In Chapter 2, I discuss the two numerical methods used to investigate the properties of photonic crystals. The first solves Maxwell's equations in the frequency domain, while the second solves the equations in the time domain. The frequency-domain method yields the frequency, polarization, symmetry, and field distribution of every eigenmode of the system; the time-domain method allows one to determine the temporal behavior of the modes. In Chapter 3, a new class of three-dimensional photonic crystal structures is introduced that is amenable for fabrication at submicron-length scales. The structures give rise to a 3D photonic bandgap. They consist of a layered structure in which a series of cylindrical air holes are etched at normal incidence. The calculation demonstrates the existence of a gap as large as 14% of the mid-gap frequency using Si, SiO2, and air; and 23% using Si and air. In Chapter 4, the bandstructure and transmission properties of three-dimensional metallodielectric photonic crystals are presented. The metallodielectric crystals are modeled as perfect electrical conducting objects embedded in dielectric media. We investigate the face-centered-cubic (fcc) lattice, and the diamond lattice. Partial gaps are predicted in the fcc lattice, in excellent agreement with recent experiments. Complete gaps are found in a diamond lattice of isolated metal spheres. The gaps appear between the second and third bands, and their sizes can be larger than 60% when the radius of the spheres exceeds 21% of the cubic unit cell size. In Chapter 5, I investigate the properties of resonant modes which arise from the introduction of local defects in two-dimensional (2D) and 3D photonic crystals. The properties of these modes can be controlled by changing the nature and the size of the defects. The

  6. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  7. Practical considerations for polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Ticknor, Anthony J.; Lipscomb, George F.; Lytel, Richard S.

    1994-09-01

    Electro-optic (EO) poled polymer materials exhibit low dispersion and low dielectric constants. EO polymer materials have been modulated flat to 40 GHz and exhibit few fundamental limits for ultrafast modulation and switching. Channel waveguides and integrated optic circuits can be defined by the poling process itself, by photochemistry of the EO polymer, or by a variety of well understood micro-machining techniques. EO polymer materials have been used to fabricate high-speed Mach-Zehnder modulators, directional couplers, Fabry-Perot etalons, and even multi-tap devices. Practical issues remain to be solved before polymer photonic technology may be exploited in systems such as datacom and telecom. These include reliable, low cost fiber-attach and packaging, support circuitry and interfaces, and the scale-up to high volume production. This talk reviews requirements for practical exploitation and displays recent progress toward achieving reliable products.

  8. Integrated photonic devices using self-assembled and optically defined photonic crystal superstructures

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    Photonic crystals are structures with dielectric constants modulated in one, two, or three dimensions. They are an interesting subject of active research due to their ability to control the flow of light on a very small-length scale. In the research for this thesis, two integrated photonic devices were designed, fabricated and characterized which utilize the special optical properties of photonic crystals. The first device is a photonic crystal-photodiode micro-electro-optic filter, where a vertical self-assembly method was employed to grow a 3D face-centered cubic (FCC) photonic crystal over a working electro-optic device, a photodiode and a photodiode-plus-preamplifier made using conventional CMOS techniques. The objective of this project was to judge the practicality of the process and to observe the effect of the photonic crystal on the spectral response of the photodiode and photodiode-amplifier. Spectral measurements taken using a grating monochrometer confirmed that a stop band exists in the photocurrent response of this integrated photonic device, photonic crystal photodiode filter, at the predicted wavelength of 600 nm. These results were consistent with the simulation results made by using a 1D slab structure model. Although many groups have developed procedures to successfully grow self-assembled photonic crystals on substrates, we believe this is the first application of grown opals over functioning integrated electronics. This work explored the ability to include photonic functionality on the wafer with integrated electronic circuitry, and demonstrated a simple, practical and economic way to achieve it. The second device is a tunable planar waveguide with an optically defined 1D photonic crystal cladding layer. In this section a planar waveguide with a photosensitive cladding layer (mixture of PMMA co DR1 and side-chain nematic liquid crystal polymer) that is optically addressable and reversible is presented. The maximum of intensity decrease of the

  9. Deposited silicon photonics: Optical interconnect devices in polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Preston, Kyle Jonathan

    Silicon photonics has tremendous potential to provide high-bandwidth and low-power data communication for applications such as computing and telecommunication, over length scales ranging from 100 kilometers over fiber to centimeter-length on-chip waveguides. Many silicon photonic building blocks have been demonstrated to date, but critical work remains to determine the best approaches for integrating together silicon photonics with microelectronics. In this thesis, I explore a novel method for integration of silicon photonics on the CMOS platform by using a deposited material: polycrystalline silicon. I will show the first demonstrations of electrically-active optical filters, modulators, and photodetectors in this material. In principle, this material platform would allow for the integration of silicon photonic devices and systems on top of any substrate, including complex CMOS and memory chips or even glass and plastic substrates. In Chapter 1, I introduce the state-of-the-art in silicon photonics, describe several integration schemes under development, and introduce the idea of using deposited materials. In Chapter 2, I demonstrate the use of polysilicon to make integrated microring resonators, and show the integration of different silicon materials together. Chapter 3 discusses the use of polysilicon as both an optical waveguiding layer and an electrode material in slot waveguides for the application of light emitters. Chapter 4 demonstrates the use of a pump-probe experiment to measure the free carrier lifetime in the material and demonstrate all-optical modulation. In Chapter 5, I demonstrate the first high-speed integrated electro-optic modulator in polysilicon, a necessary device for optical transmitters. In Chapter 6, I show how defects inside the same material enable integrated photodetectors at near-infrared telecommunication wavelengths. Chapter 7 shows initial results in adapting the material processing for lower temperatures, necessary for integration

  10. Next-generation polymeric photonic devices

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Shacklette, Lawrence W.; Norwood, Robert A.; Yardley, James T.

    1997-07-01

    A versatile polymeric waveguide technology is proposed for low-cost high-performance photonic devices that address the needs of both the telecom and the datacom industries. We have developed advanced organic polymeric materials that can be readily made into both multimode and single-mode optical waveguide structures of controlled numerical aperture and geometry. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, toughness, loss, and stability with temperature and humidity. These monomers are intermiscible, providing for precise adjustment of the refractive index from 1.3 to 1.6. Waveguides are formed photolithographically, with the liquid monomer mixture polymerizing upon illumination in the UV via either mask exposure or laser direct-writing. A wide range of rigid and flexible substrates can be used, including glass, quartz, oxidized silicon, glass-filled epoxy printed circuit board substrate, and flexible polyimide film. We discuss the use of these materials on chips, on multi-chip modules, on boards, and on backplanes. Light coupling from and to chips is achieved by cutting 45 degree(s) mirrors using excimer laser ablation. Fabrication of the planar polymeric structures directly on the modules provides for stability, ruggedness, and hermeticity in packaging.

  11. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  12. High-Q CMOS-integrated photonic crystal microcavity devices

    PubMed Central

    Mehta, Karan K.; Orcutt, Jason S.; Tehar-Zahav, Ofer; Sternberg, Zvi; Bafrali, Reha; Meade, Roy; Ram, Rajeev J.

    2014-01-01

    Integrated optical resonators are necessary or beneficial in realizations of various functions in scaled photonic platforms, including filtering, modulation, and detection in classical communication systems, optical sensing, as well as addressing and control of solid state emitters for quantum technologies. Although photonic crystal (PhC) microresonators can be advantageous to the more commonly used microring devices due to the former's low mode volumes, fabrication of PhC cavities has typically relied on electron-beam lithography, which precludes integration with large-scale and reproducible CMOS fabrication. Here, we demonstrate wavelength-scale polycrystalline silicon (pSi) PhC microresonators with Qs up to 60,000 fabricated within a bulk CMOS process. Quasi-1D resonators in lateral p-i-n structures allow for resonant defect-state photodetection in all-silicon devices, exhibiting voltage-dependent quantum efficiencies in the range of a few 10 s of %, few-GHz bandwidths, and low dark currents, in devices with loaded Qs in the range of 4,300–9,300; one device, for example, exhibited a loaded Q of 4,300, 25% quantum efficiency (corresponding to a responsivity of 0.31 A/W), 3 GHz bandwidth, and 30 nA dark current at a reverse bias of 30 V. This work demonstrates the possibility for practical integration of PhC microresonators with active electro-optic capability into large-scale silicon photonic systems. PMID:24518161

  13. Photonic integrated circuits based on novel glass waveguides and devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Zhang, Deng; Pan, Weijian; Rowe, Helen; Benson, Trevor; Loni, Armando; Sewell, Phillip; Furniss, David; Seddon, Angela B.

    2006-04-01

    Novel materials, micro-, nano-scale photonic devices, and 'photonic systems on a chip' have become important focuses for global photonics research and development. This interest is driven by the rapidly growing demand for broader bandwidth in optical communication networks, and higher connection density in the interconnection area, as well as a wider range of application areas in, for example, health care, environment monitoring and security. Taken together, chalcogenide, heavy metal fluoride and fluorotellurite glasses offer transmission from ultraviolet to mid-infrared, high optical non-linearity and the ability to include active dopants, offering the potential for developing optical components with a wide range of functionality. Moreover, using single-mode large cross-section glass-based waveguides as an optical integration platform is an elegant solution for the monolithic integration of optical components, in which the glass-based structures act both as waveguides and as an optical bench for integration. We have previously developed a array of techniques for making photonic integrated circuits and devices based on novel glasses. One is fibre-on-glass (FOG), in which the fibres can be doped with different active dopants and pressed onto a glass substrate with a different composition using low-temperature thermal bonding under mechanical compression. Another is hot-embossing, in which a silicon mould is placed on top of a glass sample, and hot-embossing is carried out by applying heat and pressure. In this paper the development of a fabrication technique that combines the FOG and hot-embossing procedures to good advantage is described. Simulation and experimental results are presented.

  14. Finite Element Modeling of Micromachined MEMS Photon Devices

    SciTech Connect

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-09-20

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  15. Multimode quantum interference of photons in multiport integrated devices

    PubMed Central

    Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L.

    2011-01-01

    Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6±0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits. PMID:21364563

  16. Current trends in the packaging of photonic devices

    SciTech Connect

    Carson, R.F.

    1995-04-01

    Optoelectronic and photonic devices hold great promise for high data-rate communication and computing. Their wide implementation was limited first by the device technologies and now suffers due to the need for high-precision packaging that is mass-produced. The use of photons as a medium of communication and control implies a unique set of packaging constraints that are highly driven by the need for micron and even sub-micron alignments between photonic devices and their transmission media. Current trends in optoelectronic device packaging are reviewed and future directions are identified both for free-space (3-dimensional) and guided-wave (2-dimensional) photonics. Emphasis will be placed on the special needs generated by increasing levels of device integration.

  17. Devices and systems-on-chip for photonic communication links in a microprocessor

    NASA Astrophysics Data System (ADS)

    Wade, Mark T.

    For the first time, high-performance photonic devices and electronic-photonic systems-on-chip are monolithically integrated in an advanced CMOS microelectronics fabrication process. This includes a silicon optical resonator termed the "spoked-ring" cavity that meets the constraints of thin-SOI microelectronics CMOS processes and enables energy efficient modulators and thermally tunable filters. For low-loss fiber-to-chip optical coupling, a phased-array antenna concept is demonstrated, and the 45 nm CMOS microelectronics process is shown to support a near ideal implementation of the device using the crystalline silicon and polysilicon material layers that comprise the active region and gate, respectively, of the native MOSFET transistors. The active devices and vertical grating couplers are implemented in large-scale electronic-photonic systems-on-chip to demonstrate a wavelength stabilized, microring-based chip-to-chip communications link and an 11-channel wavelength division multiplexed (WDM) transmitter. The link is shown to be robust against thermal environmental variations which is critical for operation in realistic systems. The chip-to-chip link is then used to demonstrate a CPU-to-memory communication link, the first demonstration of its kind. The first microprocessor with photonic I/O is demonstrated as part of this work, with substantial implications for computer architecture. Advanced photonic device technology demonstrations, including photonic crystals, a quantum-correlated photon-pair source, an active photonic device platform in a 32 nm SOI node, and a 180 nm bulk silicon process, are presented to show the wide range of applications that monolithic integration could support in the future of photonics. These results taken together show that monolithic integration directly into CMOS microelectronics processes does allow high performance photonics, and is a viable approach to build large-scale electronic-photonic systems with a realistic path to

  18. Athermal Photonic Devices and Circuits on a Silicon Platform

    NASA Astrophysics Data System (ADS)

    Raghunathan, Vivek

    In recent years, silicon based optical interconnects has been pursued as an effective solution that can offer cost, energy, distance and bandwidth density improvements over copper. Monolithic integration of optics and electronics has been enabled by silicon photonic devices that can be fabricated using CMOS technology. However, high levels of device integration result in significant local and global temperature fluctuations that prove problematic for silicon based photonic devices. In particular, high temperature dependence of Si refractive index (thermo-optic (TO) coefficient) shifts the filter response of resonant devices that limit wavelength resolution in various applications. Active thermal compensation using heaters and thermo-electric coolers are the legacy solution for low density integration. However, the required electrical power, device foot print and number of input/output (I/O) lines limit the integration density. We present a passive approach to an athermal design that involves compensation of positive TO effects from a silicon core by negative TO effects of the polymer cladding. In addition, the design rule involves engineering the waveguide core geometry depending on the resonance wavelength under consideration to ensure desired amount of light in the polymer. We develop exact design requirements for a TO peak stability of 0 pm/K and present prototype performance of 0.5 pm/K. We explore the material design space through initiated chemical vapor deposition (iCVD) of 2 polymer cladding choices. We study the effect of cross-linking on the optical properties of a polymer and establish the superior performance of the co-polymer cladding compared to the homo-polymer. Integration of polymer clad devices in an electronic-photonic architecture requires the possibility of multi-layer stacking capability. We use a low temperature, high density plasma chemical vapor deposition of SiO2/SiN x to hermetically seal the athermal. Further, we employ visible light for

  19. Progress in the research and development of photonic structure devices

    NASA Astrophysics Data System (ADS)

    Pham, Van Hoi; Bui, Huy; Van Nguyen, Thuy; Nguyen, The Anh; Son Pham, Thanh; Pham, Van Dai; Cham Tran, Thi; Trang Hoang, Thu; Ngo, Quang Minh

    2016-03-01

    In this paper we review the results of the research and development of photonic structure devices performed in the Institute of Materials Science in the period from 2010-2015. We have developed a configuration of 1D photonic crystal (PC) microcavities based on porous silicon (PS) layers and applied them to optical sensing devices that can be used for the determination of organic content with a very low concentration in different liquid environments. Various important scientific and technological applications of photonic devices such as the ultralow power operation of microcavity lasers, the inhibition of spontaneous emissions and the manipulation of light amplification by combining the surface plasmonic effect and the microcavity are expected. We developed new kinds of photonic structures for optical filters based on guided-mode resonances in coupled slab waveguide gratings, which have great potential for application in fiber-optic communication and optical sensors.

  20. Compact programmable photonic variable delay devices

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1999-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  1. Ladder-structured photonic variable delay device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1998-01-01

    An ladder-structured variable delay device for providing variable true time delay to multiple optical beams simultaneously. The device comprises multiple basic units stacked on top of each other resembling a ladder. Each basic unit comprises a polarization sensitive corner reflector formed by two polarization beamsplitters and a polarization rotator array placed parallel to the hypotenuse of the corner reflector. Controlling an array element of the polarization rotator array causes an optical beam passing through the array element to either go up to a basic unit above it or reflect back towards output. The beams going higher on the ladder experience longer optical path delay. Finally, the ladder-structured variable device can be cascaded with another multi-channel delay device to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  2. Active pixel and photon counting imagers based on poly-Si TFTs: rewriting the rule book on large area flat panel x-ray devices

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; Koniczek, Martin; El-Mohri, Youcef; Zhao, Qihua

    2009-02-01

    The near-ubiquity of large area, active matrix, flat-panel imagers (AMFPIs) in medical x-ray imaging applications is a testament to the usefulness and adaptability of the relatively simple concept of array pixels based on a single amorphous silicon (a-Si:H) TFT coupled to a pixel storage capacitor. Interestingly, the fundamental advantages of a-Si:H thin film electronics (including compatibility with very large area processing, high radiation damage resistance, and continued development driven by interest in mainstream consumer products) are shared by the rapidly advancing technology of polycrystalline silicon (poly-Si) TFTs. Moreover, the far higher mobilities of poly-Si TFTs, compared to those of a- Si:H, facilitate the creation of faster and more complex circuits than are possible with a-Si:H TFTs, leading to the possibility of new classes of large area, flat panel imagers. Given recent progress in the development of initial poly-Si imager prototypes, the creation of increasingly sophisticated active pixel arrays offering pixel-level amplification, variable gain, very high frame rates, and excellent signal-to-noise performance under all fluoroscopic and radiographic conditions (including very low exposures and high spatial frequencies), appears within reach. In addition, it is conceivable that the properties of poly-Si TFTs could allow the development of large area imagers providing single xray photon counting capabilities. In this article, the factors driving the possible realization of clinically practical active pixel and photon counting imagers based on poly-Si TFTs are described and simple calculational estimates related to photon counting imagers are presented. Finally, the prospect for future development of such imagers is discussed.

  3. Photonic devices based on preferential etching.

    PubMed

    Bellini, Bob; Larchanché, Jean-François; Vilcot, Jean-Pierre; Decoster, Didier; Beccherelli, Romeo; d'Alessandro, Antonio

    2005-11-20

    We introduce a design concept of optical waveguides characterized by a practical and reproducible process based on preferential etching of crystalline silicon substrates. Low-loss waveguides, spot-size converters, and power dividers have been obtained with polymers. We have also aligned liquid crystals in the waveguides and demonstrated guided propagation. Therefore this technology is a suitable platform for soft-matter photonics and heterogeneous integration. PMID:16318190

  4. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    PubMed

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  5. A plasma photonic crystal bandgap device

    NASA Astrophysics Data System (ADS)

    Wang, B.; Cappelli, M. A.

    2016-04-01

    A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X bands of the microwave spectrum. An array of discharge plasma tubes forms a simple square crystal structure with the individual plasma dielectric constant tuned through variation in the plasma density. We show, through simulations and experiments, that transverse electric mode bandgaps exist, arising from the positive and negative dielectric constant regimes of the plasma, and that the respective bandgap frequencies can be shifted through changing the dielectric constant by varying discharge current density.

  6. A Novel Photonic Clock and Carrier Recovery Device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve; Lutes, George; Maleki, Lute

    1996-01-01

    As data communication rates climb toward ten Gb/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. We present in this article experimental results of a high speed clock and carrier recovery using a novel device called a photonic oscillator that we recently developed in our laboratory. This device is capable of recovering clock signals up to 70 GHz. To recover the clock, the incoming data is injected into the photonic oscillator either through the optical injection port or the electrical injection port. The free running photonic oscillator is tuned to oscillate at a nominal frequency equal to the clock frequency of the incoming data. With the injection of the data, the photonic oscillator will be quickly locked to clock frequency of the data stream while rejecting other frequency components associated with the data. Consequently, the output of the locked photonic oscillator is a continuous periodical wave synchronized with the incoming data or simply the recovered clock. We have demonstrated a clock to spur ratio of more than 60 dB of the recovered clock using this technique. Similar to the clock recovery, the photonic oscillator can be used to recover a high frequency carrier degraded by noise and an improvement of about 50 dB in signal-to-noise ratio was demonstrated. The photonic oscillator has both electrical and optical inputs and outputs and can be directly interfaced with a photonic system without signal conversion. In addition to clock and carrier recovery, the photonic oscillator can also be used for (1) stable high frequency clock signal generation, (2) frequency multiplication, (3) square wave and comb frequency generation, and (4) photonic phase locked loop.

  7. Sputtered germanium/silicon devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Nujhat, N.; Papouloute, J.-P.; DeBerry, M.; Jiang, L.; Korivi, N. S.

    2015-08-01

    We report on the ongoing investigation of magnetron sputtered germanium on silicon for photonics applications. Direct current (DC) magnetron sputtering has been used to deposit germanium layers on silicon at low growth temperatures and medium range vacuum levels. Standard photolithography has been used to make germanium photodetectors for the 1550 nm wavelength range. Electrical characterization, more specifically current-voltage measurements indicate that the devices function as intended. Sputtered silicon waveguides have also been fabricated and evaluated for possible applications in photonics integration. The sputtering-based developments in our present research are expected to provide for a flexible and economically viable manufacturing process for such devices.

  8. Silicon photonic device for wavelength sensing and monitoring

    NASA Astrophysics Data System (ADS)

    Vargas Lopez, German R.

    Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 mum of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study

  9. Theoretical design of photonic crystal devices for integrated optical circuits

    NASA Astrophysics Data System (ADS)

    Mekis, Attila

    2000-12-01

    In this thesis we investigate novel photonic crystal devices that can be used as building blocks of all- optical circuits. We contrast the behavior of light in photonic crystal systems and in their traditional counterparts. We exhibit that bends in photonic crystals are able to transmit light with over 90% efficiency for large bandwidths and with 100% efficiency for specific frequencies. In contrast to traditional waveguides, bound states in photonic crystal waveguides can also exist in constrictions and above the cutoff frequency. We discuss how to lower reflections encountered when photonic crystal waveguides are terminated, both in an experimental setup as well as in numerical simulations. We show that light can be very efficiently coupled into and out of photonic crystal waveguides using tapered dielectric waveguides. In time-domain simulations of photonic crystal waveguides, spurious reflections from cell edges can be eliminated by terminating the waveguide with a Bragg reflector waveguide. We demonstrate novel lasing action in two-dimensional photonic crystal slabs with gain media, where lasing occurs at saddle points in the band structure, in contrast to one-dimensional photonic crystals. We also design a photonic crystal slab with organic gain media that has a TE-like pseudogap. We demonstrate that such a slab can support a high- Q defect mode, enabling low threshold lasing, and we discuss how the quality factor depends on the design parameters. We also propose to use two- dimensional photonic crystal slabs as directionally efficient free-space couplers. We draft methods to calculate the coupling constant both numerically and analytically, using a finite-difference time-domain method and the volume current method with a Green's function approach, respectively. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  10. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    PubMed Central

    He, Li; Li, Huan; Li, Mo

    2016-01-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  11. Photonics at Sandia National Laboratories: Applying device technology to communication systems

    SciTech Connect

    Carson, R.F.

    1995-07-01

    Photonic device activities at Sandia National Laboratories are founded on an extensive materials research program that has expanded to include device development, and an applications focus that heavily emphasizes communications and interconnects. The resulting program spans a full range of photonics research, development, and applications projects, from materials synthesis and device fabrication to packaging, test, and subsystem development. The heart of this effort is the Compound Semiconductor Research Laboratory which was established in 1988 to bring together device and materials research and development to support Sandia`s role in weapons technologies. This paper presents an overview of Sandia`s photonics program and its directions, using three communications-based applications as examples.

  12. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1999-01-01

    A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.

  13. Tunable Photonic Devices in Ferroelectric-Based Layered Structures

    NASA Astrophysics Data System (ADS)

    Xin, Jianzhuo

    This thesis presents the studies on the optical properties of perovskite ferroelectric thin films, as well as the preparation and applications of ferroelectrics in tunable photonic devices. Ba(Zr,Ti)O3 (BZT) thin films with different Zr concentration were grown on MgO substrates by pulsed laser deposition, and their structural and optical properties in the visible range were systematically characterized, including the out-of-plane lattice constant, grain size, refractive index, optical band gap energy, electro-optic coefficient, optical loss and absorption coefficient. The obtained results provide information for the design of BZT thin film-based optical devices. One-dimensional photonic crystal filter working in the terahertz (THz) range was studied. The transmission properties of SrTiO3 (STO) crystals were first characterized by THz time-domain spectroscopy. Si/STO multilayers with different STO defect thicknesses were designed by the transfer matrix method and then constructed by polishing and stacking. The shift of defect mode was observed and comparable with the calculations. Two-dimensional photonic structures in the optical and infra-red range were then attempted. A combination of nanoimprint lithography and inductively coupled plasma etching were investigated on (Ba,Sr)TiO3 thin films. Then, in order to simplify the nanoimprint process and allow thick metal sacrificial layer deposition for high aspect-ratio etching, a transfer imprint lithography technique was developed. Finally, surface plasmon resonance (SPR) tuning via thermally-induced refractive index changes in ferroelectrics was investigated. Ag stripes with periodicity 750 nm were fabricated on flat BST surface by nanoimprint lithography and subsequent lift-off. (-1), (2) and (-2) SP modes from Ag/BST interface were observed in visible range. Red shift of the modes up to 3.9 nm was obtained with increasing temperature. Then continuous Au film on corrugated BST surface with periodicity of 1 mum was

  14. LC/polymer composite and its applications in photonics devices

    NASA Astrophysics Data System (ADS)

    Dai, H. T.; Liu, Y. J.; Luo, D.; Sun, X. W.

    2011-03-01

    Traditionally LC/polymer composite, such as polymer dispersed liquid crystal (PDLC), holographic PDLC (H-PDLC), and polymer stabilized liquid crystal (PSLC) etc. is primarily used as display devices. Recently, with electrical, optical and thermal tunability, easy fabrication and fast response time, they have attracted much attention in photonics devices (grating, diffractive optical elements, optical switches etc.) with potential applications in communications, imaging, and biology. The intrinsic tunable property of LC/polymer composite (by means of mechanic, electronic, magnetic, thermal stimulus) makes it an attractive material used in dynamic photonics devices. In this paper, we will first introduce the preparation of LC/polymer material for various objectives. Then two essential fabrication approaches i.e. multibeams interference lithography for periodic structures and programmable projection lithography for specific designed patterns are introduced respectively. At last, our recent results in applying LC/polymer composite in photonic devices, such as tunable 3D photonics crystals, 2D tunable lasing source, focusing elements and binary Airy beams generation etc. are reviewed.

  15. Implantable photonic devices for improved medical treatments.

    PubMed

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev

    2014-01-01

    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient’s body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment. PMID:25279540

  16. Implantable photonic devices for improved medical treatments

    NASA Astrophysics Data System (ADS)

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev

    2014-10-01

    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient's body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment.

  17. Active multistable twisting device

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R. (Inventor)

    2008-01-01

    Two similarly shaped, such as rectangular, shells are attached to one another such that they form a resulting thin airfoil-like structure. The resulting device has at least two stable equilibrium shapes. The device can be transformed from one shape to another with a snap-through action. One or more actuators can be used to effect the snap-through; i.e., transform the device from one stable shape to another. Power to the actuators is needed only to transform the device from one shape to another.

  18. Implementing quantum Fourier transform with integrated photonic devices

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    2014-03-01

    Many quantum algorithms that exhibit exponential speedup over their classical counterparts employ the quantum Fourier transform, which is used to solve interesting problems such as prime factorization. Meanwhile, nonclassical interference of single photons achieved on integrated platforms holds the promise of achieving large-scale quantum computation with multiport devices. An optical multiport device can be built to realize any quantum circuit as a sequence of unitary operations performed by beam splitters and phase shifters on path-encoded qudits. In this talk, I will present a recursive scheme for implementing quantum Fourier transform with a multimode interference photonic integrated circuit. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

  19. A multitechnique study of bacteriorhodopsin's photonics toward new optical devices

    NASA Astrophysics Data System (ADS)

    Martin, Marta; Saab, Marie-Belle; Cloitre, Thierry; Estephan, Elias; Legros, René; Cuisinier, Frédéric J. G.; Zimányi, László; Gergely, Csilla

    2008-04-01

    Bacteriorhodopsin (BR) is a robust trans-membrane protein that functions as a light-driven proton pump, thus is an excellent candidate for biophotonics applications. For the development of new optical devices, the buildup of stable BR matrices has to be optimised. In this work, we present a multi- technique approach: the combination of optical waveguide lightmode spectroscopy (OWLS), atomic force microscopy (AFM) and multi-photon microscopy (MPM) aiming to analyze the optical and physico-chemical properties of BR embedded in polyelectrolyte multilayers (PEM) in its membrane bound form (purple membrane, PM), as well as solubilized BR immobilized within a photonic structure built of porous silicon (PSi). OWLS measurements revealed the possibility of incorporation of PM-BR layers into PE-multilayers. The calculated thickness and refractive index of the adsorbed layers demonstrate the successful adsorption of PM on top of the positively or negatively charged PE layers. Morphological studies by AFM proved a complete coverage of the positively charged PE layer with PM patches. As for the other model system, photonic responses of BR, after being immobilized within PSi substrates, have been evaluated using multi-photon microscopy. Fluorescence emission and second harmonic generation (SHG) of the BR-PSi system were observed at some particular pores of PSi and subsequent enhancement of the signal arising from the BR adsorbed within the pores was detected. Our results constitute the first steps of two interesting and innovative biomimetic approaches for the future design and development of BR based integrated optical devices.

  20. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  1. Efficient light emitting diodes by photon recycling and their application in pixelless infrared imaging devices

    NASA Astrophysics Data System (ADS)

    Dupont, E.; Chiu, S.

    2000-02-01

    The success of the pixelless imaging concept using a quantum well infrared photodetector integrated with a light emitting diode (QWIP-LED) depends critically on the extent of spatial lateral spreading of both photocurrent generated in the QWIP and near infrared (NIR) photons emitted by the LED as they escape from the device layers. According to the photon recycling model proposed by Schnitzer et al. [Appl. Phys. Lett. 62, 131 (1993)] there appears to be a trade-off between a high LED external quantum efficiency and a small photon lateral spread, the former being a necessary condition for achieving high detector sensitivity. This lateral spreading due to multireflections and reincarnations of the NIR photons could potentially degrade the image quality or resolution of the device. By adapting Schnitzer's model to the QWIP-LED structure, we have identified device parameters that could potentially influence the NIR photon lateral spread and the LED external efficiency. In addition, we have developed a simple sequential model to estimate the crosstalk between the incoming far infrared image and the up-converted NIR image. We have found that the thickness of the LED is an important parameter that needs to be optimized in order to maximize the external efficiency and to minimize the crosstalk. A 6000-Å-thick LED active layer should give a resolution of ˜30 μm and an external efficiency of ˜10%.

  2. Wireless photonic power and data transfer to dormant devices

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip

    2015-05-01

    Need exists for untethered transmission of electrical power and data to remote devices and sensors. Several wireless solutions, based on radiation and non-radiation are in existence. Here the focus is on the use of photonic power which is an optimized optical to electrical conversion solution, used for both wireless and guided transportation. High photonic conversion efficiencies of 50% and greater have been demonstrated for wavelength matched laser diodes and photovoltaic cells. However, these existing solutions do not meet the needs of rapid energy transfer to remote devices, such as munition shells prior to launch. We report on the design and fabrication of a 16-cell array of densely packed photonic power converters that can power a munition shell immediately prior to launch. A laser beam delivers power and data to the PPC array. Thermal simulation, using FEA shows that the each of the cells can be operated at an equivalent irradiance of 1000x suns, giving an energy transfer rate of 17.5 J.s-1 for the array. Thus, two 10 F super-capacitors, typically used in munitions, can be charged is under 5 seconds. Further, using the measured capacitance of 2.4 nF for the array, data can be transported to the munition on the laser power beam, at a rate exceeding 5 Mbps.

  3. Printed polymer photonic devices for optical interconnect systems

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  4. Inverse design and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Andonegui, Imanol; Calvo, Isidro; Garcia-Adeva, Angel J.

    2014-05-01

    We report on the application of various optimization methods as a very promising simulation approach for the design of true integrated optical devices by means of inverse design. We show that these techniques provide a global optimum toward one or various functional objectives at a reasonable computational cost. The results obtained by these methods are far better than intuitive design procedures and clearly outperform trial-and-error based models. We illustrate their performance by using a series of inverse-designed practical photonic devices.

  5. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  6. Laser activated MTOS microwave device

    NASA Technical Reports Server (NTRS)

    Maserjian, J. (Inventor)

    1985-01-01

    A light-activated semiconductor device usable as an optoelectronic switch, pulse generator or optical detector is provided. A semiconductor device is disclosed which provides back-to-back metal-thin oxide-silicon (MTOS) capacitors. Each capacitor includes a thin, light-absorptive aluminum electrode which overlies a thin oxide layer and a lightly doped region implanted in an intrinsic silicon substrate.

  7. Robust microfiber photonic microcells for sensor and device applications.

    PubMed

    Jin, Wa; Xuan, Haifeng; Wang, Chao; Jin, Wei; Wang, Yiping

    2014-11-17

    We report the fabrication of in-line photonic microcells (PMCs) by encapsulating tapered microfibers (MFs) inside glass tubes. The encapsulation isolates MFs from external environment and makes them more suitable for real-world applications. Based on PMCs with encapsulated highly birefringent (Hi-Bi) MFs, we demonstrated pressure, temperature and refractive index (RI) sensors as well as long period grating devices. A fiber Sagnac loop interferometer incorporating a Hi-Bi microfiber PMC demonstrated RI sensitivity of 2024 nm per RI unit (nm/RIU) in gaseous environment and 21231 nm/RIU in water. PMID:25402053

  8. Low dimension structures and devices for new generation photonic technology

    SciTech Connect

    Zhang, D. H.; Tang, D. Y.; Chen, T. P.; Mei, T.; Yuan, X. C.

    2014-05-15

    Low dimensional structures and devices are the key technological building blocks for new generation of electronic and photonic technology. Such structures and devices show novel properties and can be integrated into systems for wide applications in many areas, including medical, biological and military and advancement of science. In this invited talk, I will present the main results achieved in our competitive research program which aims to explore the application of the mesoscopic structures in light source, manipulation and imaging and integrate them into advanced systems. In the light source aspect, we have for the first time developed graphene mode-locked lasers which are in the process of commercialization. Nanocrystal Si embedded in dielectrics was formed by ion implantation and subsequent annealing. Si light emitting devices with external quantum efficiency of about 2.9×10{sup −3}% for visible emission were demonstrated at room temperature and the color of emitted light can be tuned electrically from violet to white by varying the injected current. In light manipulation, loss compensation of surface plasmon polaritons (SPPs) using quantum well (QW) gain media was studied theoretically and demonstrated experimentally. The SPP propagation length was effectively elongated several times through electrical pumping. One and two microring resonators based on silicon on insulator and III-V semiconductors technologies have been successfully fabricated and they can be used as filter and switch in the photonic circuit. In imaging, both SPP and low dimension structures are investigated and resolution far beyond diffraction limit in visible range has been realized. The integration of the components in the three aspects into complicated systems is on the way.

  9. Sub-Wavelength Silicon Photonic Devices for Optical Interconnect Networks

    NASA Astrophysics Data System (ADS)

    Dudley, Eric F.

    As our demand for information grows, so too does the demand for networks capable of handling this flood of data. Conventional on-chip electrical networks are approaching their limits in terms of latency, power consumption and data rates and will need to be replaced with new technology in the near future. Photonic networks promise great improvements over electrical networks, but several key challenges still hinder their widespread deployment. This thesis focuses on addressing the problem of encoding and routing data inside integrated optical communication networks. This is accomplished through electrically driven optical switches or modulators that are able to produce a binary optical data stream from a binary electrical input signal. The primary metrics used to evaluate the performance of these devices are spatial footprint, modulation/switching speed, operating voltage and power consumption per bit. Secondary concerns are device bandwidth, CMOS compatibility, tolerance to fabrication errors and device losses. In this thesis, we present a theoretical design for an electrically driven optical switch utilizing hybrid silicon-insulator-metal waveguides with a 30 square micrometer footprint, 57 Gbit/s switching speed, 2.6 fJ/bit power consumption and 1V operation. We also present experimental confirmation of the optical properties of hybrid silicon-insulator-metal waveguides which form the basis of this design.

  10. Active Metal-Insulator-Metal Plasmonic Devices

    NASA Astrophysics Data System (ADS)

    Diest, Kenneth Alexander

    As the field of photonics constantly strives for ever smaller devices, the diffraction limit of light emerges as a fundamental limitation in this pursuit. A growing number of applications for optical "systems on a chip" have inspired new ways of circumventing this issue. One such solution to this problem is active plasmonics. Active plasmonics is an emerging field that enables light compression into nano-structures based on plasmon resonances at a metal-dielectric interface and active modulation of these plasmons with an applied external field. One area of active plasmonics has focused on replacing the dielectric layer in these waveguides with an electro-optic material and designing the resulting structures in such a way that the transmitted light can be modulated. These structures can be utilized to design a wide range of devices including optical logic gates, modulators, and filters. This thesis focuses on replacing the dielectric layer within a metal-insulator-metal plasmonic waveguide with a range of electrically active materials. By applying an electric field between the metal layers, we take advantage of the electro-optic effect in lithium niobate, and modulating the carrier density distribution across the structure in n-type silicon and indium tin oxide. The first part of this thesis looks at fabricating metal-insulator-metal waveguides with ion-implantation induced layer transferred lithium niobate. The process is analyzed from a thermodynamic standpoint and the ion-implantation conditions required for layer transfer are determined. The possible failure mechanisms that can occur during this process are analyzed from a thin-film mechanics standpoint, and a metal-bonding method to improve successful layer transfer is proposed and analyzed. Finally, these devices are shown to naturally filter white light into individual colors based on the interference of the different optical modes within the dielectric layer. Full-field electromagnetic simulations show that

  11. Theoretical analysis of an all-photonic multifunctional molecular logic device: Using TD-DFT//DFT to assess photochromic activity of multimeric photochrome

    NASA Astrophysics Data System (ADS)

    Belfon, Kellon A. A.; Gough, Jonathan D.

    2013-10-01

    The structures and properties of a single-molecule photochromic switch consisting of 3 photochromic moieties is investigated. Using time-dependent density functional theory (TD-DFT) we calculated the λmax within ± 30 nm (± 0.18 eV) and produced spectra that were similar. The charge-transfer (CT) character of the molecular orbitals (MO) was assessed via the overlap between the occupied and virtual orbitals (Λ diagnostic) and did not suffer from CT failure. The MOs were consistent with photochemically productive photochromes. The MO and their contribution to different excited states paralleled both the observed activity and observed inactivity of the photochrome.

  12. Integrated devices for RF photonic links: Design and optimization

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobo

    2004-11-01

    In this dissertation, the results of theoretical investigations of the critical design concepts of novel optical devices used in photonic links for Radio Frequency (RF) transmission and processing are presented. The first chapter provides an introduction to the basics of RF photonic links and lists the set of competitive advantages enjoined by them. Also in this chapter a detailed comparison of characteristics of frequency modulation (FM) and intensity modulation (IM) schemes is performed and conclusion is drawn that favors FM scheme due to its useful bandwidth, higher sensitivity, and link-gain. The crucial components in the FM photonic links are also reviewed in this chapter. In Chapter Two, the design issues related to FM laser source are explored. Alternative methods of FM using density of carriers in the gain section or Quantum-confined Stark effect (QCSE) in separate phase section are investigated and the second scheme is shown to have an advantage. Both Distributed Feedback (DFB) and Distributed Bragg Reflector (DBR) schemes are shown to be able to attain single mode operation. Then we tackle two problems plaguing the FM lasers---how to increase the FM efficiency while maintaining the single mode operation and how to suppress spurious intensity modulation. We propose effective solutions for both problems and estimate the improvements achievable with these schemes. Chapter Three is devoted to the second critical component of the FM RF link---frequency discriminator. To attain high slope, integrable, and linearized FM discrimination, we propose and model in detail three distinct discriminator schemes---one using the chirped Bragg gratings with loss, one using coupling to radiation modes in gratings and one based on combination of Mach-Zehnder interferometer with ring resonators. In Chapter Four, possible enhancements of the external modulators used in RF photonic links are explored. One scheme involves linearization of Mach-Zehnder modulator using ring

  13. Photonic crystals with active organic materials

    NASA Astrophysics Data System (ADS)

    Wu, Yeheng

    The concept of photonic crystals, which involves periodically arranged dielectrics that form a new type of material having novel photonic properties, was first proposed about two decades ago. Since then, a number of applications in photonic technology have been explored. Specifically, organic and hybrid photonic crystals are promising because of the unique advantages of the organic materials. A one-dimensional (1D) photonic crystal (multilayer) has high reflectance across a certain wavelength range. We report on studies of 1D multilayer polymer films that were fabricated using spin-coating, free film stacking, and co-extrusion techniques. For example, a stack fabricated by placing a laser dye-doped gain medium between two multilayer reflecting polymer films forms a micro-resonator laser or distributed Bragg laser. The resulting laser system is made entirely of plastic and is only several tens of micrometers in thickness. When the gain, a dye-doped medium, comprises one type of a two-type multilayer film, it results a laser exhibiting distributed feedback. At the edge of the photonic band, the group velocity becomes small and the density of photon states becomes high, which leads to laser emission. Such distributed feedback lasers were fabricated using the co-extrusion technique. The refractive indices and the photonic lattice determine the photonic band gap, which can be tuned by changing these parameters. Materials with Kerr nonlinearity exhibit a change in refractive index depending on the incident intensity of the light. To demonstrate such switching, electrochemical etching techniques on silicon wafers were used to form two-dimensional (2D) photonic crystals. By incorporating the nonlinear organic material into the 2D structure, we have made all-optical switches. The reflection of a beam from the 2D photonic crystal can be controlled by another beam because it induces a refractive index change in the active material by altering the reflection band. A mid

  14. Control system for insertion devices at the advanced photon source

    SciTech Connect

    Makarov, Oleg A.; Den Hartog, Patric; Moog, Elizabeth R.; Smith, Martin L.

    1997-07-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like 'open all IDs' are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed.

  15. Control system for insertion devices at the Advanced Photon Source

    SciTech Connect

    Makarov, O.A.; Den Hartog, P.; Moog, E.R.; Smith, M.L.

    1997-09-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like ``open all IDs`` are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed.

  16. Control system for insertion devices at the advanced photon source

    SciTech Connect

    Makarov, O.A.; Den Hartog, P.; Moog, E.R.; Smith, M.L.

    1997-07-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like {open_quotes}open all IDs{close_quotes} are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed. {copyright} {ital 1997 American Institute of Physics.}

  17. Active graphene plasmonics for terahertz device applications

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Popov, Vyacheslav; Ryzhii, Victor

    2014-03-01

    This paper reviews recent advances in graphene active plasmonics for terahertz (THz) device applications. Two-dimensional plasmons in graphene exhibit unique optoelectronic properties and mediate extraordinary light-matter interactions. It has been discovered theoretically that when the population of Dirac fermionic carriers in graphene are inverted by optical or electrical pumping, the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned into a micro- or nanoribbon array by grating metallization, the structure acts as an active THz plasmonic amplifier, providing a superradiant plasmonic lasing with a giant gain at the plasmon modes in a wide THz frequency range. These new findings can lead to the creation of new types of plasmonic THz emitters and lasers operating even at room temperature.

  18. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  19. Individual carbon nanotubes for quantum electronic and quantum photonic devices

    NASA Astrophysics Data System (ADS)

    Ai, Nan

    2011-12-01

    demonstration of the suppression of blinking and spectral diffusion of individual CNTs by manipulation of their dielectric environment, resulting in five fold enhanced light emission. Such results open many new device applications in CNT nanophotonics, such as efficient CNT-based single photon sources. CNT-based FETs, SETS and light emitters studied in this thesis demonstrate the great potential for CNTs as optoelectronic material in future nanoelectronic and nanophotonic device applications.

  20. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  1. Waveguiding and bending modes in a plasma photonic crystal bandgap device

    NASA Astrophysics Data System (ADS)

    Wang, B.; Cappelli, M. A.

    2016-06-01

    Waveguiding and bending modes are investigated in a fully tunable plasma photonic crystal. The plasma device actively controls the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. An array of discharge plasma tubes form a square crystal lattice exhibiting a well-defined bandgap, with individual active switching of the plasma elements to allow for waveguiding and bending modes to be generated dynamically. We show, through simulations and experiments, the existence of transverse electric (TE) mode waveguiding and bending modes.

  2. Photonic crystal planar waveguide devices exploiting the thermo-optic effect (Keynote Paper)

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard M.; Chong, Harold; Camargo, Edilson; Ciminelli, Caterina; Armenise, Mario

    2005-07-01

    Photonic crystal devices are now being produced for a variety of functions-and the need to provide thermal control of the behaviour suggests the use of thermo-optic effects. It has emerged that thermo-optic effects can provide useful modulation, switching and tuning capability. Future trends indicate fast, low-power, thermo-optically operated photonic crystal and photonic wire devices-and the possibility of simultaneous athermal characteristics.

  3. The PHOTON explorations: sixteen activities, many uses

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith; Amatrudo, Kathryn; Robinson, Kathleen; Hanes, Fenna

    2014-07-01

    The PHOTON Explorations were adapted from favorite demonstrations of teacher participants in the PHOTON projects of the New England Board of Higher Education as well as Hands-on-Optics activities and interesting demonstrations found on the web. Since the end of project PHOTON2 in 2006, the sixteen inquiry-based activities have formed the basis for a hands-on "home lab" distance- learning course that has been used for college students, teacher professional development and corporate training. With the support of OSA, they have been brought to life in a series of sixteen short videos aimed at a middle school audience. The Explorations are regularly used as activities in outreach activities for middle and high school students and are introduced yearly to an international audience at an outreach workshop at SPIE's Optics and Photonics meeting. In this paper we will demonstrate the Explorations, trace their origins and explain the content. We will also provide details on the development of the Exploration videos, the online course, and outreach materials and give statistics on their use in each format. Links to online resources will be provided.

  4. Advanced Silicon Photonic Device Architectures for Optical Communications: Proposals and Demonstrations

    NASA Astrophysics Data System (ADS)

    Sacher, Wesley David

    Photonic integrated circuits implemented on silicon (Si) hold the potential for densely integrated electro-optic and passive devices manufactured by the high-volume fabrication and sophisticated assembly processes used for complementary metal-oxide-semiconductor (CMOS) electronics. However, high index contrast Si photonics has a number of functional limitations. In this thesis, several devices are proposed, designed, and experimentally demonstrated to overcome challenges in the areas of resonant modulation, waveguide loss, fiber-to-chip coupling, and polarization control. The devices were fabricated using foundry services at IBM and A*STAR Institute of Microelectronics (IME). First, we describe coupling modulated microrings, in which the coupler between a microring and the bus waveguide is modulated. The device circumvents the modulation bandwidth vs. resonator linewidth trade-off of conventional intracavity modulated microrings. We demonstrate a Si coupling modulated microring with a small-signal modulation response free of the parasitic resonator linewidth limitations at frequencies up to about 6x the linewidth. Comparisons of eye diagrams show that coupling modulation achieved data rates > 2x the rate attainable with intracavity modulation. Second, we demonstrate a silicon nitride (Si3N4)-on-Si photonic platform with independent Si3N4 and Si waveguides and taper transitions to couple light between the layers. The platform combines the excellent passive waveguide properties of Si3N4 and the compatibility of Si waveguides with electro-optic devices. Within the platform, we propose and demonstrate dual-level, Si3N 4-on-Si, fiber-to-chip grating couplers that simultaneously have wide bandwidths and high coupling efficiencies. Conventional Si and Si3N 4 grating couplers suffer from a trade-off between bandwidth and coupling efficiency. The dual-level grating coupler achieved a peak coupling efficiency of -1.3 dB and a 1-dB bandwidth of 80 nm, a record for the

  5. Silicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities

    NASA Astrophysics Data System (ADS)

    Poon, Andrew W.; Zhou, Linjie; Xu, Fang; Li, Chao; Chen, Hui; Liang, Tak-Keung; Liu, Yang; Tsang, Hon K.

    In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas-microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on optical nonlinearities have contributed to basic understanding of silicon-based optically-pumped light sources and helium-implanted detectors. Here, we review our various passive and electro-optic active microresonator devices including (i) cascaded microring resonator cross-connect filters, (ii) NRZ-to-PRZ data format converters using a microring resonator notch filter, (iii) GHz-speed carrier-injection-based microring resonator modulators and 0.5-GHz-speed carrier-injection-based microdisk resonator modulators, and (iv) electrically reconfigurable microring resonator add-drop filters and electro-optic logic switches using interferometric resonance control. On the nonlinear waveguide front, we review the main nonlinear optical effects in silicon, and show that even at fairly modest average powers two-photon absorption and the accompanied free-carrier linear absorption could lead to optical limiting and a dramatic reduction in the effective lengths of nonlinear devices.

  6. Electrochromic and photonic devices utilizing polymer colloidal particles

    NASA Astrophysics Data System (ADS)

    Shim, Goo Hwan

    Since polymer colloidal particles have small size and stable surface properties, these materials have characteristics such as the ability to self-assemble, the ease of functionalization, the flexible coupling with other materials, and the formation of the stable dispersion in a liquid that can be beneficial to the fabrication of the electro-optic and photonic devices to enhance the performance. The main objective of this research is the fabrication of electrochromic devices (ECDs) employing the intrinsically conducting polymer (ICP) colloidal particles as electroactive materials and the crystalline colloidal array (CCA)-based photonic devices using polystyrene (PS) colloidal particles as building blocks. The research reported here focuses on: (1) the fabrication of the patterned ECDs through the inkjet printing of the ICP colloidal particles; (2) the fabrication of the reflection-type ECDs employing the polymerized crystalline colloidal array (PCCA) as a reflection mirror; (3) the dynamic tuning of a photoluminescence (PL) dye through the coupling of a PL dye to the CCA. In the first part, polyaniline (PANI)-silica and poly(3,4-ethylenedioxythiophene) (PEDOT)-silica composite particles having a diameter of 200-300 nm were synthesized, then converted to the ICP-ink via solvent exchange. This ICP-ink could be inkjet-printed on various substrates such as ITO-PET film, commercial transparency film, and cotton fabric using a commercial desktop inkjet printer. ECDs could be fabricated employing an inkjet printed PANI-silica or PEDOT-silica layer on an ITO-PET film as an electrochromic layer. These devices exhibit various color changes corresponding to applied potentials between +1V and -1V. In the spectroelectrochemical analysis PANI-based ECD presents up to 50% transmittance contrast ratio and PEDOT-based one shows up to 40% at lambda max. The switching time of the PANI-based device was 30 seconds and that of PEDOT-based ECD was 5 seconds. The PANI-based ECD could be

  7. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  8. Efficient single-mode photon-coupling device utilizing a nanofiber tip.

    PubMed

    Chonan, Sho; Kato, Shinya; Aoki, Takao

    2014-01-01

    Single-photon sources are important elements in quantum optics and quantum information science. It is crucial that such sources be able to couple photons emitted from a single quantum emitter to a single propagating mode, preferably to the guided mode of a single-mode optical fiber, with high efficiency. Various photonic devices have been successfully demonstrated to efficiently couple photons from an emitter to a single mode of a cavity or a waveguide. However, efficient coupling of these devices to optical fibers is sometimes challenging. Here we show that up to 38% of photons from an emitter can be directly coupled to a single-mode optical fiber by utilizing the flat tip of a silica nanofiber. With the aid of a metallic mirror, the efficiency can be increased to 76%. The use of a silicon waveguide further increases the efficiency to 87%. This simple device can be applied to various quantum emitters. PMID:24759303

  9. Flexible In-plane Photonic Devices Based on Transferrable Si Nanomembranes on Polyimide Film

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochuan; Subbaraman, Harish; Pham, Daniel T.; Hosseini, Amir; Ghaffari, Afshin; Chen, Ray T.

    2011-02-01

    The flexible electronics and photonics have attracted a lot of attentions in past decade because of their potentially wide applications. A general method to fabricate nanomembrane flexible device involves two steps. At first, a nanomembrane on top of a sacrificial layer is patterned. Then, the nanomembrane is freed by high selective etching of the sacrificial layer and then weakly bonds to the handle substrate by Vander Waals forces. Later on, the released devices are transferred to the target flexible substrates. Notable successes include paper-like display, flexible silicon integrated circuits, photonic crystal filter and sensor skins, and so on. However, the progress in flexible photonic device is still limited to surface-normal devices such as photonic crystal filter. This type of devices usually has a large area and/or same dimensions which makes the transfer much easier than in-plane photonic device. This paper reports the transfer of in-plane Silicon nanomembrane photonic devices on polyimide flexible film. Employing a slightly modified transfer process, passive optical components, such as optical waveguide and multimode multimode interferometer, are successfully transferred on to Kapton polyimide film.

  10. A Novel 2-D Programmable Photonic Time Delay Device for MM-Wave Signal Processing Applications

    NASA Technical Reports Server (NTRS)

    Yao, X.; Maleki, L.

    1994-01-01

    We describe a novel programmable photonic true time delay device that has the properties of low loss, inherent two dimensionality with a packing density exceeding 25 lines/cm super 2, virtually infinite bandwidth, and is easy to manufacture.

  11. Macroscopic response in active nonlinear photonic crystals.

    PubMed

    Alagappan, Gandhi; John, Sajeev; Li, Er Ping

    2013-09-15

    We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods. PMID:24104802

  12. Design and fabrication of one-dimensional and two- dimensional photonic bandgap devices

    NASA Astrophysics Data System (ADS)

    Lim, Kuo-Yi

    1999-10-01

    One-dimensional and two-dimensional photonic bandgap devices have been designed and fabricated using III-V compound semiconductors. The one-dimensional photonic bandgap devices consist of monorail and air-bridge waveguide microcavities, while the two-dimensional photonic bandgap devices consist of light-emitting devices with enhanced extraction efficiency. Fabrication techniques such as gas source molecular beam epitaxy, direct-write electron-beam lithography, reactive ion etching and thermal oxidation of AlxGa1- xAs have been employed. The III-V thermal oxide, in particular, is used as an index confinement material, as a sacrificial material for micromechanical fabrication of the air-bridge microcavity, and in the realization of a wide-bandwidth distributed Bragg reflector. The one-dimensional photonic bandgap waveguide microcavities have been designed to operate in the wavelength regimes of 4.5 m m and 1.55 m m. The devices designed to operate in the 1.55 m m wavelength regime have been optically characterized. The transmission spectra exhibit resonances at around 1.55 m m and cavity quality factors (Q's) ranging from 136 to 334. The resonant modal volume is calculated to be about 0.056 m m3. Tunability in the resonance wavelengths has also been demonstrated by changing the size of the defect in the one-dimensional photonic crystal. The two-dimensional photonic bandgap light-emitting device consists of a In0.51Ga0.49P/In0.2Ga0.8As/In 0.51Ga0.49P quantum well emitting at 980nm with a triangular photonic lattice of holes in the top cladding layer of the quantum well. The photonic crystal prohibits the propagation of guided modes in the semiconductor, thus enhancing the extraction of light vertical to the light-emitting device. A wide-bandwidth GaAs/AlxOy distributed Bragg reflector mirror under the quantum well structure further enhances the extraction of light from the devices. The extraction efficiency of the two-dimensional photonic bandgap light-emitting device

  13. Impact of photon recycling and luminescence coupling in III-V photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Walker, A. W.; Höhn, O.; Micha, D. N.; Wagner, L.; Helmers, H.; Bett, A. W.; Dimroth, F.

    2015-03-01

    Single junction photovoltaic devices composed of direct bandgap III-V semiconductors such as GaAs can exploit the effects of photon recycling to achieve record-high open circuit voltages. Modeling such devices yields insight into the design and material criteria required to achieve high efficiencies. For a GaAs cell to reach 28 % efficiency without a substrate, the Shockley-Read-Hall (SRH) lifetimes of the electrons and holes must be longer than 3 μs and 100 ns respectively in a 2 μm thin active region coupled to a very high reflective (>99%) rear-side mirror. The model is generalized to account for luminescence coupling in tandem devices, which yields direct insight into the top cell's non-radiative lifetimes. A heavily current mismatched GaAs/GaAs tandem device is simulated and measured experimentally as a function of concentration between 3 and 100 suns. The luminescence coupling increases from 14 % to 33 % experimentally, whereas the model requires an increasing SRH lifetime for both electrons and holes to explain these experimental results. However, intermediate absorbing GaAs layers between the two sub-cells may also increasingly contribute to the luminescence coupling as a function of concentration.

  14. Nanophotonics for Optoelectronic Devices: Extrinsic Silicon Photonic Receivers and Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Grote, Richard R.

    The demand for high data rate communications and renewable energy sources has led to new materials and platforms for optoelectronic devices, which require nanometer scale feature sizes. Devices that operate in the visible and near-infrared commonly have active areas with dimensions on the order of the diffraction limit ( l2n , where lambda is the free space wavelength and n is the index of refraction), for which the ray optics modeling techniques and bulk focusing optics traditionally used in optoelectronic device design are no longer applicable. In this subwavelength regime, nanophotonic light-trapping strategies are required to localize electromagnetic fields in the active area. This dissertation details the application of nanophotonics to two optoelectronic systems: extrinsic photodetectors for silicon photonics and light-trapping in organic photovoltaics. Error-free reception of 10 Gb/s data at lambda = 1.55 mum is demonstrated with a Si+ ion-implanted silicon waveguide photodiode. To mitigate the relatively small absorption coefficient of ion-implanted silicon, resonant cavity enhancement using in-line Fabry-Perot and 1D photonic crystal cavities, as well as slow light enhancement using a coupled resonator optical waveguide are discussed. The extension of these photodiodes to the mid-infrared is demonstrated using Zn+ implantation to detect over a range of lambda = 2.2-2.4 mum, and a new method for modulation and switching in integrated optics by using interference in a resonant cavity, termed coherent perfect loss (CPL), is presented. Finally, the upper limit of nanophotonic light trapping is derived for organic photovoltaics with material anisotropy included.

  15. Two-photon passive electro-optic upconversion in a GaAs /AlGaAs heterostructure device

    NASA Astrophysics Data System (ADS)

    Zhao, Lai; Thompson, Pete; Faleev, N. N.; Prather, D. W.; Appelbaum, Ian

    2007-03-01

    A semiconductor heterostructure device that requires no external power source to upconvert two low-energy photons into one higher-energy photon is proposed. This passive device is fabricated in the AlGaAs /GaAs material system and it is used to demonstrate photon upconversion from 808to710nm at room temperature.

  16. Workshop on photon activation therapy: proceedings

    SciTech Connect

    Fairchild, R.G.

    1985-04-18

    This Workshop was held concurrently with an IAEA Research Coordination Meeting on Exploration of the Possibility of High-LET Radiation for Non-conventional Radiotherapy in Cancer. The Workshop on Photon Activation Therapy (PAT) was given as a special session on April 18, as it was thoght PAT might eventually be found to be attractive to developing countries, which is a major concern of the IAEA. An effort was made to bring together representatives of the various groups known to be actively working on PAT; these included investigators from Sweden and Japan as well as the US. It is hoped that this compendium of papers will be of use to those currently active in this developing field, as well as to those who might join this area of endeavor in the future.

  17. Code division in optical memory devices based on photon echo

    NASA Astrophysics Data System (ADS)

    Kalachev, Alexey A.; Vlasova, Daria D.

    2006-03-01

    The theory of multi-channel optical memory based on photon echo is developed. It is shown that under long-lived photon echo regime the writing and reading of information with code division is possible using phase modulation of reference and reading pulses. A simple method for construction of a system of noise-like signals, which is based on the segmentation of Frank sequence is proposed. It is shown that in comparison to the system of random biphase signals this system leads to the efficient decreasing of mutual influence of channels and increasing of random/noise ratio under reading of information.

  18. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  19. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  20. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    NASA Astrophysics Data System (ADS)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields

  1. Suspended core photonic microcells for sensing and device applications.

    PubMed

    Wang, Chao; Jin, Wei; Ma, Jun; Wang, Ying; Ho, Hoi Lut; Shi, Xin

    2013-06-01

    In-line fiber-optic microcells are fabricated by postprocessing NKT LMA10 photonic crystal fibers. The cells are suspended core (SC) elements created by locally inflating some of the air holes while the core is being tapered. Based on a SC microcell with six air holes, a cantilever beam accelerometer is demonstrated. The microcells could also be used as gain and absorption cells for amplifier and spectroscopy applications. PMID:23722776

  2. Research and education at the NASA Fisk University Center for Photonic Materials and Devices

    NASA Astrophysics Data System (ADS)

    Silberman, Enrique

    1996-07-01

    In 1992, NASA awarded Fisk University a 5 year grant to establish a center for research and education on photonic materials are synthesized, characterized and, in some cases, developed into devices with applications in the fields of radiation detectors and nonlinear optical crystals, glasses and nanomaterials. The educational components include participation in the research by 3 types of students majoring in Physics, Chemistry and Biology: 1) Fisk undergraduates participating during the academic year. 2) Fisk graduates performing their Maser Thesis research. 3) Fisk and other HBCU's and Minority Institutions' undergraduates attending a 10 week summer workshop with a very rigorous program of study, research and progress reporting. Funds are available for supporting participating students. Prerequisite, schedules of activities, evaluation procedures and typical examples of the outcome are presented.

  3. Lithography process for patterning HgI2 photonic devices

    DOEpatents

    Mescher, Mark J.; James, Ralph B.; Hermon, Haim

    2004-11-23

    A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.

  4. EDITORIAL: Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-04-01

    -14 August, Hamilton, Ontario, Canada) and the scope was expanded to include renewable energy research and development. This special issue of Nanotechnology is devoted to a better understanding of the function and design of semiconductor devices that are relevant to information technology (both electronics and photonics based) and renewable energy applications. The papers contained in this special issue are selected from the NGC/CSTC2009 symposium. Among them is a report by Ray LaPierre from McMaster University and colleagues at the University of Waterloo in Canada on the ability to manipulate single spins in nanowire quantum bits. The paper also reports the development of a testbed of a few qubits for general quantum information processing tasks [1]. Lower cost and greater energy conversion efficiency compared with thin film devices have led to a high level of activity in nanowire research related to photovoltaic applications. This special issue also contains results from an impedance spectroscopy study of core-shell GaAs nanowires to throw light on the transport and recombination mechanisms relevant to solar cell research [2]. Information technology research and renewable energy sources are research areas of enormous public interest. This special issue addresses both theoretical and experimental achievements and provides a stimulating outlook for technological developments in these highly topical fields of research. References [1] Caram J, Sandoval C, Tirado M, Comedi D, Czaban J, Thompson D A and LaPierre R R 2101 Nanotechnology 21 134007 [2] Baugh J, Fung J S and LaPierre RR 2010 Nanotechnology 21 134018

  5. Nanophotonics: Dressed Photon Technology for Qualitatively Innovative Optical Devices, Fabrication, and Systems

    NASA Astrophysics Data System (ADS)

    Ohtsu, Motoichi

    This chapter reviews the theoretical picture of the dressed photon by combining the concepts of quantum field theory, optical science, and condensed-matter physics. Based on the exchange of dressed photons, energy transfer to an electric dipole-forbidden energy level is described. Furthermore, the possibility of coupling a dressed photon with a coherent phonon is presented, revealing a novel phonon-assisted process in light-matter interactions in nanometric space. Applications to qualitatively innovative optical devices, fabrication techniques, energy conversion, and systems are exemplified.

  6. Organic and hybrid tunable bragg gratings for photonic devices

    NASA Astrophysics Data System (ADS)

    Abbate, G.; Marino, A.; Tkachenko, V.; Vita, F.

    2007-05-01

    We present a survey on organic composite and hybrid materials suitable for a new family of optical devices like thermo- and electro-tunable multilayer mirrors, microcavities and optical filters. The main component is a tunable and/or switchable Bragg grating. Two different classes of materials have been realized, characterized, and designed in form of prototype devices, namely a) polymer-liquid crystal composite and b) liquid crystal infiltrated porous silicon. Different geometries and patterns can be envisaged, leading to different physical properties and a large number of device potentialities, most of them yet unexplored. Obtained results look promising for both material families, especially for the porous silicon one, which includes an inherent immediate integration with the electronic fabric technology.

  7. Si-photonics based passive device packaging and module performance.

    PubMed

    Song, Jeong Hwan; Zhang, Jing; Zhang, Huijuan; Li, Chao; Lo, Guo Qiang

    2011-09-12

    We report a fully packaged silicon passive waveguide device designed for a tunable filter based on a ring-resonator. Polarization diversity circuits prevent polarization dependant issues in the silicon ring-resonator. For the device packaging, the YAG laser welding technique has been used for pigtailing both of the input and output fibers. Post welding misalignment was compensated by mechanical fine tuning using the seesaw effect via power monitoring. Packaging loss less than 1.5 dB with respect to chip measurement has been achieved using 10 µm-curvature radius lensed fibers. In addition, the packaging process and the module performance are presented. PMID:21935167

  8. Photonic crystal lasers using wavelength-scale embedded active region

    NASA Astrophysics Data System (ADS)

    Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya; Fujii, Takuro; Hasebe, Koichi; Kakitsuka, Takaaki

    2014-01-01

    Lasers with ultra-low operating energy are desired for use in chip-to-chip and on-chip optical interconnects. If we are to reduce the operating energy, we must reduce the active volume. Therefore, a photonic crystal (PhC) laser with a wavelength-scale cavity has attracted a lot of attention because a PhC provides a large Q-factor with a small volume. To improve this device's performance, we employ an embedded active region structure in which the wavelength-scale active region is buried with an InP PhC slab. This structure enables us to achieve effective confinement of both carriers and photons, and to improve the thermal resistance of the device. Thus, we have obtained a large external differential quantum efficiency of 55% and an output power of -10 dBm by optical pumping. For electrical pumping, we use a lateral p-i-n structure that employs Zn diffusion and Si ion implantation for p-type and n-type doping, respectively. We have achieved room-temperature continuous-wave operation with a threshold current of 7.8 µA and a maximum 3 dB bandwidth of 16.2 GHz. The results of an experimental bit error rate measurement with a 10 Gbit s-1 NRZ signal reveal the minimum operating energy for transferring a single bit of 5.5 fJ. These results show the potential of this laser to be used for very short reach interconnects. We also describe the optimal design of cavity quality (Q) factor in terms of achieving a large output power with a low operating energy using a calculation based on rate equations. When we assume an internal absorption loss of 20 cm-1, the optimized coupling Q-factor is 2000.

  9. Efficient heralding of photonic qubits with applications to device-independent quantum key distribution

    SciTech Connect

    Pitkanen, David; Ma Xiongfeng; Luetkenhaus, Norbert; Wickert, Ricardo; Loock, Peter van

    2011-08-15

    We present an efficient way of heralding photonic qubit signals using linear optics devices. First, we show that one can obtain asymptotically perfect heralding and unit success probability with growing resources. Second, we show that even using finite resources, we can improve qualitatively and quantitatively over earlier heralding results. In the latter scenario, we can obtain perfect heralded photonic qubits while maintaining a finite success probability. We demonstrate the advantage of our heralding scheme by predicting key rates for device-independent quantum key distribution, taking imperfections of sources and detectors into account.

  10. Simulation of photons from plasmas for the applications to display devices

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Yoon, Hyun Jin; Lee, Jae Koo

    2007-07-01

    Numerical modeling of the photon transport of the ultraviolet (UV) and the visible lights are presented for plasma based display devices. The transport of UV lights which undergo resonance trapping by ground state atoms is solved by using the Holstein equation. After the UV lights are transformed to visible lights at the phosphor surfaces, the visible lights experience complicated traces inside the cell and finally are emitted toward the viewing window after having some power loss within the cell. A three-dimensional ray trace of the visible lights is calculated with a radiosity model. These simulations for the photons strengthen plasma discharge modeling for the application to display devices.

  11. Active plasmonic devices via electron spin.

    PubMed

    Baron, C A; Elezzabi, A Y

    2009-04-27

    A class of active terahertz devices that operate via particle plasmon oscillations is introduced for ensembles consisting of ferromagnetic and dielectric micro-particles. By utilizing an interplay between spin-orbit interaction manifesting as anisotropic magnetoresistance and the optical distance between ferromagnetic particles, a multifaceted paradigm for device design is demonstrated. Here, the phase accumulation of terahertz radiation across the device is actively modulated via the application of an external magnetic field. An active plasmonic directional router and an active plasmonic cylindrical lens are theoretically explored using both an empirical approach and finite-difference time-domain calculations. These findings are experimentally supported. PMID:19399088

  12. CCDs and photon counting devices: Applications in space and from the ground

    NASA Technical Reports Server (NTRS)

    Delamere, W. A.; Blouke, M. M.; Flores, J. S.; Frame, W. W.

    1992-01-01

    The development of the 2048 by 2048 CCD (Charge Coupled Device) for a second generation space telescope instrument has resulted in devices with very few defects, dark currents of less than 12 electrons/pixel/hour at -80 deg, readout noise levels of less than 4 electrons rms, and excellent charge transfer efficiency at signal levels of less than 10 electrons. A second generation of devices that capitalize on these characteristics have been produced and are currently in test. Faster frame transfer devices that preserve these characteristics have been designed that include tridirectional taps in the serial register. The state of the art in CCD's as photon counting detectors is reviewed.

  13. Experimental generation of single photons via active multiplexing

    SciTech Connect

    Ma Xiaosong; Zotter, Stefan; Kofler, Johannes; Jennewein, Thomas; Zeilinger, Anton

    2011-04-15

    An on-demand single-photon source is a fundamental building block in quantum science and technology. We experimentally demonstrate the proof of concept for a scheme to generate on-demand single photons via actively multiplexing several heralded photons probabilistically produced from pulsed spontaneous parametric down-conversions (SPDCs). By utilizing a four-photon-pair source, an active feed-forward technique, and an ultrafast single-photon router, we show a fourfold enhancement of the output photon rate. Simultaneously, we maintain the quality of the output single-photon states, confirmed by correlation measurements. We also experimentally verify, via Hong-Ou-Mandel interference, that the router does not affect the indistinguishability of the single photons. Furthermore, we give numerical simulations, which indicate that photons based on multiplexing of four SPDC sources can outperform the heralding based on highly advanced photon-number-resolving detectors. Our results show a route for on-demand single-photon generation and the practical realization of scalable linear optical quantum-information processing.

  14. Photonic Device Design Based on BBO for Ultrafast Frequency Doubling

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Zhe; Yang, Zhong-Ying; Zhang, Liu-Yang; Pu, Shao-Zhi; Su, Lin

    2014-11-01

    Group velocity mismatch becomes the main obstacle for frequency conversion of ultrashort pulses due to dispersion. To solve the problem, one design is proposed for group velocity compensated second harmonic generation in a periodically modulated BBO crystal structure: the α-BBO/β-BBO multi-layer microstructure. The results show that the device can be well applied from the visible red to the near infrared region.

  15. Design of nonreciprocal waveguide devices based on two-dimensional magneto-optical photonic crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Yang, Dongxiao; Chen, Kan; Li, Tao; Xia, Song

    2013-09-01

    Isolator, circulator and crossing waveguide devices based on two-dimensional magneto-optical photonic crystals were designed. The dispersion relation, mode distribution and transmission spectrum for these nonreciprocal devices were analysed using the finite element method. An isolator, a four-port circulator and a low-crosstalk crossing waveguide with a continual one-way transmission bandwidth of 10.6%, a circulation bandwidth of 4.7% and a low-crosstalk bandwidth of 16.6% were fabricated, respectively.

  16. Active temporal multiplexing of indistinguishable heralded single photons.

    PubMed

    Xiong, C; Zhang, X; Liu, Z; Collins, M J; Mahendra, A; Helt, L G; Steel, M J; Choi, D-Y; Chae, C J; Leong, P H W; Eggleton, B J

    2016-01-01

    It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong-Ou-Mandel quantum interference with a 91±16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies. PMID:26996317

  17. Active temporal multiplexing of indistinguishable heralded single photons

    NASA Astrophysics Data System (ADS)

    Xiong, C.; Zhang, X.; Liu, Z.; Collins, M. J.; Mahendra, A.; Helt, L. G.; Steel, M. J.; Choi, D.-Y.; Chae, C. J.; Leong, P. H. W.; Eggleton, B. J.

    2016-03-01

    It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong-Ou-Mandel quantum interference with a 91+/-16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies.

  18. Active temporal multiplexing of indistinguishable heralded single photons

    PubMed Central

    Xiong, C.; Zhang, X.; Liu, Z.; Collins, M. J.; Mahendra, A.; Helt, L. G.; Steel, M. J.; Choi, D. -Y.; Chae, C. J.; Leong, P. H. W.; Eggleton, B. J.

    2016-01-01

    It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong–Ou–Mandel quantum interference with a 91±16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies. PMID:26996317

  19. Devices and architectures for large-scale integrated silicon photonics circuits

    NASA Astrophysics Data System (ADS)

    Beausoleil, Raymond G.; Faraon, Andrei; Fattal, David; Fiorentino, Marco; Peng, Zhen; Santori, Charles

    2011-01-01

    We present DWDM nanophotonics architectures based on microring resonator modulators and detectors. We focus on two implementations: an on chip interconnect for multicore processor (Corona) and a high radix network switch (HyperX). Based on the requirements of these applications we discuss the key constraints on the photonic circuits' devices and fabrication techniques as well as strategies to improve their performance.

  20. Investigation of frequency-selective devices based on a microstrip 2D photonic crystal

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Khodenkov, S. A.; Shabanov, V. F.

    2016-04-01

    The frequency-selective properties of structures based on a 2D microstrip photonic crystal have been investigated theoretically and experimentally. It is shown that various microwave devices, including diplexers, bandpass filters, and double bandpass filters, can be designed based on these structures.

  1. Low-voltage tunable photonics devices: grove on thin porous structures containing liquid crystals

    NASA Astrophysics Data System (ADS)

    Criante, Luigino; Moretti, Luca; Scotognella, Francesco

    2013-09-01

    In this study we demonstrate the fabrication of one-dimensional porous multilayer photonic crystals made by metal oxide nanoparticles. We show the infiltration of these porous structures with a liquid crystal via a very simple method, resulting in a red shift of the photonic band gap due to increase of the effective refractive index of the medium. Taking advantage of structure thickness of only few micrometers, we have observed a blue shift of the photonic band gap owing the non-linear response of the liquid crystals by applying a very low external electric voltage, i.e. 8 V. The experimental observation of electric voltage tuning on the transmission spectrum has been corroborated by transfer matrix method simulations, by taking into account the non-linear optical properties of the liquid crystal. In this framework, we propose how the optical properties of these structure can be accurately predicted by our simulation software in terms of diffraction efficiency, of photonic band gap position when the porous photonic crystals is doped with a liquid crystal, of modulation of the photonic band gap position (electro-optic tuning) in the presence of applied voltage. According with results carried out by the custom simulation software it is possible to control the optical proprieties of the photonics crystal in very thin structures. Furthermore, the presented device could be very interesting for applications where high sensitivity sensor and selective color tunability is needed with the use of cheap and low voltage power supplies.

  2. [Remote monitoring of active implantable medical device].

    PubMed

    Zhang, Yujing

    2013-09-01

    Active implantable medical device develops rapidly in recent years. The clinical demands and current application are introduced, the technical trends are discussed, and the safety risks are analyzed in this paper. PMID:24409793

  3. Low-temperature optical processing of semiconductor devices using photon effects

    SciTech Connect

    Sopori, B.L.; Cudzinovic, M.; Symko, M.

    1995-08-01

    In an RTA process the primary purpose of the optical energy incident on the semiconductor sample is to increase its temperature rapidly. The activation of reactions involved in processes such as the formation of junctions, metal contacts, deposition of oxides or nitrides, takes place purely by the temperature effects. We describe the observation of a number of new photonic effects that take place within the bulk and at the interfaces of a semiconductor when a semiconductor device is illuminated with a spectrally broad-band light. Such effects include changes in the diffusion properties of impurities in the semiconductor, increased diffusivity of impurities across interfaces, and generation of electric fields that can alter physical and chemical properties of the interface. These phenomena lead to certain unique effects in an RTA process that do not occur during conventional furnace annealing under the same temperature conditions. Of particular interest are observations of low-temperature alloying of Si-Al interfaces, enhanced activation of phosphorus in Si during drive-in, low-temperature oxidation of Si, and gettering of impurities at low-temperatures under optical illumination. These optically induced effects, in general, diminish with an increase in the temperature, thus allowing thermally activated reaction rates to dominate at higher temperatures.

  4. Active pixel as dosimetric device for interventional radiology

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A. C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2013-08-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ˜5% for all the sensors under test.

  5. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  6. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals.

    PubMed

    Jang, Sukjae; Hwang, Euyheon; Lee, Youngbin; Lee, Seungwoo; Cho, Jeong Ho

    2015-04-01

    The advantages of graphene photodetectors were utilized to design a new multifunctional graphene optoelectronic device. Organic semiconductors, gold nanoparticles (AuNPs), and graphene were combined to fabricate a photodetecting device with a nonvolatile memory function for storing photonic signals. A pentacene organic semiconductor acted as a light absorption layer in the device and provided a high hole photocurrent to the graphene channel. The AuNPs, positioned between the tunneling and blocking dielectric layers, acted as both a charge trap layer and a plasmonic light scatterer, which enable storing of the information about the incident light. The proposed pentacene-graphene-AuNP hybrid photodetector not only performed well as a photodetector in the visible light range, it also was able to store the photonic signal in the form of persistent current. The good photodetection performance resulted from the plasmonics-enabled enhancement of the optical absorption and from the photogating mechanisms in the pentacene. The device provided a photoresponse that depended on the wavelength of incident light; therefore, the signal information (both the wavelength and intensity) of the incident light was effectively committed to memory. The simple process of applying a negative pulse gate voltage could then erase the programmed information. The proposed photodetector with the capacity to store a photonic signal in memory represents a significant step toward the use of graphene in optoelectronic devices. PMID:25811444

  7. Versatile alignment layer method for new types of liquid crystal photonic devices

    SciTech Connect

    Finnemeyer, V.; Bryant, D.; Lu, L.; Bos, P.; Reich, R.; Clark, H.; Berry, S.; Bozler, C.; Yaroshchuk, O.

    2015-07-21

    Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation of liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.

  8. Femtosecond laser-induced two-photon photopolymerization for structuring of micro-optical and photonic devices

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Gilbergs, Holger; Purlys, Vytautas; Žukauskas, Albertas; Rutkauskas, Marius; Gadonas, Roaldas

    2009-05-01

    Light initiated liquid polymer quasi-instant solidification is attractive for its ultra precise spatial and temporal control of the reaction. Here we present femtosecond laser induced two-photon photopolymerization for structuring of microoptical and sample photonic devices. Due to nonlinear phenomena the fabrication resolution is not restricted to diffraction limit for the applied laser excitation wavelength but determined by the exposure dose. Furthermore, pinpoint structuring enables one to produce 3D structures of any form out of photopolymer. The smallest structural elements voxels of 200 nm lateral dimensions can be achieved reproducibly by using high numerical aperture optics. Axial resolution which is fundamentally few times worse than lateral can be controlled in few hundred nanometers precision by forming polymeric pad as an additional structure. In our work we applied commercially available and widely used hybrid zirconium-silicon based hybrid sol-gel material ORMOSIL (SZ2080) and an acrylate based AKRE37 photopolymer. Arrays of custom parameters spherical microlenses for microscopy applications have been fabricated. Their surface roughness, focal distance and imaging quality were tested. 3D custom form woodpile structures with submicron period and chain-mail structure were made as a sample photonic bandgap structures. Finally, we show some structures produced out of fluorescent dyes rhodamine 6G doped photopolymer.

  9. NASA Electronic Parts and Packaging (NEPP): Space Qualification Guidelines of Optoelectronic and Photonic Devices for Optical Communication Systems

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup

    2001-01-01

    Key elements of space qualification of opto-electric and photonic optical devices were overviewed. Efforts were concentrated on the reliability concerns of the devices needed for potential applications in space environments. The ultimate goal for this effort is to gradually establish enough data to develop a space qualification plan of newly developed specific photonic parts using empirical and numerical models to assess the life-time and degradation of the devices for potential long term space missions.

  10. Device fabrication processes of DNA-CTMA based photonic devices: improving the processability by using DNA-CTMA-OMMA hybrids

    NASA Astrophysics Data System (ADS)

    Yoshida, Junichi; Kawabe, Yutaka; Ogata, Naoya

    2010-08-01

    DNA-CTMA or DNA-CTMA-PMMA films have been studied as a potential material for waveguide type thin-film photonic devices such as dye-doped thin film lasers, optical waveguide amplifiers, or optical waveguide switches. For the purpose of evaluate processability, not only optical characteristics of the fluorescence intensity but also moisture resistance of the film have been investigated. It is found that optical characteristics of those films are equally matched to the conventional DNA-CTMA films with better moisture resistivity. Waveguide fabrication experiments by using DNA-CTMA-PMMA films showed good moisture resistant nature and processability.

  11. First photon-shutter development for APS insertion device beamline front ends

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Nian, H. L. Thomas; Wang, Zhibi; Collins, Jeffrey T.; Ryding, David G.; Kuzay, Tuncer M.

    1993-02-01

    One of the most critical components on the Advanced Photon Source (APS) insertion device (ID) beamline front ends is the first photon shutter. It operates in two modes to fully intercept the high total power and high-heat-flux ID photon beam in seconds (normal mode) or in less than 100 ms (emergency fast mode). It is designed to operate in ultra high vacuum (UHV). The design incorporates a multi-channel rectangular bar, bent in a `hockey stick' configuration, with two-point suspension. The flanged end is an articulated bellows with rolling hinges. The actuation end is a spring-assisted, pneumatic fail-safe flexural pivot type. The coolant (water) channels incorporate brazed copper foam to enhance the heat transfer, a tube technology particular to the APS. The design development, and material aspects, as well as the extensive thermal and vibrational analyses in support of the design, are presented in this paper.

  12. Semiconductor Nanotechnology: Novel Materials and Devices for Electronics, Photonics, and Renewable Energy Applications

    SciTech Connect

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag S; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-03-01

    , Hamilton, Ontario, Canada) and the scope was expanded to include renewable energy research and development. This special issue of Nanotechnology is devoted to a better understanding of the function and design of semiconductor devices that are relevant to information technology (both electronics and photonics based) and renewable energy applications. The papers contained in this special issue are selected from the NGC/CSTC2009 symposium. Among them is a report by Ray LaPierre from McMaster University and colleagues at the University of Waterloo in Canada on the ability to manipulate single spins in nanowire quantum bits. The paper also reports the development of a testbed of a few qubits for general quantum information processing tasks [1]. Lower cost and greater energy conversion efficiency compared with thin film devices have led to a high level of activity in nanowire research related to photovoltaic applications. This special issue also contains results from an impedance spectroscopy study of core shell GaAs nanowires to throw light on the transport and recombination mechanisms relevant to solar cell research [2]. Information technology research and renewable energy sources are research areas of enormous public interest. This special issue addresses both theoretical and experimental achievements and provides a stimulating outlook for technological developments in these highly topical fields of research. References [1] Caram J, Sandoval C, Tirado M, Comedi D, Czaban J, Thompson D A and LaPierre R R 2010 Electrical characteristics of core shell p-n GaAs nanowire structures with Te as the n-dopant Nanotechnology 21 134007 [2] Baugh J, Fung J S and LaPierre R R 2010 Building a spin quantum bit register using semiconductor nanowires Nanotechnology 21 134018

  13. Cosmetic devices based on active transdermal technologies.

    PubMed

    Scott, Jessica A; Banga, Ajay K

    2015-09-01

    Active transdermal technology, commonly associated with drug delivery, has been used in recent years by the cosmetic industry for the aesthetic restoration of skin and delivery of cosmetic agents. In this article, we provide an overview of the skin's structure, various skin types, skin's self-repair mechanisms that are stimulated from the usage of cosmetic devices and discuss cosmetic applications. Summaries of the most common active transdermal technologies such as microneedles, iontophoresis, sonophoresis, lasers and microdermabrasion will be provided, in relation to the marketed cosmetic devices available that incorporate these technologies. Lastly, we cover combinations of active technologies that allow for more enhanced cosmetic results, and the current limitations of cosmetic devices. PMID:26389853

  14. III-V/Si hybrid photonic devices by direct fusion bonding

    PubMed Central

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  15. III-V/Si hybrid photonic devices by direct fusion bonding.

    PubMed

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  16. Neutronics activities for next generation devices

    SciTech Connect

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  17. The Role of Space Experiments in the Radiation Qualification of Electronic and Photonic Devices and Systems

    NASA Technical Reports Server (NTRS)

    Buchner, S.; LaBel, K.; Barth, J.; Campbell, A.

    2005-01-01

    Space experiments are occasionally launched to study the effects of radiation on electronic and photonic devices. This begs the following questions: Are space experiments necessary? Do the costs justify the benefits? How does one judge success of space experiment? What have we learned from past space experiments? How does one design a space experiment? This viewgraph presentation provides information on the usefulness of space and ground tests for simulating radiation damage to spacecraft components.

  18. Quantum entanglement distribution with 810 nm photons through active telecommunication fibers.

    PubMed

    Holloway, Catherine; Meyer-Scott, Evan; Erven, Chris; Jennewein, Thomas

    2011-10-10

    We demonstrate the distribution of polarization-entangled photons for the purpose of quantum key distribution (QKD) along active telecom fibers. Entangled photon pairs of 810 nm wavelength generated by a Sagnac interferometer source were coupled into standard telecom single mode fibers. The fibers were either dark or carrying a standardized 1550 nm ethernet signals (1000BASE-ZX) with a nominal speed of 1 GBps from regular media converter devices, without any requirements on the optical power or spectrum transmitted. Our system demonstrates a QKD network covering 6 km in distance with a central service provider for classical and quantum data. PMID:21997067

  19. Standardizing Activation Analysis: New Software for Photon Activation Analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Green, J.; Segebade, C.

    2011-06-01

    Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.

  20. Estimating ROI activity concentration with photon-processing and photon-counting SPECT imaging systems

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Frey, Eric C.

    2015-03-01

    Recently a new class of imaging systems, referred to as photon-processing (PP) systems, are being developed that uses real-time maximum-likelihood (ML) methods to estimate multiple attributes per detected photon and store these attributes in a list format. PP systems could have a number of potential advantages compared to systems that bin photons based on attributes such as energy, projection angle, and position, referred to as photon-counting (PC) systems. For example, PP systems do not suffer from binning-related information loss and provide the potential to extract information from attributes such as energy deposited by the detected photon. To quantify the effects of this advantage on task performance, objective evaluation studies are required. We performed this study in the context of quantitative 2-dimensional single-photon emission computed tomography (SPECT) imaging with the end task of estimating the mean activity concentration within a region of interest (ROI). We first theoretically outline the effect of null space on estimating the mean activity concentration, and argue that due to this effect, PP systems could have better estimation performance compared to PC systems with noise-free data. To evaluate the performance of PP and PC systems with noisy data, we developed a singular value decomposition (SVD)-based analytic method to estimate the activity concentration from PP systems. Using simulations, we studied the accuracy and precision of this technique in estimating the activity concentration. We used this framework to objectively compare PP and PC systems on the activity concentration estimation task. We investigated the effects of varying the size of the ROI and varying the number of bins for the attribute corresponding to the angular orientation of the detector in a continuously rotating SPECT system. The results indicate that in several cases, PP systems offer improved estimation performance compared to PC systems.

  1. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices.

    PubMed

    Trotta, Rinaldo; Wildmann, Johannes S; Zallo, Eugenio; Schmidt, Oliver G; Rastelli, Armando

    2014-06-11

    Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform, a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but a fine-structure splitting (FSS) between the bright exciton states lowers dramatically the degree of entanglement of the sources and hampers severely their real exploitation in the foreseen applications. In this work, we overcome this hurdle using strain-tunable optoelectronic devices, where any QD can be tuned for the emission of photon pairs featuring the highest degree of entanglement ever reported for QDs, with concurrence as high as 0.75 ± 0.02. Furthermore, we study the evolution of Bell's parameters as a function of FSS and demonstrate for the first time that filtering-free violation of Bell's inequalities requires the FSS to be smaller than 1 μeV. This upper limit for the FSS also sets the tuning range of exciton energies (∼1 meV) over which our device operates as an energy-tunable source of highly entangled photons. A moderate temporal filtering further increases the concurrence and the tunability of exciton energies up to 0.82 and 2 meV, respectively, though at the expense of 60% reduction of count rate. PMID:24845369

  2. Polymer/Perovskite Amplifying Waveguides for Active Hybrid Silicon Photonics.

    PubMed

    Suárez, Isaac; Juárez-Pérez, Emilio J; Bisquert, Juan; Mora-Seró, Iván; Martínez-Pastor, Juan P

    2015-10-28

    The emission properties of hybrid halide perovskites are exploited to implement a stable and very low power operation waveguide optical amplifier integrated in a silicon platform. By optimizing its design with a poly(methyl methacrylate) (PMMA) encapsulation, this novel photonic device presents a net gain of around 10 dB cm(-1) and 3-4 nm linewidth with an energy threshold as low as 2 nJ pulse(-1) and exhibiting no degradation after one year. PMID:26331838

  3. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    SciTech Connect

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-06-30

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  4. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity assist device. (a) Identification....

  5. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  6. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  7. A universal setup for active control of a single-photon detector

    NASA Astrophysics Data System (ADS)

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  8. A universal setup for active control of a single-photon detector

    SciTech Connect

    Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía; Kurtsiefer, Christian; Makarov, Vadim; Gerhardt, Ilja

    2014-01-15

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  9. A universal setup for active control of a single-photon detector.

    PubMed

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors. PMID:24517746

  10. Modeling and Design of Two-Dimensional Guided-Wave Photonic Band-Gap Devices

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Peluso, Francesco; Armenise, Mario N.

    2005-02-01

    The model of two-dimensional (2-D) guided-wave photonic band-gap structures based on the Bloch-Floquet theory is proposed for the first time for both infinite and finite length devices. The efficient computation of dispersion curves and field distribution is carried out in very short computer time. Both guided and radiated modes can be easily identified to give a physical insight, even in defective structures. The accuracy of the model has been tested through the design of a very compact narrow-band 2-D guided-wave photonic band-gap filter at 1.55 μm. The filter has a channel isolation of 22 dB, a large number of channel (>80) with a channel spacing of 50 GHz, and a very short length (24 μm).

  11. Long distance measurement-device-independent quantum key distribution with entangled photon sources

    SciTech Connect

    Xu, Feihu; Qi, Bing; Liao, Zhongfa; Lo, Hoi-Kwong

    2013-08-05

    We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.

  12. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  13. Optical properties of subwavelength patterned metal gratings for photonic device application and an alternative proposal

    NASA Astrophysics Data System (ADS)

    Lyu, Hong-Kun; Woo, Sungho; Jo, Sung-Hyun; Shin, Jang-Kyoo

    2013-09-01

    We investigated optical properties of subwavelength patterned metal gratings for photonic device application. It was known that optical transmittance of metal films with subwavelength periodic hole arrays can be controlled by applying a dielectric overlay to the film and the films can act as wavelength or frequency selective filters. Following advancement in lithography technology it could be applied up to complementary metal oxide semiconductor (CMOS) image sensors (CIS) by patterning metal layers placed on each pixel's photo detective device. However it is not easy to replace organic color filters applied on CIS up to date because the standard CIS structure has multi-metal layers, thick dielectric layers, and too thick metal layers. In this work, we explore possibility to integrate the metal film into a CIS chip and present an alternative proposal by computer simulation utilizing finite-difference time-domain (FDTD) method. We applied aluminum (Al) for the metal film and the dispersion information associated with Al was derived from the Lorentz-Drude model. We expect that this work could contribute to search to apply subwavelength patterned metal gratings to photonic devices.

  14. Engineering properties of high-refractive index optical gels for photonic device applications

    NASA Astrophysics Data System (ADS)

    Stone, David S.; Connor, Samantha R.

    2000-04-01

    We have investigated a new class of high refractive index, non-yellowing, viscoelastic optical gels. Refractive indices for these materials can be adjusted from that needed to match fused silica to above nD equals 1.6 to match the higher index engineering glasses, plastics, and semiconductors. These materials are designed for permanent optically clear encapsulation in devices where severe mechanical shock or differential thermal expansion, such as occurs during PCB soldering operations, may render conventional high strength optical epoxies unusable. These low shear stress gels can also be customized to exhibit a wide range of rheological 'stiffness'. We have demonstrated quasi-fluid versions with apparent viscosities of 500,000 cP to hard-rubber-like consistencies registering on the high end of the Shore 00 durometer scale. In this paper, we present measurements of engineering properties on both elastometer-like curing optical gels, and thixotropic non- curing optical gels for: a) optical properties from near UV to near IR: refractive index over temperature, dispersion, and optical absorption; b) rheological properties: viscosity vs. shear rate, Shore hardness and cone penetration. Validation of ultra-low volatility and high temperature thermo oxidative stability required for long-lived photonic devices is discussed. Use of gel technology in fiber splices and photonic devices is described.

  15. Impact of photon recycling and luminescence coupling on III-V single and dual junction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Walker, Alexandre W.; Höhn, Oliver; Micha, Daniel N.; Wagner, Lukas; Helmers, Henning; Bett, Andreas W.; Dimroth, Frank

    2015-01-01

    Modeling single junction solar cells composed of III-V semiconductors such as GaAs with the effects of photon recycling yields insight into design and material criteria required for high efficiencies. For a thin-film single junction GaAs cell to reach 28.5% efficiency, simulation results using a recently developed model which accounts for photon recycling indicate that Shockley-Read-Hall (SRH) lifetimes of electrons and holes must be longer than 3 and 1 μs, respectively, in a 2-μm thin active region, and that the native substrate must be removed such that the cell is coupled to a highly reflective rear-side mirror. The model is generalized to account for luminescence coupling in tandem devices, which yields direct insight into the top cell's nonradiative lifetimes. A heavily current mismatched GaAs/GaAs tandem device is simulated and measured experimentally as a function of concentration between 3 and 100 suns. The luminescence coupling increases from 14% to 33% experimentally, whereas the model requires increasing electron and hole SRH lifetimes to explain these results. This could be an indication of the saturating defects which mediate the SRH process. However, intermediate GaAs layers between the two subcells may also contribute to the luminescence coupling as a function of concentration.

  16. Non-line-of-sight active imaging of scattered photons

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Velten, Andreas

    2013-10-01

    Laser Gated Viewing is a prominent sensing technology for optical imaging in harsh environments and can be applied to the vision through fog, smoke and other degraded environmental conditions as well as to the vision through sea water in submarine operation. A direct imaging of non-scattered photons (or ballistic photons) is limited in range and performance by the free optical path length i.e. the length in which a photon can propagate without interaction with scattering particles or object surfaces. The imaging and analysis of scattered photons can overcome these classical limitations and it is possible to realize a non-line-of-sight imaging. The spatial and temporal distribution of scattered photons can be analyzed by means of computational optics and their information of the scenario can be restored. In the case of Lambertian scattering sources the scattered photons carry information of the complete environment. Especial the information outside the line of sight or outside the visibility range is of high interest. Here, we discuss approaches for non line of sight active imaging with different indirect and direct illumination concepts (point, surface and volume scattering sources).

  17. Er3+-activated photonic structures fabricated by sol-gel and rf-sputtering techniques

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Alombert-Goget, G.; Armellini, C.; Berneschi, S.; Bhaktha, S. N. B.; Boulard, B.; Brenci, M.; Chiappini, A.; Chiasera, A.; Duverger-Arfuso, C.; Féron, P.; Gonçalves, R. R.; Jestin, Y.; Minati, L.; Moser, E.; Nunzi Conti, G.; Pelli, S.; Rao, D. N.; Retoux, R.; Righini, G. C.; Speranza, G.

    2009-05-01

    The realization of photonic structures operating at visible and near infrared frequencies is a highly attractive scientific and technological challenge. Since optical fiber innovation, a huge of activity has been performed leading to interesting results, such as optical waveguides and planar lightwave circuits, microphotonic devices, optical microcavities, nanowires, plasmonic structures, and photonic crystals. These systems have opened new possibilities in the field of both basic and applied physics, in a large area covering Information Communication Technologies, Health and Biology, Structural Engineering, and Environment Monitoring Systems. Several materials and techniques are employed to successfully fabricate photonic structures. Concerning materials, Er3+-activated silica-based glasses still play an important role, although recently interesting results have been published about fluoride glass-ceramic waveguides. As far as regards the fabrication methods sol-gel route and rf sputtering have proved to be versatile and reliable techniques. In this article we will present a review of some Er3+-activated photonic structures fabricated by sol gel route and rf sputtering deposition. In the discussion on the sol-gel approach we focus our attention on the silica-hafnia binary system presenting an overview concerning fabrication protocols and structural, optical and spectroscopic assessment of SiO2-HfO2 waveguides activated by Er3+ ions. In order to put in evidence the reliability and versatility of the sol-gel route for photonics applications four different confined structures are briefly presented: amorphous waveguides, coated microspheres, monolithic waveguide laser, and core-shell nanospheres. As examples of rf sputtering technique, we will discuss Er3+-activated silica-hafnia and silica-germania waveguides, the latter system allowing fabrication of integrated optics structures by UV photo-imprinting. Finally, two examples of photonic crystal structures, one

  18. Fabrication of spatial transient-density structures as high-field plasma photonic devices

    SciTech Connect

    Pai, C.-H.; Huang, S.-Y.; Kuo, C.-C.; Lin, M.-W.; Wang, J.; Chen, S.-Y.; Lee, C.-H.; Lin, J.-Y.

    2005-07-15

    Fabrication of periodic transient-density structures in a gas jet with a boundary scale length approaching 10 {mu}m was demonstrated. This was achieved by passing an ultrashort high-intensity laser pulse through a patterned mask and imaging the mask onto the target plane. Gas/plasma density at the laser-irradiated regions drops as a result of hydrodynamic expansion following ionization and heating by the laser pulse. The fabrication of gas/plasma density structures with such a scheme is an essential step in the development of plasma photonic devices for applications in high-field physics.

  19. Directly laser-written integrated photonics devices including diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Choi, Jiyeon; Ramme, Mark; Richardson, Martin

    2016-08-01

    Femtosecond laser-written integrated devices involving Fresnel Zone Plates (FZPs) and waveguide arrays are demonstrated as built-in optical couplers. These structures were fabricated in borosilicate glass using a direct laser writing technique. The optical properties of these integrated photonic structures were investigated using CW lasers and high-resolution CCDs. For a single FZP coupled to a single waveguide, the overall coupling efficiency was 9%. A multiplexed optical coupler composed of three FZP layers was demonstrated to couple three waveguides simultaneously in a waveguide array. Structures of this type can be used as platforms for multichannel waveguide coupling elements or as microfluidic sensors that require higher light collecting efficiency.

  20. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  1. Active Integrated Filters for RF-Photonic Channelizers

    PubMed Central

    Nagdi, Amr El; Liu, Ke; LaFave, Tim P.; Hunt, Louis R.; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L.; Christensen, Marc P.

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain. PMID:22319352

  2. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator

    PubMed Central

    Gittard, Shaun D.; Nguyen, Alexander; Obata, Kotaro; Koroleva, Anastasia; Narayan, Roger J.; Chichkov, Boris N.

    2011-01-01

    Two-photon polymerization is an appealing technique for producing microscale devices due to its flexibility in producing structures with a wide range of geometries as well as its compatibility with materials suitable for biomedical applications. The greatest limiting factor in widespread use of two-photon polymerization is the slow fabrication times associated with line-by-line, high-resolution structuring. In this study, a recently developed technology was used to produce microstructures by two-photon polymerization with multiple foci, which significantly reduces the production time. Computer generated hologram pattern technology was used to generate multiple laser beams in controlled positions from a single laser. These multiple beams were then used to simultaneously produce multiple microstructures by two-photon polymerization. Arrays of micro-Venus structures, tissue engineering scaffolds, and microneedle arrays were produced by multifocus two-photon polymerization. To our knowledge, this work is the first demonstration of multifocus two-photon polymerization technology for production of a functional medical device. Multibeam fabrication has the potential to greatly improve the efficiency of two-photon polymerization production of microscale devices such as tissue engineering scaffolds and microneedle arrays. PMID:22076276

  3. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOEpatents

    Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas

    1994-08-02

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  4. Photon assisted conducting polymer polymerization process for storage information and microelectronic device development

    NASA Astrophysics Data System (ADS)

    de Azevedo, W. M.; de Barros, R. A.; da Silva, E. F., Jr.

    2006-02-01

    In this work, we use the photon polymerization process to prepare conducting polymer patterns and optical memory devices (CPROM). For the CPROM and image development, polyvinyl alcohol (PVA) is used as a solid support doped with the aniline monomer and transition metals, whereas for the patterns development, the ink, of a conventional DeskJet printer is substituted by a solution of transition metal ions that is used to print the desired pattern on substrates previously treated, in an aqueous solution of conducting polymer monomer. Both processes use photons and transition metals instead of conventional oxidants to promote polymerization of the aniline monomer inside the host medium, or on a flat surface, such as glossy paper. The SEM analysis of the CPROM shows that the metal particles grow in form of wire with diameter of 100 nm and lengths up to 4μm long. The conductivity of the printed conducting polymer patterns on glossy paper is about 2 × 10 -2 S/cm. These results strongly suggest that this new, fast and low cost technology can be used to produce conducting polymer structures for all polymer electronic devices applications.

  5. Computational imaging of defects in commercial substrates for electronic and photonic devices

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Kashiwagi, Ryo; Yamada, Masayoshi

    2012-03-01

    Computational defect imaging has been performed in commercial substrates for electronic and photonic devices by combining the transmission profile acquired with an imaging type of linear polariscope and the computational algorithm to extract a small amount of birefringence. The computational images of phase retardation δ exhibited spatial inhomogeneity of defect-induced birefringence in GaP, LiNbO3, and SiC substrates, which were not detected by conventional 'visual inspection' based on simple optical refraction or transmission because of poor sensitivity. The typical imaging time was less than 30 seconds for 3-inch diameter substrate with the spatial resolution of 200 μm, while that by scanning polariscope was 2 hours to get the same spatial resolution. Since our proposed technique have been achieved high sensitivity, short imaging time, and wide coverage of substrate materials, which are practical advantages over the laboratory-scale apparatus such as X-ray topography and electron microscope, it is useful for nondestructive inspection of various commercial substrates in production of electronic and photonic devices.

  6. Growth of ZnO-based nanorod heterostructures and their photonic device applications

    NASA Astrophysics Data System (ADS)

    Yoo, Jinkyoung; Picraux, S. Thomas; Yi, Gyu-Chul

    2011-10-01

    This proceeding summarizes the materials preparation of position-controlled ZnO-based nanorod heterostructures and fabrication of vertically-aligned wide band gap semiconductor nanorod light-emitting devices. Especially the fabrication of GaN/InxGa1-xN/GaN/ZnO nanorod heterostructured visible-light-emitter arrays on sapphire and Si substrates, representing important progress in the field of nanoheteroepitaxy and photonic devices in nanoscale, are reported. Particularly, position-controlled vertical nanostructure arrays make those possible to prepare high-quality material systems without stress or strain accumulation and to fabricate high-performance light-emitting devices (LEDs) with a three-dimensional device configuration. Our method based on nanoheteroepitaxy and position-controlled nanodevice integration for fabricating GaN-based micro-LED arrays constitutes a promising strategy for resolving the issues of conventional GaN LEDs and fabricating high-performance LEDs on various substrates for potential optoelectronic integrated circuits and solid-state lighting applications.

  7. Theoretical and experimental study of nanoporous silicon photonic microcavity optical sensor devices

    NASA Astrophysics Data System (ADS)

    Patel, P. N.; Mishra, Vivekanand; Panchal, A. K.

    2012-09-01

    This paper reports the theoretical and experimental study of one-dimensional (1D) multilayer nanoporous silicon (NPS) photonic band gap (PBG) microcavity (MC) structures for optical sensor device applications. A theoretical framework to model the reflectance spectra relying on the Bruggeman's effective medium approximation (BEMA) and the transfer matrix method (TMM) was established for the 1D nanoporous silicon microcavity (1D-NPSMC) optical sensor device structures. Based on the theoretical background, 1D-NPSMC sensor device structures were fabricated using electrochemical dissolution of silicon wafer in hydrofluoric (HF) acid. The refractive index of the 1D-NPSMC structures was tuned by changing current density and the thickness was tuned by changing the etching time. Wavelength shifts (Δλ) in the measured reflectance spectra were analyzed for the detection of the analyte in the porous structure. The sensing device performance was tested by different organic solvents, which showed good linear relation between the refractive index of analyte inside the pores and the wavelength shift. The application of proposed structures can be extended for the optical sensing of chemicals, gas, environmental pollutants, pathogens etc.

  8. Further measurements of bremsstrahlung from the insertion device beamlines of the Advanced Photon Source.

    SciTech Connect

    Job, P. K.

    1998-09-16

    Bremsstrahlung is produced in the Advanced Photon Source (APS) storage ring when the positron beam interacts with the storage-ring components or with the residual gas molecules in the storage-ring vacuum. The interaction of the positrons with the gas molecules occurs continually during storage ring operation. Bremsstrahlung is important at the insertion device straight sections because the contribution from each interaction adds up to produce a narrow mono-directional beam that travel down the beamlines. At the APS, with long storage ring beam straight paths (15.38 meters), gas bremsstrahlung in the insertion device beamlines can be significant. The preliminary results of the bremsstrahlung measurements in the insertion device beamlines of the APS was presented at SATIF3. This paper presents the results of further measurements at the two insertion device (ID) beamlines with higher statistics in the data collection. The beam current and the vacuum normalized bremsstrahlung power is fairly constant in a beamline for a given storage ring fill pattern, but may vary from beamline to beamline. The average bremsstrahlung power is measured as 118 {+-} 9 GeV/s/nT/mA at beamline 11 ID and as 36 {+-} 2 GeV/s/nT/mA at beamline 6 ID. These results, along with the results from the four previous independent bremsstrahlung measurements, enabled us to conclude upon the various reasons causing this variation.

  9. A fast readout and processing electronics for photon counting intensified charge-coupled device

    NASA Astrophysics Data System (ADS)

    Bergamini, P.; Bonelli, G.; Tanzi, E. G.; Uslenghi, M.; Poletto, L.; Tondello, G.

    2000-04-01

    The design features and the performances of a prototype photon counting imaging detector, being developed for the international ultraviolet (UV) space mission Spectrum UV, are presented. The photon counter is an intensified charge coupled device (ICCD) in which photon events, generating an electron cascade through a high gain microchannel plate (MCP) stack, are transduced, via a phosphor screen and a fiber optics reducer, into a 3×3 pixel2, quasi-Gaussian charge distributions on a 15×15 μm2,512×512 pixel2 format CCD matrix. The CCD is read out in the frame-transfer mode at a pixel rate of 19.75 MHz, and its output data flow is acquired serially as to generate a 3×3 pixel2 event sash that sweeps dynamically the CCD matrix at the 50.6 ns rate of the readout clock. Each and every event sash is searched for the presence of events whose charge content lie within proper limits and satisfy a given set of morphological rules, i.e., a single peak charge profile. The centroid coordinates of identified events are determined with subpixel accuracy (up to a 210 bin/pixel) and subsequently stored as photon list coordinate pairs. The data acquisition and processing system is based on field programmable gate array technology and is capable of satisfying the requirements of real-time operation. The modular construction of the data acquisition and processing electronics provides a great deal of flexibility for supporting advancements in CCD readout techniques (multiple output and higher clocking speed) and of MCPs (larger formats, smaller pore, and higher dynamic range). The results of the performance verification of the data acquisition and processing system integrated with a laboratory ICCD prototype are presented and discussed.

  10. Encoding Active Device Elements at Nanowire Tips.

    PubMed

    No, You-Shin; Gao, Ruixuan; Mankin, Max N; Day, Robert W; Park, Hong-Gyu; Lieber, Charles M

    2016-07-13

    Semiconductor nanowires and other one-dimensional materials are attractive for highly sensitive and spatially confined electrical and optical signal detection in biological and physical systems, although it has been difficult to localize active electronic or optoelectronic device function at one end of such one-dimensional structures. Here we report a new nanowire structure in which the material and dopant are modulated specifically at only one end of nanowires to encode an active two-terminal device element. We present a general bottom-up synthetic scheme for these tip-modulated nanowires and illustrate this with the synthesis of nanoscale p-n junctions. Electron microscopy imaging verifies the designed p-Si nanowire core with SiO2 insulating inner shell and n-Si outer shell with clean p-Si/n-Si tip junction. Electrical transport measurements with independent contacts to the p-Si core and n-Si shell exhibited a current rectification behavior through the tip and no detectable current through the SiO2 shell. Electrical measurements also exhibited an n-type response in conductance versus water-gate voltage with pulsed gate experiments yielding a temporal resolution of at least 0.1 ms and ∼90% device sensitivity localized to within 0.5 μm from the nanowire p-n tip. In addition, photocurrent experiments showed an open-circuit voltage of 0.75 V at illumination power of ∼28.1 μW, exhibited linear dependence of photocurrent with respect to incident illumination power with an estimated responsivity up to ∼0.22 A/W, and revealed localized photocurrent generation at the nanowire tip. The tip-modulated concept was further extended to a top-down/bottom-up hybrid approach that enabled large-scale production of vertical tip-modulated nanowires with a final synthetic yield of >75% with >4300 nanowires. Vertical tip-modulated nanowires were fabricated into >50 individually addressable nanowire device arrays showing diode-like current-voltage characteristics. These tip

  11. Advanced active quenching circuits for single-photon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  12. Novel femtosecond laser development with applications in biomedical imaging and photonic device fabrication

    NASA Astrophysics Data System (ADS)

    Kowalevicz, Andrew M., Jr.

    Over the past decade, improvements and refinements in the field of ultrafast optics have led to more widespread implementation of femtosecond technology. As applications become more diverse, the development of specialized sources is vital in order to meet the requirements of the experiment. This thesis explores the theory and development of innovative femtosecond lasers and their application in biomedical imaging and photonic device fabrication. The first part of this thesis focuses on mode-locking and the cavity design theory behind KLM lasers. We explain the mechanisms that enable stable, ultrashort pulses to be produced. The master equation is introduced to provide insight into the interplay between competing nonlinear effects. Based on the operation of a standard laser, we introduce a new cavity design based on the Herriott cell. The theory of multi-pass cavities (MPC) allows for a new class of femtosecond lasers to be built with space-efficient layouts and significant performance enhancements. Part II of the thesis reports on the development and application of three novel femtosecond sources. The first is an ultra-low threshold KLM laser. The laser has a mode-locking threshold of 156 mW, and produces 14 fs pulses with 200 mW of pump power. We demonstrate the utility of low-threshold technology by developing a portable, robust, and low cost source for biomedical imaging. The 124 nm bandwidth enables ultrahigh resolution imaging of the human retina. A long cavity laser is also developed. By using the theory of MPC lasers, explained in Part I, pulse energies of up to 150 nJ with 43 fs durations are reported from a 5.85 MHz laser oscillator. This laser serves as the enabling technology for photonic device fabrication in transparent materials. A variety of 2D and 3D devices are fabricated and characterized. The ability to directly write waveguides and structures inside transparent materials is a significant advance over current 2D fabrication techniques.

  13. Variability analysis of device-level photonics using stochastic collocation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xing, Yufei; Spina, Domenico; Li, Ang; Dhaene, Tom; Bogaerts, Wim

    2016-05-01

    Abstract Integrated photonics, and especially silicon photonics, has been rapidly expanded its catalog of building blocks and functionalities. Now, it is maturing fast towards circuit-level integration to serve more complex applications in industry. However, performance variability due to the fabrication process and operational conditions can limit the yield of large-scale circuits. It is essential to assess this impact at the design level with an efficient variability analysis: how variations in geometrical, electrical and optical parameters propagate into components performance. In particular when implementing wavelength-selective filters, many primary functional parameters are affected by fabrication-induced variability. The key functional parameters that we assess in this paper are the waveguide propagation constant (the effective index, essential to define the exact length of a delay line) and the coupling coefficients in coupling structure (necessary to set the power distribution over different delay lines). The Monte Carlo (MC) method is the standard method for variability analysis, thanks to its accuracy and easy implementation. However, due to its slow convergence, it requires a large set of samples (simulations or measurements), making it computationally or experimentally expensive. More efficient methods to assess such variability can be used, such as generalized polynomial chaos (gPC) expansion or stochastic collocation. In this paper, we demonstrate stochastic collocation (SC) as an efficient alternative to MC or gPC to characterize photonic devices under the effect of uncertainty. The idea of SC is to interpolate stochastic solutions in the random space by interpolation polynomials. After sampling the deterministic problem at a pre-defined set of nodes in random space, the interpolation is constructed. SC drastically reduces computation and measurement cost. Also, like MC method, sampling-based SC is easy to implement. Its computation cost can be

  14. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  15. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  16. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  17. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  18. Silicon coding-decoding photonic device by electron irradiation and light down conversion

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Tykhonov, A. N.; Malyutenko, O. Yu.; Rohutskii, I. S.; Danilchenko, B. A.

    2012-10-01

    We propose and demonstrate a coding-decoding procedure as an important step to realize one more Si-based photonic device. Low-fluence (<1014 e/cm2) high-energy (1 MeV) electron irradiation of a bulk Si matrix is used to code an information by forming local regions with lower free carrier lifetime that are hidden under the surface and invisible to the eye. Short-wavelength (<1 μm) free carrier generation stands for multiple, remote, and nondestructive decoding process, which makes it easy to dynamically (ms range) visualize a code by capturing two-dimensional pattern of thermal emission in the longer-wavelength (3-12 μm) band (light down conversion).

  19. Photonic devices for tunable continuous-wave terahertz generation and detection

    NASA Astrophysics Data System (ADS)

    Park, Kyung Hyun; Kim, Namje; Moon, Kiwon; Ko, Hyunsung; Park, Jeong-Woo; Lee, Eui Su; Lee, Il-Min; Han, Sang-Pil

    2014-03-01

    A novel type of semiconductor beating source, a monolithically integrated dual-mode laser, and continuous-wave terahertz (THz) system adopting it will be investigated. The combined system of the beating source with broadbandantenna- integrated low-temperature-grown semiconductor photomixers shows the possibility of the realization of the cost-effective and compact continuous-wave THz systems. Such a system is highly-demanded to examine the THz finger prints of specimens without limitations. Since the optimized performance depends not only on the characteristics of functional devices but also module configurations, various approaches such as traveling-wave photomixers, Schottky barrier diodes, and nano-structure contained photomixers have been investigated to implement high-performance THz platforms as the main building blocks of a THz system. Semiconductor-based compact and cost-effective photonics technologies will envisage the bright future of THz systems.

  20. Polarized electroluminescence from organic light-emitting devices using photon recycling.

    PubMed

    Park, Byoungchoo; Huh, Yoon Ho; Jeon, Hong Goo

    2010-09-13

    We present results that show highly polarized electroluminescence (EL) from an organic light-emitting device (OLED) by using a quarter-wave (λ/4) retardation plate (QWP) film and a giant birefringent optical (GBO) photonic reflective polarizer. Polarized EL light of 13,400 cd/m(2) with high peak efficiencies (greater than 10 cd/A and 3.5 lm/W) was obtained from an OLED in this way. These values are almost double those of a polarized OLED that only uses a polarizer. The direction of polarization of the emitted EL light from the polarized OLED corresponded to the passing axis of the GBO reflective polarizer. Furthermore, the degree of linear polarization obtained, i.e. the ratio between the brightness of two linearly polarized EL emissions parallel and perpendicular to the passing axis, is greater than 40 over the whole range of emitted luminance. PMID:20940874

  1. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices

    PubMed Central

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  2. The electro-optical behavior of SrS:Ce electroluminescent devices under photonic excitation

    NASA Astrophysics Data System (ADS)

    Benoit, J.; Barthou, C.; Benalloul, P.; Polamo, K.

    2000-01-01

    The electro-optical behavior of the SrS:Ce electroluminescent devices under pulsed photonic excitation in the lower energy absorption band of Ce3+ was analyzed below the electroluminescence threshold voltage for a rectangular electric pulse. The photoluminescence quenching due to the ionization of the Ce3+ ions under the electrical field increases with the applied voltage (40% at the threshold). Delocalization of involved electrons is responsible for emissions at the trailing edge of the electric pulse and for emissions during the following pulse. These emissions do not restore the level of the photoluminescence without applied voltage. These different emissions allow detailed study of energy trap levels for each insulator/SrS interface. An interpretation of the photoluminescence quenching is proposed

  3. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.

    PubMed

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  4. An Isothermal Device Configuration for Diamond Based Photon-Enhanced Thermionic Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Sun, Tianyin; Koeck, Franz; Nemanich, Robert

    2014-03-01

    Diamond can obtain a negative electron affinity (NEA) after hydrogen termination. With NEA and n-type doping, a low effective work function and efficient thermionic emission has been observed from these diamond films. Photo-induced electron emission from nitrogen doped diamond with visible light illumination has also been established by our group. Recently several reports have described efficient energy conversion based on the photon-enhanced thermionic emission (PETE) mechanism. This study proposes a multi-layer emitter and collector structure for an isothermal PETE converter. The emitter structure is based on an n-type NEA diamond film deposited on a p-type Si substrate to enable electron emission across a vacuum gap. In this structure the above-bandgap light is absorbed in the Si and establishs an enhanced electron population for emission through the low work function surface, while sub-bandgap light is absorbed in the collector for transfer to a heat engine. Spectroscopy measurements of the n-type diamond on Si indicate strong electron emissivity with photon illumination, and the emission intensity is significantly increased at elevated temperatures. A simplified model describing the efficiency and performance of an isothermal PETE device is presented. This research is supported through ONR under grant number # N00014-10-1-0540.

  5. First SOLEIL insertion devices are ready to produce photons for users

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, C.; Berteaud, P.; Briquez, F.; Couprie, M.-E.; Chubar, O.; Dubois, L.; Filhol, J.-M.; Girault, M.; Level, M.-P.; Marcouillé, O.; Marteau, F.; Massal, M.; Paulin, F.; Valléau, M.; Veteran, J.; Daël, A.

    2007-05-01

    SOLEIL is the French 2.75 GeV synchrotron radiation light source of low emittance under construction near Paris. It will provide high intensity photons covering a wide spectral range from the IR to the hard X-rays. The storage ring commissioning started in late May 2006, and the first photons on the first beamline were observed in September 2006. The first set of Insertion Devices (ID), either already installed before the ring commissioning or to be installed within the first year of operation of the machine, consists of one 640 mm period and three 256 mm period electromagnetic elliptical undulators, three 80 mm period APPLE-II type undulators, and three 20 mm period in-vacuum undulators. All these IDs make use of a wide panoply of technical solutions for generating various types of magnetic fields. Magnetic and conceptual designs were performed by SOLEIL, and the technical realization was carried out together with different manufacturers. The design specificities of the different types of IDs, as well as the results of the shimming and magnetic measurements performed at SOLEIL are reported.

  6. Photonic network R and D activities in Japan

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-ichi; Onaka, Hiroshi; Namiki, Shu; Aovama, Tomonori

    2005-11-01

    R and D activities on photonic networks in Japan are presented. First, milestones in current, ongoing R and D programs supported by Japanese government agencies are introduced, including long-distance and WDM fiber transmission, wavelength routing, optical burst switching, and control plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP over WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R and D programs for photonic networks over the next five years until 2010, by focusing on the report which has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R and D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis through the customer's initiative, to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  7. Processing soft materials for integrated photonic and macroelectronic components and devices

    NASA Astrophysics Data System (ADS)

    Tsay, Candice Ruth

    Incorporating soft materials into micro-fabrication processes opens up new functionalities for fabricated devices, but requires unique processing routes. This thesis presents our development of integrated photonic and macroelectronic structures through processing innovations that unite disparate inorganic/organic, and soft/rigid materials systems. For the integrated photonic system, we focus our efforts on chalcogenide glasses, dielectric materials that exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these relatively fragile materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of several additive methods for patterning chalcogenide glass waveguides from solution. In particular, we focus on two complementary soft lithography methods. The first, micro-molding in capillaries (MIMIC), is shown to fabricate multi-mode As2S 3 waveguides which are directly integrated with quantum cascade lasers (QCLs). In a second method, we demonstrate the ability of micro-transfer molding (muTM), to produce arrays of single mode rib waveguides over large areas while maintaining low surface and edge roughness. These methods form a suite of processes that can be applied to chalcogenide solutions to create a diverse array of mid-IR photonic structures ranging from less than 5 to 10's of mum in cross-sectional dimension. Optical characterization, including measurement of waveguide loss by cut-back, is carried out in the mid-IR using QCLs. In addition, materials characterization of the chalcogenide glass structures is carried out to determine loss mechanisms and optimize processing. While we use soft polymeric materials as molds to pattern chalcogenide glasses, we also employ them as substrate material for stretchable electronic systems, which comprise a new class of flexible macroelectronics

  8. Nanopatterning by large block copolymers for application in photonic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mokarian-Tabari, Parvaneh; Senthamaraikannan, Ramsankar; Collins, Timothy W.; Glynn, Colm; O'Dwyer, Colm; Morris, Michael

    2016-04-01

    The extensive benefits of the new generation of nanostructured surfaces is very promising for enhancing light absorption efficiency in photonic devices. However, the low throughput and the high cost of available technologies such as lithography for fabrication of nanostructures has proved to be a difficult technological hurdle for advanced manufacturing. In this research we present a solution based process based on high molecular weight block copolymer (BCP) nanolithography for fabrication of periodic structures on large areas of optical surfaces. Block copolymer self- assembly technique is a solution based process that offers an alternative route to produce highly ordered photonic crystal structures. BCPs forms nanodomains (5-10 nm) due to microphase separation of incompatible constitute blocks. The size and shape of the nanostructure can be customised by the molecular weight and volume fraction of the polymer blocks. However, the major challenge is BCPs do not phase separate into their signature ordered pattern above 100 nm, whereas for nanofeatures to be used as photonic gratings, they must be greater than 100 nm (typically ¼ wavelength). This is due to significant kinetic penalty arising from higher entanglement in high molecular weight polymers. In this work we present the results of exploiting commercially available block copolymers to phase separate into periodic domains greater than 100 nm. The process do not include any blending with homopolymers, or adding colloidal particles, and to our best knowledge, has not been yet achieved or reported in the literatures. We have pattern transferred the BCP mask to silicon substrate by reactive ion etch (ICP-RIE). The final product is black silicon, consists of hexagonally packed conic Si nanofeatures with diameter above 100nm and periodicity of 200 nm. The height of the Si nanopillars varies from 100 nm to 1 micron. We have characterized the angle dependent optical reflectance properties of the black silicon. The

  9. Photon-activated electron hopping in a single-electron trap enhanced by Josephson radiation

    NASA Astrophysics Data System (ADS)

    Lotkhov, S. V.; Jalali-Jafari, B.; Zorin, A. B.

    2016-04-01

    Using a Josephson junction interferometer (DC SQUID) as a microwave source for irradiating a single-electron trap, both devices fabricated on the same chip, we study the process of photon-assisted tunneling as an effective mechanism of single photon detection. High sensitivity down to a very small oscillation amplitude v J ˜ 10 nV ≪ E act ≲ h f J and down to low photon absorption rates Γph ˜ (1-50) Hz, as well as a clear threshold type of operation with an activation energy Eact ˜ 400 μeV, is demonstrated for the trap with respect to the microwave photons of frequency fJ ˜ (100-200) GHz. Tunable generation is demonstrated with respect to the power and frequency of the microwave signal produced by the SQUID source biased within the subgap voltage range. A much weaker effect is observed at the higher junction voltages along the quasiparticle branch of the I-V curve; this response mostly appears due to the recombination phonons.

  10. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

    PubMed

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-01-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively. PMID:25234839

  11. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  12. Spectral characteristics of insertion device sources at the Advanced Photon Source

    SciTech Connect

    Viccaro, P.J.

    1990-01-01

    The 7-GeV Advanced Photon Source (APS) synchrotron facility at Argonne National Laboratory will be a powerful source of hard x-rays with energies above 1 keV. In addition to the availability of bending magnet radiation, the storage ring will have 35 straight sections for insertion device (ID) x-ray sources. The unique spectral properties and flexibility of these devices open new possibilities for scientific research in essentially every area of science and technology. Existing and new techniques utilizing the full potential of these sources, such as the enhanced coherence, unique polarization properties, and high spectral brilliance, will permit experiments not possible with existing sources. In the following presentation, the spectral properties of ID sources are briefly reviewed. A summary of the specific properties of sources planned for the APS storage ring is then presented. Recent results for APS prototype ID sources are discussed, and finally some special x-ray sources under consideration for the APS facility are described. 9 refs.

  13. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy.

    PubMed

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2015-10-01

    Two-photon excitation laser scanning microscopy has enabled the visualization of deep regions in a biospecimen. However, refractive-index mismatches in the optical path cause spherical aberrations that degrade spatial resolution and the fluorescence signal, especially during observation at deeper regions. Recently, we developed transmissive liquid-crystal devices for correcting spherical aberration without changing the basic design of the optical path in a conventional laser scanning microscope. In this study, the device was inserted in front of the objective lens and supplied with the appropriate voltage according to the observation depth. First, we evaluated the device by observing fluorescent beads in single- and two-photon excitation laser scanning microscopes. Using a 25× water-immersion objective lens with a numerical aperture of 1.1 and a sample with a refractive index of 1.38, the device recovered the spatial resolution and the fluorescence signal degraded within a depth of 0.6 mm. Finally, we implemented the device for observation of a mouse brain slice in a two-photon excitation laser scanning microscope. An optical clearing reagent with a refractive index of 1.42 rendered the fixed mouse brain transparent. The device improved the spatial resolution and the yellow fluorescent protein signal within a depth of 0-0.54 mm. PMID:26244766

  14. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2015-10-01

    Two-photon excitation laser scanning microscopy has enabled the visualization of deep regions in a biospecimen. However, refractive-index mismatches in the optical path cause spherical aberrations that degrade spatial resolution and the fluorescence signal, especially during observation at deeper regions. Recently, we developed transmissive liquid-crystal devices for correcting spherical aberration without changing the basic design of the optical path in a conventional laser scanning microscope. In this study, the device was inserted in front of the objective lens and supplied with the appropriate voltage according to the observation depth. First, we evaluated the device by observing fluorescent beads in single- and two-photon excitation laser scanning microscopes. Using a 25× water-immersion objective lens with a numerical aperture of 1.1 and a sample with a refractive index of 1.38, the device recovered the spatial resolution and the fluorescence signal degraded within a depth of ±0.6 mm. Finally, we implemented the device for observation of a mouse brain slice in a two-photon excitation laser scanning microscope. An optical clearing reagent with a refractive index of 1.42 rendered the fixed mouse brain transparent. The device improved the spatial resolution and the yellow fluorescent protein signal within a depth of 0-0.54 mm.

  15. Photonics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  16. Polarization rotator-splitters in standard active silicon photonics platforms.

    PubMed

    Sacher, Wesley D; Barwicz, Tymon; Taylor, Benjamin J F; Poon, Joyce K S

    2014-02-24

    We demonstrate various silicon-on-insulator polarization management structures based on a polarization rotator-splitter that uses a bi-level taper TM0-TE1 mode converter. The designs are fully compatible with standard active silicon photonics platforms with no new levels required and were implemented in the IME baseline and IME-OpSIS silicon photonics processes. We demonstrate a polarization rotator-splitter with polarization crosstalk < -13 dB over a bandwidth of 50 nm. Then, we improve the crosstalk to < -22 dB over a bandwidth of 80 nm by integrating the polarization rotator-splitter with directional coupler polarization filters. Finally, we demonstrate a polarization controller by integrating the polarization rotator-splitters with directional couplers, thermal tuners, and PIN diode phase shifters. PMID:24663698

  17. Operation of a Single-Photon-Counting X-Ray Charge-Coupled Device Camera Spectrometer in a Petawatt Environment

    SciTech Connect

    Stoeckl, C.; Theobald, W.; Sangster, T.C.; Key, M.H.; Patel, P.; Zhang, B.B.; Clarke, R.; Karsch, S.; Norreys, P.

    2004-10-12

    The use of a single-photon-counting x-ray CCD (charge-coupled device) camera as an x-ray spectrometer is a well-established technique in ultrashort-pulse laser experiments. In single-photon-counting mode, the pixel value of each readout pixel is proportional to the energy deposited from the incident x-ray photon. For photons below 100 keV, a significant fraction of the events deposits all the energy in a single pixel. A histogram of the pixel readout values gives a good approximation of the x-ray spectrum. This technique requires almost no alignment, but it is very sensitive to signal-to-background issues, especially in a high-energy petawatt environment.

  18. Light trapping in thin film solar cells using photonic engineering device concepts

    NASA Astrophysics Data System (ADS)

    Mutitu, James Gichuhi

    In this era of uncertainty concerning future energy solutions, strong reservations have arisen over the continued use and pursuit of fossil fuels and other conventional sources of energy. Moreover, there is currently a strong and global push for the implementation of stringent measures, in order to reduce the amount of green house gases emitted by every nation. As a consequence, there has emerged a sudden and frantic rush for new renewable energy solutions. In this world of renewable energy technologies is where we find photovoltaic (PV) technology today. However, as is, there are still many issues that need to be addressed before solar energy technologies become economically viable and available to all people, in every part of the world. This renewed interest in the development of solar electricity, has led to the advancement of new avenues that address the issues of cost and efficiency associated with PV. To this end, one of the prominent approaches being explored is thin film solar cell (TFSC) technology, which offers prospects of lower material costs and enables larger units of manufacture than conventional wafer based technology. However, TFSC technologies suffer from one major problem; they have lower efficiencies than conventional wafer based solar cell technologies. This lesser efficiency is based on a number of reasons, one of which is that with less material, there is less volume for the absorption of incident photons. This shortcoming leads to the need for optical light trapping; which is concerned with admitting the maximum amount of light into the solar cell and keeping the light within the structure for as long as possible. In this thesis, I present the fundamental scientific ideas, practice and methodology behind the application of photonic engineering device concepts to increase the light trapping capacity of thin film solar cells. In the introductory chapters, I develop the basic ideas behind light trapping in a sequential manner, where the effects

  19. INSERTION DEVICE ACTIVITIES FOR NSLS-II.

    SciTech Connect

    TANABE,T.; HARDER, D.A.; HULBERT, S.; RAKOWSKI, G.; SKARITKA, J.

    2007-06-25

    National Synchrotron Light Source-II (NSLS-II) will be a medium energy storage ring of 3GeV electron beam energy with sub-nm.rad horizontal emittance and top-off capability at 500mA. Damping wigglers will be used not only to reduce the beam emittance but also used as broadband sources for users. Cryo-Permanent Magnet Undulators (CPMUs) are considered for hard X-ray linear device, and permanent magnet based elliptically polarized undulators (EPUs) for variable polarization devices for soft X-ray. 6T superconducting wiggler with minimal fan angle will be installed in the second phase as well as quasi-periodic EPU for VUV and possibly high-temperature superconducting undulator. R&D plans have been established to pursue the performance enhancement of the baseline devices and to design new types of insertion devices. A new insertion device development laboratory will also be established.

  20. Aperiodic TiO2 Nanotube Photonic Crystal: Full-Visible-Spectrum Solar Light Harvesting in Photovoltaic Devices

    PubMed Central

    Guo, Min; Xie, Keyu; Wang, Yu; Zhou, Limin; Huang, Haitao

    2014-01-01

    Bandgap engineering of a photonic crystal is highly desirable for photon management in photonic sensors and devices. Aperiodic photonic crystals (APCs) can provide unprecedented opportunities for much more versatile photon management, due to increased degrees of freedom in the design and the unique properties brought about by the aperiodic structures as compared to their periodic counterparts. However, many efforts still remain on conceptual approaches, practical achievements in APCs are rarely reported due to the difficulties in fabrication. Here, we report a simple but highly controllable current-pulse anodization process to design and fabricate TiO2 nanotube APCs. By coupling an APC into the photoanode of a dye-sensitized solar cell, we demonstrate the concept of using APC to achieve nearly full-visible-spectrum light harvesting, as evidenced by both experimental and simulated results. It is anticipated that this work will lead to more fruitful practical applications of APCs in high-efficiency photovoltaics, sensors and optoelectronic devices. PMID:25245854

  1. Strong optical activity from twisted-cross photonic metamaterials.

    PubMed

    Decker, M; Ruther, M; Kriegler, C E; Zhou, J; Soukoulis, C M; Linden, S; Wegener, M

    2009-08-15

    Following a recent theoretical suggestion and microwave experiments, we fabricate photonic metamaterials composed of pairs of twisted gold crosses using two successive electron-beam-lithography steps and intermediate planarization via a spin-on dielectric. The resulting two effective resonances of the coupled system lie in the 1-2 microm wavelength regime and exhibit pronounced circular dichroism, while the circular polarization conversion is very small. In between the two resonances, we find a fairly broad spectral regime with strong optical activity, i.e., with a pure rotation of incident linear polarization. The measured optical transmittance spectra agree well with theory. PMID:19684829

  2. Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems

    NASA Astrophysics Data System (ADS)

    Popović, Miloš A.; Wade, Mark T.; Orcutt, Jason S.; Shainline, Jeffrey M.; Sun, Chen; Georgas, Michael; Moss, Benjamin; Kumar, Rajesh; Alloatti, Luca; Pavanello, Fabio; Chen, Yu-Hsin; Nammari, Kareem; Notaros, Jelena; Atabaki, Amir; Leu, Jonathan; Stojanović, Vladimir; Ram, Rajeev J.

    2015-02-01

    We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a "More-than- Moore" technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology.

  3. Heterogeneously-Grown Tunable Tensile Strained Germanium on Silicon for Photonic Devices.

    PubMed

    Clavel, Michael; Saladukha, Dzianis; Goley, Patrick S; Ochalski, Tomasz J; Murphy-Armando, Felipe; Bodnar, Robert J; Hudait, Mantu K

    2015-12-01

    The growth, structural and optical properties, and energy band alignments of tensile-strained germanium (ε-Ge) epilayers heterogeneously integrated on silicon (Si) were demonstrated for the first time. The tunable ε-Ge thin films were achieved using a composite linearly graded InxGa1-xAs/GaAs buffer architecture grown via solid source molecular beam epitaxy. High-resolution X-ray diffraction and micro-Raman spectroscopic analysis confirmed a pseudomorphic ε-Ge epitaxy whereby the degree of strain varied as a function of the In(x)Ga(1-x)As buffer indium alloy composition. Sharp heterointerfaces between each ε-Ge epilayer and the respective In(x)Ga(1-x)As strain template were confirmed by detailed strain analysis using cross-sectional transmission electron microscopy. Low-temperature microphotoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 and 0.65 eV demonstrated for the 0.82 ± 0.06% and 1.11 ± 0.03% strained Ge on Si, respectively. Type-I band alignments and valence band offsets of 0.27 and 0.29 eV for the ε-Ge/In(0.11)Ga(0.89)As (0.82%) and ε-Ge/In(0.17)Ga(0.83)As (1.11%) heterointerfaces, respectively, show promise for ε-Ge carrier confinement in future nanoscale optoelectronic devices. Therefore, the successful heterogeneous integration of tunable tensile-strained Ge on Si paves the way for the design and implementation of novel Ge-based photonic devices on the Si technology platform. PMID:26561963

  4. Cognitive Inference Device for Activity Supervision in the Elderly

    PubMed Central

    2014-01-01

    Human activity, life span, and quality of life are enhanced by innovations in science and technology. Aging individual needs to take advantage of these developments to lead a self-regulated life. However, maintaining a self-regulated life at old age involves a high degree of risk, and the elderly often fail at this goal. Thus, the objective of our study is to investigate the feasibility of implementing a cognitive inference device (CI-device) for effective activity supervision in the elderly. To frame the CI-device, we propose a device design framework along with an inference algorithm and implement the designs through an artificial neural model with different configurations, mapping the CI-device's functions to minimise the device's prediction error. An analysis and discussion are then provided to validate the feasibility of CI-device implementation for activity supervision in the elderly. PMID:25405211

  5. The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources

    NASA Astrophysics Data System (ADS)

    Zhou, Xing-Yu; Zhang, Chun-Hui; Guo, Guang-Can; Wang, Qin

    2016-06-01

    In this paper, we carry out statistical fluctuation analysis for the new proposed measurement-device-independent quantum key distribution with heralded single-photon sources and further compare its performance with the mostly often used light sources, i.e., the weak coherent source. Due to a significantly lower probability for events with two photons present on the same side of the beam splitter in former than in latter, it gives drastically reduced quantum bit error rate in the X basis and can thus show splendid behavior in real-life implementations even when taking statistical fluctuations into account.

  6. Silicon Photomultipliers, A New Device For Low Light Level Photon Detection

    SciTech Connect

    Moser, Hans-Guenther

    2006-10-27

    Silicon Photomultipliers (SiPM) are novel detectors for low level light detection based on arrays of avalanche photodiodes operating in Geiger mode. Offering good characteristics (fast response, high gain, photon counting capability, insensitivity to magnetic fields, low voltage operation) they have the potential to replace classical photomultipliers (PMT) in many applications. Drawbacks are dark rate and optical cross talk. Though their quantum efficiency is already comparable or better than that of bialkali PMT it is still limited by the structures on the light sensitive front surface. A new concept, presently developed at the Max-Planck semiconductor laboratory, allows boosting the efficiency to almost 100%. Using a fully depleted substrate the light enters through the unstructured backside. A drift diode structure collects the electrons on a small 'point like' avalanche structure for multiplication. Engineering the thin entrance window at the backside using antireflective layers a high efficiency can be achieved in a wide wavelength range (300-1000nm). The paper will summarize the status of front illuminated SiPMs and report on the development of the backside illuminated devices.

  7. Progress on one-dimensional zinc oxide nanomaterials based photonic devices

    NASA Astrophysics Data System (ADS)

    Willander, Magnus; Israr, Muhammad Q.; Sadaf, Jamil R.; Nur, Omer

    2012-07-01

    One-dimensional nanostructures hold the most attractive and excellent physiochemical characteristics which exhibit the paramount influence on the fundamental and technological nanoelectronic as well as nanophotonic applications. In this review article, we present a detailed introduction to the diverse synthetic procedures which can be utilized for the fabrication of single-, planar- and three-dimensional ZnO nanostructures. More specifically, a thorough discussion regarding luminescence characteristics of the one-dimensional ZnO nanostructures is presented for ultraviolet and visible regions. We summarize the room temperature spontaneous emission and stimulated emission along with the interaction of the incident beam with material cavity to produce resonant optical modes and low-temperature time resolved photoluminescence studies. The most recent published results on the white light emitting diodes fabricated with the combination of ZnO nanotubes with p-GaN and ZnO nanorods with p-organic polymers on glass and disposable paper are discussed. Additionally, the significant results on optically and electrically pumped lasers are discussed; along with an overview on the future of ZnO nanostructures based photonic devices.

  8. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Wang, Dien; Chen, Shih-Chi

    2016-04-01

    In this Letter, we present an ultrafast nonmechanical axial scanning method for two-photon excitation (TPE) microscopy based on binary holography using a digital micromirror device (DMD), achieving a scanning rate of 4.2 kHz, scanning range of ∼180  μm, and scanning resolution (minimum step size) of ∼270  nm. Axial scanning is achieved by projecting the femtosecond laser to a DMD programmed with binary holograms of spherical wavefronts of increasing/decreasing radii. To guide the scanner design, we have derived the parametric relationships between the DMD parameters (i.e., aperture and pixel size), and the axial scanning characteristics, including (1) maximum optical power, (2) minimum step size, and (3) scan range. To verify the results, the DMD scanner is integrated with a custom-built TPE microscope that operates at 60 frames per second. In the experiment, we scanned a pollen sample via both the DMD scanner and a precision z-stage. The results show the DMD scanner generates images of equal quality throughout the scanning range. The overall efficiency of the TPE system was measured to be ∼3%. With the high scanning rate, the DMD scanner may find important applications in random-access imaging or high-speed volumetric imaging that enables visualization of highly dynamic biological processes in 3D with submillisecond temporal resolution. PMID:27192259

  9. Low index-contrast aperiodically ordered photonic quasicrystals for the development of isotropic photonic band-gap devices

    NASA Astrophysics Data System (ADS)

    Priya Rose, T.; Di Gennaro, E.; Andreone, A.; Abbate, G.

    2010-05-01

    Photonic quasicrystals (PQCs) have neither true periodicity nor translational symmetry, however they can exhibit symmetries that are not achievable by conventional periodic structures. The arbitrarily high rotational symmetry of these materials can be practically exploited to manufacture isotropic band gap materials, which are perfectly suitable for hosting waveguides or cavities. In this work, formation and development of the photonic bandgap (PBG) in twodimensional 8-, 10- and 12-fold symmetry quasicrystalline lattices of low dielectric contrast (0.4-0.6) were measured in the microwave region and compared with the PBG properties of a conventional hexagonal crystal. Band-gap properties were also investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0° to 30° were used in order to investigate the isotropic nature of the band-gap.

  10. Longitudinal photons in a relativistic magneto-active plasma

    SciTech Connect

    Tsintsadze, N. L.; Rehman, Ayesha; Murtaza, G.; Shah, H. A.

    2007-10-15

    This paper presents some aspects of interaction of superstrong high-frequency electromagnetic waves with strongly magnetized plasmas. The case in which the photon-photon interaction dominates the photon-plasma particle interaction is considered. Strictly speaking, the photon and photon bunch interaction leads to the self-modulation of the photon gas. Assuming that the density of the plasma does not change, the dispersion relation, which includes relativistic self-modulation, is investigated. The existence of longitudinal photons in a strong magnetic field has the well-known Bogoliubov-type energy spectrum. The stability of the photon flow is investigated and an expression for Landau damping of the photons is obtained. Finally, it has been shown that the interaction of even a very strong electromagnetic radiation with a plasma does not always lead to instability, but causes only a change in plasma properties, whereby the plasma remains stable.

  11. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  12. Theory-guided nano-engineering of organic electro-optic materials for hybrid silicon photonic, plasmonic, and metamaterial devices

    NASA Astrophysics Data System (ADS)

    Dalton, Larry R.

    2013-03-01

    Coarse-grained Monte Carlo/molecular dynamic calculations are employed to explore the effect of various of intermolecular electrostatic interactions upon chromophore order, lattice dimensionality, and viscoelasticity in electrically-poled organic second order nonlinear optical materials. The following classes of organic macromolecular materials are considered: (1) Chromophore-polymer composites, (2) chromophores covalently incorporated into polymers and dendrimers, (3) chromophores incorporating additional dipolar or quadrupolar interactions that enhance poling efficiency, and (4) binary chromophore materials. For chromophore-polymer composites, the competition of chromophore-chromophore dipolar interactions and nuclear repulsive (steric) interactions define poling-induced acentric order. For covalently incorporated chromophores, covalent bond potentials also influence poling-induced order. These first two classes of materials basically behave as Langevin (3-D) lattice materials. Dipolar (e.g., coumarin) and quadrupolar (arene-perfluoroarene) interactions act to influence lattice dimensionality and thus enhance poling efficiency (the ratio of electro-optic activity to electric poling field strength). The long-range molecular cooperativity associated with these interactions influences viscoelastic properties critical to material processing and integration into silicon photonic, plasmonic, and metamaterial devices. The interaction between different chromophore species in binary chromophore materials also enhances poling efficiency. Polarized laser radiation applied to certain binary chromophore materials can also be used to enhance poling efficiency through control of lattice dimensionality. Poling efficiency approaching 5 (nm/V)2 has been achieved for these latter two classes of materials. Improvement in poling efficiency and control of material viscosity is particular important for integration of organic materials into complex device structures.

  13. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    NASA Technical Reports Server (NTRS)

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  14. The stepwise multi-photon activation fluorescence guided ablation of melanin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; DiMarzio, Charles

    2015-02-01

    Previous research has shown that the stepwise multi-photon activation fluorescence (SMPAF) of melanin, activated and excited by a continuous-wave (CW) mode near infrared (NIR) laser, is a low-cost and reliable method for detecting melanin. We have developed a device utilizing the melanin SMPAF to guide the ablation of melanin with a 975 nm CW laser. This method provides the ability of targeting individual melanin particles with micrometer resolution, and enables localized melanin ablation to be performed without collateral damage. Compared to the traditional selective photothermolysis, which uses pulsed lasers for melanin ablation, this method demonstrates higher precision and lower cost. Therefore, the SMPAF guided selective ablation of melanin is a promising tool of melanin ablation for both medical and cosmetic purposes.

  15. A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Rommel, Scott D.; Farca, George; Anderson, Michael H.

    2008-08-01

    A new electro-optic waveguide platform, which provides unprecedented electro-optical phase delays (> 1mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), is presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing historic limitations of liquid crystals. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: a 1-D non-mechanical, analog beamsteerer with an 80° field of regard, a chip-scale widely tunable laser, a chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay (up to 10 ns), and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, laser illumination, phased array radar, optical communications, etc. Performance attributes of several example devices are presented.

  16. Photonic crystals cause active colour change in chameleons

    PubMed Central

    Teyssier, Jérémie; Saenko, Suzanne V.; van der Marel, Dirk; Milinkovitch, Michel C.

    2015-01-01

    Many chameleons, and panther chameleons in particular, have the remarkable ability to exhibit complex and rapid colour changes during social interactions such as male contests or courtship. It is generally interpreted that these changes are due to dispersion/aggregation of pigment-containing organelles within dermal chromatophores. Here, combining microscopy, photometric videography and photonic band-gap modelling, we show that chameleons shift colour through active tuning of a lattice of guanine nanocrystals within a superficial thick layer of dermal iridophores. In addition, we show that a deeper population of iridophores with larger crystals reflects a substantial proportion of sunlight especially in the near-infrared range. The organization of iridophores into two superposed layers constitutes an evolutionary novelty for chameleons, which allows some species to combine efficient camouflage with spectacular display, while potentially providing passive thermal protection. PMID:25757068

  17. Photonic crystals cause active colour change in chameleons.

    PubMed

    Teyssier, Jérémie; Saenko, Suzanne V; van der Marel, Dirk; Milinkovitch, Michel C

    2015-01-01

    Many chameleons, and panther chameleons in particular, have the remarkable ability to exhibit complex and rapid colour changes during social interactions such as male contests or courtship. It is generally interpreted that these changes are due to dispersion/aggregation of pigment-containing organelles within dermal chromatophores. Here, combining microscopy, photometric videography and photonic band-gap modelling, we show that chameleons shift colour through active tuning of a lattice of guanine nanocrystals within a superficial thick layer of dermal iridophores. In addition, we show that a deeper population of iridophores with larger crystals reflects a substantial proportion of sunlight especially in the near-infrared range. The organization of iridophores into two superposed layers constitutes an evolutionary novelty for chameleons, which allows some species to combine efficient camouflage with spectacular display, while potentially providing passive thermal protection. PMID:25757068

  18. Active learning in optics and photonics: Fraunhofer diffraction

    NASA Astrophysics Data System (ADS)

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  19. Photonic crystals cause active colour change in chameleons

    NASA Astrophysics Data System (ADS)

    Teyssier, Jérémie; Saenko, Suzanne V.; van der Marel, Dirk; Milinkovitch, Michel C.

    2015-03-01

    Many chameleons, and panther chameleons in particular, have the remarkable ability to exhibit complex and rapid colour changes during social interactions such as male contests or courtship. It is generally interpreted that these changes are due to dispersion/aggregation of pigment-containing organelles within dermal chromatophores. Here, combining microscopy, photometric videography and photonic band-gap modelling, we show that chameleons shift colour through active tuning of a lattice of guanine nanocrystals within a superficial thick layer of dermal iridophores. In addition, we show that a deeper population of iridophores with larger crystals reflects a substantial proportion of sunlight especially in the near-infrared range. The organization of iridophores into two superposed layers constitutes an evolutionary novelty for chameleons, which allows some species to combine efficient camouflage with spectacular display, while potentially providing passive thermal protection.

  20. Active control of all-fibre graphene devices with electrical gating.

    PubMed

    Lee, Eun Jung; Choi, Sun Young; Jeong, Hwanseong; Park, Nam Hun; Yim, Woongbin; Kim, Mi Hye; Park, Jae-Ku; Son, Suyeon; Bae, Sukang; Kim, Sang Jin; Lee, Kwanil; Ahn, Yeong Hwan; Ahn, Kwang Jun; Hong, Byung Hee; Park, Ji-Yong; Rotermund, Fabian; Yeom, Dong-Il

    2015-01-01

    Active manipulation of light in optical fibres has been extensively studied with great interest because of its compatibility with diverse fibre-optic systems. While graphene exhibits a strong electro-optic effect originating from its gapless Dirac-fermionic band structure, electric control of all-fibre graphene devices remains still highly challenging. Here we report electrically manipulable in-line graphene devices by integrating graphene-based field effect transistors on a side-polished fibre. Ion liquid used in the present work critically acts both as an efficient gating medium with wide electrochemical windows and transparent over-cladding facilitating light-matter interaction. Combined study of unique features in gate-variable electrical transport and optical transition at monolayer and randomly stacked multilayer graphene reveals that the device exhibits significant optical transmission change (>90%) with high efficiency-loss figure of merit. This subsequently modifies nonlinear saturable absorption characteristics of the device, enabling electrically tunable fibre laser at various operational regimes. The proposed device will open promising way for actively controlled optoelectronic and nonlinear photonic devices in all-fibre platform with greatly enhanced graphene-light interaction. PMID:25897687

  1. Active control of all-fibre graphene devices with electrical gating

    PubMed Central

    Lee, Eun Jung; Choi, Sun Young; Jeong, Hwanseong; Park, Nam Hun; Yim, Woongbin; Kim, Mi Hye; Park, Jae-Ku; Son, Suyeon; Bae, Sukang; Kim, Sang Jin; Lee, Kwanil; Ahn, Yeong Hwan; Ahn, Kwang Jun; Hong, Byung Hee; Park, Ji-Yong; Rotermund, Fabian; Yeom, Dong-Il

    2015-01-01

    Active manipulation of light in optical fibres has been extensively studied with great interest because of its compatibility with diverse fibre-optic systems. While graphene exhibits a strong electro-optic effect originating from its gapless Dirac-fermionic band structure, electric control of all-fibre graphene devices remains still highly challenging. Here we report electrically manipulable in-line graphene devices by integrating graphene-based field effect transistors on a side-polished fibre. Ion liquid used in the present work critically acts both as an efficient gating medium with wide electrochemical windows and transparent over-cladding facilitating light–matter interaction. Combined study of unique features in gate-variable electrical transport and optical transition at monolayer and randomly stacked multilayer graphene reveals that the device exhibits significant optical transmission change (>90%) with high efficiency-loss figure of merit. This subsequently modifies nonlinear saturable absorption characteristics of the device, enabling electrically tunable fibre laser at various operational regimes. The proposed device will open promising way for actively controlled optoelectronic and nonlinear photonic devices in all-fibre platform with greatly enhanced graphene–light interaction. PMID:25897687

  2. Open active cloaking and illusion devices for the Laplace equation

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Yang, Fan; Jin, Tian Yu; Lei Mei, Zhong; Cui, Tie Jun

    2016-04-01

    We propose open active cloaking and illusion devices for the Laplace equation. Compared with the closed configurations of active cloaking and illusion devices, we focus on improving the distribution schemes for the controlled sources, which do not have to surround the protected object strictly. Instead, the controlled sources can be placed in several small discrete clusters, and produce the desired voltages along the controlled boundary, to actively hide or disguise the protected object. Numerical simulations are performed with satisfactory results, which are further validated by experimental measurements. The open cloaking and illusion devices have many advantages over the closed configurations in various potential applications.

  3. SNS Devices With Pinhole-Defined Active Regions

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D.; Barner, Jeffrey B.

    1996-01-01

    Superconductor/normal conductor/superconductor (SNS) microbridge devices with pinhole-defined active regions undergoing development. Device includes thin, electrically insulating layer deposited epitaxially, with controlled formation of pinholes, on one of two superconducting layers. Normally conducting metal deposited epitaxially in pinholes and on insulating layer, forming electrical contact between two superconducting layers. Junction resistances and maximum junction voltages expected to be increased.

  4. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  5. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.

    PubMed

    Willander, M; Nur, O; Zhao, Q X; Yang, L L; Lorenz, M; Cao, B Q; Zúñiga Pérez, J; Czekalla, C; Zimmermann, G; Grundmann, M; Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A; Boukos, N; Travlos, A; Kwack, H S; Guinard, J; Le Si Dang, D

    2009-08-19

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  6. A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device.

    PubMed

    Lee, Myung-Jae; Sun, Pengfei; Charbon, Edoardo

    2015-05-18

    This paper reports on the first implementation of a single-photon avalanche diode (SPAD) in standard silicon on insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. The SPAD is realized in a circular shape, and it is based on a P(+)/N-well junction along with a P-well guard-ring structure formed by lateral diffusion of two closely spaced N-well regions. The SPAD electric-field profile is analyzed by means of simulation to predict the breakdown voltage and the effectiveness of premature edge breakdown. Measurements confirm these predictions and also provide a complete characterization of the device, including current-voltage characteristics, dark count rate (DCR), photon detection probability (PDP), afterpulsing probability, and photon timing jitter. The SOI CMOS SPAD has a PDP above 25% at 490-nm wavelength and, thanks to built-in optical sensitivity enhancement mechanisms, it is as high as 7.7% at 850-nm wavelength. The DCR is 244 Hz/μm2, and the afterpulsing probability is less than 0.1% for a dead time longer than 200 ns. The SPAD exhibits a timing response without exponential tail and provides a remarkable timing jitter of 65 ps (FWHM). The new device is well suited to operate in backside illumination within complex three-dimensional (3D) integrated circuits, thus contributing to a great improvement of fill factor and jitter uniformity in large arrays. PMID:26074572

  7. Operation of a single-photon-counting x-ray charge-coupled device camera spectrometer in a petawatt environment

    SciTech Connect

    Stoeckl, C.; Theobald, W.; Sangster, T.C.; Key, M.H.; Patel, P.; Zhang, B.B.; Clarke, R.; Karsch, S.; Norreys, P.

    2004-10-01

    The use of a single-photon-counting x-ray charge-coupled device (CCD) camera as an x-ray spectrometer is a well-established technique in ultrashort-pulse laser experiments. In single-photon-counting mode, the pixel value of each readout pixel is proportional to the energy deposited from the incident x-ray photon. For photons below 100 keV, a significant fraction of the events deposits all the energy in a single pixel. A histogram of the pixel readout values gives a good approximation of the x-ray spectrum. This technique requires almost no alignment, but it is very sensitive to signal-to-background issues, especially in a high-energy petawatt environment. Shielding the direct line of sight to the target was not sufficient to obtain a high-quality spectrum, for the experiments reported here the CCD camera had to be shielded from all sides with up to 10 cm of lead.

  8. Nanoengineering the built-in electric field of a photonic device by interstitial-ion diffusion

    NASA Astrophysics Data System (ADS)

    Nasir, A.; Makarovsky, O.; Kumar, S.; Fay, M. W.; Campion, R.; Rastelli, A.; Schmidt, O. G.; Eaves, L.; Patanè, A.

    2012-05-01

    We use focused laser annealing to activate the diffusion of Mn-interstitial ions (Mni2+) from a p-(GaMn)As layer towards the intrinsic GaAs/AlAs quantum well (QW) region of a p-i-n light emitting diode (LED). The random clustering of the Mni2+ ions creates a complex potential landscape U and electric field FMn=-∇U in the QW plane, which we probe with nanoscale precision by monitoring the quantum-confined Stark shift of the “natural” quantum dots formed in the QW. The use of focused laser annealing to form electric field landscapes at predetermined positions is potentially applicable to other material systems containing mobile dopant atoms and is relevant to research on nanophotonics and manipulation of quantum devices.

  9. Novel adiabatic tapered couplers for active III-V/SOI devices fabricated through transfer printing.

    PubMed

    Dhoore, Sören; Uvin, Sarah; Van Thourhout, Dries; Morthier, Geert; Roelkens, Gunther

    2016-06-13

    We present the design of two novel adiabatic tapered coupling structures that allow efficient and alignment tolerant mode conversion between a III-V membrane waveguide and a single-mode SOI waveguide in active heterogeneously integrated devices. Both proposed couplers employ a broad intermediate waveguide to facilitate highly alignment tolerant coupling. This robustness is needed to comply with the current misalignment tolerance requirements for high-throughput transfer printing. The proposed coupling structures are expected to pave the way for transfer-printing-based heterogeneous integration of active III-V devices such as semiconductor optical amplifiers (SOAs), photodetectors, electro-absorption modulators (EAMs) and single wavelength lasers on silicon photonic integrated circuits. PMID:27410317

  10. Photonic Activation of Plasminogen Induced by Low Dose UVB

    PubMed Central

    Correia, Manuel; Snabe, Torben; Thiagarajan, Viruthachalam; Petersen, Steffen Bjørn; Campos, Sara R. R.; Baptista, António M.; Neves-Petersen, Maria Teresa

    2015-01-01

    Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760–765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of

  11. Nanomaterials for photonic applications: Silica self-assembly and erbium titanate activation

    NASA Astrophysics Data System (ADS)

    Lee, Cheol

    Nanomaterials are typically defined as amorphous or polycrystalline solids with particle diameters or grain sizes of 100 nm or less. Recently, a number of innovative efforts have opened the opportunity to a new class of materials, which allow to control both the flow of light and the dynamics of photons. The nanostructured periodic materials, Photonic Crystals, and waveguides embedded in them have been very attractive subjects of current research. Another attractive approach is to utilize rare earth emission within nanocrystals. The restricted geometry of rare earth ions in nanocrystals may affect luminescence behavior with respect to energy transfer and electron-phonon interactions in a bulk crystal, providing efficient light emission for future integration with optoelectronic devices. Based on such concepts addressed above, this dissertation has focused on two facets of nanomaterials investigation that are applicable to active 1.5 mum emission planar devices. First, the synthetic opaline films, 6 muM in thickness, were fabricated from self-assembly of a monodisperse colloidal suspensions of silica spheres with a diameter of 310 nm. This film showed an optical gap centered around 730 nm with a full width at half maximum (FWHM) of 50 nm, exhibiting 20% of maximum reflectivity. This study showed that the photon bands are the result of interplay between the coherent scattering due to the periodic structure and the non-coherent (diffuse) scattering due to the individual spheres, the latter exhibiting Mie resonance, the scattering coefficient is inversely proportional to lambda2 in regions of optical wavelength. Further, it was indicated that Me resonance remaining in the photon bands should be nearly eliminated to minimize optical loss and maximize band gap strength. This may be possible by organizing uniform features of dielectric structures, whether opal or inverse-opal, with smaller building blocks, the size of which are below theoretical scattering limit. Second

  12. Development of novel active transport membrande devices

    SciTech Connect

    Laciak, D.V.

    1994-11-01

    Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

  13. Geometric investigation of a gaming active device

    NASA Astrophysics Data System (ADS)

    Menna, Fabio; Remondino, Fabio; Battisti, Roberto; Nocerino, Erica

    2011-07-01

    3D imaging systems are widely available and used for surveying, modeling and entertainment applications, but clear statements regarding their characteristics, performances and limitations are still missing. The VDI/VDE and the ASTME57 committees are trying to set some standards but the commercial market is not reacting properly. Since many new users are approaching these 3D recording methodologies, clear statements and information clarifying if a package or system satisfies certain requirements before investing are fundamental for those users who are not really familiar with these technologies. Recently small and portable consumer-grade active sensors came on the market, like TOF rangeimaging cameras or low-cost triangulation-based range sensor. A quite interesting active system was produced by PrimeSense and launched on the market thanks to the Microsoft Xbox project with the name of Kinect. The article reports the geometric investigation of the Kinect active sensors, considering its measurement performances, the accuracy of the retrieved range data and the possibility to use it for 3D modeling application.

  14. Processing challenges for GaN-based photonic and electronic devices

    SciTech Connect

    Pearton, S.J.; Ren, F.; Shul, R.J.

    1997-09-01

    The wide gap materials SiC, GaN and to a lesser extent diamond are attracting great interest for high power/high temperature electronics. There are a host of device processing challenges presented by these materials because of their physical and chemical stability, including difficulty in achieving stable, low contact resistances, especially for one conductivity type, absence of convenient wet etch recipes, generally slow dry etch rates, the high temperatures needed for implant activation, control of suitable gate dielectrics and the lack of cheap, large diameter conducting and semi-insulating substrates. The relatively deep ionization levels of some of the common dopants (Mg in GaN; B, Al in SiC; P in diamond) means that carrier densities may be low at room temperature, and thus contact resistances will be greatly improved provided the metallization is stable and reliable. Some recent work with CoSi{sub x} on SiC and W-alloys on GaN show promise for improved ohmic contacts. The issue of unintentional hydrogen passivation of dopants will also be covered - this leads to strong increases in resistivity of p-SiC and GaN, but to large decreases in resistivity of diamond. Recent work on development of wet etches has found recipes for AlN (KOH), while photochemical etching of SiC and GaN has been reported. In the latter cases p-type materials is not etched, which can be a major liability in some devices. The dry etch results obtained with various novel reactors, including ICP, ECR and LE4 will be compared - the high ion densities in the former techniques produce the highest etch rates for strongly-bonded materials, but can lead to preferential loss of N from the nitrides and therefore to a highly conducting surface. This is potentially a major problem for fabrication of dry etched, recessed gate FET structures.

  15. Nanoimprinting of Photonic-Bandgap Devices in Ionically Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Li, J.; Evoy, S.; Duncan, R.; Vercinello, M.; Stevenson, P.; Heflin, J. R.

    2003-03-01

    Photonic Crystals (PCs) are a new class of materials providing new opportunities for the enhancement control of the propagation of light in waveguides and laser action in 2D distributed feedback structures. However, in order to possess nonzero even-order nonlinear optical susceptibilities, a material must lack a center of inversion at the macroscopic level. As a result several novel methods for creating noncentrosymmetric materials incorporating organic molecules with large molecular susceptibilities have been developed over the past decade. Using commercial ionic polymer dyes, ionically self-assembled monolayers (ISAMs) provide a new platform to produce such noncentrosymmetric arrangement of nonlinear optical chromophores Originally developed by Chou, nanoimprinting techniques provide a powerful alternative to e-beam lithography for definition of photonic structures in ISAM films. Here we report the nanoimprinting of photonic structures in such films.

  16. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  17. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At an earlier conference we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art CMOS technologies. In this presentation, we extend this discussion focusing on the following areas: (1) Device packaging, (2) Evolving physical single even upset mechanisms, (3) Device complexity, and (4) the goal of understanding the limitations and interpretation of radiation testing results.

  18. Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori

    2005-10-01

    R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  19. A compact, integrated silicon device for the generation of spectrally filtered, pair-correlated photons

    NASA Astrophysics Data System (ADS)

    Minkov, Momchil; Savona, Vincenzo

    2016-05-01

    The third-order nonlinearity of silicon gives rise to a spontaneous four-wave mixing process in which correlated photon pairs are generated. Sources based on this effect can be used for quantum computation and cryptography, and can in principle be integrated with standard CMOS fabrication technology and components. However, one of the major challenges is the on-chip demultiplexing of the photons, and in particular the filtering of the pump power, which is many orders of magnitude larger than that of the signal and idler photons. Here, we propose a photonic crystal coupled-cavity system designed so that the coupling of the pump mode to the output channel is strictly zero due to symmetry. We further analyze this effect in the presence of fabrication disorder and find that, even then, a pump suppression of close to 40 dB can be achieved in state-of-the-art systems. Due to the small mode volumes and high quality factors, our system is also expected to have a generation efficiency much higher than in standard micro-ring systems. Those two considerations make a strong case for the integration of our proposed design in future on-chip quantum technologies.

  20. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively. PMID:27409920

  1. Monochromatic X-ray photon counting using an energy-selecting device and its application to iodine imaging

    NASA Astrophysics Data System (ADS)

    Oda, Yasuyuki; Sato, Eiichi; Yamaguchi, Satoshi; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2015-08-01

    Quasi-monochromatic photon counting was performed using a cadmium telluride detector and an energy-selecting device, consisting of two comparators and a microcomputer (MC). The two threshold energies are determined using low and high-energy comparators, respectively. The MC produces a single logical pulse when only a logical pulse from a low-energy comparator is input to the MC. Next, the MC never produces the pulse when two pulses from low and high-energy comparators are input to the MC, simultaneously. The logical pulses from the MC are input to a frequency-voltage converter (FVC) to convert count rates into voltages; the rate is proportional to the voltage. The output voltage from the FVC is sent to a personal computer through an analog-digital converter to reconstruct tomograms. The X-ray projection curves for tomography are obtained by repeated linear scans and rotations of the object at a tube voltage of 70 kV and a current of 12 μA. Iodine (I) K-edge CT was performed using contrast media and X-ray photons with a count rate of 2.2 kilocounts per second and energies ranging from 34 to 50 keV, since these photons with energies beyond I-K-edge energy 33.2 keV are absorbed effectively by I atoms.

  2. Mechanoelectrical and Photon-Generating Devices in Cells and Organisms: From Molecular Machines to Macroscopic Fields

    NASA Astrophysics Data System (ADS)

    Beloussov, L. V.

    2011-12-01

    The aim of this essay is to review what we know about the transformation of chemical energy into mechanical, electrical and photonic at the different scales of biological organization. We start from the "classical", short-range mechanoelectrical protein machines emphasizing their capacity to slow down the rate of energy relaxation and to concentrate energy onto a restricted number of freedom degrees. Then we pass to the newly described "low entropy machines" and to the macroscopic electromechanical machines which create circuits of the organismal scales. At last, we come to photonic events, paying a special attention to their regular periodicity within several Hz range and to their relations with cytoskeletal structures and their developmental dynamics. We suggest, that this area of investigations should be related with the theory of self-organization and the notion of coherency.

  3. THz Communications using Photonics and Electronic Devices: the Race to Data-Rate

    NASA Astrophysics Data System (ADS)

    Ducournau, Guillaume; Szriftgiser, Pascal; Pavanello, Fabio; Peytavit, Emilien; Zaknoune, Mohammed; Bacquet, Denis; Beck, Alexandre; Akalin, Tahsin; Lampin, Jean-François; Lampin, Jean-François

    2015-02-01

    With the mass development of mobile data transfers, wireless communications have recently entered a new area: the carrier frequency is now entering the THz region. After a brief overview of context and key features of THz communication, focus is given on photonic-based THz emitters based on quasi-optic UTC-PDs. A special design of wideband photomixer is presented and its applications for narrow bandwidth THz generation. Using this photomixer, communication links at 200, 400 and 600 GHz are presented.

  4. Methods and devices for maintaining a resonant wavelength of a photonic microresonator

    DOEpatents

    Jones, Adam; Zortman, William A.

    2015-07-14

    A photonic microresonator incorporates a localized heater element within a section of an optical bus waveguide that is in proximity to the resonator structure. The application of an adjustable control voltage to the heater element provides a localized change in the refractive index value of the bus waveguide, compensating for temperature-induced wavelength drift and maintaining a stabilized value of the microresonator's resonant wavelength.

  5. Micro- and Nanostructured Materials for Active Devices and Molecular Electronics

    SciTech Connect

    Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Mast, Eric S.; Hall, Michael G.; Bonham, Charles C.; Zumhoff, Mac R.; Williford, Rick E.

    2003-10-01

    Traditional single layer barrier coatings are not adequate in preventing degradation of the performance of organic molecular electronic and other active devices. Most advanced devices used in display technology now consist of micro and nanostructured small molecule, polymer and inorganic coatings with thin high reactive group 1A metals. This includes organic electronics such as organic light emitting devices (OLED). The lifetimes of these devices rapidly degrades when they are exposed to atmospheric oxygen and water vapor. Thin film photovoltaics and batteries are also susceptible to degradation by moisture and oxygen. Using in-line coating techniques we apply a composite nanostructured inorganic/polymer thin film barrier that restricts moisture and oxygen permeation to undetectable levels using conventional permeation test equipment. We describe permeation mechanisms for this encapsulation coating and flat panel display and other device applications. Permeation through the multilayer barrier coating is defect and pore limited and can be described by Knudsen diffusion involving a long and tortuous path. Device lifetime is also enhanced by the long lag times required to reach the steady state flux regime. Permeation rates in the range of 10-6 cc,g/m2/d have been achieved and OLED device lifetimes. The structure is robust, yet flexible. The resulting device performance and lifetimes will also be described. The barrier film can be capped with a thin film of transparent conductive oxide yielding an engineered nanostructured device for next generation, rugged, lightweight or flexible displays. This enables, for the first time, thin film encapsulation of emissive organic displays.

  6. Tunable resonant structures for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna Nina

    Photonics is an evolving field allowing for optical devices to be made cost effectively using standard semiconductor fabrication techniques, which in turn enables integration with microelectronic chips. Chip scale photonics will play an increasing role in the future of communications as the demand for bandwidth and reduced power consumption per bit continues to grow. Tunable optical circuit components are one of the essential technologies in the development of photonic analogues for classical electronic devices, where tunable photonic resonant structures allow for altering of their electromagnetic spectrum and find applications in optical switching, filtering, buffering, lasers and biosensors. The scope of this work is focused on tunable resonant structures for photonic integrated circuits. Specifically, this work demonstrates active tuning of silicon photonic resonant structures using the properties of dye doped nematic liquid crystals, temperature stabilization of silicon photonics using the passive properties of liquid crystals, and the effects of low density plasma enhanced chemical vapor deposition (PECVD) claddings on ring resonator device performance.

  7. High energy photon and particle luminosity from active nuclei

    NASA Technical Reports Server (NTRS)

    Eilek, J. A.; Caroff, L. J.; Noerdlinger, P. D.; Dove, M. E.

    1986-01-01

    This paper describes a numerical calculation which follows the evolution of an initial photon and particle spectrum in an expanding, relativistic wind or jet, describes in particular the quasi-equilibrium distribution found for initial optical depths above 100 or so, and points out that this calculation may be relevant for the situation in luminous, compact nuclear sources.

  8. W-band active imaging by photonics-based synthesizer

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu

    2016-05-01

    We demonstrate a nondestructive electromagnetic-wave imaging system with a photonics-based W-band synthe- sizer, traveling-wave tube amplifier and focal-plane transistor array in real time manner. High-power amplifier with multi-watts output will enhance the quality of obtained images under transmission and reflection imaging configurations.

  9. Active metameric security devices using an electrochromic material.

    PubMed

    Baloukas, Bill; Lamarre, Jean-Michel; Martinu, Ludvik

    2011-03-20

    In order to increase the anticounterfeiting performance of interference security image structures, we propose to implement an active component using an electrochromic material. This novel device, based on metamerism, offers the possibility of creating various surprising optical effects, it is more challenging to duplicate due to its complexity, and it adds a second level of authentication. By designing optical filters that match the bleached and colored states of the electrochromic device, one can obtain two hidden images-one appearing when the device is tilted, and the other one disappearing when the device is colored under an applied potential. Specifically, we present an example of a filter that is metameric with the colored state of the electrochromic device, demonstrate how the dynamic nature of the device offers more fabrication flexibility, and discuss its performance. We also describe a design methodology for metameric filters based on the luminous efficiency curve of the human eye: this approach results in filters with a lower number of layers and hence lower fabrication costs, and with a lower color difference sensitivity under various illuminants and for nonstandard observers. PMID:21460974

  10. Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source

    SciTech Connect

    Pisharody, M.; Job, P.K.; Magill, S.

    1997-03-01

    High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m{sub 0}c{sub 2}/E) radian with respect to the electron beam path, where m{sub 0}c{sup 2} is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10{sup -9} Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air.

  11. Insertion device and beam line plans for the Advanced Photon Source: A report and recommendations by the Insertion Device and Beam Line Planning Committee

    SciTech Connect

    Not Available

    1988-02-01

    In the 7-GeV Advanced Photon Source (APS) Conceptual Design Report (CDR), fifteen complete experimental beam lines were specified in order to establish a representative technical and cost base for the components involved. In order to optimize the composition of the insertion devices and the beam line, these funds are considered a ''Trust Fund.'' The present report evaluates the optimization for the distribution of these funds so that the short- and long-term research programs will be most productive, making the facility more attractive from the user's point of view. It is recommended that part of the ''Trust Fund'' be used for the construction of the insertion devices, the front-end components, and the first-optics, minimizing the cost to potential users of completing a beam line. In addition, the possibility of cost savings resulting from replication and standardization of high multiplicity components (such as IDs, front ends, and first-optics instrumentation) is addressed. 2 refs., 5 tabs.

  12. Magnetic field calculations of a permanent magnet insertion device for the advanced photon source

    SciTech Connect

    Kim, S.H.

    1988-03-01

    The magnetic fields of a hybrid undulator for the 7-GeV Advanced Photon Source (APS) have been calculated. The 2-D geometries of regular poles and end pole are chosen using PANDIRA and PE2D codes. The field distribution in 3-D geometry are calculated using the TOSCA code. It is shown that the undulator dimensions should be chosen according to the requirements of the final use. TOSCA calculations in the 2-D limit agreed remarkably well with the results of PANDIRA and PE2D.

  13. Integrated array of 2-μm antimonide-based single-photon counting devices.

    PubMed

    Diagne, M A; Greszik, M; Duerr, E K; Zayhowski, J J; Manfra, M J; Bailey, R J; Donnelly, J P; Turner, G W

    2011-02-28

    A 32x32 Sb-based Geiger-mode (GM) avalanche photodiode array, operating at 2 μm with three-dimensional imaging capability, is presented. The array is interfaced with a ROIC (readout integrated circuit) in which each pixel can detect a photon and record the arrival time. The hybridized unit for the 1000-element focal plane array, when operated at 77K with 1 V overbias range, shows an average dark count rate of 1.5 kHz. Three-dimensional range images of objects were acquired. PMID:21369250

  14. Markov chain Monte Carlo methods for statistical analysis of RF photonic devices.

    PubMed

    Piels, Molly; Zibar, Darko

    2016-02-01

    The microwave reflection coefficient is commonly used to characterize the impedance of high-speed optoelectronic devices. Error and uncertainty in equivalent circuit parameters measured using this data are systematically evaluated. The commonly used nonlinear least-squares method for estimating uncertainty is shown to give unsatisfactory and incorrect results due to the nonlinear relationship between the circuit parameters and the measured data. Markov chain Monte Carlo methods are shown to provide superior results, both for individual devices and for assessing within-die variation. PMID:26906783

  15. Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2010-08-01

    New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to (60)Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity. PMID:20304766

  16. Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices

    SciTech Connect

    Sokolov, V O; Plotnichenko, V G; Nazaryants, V O; Dianov, Evgenii M

    2006-01-31

    Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)

  17. An active interlock system for the NSLS x-ray ring insertion devices

    SciTech Connect

    Nawrocky, R.J.; Biscardi, R.; Dabrowski, J.; Flannigan, J.; Ramamoorthy, S.; Rothman, J.; Smith, J.; So, I.; Thomas, M. ); Decker, G. )

    1991-01-01

    This paper describes the design and operation of an active interlock system which has been installed in the NSLS X-ray electron storage ing to protect the vacuum chamber from thermal damage by mis-steered high power photon beams from insertion devices (IDs). the system employs active beam position detectors to monitor beam motion in the ID straight sections and solid state logic circuitry to dump'' the stored beam in the event of a fault condition by interrupting the rf. To ensure a high degree of reliability, redundancy and continuous automatic checking has been incorporated into the design. Overall system integrity is checked periodically with beam at safe levels of beam current. 2 refs., 3 figs.

  18. High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference.

    PubMed

    Huang, Yingyan; Ho, Seng-Tiong

    2008-10-13

    We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive. PMID:18852789

  19. Fault-tolerant polarization-insensitive photonic delay line architectures using two-dimensional digital micromirror devices

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Sumriddetchkajorn, Sarun

    1999-02-01

    A binary multichannel photonic delay line (PDL) module is introduced that gives balanced loss switched states and a polarization-insensitive operation via the use of binary operation Digital Micromirror Devices (DMDs). Experimental demonstration of a DMD-based PDL architecture is performed for a 6.84-ns time delay design. Experimental results include a 25-beam feed interchannel crosstalk test indicating a <-60 dB optical interchannel crosstalk level for a 0.381 mm interchannel distance in the multichannel PDL. An average optical signal-to-leakage noise ratio of 35.33 dB is measured for this PDL. A butterfly design PDL optical architecture is proposed for minimizing loss and improving assembly accuracy. These DMD-based variable PDLs can be used in applications ranging from radio frequency (RF) fiber-optic signal processing systems to adaptive optics for astronomical and laser radar arrays.

  20. Increasing physical activity through mobile device interventions: A systematic review.

    PubMed

    Muntaner, Adrià; Vidal-Conti, Josep; Palou, Pere

    2016-09-01

    Physical inactivity is a health problem that affects people worldwide and has been identified as the fourth largest risk factor for overall mortality (contributing to 6% of deaths globally). Many researchers have tried to increase physical activity levels through traditional methods without much success. Thus, many researchers are turning to mobile technology as an emerging method for changing health behaviours. This systematic review sought to summarise and update the existing scientific literature on increasing physical activity through mobile device interventions, taking into account the methodological quality of the studies. The articles were identified by searching the PubMed, SCOPUS and SPORTDiscus databases for studies published between January 2003 and December 2013. Studies investigating efforts to increase physical activity through mobile phone or even personal digital assistant interventions were included. The search results allowed the inclusion of 11 studies that gave rise to 12 publications. Six of the articles included in this review reported significant increases in physical activity levels. The number of studies using mobile devices for interventions has increased exponentially in the last few years, but future investigations with better methodological quality are needed to draw stronger conclusions regarding how to increase physical activity through mobile device interventions. PMID:25649783

  1. Dual-energy X-ray photon counting using an LSO-MPPC spectrometer and an energy-selecting device

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2015-08-01

    Dual-energy photon counting was performed using an energy-selecting device (ESD) and a detector, consisting of a Lu2(SiO4)O [LSO)] crystal and a multipixel photon counter (MPPC). The ESD is used to determine a low-energychannel range for CT and consists of two comparators and a microcomputer (MC). The two threshold channels in proportion to energies are determined using low and high-energy comparators, respectively. The MC in the ESD produces a single logical pulse when only a logical pulse from the low-energy comparator is input to the MC. To determine the high-energy-channel range for CT, logical pulses from the high-energy comparator are input to the MC outside the ESD. Logical pulses from the two MCs are input to frequency-voltage converters (FVCs) to convert count rates into voltages. The output voltages from the two FVCs are sent to a personal computer through an analog-digital converter to reconstruct tomograms. Dual-energy computed tomography was accomplished at a tube voltage of 70 kV and a maximum count rate of 14.3 kilocounts per second, and two-different-energy tomograms were obtained simultaneously.

  2. Selectivity, cycling stability and temperature dependence of touchless finger motion tracking devices based on 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Szendrei, Katalin; Ganter, Pirmin; Lotsch, Bettina V.

    2016-04-01

    We report on the humidity-induced swelling behavior of thin film devices composed of 2D phosphatoantimonate nanosheets and study their water uptake mechanism by means of ellipsometric porosimetry. Ambient humidity changes cause significant swelling in thin films composed of turbostratically disordered H3Sb3P2O14 nanosheets through water uptake between the nanosheet layers. This phenomenon is exploited to construct humidity responsive colorimetric sensors based on 1D Photonic Crystals. We demonstrate the ultrahigh sensitivity of H3Sb3P2O14/SiO2 Bragg stacks to ambient humidity, as well as reversible transparency switching as a consequence of refractive index matching at high relative humidities. The Photonic Crystals show substantially higher sensitivity to humidity as compared to ethanol vapor, reflecting the less favorable interaction of ethanol with the nanosheet layers as compared to water. Based on their ultrahigh sensitivity to humidity, phosphatoantimonate nanosheet based Bragg stacks can be used to track the motion of a finger by responding to its humidity sheath, without the finger touching the sensor surface. The cycling stability of such optical touchless positioning interfaces as well as the reversibility of the sensing event was demonstrated for more than 100 cycles. While the dew point presents an inherent lower limit to the sensor performance, the sensing ability remains essentially unaffected at elevated temperatures up to 40 °C.

  3. Active quenching and gating circuit of the photon counting detector for laser time transfer with improved timing resolution and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Blazej, Josef; Kodet, Jan; Michalek, Vojtech

    2015-05-01

    We are presenting the results of research and development of a new active quenching and gating electronics for Single Photon Avalanche Detector (SPAD). The goal of the work was to develop a new SPAD detector package for Laser Time Transfer ground to space with improved timing resolution and stability. The first version of a SPAD detector is operational on board of GNSS navigation satellites. They are based on 25 μm diameter K14 series SPAD chips. They do provide timing resolution of typically 125 ps and stability of the order of 10 ps. The new control electronics provides timing resolution of 25 ps and timing stability and drifts of the order of one picosecond. The device is constructed on a basis of electronics components for which the space qualified equivalents are commercially available. The device construction, tests and results will be presented in detail.

  4. Growth and characterization of III-nitrides materials system for photonic and electronic devices by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yoo, Dongwon

    A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (lambda < 290 nm). These intrinsically solar-blind UV APDs will not require filters to operate in the solar-blind spectral regime of lambda < 290 nm. For the growth of GaN-based heteroepitaxial layers on lattice-mismatched substrates, a high density of defects is usually introduced during the growth; thereby, causing a device failure by premature microplasma, which has been a major issue for GaN-based APDs. The extensive research on epitaxial growth and optimization of AlxGa 1-xN (0 ≤ x ≤ 1) grown on low dislocation density native bulk III-N substrates have brought UV APDs into realization. GaN and AlGaN UV p-i-n APDs demonstrated first and record-high true avalanche gain of > 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN p-i-n rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN p-i-n rectifiers on n-type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and

  5. Optical devices for ultra-compact photonic integrated circuits based on III-V/polymer nanowires

    NASA Astrophysics Data System (ADS)

    Lauvernier, D.; Garidel, S.; Zegaoui, M.; Vilcot, J. P.; Harari, J.; Magnin, V.; Decoster, D.

    2007-04-01

    We demonstrated the potential application of III-V/polymer nanowires for photonic integrated circuits in a previous paper. Hereby, we report the use of a spot size converter based on 2D reverse nanotaper structure in order to improve the coupling efficiency between the nanowire and optical fiber. A total coupling enhancement of up to a factor 60 has been measured from an 80 nm × 300 nm cross-section tip which feeds an 300 nm-side square nanowire at its both ends. Simultaneously, micro-radius bends have been fabricated to increase the circuit density; for a radius of 5 µm, the 90º bend losses were measured as low as 0.60 dB and 0.80 dB for TE and TM polarizations respectively.

  6. Photonic devices on planar and curved substrates and methods for fabrication thereof

    DOEpatents

    Bartl, Michael H.; Barhoum, Moussa; Riassetto, David

    2016-08-02

    A versatile and rapid sol-gel technique for the fabrication of high quality one-dimensional photonic bandgap materials. For example, silica/titania multi-layer materials may be fabricated by a sol-gel chemistry route combined with dip-coating onto planar or curved substrate. A shock-cooling step immediately following the thin film heat-treatment process is introduced. This step was found important in the prevention of film crack formation--especially in silica/titania alternating stack materials with a high number of layers. The versatility of this sol-gel method is demonstrated by the fabrication of various Bragg stack-type materials with fine-tuned optical properties by tailoring the number and sequence of alternating layers, the film thickness and the effective refractive index of the deposited thin films. Measured optical properties show good agreement with theoretical simulations confirming the high quality of these sol-gel fabricated optical materials.

  7. Femtosecond laser micromachining for the realization of fully integrated photonic and microfluidic devices

    NASA Astrophysics Data System (ADS)

    Eaton, S. M.; Osellame, R.; Ramponi, R.

    2015-02-01

    Femtosecond laser microprocessing is a direct, maskless fabrication technique that has attracted much attention in the past 10 years due to its unprecedented versatility in the 3D patterning of transparent materials. Two common modalities of femtosecond laser microfabrication include buried optical waveguide writing and surface laser ablation, which have been applied to a wide range of transparent substrates including glasses, polymers and crystals. In two photon polymerization, a third modality of femtosecond laser fabrication, focused femtosecond laser pulses drive photopolymerization in photoresists, enabling the writing of complex 3D structures with submicrometer resolution. In this paper, we discuss several microdevices realized by these diverse modalities of femtosecond laser microfabrication, for applications in microfluidics, sensing and quantum information.

  8. Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices

    NASA Astrophysics Data System (ADS)

    Ramiro-Manzano, Fernando; Fenollosa, Roberto; Xifré-Pérez, Elisabet; Garín, Moises; Meseguer, Francisco

    2012-09-01

    We have recently developed a new type of porous silicon we name as porous silicon colloids. They consist of almost perfect spherical silicon nanoparticles with a very smooth surface, able to scatter (and also trap) light very efficiently in a large-span frequency range. Porous silicon colloids have unique properties because of the following: (a) they behave as optical microcavities with a high refractive index, and (b) the intrinsic photoluminescence (PL) emission is coupled to the optical modes of the microcavity resulting in a unique luminescence spectrum profile. The PL spectrum constitutes an optical fingerprint identifying each particle, with application for biosensing. In this paper, we review the synthesis of silicon colloids for developing porous nanoparticles. We also report on the optical properties with special emphasis in the PL emission of porous silicon microcavities. Finally, we present the photonic barcode concept.

  9. Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices

    PubMed Central

    2012-01-01

    We have recently developed a new type of porous silicon we name as porous silicon colloids. They consist of almost perfect spherical silicon nanoparticles with a very smooth surface, able to scatter (and also trap) light very efficiently in a large-span frequency range. Porous silicon colloids have unique properties because of the following: (a) they behave as optical microcavities with a high refractive index, and (b) the intrinsic photoluminescence (PL) emission is coupled to the optical modes of the microcavity resulting in a unique luminescence spectrum profile. The PL spectrum constitutes an optical fingerprint identifying each particle, with application for biosensing. In this paper, we review the synthesis of silicon colloids for developing porous nanoparticles. We also report on the optical properties with special emphasis in the PL emission of porous silicon microcavities. Finally, we present the photonic barcode concept. PMID:22943136

  10. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  11. Microchamber Device for Detection of Transporter Activity of Adherent Cells

    PubMed Central

    Tsugane, Mamiko; Uejima, Etsuko; Suzuki, Hiroaki

    2015-01-01

    We present a method to detect the transporter activity of intact adherent cells using a microchamber device. When adherent cells are seeded onto the poly-di-methyl siloxane substrate having microchambers with openings smaller than the size of a cell, the cells form a confluent layer that covers the microchambers, creating minute, confined spaces. As substances exported across the cell membrane accumulate, transporter activity can be detected by observing the fluorescence intensity increase in the microchamber. We tested the microchamber device with HeLa cells over-expressing MDR1, an ATP-binding cassette transporter, and succeeded in detecting the transport of fluorescence-conjugated paclitaxel, the anti-cancer drug, at the single-cell level. PMID:25853126

  12. Multi-band terahertz active device with complementary metamaterial

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Sun, Linlin; Sun, Han; Xu, Gaiqi; Zhao, Yuncheng; Yang, Ziqiang; Liang, Shixiong

    2015-09-28

    We describe a multi-band terahertz-active device using a composite structure made of complementary metamaterial and doped silicon that can be dynamically controlled. This special complementary metamaterial exhibits three resonances that produce three pass-bands. The pass-bands can be uniformly manipulated by exploiting the photoinduced characteristics of the doped silicon. Simulations were performed to analyze the magnetic field and surface current distributions. The simulation results agree well with experimental results obtained from terahertz time-domain spectroscopy. Using an 808-nm-wavelength laser beam, a modulation depth of up to 80% was obtained. In numerical simulations, we used a conductivity mode to characterize photoinduction. The development of multi-band terahertz-active devices has many potential applications, for example, in filters, modulators, switches, and sensors.

  13. Si based GeSn light emitter: mid-infrared devices in Si photonics

    NASA Astrophysics Data System (ADS)

    Yu, S. Q.; Ghetmiri, S. A.; Du, W.; Margetis, J.; Zhou, Y.; Mosleh, A.; Al-Kabi, S.; Nazzal, A.; Sun, G.; Soref, R. A.; Tolle, J.; Li, B.; Naseem, H. A.

    2015-02-01

    Ge1-xSnx/Ge thin films and Ge/Ge1-xSnx/Ge n-i-p double heterostructure (DHS) have been grown using commercially available reduced pressure chemical vapor deposition (RPCVD) reactor. The Sn compositional material and optical characteristics have been investigated. A direct bandgap GeSn material has been identified with Sn composition of 10%. The GeSn DHS samples were fabricated into LED devices. Room temperature electroluminescence spectra were studied. A maximum emission power of 28mW was obtained with 10% Sn LED under the injection current density of 800 A/cm2.

  14. Photoconductivity of graphene devices induced by terahertz radiation at various photon energies

    NASA Astrophysics Data System (ADS)

    Salman, M.; Gouider, F.; Friedemann, M.; Schmidt, H.; Ahlers, F. J.; Göthlich, M.; Haug, R. J.; Nachtwei, G.

    2013-12-01

    The influence of a magnetic field on Landau levels (LLs) in graphene-based devices is described via the magneto-optical response induced by terahertz (THz) radiation. For single-layer graphene, the resonance energies of the transitions between the on Landau levels (LLs) such as L1, L2 and L3 fit quite well to the terahertz spectral range at low magnetic fields. Also, the calculations for the terahertz photoresponse (photoconductivity) in the presence of low magnetic fields, the reported calculations for the scattering rate of LLs, recent and our experimental results of photoresponse measurements yield that single-layer graphene is suitable for the detection of terahertz radiation.

  15. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  16. Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals.

    PubMed

    Gupta, Bakul; Mai, Kelly; Lowe, Stuart B; Wakefield, Denis; Di Girolamo, Nick; Gaus, Katharina; Reece, Peter J; Gooding, J Justin

    2015-10-01

    Herein is presented a microsensor technology as a diagnostic tool for detecting specific matrix metalloproteinases (MMPs) at very low concentrations. MMP-2 and MMP-9 are detected using label free porous silicon (PSi) photonic crystals that have been made selective for a given MMP by filling the nanopores with synthetic polymeric substrates containing a peptide sequence for that MMP. Proteolytic cleavage of the peptide sequence results in a shift in wavelength of the main peak in the reflectivity spectrum of the PSi device, which is dependent on the amount of MMP present. The ability to detect picogram amounts of MMP-2 and MMP-9 released by primary retinal pigment epithelial (RPE) cells and iris pigment epithelial (IPE) cells stimulated with lipopolysaccharide (LPS) is demonstrated. It was found that both cell types secrete higher amounts of MMP-2 than MMP-9 in their stimulated state, with RPE cells producing higher amounts of MMPs than IPE cells. The microsensor performance was compared to conventional protease detection systems, including gelatin zymography and enzyme linked immunosorbent assay (ELISA). It was found that the PSi microsensors were more sensitive than gelatin zymography; PSi microsensors detected the presence of both MMP-2 and MMP-9 while zymography could only detect MMP-2. The MMP-2 and MMP-9 quantification correlated well with the ELISA. This new method of detecting protease activity shows superior performance to conventional protease assays and has the potential for translation to high-throughput multiplexed analysis. PMID:26312479

  17. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of Dα or Hα lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ˜106 s-1 per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of Dα light emission from the plasma confined in a magnetic trap are presented.

  18. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    SciTech Connect

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-15

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D{sub α} or H{sub α} lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10{sup 6} s{sup −1} per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D{sub α} light emission from the plasma confined in a magnetic trap are presented.

  19. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices.

    PubMed

    Lizunov, A; Khilchenko, A; Khilchenko, V; Kvashnin, A; Zubarev, P

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D(α) or H(α) lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10(6) s(-1) per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D(α) light emission from the plasma confined in a magnetic trap are presented. PMID:26724090

  20. Study of O3-TEOS SiO2 Cladding for Silicon Photonics Devices

    NASA Astrophysics Data System (ADS)

    Kinoshita, Keizo; Horikawa, Tsuyoshi; Shimura, Daisuke; Takahashi, Hiroyuki; Mogami, Tohru

    2015-09-01

    Silicon Photonics (SiPh) is a promising technology for large-capacity and wide-band data communications for the distance from millimeter to 100 meters which corresponded well to data center applications. This paper describes about O3-TEOS SiO2 film developments as an upper cladding over Si waveguide core fabricated on silicon-on-insulator wafers. It was compared with a plasma-enhanced chemical-vapor-deposition (PE-CVD) SiO2 film used widely as the cladding material. The O3-TEOS SiO2 showed very high gap-fill characteristic at parallel arrangement of two waveguides. However, its propagation loss was 1.83 dB/cm which is three times larger than that of the conventional PE-CVD SiO2 cladding. Chemical analyses by FT-IR and TDS for these two types of cladding films were carried out to clarify this reason. It was clearly shown that remained water within the O3-TEOS SiO2 cladding could cause the larger propagation loss by O-H stretching absorption. The water exclusion procedure should be developed to apply O3-TEOS SiO2 for the cladding materials. This work was supported by NEDO.

  1. Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices

    NASA Astrophysics Data System (ADS)

    Guichard, Alex Richard

    Silicon (Si) is the dominant semiconductor material in both the microelectronic and photovoltaic industries. Despite its poor optical properties, Si is simply too abundant and useful to be completely abandoned in either industry. Since the initial discovery of efficient room temperature photoluminescence (PL) from porous Si and the following discoveries of PL and time-resolved optical gain from Si nanocrystals (Si-nc) in SiO2, many groups have studied the feasibility of making Si-based, CMOS-compatible electroluminescent devices and electrically pumped lasers. These studies have shown that for Si-ne sizes below about 10 nm, PL can be attributed to radiative recombination of confined excitons and quantum efficiencies can reach 90%. PL peak energies are blue-shifted from the bulk Si band edge of 1.1 eV due to the quantum confinement effect and PL decay lifetimes are on mus timescales. However, many unanswered questions still exist about both the ease of carrier injection and various non-radiative and loss mechanisms that are present. A potential alternative material system to porous Si and Si-nc is Si nanowires (SiNWs). In this thesis, I examine the optical properties of SiNWs with diameters in the range of 3-30 nm fabricated by a number of compound metal oxide semiconductor (CMOS) compatible fabrication techniques including Chemical Vapor Deposition on metal nanoparticle coated substrates, catalytic wet etching of bulk Si and top-down electron-beam lithographic patterning. Using thermal oxidation and etching, we can increase the degree of confinement in the SiNWs. I demonstrate PL peaked in the visible and near-infrared (NIR) wavelength ranges that is tunable by controlling the crystalline SiNW core diameter, which is measured with dark field and high-resolution transmission electron microscopy. PL decay lifetimes of the SiNWs are on the order of 50 mus after proper surface passivation, which suggest that the PL is indeed from confined carriers in the SiNW cores

  2. Imaging by terahertz photon counting

    NASA Astrophysics Data System (ADS)

    Ikushima, Kenji; Komiyama, Susumu

    2010-08-01

    Photon counting method is indispensable in visible/near-infrared optical measurements for detecting extremely weak radiation. The method, however, has been inaccessible in terahertz region, where the photon energies are more than 100 times smaller and catching individual photons is difficult. Here we review photon counting measurements of terahertz waves, by incorporating a semiconductor quantum-dot terahertz-photon detector into a scanning terahertz microscope. By using a quantum Hall effect detector as well, measurements cover the intensity dynamic range more than six orders of magnitude. Applying the measurement system to the study of semiconductor quantum Hall effect devices, we image extremely weak cyclotron radiation emitted by nonequilibrium electrons. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled. Besides semiconductor electric devices studied here, the experimental method will find application in diverse areas of molecular dynamics, microthermography, and cell activities.

  3. MAFL experiment: development of photonic devices for a space-based multiaperture fiber-linked interferometer.

    PubMed

    Olivier, Serge; Delage, Laurent; Reynaud, Francois; Collomb, Virginie; Trouillon, Michel; Grelin, Jerome; Schanen, Isabelle; Minier, Vincent; Broquin, Jean-Emmanuel; Ruilier, Cyril; Leone, Bruno

    2007-02-20

    We present a three-telescope space-based interferometer prototype dedicated to high-resolution imaging. This project, named multiaperture fiber-linked interferometer (MAFL), was founded by the European Space Agency. The aim of the MAFL project is to propose, design, and implement for the first time to the best of our knowledge all the optical functions required for the global instrument on the same integrated optics (IO) component for controlling a three-arm interferometer and to obtain reliable science data. The coherent transport from telescopes to the IO component is achieved by means of highly birefringent optical fiber. The laboratory bench is presented, and the results are reported allowing us to validate the optical potentiality of the IO component in this frame. The validation measurements consist of the throughput of this optical device, the performances of metrological servoloop, and the instrumental contrasts and phase closure of the science fringes. PMID:17279127

  4. Nanoscale Materials, Devices, and Systems for Chem.-Bio Sensors, Photonics, and Energy Generation and Storage

    NASA Astrophysics Data System (ADS)

    Vaseashta, A.

    A comprehensive overview of ongoing research efforts and future scientific directions in nanotechnology to develop materials, devices, and systems for potential use in environmental pollution monitoring and mitigation; energy generation and storage; and chemical-biological-radiological-nuclear sensing is presented. Applications of nanomaterials in development of biodegradable, high performance yet light weight and eco-friendly materials are presented to minimize power consumption, green-house gas emissions, and land-fill volume. Societal implications and concerns associated with nanotechnology are addressed by studying fate and transport and development of guidelines for a risk-assessment model. A roadmap of the future of nanomaterials, in-terms of complexity, nexus of disciplines, and emerging green nanotechnologies is presented.

  5. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  6. Light-induced self-assembly of active rectification devices

    PubMed Central

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2016-01-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics—a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or “rectified”) by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured “primordial soup” of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  7. Light-induced self-assembly of active rectification devices.

    PubMed

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  8. The role of high energy photons and particles in accretion flows in active nuclei

    NASA Technical Reports Server (NTRS)

    Eilek, Jean A.

    1988-01-01

    The creation of high energy pairs and photons in the conversion of gravitational to thermal energy is a process common to most accretion models for active galactic nuclei. These are two observational methods designed to explore this process: direct observations of the hot photons, through hard X-ray and gamma-ray data, and indirect observations of the energetic pairs, through their polarized, nonthermal low frequency radiation. However, interpretation of these observations in terms of the conditions in the inner accretion flow requires understanding of the various processes which modify the pair and photon distributions within the hot, dense core. These processes include opacity effects within the pair/photon plasma, Compton losses on external photons, further acceleration of the pairs and further radiation by the pairs, and the dynamic interaction of the pair/photon plasma with the surrounding gas. Current observational and theoretical work is reviewed and new directions are considered in a search for constraints on or tests of accretion models of active nuclei.

  9. Active terahertz device based on optically controlled organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Lv, Longfeng; He, Ting; Chen, Tianji; Zang, Mengdi; Zhong, Liang; Wang, Xinke; Shen, Jingling; Hou, Yanbing

    2015-08-01

    An active all-optical high-efficiency broadband terahertz device based on an organometal halide perovskite (CH3NH3PbI3, MAPbI3)/inorganic (Si) structure is investigated. Spectrally broadband modulation of the THz transmission is obtained in the frequency range from 0.2 to 2.6 THz, and a modulation depth of nearly 100% can be achieved with a low-level photoexcitation power (˜0.4 W/cm2). Both THz transmission and reflection were suppressed in the MAPbI3/Si structure by an external continuous-wave (CW) laser. Enhancement of the charge carrier density at the MAPbI3/Si interface is crucial for photo-induced absorption. The results show that the proposed high-efficiency broadband optically controlled terahertz device based on the MAPbI3/Si structure has been realized.

  10. Integration of active devices on smart polymers for neural interfaces

    NASA Astrophysics Data System (ADS)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  11. Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials.

    PubMed

    Price, Robert A

    2005-01-01

    The behaviour of packaged and unpackaged ESAPMOS4 RadFET radiation detectors (NMRC Cork, Ireland) was investigated when used in the mixed photon and neutron environment of a medical linear accelerator operating above the nucleon separation energy and in a 14 MeV neutron field provided by a D-T generator. Within the uncertainty of the experimental set-up (4% at 95% confidence level) the unpackaged device was found to have essentially zero activation dose-burden whereas the packaged device exhibits a considerable degree of post irradiation absorbed dose due to deactivation radiation. PMID:16381751

  12. The Use of Multiple Slate Devices to Support Active Reading Activities

    ERIC Educational Resources Information Center

    Chen, Nicholas Yen-Cherng

    2012-01-01

    Reading activities in the classroom and workplace occur predominantly on paper. Since existing electronic devices do not support these reading activities as well as paper, users have difficulty taking full advantage of the affordances of electronic documents. This dissertation makes three main contributions toward supporting active reading…

  13. Surface trimming of silicon photonics devices using controlled reactive ion etching chemistry

    NASA Astrophysics Data System (ADS)

    Chandran, S.; Das, B. K.

    2015-06-01

    Surface trimming of rib waveguides fabricated in 5-μm SOI substrate has been carried out successfully without any significant increase of propagation losses. A reactive ion etching chemistry has been optimized for trimming and an empirical model has been developed to obtain the resulting waveguide geometries. This technique has been used to demonstrate smaller footprint devices like multimode interference based power splitters and ring resonators after defining them photolithographically with relatively large cross-section rib waveguides. We have been also successful to fabricate 2D tapered spot-size converter useful for monolithic integration of waveguides with varying heights and widths. The taper length is again precisely controlled by photolithographic definition. Minimum insertion loss of such a spot-size converter integrated between waveguides with 3-μm height difference has been recorded to be ∼2 dB. It has been also shown that the overall fiber-to-chip coupling loss can be reduced by >3 dB by using such spot-size converters at the input/output side of the waveguides.

  14. Simulation of planar integrated photonics devices with the LLNL time- domain finite-difference code suite

    SciTech Connect

    McLeod, R.; Hawkins, R.J.; Kallman, J.S.

    1991-04-01

    Interest has recently grown in applying microwave modeling techniques to optical circuit modeling. One of the simplest, yet most powerful, microwave simulation techniques is the finite-difference time-domain algorithm (FDTD). In this technique, the differential form of the time-domain Maxwell's equations are discretized and all derivatives are approximated as differences. Minor algebraic manipulations on the resulting equations produces a set of update equations that produce fields at a given time step from fields at the previous time step. The FDTD algorithm, then, is quite simple. Source fields are launched into the discrete grid by some means. The FDTD equations advance these fields in time. At the boundaries of the grid, special update equations called radiation conditions are applied that approximate a continuing, infinite space. Because virtually no assumptions are made in the development of the FDTD method, the algorithm is able to represent a wide-range of physical effects. Waves can propagate in any direction, multiple reflections within structures can cause resonances, multiple modes of various polarizations can be launched, each of which may generate within the device an infinite spectrum of bound and radiation modes. The ability to model these types of general physical effects is what makes the FDTD method interesting to the field of optics. In this paper, we discuss the application of the finite-difference time-domain technique to integrated optics. Animations will be shown of the simulations of a TE coupler, TM grating, and a TE integrated detector. 3 refs., 1 fig.

  15. Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices.

    PubMed

    Choi, Hong Seok; Neiroukh, Dania; Hunt, Heather K; Armani, Andrea M

    2012-01-10

    The optical properties of polymeric materials, such as transmission loss and the thermo-optic coefficient, determine their utility in numerous applications, ranging from nanotechnology to the automotive and aerospace industries. However, because of the wide variation in the physical properties of polymers, many are unsuited for characterization using conventional techniques; consequently, their optical properties are unknown. One such polymer is polyisobutylene, which is viscous at room temperature and therefore is not compatible with conventional transmission loss and the thermo-optic coefficient characterization techniques because they rely on contact measurements. To overcome this, we have developed an integrated, microscale optical sensor that relies on an evanescent wave to study the material's optical behavior. Using this device, we successfully determined the refractive index, the transmission loss, and the thermo-optic coefficient of ultrathin films of polyisobutylene. The films are deposited on the sensor's silica surface using either spin coating or surface-initiated cationic polymerization, demonstrating the flexibility of this approach. PMID:22111576

  16. High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.

    PubMed

    Acconcia, Giulia; Rech, Ivan; Gulinatti, Angelo; Ghioni, Massimo

    2016-08-01

    Single photon avalanche diodes (SPADs) have been subject to a fast improvement in recent years. In particular, custom technologies specifically developed to fabricate SPAD devices give the designer the freedom to pursue the best detector performance required by applications. A significant breakthrough in this field is represented by the recent introduction of a red enhanced SPAD (RE-SPAD) technology, capable of attaining a good photon detection efficiency in the near infrared range (e.g. 40% at a wavelength of 800 nm) while maintaining a remarkable timing resolution of about 100ps full width at half maximum. Being planar, the RE-SPAD custom technology opened the way to the development of SPAD arrays particularly suited for demanding applications in the field of life sciences. However, to achieve such excellent performance custom SPAD detectors must be operated with an external active quenching circuit (AQC) designed on purpose. Next steps toward the development of compact and practical multichannel systems will require a new generation of monolithically integrated AQC arrays. In this paper we present a new, fully integrated AQC fabricated in a high-voltage 0.18 µm CMOS technology able to provide quenching pulses up to 50 Volts with fast leading and trailing edges. Although specifically designed for optimal operation of RE-SPAD devices, the new AQC is quite versatile: it can be used with any SPAD detector, regardless its fabrication technology, reaching remarkable count rates up to 80 Mcounts/s and generating a photon detection pulse with a timing jitter as low as 119 ps full width at half maximum. The compact design of our circuit has been specifically laid out to make this IC a suitable building block for monolithically integrated AQC arrays. PMID:27505749

  17. Statistical analysis on activation and photo-bleaching of step-wise multi-photon activation fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Gu, Zetong; Lai, Zhenhua; Zhang, Xi; Yin, Jihao; DiMarzio, Charles A.

    2015-03-01

    Melanin is regarded as the most enigmatic pigments/biopolymers found in most organisms. We have shown previously that melanin goes through a step-wise multi-photon absorption process after the fluorescence has been activated with high laser intensity. No melanin step-wise multi-photon activation fluorescence (SMPAF) can be obtained without the activation process. The step-wise multi-photon activation fluorescence has been observed to require less laser power than what would be expected from a non-linear optical process. In this paper, we examined the power dependence of the activation process of melanin SMPAF at 830nm and 920nm wavelengths. We have conducted research using varying the laser power to activate the melanin in a point-scanning mode for multi-photon microscopy. We recorded the fluorescence signals and position. A sequence of experiments indicates the relationship of activation to power, energy and time so that we can optimize the power level. Also we explored regional analysis of melanin to study the spatial relationship in SMPAF and define three types of regions which exhibit differences in the activation process.

  18. Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes.

    PubMed

    Stipcević, Mario

    2009-03-20

    In this paper a novel construction of an active quenching circuit intended for single-photon detection is presented, along with a few original methods for its evaluation. The circuit has been combined with a standard avalanche photodiode C30902S to form a single-photon detector. This detector has a dead time of 39 ns, maximum random counting frequency of 14 MHz, small afterpulsing probability, an estimated peak detection efficiency of over 20%, and a dark count rate of less than 100 Hz. This simple and robust active quenching circuit can be built from off-the-shelf electronic components and is presented with the detailed schematic diagram. PMID:19305468

  19. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  20. Laminated active matrix organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Sun, Runguang

    2008-02-01

    Laminated active matrix organic light-emitting device (AMOLED) realizing top emission by using bottom-emitting organic light-emitting diode (OLED) structure was proposed. The multilayer structure of OLED deposited in the conventional sequence is not on the thin film transistor (TFT) backplane but on the OLED plane. The contact between the indium tin oxide (ITO) electrode of TFT backplane and metal cathode of OLED plane is implemented by using transfer electrode. The stringent pixel design for aperture ratio of the bottom-emitting AMOLED, as well as special technology for the top ITO electrode of top-emitting AMOLED, is unnecessary in the laminated AMOLED.

  1. Active control of excessive sound emission on a mobile device.

    PubMed

    Jeon, Se-Woon; Youn, Dae Hee; Park, Young-cheol; Lee, Gun-Woo

    2015-04-01

    During a phone conversation, loud vocal emission from the far-end to the near-end space can disturb nearby people. In this paper, the possibility of actively controlling such unwanted sound emission using a control source placed on the mobile device is investigated. Two different approaches are tested: Global control, minimizing the potential energy measured along a volumetric space surface, and local control, minimizing the squared sound pressure at a discrete point on the phone. From the test results, both approaches can reduce the unwanted sound emission by more than 6 dB in the frequency range up to 2 kHz. PMID:25920885

  2. Epsilon-near-zero mode for active optoelectronic devices.

    PubMed

    Vassant, S; Archambault, A; Marquier, F; Pardo, F; Gennser, U; Cavanna, A; Pelouard, J L; Greffet, J J

    2012-12-01

    The electromagnetic modes of a GaAs quantum well between two AlGaAs barriers are studied. At the longitudinal optical phonon frequency, the system supports a phonon polariton mode confined in the thickness of the quantum well that we call epsilon-near-zero mode. This epsilon-near-zero mode can be resonantly excited through a grating resulting in a very large absorption localized in the single quantum well. We show that the reflectivity can be modulated by applying a voltage. This paves the way to a new class of active optoelectronic devices working in the midinfrared and far infrared at ambient temperature. PMID:23368264

  3. Device for measuring oxygen activity in liquid sodium

    DOEpatents

    Roy, P.; Young, R.S.

    1973-12-01

    A composite ceramic electrolyte in a configuration (such as a closed end tube or a plate) suitable to separate liquid sodium from a reference electrode with a high impedance voltmeter connected to measure EMF between the sodium and the reference electrode as a measure of oxygen activity in the sodium is described. The composite electrolyte consists of zirconiacalcia with a bonded layer of thoria-yttria. The device is used with a gaseous reference electrode on the zirconia-calcia side and liquid sodium on the thoria-yttria side of the electrolyte. (Official Gazette)

  4. Bone single photon emission computed tomography with computed tomography disclosing chronic uterine perforation with intrauterine device migration into the anterior wall of the bladder: a case report

    PubMed Central

    2013-01-01

    Introduction Extraosseous uptake of 99mTc-hydroxymethylene diphosphonate is a common situation of variable clinical relevance. Case presentation A 52-year-old Caucasian woman presented to our department for breast cancer staging. A 99mTc-hydroxymethylene diphosphonate bone scan was performed and showed focal pelvic hyperfixation that disclosed intrauterine device migration into the anterior wall of the bladder on single photon emission computed tomography with computed tomography. Conclusion This observation confirms the major role of single photon emission computed tomography with computed tomography in achieving an exact diagnosis. PMID:23759143

  5. Infrared micro-thermography of an actively heated preconcentrator device

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, C. A.; Stepnowski, Stanley V.; Mott, David R.; McGill, R. Andrew

    2008-03-01

    We report infrared micro-thermography measurements and analysis of static and transient temperature maps of an actively heated micro-fabricated preconcentrator device that incorporates a dual serpentine platinum heater trace deposited on a perforated polyimide membrane and suspended over a silicon frame. The sorbent coated perforated membrane is used to collect vapors and gases that flow through the preconcentrator. After heating, a concentrated pulse of analyte is released into the detector. Due to its small thermal mass, precise thermal management of the preconcentrator is critical to its performance. The sizes of features, the semi-transparent membrane, the need to flow air through the device, and changes in surface emissivity on a micron scale present many challenges for traditional infrared micro-thermography. We report an improved experimental test-bed. The hardware incorporates a custom-designed miniature calibration oven which, in conjunction with spatial filtering and a simple calibration algorithm, allows accurate temperature maps to be obtained. The test-bed incorporates a micro-bolometer array as the infrared imager. Instrumentation design, calibration and image processing algorithms are discussed and analyzed. The procedure does not require prior knowledge of the emissivity. We show that relatively inexpensive uncooled bolometers arrays can be used in certain radiometric applications. Heating profiles were examined with both uniform and non-uniform air flow through the device. The conclusions from this study provide critical information for optimal integration of the preconcentrator within a detection system, and in the design of the heater trace layout to achieve a more even temperature distribution across the device.

  6. Development of a multi-frequency diffuse photon density wave device for the characterization of tissue damage at multiple depths

    NASA Astrophysics Data System (ADS)

    Diaz, David; Weingarten, Michael S.; Neidrauer, Michael T.; Samuels, Joshua A.; Huneke, Richard B.; Kuzmin, Vladimir L.; Lewin, Peter A.; Zubkov, Leonid A.

    2014-02-01

    The ability to determine the depth and degree of cutaneous and subcutaneous tissue damage is critical for medical applications such as burns and pressure ulcers. The Diffuse Photon Density Wave (DPDW) methodology at near infrared wavelengths can be used to non-invasively measure the optical absorption and reduced scattering coefficients of tissue at depths of several millimeters. A multi-frequency DPDW system with one light source and one detector was constructed so that light is focused onto the tissue surface using an optical fiber and lens mounted to a digitally-controlled actuator which changes the distance between light source and detector. A variable RF generator enables the modulation frequency to be selected between 50 to 400MHz. The ability to digitally control both source-detector separation distance and modulation frequency allows for virtually unlimited number of data points, enabling precise selection of the volume and depth of tissue that will be characterized. Suspensions of Intralipid and india ink with known absorption and reduced scattering coefficients were used as optical phantoms to assess device accuracy. Solid silicon phantoms were formulated for stability testing. Standard deviations for amplitude and phase shift readings were found to be 0.9% and 0.2 degrees respectively, over a one hour period. The ability of the system to quantify tissue damage in vivo at multiple depths was tested in a porcine burn model.

  7. Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues with Two-Photon Microscopy

    PubMed Central

    Keyes, Joseph T.; Borowicz, Stacy M.; Rader, Jacob H.; Utzinger, Urs; Azhar, Mohamad; Vande Geest, Jonathan P.

    2014-01-01

    The biomechanical response of tissues serves as a valuable marker in the prediction of disease and in understanding the related behavior of the body under various disease and age states. Alterations in the macroscopic biomechanical response of diseased tissues are well documented; however, a thorough understanding of the microstructural events that lead to these changes is poorly understood. In this article we introduce a novel microbiaxial optomechanical device that allows two-photon imaging techniques to be coupled with macromechanical stimulation in hydrated planar tissue specimens. This allows that the mechanical response of the microstructure can be quantified and related to the macroscopic response of the same tissue sample. This occurs without the need to fix tissue in strain states that could introduce a change in the microstructural configuration. We demonstrate the passive realignment of fibrous proteins under various types of loading, which demonstrates the ability of tissue microstructure to reinforce itself in periods of high stress. In addition, the collagen and elastin response of tissue during viscoelastic behavior is reported showing interstitial fluid movement and fiber realignment potentially responsible for the temporal behavior. We also demonstrate that nonhomogeneities in fiber strain exist over biaxial regions of assumed homogeneity. PMID:21226989

  8. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors.

    PubMed

    Liu, Guokui

    2015-03-21

    Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results. PMID:25286989

  9. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Yongjin; Zhu, Guixia; Cai, Wei; Gao, Xumin; Yang, Yongchao; Yuan, Jialei; Shi, Zheng; Zhu, Hongbo

    2016-04-01

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junction InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.

  10. Inferring Human Activity in Mobile Devices by Computing Multiple Contexts

    PubMed Central

    Chen, Ruizhi; Chu, Tianxing; Liu, Keqiang; Liu, Jingbin; Chen, Yuwei

    2015-01-01

    This paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g., a local time tag, a time difference between geographical locations, or a timespan; a spatiotemporal context is defined as a dwelling length at a particular spatial context; and a user context includes user-related information that can be the user’s mobility contexts, environmental contexts, psychological contexts or social contexts. Using the measurements of the built-in sensors and radio signals in mobile devices, we can snapshot a contextual tuple for every second including aforementioned contexts. Giving a contextual tuple, the framework evaluates the posteriori probability of each candidate activity in real-time using a Naïve Bayes classifier. A large dataset containing 710,436 contextual tuples has been recorded for one week from an experiment carried out at Texas A&M University Corpus Christi with three participants. The test results demonstrate that the multi-context solution significantly outperforms the spatial-context-only solution. A classification accuracy of 61.7% is achieved for the spatial-context-only solution, while 88.8% is achieved for the multi-context solution. PMID:26343665

  11. High power VCSEL device with periodic gain active region

    NASA Astrophysics Data System (ADS)

    Ning, Y. Q., II; Qin, L.; Sun, Y. F.; Li, T.; Cui, J. J.; Peng, B.; Liu, G. Y.; Zhang, Y.; Liu, Y.; Wang, L. J.; Cui, D. F.; Xu, Z. Y.

    2007-11-01

    High power vertical cavity surface emitting lasers with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structure, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the cavity to enhance the coupling between the optical field and the gain region. Large aperture and bottom-emitting configuration was used to improve the beam quality and the heat dissipation. A maximum output power of 1.4W was demonstrated at CW operation for a 400μm-diameter device. The lasing wavelength shifted to 995.5nm with a FWHM of 2nm at a current of 4.8A due to the internal heating and the absence of active water cooling. A ring-shape farfield pattern was induced by the non-homogeneous lateral current distribution in large diameter device. The light intensity at the center of the ring increased with increasing current. A symmetric round light spot at the center and single transverse mode operation with a divergence angle of 16° were observed with current beyond 4.8A.

  12. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  13. Advanced processing methods to introduce and preserve dipole orientation in organic electro-optic materials for next generation photonic devices

    NASA Astrophysics Data System (ADS)

    Huang, Su

    ) (PVP) and TOPAS as well as ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE), 65/35 copolymer), which differ largely from the others in dielectric constant, conductivity and surface properties. The only common feature of them is that they all lowered the charge injection and leakage current for 1-2 orders during poling. On every buffer layer we tried, similar trend of stability enhancement is found. These results suggest that the observed temporal stability enhancement is indeed an effect from the abovementioned mechanism. Chapter 4 focuses on the development of an innovative new poling method, which utilizes pyroelectric effect instead of external power sources to overcome the limitations of conventional contact poling and corona poling. With careful theory assisted design, we developed a reliable protocol to efficiently introduce dipole orientation in organic E-O materials by heating and cooling them with detachable pyroelectric crystals. This new method can potentially improve the process adaptability of organic E-O materials in a variety of photonic devices. Large Pockels coefficients (up to 81 pm/V at 1.3 micron) have been successfully achieved in thin films poled using this method. The effective fields in these experiments are estimated to be around 0.5 to 0.9 MV/cm, which agree well with the electrostatics analysis using an idealized model. The same method is directly applied to surface modified hybrid polymer silicon slot waveguide ring-resonator modulators devices. A 25 pm/V tunability of resonance peak wavelength shift has been realized, which was higher than any reported results in similar devices. Chapter 5 discusses about the possible application of the pyroelectric poling in a multi-stack waveguide device architecture. A long-existing challenge to pole E-O polymer based photonic devices is how to effectively drop the poling voltage to the core layer, which is usually sandwiched between two dielectric claddings. In the past

  14. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    DOEpatents

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  15. Integration of polymer-based optical waveguide arrays and micro/nano-photonic devices for optical printed circuit board (O-PCB) application

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung Gol; O, Beom Hoan; Park, Se-Geun; Kim, Kyong Heon; Kang, Jin Ku; Choi, Young Wan

    2005-03-01

    We report, in the form of review, on the results of our study on the fabrication and assembly of polymer-based optical waveguide arrays and micro/nano-photonic devices for optical printed circuit boards (O-PCBs) application. The O-PCBs are designed to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards, substrates or chips. We have assembled and constructed O-PCBs using optical waveguide arrays and circuits made of polymer materials and have examined their information handling performances. We also designed power beam splitters and waveguide filters using nano-scale photonic band-gap crystals. We discuss scientific and technological issues concerning the processes of miniaturization, interconnection and integration of polymer optical waveguide devices and arrays for the O-PCBs as applicable to board-to-board, chip-to-chip, and intra-chip integration for computers, telecommunications, and transportation systems.

  16. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device.

    PubMed

    Liu, Meng; Cai, Ze-Rong; Hu, Song; Luo, Ai-Ping; Zhao, Chu-Jun; Zhang, Han; Xu, Wen-Cheng; Luo, Zhi-Chao

    2015-10-15

    We reported on the generation of dissipative rogue waves (DRWs) induced by long-range chaotic multi-pulse interactions in a fiber laser based on a topological insulator (TI)-deposited microfiber photonic device. By virtue of the simultaneous saturable absorption effect and high nonlinearity provided by the TI-deposited microfiber, a localized, chaotic multi-pulse wave packet with strong long-range nonlinear interactions could be obtained, which gives rise to the formation of DRWs. The results might enhance the understanding of DRWs in optical systems, and further demonstrated that the TI-deposited microfiber could be considered as an excellent photonic device with both saturable absorption and highly nonlinear effects for the application field of nonlinear optics. PMID:26469615

  17. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    PubMed

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser. PMID:26962676

  18. Photon damping in cosmic-ray acceleration in active galactic nuclei

    SciTech Connect

    Colgate, S.A.

    1983-04-07

    The usual assumption of the acceleration of ultra high energy cosmic rays, greater than or equal to 10/sup 18/ eV in quasars, Seyfert galaxies and other active galactic nuclei is challenged on the basis of the photon interactions with the accelerated nucleons. This is similar to the effect of the black body radiation on particles > 10/sup 20/ eV for times of the age of the universe except that the photon spectrum is harder and the energy density greater by approx. = 10/sup 15/. Hence, a single traversal, radial or circumferential, of radiation whose energy density is no greater than the emitted flux will damp an ultra high energy. Hence, it is unlikely that any reasonable configuration of acceleration can void disastrous photon energy loss. A different site for ultra high energy cosmic ray acceleration must be found.

  19. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  20. Active Microfluidic Devices for Single-Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Meiners, Jens-Christian

    2003-03-01

    Microfluidic chips have become an increasingly powerful and versatile tool in the life sciences. Multilayer devices fabricated from soft silicone elastomers in a replication molding technique are especially promising, because they permit flexible integration of active elements such as valves and pumps. In addition, they are fairly easy and inexpensive to produce. In a wide range of applications, microfluidic chips are used in conjunction with optical detection and manipulation techniques. However their widespread use has been hampered due to problems with interconnect stability, optical accessibility, and ability to perform surface chemistry. We have developed a packaging technique that encapsulates the elastomer in an epoxy resin of high optical quality. This stabilizes the interconnects so that a chip can be repeatedly plugged in and out of a socket. Our technique also eliminates the need for a baking step that is conventionally used to attach a glass cover slip to the elastomer surface. This allows us to assemble devices that contain a cover slip coated with proteins, thereby permitting subsequent in situ attachment of DNA molecules to the bottom of the flow channels. We demonstrate the utility of our chips in single-molecule applications involving tethered-particles and optical tweezers. Support: NIH R01 GM065934 & Research Corporation

  1. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  2. Ultrasonically activated device for parenchymal division during open hepatectomy

    PubMed Central

    Limongelli, P.; Belli, A.; Fantini, C.; D'Agostino, A.; Cioffi, L.; Russo, G.

    2008-01-01

    Background. The use of new technological devices has gained popularity and has been proposed to improve the safety of liver resection. This study was designed to evaluate the usefulness of the ultrasonically activated device (USAD) during open liver resection. Materials and methods. Indication for surgery, type of resection, need to perform a Pringle manoeuvre, operation time, blood loss, number of blood transfusions, morbidity and mortality rate were analyzed in 60 patients undergoing a formal open liver resection by means of USAD. Results. The overall mean operation time was 172 minutes (range 120–255 min); an intermittent warm ischemia was applied in 9 cases (15%). The overall mean blood loss was 410 mL (median 400 mL, range 50–950 ml). A median of one blood transfusion was administered in six patients (10%). The mean hospital stay was 10.2 days (median 11, range 8–16). The overall morbidity rate was 20% (12 out of 60 patients). No in-hospital mortality was recorded. By subdividing the patients according to the presence or absence of cirrhosis no statistical significant differences were found between the two subgroups in all peri-and postoperative outcomes. Conclusions. In conclusion, though there is a lack of data based on well conducted controlled studies and further on a greater number of patients are needed, the utilization of USAD may help to minimize blood loss during liver resection regardless of the condition of the liver, even in case of cirrhosis. PMID:18773104

  3. Photon-axion mixing within the jets of active galactic nuclei and prospects for detection

    SciTech Connect

    Harris, J.; Chadwick, P.M. E-mail: p.m.chadwick@durham.ac.uk

    2014-10-01

    Very high energy γ-ray observations of distant active galactic nuclei (AGN) generally result in higher fluxes and harder spectra than expected, resulting in some tension with the level of the extragalactic background light (EBL). If hypothetical axions or axion-like particles (ALPs) were to exist, this tension could be relieved since the oscillation of photons to ALPs would mitigate the effects of EBL absorption and lead to softer inferred intrinsic AGN spectra. In this paper we consider the effect of photon-ALP mixing on observed spectra, including the photon-ALP mixing that would occur within AGN jets. We then simulate observations of three AGN with the Cherenkov Telescope Array (CTA), a next generation γ-ray telescope, to determine its prospects for detecting the signatures of photon-ALP mixing on the spectra. We conclude that prospects for CTA detecting these signatures or else setting limits on the ALP parameter space are quite promising. We find that prospects are improved if photon-ALP mixing within the jet is properly considered and that the best target for observations is PKS 2155-304.

  4. Towards high-rate fabrication of photonic devices utilizing a combination of roll-to-roll compatible imprint lithography and ink jet printing methods

    NASA Astrophysics Data System (ADS)

    Lin, Xiaohui; Ling, Tao; Subbaraman, Harish; Guo, L. Jay; Chen, Ray T.

    2013-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, electron beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We describe in this paper a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. Particularly, we demonstrate a thermo-optic switch and an electro-optic modulator. In the rib waveguide patterning, the imprint lithography transfers the waveguide pattern from a soft mold to UV-15LV bottom cladding layer. The soft mold is replicated from a silicon master mold and rendered hydrophobic to ensure successful de-molding. Ink jet printing method is used to deposit the core layer in thermo-optic switch and electrode layers in electro-optic modulator. Compared to spin-coating method, the use of print-on-demand method greatly reduces material consumption and process complexity. Every step involved has the potential to be fully compatible with roll-toroll (R2R) volume production. For example, the soft mold can be wrapped around a cylinder to realized roll-to-roll imprinting. By combining R2R imprint lithography with ink jet printing, fabrication of large volume and large area multi-layer polymer photonic devices can be realized.

  5. Conjugated polymer based active electric-controlled terahertz device

    NASA Astrophysics Data System (ADS)

    Zhong, Liang; Zhang, Bo; He, Ting; Lv, Longfeng; Hou, Yanbing; Shen, Jingling

    2016-03-01

    A modulation of terahertz response in a highly efficient, electric-controlled conjugated polymer-silicon hybrid device with low photo-excitation was investigated. The polymer-silicon forms a hybrid structure, where the active depletion region modifies the semiconductor conductivity in real time by applying an external bias voltage. The THz transmission was efficiently modulated by effective controlling. In a THz-TDS system, the modulation depth reached nearly 100% when the applied voltage was 3.8 V at an external laser intensity of 0.3 W/cm2. The saturation voltage decreased with increasing photo-excited intensity. In a THz-CW system, a significant decline in THz transmission was also observed with increasing applied bias voltage. This reduction in THz transmission is induced by the enhancement of carrier density.

  6. Laser Welding Characterization of Kovar and Stainless Steel Alloys as Suitable Materials for Components of Photonic Devices Packaging

    SciTech Connect

    Fadhali, M. M. A.; Zainal, Saktioto J.; Munajat, Y.; Jalil, A.; Rahman, R.

    2010-03-11

    The weldability of Kovar and stainless steel alloys by Nd:YAG laser beam is studied through changing of some laser beam parameters. It has been found that there is a suitable interaction of the pulsed laser beam of low power laser pulse with both the two alloys. The change of thermophysical properties with absorbed energy from the laser pulse is discussed in this paper which reports the suitability of both Kovar and stainless steel 304 as the base materials for photonic devices packaging. We used laser weld system (LW4000S from Newport) which employs Nd:YAG laser system with two simultaneous beams output for packaging 980 nm high power laser module. Results of changing both laser spot weld width and penetration depth with changing both the pulse peak power density, pulse energy and pulse duration show that there are good linear relationships between laser pulse energy or peak power density and pulse duration with laser spot weld dimensions( both laser spot weld width and penetration depth). Therefore we concluded that there should be an optimization for both the pulse peak power and pulse duration to give a suitable aspect ratio (laser spot width to penetration depth) for achieving the desired welds with suitable penetration depth and small spot width. This is to reduce the heat affected zone (HAZ) which affects the sensitive optical components. An optimum value of the power density in the order of 10{sup 5} w/cm{sup 2} found to be suitable to induce melting in the welded joints without vaporization. The desired ratio can also be optimized by changing the focus position on the target material as illustrated from our measurements. A theoretical model is developed to simulate the temperature distribution during the laser pulse heating and predict the penetration depth inside the material. Samples have been investigated using SEM with EDS. The metallographic measurements on the weld spot show a suitable weld yield with reasonable weld width to depth ratio.

  7. Thermo-mechanical analysis of fixed mask 1 for the Advanced Photon Source insertion device front ends

    SciTech Connect

    Nian, H.L.T.; Shu, D.; Sheng, I.C.A.; Kuzay, T.M.

    1993-10-01

    The first fixed mask (FM1) is one of the critical elements on the insertion device front ends of the beamlines at the Advanced Photon Source (APS) now under construction at Argonne National Laboratory (ANL). The heat flux from the APS undulators is enormous. For example, FM1 placed at a distance of 16 m from the Undulator A source will be subjected to 519 W/mm{sup 2} at normal incidence with a total power of 3.8 kW. Due to a high localized thermal gradient on this component, inclined geometry (1.5{degree}) is used in the design to spread the footprint of the x-ray beam. A box-cone-shape geometry was designed due to the limited space available in the front end. The box shape is a highly constrained geometry, which induces larger stress levels than would occur in a plate or a tube. In order to handle the expected higher stress and the stress concentration at the corners, a single Glidcop block (rather than copper) was used in the construction. The FM1 uses an enhanced heat transfer mechanism developed at Argonne National Laboratory, which increases the convective heat transfer coefficient to about 3 W/cm{sup 2}{center_dot}{degree}C with single-phase water as the coolant. The authors simulated the location of the x-ray beam in several places to cover the worst possible case. The maximum temperature (about 180{degree}C) occurs when the beam hits the center of horizontal surface. The maximum effective stress (about 313 MPa) occurs when the x-ray beam hits about the corners.

  8. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  9. Compound FDTD method for silicon photonics

    NASA Astrophysics Data System (ADS)

    Olyaee, Abbas; Hamadani, Farzad T.

    2011-09-01

    Attempt to manufacture photonics devices on silicon requires theoretical and numerical prediction. This essay presents Compound FDTD (C-FDTD) method for comprehensive simulation of silicon photonics devices. Although this method is comprehensive, it maintains conventional Yee algorithm. The method involves variation of refractive index due to nonlinear effects. With the help of this simulator, refractive index change due to free-carriers created through two photon absorption and Kerr effect in silicon waveguide is considered. Results indicate how to choose pump pulse shape to optimum operation of active photonics devices. Also conductivity variation of Si waveguide due to change in free-carrier density is studied. By considering variations in conductivity profile, we are able to design better schemes for sweep free carriers away with reverse bias or nonlinear photovoltaic effect for fast devices and Raman amplifiers.

  10. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  11. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  12. Two-photon, three-photon, and four-photon excellent near-infrared quantum cutting luminescence of Tm3+ ion activator emerged in Tm3+:YNbO4 powder phosphor one material simultaneously

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobo; Salamo, Gregory J.; Li, Song; Wang, Jieliang; Guo, Yuying; Gao, Yan; He, Lizhu; Ma, Hui; Tao, Jingfu; Sun, Ping; Lin, Wei; Liu, Quanlin

    2015-12-01

    In present study, two-photon, three-photon, and four photon near-infrared quantum cutting luminescence of Tm3+ ion activator in YNbO4 powder phosphor is reported. The visible to near-infrared excitation and emission spectra and fluorescence lifetimes of Tm0.038Y0.962NbO4 powder phosphor are measured. Tm0.038Y0.962NbO4 is found to possess intense two-photon, strong three-photon, and moderate four-photon quantum cutting 1820 nm 3F4→3H6 luminescence of the Tm3+ ion simultaneously. The up-limit of the two-, three-, and four-photon near-infrared quantum cutting efficiency are found to be approximately 166%, 198%, and 192%, respectively. These results are expected to be valuable in aiding the probing of new generation environmentally friendly germanium Ge solar cells, currently a popular condensed matter physical topic globally.

  13. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  14. TOPICAL REVIEW: Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Zúñiga Pérez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; El-Shaer, A.; Che Mofor, A.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H. S.; Guinard, J.; LeSi Dang, D.

    2009-08-01

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  15. The study of electromagnetic wave propagation in photonic crystals via planewave based transfer (scattering) matrix method with active gain material applications

    NASA Astrophysics Data System (ADS)

    Li, Ming

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional (2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Further more, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. First, the planewave based transfer (scattering) matrix method (TMM) is described in every detail along with a brief review of photonic crystal history (Chapter 1 and 2). As a frequency domain method, TMM has the following major advantages over other numerical methods: (1) the planewave basis makes Maxwell's Equations a linear algebra problem and there are mature numerical package to solve linear algebra problem such as Lapack and Scalapack (for parallel computation). (2) Transfer (scattering) matrix method make 3D problem into 2D slices and link all slices together via the scattering matrix (S matrix) which reduces computation time and memory usage dramatically and makes 3D real photonic crystal devices design possible; and this also makes the simulated domain no length limitation along the propagation direction (ideal for waveguide simulation). (3) It is a frequency domain method and calculation results are all for steady state, without the influences of finite time span convolution effects and/or transient effects. (4) TMM can treat dispersive material (such as metal at visible light) naturally without introducing any additional computation; and meanwhile TMM can also deal with anisotropic material and magnetic material (such as perfectly matched layer) naturally from its algorithms. (5) Extension of TMM to deal with active gain material can be done through an iteration procedure with gain

  16. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.

    PubMed

    Ding, Su; Jiu, Jinting; Gao, Yue; Tian, Yanhong; Araki, Teppei; Sugahara, Tohru; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Suganuma, Katsuaki; Uchida, Hiroshi

    2016-03-01

    Copper nanowire (CuNW) conductors have been considered to have a promising perspective in the area of stretchable electronics due to the low price and high conductivity. However, the fabrication of CuNW conductors suffers from harsh conditions, such as high temperature, reducing atmosphere, and time-consuming transfer step. Here, a simple and rapid one-step photonic sintering technique was developed to fabricate stretchable CuNW conductors on polyurethane (PU) at room temperature in air environment. It was observed that CuNWs were instantaneously deoxidized, welded and simultaneously embedded into the soft surface of PU through the one-step photonic sintering technique, after which highly conductive network and strong adhesion between CuNWs and PU substrates were achieved. The CuNW/PU conductor with sheet resistance of 22.1 Ohm/sq and transmittance of 78% was achieved by the one-step photonic sintering technique within only 20 μs in air. Besides, the CuNW/PU conductor could remain a low sheet resistance even after 1000 cycles of stretching/releasing under 10% strain. Two flexible electronic devices, wearable sensor and glove-shaped heater, were fabricated using the stretchable CuNW/PU conductor, demonstrating that our CuNW/PU conductor could be integrated into various wearable electronic devices for applications in food, clothes, and medical supplies fields. PMID:26830466

  17. Towards the Nanosheet-Based Photonic Nose: Vapor Recognition and Trace Water Sensing with Antimony Phosphate Thin Film Devices.

    PubMed

    Ganter, Pirmin; Szendrei, Katalin; Lotsch, Bettina V

    2016-09-01

    A 2D nanosheet-based photonic nose for vapor identification is presented. A HSbP2 O8 nanosheet thin-film sensor with resistive readout is developed for the tracking of trace amounts of water, and a photonic HSbP2 O8 /TiO2 multilayer structure is effective at optically distinguishing between chemically similar solvent vapors through analyte-specific host-guest interactions. PMID:27314548

  18. SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.; Rossini, M.; Magoni, L.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.

    2009-08-01

    Acute post-stroke rehabilitation protocols include passive mobilization as a means to prevent contractures. A device (SHADE) that provides repetitive passive motion to a flaccid ankle by using shape memory alloy actuators could be of great help in providing this treatment. A suitable actuator was designed as a cartridge of approximately 150 × 20 × 15 mm, containing 2.5 m of 0.25 mm diameter NiTi wire. This actuator was activated by Joule’s effect employing a 7 s current input at 0.7 A, which provided 10 N through 76 mm displacement. Cooling and reset by natural convection took 30 s. A prototype of SHADE was assembled with two thermoplastic shells hinged together at the ankle and strapped on the shin and foot. Two actuators were fixed on the upper shell while an inextensible thread connected each NiTi wire to the foot shell. The passive ankle motion (passive range of motion, PROM) generated by SHADE was evaluated optoelectronically on three flaccid patients (58 ± 5 years old); acceptability was assessed by a questionnaire presented to further three flaccid patients (44 ± 11.5 years old) who used SHADE for 5 days, 30 min a day. SHADE was well accepted by all patients, produced good PROM, and caused no pain. The results prove that suitable limb mobilization can be produced by SMA actuators.

  19. Highly sensitive assay for acetylcholinesterase activity and inhibition based on a specifically reactive photonic nanostructure.

    PubMed

    Tian, Tian; Li, Xuesong; Cui, Jiecheng; Li, Jian; Lan, Yue; Wang, Chen; Zhang, Meng; Wang, Hui; Li, Guangtao

    2014-09-10

    Assays for acetylcholinesterase (AChE) with high sensitivity and high selectivity as well as facile manipulation have been urgently required in various fields. In this work, a reaction-based photonic strategy was developed for the efficient assay of AChE activity and inhibition based on the synergetic combination of the specific thiol-maleimide addition reaction with photonic porous structure. It was found that various applications including detection of AChE activity, measurement of the related enzymatic kinetics, and screening of inhibitors could be efficiently implemented using such strategy. Remarkably, the unique photonic nanostructure endows the constructed sensing platform with high sensitivity with a limit of detection (LOD) of 5 mU/mL for AChE activity, high selectivity, and self-reporting signaling. Moreover, the label-free solid film-based sensing approach described here has advantages of facile manipulation and bare-eye readout, compared with conventional liquid-phase methods, exhibiting promising potential in practical application for the AChE assay. PMID:25130420

  20. The Study of Electromagnetic Wave Propogation in Photonic Crystals Via Planewave Based Transfer (Scattering) Matrix Method with Active Gain Material Applications

    SciTech Connect

    Ming LI

    2007-12-01

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.

  1. Dual-tunable multiferroic active ring filter for microwave photonic oscillators

    NASA Astrophysics Data System (ADS)

    Vitko, V. V.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2015-12-01

    A theoretical model of a microwave active ring filter based on a ferrite-ferroelectric layered structure serving as a waveguide for spin-electromagnetic waves is developed. An experimental prototype of the device is fabricated and characterized. The device is implemented as an active-ring resonator with a microwave amplifier and a ferrite-ferroelectric delay line. The resonance properties of this system are studied theoretically and experimentally. The results show dual control of central frequency of the filter with magnetic and electric fields. An effective Q-factor of 50 000 and tuning by 5 MHz with an electric field are achieved at 8 GHz.

  2. Diagnostic for two-mode variable valve activation device

    SciTech Connect

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  3. Spatial and electrical switching of defect modes in a photonic bandgap device with a polymer-dispersed liquid crystal defect layer.

    PubMed

    Wu, Po-Chang; Yeh, En-Rong; Zyryanov, Victor Ya; Lee, Wei

    2014-08-25

    This paper investigates the spectral properties of a one-dimensional photonic crystal (PC) containing an inhomogeneous polymer- dispersed liquid crystal (PDLC) as a defect layer. Experimental results indicate that the voltage-induced reorientation of LC molecules between the light-scattering and transparent states in the PDLC enables the electrical tuning of the transmittance of defect-mode peaks in the spectrum of the PC/PDLC cell. Specifically, owing to the unique configuration of the spatial distribution of LC droplet sizes in the defect layer, a concept concerning the spatial switching in the wavelength of defect modes is proposed. As a result, the PC/PDLC hybrid cell is suggested as a potential element for realizing an electrically tunable and spatially switchable photonic bandgap device, which is polarizer-free and requires no alignment layers in the fabrication process. PMID:25321237

  4. Single photon emission of a charge-tunable GaAs/Al{sub 0.25}Ga{sub 0.75}As droplet quantum dot device

    SciTech Connect

    Langer, Fabian Plischke, David; Kamp, Martin; Höfling, Sven

    2014-08-25

    In this work, we report the fabrication of a charge-tunable GaAs/Al{sub 0.25}Ga{sub 0.75}As quantum dot (QD) device containing QDs deposited by modified droplet epitaxy producing almost strain and composition gradient free QDs. We obtained a QD density in the low 10{sup 9 }cm{sup −2} range that enables us to perform spectroscopy on single droplet QDs showing linewidths as narrow as 40 μeV. The integration of the QDs into a Schottky diode allows us to controllably charge a single QD with up to four electrons, while non-classical photoluminescence is proven by photon auto-correlation measurements showing photon-antibunching (g{sup (2)}(0) = 0.05).

  5. Acute two-photon imaging of the neurovascular unit in the cortex of active mice

    PubMed Central

    Tran, Cam Ha T.; Gordon, Grant R.

    2015-01-01

    In vivo two-photon scanning fluorescence imaging is a powerful technique to observe physiological processes from the millimeter to the micron scale in the intact animal. In neuroscience research, a common approach is to install an acute cranial window and head bar to explore neocortical function under anesthesia before inflammation peaks from the surgery. However, there are few detailed acute protocols for head-restrained and fully awake animal imaging of the neurovascular unit during activity. This is because acutely performed awake experiments are typically untenable when the animal is naïve to the imaging apparatus. Here we detail a method that achieves acute, deep-tissue two-photon imaging of neocortical astrocytes and microvasculature in behaving mice. A week prior to experimentation, implantation of the head bar alone allows mice to train for head-immobilization on an easy-to-learn air-supported ball treadmill. Following just two brief familiarization sessions to the treadmill on separate days, an acute cranial window can subsequently be installed for immediate imaging. We demonstrate how running and whisking data can be captured simultaneously with two-photon fluorescence signals with acceptable movement artifacts during active motion. We also show possible applications of this technique by (1) monitoring dynamic changes to microvascular diameter and red blood cells in response to vibrissa sensory stimulation, (2) examining responses of the cerebral microcirculation to the systemic delivery of pharmacological agents using a tail artery cannula during awake imaging, and (3) measuring Ca2+ signals from synthetic and genetically encoded Ca2+ indicators in astrocytes. This method will facilitate acute two-photon fluorescence imaging in awake, active mice and help link cellular events within the neurovascular unit to behavior. PMID:25698926

  6. All-optical transistor using a photonic-crystal cavity with an active Raman gain medium

    NASA Astrophysics Data System (ADS)

    Arkhipkin, V. G.; Myslivets, S. A.

    2013-09-01

    We propose a design of an all-optical transistor based on a one-dimensional photonic-crystal cavity doped with a four-level N-type active Raman gain medium. The calculated results show that in a photonic-crystal cavity of this kind transmission and reflection of the probe (Raman) beam are strongly dependent on the optical switching power. Transmission and reflection of the probe beam can be greatly amplified or attenuated. Therefore the optical switching field can serve as a gate field of the transistor to effectively control propagation of the weak probe field. It is shown that the group velocity of the probe pulse can be controlled in the range from subluminal (slow light) to superluminal (fast light).

  7. Design and testing of an active quenching circuit for an avalanche photodiode photon detector

    NASA Technical Reports Server (NTRS)

    Arbel, D.; Schwartz, J. A.

    1991-01-01

    The photon-detection capabilities of avalanche photodiodes (APDs) operating above their theoretical breakdown voltages are described, with particular attention given to the needs and methods of quenching an avalanche once breakdown has occurred. A brief background on the motives of and previous work with this mode of operation is presented. Finally, a description of the design and testing of an active quenching circuit is given. Although the active quenching circuit did not perform as expected, knowledge was gained as to the signal amplitudes necessary for quenching and the need for a better model for the above-breakdown circuit characteristics of the Geiger-mode APD.

  8. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  9. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    SciTech Connect

    Zhuo, Ye

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this

  10. Four new two-photon polymerization initiators with varying donor and conjugated bridge: Synthesis and two-photon activity

    NASA Astrophysics Data System (ADS)

    Hao, Fuying; Liu, Zhaodi; Zhang, Mingliang; Liu, Jie; Zhang, Shengyi; Wu, Jieying; Zhou, Hongping; Tian, YuPeng

    2014-01-01

    A specific series of dumbbell-shaped bis-carbazoles or bis-phenothiazines dyes (1, 2, 3 and 4) constructed with styrene or biphenylethyne as the π-bridge have been synthesized and characterized. Detailed spectral properties including linear absorption, one and two-photon fluorescence properties were investigated. The results show that extending conjugated chain and introducing donors have substantial effect on their photophysical properties. Among them, two-photon absorption cross sections (σ) of the four dyes in DMF determined by the Z-scan technique are successively increased from 1 to 4 with enhancing electron-donating ability and extending conjugated chain, but electron-donating ability has larger contribution to the σ values than extending conjugated chain based on the comparison of small molecules (D-π-D). Two-photon initiation polymerization (TPIP) microfabrication experiments have been carried out using compound 4 as an initiator under irradiation of 200 fs, 76 MHz femtosecond laser at 760 nm. The results confirm that the four dyes can be effectively used as organic two-photon photopolymerization initiators.

  11. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models

    PubMed Central

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q.

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  12. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models.

    PubMed

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  13. Laser Activated Flow Regulator for Glaucoma Drainage Devices

    PubMed Central

    Olson, Jeffrey L.; Velez-Montoya, Raul; Bhandari, Ramanath

    2014-01-01

    Purpose To assess the capabilities of a new glaucoma drainage device regulator in controlling fluid flow as well as to demonstrate that this effect may be titratable by noninvasive means. Methods A rigid eye model with two main ports was used. On the first port, we placed a saline solution column. On the second, we placed a glaucoma shunt. We then measured the flow and flow rate through the system. After placing the regulator device on the tip of the tube, we measured again with the intact membrane and with the membrane open 50% and 100%. For the ex vivo testing we used a similar setting, using a cadaveric porcine eye, we measured again the flow and flow rate. However, this time we opened the membrane gradually using laser shots. A one-way analysis of variance and a Fisher's Least Significant Difference test were used for statistical significance. We also calculated the correlation between the numbers of laser shots applied and the main outcomes. Results The flow through the system with the glaucoma drainage device regulator (membrane intact and 50% open) was statistically lower than with the membrane open 100% and without device (P < 0.05). The flow was successfully controlled by the number of laser shots applied, and showed a positive correlation (+ 0.9). The flow rate was almost doubled every 10 shots and statistically lower than without device at all time (P < 0.05). Conclusions The glaucoma drainage device regulator can be controlled noninvasively with laser, and allows titratable control of aqueous flow. Translational Relevance Initial results and evidence from this experiment will justify the initiation of in vivo animal trials with the glaucoma drainage device regulator; which brings us closer to possible human trials and the chance to significantly improve the existing technology to treat glaucoma surgically. PMID:25374772

  14. Fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed and compact optical printed circuit board (O-PCB) and VLSI photonic applications

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.; Kang, J. K.; Choi, Y. W.; Song, S. H.

    2005-09-01

    We report on the design, fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed, compact, light-weight, low power optical printed circuit boards (O-PCBs) and VLSI photonic applications. The optical wires are formed in the form of waveguides by thermal embossing and ultraviolet (UV) radiated embossing of polymer materials. The photonic devices include vertically coupled surface emitting laser (VCSEL) microlasers, microlenses, 45-degree reflection couplers, directional couplers, arrayed waveguide grating structures, multimode interference (MMI) devices and photodetectors. These devices are optically interconnected and integrated for O-PCB assembly and VLSI micro/nano-photonics. The O-PCBs are to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards or substrates. We report on the result of the optical transmission performances of these assembled O-PCBs. For the design, fabrication, and VLSI integration of nano-scale photonic devices, we used photonic crystal structures and plasmonic metallic waveguide structures. We examined the bandwidth, power dissipation, thermal stability, weight, and the miniaturization and density of optical wires and the O-PCB module. Characteristics of these devices are also described.

  15. Repeated in vivo electrochemical activation and the biological effects of microelectromechanical systems drug delivery device.

    PubMed

    Shawgo, Rebecca S; Voskerician, Gabriela; Duc, Hong Linh Ho; Li, Yawen; Lynn, Aaron; MacEwan, Matthew; Langer, Robert; Anderson, James M; Cima, Michael J

    2004-12-15

    The repeated activation of a microelectromechanical systems (MEMS) drug delivery device was studied in vivo in rats to examine the effect of implantation on the device operation and the effect of electrochemical activation on the inflammatory and wound-healing response. The MEMS devices were fabricated from a silicon wafer into which reservoirs were etched and covered with gold membranes. The membranes were electrochemically removed when an anodic voltage was applied. Devices were implanted subcutaneously both with and without stainless steel mesh cages for 4, 7, 14, 21, or 28 days before activation. Devices were activated every other day for five activations. Leukocyte concentrations indicated that both the application of voltage and the gold corrosion products elevated the inflammatory response which was resolved within 48 h after each activation. The efficiency of gold membrane removal was not impaired throughout the implantation, although a bimodal distribution of background current densities was observed after long implantation times. The thickness of the fibrous capsule surrounding the MEMS devices was similar between activated and control devices explanted at each time point. It was concluded that the repeated activation of MEMS drug delivery devices was successful and the activation produced an acceptable biological response that resolved promptly. PMID:15508122

  16. Intermixing of InP-based quantum dots and application to micro-ring resonator wavelength-selective filter for photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Matsumoto, Atsushi; Matsushita, Asuka; Takei, Yuki; Akahane, Kouichi; Matsushima, Yuichi; Ishikawa, Hiroshi; Utaka, Katsuyuki

    2014-09-01

    In this study, we investigated quantum dot intermixing (QDI) for InAs/InGaAlAs highly stacked QDs on an InP(311)B substrate with low-temperature annealing at 650 °C in order to realize integrated photonic devices with QDs and passive waveguides. In particular, we adopted the method of introducing point defects by ICP-RIE to realize a blue shift of the PL peak wavelength by about 150 nm. Moreover, we successfully fabricated double micro-ring resonators by QDI. The output power contrasts of the devices were found to be 9.0 and 8.6 dB for TE and TM modes, respectively.

  17. Magnetic quenching of photonic activity in Fe3O4-elastomer composite

    NASA Astrophysics Data System (ADS)

    Ma, Danhao; Hess, Dustin T.; Shetty, Pralav P.; Adu, Kofi W.; Bell, Richard C.; Terrones, Mauricio

    2016-01-01

    We report a quenching phenomenon within the visible region of the electromagnetic spectrum in the photonic response of a passive Fe3O4-silicone elastomer composite film due to magnetically aligned Fe3O4 nanoparticles. We performed systematic studies of the polarization dependence, the effect of particle size, and an in- and out-of-plane particle alignment on the optical response of the Fe3O4-silicone elastomer composites using a UV/vis/NIR spectrometer. We observed systematic redshifts in the response of the out-of-plane composite films with increasing particle alignment and weight that are attributed to dipole-induced effects. There were no observable shifts in the spectra of the in-plane films, suggesting the orientation of the magnetic dipole and the induced electric dipole play a crucial role in the optical response. A dramatic suppression to near quenching of the photonic response occurred in films containing moderate concentrations of the aligned nanoparticles. This is attributed to the interplay between the intra- and the interparticle dipoles. This occurred even when low magnetic fields were used during the curing process, suggesting that particle alignment and particle size limitation are critical in the manipulation of the photonic properties. A dipole approximation model is used to explain the quenching phenomenon. An active system of such a composite has a potential application in magneto-optic switches.

  18. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed Central

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation. PMID:26950936

  19. Active photonic sensor communication cable for field application of optical data and power transmission

    NASA Astrophysics Data System (ADS)

    Suthau, Eike; Rieske, Ralf; Zerna, Thomas

    2014-10-01

    Omitting electrically conducting wires for sensor communication and power supply promises protection for sensor systems and monitored structures against lightning or high voltages, prevention of explosion hazards, and reduction of susceptibility to tampering. The ability to photonically power remote systems opens up the full range of electrical sensors. Power-over-fiber is an attractive option in electromagnetically sensitive environments, particularly for longterm, maintenance-free applications. It can deliver uninterrupted power sufficient for elaborate sensors, data processing or even actuators alongside continuous high speed data communication for remote sensor application. This paper proposes an active photonic sensor communication system, which combines the advantages of optical data links in terms of immunity to electromagnetic interference (EMI), high bandwidth, hardiness against tampering or eavesdropping, and low cable weight with the robustness one has come to expect from industrial or military electrical connectors. An application specific integrated circuit (ASIC) is presented that implements a closed-loop regulation of the sensor power supply to guarantee continuous, reliable data communications while maintaining a highly efficient, adaptive sensor supply scheme. It is demonstrated that the resulting novel photonic sensor communication cable can handle sensors and actuators differing orders of magnitude with respect to power consumption. The miniaturization of the electro-optical converters and driving electronics is as important to the presented development as the energy efficiency of the detached, optically powered sensor node. For this reason, a novel photonic packaging technology based on wafer-level assembly of the laser power converters by means of passive alignment will be disclosed in this paper.

  20. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging.

    PubMed

    Prasad, Ankush; Pospíšil, Pavel

    2012-08-01

    Solar radiation that reaches Earth's surface can have severe negative consequences for organisms. Both visible light and ultraviolet A (UVA) radiation are known to initiate the formation of reactive oxygen species (ROS) in human skin by photosensitization reactions (types I and II). In the present study, we investigated the role of visible light and UVA radiation in the generation of ROS on the dorsal and the palmar side of a hand. The ROS are known to oxidize biomolecules such as lipids, proteins, and nucleic acids to form electronically excited species, finally leading to ultraweak photon emission. We have employed a highly sensitive charge coupled device camera and a low-noise photomultiplier tube for detection of two-dimensional and one-dimensional ultraweak photon emission, respectively. Our experimental results show that oxidative stress is generated by the exposure of human skin to visible light and UVA radiation. The oxidative stress generated by UVA radiation is claimed to be significantly higher than that by visible light. Two-dimensional photon imaging can serve as a potential tool for monitoring the oxidative stress in the human skin induced by various stress factors irrespective of its physical or chemical nature. PMID:23224187

  1. Photonic Engineering Group of the University of Cantabria

    NASA Astrophysics Data System (ADS)

    Lopez-Higuera, J. M.

    The recent research and development results of the Photonic Engineering Group in the photonic sensing field are reported. This article includes a sample of contributions in several of the ongoing R&D lines: fiber sensing using Bragg grating technology; gas sensing, high temperature monitoring; optoelectronic instrumentation for laser welding monitoring; fiber active devices; and, finally, on sensing technology using plastic optical fiber.

  2. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  3. Instrumental photon activation analysis using the linear accelerator at the Naval Postgraduate School. Master's thesis

    SciTech Connect

    Fisher, W.A.

    1982-10-01

    Charcoal, charcoal residue, potting soil, aluminum foil, bismuth germanate, and petroleum samples have been investigated using instrumental photon activation analysis (i.e., no radiochemistry). The major and minor elements routinely observed by this nondestructive method were: C, C1, Ca, Fe, Mg, Si, and K. A compreshensive review of the principles of IPAA was also included in the study. The principles were applied to a theroetical analysis of an oil sample in which the trace element concentrations were known. It was concluded that IPAA is a highly sensitive technique which could be used to fingerprint oils.

  4. Instrumental photon activation analysis using the linear accelerator at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.

    1982-10-01

    Charcoal, charcoal residue, potting soil, aluminum foil, bismuth germanate, and petroleum samples have been investigated using instrumental photon activation analysis (i.e., no radiochemistry). The major and minor elements routinely observed by this nondestructive method were: C, C1, Ca, Fe, Mg, Si, and K. A comprehensive review of the principles of IPAA was also included in the study. The principles were applied to a theoretical analysis of an oil sample in which the trace element concentrations were known. It was concluded that IPAA is a highly sensitive technique which could be used to fingerprint oils.

  5. Irradiation system for two-photon induced activation of agents in novel intraocular lenses

    NASA Astrophysics Data System (ADS)

    Klämpfl, Florian; Roth, Stephan; Schmidt, Michael

    This paper presents a newly designed irradiation system for the photochemically triggered two-photon activation of an agent loaded in novel intraocular lenses. After activation, this agent suppresses the formation of after-cataract, a very common disease after the treatment of an eye cataract by implanting an intraocular lens. For this application, intrinsic safety is also important: the laser radiation is applied to one of the most light-sensitive organs: the eye. This has to be taken into account during development of the system. Moreover, the activation uses a two-photon process so a relatively small laser focus is required. To address these issues in combination with economic requirements, a mirror based objective was designed and built, specifically tailored to these needs. Besides the laser beam guidance elements, the irradiation system consists of a camera based monitoring module and an illumination unit. While the first part of the paper shows the design of the system, the second part presents the results of the characterization of the system. The paper closes with a conclusion and an outlook discussing what further development is needed to prepare the system for treatments of human eyes.

  6. Using Photon Activation Analysis To Determine Concentrations Of Unknown Components In Reference Materials

    SciTech Connect

    Green, Jaromy; Sun, Zaijing; Wells, Doug; Maschner, Herb

    2011-06-01

    Using certified multi-element reference materials for instrumental analyses one frequently is confronted with the embarrassing fact that the concentration of some desired elements are not given in the respective certificate, nonetheless are detectable, e.g. by photon activation analysis (PAA). However, these elements might be determinable with sufficient quality of the results using scaling parameters and the well-known quantities of a reference element within the reference material itself. Scaling parameters include: activation threshold energy, Giant Dipole Resonance (GDR) peak and endpoint energy of the bremsstrahlung continuum; integrated photo-nuclear cross sections for the isotopes of the reference element; bremsstrahlung continuum integral; target thickness; photon flux density. Photo-nuclear cross sections from the unreferenced elements must be known, too. With these quantities, the integral was obtained for both the known and unknown elements resulting in an inference of the concentration of the unreported element based upon the reported value, thus also the concentration of the unreferenced element in the reference material. A similar method to determine elements using the basic nuclear and experimental data has been developed for thermal neutron activation analysis some time ago (k{sub 0} Method).

  7. Integrated photonics

    NASA Astrophysics Data System (ADS)

    Gondarenko, Alexander A.

    In 1958 the first integrated circuit was demonstrated to combine transistors, resistors, and capacitors [36]. To this date fabrication technology has been driven by the growing demand for monolithically constructed, densely packed electronic components. The exponentially shrinking device size decreased the feature dimensions from 10 microns to 32 nm and grew transistor count from 2,300 to over 2,000,000,000 in Intel's 4004 and Intel Kentsfield XE microprocessors. The benefits of micro- and nano-fabrication was not limited to just computer chips. MEMs, spintronic, microfluidics, and integrated photonics were all made possible by the ever expanding ability to form complex geometries, on a wide variety of materials, on a micron and submicron scale. This dissertation is part of an effort to design and fabricate novel integrated photonic devices compatible with standard electron beam and photo lithography and utilize a readily available material base. We aim to create devices with a decreased footprint on a chip and operate in the infrared, visible, and UV spectra. We present two general sections, the first is a theoretical effort to find the fundamental design geometries for a variety of optical problems. The second section is an experimental demonstration of techniques and devices for novel optical phenomena in an integrated package. In the theoretical section we develop and apply computational evolutionary algorithms to explore problems of light confinement, coupling, and guiding in two and three dimensional device geometries. Our general aim is to find a global limit to optimal device geometry and performance given a set of constrains. Experimentally, we demonstrate an efficient design and a fabrication process for a short development cycle of photonic devices. For the design part of the workflow, we develop a computational approach to explore device geometries with minimum initial assumptions for a variety of photonic problems. For the fabrication part of the

  8. Brain single photon emission computed tomography: Newer activation and intervention studies

    SciTech Connect

    Tikofsky, R.S.; Hellman, R.S. )

    1991-01-01

    Single-photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) findings using non-xenon 133 tracers in combination with activation and intervention techniques are reviewed. Examination of the currently available data indicates that it is possible to detect the effects of a variety of activations and interventional procedures using SPECT rCBF with non-xenon 133 tracers. There are still many issues to be resolved before SPECT can reach the level of sophistication attained by xenon 133 and positron emission tomography in studying rCBF during activation or intervention. However, research to date indicates that SPECT rCBF studied with tracers other than xenon 133 has an excellent potential for increasing the ability to differentiate normal and pathological states. 97 refs.

  9. Ultrafast superconducting single-photon detector with reduced-size active area coupled to a tapered lensed single-mode fiber

    NASA Astrophysics Data System (ADS)

    Sidorova, Maria V.; Divochiy, Alexander; Vachtomin, Yury B.; Smirnov, Konstantin V.

    2015-05-01

    We present an ultrafast NbN Superconducting single-photon detector (SSPD) with active area of 3x3 μm2, which reveals better timing performances than a previously developed SSPD with active area of 10x10 μm2. The improved SSPD demonstrates the record timing jitter <25 ps, ultra short recovery time <2 ns, extremely low dark counts level, and high detection efficiency (DE) in a wide spectral range from visible to near-infrared. The record parameters were obtained thanks to the development of a new technique of an effective optical coupling between a detector with reduced-size active area and a standard single-mode telecommunication fiber. The advantages of a new approach are experimentally confirmed by performed electro-optical measurements of the device performances.

  10. Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope

    SciTech Connect

    Hoshino, Masato; Ishino, Toyoaki; Namiki, Takashi; Yamada, Norimitsu; Watanabe, Norio; Aoki, Sadao

    2007-07-15

    A full-field x-ray fluorescence imaging microscope using a Wolter mirror was constructed at Photon Factory BL3C2. White x rays from a bending magnet were used to excite x-ray fluorescence and to enhance the x-ray fluorescence intensity. A photon-counting method using a charge-coupled device was applied to obtain an x-ray fluorescence spectrum at the image plane. The spatial distributions of some specific atoms such as Fe and Zn were obtained from photon-counting calculations. An energy resolution of 220 eV at the Fe K{alpha} line was obtained from the x-ray fluorescence spectrum by the photon-counting method. The newly developed three-dimensional element mappings of the specific atoms were accomplished by the photon-counting method and a reconstruction technique using computed tomography.

  11. Emerging Vocabulary Learning: From a Perspective of Activities Facilitated by Mobile Devices

    ERIC Educational Resources Information Center

    Hu, Zengning

    2013-01-01

    This paper examines the current mobile vocabulary learning practice to discover how far mobile devices are being used to support vocabulary learning. An activity-centered perspective is undertaken, with the consideration of new practice against existing theories of learning activities including behaviorist activities, constructivist activities,…

  12. Photonics based on carbon nanotubes

    PubMed Central

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the efficiency and power consumption of saturable absorbers (SAs) based on SWCNT with SA based on conventional multiple quantum wells. For active applications, exceptional photoluminescence properties of SWCNT, such as excellent light-emission stabilities with temperature and excitation power, hold these nanometer-scale materials as prime candidates for future active photonics devices with superior performances. PMID:23803293

  13. Photonics based on carbon nanotubes.

    PubMed

    Gu, Qingyuan; Gicquel-Guézo, Maud; Loualiche, Slimane; Pouliquen, Julie Le; Batte, Thomas; Folliot, Hervé; Dehaese, Olivier; Grillot, Frederic; Battie, Yann; Loiseau, Annick; Liang, Baolai; Huffaker, Diana

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the efficiency and power consumption of saturable absorbers (SAs) based on SWCNT with SA based on conventional multiple quantum wells. For active applications, exceptional photoluminescence properties of SWCNT, such as excellent light-emission stabilities with temperature and excitation power, hold these nanometer-scale materials as prime candidates for future active photonics devices with superior performances. PMID:23803293

  14. Stepwise multi-photon activation fluorescence reveals a new method of melanoma imaging for dermatologists

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Lian, Christine; Ma, Jie; Yu, Jingyi; Gu, Zetong; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2014-02-01

    Previous research has shown that the stepwise multi-photon activated fluorescence (SMPAF) of melanin, activated by a continuous-wave (CW) mode near infrared (NIR) laser, is a low cost and reliable method of detecting melanin. SMPAF images of melanin in a mouse hair and a formalin fixed mouse melanoma were compared with conventional multiphoton fluorescence microscopy (MPFM) images and confocal reflectance microscopy (CRM) images, all of which were acquired at an excitation wavelength of 920 nm, to further prove the effectiveness of SMPAF in detecting melanin. SMPAF images add specificity for melanin detection to MPFM images and CRM images. Melanin SMPAF can be a promising technology to enable melanoma imaging for dermatologists.

  15. Opportunities for Low Cost Processing of Erbium 8-Quinolinolates for Active Integrated Photonic Applications.

    PubMed

    Penna, Stefano; Mattiello, Leonardo; Di Bartolo, Silvia; Pizzoleo, Angelo; Attanasio, Vincenzo; Beleffi, Giorgio Maria Tosi; Otomo, Akira

    2016-04-01

    Erbium-doped organic emitters are promising active materials for Photonic Integrated Circuits (PICs) due to their emission shown at 1550 nm combined to the potential low cost processing. In particular, Erbium Quinoline (ErQ) gained a strong interest in the last decade for the good emission efficiency. This contribution reports the results derived from the application of ErQ as active core material within a buried optical waveguide, following the development of a purposed optical process to control the refractive index of ErQ and then to define a patterned structure from a single thin film deposition step. The reported results show the potential of Er-doped organic materials for low cost processing and application to planar PICs. PMID:27451632

  16. Progress towards elucidating the structure-function relationships of a natural nanoscale photonic device in cuttlefish chromatophores

    NASA Astrophysics Data System (ADS)

    Deravi, Leila F.; Magyar, Andrew P.; Sheehy, Sean P.; Bell, George R. R.; Mäthger, Lydia M.; Kuzirian, Alan M.; Hanlon, Roger T.; Hu, Evelyn L.; Parker, Kevin Kit

    2015-03-01

    The adaptive coloration observed in cuttlefish Sepia officinalis skin is facilitated in part by properties of pigmented chromatophores that have not been previously reported. We found that chromatophore coloration is enabled by a tethering system that distributes layered pigment granules, comprised of fluorescent nanostructures, to optimize color intensity as the chromatophores are actuated. The design features gleaned from these studies provide intriguing insights into the development of artificial photonic systems useful for products ranging from conformable, high-definition color displays to optical fabrics capable of adapting their coloration within an ambient environment.

  17. Negligible photodesorption of methanol ice and active photon-induced desorption of its irradiation products

    NASA Astrophysics Data System (ADS)

    Cruz-Diaz, G. A.; Martín-Doménech, R.; Muñoz Caro, G. M.; Chen, Y.-J.

    2016-07-01

    Context. Methanol is a common component of interstellar and circumstellar ice mantles and is often used as an evolution indicator in star-forming regions. The observations of gas-phase methanol in the interiors of dense molecular clouds at temperatures as low as 10 K suggest that non-thermal ice desorption must be active. Ice photodesorption has been proposed to explain the abundances of gas-phase molecules toward the coldest regions. Aims: Laboratory experiments were performed to investigate the potential photodesorption of methanol toward the coldest regions. Methods: Solid methanol was deposited at 8 K and UV-irradiated at various temperatures starting from 8 K. The irradiation of the ice was monitored by means of infrared spectroscopy and the molecules in the gas phase were detected using quadrupole mass spectroscopy. Fully deuterated methanol was used for confirmation of the results. Results: The photodesorption of methanol to the gas phase was not observed in the mass spectra at different irradiation temperatures. We estimate an upper limit of 3 × 10-5 molecules per incident photon. On the other hand, photon-induced desorption of the main photoproducts was clearly observed. Conclusions: The negligible photodesorption of methanol could be explained by the ability of UV-photons in the 114-180 nm (10.87-6.88 eV) range to dissociate this molecule efficiently. Therefore, the presence of gas-phase methanol in the absence of thermal desorption remains unexplained. On the other hand, we find CH4 to desorb from irradiated methanol ice, which was not found to desorb in the pure CH4 ice irradiation experiments.

  18. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOEpatents

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  19. Active phase drift cancellation for optic-fiber frequency transfer using a photonic radio-frequency phase shifter.

    PubMed

    Shen, Jianguo; Wu, Guiling; Hu, Liang; Zou, Weiwen; Chen, Jianping

    2014-04-15

    We propose an active photonic phase drift cancellation scheme for frequency transfer over optical fiber based on a linear photonic RF phase shifter. The photonic RF phase shifter consists of a dual parallel Mach-Zehnder modulator and optical filter with the assistance of the local microwave signal. The phase drift induced by fiber transmission can be compensated by simply tuning the bias voltage of the modulator. The principle of the phase cancellation scheme based on the photonic phase shifter is demonstrated and validated experimentally by transferring a 0.5 GHz reference signal over a 20 km single-mode fiber with a root mean square jitter of less than 0.5 ps. PMID:24978989

  20. Reactive oxygen species scavenging activity of Jixueteng evaluated by electron spin resonance (ESR) and photon emission.

    PubMed

    Toyama, Toshizo; Wada-Takahashi, Satoko; Takamichi, Maomi; Watanabe, Kiyoko; Yoshida, Ayaka; Yoshino, Fumihiko; Miyamoto, Chihiro; Maehata, Yojiro; Sugiyama, Shuta; Takahashi, Shun-Suke; Todoki, Kazuo; Lee, Masaichi-Chang-Il; Hamada, Nobushiro

    2014-12-01

    Jixueteng, the dried stem of Spatholobus suberectus Dunn (Leguminosae), is a traditional Chinese herbal medicine that is commonly classified as a herb that promotes blood circulation and can be used to treat blood stasis. The aim of this study was to examine the reactive oxygen species (ROS) scavenging activity of Jixueteng and other herbal medicines. The ROS scavenging activities of the water extracts of Jixueteng, Cnidium officinale and Salvia miltiorrhiza were examined using an electron spin resonance (ESR) technique and faint luminescence measurement. The ESR signal intensities of the superoxide anion (O2·) and hydroxyl radical (HO·) were reduced more by Jixueteng than the other herbal medicines we tested. High photon emission intensity to hydrogen peroxide (H202) and HO· was observed in Jixueteng using the XYZ chemiluminescence system that was used as faint luminescence measurement and analysis. The results of the present study revealed that the ROS scavenging activity of 8% Jixueteng was the strongest among the herbal medicines we tested. It has been reported that Jixueteng includes various polyphenols. In the ROS scavenging activity by Jixueteng, it is supposed that the antioxidant activity caused by these polyphenols would contribute greatly. In conclusion, a water extract component of Jixueteng had potent free radical scavenging activity and an antioxidative effect that inhibited the oxidative actions of O2·⁻, H2O2 and HO·. Therefore, Jixueteng represents a promising therapeutic drug for reactive oxygen-associated pathologies. PMID:25632478

  1. Feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities

    PubMed Central

    Rovniak, Liza S.; Denlinger, LeAnn; Duveneck, Ellen; Sciamanna, Christopher N.; Kong, Lan; Freivalds, Andris; Ray, Chester A.

    2013-01-01

    Objectives This study aimed to evaluate the feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities. A secondary aim was to evaluate if two accelerometers attached to the elliptical device could provide reliable and valid assessments of participants’ frequency and duration of elliptical device use. Design Physically inactive adults (n = 32, age range = 25–65) were recruited through local advertisements and selected using stratified random sampling based on sex, body mass index (BMI), and age. Methods Indirect calorimetry was used to assess participants’ energy expenditure while seated and while using the elliptical device at a self-selected intensity level. Participants also self-reported their interest in using the elliptical device during sedentary activities. Two Actigraph GT3X accelerometers were attached to the elliptical device to record time-use patterns. Results Participants expended a median of 179.1 kilocalories per hour while using the elliptical device (range = 108.2–269.0), or a median of 87.9 more kilocalories (range = 19.7–178.6) than they would expend per hour of sedentary sitting. Participants reported high interest in using the elliptical device during TV watching and computer work, but relatively low interest in using the device during office meetings. Women reported greater interest in using the elliptical device than men. The two accelerometers recorded identical time-use patterns on the elliptical device and demonstrated concurrent validity with time-stamped computer records. Conclusions Compact elliptical devices could increase energy expenditure during sedentary activities, and may provide proximal environmental cues for increasing energy expenditure across multiple life domains. PMID:24035273

  2. Microfluidic transport of photopolymerizable species for laser source integration in lab-on-a-chip photonic devices

    NASA Astrophysics Data System (ADS)

    Lucchetta, D. E.; Castagna, R.; Vita, F.; Gianni, A.; Simoni, F.

    2012-10-01

    We recently developed a novel composite photopolymerizable material which allows the holographic recording of diffraction gratings with optimal optical and mechanical properties (high diffraction efficiency, transparency and spatial resolution, low shrinkage, long time stability). This material was successfully used to produce a low cost and easy to make optically pumped, organic distributed feedback laser, working on the first diffraction order of a high quality Bragg grating doped with a photoluminescent dye. Here we show the possibility of positioning these micrometer sized light sources at any point of a generic lab-on-a-chip device by borrowing experimental techniques commonly used in the fields of microfluidics and optofluidics. In particular, a microfluidic channel has been imprinted by soft lithography in a polydimethylsiloxane substrate in order to convey the photopolymerizable mixture to a particular area of the sample, where the laser device has been holographically recorded. A characterization of the lasing properties of this device has been carried out. The proposed approach allows a better confinement of the emitted light and overcomes some physical constrains (resolution, aspect ratio) of PDMS based microfluidic laser thus opening new possibilities for the complex integration of organic laser sources in lab-on-a-chip devices.

  3. A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging - the CLASP concept

    SciTech Connect

    Seigal, P.K.; Kravitz, S.H.; Word, J.C.; Bauer, T.M.

    1997-02-01

    A micro-machined fiber alignment device, called CLASP (Capture and Locking Alignment Spring Positioner) has been fabricated. It uses a nickel leaf spring to passively capture vertical arrays of single-mode fibers with {approximately} 2 {mu}m accuracy.

  4. Active Detection of Shielded Special Nuclear Material in the Presence of Variable High Backgrounds Using a Mixed Photon-Neutron Source

    NASA Astrophysics Data System (ADS)

    Martin, Philip N.; Clemett, Ceri D.; Hill, Cassie; O'Malley, John; Campbell, Ben

    This paper describes and compares two approaches to the analysis of active interrogation data containing high photon backgrounds associated with mixed photon-neutron source flash active interrogation. Results from liquid scintillation detectors (EJ301/EJ309) fielded at the Naval Research Laboratory (NRL), in collaboration with the Atomic Weapons Establishment (AWE), using the NRL Mercury Inductive Voltage Adder (IVA) operating in both a photon and mixed photon-neutron mode at a Depleted Uranium (DU) target are presented. The standard approach applying a Figure of Merit (FOM) consisting of background sigma above background is compared with an approach looking to fit only the time-decaying photon signal with standard delayed photon emission from ∼10-MeV end-point-energy Bremsstrahlung photofission of DU. Examples where each approach does well and less well are presented together with a discussion of the relative limitations of both approaches to the type of mixed photon-neutron flash active interrogation being considered.

  5. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. PMID:25070873

  6. Water Pollution Scrubber Activity Simulates Pollution Control Devices.

    ERIC Educational Resources Information Center

    Kennedy, Edward C., III; Waggoner, Todd C.

    2003-01-01

    A laboratory activity caused students to think actively about water pollution. The students realized that it would be easier to keep water clean than to remove pollutants. They created a water scrubbing system allowing them to pour water in one end and have it emerge clean at the other end. (JOW)

  7. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  8. Multimodal microscopy and the stepwise multi-photon activation fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua

    The author's work is divided into three aspects: multimodal microscopy, stepwise multi-photon activation fluorescence (SMPAF) of melanin, and customized-profile lenses (CPL) for on-axis laser scanners, which will be introduced respectively. A multimodal microscope provides the ability to image samples with multiple modalities on the same stage, which incorporates the benefits of all modalities. The multimodal microscopes developed in this dissertation are the Keck 3D fusion multimodal microscope 2.0 (3DFM 2.0), upgraded from the old 3DFM with improved performance and flexibility, and the multimodal microscope for targeting small particles (the "Target" system). The control systems developed for both microscopes are low-cost and easy-to-build, with all components off-the-shelf. The control system have not only significantly decreased the complexity and size of the microscope, but also increased the pixel resolution and flexibility. The SMPAF of melanin, activated by a continuous-wave (CW) mode near-infrared (NIR) laser, has potential applications for a low-cost and reliable method of detecting melanin. The photophysics of melanin SMPAF has been studied by theoretical analysis of the excitation process and investigation of the spectra, activation threshold, and photon number absorption of melanin SMPAF. SMPAF images of melanin in mouse hair and skin, mouse melanoma, and human black and white hairs are compared with images taken by conventional multi-photon fluorescence microscopy (MPFM) and confocal reflectance microscopy (CRM). SMPAF images significantly increase specificity and demonstrate the potential to increase sensitivity for melanin detection compared to MPFM images and CRM images. Employing melanin SMPAF imaging to detect melanin inside human skin in vivo has been demonstrated, which proves the effectiveness of melanin detection using SMPAF for medical purposes. Selective melanin ablation with micrometer resolution has been presented using the Target system

  9. Self-activated mesh device using shape memory alloy for periosteal expansion osteogenesis.

    PubMed

    Yamauchi, Kensuke; Takahashi, Tetsu; Tanaka, Kenko; Nogami, Shinnosuke; Kaneuji, Takeshi; Kanetaka, Hiroyasu; Miyazaki, Toshiki; Lethaus, Bernd; Kessler, Peter

    2013-07-01

    The present study evaluated the use of this self-activated shape memory alloy (SMA) device, with a focus on its effects in the region under the periosteum. Twelve Japanese white rabbits were used in this study. The device was inserted under the periosteum at the forehead. In the experimental group, the device was pushed, bent, and attached to the bone surface and fixed with a titanium screw. In control group, the device was only inserted under the periosteum. After 14 days, the screw was removed and the mesh was activated in the experimental group. Rabbits were sacrificed 5 and 8 weeks after the operation and newly formed bone was histologically and radiographically evaluated. The quantitative data by the area and the occupation of newly formed bone indicated that the experimental group had a higher volume of new bone than the control group at each consolidation period. Histologically, some newly formed bone was observed and most of the subperiosteal space underneath the device was filled with fibrous tissue, and a thin layer of immature bone was observed in the control group. In the experimental group, multiple dome-shaped bones, outlined by thin and scattered trabeculae, were clearly observed under the SMA mesh device. The use of self-activated devices for the periosteal expansion technique may make it possible to avoid donor site morbidity, trans-skin activation rods, any bone-cutting procedure, and the following intermittent activation procedure. PMID:23359561

  10. Controllable photon source

    NASA Astrophysics Data System (ADS)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  11. Haptic device development based on electro static force of cellulose electro active paper

    NASA Astrophysics Data System (ADS)

    Yun, Gyu-young; Kim, Sang-Youn; Jang, Sang-Dong; Kim, Dong-Gu; Kim, Jaehwan

    2011-04-01

    Haptic is one of well-considered device which is suitable for demanding virtual reality applications such as medical equipment, mobile devices, the online marketing and so on. Nowadays, many of concepts for haptic devices have been suggested to meet the demand of industries. Cellulose has received much attention as an emerging smart material, named as electro-active paper (EAPap). The EAPap is attractive for mobile haptic devices due to its unique characteristics in terms of low actuation power, suitability for thin devices and transparency. In this paper, we suggest a new concept of haptic actuator with the use of cellulose EAPap. Its performance is evaluated depending on various actuation conditions. As a result, cellulose electrostatic force actuator shows a large output displacement and fast response, which is suitable for mobile haptic devices.

  12. Heat-activated cooling devices: A guidebook for general audiences

    SciTech Connect

    Wiltsee, G.

    1994-02-01

    Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

  13. Measurements of the PLT and PDX device activation

    SciTech Connect

    Stavely, J.; Barnes, C.W.; Chrien, R.E.; Strachan, J.D.

    1981-09-01

    Measurements of the activation levels around the PLT and PDX tokamaks have been made using a Ge(Li) gamma spectrometer and a Geiger counter. The activation results from radiation induced in the plasma by 14 MeV neutrons from the d(t,n)..cap alpha.. fusion reaction, 14.7 MeV protons from the d(/sup 3/He,p)..cap alpha.. fusion reaction, 10 ..-->.. 20 MeV hard x-rays from runaway electron induced bremmstrahlung, and 2.5 MeV neutrons from the d(d,n)/sup 3/He fusion reaction. The magnitude of the activation is compared to that predicted for PDX on the basis of one-dimensional activation codes.

  14. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  15. High Efficiency Alternating Current Driven Organic Light Emitting Devices Employing Active Semiconducting Gate Layers

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Xu, Junwei; Carroll, David

    2015-03-01

    In this work, we describe the role of semiconductor-polymer interfaces in alternating current (AC) driven organic electroluminescent (EL) devices. We implement inorganic semiconducting materials between the external contact and the active layers in organic light EL devices. Precise control of capacitance and charge injection is required to realize bright and efficient large area AC driven devices. We show how this architecture results in active gating to the polymer layers, resulting in the novel ability to control the capacitance and charge injection characteristics. We propose a model based on band bending at the semiconductor-polymer interface. Furthermore, we elucidate the influence of the semiconductor-polymer interface on the internally coupled magnetic field generated in an alternating current driven organic light emitting device configuration. Magnetic fields can alter the ratios of singlet and triplet populations, and we show that internal generation of a magnetic field can dramatically alter the efficiency of light emission in organic EL devices.

  16. Design, fabrication, and integration of micro/nano-scale optical waveguide arrays and devices for optical printed circuit board (O-PCB) and VLSI micro/nano-photonic application

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Kim, K. H.; Kang, J. K.; Kwon, Y. K.; Chin, I.-J.; Choi, Y. W.; Song, S. H.

    2005-09-01

    We present a review of our work on the micro/nano-scale design, fabrication and integration of optical waveguide arrays and devices for applications in a newly-conceived optical module system that we call "optical printed circuit board" (O-PCBs) and VLSI micro/nano-photonic integrated circuit. The O-PCBs consist of planar circuits and arrays of waveguides and devices of various dimensions and characteristics to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards. The VLSI micro/nano-photonic integrated circuits perform similar functions on a chip scale. O-PCBs consist of planar circuits and arrays of waveguides and devices of various dimensions and characteristics to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards. Fundamentally it contrasts with the electrical printed circuit board (E-PCB), which is designed to perform transporting, processing and distributing electrical signals. We have assembled O-PCBs using optical waveguide arrays and circuits made of polymer materials and have examined information handling performances when they are interconnected with the micro-laser arrays, detector arrays and optoelectronic devices. For VLSI nano-scale photonic inte-gration and applications, we designed power splitters and waveguide filters using photonic band-gap crystals and plasmonic waveguide structures. We discuss scientific issues and technological issues concerning the minia-turization, interconnection, and integration of micro/nano-photonic devices and circuits and discuss potential utilities of O-PCBs and VLSI micro/nano-photonics for applications in computers, telecommunication systems, transportation systems, and bio-sensing microsystems.

  17. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide.

    PubMed

    Fuchs, F; Stender, B; Trupke, M; Simin, D; Pflaum, J; Dyakonov, V; Astakhov, G V

    2015-01-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins. PMID:26151881

  18. Analysis of marine sediment and lobster hepatopancreas reference materials by instrumental photon activation

    SciTech Connect

    Landsberger, S.; Davidson, W.F.

    1985-01-01

    By use of instrumental photon activation analysis, twelve trace (As, Ba, Cr, Co, Mn, Ni, Pb, Sb, Sr, U, Zn, and Zr) and eight minor (C, Na, Mg, Co, K, Ca, Tl, and Fe) elements were determined in a certified marine sediment standard reference material as well as eight trace (Mn, Ni, Cu, Zn, As, Sr, Cd, and Pb) and four minor (Na, Mg, Cl, and Ca) elements in a certified marine tissue (lobster hepatopancreas) standard reference material. The precision and accuracy of the present results when compared to the accepted values clearly demonstrate the reliability of this nondestructive technique and its applicability to marine environmental or marine geochemical studies. 24 references, 4 figures, 3 tables.

  19. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    SciTech Connect

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A.

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  20. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    NASA Astrophysics Data System (ADS)

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A.

    2015-07-01

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  1. Forecasting of electronic devices lifetime on the basis of activation models of functional parameters drift

    NASA Astrophysics Data System (ADS)

    Kozlova, I. N.

    2016-04-01

    We propose a model of functional parameters drift for electronic devices, allowing predicting their lifetime. The method of model parameters estimation is developed. The developed model allows optimizing the accelerated tests modes, taking into account the complex impact of stress factors. The results are applicable for modern electronic devices with a failure rate less than 1 FIT. The results are applicable if the physical and chemical processes leading to electronic devices degradation have an activation mechanism; the activation process is due to the temperature.

  2. Packing of Large Two- and Three-Photon Activity Into Smallest Possible Unsymmetrical Fluorene Chromophores.

    PubMed

    Kundi, Varun; Thankachan, Pompozhi Protasis

    2016-05-01

    The quantum chemical study of one-, two-, and three-photon absorption (1PA, 2PA, and 3PA) properties for a set of compact fluorene derivatives (FD) with combination of different donor and acceptor moieties on both sides of fluorene ring system is presented. The main goal of the study is to pack large two-photon (2P) and three-photon (3P) activity into smallest possible chromophore. Linear, quadratic, and cubic response time-dependent density functional theory was used to calculate 1PA, 2PA, and 3PA properties, respectively. We used CAMB3LYP/cc-pVDZ level of theory for all the property calculations. The 2P and 3P transition probabilities were recalculated using two-state model approach and found to be in good agreement with the response theory results for first excited state. To include the contributions from higher states, the three-state model was also employed to recalculate the 2P transition probabilities and found to be in excellent agreement with response theory. The 2P/3P tensor elements were also analyzed to find reasons behind large 2P/3P activities. All the orbitals involved in transition processes were studied in detail by both molecular orbital pictures (qualitatively) and overlap diagnostic Λ-values (quantitatively). The study reveals that the novel fluorene derivatives FD-12 and FD-13 have shown large 2PA cross-section values of 1100 G.M. and 1030 G.M.; and 3PA transition probabilities of 6.10 × 10(10) a.u. and 4.85 × 10(10) a.u., respectively, for transition S0 → S1. The largest 3PA transition probability of 4.04 × 10(11) a.u. was found with FD-12 for S0 → S2 excitation. The linear relationship between Λ-values and 2PA cross-section values was also studied. PMID:27054876

  3. Fabrication of Optical Fiber Devices

    NASA Astrophysics Data System (ADS)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  4. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain.

    PubMed

    Stirman, Jeffrey N; Smith, Ikuko T; Kudenov, Michael W; Smith, Spencer L

    2016-08-01

    Two-photon calcium imaging provides an optical readout of neuronal activity in populations of neurons with subcellular resolution. However, conventional two-photon imaging systems are limited in their field of view to ∼1 mm(2), precluding the visualization of multiple cortical areas simultaneously. Here, we demonstrate a two-photon microscope with an expanded field of view (>9.5 mm(2)) for rapidly reconfigurable simultaneous scanning of widely separated populations of neurons. We custom designed and assembled an optimized scan engine, objective, and two independently positionable, temporally multiplexed excitation pathways. We used this new microscope to measure activity correlations between two cortical visual areas in mice during visual processing. PMID:27347754

  5. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    NASA Technical Reports Server (NTRS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (<200 Hz). The device was applied to control noise transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  6. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    SciTech Connect

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  7. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    PubMed Central

    Capannesi, Geraldo; Lopez, Francesco

    2013-01-01

    Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb) the levels measured are only slight lower than those proposed as air ambient standard. PMID:23878525

  8. Pillar Initiated Growth of High Indium Content Bulk Indium Gallium Nitride to Improve the Material Quality for Photonic Devices

    NASA Astrophysics Data System (ADS)

    McFelea, Heather Dale

    The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and density were optimized to facilitate coalescence on top of the pillars. It was expected that dislocations within the pillars would bend to side facets, thereby reducing the dislocation density in the bulk overgrowth, however this was not observed. It was also expected that pillars would be completely relaxed at the interface with the substrate. It was shown that pillars are mostly relaxed, but not completely. Mechanisms are proposed to explain why threading dislocations did not bend and how complete relaxation may have been achieved by mechanisms outside of interfacial misfit dislocation formation. Phase separation was not observed by TEM but may be related to the limitations of the sample or measurements. High indium observed at facets and stacking faults could be related to the extra photoluminescence peaks measured. This research focused on the InGaN pillars and first stages of coalescence on top of the pillars, saving bulk growth and device optimization for future research.

  9. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  10. Effects of a Physical Education Supportive Curriculum and Technological Devices on Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily Dean; Sullivan, Eileen C.; Ciccomascolo, Lori E.

    2015-01-01

    The purpose of this study was to examine the effects of a physical education supportive curriculum and technological devices, heart rate monitor (HRM) and pedometer (PED), on physical activity. A single-subject ABAB research design was used to examine amount and level of participation in physical activity among 106 suburban fourth and fifth…

  11. An Ungrounded Hand-Held Surgical Device Incorporating Active Constraints with Force-Feedback

    PubMed Central

    Payne, Christopher J.; Kwok, Ka-Wai; Yang, Guang-Zhong

    2014-01-01

    This paper presents an ungrounded, hand-held surgical device that incorporates active constraints and force-feedback. Optical tracking of the device and embedded actuation allow for real-time motion compensation of a surgical tool as an active constraint is encountered. The active constraints can be made soft, so that the surgical tool tip motion is scaled, or rigid, so as to altogether prevent the penetration of the active constraint. Force-feedback is also provided to the operator so as to indicate penetration of the active constraint boundary by the surgical tool. The device has been evaluated in detailed bench tests to quantify its motion scaling and force-feedback capabilities. The combined effects of force-feedback and motion compensation are demonstrated during palpation of an active constraint with rigid and soft boundaries. A user study evaluated the combined effect of motion compensation and force-feedback in preventing penetration of a rigid active constraint. The results have shown the potential of the device operating in an ungrounded setup that incorporates active constraints with force-feedback. PMID:24744963

  12. Following a protein kinase activity using a field-effect transistor device.

    PubMed

    Freeman, Ronit; Gill, Ron; Willner, Itamar

    2007-09-01

    The specific phosphorylation of a peptide-functionalized ion-sensitive field-effect transistor device by casein kinase II in the presence of ATP enables the electronic readout of the protein kinase activity; treatment of the phosphorylated surface with alkaline phosphatase results in the regeneration of the active sensing surface. PMID:17700878

  13. Low resistivity lateral P-I-N junction formed by Ni-InGaAsP alloy for carrier injection InGaAsP photonic devices

    NASA Astrophysics Data System (ADS)

    Park, Jin-Kwon; Takenaka, Mitsuru; Takagi, Shinichi

    2016-04-01

    In this study, we investigate low-resistivity InGaAsP lateral P-I-N junctions using Ni-InGaAsP alloy in conjunction with Zn diffusion. It is found that Ni-InGaAsP alloy is formed via a direct reaction between Ni and InGaAsP after annealing at more than 300 °C. The Ni-InGaAsP preserves the initial Schottky junction properties between Ni and InGaAsP, and thus exhibits an ohmic contact for n-InGaAsP and a Schottky contact for p-InGaAsP. Hence, the Ni-InGaAsP alloy can be used instead of the Si ion implantation process to form the P-I-N junction. The Ni-InGaAsP alloy exhibits significantly lower contact resistance and sheet resistance than Si implanted n+-InGaAsP. The InGaAsP lateral P-I-N junction formed with the Ni-InGaAsP alloy and Zn diffusion shows approximately 10 times lower access resistance than the n+-InGaAsP junction. Thus, we successfully achieve large on-current in the lateral P-I-N junction with the Ni-InGaAsP alloy. The fabrication procedure of the lateral P-I-N junction using the Ni-InGaAsP alloy is promising for carrier-injection photonic devices on the III-V CMOS photonics platform.

  14. Photon small-field measurements with a CMOS active pixel sensor.

    PubMed

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-01

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications. PMID:25985207

  15. Photon small-field measurements with a CMOS active pixel sensor

    NASA Astrophysics Data System (ADS)

    Jiménez Spang, F.; Rosenberg, I.; Hedin, E.; Royle, G.

    2015-06-01

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm2. The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  16. Simulation of planar integrated photonics devices with the LLNL time-domain finite-difference code suite

    NASA Astrophysics Data System (ADS)

    McLeod, R.; Hawkins, R. J.; Kallman, J. S.

    1991-04-01

    Interest has recently grown in applying microwave modeling techniques to optical circuit modeling. One of the simplest, yet most powerful, microwave simulation techniques is the finite-difference time-domain algorithm (FDTD). In this technique, the differential form of the time-domain Maxwell's equations are discretized and all derivatives are approximated as differences. Minor algebraic manipulations on the resulting equations produces a set of update equations that produce fields at a given time step from fields at the previous time step. The FDTD algorithm, then, is quite simple. Source fields are launched into the discrete grid by some means. The FDTD equations advance these fields in time. At the boundaries of the grid, special update equations called radiation conditions are applied that approximate a continuing, infinite space. Because virtually no assumptions are made in the development of the FDTD method, the algorithm is able to represent a wide-range of physical effects. Waves can propagate in any direction, multiple reflections within structures can cause resonances, multiple modes of various polarizations can be launched, each of which may generate within the device an infinite spectrum of bound and radiation modes. The ability to model these types of general physical effects is what makes the FDTD method interesting to the field of optics. In this paper, we discuss the application of the finite-difference time-domain technique to integrated optics. Animations will be shown of the simulations of a TE coupler, TM grating, and a TE integrated detector.

  17. Device and software used to carry out Cyclic Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper discusses the device and software used to carry out Cyclic Neutron Activation Analysis (CNAA). The aim of this investigation is defining through this device the fluorite content present on different samples from fluorspar concentration plant through the DGNAA (Delayed Gamma Neutron Activation Analysis) method. This device is made of americium-beryllium neutron source, NaI (2"×2") and BGO (2"×2") gamma rays detectors, multichannel and an automatic mechanism which moves the samples from activation and reading position. This mechanism is controlled by a software which allows moving the samples precisely and in a safe way (~ms), which it is very useful when the radioactive isotopes have to be detected with a half time less than 8s.

  18. Development of a portable device for telemonitoring of physical activities during sleep.

    PubMed

    Cheng, Chih-Ming; Hsu, Yeh-Liang; Young, Chang-Ming

    2008-12-01

    Low motor activity levels and prolonged episodes of uninterrupted immobility are characteristics of sleep. In clinical practice, the use of polysomnographic (PSG) recording is a standard procedure to assess sleep. However, PSG is not suitable for long-term monitoring in the home environment. This paper describes the development of a portable telemonitoring device that detects movements of a subject by conductive mats, and evaluates sleep stages via physical activity data. The device itself also serves as a Web server. Doctors and caregivers can access real-time and historical data via an IE browser or a remote application program for telemonitoring of physical activities and sleep/awake states during sleep, while the patients stay in their own homes. In our validation test with four normal subjects and four arousal subjects, this system showed a good performance in locating sleep epochs of a subject. The sensitivity of locating sleep epochs was 89.5% and the average positive prediction value was 94.8%, with a specificity of 84.3%. This device is not intended to be a diagnosis device, instead, it is to be used as a home telehealth tool for monitoring physical activity and sleep/awake states. This portable telemonitoring device provides a convenient approach to better understand and recognize a subject's sleep pattern through long-term sleep monitoring in the home environment. PMID:19119826

  19. Non-volatile memory devices with redox-active diruthenium molecular compound.

    PubMed

    Pookpanratana, S; Zhu, H; Bittle, E G; Natoli, S N; Ren, T; Richter, C A; Li, Q; Hacker, C A

    2016-03-01

    Reduction-oxidation (redox) active molecules hold potential for memory devices due to their many unique properties. We report the use of a novel diruthenium-based redox molecule incorporated into a non-volatile Flash-based memory device architecture. The memory capacitor device structure consists of a Pd/Al2O3/molecule/SiO2/Si structure. The bulky ruthenium redox molecule is attached to the surface by using a 'click' reaction and the monolayer structure is characterized by x-ray photoelectron spectroscopy to verify the Ru attachment and molecular density. The 'click' reaction is particularly advantageous for memory applications because of (1) ease of chemical design and synthesis, and (2) provides an additional spatial barrier between the oxide/silicon to the diruthenium molecule. Ultraviolet photoelectron spectroscopy data identified the energy of the electronic levels of the surface before and after surface modification. The molecular memory devices display an unsaturated charge storage window attributed to the intrinsic properties of the redox-active molecule. Our findings demonstrate the strengths and challenges with integrating molecular layers within solid-state devices, which will influence the future design of molecular memory devices. PMID:26871549

  20. Non-volatile memory devices with redox-active diruthenium molecular compound

    NASA Astrophysics Data System (ADS)

    Pookpanratana, S.; Zhu, H.; Bittle, E. G.; Natoli, S. N.; Ren, T.; Richter, C. A.; Li, Q.; Hacker, C. A.

    2016-03-01

    Reduction-oxidation (redox) active molecules hold potential for memory devices due to their many unique properties. We report the use of a novel diruthenium-based redox molecule incorporated into a non-volatile Flash-based memory device architecture. The memory capacitor device structure consists of a Pd/Al2O3/molecule/SiO2/Si structure. The bulky ruthenium redox molecule is attached to the surface by using a ‘click’ reaction and the monolayer structure is characterized by x-ray photoelectron spectroscopy to verify the Ru attachment and molecular density. The ‘click’ reaction is particularly advantageous for memory applications because of (1) ease of chemical design and synthesis, and (2) provides an additional spatial barrier between the oxide/silicon to the diruthenium molecule. Ultraviolet photoelectron spectroscopy data identified the energy of the electronic levels of the surface before and after surface modification. The molecular memory devices display an unsaturated charge storage window attributed to the intrinsic properties of the redox-active molecule. Our findings demonstrate the strengths and challenges with integrating molecular layers within solid-state devices, which will influence the future design of molecular memory devices.

  1. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain

    NASA Astrophysics Data System (ADS)

    Salari, V.; Tuszynski, J.; Bokkon, I.; Rahnama, M.; Cifra, M.

    2011-12-01

    The subject of Ultraweak Photon Emission (UPE) by biological systems is very fascinating, and both evidence of its effects and applications are growing rapidly due to improvements in experimental techniques. Since the relevant equipment should be ultrasensitive with high quantum efficiencies and very low noise levels, the subject of UPE is still hotly debated and some of the interpretations need stronger empirical evidence to be accepted at face value. In this paper we first review different types of interactions between light and living systems based on recent publications. We then discuss the feasibility of UPE production in the human brain. The subject of UPE in the brain is still in early stages of development and needs more accurate experimental methods for proper analysis. In this work we also discuss a possible role of mitochondria in the production of UPE in the neurons of the brain and the plausibility of their effects on microtubules (MTs). MTs have been implicated as playing an important role in the signal and information processing taking place in the mammalian (especially human) brain. Finally, we provide a short discussion about the feasible effects of MTs on electric neural activity in the human brain.

  2. Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2014-09-01

    The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.

  3. InGaAsN: A Novel Material for High-Efficiency Solar Cells and Advanced Photonic Devices

    SciTech Connect

    Allerman, Andrew A.; Follstaedt, David M.; Gee, James M.; Jones, Eric D.; Kurtz, Steven R.; Modine, Norman A.

    1999-07-01

    This report represents the completion of a 6 month Laboratory-Directed Research and Development (LDRD) program that focused on research and development of novel compound semiconductor, InGaAsN. This project seeks to rapidly assess the potential of InGaAsN for improved high-efficiency photovoltaic. Due to the short time scale, the project focused on quickly investigating the range of attainable compositions and bandgaps while identifying possible material limitations for photovoltaic devices. InGaAsN is a new semiconductor alloy system with the remarkable property that the inclusion of only 2% nitrogen reduces the bandgap by more than 30%. In order to help understand the physical origin of this extreme deviation from the typically observed nearly linear dependence of alloy properties on concentration, we have investigated the pressure dependence of the excited state energies using both experimental and theoretical methods. We report measurements of the low temperature photoluminescence energy of the material for pressures between ambient and 110 kbar. We describe a simple, density-functional-theory-based approach to calculating the pressure dependence of low lying excitation energies for low concentration alloys. The theoretically predicted pressure dependence of the bandgap is in excellent agreement with the experimental data. Based on the results of our calculations, we suggest an explanation for the strongly non-linear pressure dependence of the bandgap that, surprisingly, does not involve a nitrogen impurity band. Additionally, conduction-band mass measurements, measured by three different techniques, will be described and finally, the magnetoluminescence determined pressure coefficient for the conduction-band mass is measured. The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar cell, with 1.0 eV bandgap, lattice matched to GaAs is described. The hole diffusion length in

  4. Surveillance photonic fence based on active range-gated imaging for night intrusion detection

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; He, Jun; Fan, Songtao; Liu, Yuliang

    2011-06-01

    We propose a surveillance photonic fence for night remote intrusion detection, especially in bad environmental conditions. The photonic fence is established by the synchronization of a pulsed infrared laser and a gated imaging sensor. Since the wavelength of the laser is invisible, the photonic fence is also invisible. Only when targets pass the fence, their image information can be collected. Objects and backgrounds out of the fence are all filtered directly which decreases the complexity of image processing about target extraction. For the fence, its location can be easily adjusted by the delay time between the laser pulse and the gate pulse, and its thickness can be set by changing the gate time and the laser pulse width. Furthermore, target space information can also be estimated in terms of the range information of the photonic fence.

  5. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the

  6. Proposal for enhanced photon blockade in parity-time-symmetric coupled microcavities

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Yu, Rong; Wu, Ying

    2015-11-01

    Recent demonstrations of parity-time- (PT -) symmetric structure have exhibited the great potential of this system for tailoring the light-matter interaction and developing a wide range of robust quantum devices. Here we explore the second-order photon correlations in a PT -symmetric system consisting of a passive nonlinear cavity coupled to an active cavity via optical tunneling. It is shown numerically that strong photon antibunching including perfect photon blockade can be obtained efficiently even if the Kerr nonlinearity strength, the photon-tunneling strength, and the driving strength are smaller than the cavity decay rate. The physical mechanism underlying photon blockade originally comes from the dynamical enhancement of intracavity nonlinearity by the effect of supermode field localization in the PT -symmetric arrangement. The results obtained provide insight into the crossover between the photon blockade and PT -symmetric theory. Such controllable photon antibunching may find applications in the generation of high-quality single-photon sources.

  7. Multifunctional optomechanical dynamics in integrated silicon photonics

    NASA Astrophysics Data System (ADS)

    Li, Huan

    Light can generate forces on matter. The nature of these forces is electromagnetic force, or Lorentz force. The emergence and rapid progress of nanotechnology provided an unprecedented platform where the very feeble optical forces began to play significant roles. The interactions between light and matter in nanoscale has been the focus of almost a decade of active theoretical and experimental investigations, which are still ongoing and constitute a whole new burgeoning branch of nanotechnology, nano-optomechanical systems (NOMS). In such context, the general goal of my research is to generate, enhance and control optical forces on silicon photonics platforms, with a focus on developing new functionalities and demonstrating novel effects, which will potentially lead to a new class of silicon photonic devices for a broad spectrum of applications. In this dissertation, the concept of optical force and the general background of the NOMS research area are first introduced. The general goal of the silicon photonics research area and the research presented in this dissertation is then described. Subsequently, the fundamental theory for optical force is summarized. The different methods to calculate optical forces are enumerated and briefly reviewed. Integrated hybrid plasmonic waveguide (HPWG) devices have been successfully fabricated and the enhanced optical forces experimentally measured for the first time. All-optical amplification of RF signals has been successfully demonstrated. The optical force generated by one laser is used to mechanically change the optical path and hence the output power of another laser. In addition, completely optically tunable mechanical nonlinear behavior has been demonstrated for the first time and systematically studied. Optomechanical photon shuttling between photonic cavities has been demonstrated with a "photon see-saw" device. This photon see-saw is a novel multicavity optomechanical device which consists of two photonic crystal

  8. Thermally activated hysteresis in high quality graphene/h-BN devices

    NASA Astrophysics Data System (ADS)

    Cadore, A. R.; Mania, E.; Watanabe, K.; Taniguchi, T.; Lacerda, R. G.; Campos, L. C.

    2016-06-01

    We report on gate hysteresis of resistance in high quality graphene/hexagonal boron nitride (h-BN) devices. We observe a thermally activated hysteretic behavior in resistance as a function of the applied gate voltage at temperatures above 375 K. In order to investigate the origin of the hysteretic phenomenon, we compare graphene/h-BN heterostructure devices with SiO2/Si back gate electrodes to devices with graphite back gate electrodes. The gate hysteretic behavior of the resistance is present only in devices with an h-BN/SiO2 interface and is dependent on the orientation of the applied gate electric field and sweep rate. We describe a phenomenological model which captures all of our findings based on charges trapped at the h-BN/SiO2 interface. Such hysteretic behavior in graphene resistance must be considered in high temperature applications for graphene devices and may open new routes for applications in digital electronics and memory devices.

  9. ACTIVE DELIVERY CABLE TUNED TO DEVICE DEPLOYMENT STATE: ENHANCED VISIBILITY OF NITINOL OCCLUDERS DURING PRE-CLINICAL INTERVENTIONAL MRI

    PubMed Central

    Bell, Jamie A.; Saikus, Christina E.; Ratnayaka, Kanishka; Barbash, Israel M.; Faranesh, Anthony Z.; Franson, Dominique N.; Sonmez, Merdim; Slack, Michael C.; Lederman, Robert J.; Kocaturk, Ozgur

    2012-01-01

    Purpose To develop an active delivery system that enhances visualization of nitinol cardiac occluder devices during deployment under real-time MRI. Materials and Methods We constructed an active delivery cable incorporating a loopless antenna and a custom titanium microscrew to secure the occluder devices. The delivery cable was tuned and matched to 50Ω at 64 MHz with the occluder device attached. We used real-time balanced SSFP in a wide-bore 1.5T scanner. Device-related images were reconstructed separately and combined with surface-coil images. The delivery cable was tested in vitro in a phantom and in vivo in swine using a variety of nitinol cardiac occluder devices. Results In vitro, the active delivery cable provided little signal when the occluder device was detached and maximal signal with the device attached. In vivo, signal from the active delivery cable enabled clear visualization of occluder device during positioning and deployment. Device release resulted in decreased signal from the active cable. Post-mortem examination confirmed proper device placement. Conclusions The active delivery cable enhanced the MRI depiction of nitinol cardiac occluder devices during positioning and deployment, both in conventional and novel applications. We expect enhanced visibility to contribute to effectiveness and safety of new and emerging MRI-guided treatments. PMID:22707441

  10. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    PubMed Central

    Guiry, John J.; van de Ven, Pepijn; Nelson, John

    2014-01-01

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406

  11. Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices.

    PubMed

    Lee, Dong Ryun; Kim, Mounggon; Jeon, Sang Kyu; Hwang, Seok-Ho; Lee, Chil Won; Lee, Jun Yeob

    2015-10-21

    Carbazole- and triazine-derived thermally activated delayed fluorescent (TADF) emitters, with three donor units and an even distribution of the highest occupied molecular orbital, achieve high external quantum efficiencies of above 25% in blue and green TADF devices. PMID:26308481

  12. Benzofurocarbazole and benzothienocarbazole as donors for improved quantum efficiency in blue thermally activated delayed fluorescent devices.

    PubMed

    Lee, Dong Ryun; Hwang, Seok-Ho; Jeon, Sang Kyu; Lee, Chil Won; Lee, Jun Yeob

    2015-05-11

    Benzofurocarbazole and benzothienocarbazole were used as electron donors of thermally activated delayed fluorescence (TADF) emitters and the performances of the TADF devices were examined. The benzofurocarbazole and benzothienocarbazole donor moieties were better than carbazole as the electron donors of the TADF emitters. PMID:25869643

  13. Two-Photon Semiconducting Polymer Dots with Dual-Emission for Ratiometric Fluorescent Sensing and Bioimaging of Tyrosinase Activity.

    PubMed

    Sun, Junyong; Mei, Han; Wang, Sufan; Gao, Feng

    2016-07-19

    Semiconducting polymer dots (Pdots) with one-, two-photon excitation and dual-emission have been synthesized by coprecipitation of two conjugated polymers including poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylene-1,4-phenylene)] (CN-PPV) and have been further functionalized with l-tyrosine methyl ester (Tyr-OMe) via electrostatic assembly for ratiometric fluorescent sensing and bioimaging of tyrosinase activity. Tyrosinase-catalyzed oxidation of Tyr-OMe effectively modulate the dual-emission fluorescence of PFO/CN-PPV@Tyr-OMe Pdots from orange to blue through a selective photoinduced electron transfer (PET) process. A two-photon ratiometric sensor at almost zero-background interference and bioimaging of tyrosinase activity have been demonstrated, suggesting the potential biomedical applications of the prepared functionalized Pdots. PMID:27322725

  14. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  15. Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-Film Silicon-Based Photovoltaics and Other Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul G.

    2011-12-01

    The byproducts of human engineered energy production are increasing atmospheric CO2 concentrations well above their natural levels and accompanied continual decline in the natural reserves of fossil fuels necessitates the development of green energy alternatives. Solar energy is attractive because it is abundant, can be produced in remote locations and consumed on site. Specifically, thin-film silicon-based photovoltaic (PV) solar cells have numerous inherent advantages including their availability, non-toxicity, and they are relatively inexpensive. However, their low-cost and electrical performance depends on reducing their thickness to as great an extent as possible. This is problematic because their thickness is much less than their absorption length. Consequently, enhanced light trapping schemes must be incorporated into these devices. Herein, a transparent and conducting photonic crystal (PC) intermediate reflector (IR), integrated into the rear side of the cell and serving the dual function as a back-reflector and a spectral splitter, is identified as a promising method of boosting the performance of thin-film silicon-based PV. To this end a novel class of PCs, namely selectively transparent and conducting photonic crystals (STCPC), is invented. These STCPCs are a significant advance over existing 1D PCs because they combine intense wavelength selective broadband reflectance with the transmissive and conductive properties of sputtered ITO. For example, STCPCs are made to exhibit Bragg-reflectance peaks in the visible spectrum of 95% reflectivity and have a full width at half maximum that is greater than 200nm. At the same time, the average transmittance of these STCPCs is greater than 80% over the visible spectrum that is outside their stop-gap. Using wave-optics analysis, it is shown that STCPC intermediate reflectors increase the current generated in micromorph cells by 18%. In comparison, the more conventional IR comprised of a single homogeneous

  16. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  17. Synthesis, characterization and preclinical studies of two-photon-activated targeted PDT therapeutic triads

    NASA Astrophysics Data System (ADS)

    Spangler, C. W.; Starkey, J. R.; Rebane, A.; Meng, F.; Gong, A.; Drobizhev, M.

    2006-02-01

    Photodynamic therapy (PDT) continues to evolve into a mature clinical treatment of a variety of cancer types as well as age-related macular degeneration of the eye. However, there are still aspects of PDT that need to be improved in order for greater clinical acceptance. While a number of new PDT photo-sensitizers, sometimes referred to as second- or third- generation therapeutic agents, are currently under clinical investigation, the direct treatment through the skin of subcutaneous tumors deeper than 5 mm remains problematic. Currently approved PDT porphyrin photo-sensitizers, as well as several modified porphyrins (e.g. chlorins, bacteriochlorins, etc.) that are under clinical investigation can be activated at 630-730 nm, but none above 800 nm. It would be highly desirable if new PDT paradigms could be developed that would allow photo-activation deep in the tissue transparency window in the Near-infrared (NIR) above 800 nm to reduce scattering and absorption phenomena that reduce deep tissue PDT efficacy. Rasiris and MPA Technologies have developed new porphyrins that have greatly enhanced two-photon absorption ( P A ) cross-sections and can be activated deep in the NIR (ca. 780-850 nm). These porphyrins can be incorporated into a therapeutic triad that also employs an small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR onephoton imaging agent that allows tracking the delivery of the triad to the tumor site, as well as clearance of excess triad from healthy tissue prior to the start of PDT treatment. We are currently using these new triads in efficacy studies with a breast cancer cell line that has been transfected with luciferase genes that allow implanted tumor growth and post- PDT treatment efficacy studies in SCID mouse models by following the rise and decay of the bioluminescence signal. We have also designed highly absorbing and scattering collagen breast cancer phantoms in which we have demonstrated

  18. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe.

    PubMed

    Dinish, U S; Balasundaram, Ghayathri; Chang, Young Tae; Olivo, Malini

    2014-11-01

    Surface-enhanced Raman scattering (SERS) spectroscopy possesses the most promising advantage of multiplex detection for biosensing applications, which is achieved due to the narrow 'fingerprint' Raman spectra from the analyte molecules. We developed an ultrasensitive platform for the multiplex detection of cancer biomarkers by combining the SERS technique with a hollow-core photonic crystal fiber (HCPCF). Axially aligned air channels inside the HCPCF provide an excellent platform for optical sensing using SERS. In addition to the flexibility of optical fibers, HCPCF provides better light confinement and a larger interaction length for the guided light and the analyte, resulting in an improvement in sensitivity to detect low concentrations of bioanalytes in extremely low sample volumes. Herein, for the first time, we demonstrate the sensitive multiplex detection of biomarkers immobilized inside the HCPCF using antibody-conjugated SERS-active nanoparticles (SERS nanotags). As a proof-of-concept for targeted multiplex detection, initially we carried out the sensing of epidermal growth factor receptor (EGFR) biomarker in oral squamous carcinoma cell lysate using three different SERS nanotags. Subsequently, we also achieved simultaneous detection of hepatocellular carcinoma (HCC) biomarkers-alpha fetoprotein (AFP) and alpha-1-antitrypsin (A1AT) secreted in the supernatant from Hep3b cancer cell line. Using a SERS-HCPCF sensing platform, we could successfully demonstrate the multiplex detection in an extremely low sample volume of ∼20 nL. In future, this study may lead to sensitive biosensing platform for the low concentration detection of biomarkers in an extremely low sample volume of body fluids to achieve early diagnosis of multiple diseases. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). PMID:23963680

  19. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  20. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Merritt, Scott; Krainak, Michael

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  1. 75 FR 69447 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... Collection; Comment Request; Medical Devices; Device Tracking AGENCY: Food and Drug Administration, HHS... device information is collected to facilitate identifying the current location of medical devices and... solicits comments on information collection requirements for the tracking of medical devices. DATES:...

  2. Use of an Activity Monitor and GPS Device to Assess Community Activity and Participation in Transtibial Amputees

    PubMed Central

    Hordacre, Brenton; Barr, Christopher; Crotty, Maria

    2014-01-01

    This study characterized measures of community activity and participation of transtibial amputees based on combined data from separate accelerometer and GPS devices. The relationship between community activity and participation and standard clinical measures was assessed. Forty-seven participants were recruited (78% male, mean age 60.5 years). Participants wore the accelerometer and GPS devices for seven consecutive days. Data were linked to assess community activity (community based step counts) and community participation (number of community visits). Community activity and participation were compared across amputee K-level groups. Forty-six participants completed the study. On average each participant completed 16,645 (standard deviation (SD) 13,274) community steps and 16 (SD 10.9) community visits over seven days. There were differences between K-level groups for measures of community activity (F(2,45) = 9.4, p < 0.001) and participation (F(2,45) = 6.9, p = 0.002) with lower functioning K1/2 amputees demonstrating lower levels of community activity and participation than K3 and K4 amputees. There was no significant difference between K3 and K4 for community activity (p = 0.28) or participation (p = 0.43). This study demonstrated methodology to link accelerometer and GPS data to assess community activity and participation in a group of transtibial amputees. Differences in K-levels do not appear to accurately reflect actual community activity or participation in higher functioning transtibial amputees. PMID:24670721

  3. Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy

    PubMed Central

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S.; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer. PMID:24955141

  4. A passive-flow microfluidic device for imaging latent HIV activation dynamics in single T cells

    PubMed Central

    Gearhart, Larisa M.; Miller-Jensen, Kathryn

    2015-01-01

    Quantifying cell-to-cell variability in drug response dynamics is important when evaluating therapeutic efficacy. For example, optimizing latency reversing agents (LRAs) for use in a clinical “activate-and-kill” strategy to purge the latent HIV reservoir in patients requires minimizing heterogeneous viral activation dynamics. To evaluate how heterogeneity in latent HIV activation varies across a range of LRAs, we tracked drug-induced response dynamics in single cells via live-cell imaging using a latent HIV–GFP reporter virus in a clonal Jurkat T cell line. To enable these studies in suspension cells, we designed a simple method to capture an array of single Jurkat T cells using a passive-flow microfluidic device. Our device, which does not require external pumps or tubing, can trap hundreds of cells within minutes with a high retention rate over 12 hours of imaging. Using this device, we quantified heterogeneity in viral activation stimulated by transcription factor (TF) activators and histone deacetylase (HDAC) inhibitors. Generally, TF activators resulted in both faster onset of viral activation and faster rates of production, while HDAC inhibitors resulted in more uniform onset times, but more heterogeneous rates of production. Finally, we demonstrated that while onset time of viral gene expression and rate of viral production together predict total HIV activation, rate and onset time were not correlated within the same individual cell, suggesting that these features are regulated independently. Overall, our results reveal drug-specific patterns of noisy HIV activation dynamics not previously identified in static single-cell assays, which may require consideration for the most effective activate-and-kill regime. PMID:26138068

  5. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations.

    PubMed

    Mao, Ling-Feng; Ning, H; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-01-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586

  6. Polymer Solar Cell Device Characteristics Are Independent of Vertical Phase Separation in Active Layers

    NASA Astrophysics Data System (ADS)

    Loo, Yueh-Lin

    2013-03-01

    Preferential segregation of organic semiconductor constituents in multicomponent thin-film active layers has long been speculated to affect the characteristics of bulk-heterojunction polymer solar cells. Using soft-contact lamination and delamination schemes - with which we have been able to remove compositionally well characterized polymer thin films, flip them over so as to reverse their composition profiles, and then transfer them onto existing device platforms - we showed unambiguously that the device performance of P3HT:PCBM solar cells are independent of the interfacial segregation characteristics of the active layers. Temperature-dependent single-carrier diode measurements of the organic semiconductor constituents suggest that the origin of this invariance stems from the fact that P3HT comprises a high density of mid-gap states. Hole carriers in these mid-gap states can in turn recombine with electrons at the electron-collecting interface, effectively promoting electron transfer from the cathode to the active layer.

  7. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    PubMed Central

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-01-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586

  8. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  9. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  10. A Novel Wearable Device for Food Intake and Physical Activity Recognition

    PubMed Central

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  11. A Novel Wearable Device for Food Intake and Physical Activity Recognition.

    PubMed

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  12. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review

    PubMed Central

    Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W

    2016-01-01

    Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time

  13. [A fully-implantable active hearing device in congenital auricular atresia].

    PubMed

    Siegert, R; Neumann, C

    2014-07-01

    Active implantable hearing devices were primarily developed for sensorineural hearing loss. The vibrator coupling mechanisms were oriented towards normal middle ear anatomy and function. The aim of this project was to modify the only fully implantable hearing device with an implantable microphone for application in congenital auricular atresia, Carina™, and to introduce the modified device into the clinic. A special prosthesis was developed for the transducer and its individual coupling achieved by a special cramping system. The system was implanted in 5 patients with congenital auricular atresia. Audiological results were good; with patients' hearing gain exceeding 30 dB HL. Anatomic limits to the system's indications and technical drawbacks are also discussed. PMID:25056646

  14. Classification of team sport activities using a single wearable tracking device.

    PubMed

    Wundersitz, Daniel W T; Josman, Casey; Gupta, Ritu; Netto, Kevin J; Gastin, Paul B; Robertson, Sam

    2015-11-26

    Wearable tracking devices incorporating accelerometers and gyroscopes are increasingly being used for activity analysis in sports. However, minimal research exists relating to their ability to classify common activities. The purpose of this study was to determine whether data obtained from a single wearable tracking device can be used to classify team sport-related activities. Seventy-six non-elite sporting participants were tested during a simulated team sport circuit (involving stationary, walking, jogging, running, changing direction, counter-movement jumping, jumping for distance and tackling activities) in a laboratory setting. A MinimaxX S4 wearable tracking device was worn below the neck, in-line and dorsal to the first to fifth thoracic vertebrae of the spine, with tri-axial accelerometer and gyroscope data collected at 100Hz. Multiple time domain, frequency domain and custom features were extracted from each sensor using 0.5, 1.0, and 1.5s movement capture durations. Features were further screened using a combination of ANOVA and Lasso methods. Relevant features were used to classify the eight activities performed using the Random Forest (RF), Support Vector Machine (SVM) and Logistic Model Tree (LMT) algorithms. The LMT (79-92% classification accuracy) outperformed RF (32-43%) and SVM algorithms (27-40%), obtaining strongest performance using the full model (accelerometer and gyroscope inputs). Processing time can be reduced through feature selection methods (range 1.5-30.2%), however a trade-off exists between classification accuracy and processing time. Movement capture duration also had little impact on classification accuracy or processing time. In sporting scenarios where wearable tracking devices are employed, it is both possible and feasible to accurately classify team sport-related activities. PMID:26472301

  15. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    NASA Astrophysics Data System (ADS)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  16. Methods, microfluidic devices, and systems for detection of an active enzymatic agent

    SciTech Connect

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-10-28

    Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.

  17. Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR.

    PubMed

    Guardado-Alvarez, Tania M; Devi, Lekshmi Sudha; Vabre, Jean-Marie; Pecorelli, Travis A; Schwartz, Benjamin J; Durand, Jean-Olivier; Mongin, Olivier; Blanchard-Desce, Mireille; Zink, Jeffrey I

    2014-05-01

    We report the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes inter-molecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. We describe the operation of the "snap-top" release mechanism by both one- and two-photon activation. This system presents a proof of concept of a near-IR photoredox-induced nanoparticle delivery system that may lead to a new type of photodynamic drug release therapy. PMID:24647752

  18. Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium

    SciTech Connect

    Hang Chao; Huang Guoxiang

    2010-11-15

    We present a scheme for obtaining entangled photons and quantum phase gates in a room-temperature four-state tripod-type atomic system with two-mode active Raman gain (ARG). We analyze the linear and nonlinear optical responses of this ARG system and show that the scheme is fundamentally different from those based on electromagnetically induced transparency and hence can avoid significant probe-field absorption as well as a temperature-related Doppler effect. We demonstrate that highly entangled photon pairs can be produced and rapidly responding polarization qubit phase gates can be constructed based on the unique features of the enhanced cross-phase-modulation and superluminal probe-field propagation of the system.

  19. Dry etching techniques for active devices based on hexagonal boron nitride epilayers

    SciTech Connect

    Grenadier, Samuel; Li, Jing; Lin, Jingyu; Jiang, Hongxing

    2013-11-15

    Hexagonal boron nitride (hBN) has emerged as a fundamentally and technologically important material system owing to its unique physical properties including layered structure, wide energy bandgap, large optical absorption, and neutron capture cross section. As for any materials under development, it is necessary to establish device processing techniques to realize active devices based on hBN. The authors report on the advancements in dry etching techniques for active devices based on hBN epilayers via inductively coupled plasma (ICP). The effect of ICP radio frequency (RF) power on the etch rate and vertical side wall profile was studied. The etching depth and angle with respect to the surface were measured using atomic force microscopy showing that an etching rate ∼1.25 μm/min and etching angles >80° were obtained. Profilometer data and scanning electron microscope images confirmed these results. This work demonstrates that SF{sub 6} is very suitable for etching hBN epilayers in RF plasma environments and can serve as a guide for future hBN device processing.

  20. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy.

    PubMed

    Yang, Guang; Wang, Jie; Wang, Yi; Li, Long; Guo, Xing; Zhou, Shaobing

    2015-02-24

    Nanocarriers have attracted broad attention in cancer therapy because of their ability to carry drugs preferentially into cancer tissue, but their application is still limited due to the systemic toxicity and low delivery efficacy of intravenously delivered chemotherapeutics. In this study, we develop a localized drug delivery device with combination of an active-targeting micellar system and implantable polymeric nanofibers. This device is achieved first by the formation of hydrophobic doxorubicin (Dox)-encapsulated active-targeting micelles assembled from a folate-conjugated PCL-PEG copolymer. Then, fabrication of the core-shell polymeric nanofibers is achieved with coaxial electrospinning in which the core region consists of a mixture of poly(vinyl alcohol) and the micelles and the outer shell layer consists of cross-linked gelatin. In contrast to the systematic administration of therapeutics via repeatedly intravenous injections of micelles, this implantable device has these capacities of greatly reducing the drug dose, the frequency of administration and side effect of chemotherapeutic agents while maintaining highly therapeutic efficacy against artificial solid tumors. This micelle-based nanofiber device can be developed toward the next generation of nanomedicine for efficient and safe cancer therapy. PMID:25602381

  1. Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag.

    PubMed

    Lewandowski, Angela T; Yi, Hyunmin; Luo, Xiaolong; Payne, Gregory F; Ghodssi, Reza; Rubloff, Gary W; Bentley, William E

    2008-02-15

    We report a versatile approach for covalent surface-assembly of proteins onto selected electrode patterns of pre-fabricated devices. Our approach is based on electro-assembly of the aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive surfaces of the device, which is followed by covalent assembly of the target protein onto the scaffold surface upon enzymatic activation of the protein's "pro-tag." For our demonstration, the model target protein is green fluorescent protein (GFP) genetically fused with a pentatyrosine pro-tag at its C-terminus, which assembles onto both two-dimensional chips and within fully packaged microfluidic devices in situ and under flow. Our surface-assembly approach enables spatial selectivity and orientational control under mild experimental conditions. We believe that our integrated approach harnessing genetic manipulation, in situ enzymatic activation, and electro-assembly makes it advantageous for a wide variety of bioMEMS and biosensing applications that require facile "biofunctionalization" of microfabricated devices. PMID:17625789

  2. Coherent phonon optics in a chip with an electrically controlled active device

    PubMed Central

    Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  3. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  4. Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes

    PubMed Central

    Homma, Ryota; Baker, Bradley J.; Jin, Lei; Garaschuk, Olga; Konnerth, Arthur; Cohen, Lawrence B.; Zecevic, Dejan

    2009-01-01

    This review presents three examples of using voltage- or calcium-sensitive dyes to image the activity of the brain. Our aim is to discuss the advantages and disadvantages of each method with particular reference to its application to the study of the brainstem. Two of the examples use wide-field (one-photon) imaging; the third uses two-photon scanning microscopy. Because the measurements have limited signal-to-noise ratio, the paper also discusses the methodological aspects that are critical for optimizing the signal. The three examples are the following. (i) An intracellularly injected voltage-sensitive dye was used to monitor membrane potential in the dendrites of neurons in in vitro preparations. These experiments were directed at understanding how individual neurons convert complex synaptic inputs into the output spike train. (ii) An extracellular, bath application of a voltage-sensitive dye was used to monitor population signals from different parts of the dorsal brainstem. We describe recordings made during respiratory activity. The population signals indicated four different regions with distinct activity correlated with inspiration. (iii) Calcium-sensitive dyes can be used to label many individual cells in the mammalian brain. This approach, combined with two-photon microscopy, made it possible to follow the spike activity in an in vitro brainstem preparation during fictive respiratory rhythms. The organic voltage- and ion-sensitive dyes used today indiscriminatively stain all of the cell types in the preparation. A major effort is underway to develop fluorescent protein sensors of activity for selectively staining individual cell types. PMID:19651647

  5. A Three-Photon Active Organic Fluorophore for Deep Tissue Ratiometric Imaging of Intracellular Divalent Zinc.

    PubMed

    Philips, Divya Susan; Sreejith, Sivaramapanicker; He, Tingchao; Menon, Nishanth Venugopal; Anees, Palapuravan; Mathew, Jomon; Sajikumar, Sreedharan; Kang, Yuejun; Stuparu, Mihaiela Corina; Sun, Handong; Zhao, Yanli; Ajayaghosh, Ayyappanpillai

    2016-05-20

    Deep tissue bioimaging with three-photon (3P) excitation using near-infrared (NIR) light in the second IR window (1.0-1.4 μm) could provide high resolution images with an improved signal-to-noise ratio. Herein, we report a photostable and nontoxic 3P excitable donor-π-acceptor system (GMP) having 3P cross-section (σ3 ) of 1.78×10(-80)  cm(6)  s(2)  photon(-2) and action cross-section (σ3 η3 ) of 2.31×10(-81)  cm(6)  s(2)  photon(-2) , which provides ratiometric fluorescence response with divalent zinc ions in aqueous conditions. The probe signals the Zn(2+) binding at 530 and 600 nm, respectively, upon 1150 nm excitation with enhanced σ3 of 1.85×10(-80)  cm(6)  s(2)  photon(-2) and σ3 η3 of 3.33×10(-81)  cm(6)  s(2)  photon(-2) . The application of this probe is demonstrated for ratiometric 3P imaging of Zn(2+) in vitro using HuH-7 cell lines. Furthermore, the Zn(2+) concentration in rat hippocampal slices was imaged at 1150 nm excitation after incubation with GMP, illustrating its potential as a 3P ratiometric probe for deep tissue Zn(2+) ion imaging. PMID:26991763

  6. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  7. Detection of high tritium activity on the central titanium electrode of a plasma focus device

    SciTech Connect

    Rout, R.K.; Spinivasan, M.; Shyam, A.; Chitra, V. )

    1991-03-01

    In this paper a 2-kJ Mather plasma focus device is used to deuterate the top end surface (or tip) of its central titanium electrode to investigate the occurrence of anomalous nuclear reactions in the context of the cold fusion phenomenon. The tip of the central titanium electrode is found to develop at least a few tens of microcuries of tritium after several plasma focus discharges. Neither the tritium impurity level in the deuterium gas used in the experiment nor the tritium branch of the d-d reactions that are known to occur in plasma focus devices can account for such activity in the electrode. Anomalous nuclear reactions in the deuterated titanium lattice appear to be the most probable source of this high activity.

  8. An active drop counting device using condenser microphone for superheated emulsion detector

    SciTech Connect

    Das, Mala; Marick, C.; Kanjilal, D.; Saha, S.

    2008-11-15

    An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of {sup 252}Cf fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrum of {sup 252}Cf. Frequency analysis of the detected signals was also carried out.

  9. Sandia`s photonic program and its changing national role

    SciTech Connect

    Carson, R.F.; Meyer, W.J.

    1994-03-01

    Photonics activities at Sandia National Laboratories are founded on an extensive materials research program. In 1988, the Compound Semiconductor Research Laboratory (CSRL) was established at Sandia to bring together device and materials research and development, in support of Sandia`s role in weapons technologies. Recently, industrial competitiveness has been added as a major mission for the national laboratories. As a result, present photonics programs are not only directed towards internal applications-driven projects, but are increasingly tied to the Department Of Energy`s (DOE`s) Technology Transfer Initiatives (TTIs), Cooperative Research and Development Agreements (CRADAs), and participation in partnerships and consortia. This evolution yields a full range of photonics programs, ranging from materials synthesis and device fabrication to packaging, test, and subsystem development. This paper presents an overview of Sandia`s photonics-program directions, using three applications as examples.

  10. Coupling High-Energy Radiography And Photon Activation Analysis (PAA) To Optimize The Characterization Of Nuclear Waste Packages

    SciTech Connect

    Carrel, F.; Agelou, M.; Gmar, M.; Laine, F.; Lamotte, T.; Lazaro, D.; Poumarede, B.; Rattoni, B.

    2009-12-02

    Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The alpha-activity, mainly due to the presence of actinides ({sup 235}U, {sup 238}U, {sup 239}Pu,...) inside the package, is one of the most important parameter to assess during the characterization. Photon Activation Analysis (PAA) is a non-destructive active method (NDA method) based on the photofission process and on the detection of delayed particles (neutrons and gammas). This technique is well-adapted to the characterization of large concrete waste packages. However, PAA methods often require a simulation step which is necessary to analyze experimental results and to quantify the global mass of actinides. The weak point of this approach is that characteristics of the package are often not well-known, these latter having a huge impact on the final simulation result. High-energy radiography, based on the use of a linear electron accelerator (LINAC), allows to visualize the content of the package and is also a performing way to tune simulation models and to optimize the characterization process by PAA. In this article, we present high-energy radiography results obtained for two different large concrete waste packages in the SAPHIR facility (Active Photon and Irradiation System). This facility is dedicated to PAA study and development and setup for a decade in CEA Saclay. We also discuss possibilities offered by the coupling between high-energy radiography and PAA techniques.

  11. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  12. In vivo imaging of activated microglia in a mouse model of focal cerebral ischemia by two-photon microscopy.

    PubMed

    Bok, Seoyeon; Wang, Taejun; Lee, Chan-Ju; Jeon, Seong-Uk; Kim, Young-Eun; Kim, Jeongwoo; Hong, Beom-Ju; Yoon, Calvin Jinse; Kim, Sungjee; Lee, Seung-Hoon; Kim, Hak Jae; Kim, Il Han; Kim, Ki Hean; Ahn, G-One

    2015-09-01

    Microglia are brain resident macrophages rapidly responding to various stimuli to exert appropriate inflammatory responses. Although they have recently been exploited as an attractive candidate for imaging neuroinflammation, it is still difficult to visualize them at the cellular and molecular levels. Here we imaged activated microglia by establishing intracranial window chamber (ICW) in a mouse model of focal cerebral ischemia by using two-photon microscopy (TPM), in vivo. Intravenous injection of fluorescent antibodies allowed us to detect significantly elevated levels of Iba-1 and CD68 positive activated microglia in the ipsilateral compared to the contralateral side of the infarct. We further observed that indomethacin, a non-steroidal anti-inflammatory drug significantly attenuated CD68-positive microglial activation in ICW, which was further confirmed by qRT-PCR biochemical analyses. In conclusion, we believe that in vivo TPM imaging of ICW would be a useful tool to screen for therapeutic interventions lowering microglial activation hence neuroinflammation. PMID:26417502

  13. In vivo imaging of activated microglia in a mouse model of focal cerebral ischemia by two-photon microscopy

    PubMed Central

    Bok, Seoyeon; Wang, Taejun; Lee, Chan-Ju; Jeon, Seong-Uk; Kim, Young-Eun; Kim, Jeongwoo; Hong, Beom-Ju; Yoon, Calvin Jinse; Kim, Sungjee; Lee, Seung-Hoon; Kim, Hak Jae; Kim, Il Han; Kim, Ki Hean; Ahn, G-One

    2015-01-01

    Microglia are brain resident macrophages rapidly responding to various stimuli to exert appropriate inflammatory responses. Although they have recently been exploited as an attractive candidate for imaging neuroinflammation, it is still difficult to visualize them at the cellular and molecular levels. Here we imaged activated microglia by establishing intracranial window chamber (ICW) in a mouse model of focal cerebral ischemia by using two-photon microscopy (TPM), in vivo. Intravenous injection of fluorescent antibodies allowed us to detect significantly elevated levels of Iba-1 and CD68 positive activated microglia in the ipsilateral compared to the contralateral side of the infarct. We further observed that indomethacin, a non-steroidal anti-inflammatory drug significantly attenuated CD68-positive microglial activation in ICW, which was further confirmed by qRT-PCR biochemical analyses. In conclusion, we believe that in vivo TPM imaging of ICW would be a useful tool to screen for therapeutic interventions lowering microglial activation hence neuroinflammation. PMID:26417502

  14. Use of a Far-Infrared Active Warming Device in Guinea Pigs (Cavia porcellus)

    PubMed Central

    Zarndt, Bethany S; Buchta, Jessica N; Garver, Lindsey S; Davidson, Silas A; Rowton, Edgar D; Despain, Kenneth E

    2015-01-01

    Small mammals have difficulty maintaining body temperature under anesthesia. This hypothermia is a potential detriment not only to the health and comfort of the animal but also to the integrity of any treatment given or data gathered during the anesthetic period. Using an external warming device to assist with temperature regulation can mitigate these effects. In this study, we investigated the ability of an advanced warming device that uses far-infrared (FIR) heating and responds to real-time core temperature monitoring to maintain a normothermic core temperature in guinea pigs. Body temperatures were measured during 30 min of ketamine–xylazine general anesthesia with and without application of the heating device. The loss of core body heat from anesthetized guinea pigs under typical (unwarmed) conditions was significant, and this loss was almost completely mitigated by application of the FIR heating pad. The significant difference between the temperatures of the actively warmed guinea pigs as compared with the control group began as early as 14 min after anesthetic administration, leading to a 2.6 °C difference at 30 min. Loss of core body temperature was not correlated with animals’ body weight; however, weight influences the efficiency of FIR warming slightly. These study results show that the FIR heating device accurately controls core body temperature in guinea pigs, therefore potentially alleviating the effects of body heat loss on animal physiology. PMID:26632788

  15. The further development of the active urine collection device: a novel continence management system.

    PubMed

    Tinnion, E; Jowitt, F; Clarke-O'Neill, S; Cottenden, A M; Fader, M; Sutherland, I

    2003-01-01

    Continence difficulties affect the lives of a substantial minority of the population. Women are far more likely than men to be affected by urinary incontinence but the range of management options for them is limited. There has been considerable interest in developing an external urine collection system for women but without success to date. This paper describes the development and preliminary clinical testing of an active urine collection device (AUCD), which could provide a solution for sufferers. The device uses stored vacuum, protected by a high bubble point filter, to remove urine as quickly as it is produced. This allows a small battery-operated pump to provide the required vacuum, enabling the device to be portable. Two different types of non-invasive patient/device interface were developed, and tested by volunteers: urinal and small pad. The slimline urinal was popular with users although liquid noise was a problem. The pad interface was successful on occasions but further work is necessary to produce a reliable pad. This study has successfully demonstrated that a prototype AUCD liquid handling system can remove urine at clinically relevant flowrates. While further development is required, volunteer tests have shown that the AUCD could be a useful advance in continence management. PMID:12885199

  16. Use of a Far-Infrared Active Warming Device in Guinea Pigs (Cavia porcellus).

    PubMed

    Zarndt, Bethany S; Buchta, Jessica N; Garver, Lindsey S; Davidson, Silas A; Rowton, Edgar D; Despain, Kenneth E

    2015-11-01

    Small mammals have difficulty maintaining body temperature under anesthesia. This hypothermia is a potential detriment not only to the health and comfort of the animal but also to the integrity of any treatment given or data gathered during the anesthetic period. Using an external warming device to assist with temperature regulation can mitigate these effects. In this study, we investigated the ability of an advanced warming device that uses far-infrared (FIR) heating and responds to real-time core temperature monitoring to maintain a normothermic core temperature in guinea pigs. Body temperatures were measured during 30 min of ketamine-xylazine general anesthesia with and without application of the heating device. The loss of core body heat from anesthetized guinea pigs under typical (unwarmed) conditions was significant, and this loss was almost completely mitigated by application of the FIR heating pad. The significant difference between the temperatures of the actively warmed guinea pigs as compared with the control group began as early as 14 min after anesthetic administration, leading to a 2.6 °C difference at 30 min. Loss of core body temperature was not correlated with animals' body weight; however, weight influences the efficiency of FIR warming slightly. These study results show that the FIR heating device accurately controls core body temperature in guinea pigs, therefore potentially alleviating the effects of body heat loss on animal physiology. PMID:26632788

  17. Detection of TeV photons from the active galaxy Markarian 421

    NASA Technical Reports Server (NTRS)

    Punch, M.; Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Fennell, S.; Gaidos, J. A.; Hagan, J.; Hillas, A. M.; Jiang, Y.

    1992-01-01

    The detection of TeV energy photons from the giant elliptical galaxy Markarian 421 using the Whipple Observatory gamma-ray telescope is reported. The signal has a statistical significance of 6 sigma above background and the flux above 0.5 TeV is 0.3 of that from the Crab Nebula. The source location agrees with the position of Mk 421 within the angular uncertainty of the Whipple instrument.

  18. Photons to axion-like particles conversion in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Tavecchio, Fabrizio; Roncadelli, Marco; Galanti, Giorgio

    2015-05-01

    The idea that photons can convert to axion-like particles (ALPs) γ → a in or around an AGN and reconvert back to photons a → γ in the Milky Way magnetic field has been put forward in 2008 and has recently attracted growing interest. Yet, so far nobody has estimated the conversion probability γ → a as carefully as allowed by present-day knowledge. Our aim is to fill this gap. We first remark that AGN which can be detected above 100 GeV are blazars, namely AGN with jets, with one of them pointing towards us. Moreover, blazars fall into two well defined classes: BL Lac objects (BL Lacs) and Flat Spectrum Radio Quasars (FSRQs), with drastically different properties. In this Letter we report a preliminary evaluation of the γ → a conversion probability inside these two classes of blazars. Our findings are surprising. Indeed, while in the case of BL Lacs the conversion probability turns out to be totally unpredictable due to the strong dependence on the values of the somewhat uncertain position of the emission region along the jet and strength of the magnetic field therein, for FSRQs we are able to make a clear-cut prediction. Our results are of paramount importance in view of the planned very-high-energy photon detectors like the CTA, HAWK, GAMMA-400 and HISCORE.

  19. Photonic-powered cable assembly

    SciTech Connect

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  20. Photonic-powered cable assembly

    SciTech Connect

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  1. Axonal conduction slowing induced by spontaneous bursting activity in cortical neurons cultured in a microtunnel device.

    PubMed

    Shimba, Kenta; Sakai, Koji; Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-01-01

    Recently, axons have been recognized as computational units in neuronal networks that can change their conduction properties along with their firing. However, little is known about the relationship between spontaneous activity and changes in the conduction velocity due to lack of a suitable method. Here, we studied changes in the conduction velocity during bursting activity using a new microfabricated device and the spike sorting method. The propagating action potentials were recorded from axons, which extended through a microtunnel in our device, comprised of a microfabricated chamber and a microelectrode array. By using waveforms recorded from a series of three electrodes along the bottom of a microtunnel, we achieved a sorting accuracy approximately 8.0% higher than that of the conventional one-electrode waveform method. We then demonstrated for the first time that conduction delays increased by 8.0% in action potentials of a mathematically isolated axon during one burst recorded at 10 days in vitro (DIV). Moreover, 79.4% of all clusters showed this conduction slowing during bursting activity at 10 DIV. Finally, we evaluated the days-in-culture dependence of the properties of bursting activity. These results suggest that our method is suitable for evaluating changes in conduction properties induced by spontaneous activity. PMID:25418582

  2. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGESBeta

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  3. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  4. Smart packaging for photonics

    SciTech Connect

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.; Palmer, D.W.

    1997-09-01

    Unlike silicon microelectronics, photonics packaging has proven to be low yield and expensive. One approach to make photonics packaging practical for low cost applications is the use of {open_quotes}smart{close_quotes} packages. {open_quotes}Smart{close_quotes} in this context means the ability of the package to actuate a mechanical change based on either a measurement taken by the package itself or by an input signal based on an external measurement. One avenue of smart photonics packaging, the use of polysilicon micromechanical devices integrated with photonic waveguides, was investigated in this research (LDRD 3505.340). The integration of optical components with polysilicon surface micromechanical actuation mechanisms shows significant promise for signal switching, fiber alignment, and optical sensing applications. The optical and stress properties of the oxides and nitrides considered for optical waveguides and how they are integrated with micromechanical devices were investigated.

  5. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  6. Demonstration of photon–photon resonance peak enhancement by waveguide configuration modification on active multimode interferometer laser diode

    NASA Astrophysics Data System (ADS)

    Kitano, Takuya; Nasir Uddin, Mohammad; Hong, Bingzhou; Tajima, Akio; Jiang, Haisong; Hamamoto, Kiichi

    2016-08-01

    The recent rapid growth of data traffic is leading to high-speed communication for local areas, such as the fiber-to-the-home service. A semiconductor laser is used for such a purpose; however, there is the difficulty that an even higher frequency response occurs in only carrier-photon resonance. For this reason, it is effective to use a second resonance, such as a photon–photon resonance (PPR), for enhancing the frequency response, and the active multimode interferometer laser diode (active-MMI LD) is one of the candidates for achieving a high PPR frequency. In order to obtain an even higher PPR frequency, we have investigated the control scheme of enhancing PPR. In this work, we compared two types of active-MMI waveguide structures to confirm the scheme. As a result, a 3.8 GHz enhancement of the PPR peak, resulting in a 3 dB lower frequency response of 17 GHz, has been successfully achieved by waveguide geometry modification.

  7. Genetically Encoded Optochemical Probes for Simultaneous Fluorescence Reporting and Light Activation of Protein Function with Two-Photon Excitation

    PubMed Central

    2014-01-01

    The site-specific incorporation of three new coumarin lysine analogues into proteins was achieved in bacterial and mammalian cells using an engineered pyrrolysyl-tRNA synthetase system. The genetically encoded coumarin lysines were successfully applied as fluorescent cellular probes for protein localization and for the optical activation of protein function. As a proof-of-principle, photoregulation of firefly luciferase was achieved in live cells by caging a key lysine residue, and excellent OFF to ON light-switching ratios were observed. Furthermore, two-photon and single-photon optochemical control of EGFP maturation was demonstrated, enabling the use of different, potentially orthogonal excitation wavelengths (365, 405, and 760 nm) for the sequential activation of protein function in live cells. These results demonstrate that coumarin lysines are a new and valuable class of optical probes that can be used for the investigation and regulation of protein structure, dynamics, function, and localization in live cells. The small size of coumarin, the site-specific incorporation, the application as both a light-activated caging group and as a fluorescent probe, and the broad range of excitation wavelengths are advantageous over other genetically encoded photocontrol systems and provide a precise and multifunctional tool for cellular biology. PMID:25341086

  8. Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties.

    PubMed

    Leitl, Markus J; Zink, Daniel M; Schinabeck, Alexander; Baumann, Thomas; Volz, Daniel; Yersin, Hartmut

    2016-06-01

    Molecules that exhibit thermally activated delayed fluorescence (TADF) represent a very promising emitter class for application in electroluminescent devices since all electrically generated excitons can be transferred into light according to the singlet harvesting mechanism. Cu(I) compounds are an important class of TADF emitters. In this contribution, we want to give a deeper insight into the photophysical properties of this material class and demonstrate how the emission properties depend on molecular and host rigidity. Moreover, we show that with molecular optimization a significant improvement of selected emission properties can be achieved. From the discussed materials, we select one specific dinuclear complex, for which the two Cu(I) centers are four-fold bridged to fabricate an organic light emitting diode (OLED). This device shows the highest efficiency (of 23 % external quantum efficiency) reported so far for OLEDs based on Cu(I) emitters. PMID:27573265

  9. Air-activated chemical warming devices: effects of oxygen and pressure.

    PubMed

    Raleigh, G; Rivard, R; Fabus, S

    2005-01-01

    Air-activated chemical warming devices use an exothermic chemical reaction of rapidly oxidizing iron to generate heat for therapeutic purposes. Placing these products in a hyperbaric oxygen environment greatly increases the supply of oxidant and thus increases the rate of reaction and maximum temperature. Testing for auto-ignition and maximum temperatures attained by ThermaCare Heat Wraps, Playtex Heat Therapy, and Heat Factory disposable warm packs under ambient conditions and under conditions similar to those encountered during hyperbaric oxygen treatments in monoplace and multiplace hyperbaric chambers (3 atm abs and > 95% oxygen) revealed a maximum temperature of 269 degrees F (132 degrees C) with no spontaneous ignition. The risk of thermal burn injury to adjacent skin may be increased significantly if these devices are used under conditions of hyperbaric oxygen. PMID:16509287

  10. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?

    PubMed Central

    Gjoreski, Martin; Gjoreski, Hristijan; Luštrek, Mitja; Gams, Matjaž

    2016-01-01

    Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject’s daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data). PMID:27258282

  11. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?

    PubMed

    Gjoreski, Martin; Gjoreski, Hristijan; Luštrek, Mitja; Gams, Matjaž

    2016-01-01

    Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject's daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data). PMID:27258282

  12. Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber

    NASA Astrophysics Data System (ADS)

    Sidorova, Maria V.; Divochiy, Alexander V.; Vakhtomin, Yury B.; Smirnov, Konstantin V.

    2015-01-01

    This paper presents an ultrafast niobium nitride (NbN) superconducting single-photon detector (SSPD) with an active area of 3×3 μm2 that offers better timing performance metrics than the previous SSPD with an active area of 7×7 μm2. The improved SSPD demonstrates a record timing jitter (<25 ps), an ultrashort recovery time (<2 ns), an extremely low dark count rate, and a high detection efficiency in a wide spectral range from visible part to near infrared. The record parameters were obtained due to the development of a new technique providing effective optical coupling between a detector with a reduced active area and a standard single-mode telecommunication fiber. The advantages of the new approach are experimentally confirmed by taking electro-optical measurements.

  13. Photon Activation Analysis Of Light Elements Using 'Non-Gamma' Radiation Spectroscopy - The Instrumental Determination Of Phosphorus

    SciTech Connect

    Segebade, Christian; Goerner, Wolf

    2011-06-01

    Unlike metal determinations the analysis of light elements (e.g., carbon, oxygen, phosphorus) is frequently problematic, in particular if analysed instrumentally. In photon activation analysis (PAA) the respective activation products do not emit gamma radiation in the most cases. Usually, annihilation quanta counting and subsequent decay curve analysis have been used for determinations of C, N, O, and F. However, radiochemical separation of the respective radioisotopes mostly is indispensable. For several reasons, some of the light elements cannot be analysed following this procedure, e.g. phosphorus. In this contribution the instrumental PAA of phosphorus in organic matrix by activation with bremsstrahlung of an electron linear accelerator and subsequent beta spectroscopy is described. The accuracy of the results was excellent as obtained by analysis of a BCR Reference Material.

  14. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  15. Demonstration of active feedforward one-way quantum computing with photon-matter hyperentanglement

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Fan; Bao, Xiao-Hui; Pan, Jian-Wei

    2012-11-01

    We report an optical one-way quantum computing experiment with stationary quantum memory involved. First we create a hybrid four-qubit cluster state with two qubits propagating as photons and the other two stationary and stored in a laser-cooled atomic-ensemble quantum memory, and characterize it with entanglement witnesses and quantum state tomography. Then, by making use of this cluster state and fast operations of electro-optic modulators, we realize memory-assisted feedforward operations and demonstrate deterministic single-qubit rotation as an example.

  16. 76 FR 55394 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Collection; Comment Request; Medical Devices: Humanitarian Use Devices AGENCY: Food and Drug Administration... of information technology. Medical Devices: Humanitarian Use Devices--21 CFR Part 814 (OMB Control... to grant HUD designation of a medical device; (2) exempt an HUD from the effectiveness...

  17. Health-Promoting Physical Activity of Children Who Use Assistive Mobility Devices: A Scoping Review.

    PubMed

    Jirikowic, Tracy L; Kerfeld, Cheryl I

    2016-01-01

    Children with physical disabilities who use assistive mobility devices (AMDs) are at risk for obesity and other secondary health conditions. Habitual physical activity is one lifestyle factor that may prevent obesity and contribute to overall health, and an active lifestyle in childhood improves prospects for lifelong healthy behaviors. Child, family, and environmental facilitators and barriers influence health-promoting physical activity (HPPA) for children without disabilities, but comparable models and levels of understanding for children who use AMDs are lacking. In this scoping review, we identified a similar set of child, family, and environmental facilitators and barriers relevant to HPPA participation among children who use AMDs. Noted gaps in the literature included limited reporting of AMD use, inconsistent HPPA definitions, and inadequate measurement tools for children who are nonambulatory. The identified child, family, and environmental factors provide a framework for occupational therapy practitioners and interprofessional teams to develop HPPA opportunities and interventions for an underserved population. PMID:27548861

  18. An Educational Device for a Hands-on Activity to Visualize the Effect of Atherosclerosis on Blood Flow

    ERIC Educational Resources Information Center

    de Almeida, J. P. P. G. L.; de Lima, J. L. M. P.

    2013-01-01

    An educational device was created to develop a hands-on activity to illustrate how atherosclerosis can dramatically reduce blood flow in human vessels. The device was conceived, designed, and built at the University of Coimbra, in response to a request from the Exploratorio Infante D. Henrique Science Centre Museum, where it is presently…

  19. An Exploration into How Physical Activity Data-Recording Devices Could Be Used in Computer-Supported Data Investigations

    ERIC Educational Resources Information Center

    Lee, Victor R.; DuMont, Maneksha

    2010-01-01

    There is a great potential opportunity to use portable physical activity monitoring devices as data collection tools for educational purposes. Using one such device, we designed and implemented a weeklong workshop with high school students to test the utility of such technology. During that intervention, students performed data investigations of…

  20. Keep Taking the Tablets? Assessing the Use of Tablet Devices in Learning and Teaching Activities in the Further Education Sector

    ERIC Educational Resources Information Center

    Fabian, Khristin; MacLean, Donald

    2014-01-01

    This article summarises the methodology and outcomes of an interventionist/action research project to assess the benefits, and potential pitfalls, of the use of mobile devices in learning and teaching activities in a Further Education environment. A bank of 15 tablet devices were purchased and prepared for classroom use. Staff members were…