Sample records for active rock glacier

  1. Challenging the Southern Boundary of Active Rock Glaciers in West Greenland

    NASA Astrophysics Data System (ADS)

    Langley, K.; Abermann, J.

    2017-12-01

    Rock glaciers are permafrost features abundant in mountainous environments and are characterized as `steadily creeping perennially frozen and ice-rich debris on non-glacierised mountain slopes'. Previous studies investigated both the climatic significance and the dynamics of rock glaciers in Greenland, however, there do not exist studies as far south as the Godthåbsfjord area. We recently found evidence of a active rock glacier near Nuuk, around 250 km further south than the previously suggested southern active limit. It shows no signs of pioneer vegetation, which supports its likely dynamic activity. The rock glacier covers an area of ca. 1 km2and its lowest point is at an elevation of about 250 m a.s.l. Here we present the results of a two year field campaign designed to (I) confirm or reject active rock glacier occurrence in the Godthåbsfjord area with innovative methods, (II) study their dynamic regime and (III) investigate the climatic boundary conditions necessary for active rock glacier occurrence in the Sub-Arctic. We use a number of methods to determine the state of the rock glacier. Movement of the landform is assessed using repeat GPS surveying of marked stones and feature tracking based on ortho-photos and DEMs from repeat UAV deployments. Bottom temperature of snow cover (BTS) measurements give an independent first-order estimate of permafrost occurrence. An air temperature sensor deployed near the snout and recording hourly gives a first order estimate of the temperature gradients between Nuuk and the rock glacier, allowing us to assess the climatic boundary conditions required for rock glacier occurrence. BTS measurements show a clear drop in temperatures over the rock glacier compared to the surrounding areas suggesting an active landform with a well demarcated thermal regime. We will assess this independently with the repeat GPS and UAV surveys and will thus be able to confirm or reject the hypothesis of activity by the end of summer 2017.

  2. GlacierRocks - Glacier-Headwall Interaction and its Influence on Rockfall Activity

    NASA Astrophysics Data System (ADS)

    Hartmeyer, Ingo; Keuschnig, Markus; Krautblatter, Michael; Helfricht, Kay; Leith, Kerry; Otto, Jan-Christoph

    2017-04-01

    Climate models predict continued climate warming and a decrease of Austrian glaciers to less than 20% of their present area by the end of this century. Rockfall from freshly exposed headwalls has been documented as an increasing risk factor with considerable significance for man and high-alpine infrastructure. Recent findings of a five-year terrestrial laserscanning campaign (2011-2016) monitoring glacial headwalls at the Kitzsteinhorn (3.203 m a.s.l.), Hohe Tauern Range, Austria, show the dramatic impact of glacier thinning on adjacent headwalls: 80 % of the detected rockfall volumes were triggered from areas located less than 20 m above the current glacier surface. Despite these implications, little is known about the thermal, mechanical and hydrological processes that operate at the glacier-headwall interface (randkluft). Systemic in-situ monitoring of stability-relevant parameters are lacking, leaving fundamental gaps in the understanding of rockfall preconditioning in glacial headwalls and the geomorphological evolution of glaciated catchments. In this contribution we introduce the recently approved research project 'GlacierRocks', which starts in 2017 and will run for at least three years. 'GlacierRocks' will establish the worldwide first research site for long-term monitoring of stability-relevant processes inside a randkluft system. Based on the acquired monitoring data 'GlacierRocks' is pursuing three overall aims at (1) gaining a better understanding of rockfall preconditioning in randklufts and related geomorphological shaping of headwalls, (2) analyzing poorly understood glacial thinning dynamics near headwalls, and (3) estimating present and future rockfall hazard potential in headwalls on a regional scale. The three system components (headwall, glacier, randkluft) will be investigated by combining geomorphological, glaciological and meteorological methods. 'GlacierRocks' will continuously monitor rock temperature, rock moisture, frost cracking

  3. Mass balance of a highly active rock glacier during the period 1954 and 2016

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor; Rieckh, Matthias

    2017-04-01

    Active rock glaciers are creep phenomena of permafrost in high-relief terrain moving slowly downwards and are often characterised by distinct flow structures with ridges and furrows. Active rock glaciers consist of ice and rock material. The ice component might be either congelation (refreezing of liquid water) or sedimentary ('glacier') ice whereas the rock material might be either of periglacial or glacial origin. The formation period of rock glaciers lasts for centuries to millennia as judged from relative or absolute dating approaches. The input of ice and debris onto the rock glacier mass transport system over such long periods might change substantially over time. Long-term monitoring of mass transport, mass changes and nourishment processes of rock glaciers are rare. In this study we analysed on a decadal-scale mass transport (based on photogrammetric and geodetic data; series 1969-2016), mass changes (geodetically-based mass balance quantification; series 1954-2012), and mass input (based on optical data from an automatic digital camera; series 2006-2016) onto the Hinteres Langtal Rock Glacier. This rock glacier is 900 m long, up to 300 m wide, covers an area of 0.17 km2 and is one of the most active ones in the Eastern European Alps. Mass transport rates at the surface indicate relatively low mean annual surface velocities until the beginning of this millennium. A first peak in the horizontal surface velocity was reached in 2003/04 followed by a period of deceleration until 2007/08. Afterwards the rates increased again substantially from year to year with maximum values in 2014/15 (exceeding 6 m/a). This increase in surface velocities during the last decades was accompanied by crevasse formation and landslide activities at its front. Mass changes show for all six analysed periods between 1954 and 2012 a clear negative surface elevation change with mean annual values ranging from -0.016 to -0.058 m/a. This implies a total volume decrease of -435,895 m3

  4. Glaciation of alpine valleys: The glacier - debris-covered glacier - rock glacier continuum

    NASA Astrophysics Data System (ADS)

    Anderson, Robert S.; Anderson, Leif S.; Armstrong, William H.; Rossi, Matthew W.; Crump, Sarah E.

    2018-06-01

    Alpine ice varies from pure ice glaciers to partially debris-covered glaciers to rock glaciers, as defined by the degree of debris cover. In many low- to mid-latitude mountain ranges, the few bare ice glaciers that do exist in the present climate are small and are found where snow is focused by avalanches and where direct exposure to radiation is minimized. Instead, valley heads are more likely to be populated by rock glaciers, which can number in the hundreds. These rock-cloaked glaciers represent some of the most identifiable components of the cryosphere today in low- to mid-latitude settings, and the over-steepened snouts pose an often overlooked hazard to travel in alpine terrain. Geomorphically, rock glaciers serve as conveyor belts atop which rock is pulled away from the base of cliffs. In this work, we show how rock glaciers can be treated as an end-member case that is captured in numerical models of glaciers that include ice dynamics, debris dynamics, and the feedbacks between them. Specifically, we focus on the transition from debris-covered glaciers, where the modern equilibrium line altitude (ELA) intersects the topography, to rock glaciers, where the modern ELA lies above the topography. On debris-covered glaciers (i.e., glaciers with a partial rock mantle), rock delivered to the glacier from its headwall, or from sidewall debris swept into the glacier at tributary junctions, travels englacially to emerge below the ELA. There it accumulates on the surface and damps the rate of melt of underlying ice. This allows the termini of debris-covered glaciers to extend beyond debris-free counterparts, thereby decreasing the ratio of accumulation area to total area of the glacier (AAR). In contrast, rock glaciers (i.e., glaciers with a full rock mantle) occur where and when the environmental ELA rises above the topography. They require avalanches and rockfall from steep headwalls. The occurrence of rock glaciers reflects this dependence on avalanche sources

  5. Modeling the Rock Glacier Cycle

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  6. Capturing the crisis of an active rock glacier with UAV survey

    NASA Astrophysics Data System (ADS)

    Lambiel, Christophe; Rüttimann, Sébastien; Meyrat, Régis; Vivero, Sebastian

    2017-04-01

    orthomosaics clearly show the slide of the rock glacier body on a shear plan and the very rapid movement that occurred during the summer. Total movement of the rock glacier was 45 m between the 10th June and the 12th August. Meantime, the front advance was "only" 22 m. This means that strong compression occurred, what can explain why the rock glacier did not collapse on the talus cone despite extremely rapid movements on a very steep slope. Between the 12th August and the 14th September the velocities remained high (3D displacement of 13 m), yet decreasing progressively. The high activity of the first part of the summer and the successive deceleration was also observed thanks to the time-lapse images. It is very probable that the peak of the crisis has been reached during summer 2016. This will be verified with further drone survey during summer 2017. In addition to the capture of a sudden rock glacier crisis by a remote sensing method, this study also shows how useful are UAVs for studying remote, inaccessible and dangerous landforms.

  7. Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d'Olen Rock Glacier in the NW Italian Alps.

    PubMed

    Colombo, Nicola; Gruber, Stephan; Martin, Maria; Malandrino, Mery; Magnani, Andrea; Godone, Danilo; Freppaz, Michele; Fratianni, Simona; Salerno, Franco

    2018-10-15

    Three hypotheses exist to explain how meteorological variables drive the amount and concentration of solute-enriched water from rock glaciers: (1) Warm periods cause increased subsurface ice melt, which releases solutes; (2) rain periods and the melt of long-lasting snow enhance dilution of rock-glacier outflows; and (3) percolation of rain through rock glaciers facilitates the export of solutes, causing an opposite effect as that described in hypothesis (2). This lack of detailed understanding likely exists because suitable studies of meteorological variables, hydrologic processes and chemical characteristics of water bodies downstream from rock glaciers are unavailable. In this study, a rock-glacier pond in the North-Western Italian Alps was studied on a weekly basis for the ice-free seasons 2014 and 2015 by observing the meteorological variables (air temperature, snowmelt, rainfall) assumed to drive the export of solute-enriched waters from the rock glacier and the hydrochemical response of the pond (water temperature as a proxy of rock-glacier discharge, stable water isotopes, major ions and selected trace elements). An intra-seasonal pattern of increasing solute export associated with higher rock-glacier discharge was found. Specifically, rainfall, after the winter snowpack depletion and prolonged periods of atmospheric temperature above 0 °C, was found to be the primary driver of solute export from the rock glacier during the ice-free season. This occurs likely through the flushing of isotopically- and geochemically-enriched icemelt, causing concomitant increases in the rock-glacier discharge and the solute export (SO 4 2- , Mg 2+ , Ca 2+ , Ni, Mn, Co). Moreover, flushing of microbially-active sediments can cause increases in NO 3 - export. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The differing biogeochemical and microbial signatures of glaciers and rock glaciers

    USGS Publications Warehouse

    Fegel, Timothy S.; Baron, Jill S.; Fountain, Andrew G.; Johnson, Gunnar F.; Hall, Edward K.

    2016-01-01

    Glaciers and rock glaciers supply water and bioavailable nutrients to headwater mountain lakes and streams across all regions of the American West. Here we present a comparative study of the metal, nutrient, and microbial characteristics of glacial and rock glacial influence on headwater ecosystems in three mountain ranges of the contiguous U.S.: The Cascade Mountains, Rocky Mountains, and Sierra Nevada. Several meltwater characteristics (water temperature, conductivity, pH, heavy metals, nutrients, complexity of dissolved organic matter (DOM), and bacterial richness and diversity) differed significantly between glacier and rock glacier meltwaters, while other characteristics (Ca2+, Fe3+, SiO2 concentrations, reactive nitrogen, and microbial processing of DOM) showed distinct trends between mountain ranges regardless of meltwater source. Some characteristics were affected both by glacier type and mountain range (e.g. temperature, ammonium (NH4+) and nitrate (NO3- ) concentrations, bacterial diversity). Due to the ubiquity of rock glaciers and the accelerating loss of the low latitude glaciers our results point to the important and changing influence that these frozen features place on headwater ecosystems.

  9. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

    Treesearch

    L. Liu; C.I. Millar; R.D. Westfall; H.A. Zebker

    2013-01-01

    Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR) technique to compile a~benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. Statistically, these rock glaciers moved at...

  10. Differences in dissolved organic matter lability between alpine glaciers and alpine rock glaciers of the American West

    NASA Astrophysics Data System (ADS)

    Hall, E.; Fegel, T. S., II; Baron, J.; Boot, C. M.

    2015-12-01

    While alpine glaciers in montane regions represent the largest flux of dissolved organic matter (DOM) from global ice melt no research has examined the bioavailability of DOM melted out of glacial ice in the western continental United States. Furthermore, rock glaciers are an order of magnitude more abundant than ice glaciers in U.S., yet are not included in budgets for perennial ice carbon stores. Our research aims to understand differences in the bioavailability of carbon from ice glaciers and rock glaciers along the Central Rocky Mountains of Colorado. Identical microbial communities were fed standardized amounts of DOM from four different ice glacier-rock glaciers pairs. Using laboratory incubations, paired with mass spectrometry based metabolomics and 16S gene sequencing; we were able to examine functional definitions of DOM lability in glacial ice. We hypothesized that even though DOM quantities are similar in the outputs of both glacial types in our study area, ice glacial DOM would be more bioavailable than DOM from rock glaciers due to higher proportions of byproducts from microbial metabolism than rock glacier DOM, which has higher amounts of "recalcitrant" plant material. Our results show that DOM from ice glaciers is more labile than DOM from geologically and geographically similar paired rock glaciers. Ice glacier DOM represents an important pool of labile carbon to headwater ecosystems of the Rocky Mountains. Metabolomic analysis shows numerous compounds from varying metabolite pathways, including byproducts of nitrification before and after incubation, meaning that, similar to large maritime glaciers in Alaska and Europe, subglacial environments in the mountain ranges of the United States are hotspots for biological activity and processing of organic carbon.

  11. Rock Glacier Response to Climate Change in the Argentinian Andes

    NASA Astrophysics Data System (ADS)

    Drewes, J.; Korup, O.; Moreiras, S.

    2017-12-01

    Rock glaciers are bodies of frozen debris and ice that move under the influence of gravity in permafrost areas. Rock glaciers may store a large amount of sediments and play an important role as prime movers of debris in the Andean sediment cascade. However, little is known about how much sediment and water rock glaciers may store at the mountain-belt scale, and the few existing estimates vary considerably. We address this question for the Argentinian Andes, for which a new glacial inventory containing more than 6500 rock glaciers gives us the opportunity to analyse their relevance within the sediment cascade. We examine the inventory for catchments in five sub-regions, i.e. the Desert Andes (22°-31°S); the Central Andes (31°-36°S); the Northern Andes of Patagonia (36°-45°S); the Southern Andes of Patagonia (45°-52°S); and Tierra del Fuego (52°-55°S), together with climate variables of the WorldClim datasets, and digital topographic data, to estimate how rock-glacier extents may change under different past and future climate scenarios. We observe for the northern Desert Andes that rock glacier toes are at 4000 to 5000 m a.s.l. and a mean annual temperature range of 3° and 8°C, though most rock glaciers are in areas with mean annual temperatures between -5 and 5°C, marking a distinct thermal niche. Rock glaciers are traditionally viewed as diagnostic of sporadic alpine permafrost and their toes are often near the annual mean 0°C isotherm. However, we find that only rock glaciers in the southern Desert Andes and Central Andes are located where annual mean temperature is -2°C. Future scenarios project an increase of > four degrees in these areas, which may further degrade ground ice and potentially change the rates at which rock glaciers advance. Where active rock glaciers become inactive their coarse material, which was formerly bound by ice, may be released into the sediment cascade, whereas accelerating or rapidly downwasting rock glaciers may either

  12. Sierra Nevada Rock Glaciers: Biodiversity Refugia in a Warming World?

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Westfall, R. D.

    2007-12-01

    Rock glaciers and related periglacial rock-ice features (RIFs) are common landforms in high, dry mountain ranges, and widely distributed throughout canyons of the Sierra Nevada, California, USA (Millar & Westfall, in press). Due to insulating rock carapaces, active rock glaciers (ice-cored) have been documented to maintain ice longer, and thus contribute to more enduring hydrologic output, under past warming climates than typical ice glaciers. This function has been suggested for the coming century. We propose a broader hydrologic and ecologic role for RIFs as temperatures rise in the future. For the Sierra Nevada, we suggest that canyons with either active or relict RIFs (Holocene and Pleistocene) maintain water longer and distribute water more broadly than canyons that were scoured by ice glaciers and are defined by primary river and lake systems. RIFs provide persistent, distributed water for extensive wetland habitat, rare in these otherwise barren, high, and dry locations. We mapped and assessed the area of wetlands surrounding active and relict RIFs from the central eastern Sierra Nevada; from these we delineated wetland vegetation community types and recorded plant species found in RIF-supported wetlands. Mid-elevation RIFs, likely inactive or with transient ice, develop soil patches on their rock matrix. At the Barney Rock Glacier (Duck Pass, Mammoth Crest), we inventoried plant species on all soil patches, and measured cover for each species per patch and total plant cover for the rock glacier. RIF landforms also appear to support high-elevation mammals. We show that American beaver (Castor canadensis) is associated with canyons dominated by active or relict RIFs and propose that the articulating, persistent, and distributed nature of streams makes dam-building easier than other canyons. Beavers further contribute to maintaining water and creating wetland habitat in upper watersheds by engineering ponds and marshes, and contributing to riparian extent. We

  13. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile

    NASA Astrophysics Data System (ADS)

    Janke, Jason R.; Ng, Sam; Bellisario, Antonio

    2017-11-01

    An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long

  14. Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)

    NASA Astrophysics Data System (ADS)

    Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier

    2013-04-01

    Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.

  15. Geomorphology and Ice Content of Glacier - Rock Glacier – Moraine Complexes in Ak-Shiirak Range (Inner Tien Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Bolch, Tobias; Kutuzov, Stanislav; Rohrbach, Nico; Fischer, Andrea; Osmonov, Azamat

    2015-04-01

    Meltwater originating from the Tien Shan is of high importance for the runoff to the arid and semi-arid region of Central Asia. Previous studies estimate a glaciers' contribution of about 40% for the Aksu-Tarim Catchment, a transboundary watershed between Kyrgyzstan and China. Large parts of the Ak-Shiirak Range drain into this watershed. Glaciers in Central and Inner Tien Shan are typically polythermal or even cold and surrounded by permafrost. Several glaciers terminate into large moraine complexes which show geomorphological indicators of ice content such as thermo-karst like depressions, and further downvalley signs of creep such as ridges and furrows and a fresh, steep rock front which are typical indicators for permafrost creep ("rock glacier"). Hence, glaciers and permafrost co-exist in this region and their interactions are important to consider, e.g. for the understanding of glacial and periglacial processes. It can also be assumed that the ice stored in these relatively large dead-ice/moraine-complexes is a significant amount of the total ice storage. However, no detailed investigations exist so far. In an initial study, we investigated the structure and ice content of two typical glacier-moraine complexes in the Ak-Shiirak-Range using different ground penetrating radar (GPR) devices. In addition, the geomorphology was mapped using high resolution satellite imagery. The structure of the moraine-rock glacier complex is in general heterogeneous. Several dead ice bodies with different thicknesses and moraine-derived rock glaciers with different stages of activities could be identified. Few parts of these "rock glaciers" contain also massive ice but the largest parts are likely characterised by rock-ice layers of different thickness and ice contents. In one glacier forefield, the thickness of the rock-ice mixture is partly more than 300 m. This is only slightly lower than the maximum thickness of the glacier ice. Our measurements revealed that up to 20% of

  16. The geochemical record in rock glaciers

    USGS Publications Warehouse

    Steig, E.J.; Fitzpatrick, J.J.; Potter, N.; Clark, D.H.

    1998-01-01

    A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic model for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other geochemical signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.

  17. Inventorying rock glaciers: The relevance of definitions, processes and base data

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Lieb, Gerhard Karl; Wagner, Thomas; Winkler, Gerfried

    2017-04-01

    Rock glacier inventories have been elaborated for many mountain regions during the last decades. Such inventories have been used for instance to determine the current (using intact rock glaciers) or the past extent (using relict ones) of mountain permafrost and its change over time. However, the recognition and delineation of a rock glacier is not always a trivial task in particular in cases where the "typical" rock glacier surface morphology with longitudinal and transversal ridges and furrows is missing. A further inventorying restriction is based on which genetic model for rock glacier formation is used or favored by the elaborator, i.e. glacier-derived rock glaciers (with massive sedimentary or "glacier" ice), talus-derived rock glaciers (dominated by congelation ice), or a mix thereof. In addition to that, relict rock glaciers are commonly more difficult to recognize and to delineate due to the decay of morphological features or the coverage by vegetation. In this regard the geomorphic concept of equifinality plays an important role because similar looking landforms might have been formed as a result of quite different sets of processes and time periods. Two examples illustrating this problem are as follows: (i) relict embryonal rock glaciers or protalus ramparts look very similar to pronival ramparts although the acting process was substantial different; (ii) multiple ridges at a presumed rock glacier front might have been formed by several phases of glacier advance forming a set of terminal moraines. Therefore, the elaboration of a rock glacier inventory is certainly influenced by subjectivity related to the expertise and field knowledge of the mapping person. A further crucial mapping restriction is based upon the used terrain (digital elevation models/DEM and maps) and optical (airborne, spaceborne) data. Under the assumption that improved data bases help to solve the problems mentioned above the authors of this abstract elaborated three generations of

  18. Tracer-based identification of rock glacier thawing in a glacierized Alpine catchment

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Tirler, Werner; Comiti, Francesco

    2017-04-01

    Current warming in high mountains leads to increased melting of snow, glacier ice and permafrost. In particular rock glaciers, as a creeping form of mountain permafrost, may release contaminants such as heavy metals into the stream during intense melting periods in summer. This may have strong impacts on both water quantity and quality of fresh water resources but might also harm the aquatic fauna in mountain regions. In this context, the present study used stable isotopes of water and electrical conductivity (EC) combined with trace, major and minor elements to identify the influence of permafrost thawing on the water quality in the glacierized Solda catchment (130 km2) in South Tyrol (Italy). We carried out a monthly sampling of two springs fed by an active rock glacier at about 2600 m a.s.l. from July to October 2015. Furthermore, we took monthly water samples from different stream sections of the Solda River (1110 to m a.s.l.) from March to November 2015. Meteorological data were measured by an Automatic Weather Station at 2825 m a.s.l. of the Hydrographic Office (Autonomous Province of Bozen-Bolzano). First results show that water from the rock glacier springs and stream water fell along the global meteoric water line. Spring water was slightly more variable in isotopic ratio (δ2H: -91 to - 105 ) and less variable in dissolved solutes (EC: 380 to 611 μS/cm) than stream water (δ2H: -96 to - 107 ‰ and EC: 212 to 927 μS/cm). Both spring water and stream water showed a pronounced drop in EC during July and August, very likely induced by increased melt water dilution. In both water types, element concentrations of Ca and Mg were highest (up to 160 and 20 mg/l, respectively). In September, spring water showed higher concentrations in Cu, As, and Pb than stream water, indicating that these elements partly exceeded the concentration limit for drinking water. These observations highlight the important control, which rock glacier thawing may have on water quality

  19. Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming

    USGS Publications Warehouse

    DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.

    1998-01-01

    Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the

  20. Evolution of rock glaciers in Tien Shan, Central Asia, 1971 - 2016 using high-resolution stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Bolch, T.; Strel, A.

    2017-12-01

    The reactions of glaciers to climate change are relatively well known and numerous remote sensing and modelling studies exist. Also debris-covered glaciers are meanwhile relatively well investigated. However, rock glaciers react differently but respective studies are less frequent despite the fact that they also occur in many mountain ranges and can be of significance in relation to hydrology, geomorphology and hazards. Rock glaciers are abundant in Tien Shan and rock glaciers with areas larger 1 km² are common. However, investigating rock glaciers by remote sensing is difficult because their topographical changes are of lower magnitude and less evident than the changes of glaciers. Hence, high resolution imagery and digital terrain models (DTMs) are needed to study these periglacial landforms. We used 1971 Corona KH-4B (resolution 2m), 2012 GeoEye (0.5m) and 2016 Pléiades (0.5m) stereo images to map and investigate the velocity and surface elevation changes of the rock glaciers in the central part of Ile Alatau (Northern Tien Shan) in Kazakhstan. DTMs with a resolution of 5 m were generated and subsequently co-registered. Surface displacements were calculated by feature tracking. Overall we identified almost 50 active rock glaciers covering an area of about 18km², which is more than 40% of the glacier cover of the year 2016 in the investigated valleys. Moraine-type rock glaciers are more common than talus-type rock glaciers. The average surface velocity of the rock glaciers was 0.44 ± 0.30 m a-1 with rates of up to 2m a-1. On average the rock glaciers showed only a slight insignificant surface lowering of 0.04 m a-1 for the period 1971-2012 and of 0.06 m a-1 for 2012-2016. Most of the investigated rock glaciers showed similar distinct patters of change: A surface elevation gain at their fronts indicating an advance, a significant lowering in the upper probably glacier affected parts of the rock glaciers and areas of elevation gain and lowering in between

  1. Relict rock glaciers in alpine catchments: A regional study in Central Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Pauritsch, Marcus; Winkler, Gerfried

    2013-04-01

    Alpine catchments represent an important freshwater source in many regions. Catchments in the subalpine to nival altitudinal levels are generally characterised by higher precipitation, lower evapotranspiration and consequently higher discharge rates compared to lower elevated areas of the montane and foothill levels of the same region. Particularly in crystalline mountain regions in the mid- to high latitudes glacial and periglacial sediments cover larger areas and form important aquifers in alpine catchments. Typical periglacial landforms in mountain areas are rock glaciers. Relict rock glaciers consist of sediment accumulations without permafrost at present. This rock glacier type has a strong influence on water storage capacities and discharge behaviour of the catchments. The hydraulic properties of rock glaciers have a positive impact on flood-risk reduction and the riparian ecology below rock glacier springs during dry periods. Furthermore, the exceptional high discharge rates at springs at the front of relict rock glaciers compared to nearby non-rock glacier springs are also of economic interest. Knowledge about morphometric characteristics of rock glacier catchments helps to increase the understanding of the groundwater system and discharge dynamics of rock glaciers. In this context the main objectives of our study are (a) to assess and quantitatively describe rock glacier catchments at a regional scale by analysing different morphometric parameters of the catchments and (b) to combine the rock glacier catchment properties with water balance data. In doing so, at first an inventory of 295 rock glacier catchments was established for the 2440 km² large study area (Niedere Tauern Range, Styria) in Central Austria ranging from 590 to 2862 m a.s.l.. In a second step, the inventory data were combined with area-wide precipitation, discharge and evapotranspiration data. Results reveal that 108 km² or 4.4% of the entire study area belongs to rock glacier catchments

  2. Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Liu, Lin; Zhao, Lin; Wu, Tonghua; Li, Zhongqin; Liu, Guoxiang

    2017-04-01

    Rock glaciers are widespread in the Tien Shan. However, rock glaciers in the Chinese part of the Tien Shan have not been systematically investigated for more than 2 decades. In this study, we propose a new method that combines SAR interferometry and optical images from Google Earth to map active rock glaciers (ARGs) in the northern Tien Shan (NTS) of China. We compiled an inventory that includes 261 ARGs and quantitative information about their locations, geomorphic parameters, and downslope velocities. Our inventory shows that most of the ARGs are moraine-derived (69 %) and facing northeast (56 %). The altitude distribution of ARGs in the western NTS is significantly different from those located in the eastern part. The downslope velocities of the ARGs vary significantly in space, with a maximum of about 114 cm yr-1 and a mean of about 37 cm yr-1. Using the ARG locations as a proxy for the extent of alpine permafrost, our inventory suggests that the lowest altitudinal limit for the presence of permafrost in the NTS is about 2500-2800 m, a range determined by the lowest ARG in the entire inventory and by a statistics-based estimation. The successful application of the proposed method would facilitate effective and robust efforts to map rock glaciers over mountain ranges globally. This study provides an important dataset to improve mapping and modeling permafrost occurrence in vast western China.

  3. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Harrison, S.; Anderson, K.; Selley, H. L.; Wood, J. L.; Betts, R. A.

    2018-01-01

    In the Nepalese Himalaya, there is little information on the number, spatial distribution and morphometric characteristics of rock glaciers, and this information is required if their hydrological contribution is to be understood. Based on freely available fine spatial resolution satellite data accessible through Google Earth, we produced the first comprehensive Nepalese rock glacier inventory, supported through statistical validation and field survey. The inventory includes the location of over 6000 rock glaciers, with a mean specific density of 3.4%. This corresponds to an areal coverage of 1371 km2. Our approach subsampled approximately 20% of the total identified rock glacier inventory (n = 1137) and digitised their outlines so that quantitative/qualitative landform attributes could be extracted. Intact landforms (containing ice) accounted for 68% of the subsample, and the remaining were classified as relict (not containing ice). The majority (56%) were found to have a northerly aspect (NE, N, and NW), and landforms situated within north- to west-aspects reside at lower elevations than those with south- to- east aspects. In Nepal, we show that rock glaciers are situated between 3225 and 5675 m a.s.l., with the mean minimum elevation at the front estimated to be 4977 ± 280 m a.s.l. for intact landforms and 4541 ± 346 m a.s.l. for relict landforms. The hydrological significance of rock glaciers in Nepal was then established by statistically upscaling the results from the subsample to estimate that these cryospheric reserves store between 16.72 and 25.08 billion m3 of water. This study, for the first time, estimates rock glacier water volume equivalents and evaluates their relative hydrological importance in comparison to ice glaciers. Across the Nepalese Himalaya, rock glacier to ice glacier water volume equivalent is 1:9, and generally increases westwards (e.g., ratio = 1:3, West region). This inventory represents a preliminary step for understanding the

  4. Groundwater Storage and Flow Pathways in a Rock Glacier Complex in the Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Mozil, A.; Harrington, J.; Bentley, L. R.

    2015-12-01

    Hydrological functions of alpine glaciers and their responses to the warming climate have received much attention by hydrologists working in alpine catchments around the world. As alpine glaciers retreat, they commonly leave debris-covered ice or ice-cored moraine behind, which can remain frozen in ground for many decades or centuries. In many alpine catchments, characteristic landforms indicating rock glaciers or their relicts are found in locations where glaciers do not exist under the current climate. These landscape features associated with mountain permafrost are ubiquitous in alpine catchments, but their hydrological functions have not received much attention. Do rock glaciers and other mountain-permafrost features contribute significantly to storage of snowmelt water and its delayed release to sustain baseflow in the critical alpine stream habitats? How are these storage functions responding to the climate warming? In order to answer these questions, we initiated a hydrological study of rock glaciers in an alpine catchment in the Canadian Rockies in 2014. We will present preliminary results of our study using geophysical imaging techniques, hydro-meteorological monitoring, and groundwater tracing using various environmental tracers. Key findings are: 1) substantial amount of permafrost exists in the rock glacier which is inactive (i.e. no active motion) under the present climate, 2) spatial distribution of permafrost is controlled by both meteorological and geological factors, 3) the rock glacier complex contributes 30-50 % of summer stream flow even though they occupy less than 5% of the catchment area, and 4) the low temperature (< 2 C) of groundwater discharging at the toe of rock glacier plays a significant role in regulating the temperature of stream, which hosts a population of trout species that is listed as "threatened" in the list of the status of endangered wildlife in Canada.

  5. Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies

    NASA Astrophysics Data System (ADS)

    Kummert, Mario; Delaloye, Reynald

    2018-05-01

    The sedimentary connection which may occur between the front of active rock glaciers and torrential channels is not well understood, despite its potential impact on the torrential activity characterizing the concerned catchments. In this study, DEMs of difference (DoDs) covering various time intervals between 2013 and 2016 were obtained from LiDAR-derived multitemporal DEMs for three rapidly moving rock glaciers located in the western Swiss Alps. The DoDs were used to map and quantify sediment transfer activity between the front of these rock glaciers and the corresponding underlying torrential gullies. Sediment transfer rates ranging between 1500 m3/y and 7800 m3/y have been calculated, depending on the sites. Sediment eroded from the fronts generally accumulated in the upper sectors of the torrential gullies where they were occasionally mobilized within small to medium sized debris flow events. A clear relation between the motion rates of the rock glaciers and the sediment transfer rates calculated at their fronts could be highlighted. Along with the size of the frontal areas, rock glacier creep rates influence thus directly sediment availability in the headwaters of the studied torrents. The frequency-magnitude of debris flow events varied between sites and was mainly related to the concordance of local factors such as topography, water availability, sediment availability or sediment type.

  6. Pluri-decadal (1955-2014) evolution of glacier-rock glacier transitional landforms in the central Andes of Chile (30-33° S)

    NASA Astrophysics Data System (ADS)

    Monnier, Sébastien; Kinnard, Christophe

    2017-08-01

    Three glacier-rock glacier transitional landforms in the central Andes of Chile are investigated over the last decades in order to highlight and question the significance of their landscape and flow dynamics. Historical (1955-2000) aerial photos and contemporary (> 2000) Geoeye satellite images were used together with common processing operations, including imagery orthorectification, digital elevation model generation, and image feature tracking. At each site, the rock glacier morphology area, thermokarst area, elevation changes, and horizontal surface displacements were mapped. The evolution of the landforms over the study period is remarkable, with rapid landscape changes, particularly an expansion of rock glacier morphology areas. Elevation changes were heterogeneous, especially in debris-covered glacier areas with large heaving or lowering up to more than ±1 m yr-1. The use of image feature tracking highlighted spatially coherent flow vector patterns over rock glacier areas and, at two of the three sites, their expansion over the studied period; debris-covered glacier areas are characterized by a lack of movement detection and/or chaotic displacement patterns reflecting thermokarst degradation; mean landform displacement speeds ranged between 0.50 and 1.10 m yr-1 and exhibited a decreasing trend over the studied period. One important highlight of this study is that, especially in persisting cold conditions, rock glaciers can develop upward at the expense of debris-covered glaciers. Two of the studied landforms initially (prior to the study period) developed from an alternation between glacial advances and rock glacier development phases. The other landform is a small debris-covered glacier having evolved into a rock glacier over the last half-century. Based on these results it is proposed that morphological and dynamical interactions between glaciers and permafrost and their resulting hybrid landscapes may enhance the resilience of the mountain cryosphere

  7. Geochemistry and source waters of rock glacier outflow, Colorado Front Range

    USGS Publications Warehouse

    Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.

    2006-01-01

    We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.

  8. Rock glaciers originating from mass movements: A new model based on field data

    NASA Astrophysics Data System (ADS)

    Reitner, J. M.; Gruber, A.

    2009-04-01

    The morphological and geological conditions for the formation of rock glaciers in Alpine environments seem to be clear according to our present knowledge (BARSCH, 1996; HAEBERLI et al. 2006). All known examples derive from porous more or less coarse grained sedimentary bodies, either from moraines or, in most cases, from talus fans. In the latter case the debris accumulation originates overwhelmingly from physical weathering, rock falls or rock avalanches in proximity to rockwalls. However, in the course of geological mapping in the crystalline areas of Eastern and Northern Tyrol (Schober Gruppe, Tuxer Alpen) we found an additional setting. Some relict rock glaciers occur directly at the bulging toe of bedrock slopes, which had been affected by deep-seated gravitational slope deformations (REITNER, 2003; GRUBER, 2005). Furthermore rock glaciers are also present in ridge-top depressions and similar graben-like features that originated from gravitational processes in jointed bedrock. In all these cases talus fans with debris accumulation are missing in the source area of those rock glaciers. According to our model the disintegration of jointed rocks by creeping mass movements resulted in an increased volume of joint space. This enabled the formation of interstitial ice under permafrost conditions. Increased ice saturation led to the reduction of the angle of internal friction and finally to the initial formation of a rock glacier. Abundant material was provided for the further movement and thus for formation of quite large rock glaciers due to the previous and maybe still ongoing slope deformation. Most rock glaciers of this type originated from mass movements of sagging -type (Sackung sensu ZISCHINSKY, 1966), which illustrates the continuous transition from gravitational to periglacial creep process in high Alpine areas. All studied examples are of Lateglacial age according to the altitude in correspondence to the known amount of permafrost depression compared to

  9. Geomorphic consequences of two large glacier and rock glacier destabilizations in the Central and northern Chilean Andes

    NASA Astrophysics Data System (ADS)

    Iribarren Anacona, Pablo; Bodin, Xavier

    2010-05-01

    Mountain areas are occasionaly affected by complex mass movements of high magnitude and large extent, which generally involve water, snow, rock and ice in variable proportions. Those events can take the form of rock avalanche, landslide, debris flow, glacier collapse or a combination of these phenomenons. In the Central Andes of Chile, they affect hardly accessible regions with low population, explaining the scarcity of previous studies. Nevertheless, during the last 30 years, some documented examples of such events in this region have shown that the volume of material involved is in the order of several millions of m³, the areas affected can reach several tenth of km² and the velocity of the movement can exceed several tenths of m/s. In this context, this study intends i) to inventory and to describe the main characteristics of events previously documented in the Central Andes of Chile, and ii) analyse in detail two recent events (2005-2007) never described before which have affected in one case a glacier and in another case a rock glacier. With the objectives of determining the possible chain of triggering factors and interpreting the event's significance in terms of geomorphic, cryogenic and climatic dynamics, we used air photographs, satellite imagery (Landsat TM & ETM+; Quick Bird when available in Google Earth 5.0), data from the closest meteorological stations, glacier mass balance data and seismic records to investigate the collapse of a rock glacier occurred in 2006 on the west-facing flank of the Cerro Las Tórtolas (6160 m asl; 29°58' S. - 69°55' W.), in the arid North of Chile, and the collapse of a glacier that occurred during austral summer 2006-2007 on the South side of the Tinguiririca Volcano (4075 m asl; 34°48' S. - 70°21' W.). The rock glacier collapse of the Cerro Las Tórtolas West flank occurred during the spring of 2006, but signs of destabilization were already observable since the end of 2005. The deposit of the collapsed mass of the

  10. Interannual variability of rock glacier surface velocities and its relationship to climatic conditions on a decadal scale: Some insights from the European Alps

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Bodin, Xavier; Delaloye, Reynald; Fischer, Andrea; Gärtner-Roer, Isabelle; Hartl, Lea; Kaufmann, Viktor; Krainer, Karl; Lambiel, Christophe; Mair, Volkmar; Marcer, Marco; Morra di Cella, Umberto; Scapozza, Cristian; Schoeneich, Philippe; Staub, Benno

    2017-04-01

    Active, inactive and relict rock glaciers are widespread periglacial landforms in the European Alps as revealed by several inventories elaborated for Slovenia, Austria, Switzerland, Italy, and France. Rock glaciers indicate present or past permafrost conditions in mountain environments and hence have a high climatic or paleoclimatic relevance. The monitoring of surface velocities at active rock glaciers has a long tradition in the European Alps with first terrestrial photogrammetric surveys in the Swiss and Austrian Alps already in the 1920s. Since the 1990s velocity monitoring activities have been substantially expanded but also institutionalized. Today, several research groups carry out annual or even continuous monitoring of rock glacier creep at more than 30 rock glaciers in Austria, France, Italy, and Switzerland. In many cases such a kinematic monitoring is jointly accomplished with meteorological and ground temperature monitoring in order to better understand the rock glacier-climate relationships and the reaction of rock glacier behavior to climatic changes. In this contribution we present a synthesis of the main results from long-term monitoring of several rock glaciers in the European Alps with at least annually-repeated data. Similarities but also differences of the movement patterns at the different sites are discussed, while the spatio-temporal pattern of the surface displacement is looked at against the climate context. In general, rock glacier surface velocities in the European Alps have been rather low during the 1980s and 1990s and reached a first peak in 2003/04 followed by a drastic drop until c.2007/08. Since then rock glacier surface velocities increased again with new velocity records in 2015/16 superior to the first peak around 2003/04. These creep rate maxima coincide with the warmest permafrost temperatures ever measured in boreholes and are likely a result of the continuously warm conditions at the ground surface over the past seven years.

  11. Ground surface thermal regime of rock glaciers in the High Tatra Mts., Slovakia

    NASA Astrophysics Data System (ADS)

    Uxa, Tomáš; Mida, Peter

    2017-04-01

    mean annual air temperature (MAAT), which averaged +2.3 ˚ C in both years (estimated from nearby Lomnický štít station using a lapse rate of 6.5 ˚ C/km). Accordingly, GSTs showed negative surface offset (MAGST-MAAT) of -1.3 ˚ C and -1.5 ˚ C in 2014-2015 and 2015-2016, respectively. At the coldest sites, the surface offset regularly reached values well below -2 ˚ C and dropped up to -3.3 ˚ C. GSTs recorded prior to the onset of snow melting (i.e. BTS) averaged -3.8 ˚ C and -3.2 ˚ C in spring of 2015 and 2016, respectively, and varied between -5.8 ˚ C and -1.6 ˚ C. One-time BTS values showed the average of -2.8 ˚ C, but relatively high short-distance heterogeneity of BTS values, ranging between -8.3 ˚ C and 0.0 ˚ C, was encountered across the rock-glacier surfaces. The results suggest that permafrost occurrence is probable or possible in a total of ten rock glaciers, while its absence is probable only in one of the investigated landforms. We classify the latter form as relict and other two rock glaciers are suggested to be in inactive/relict state. Six rock glaciers are believed to be inactive and two even active/inactive. In most cases, however, permafrost likely occurs in a form of isolated patches or discontinuously and presumably degrades under present climate conditions.

  12. Rock glacier outflows may adversely affect lakes: lessons from the past and present of two neighboring water bodies in a crystalline-rock watershed.

    PubMed

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2014-06-03

    Despite the fact that rock glaciers are one of the most common geomorphological expressions of mountain permafrost, the impacts of their solute fluxes on lakes still remain largely obscure. We examined water and sediment chemistry, and biota of two neighboring water bodies with and without a rock glacier in their catchments in the European Alps. Paleolimnological techniques were applied to track long-term temporal trends in the ecotoxicological state of the water bodies and to establish their baseline conditions. We show that the active rock glacier in the mineralized catchment of Lake Rasass (RAS) represents a potent source of acid rock drainage that results in enormous concentrations of metals in water, sediment, and biota of RAS. The incidence of morphological abnormalities in the RAS population of Pseudodiamesa nivosa, a chironomid midge, is as high as that recorded in chironomid populations inhabiting sites heavily contaminated by trace metals of anthropogenic origin. The incidence of morphological deformities in P. nivosa of ∼70% persisted in RAS during the last 2.5 millennia and was ∼40% in the early Holocene. The formation of RAS at the toe of the rock glacier most probably began at the onset of acidic drainage in the freshly deglaciated area. The present adverse conditions are not unprecedented in the lake's history and cannot be associated exclusively with enhanced thawing of the rock glacier in recent years.

  13. Snow-cover dynamics monitored by automatic digital photography at the rooting zone of an active rock glacier in the Hinteres Lantal Cirque, Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Rieckh, Matthias; Avian, Michael

    2010-05-01

    Knowledge regarding snow-cover dynamics and climatic conditions in the rooting zone of active rock glaciers is still limited. The number of meteorological stations on the surface of or close to active rock glaciers is increasing. However, areal information on snow-cover distribution and its spatial dynamics caused by different processes on rock glaciers surfaces with a high temporal resolution from such remote alpine areas are mostly difficult to obtain. To face this problem an automatic remote digital camera (RDC) system was proprietary developed. The core parts of the RDC system are a standard hand-held digital camera, a remote control, a water proof casing with a transparent opening, a 12V/25Ah battery and solar panels with a charge controller. Three such devices were constructed and installed at different sites in the Central Alps of Austria. One RDC system is used to monitor the rooting zone of the highly active rock glacier in the Hinteres Langtal Cirque (46°59'N, 12°47'E), Central Schober Mountains, Austria. The 0.15 km² large NW-facing rock glaciers is tongue-shaped with a fast moving lower part (>1m/a) and a substantially slower upper part, ranging in elevation between 2455-2700 m a.s.l. The RDC system was set up in September 2006 and is located since than at 2770 m a.s.l. on a pronounced ridge crest that confines the Hinteres Langtal Cirque to the SW. The water proof casing was attached to a 1.5 m high metal pole which itself was fixed to the bedrock by screws and concrete glue. The viewing direction of the camera is NE. Hence, the image section of the RDC focuses on the rooting zone of the rock glacier and its headwalls up to c. 3000 m a.s.l. Photographs were taken daily at 3 pm providing the optimal lighting conditions in the relevant part of the cirque. 720 photographs were taken continuously in the period 12.09.2006 to 31.08.2008. These optical data were analysed by applying GIS and remote sensing techniques regarding snow-cover distribution

  14. First attempt to study rock glaciers in New Zealand using the Schmidt-hammer - framework and preliminary results

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Lambiel, Christophe; Sattler, Katrin; Büche, Thomas; Springer, Johanna

    2016-04-01

    Although not uncommon within the dryer eastern parts of the Southern Alps, New Zealand, comparatively few previous studies have previously focused on rock glacier dynamics and spatial distribution. Neither investigations of their chronological constraints nor any studies on actual rock glacier velocities have yet been carried out. Rock glaciers and periglacial processes still largely constitute a largely unexplored albeit potentially valuable field of research in the Southern Alps. The high-altitude valley head of Irishman Stream in the Ben Ohau Range between Lakes Ohau and Pukaki, roughly 30 km southeast of the Main Divide, contains a few morphologically intact rock glaciers and some appear to be active features (Sattler et al. 2016). Previous work focusing on the Late-glacial and early Holocene moraines in the valley head below the rock glaciers (Kaplan et al. 2010) provided 10Be-ages that could be utilised as fixed points for SHD (Schmidt-hammer exposure-age dating). Apart from detailed Schmidt-hammer sampling on the Late-glacial and early Holocene moraines, two altitudinal transects from the toe to their apex have been measured in detail on selected rock glaciers. On each of the multiple ridges of the rock glacier surface three sites of 50 boulders have been sampled with one impact each by the hammer (an N-type electronic SilverSchmidt by Proceq). Apart from getting some age constraints of these periglacial features in comparison to the well-dated moraines, the Schmidt-hammer measurements also had the aim to provide some insight into their genetic development resulting in a quite complex morphology of the rock glaciers and partial interaction with some of the moraines. Both altitudinal transects reveal a clear and continuous trend of increasing means (i.e. less weathered/younger exposure ages) towards their apex. The values for the individual ridges show, however, a transitional character with adjacent ridges albeit the abovementioned trend not statistically

  15. Permafrost Favourability Index: Spatial modelling in the French Alps using a Rock Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Marcer, Marco; Bodin, Xavier; Brenning, Alexander; Schoeneich, Philippe; Charvet, Raphaële; Gottardi, Frédéric

    2017-12-01

    In the present study we used the first rock glacier inventory for the entire French Alps to model spatial permafrost distribution in the region. The inventory, which does not originally belong to this study, was revised by the authors in order to obtain a database suitable for statistical modelling. Climatic and topographic data evaluated at the rock glacier locations were used as predictor variables in a Generalized Linear Model. Model performances are strong, suggesting that, in agreement with several previous studies, this methodology is able to model accurately rock glacier distribution. A methodology to estimate model uncertainties is proposed, revealing that the subjectivity in the interpretation of rock glacier activity and contours may substantially bias the model. The model highlights a North-South trend in the regional pattern of permafrost distribution which is attributed to the climatic influences of the Atlantic and Mediterranean climates. Further analysis suggest that lower amounts of precipitation in the early winter and a thinner snow cover, as typically found in the Mediterranean area, could contribute to the existence of permafrost at higher temperatures compared to the Northern Alps. A comparison with the Alpine Permafrost Index Map (APIM) shows no major differences with our model, highlighting the very good predictive power of the APIM despite its tendency to slightly overestimate permafrost extension with respect to our database. The use of rock glaciers as indicators of permafrost existence despite their time response to climate change is discussed and an interpretation key is proposed in order to ensure the proper use of the model for research as well as for operational purposes.

  16. Influencing factors on the cooling effect of coarse blocky top-layers on relict rock glaciers

    NASA Astrophysics Data System (ADS)

    Pauritsch, Marcus; Wagner, Thomas; Mayaud, Cyril; Thalheim, Felix; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried

    2017-04-01

    Coarse blocky material widely occurs in alpine landscapes particularly at the surface of bouldery rock glaciers. Such blocky layers are known to have a cooling effect on the subjacent material because of the enhanced non-conductive heat exchange with the atmosphere. This effect is used for instance by the construction of blocky embankments in the building of railways and roads in permafrost regions to prevent thawing processes. In alpine regions, this cooling effect may have a strong influence on the distribution and conservation of permafrost related to climate warming. The thermal regimes of the blocky surface layers of two comparable - in terms of size, elevation and geology - relict rock glaciers with opposing slope aspects are investigated. Therefore, the influence of the slope aspect-related climatic conditions (mainly the incident solar radiation, wind conditions and snow cover) on the cooling effect of the blocky layers is investigated. Air temperature, ground surface temperature and ground temperature at one meter depth were continuously measured over a period of four years at several locations at the NE-oriented Schöneben Rock Glacier and the adjacent SW-oriented Dürrtal Rock Glacier. At the former, additional data about wind speed and wind direction as well as precipitation are available, which are used to take wind-forced convection and snow cover into consideration. Statistical analyses of the data reveal that the blocky top layer of the Dürrtal Rock Glacier generally exhibits lower temperatures compared to the Schöneben Rock Glacier despite the more radiation-exposed aspect and the related higher solar radiation. However, the data show that the thermal regimes of the surface layers are highly heterogeneous and that data from the individual measurement sites have to be interpreted with caution. High Rayleigh numbers at both rock glaciers show that free convection occurs particularly during winter. Furthermore, wind-forced convection has a high

  17. Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria.

    PubMed

    Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor

    2018-04-15

    Glaciers and permafrost are strongly linked to each other in mid-latitude mountain regions particularly with polythermal glaciers. This linkage is not only climatically defined but also in terms of geomorphic and glaciological processes. We studied two adjacent cirques located in the Central Austria. We focussed on the deglaciation since the Little Ice Age (LIA) maximum (c.1850CE) and its relevance for permafrost and rock glacier evolution since then. One cirque is occupied by a glacier remnant whereas the second one is occupied by an active rock glacier which was partly overridden by a glacier during the LIA. We applied a multidisciplinary approach using field-based techniques including geoelectrics, geodetic measurements, and automatic monitoring as well as historic maps and photographs, remote sensing, and digital terrain analysis. Results indicate almost complete deglaciation by the end of the last millennium. Small-scale tongue-shaped landforms of complex origin formed during the last decades at finer-grained slope deposits below the cirque headwalls. Field evidences and geophysics results proved the existence of widespread sedimentary ice beneath a thin veneer of debris at these slopes. The variable thickness of the debris layer has a major impact on differential ablation and landform evolution in both cirques. The comparison of digital elevation models revealed clear mass losses at both cirques with low rates between 1954 and 2002 and significantly higher rates since then. The central and lower part of the rock glacier moves fast transporting sediments and ice downvalley. In contrast, the upper part of the rock glacier is characterised by low debris and ice input rates. Both effects cause a significant decoupling of the main rock glacier body from its nourishment area leading eventually to rock glacier starvation. This study demonstrates the importance of a decadal-scale and multidisciplinary research approach in determining the development of alpine

  18. Sedimentary connection between rock glaciers and torrential channels: definition, inventory and quantification from a test area in the south-western Swiss Alps

    NASA Astrophysics Data System (ADS)

    Kummert, Mario; Barboux, Chloé; Delaloye, Reynald

    2017-04-01

    Permafrsot creep is an important sediment transfer process in periglacial alpine hillslopes (Delaloye et al. 2010). Rock glaciers are the visible expression of mountain permafrost creep (Delaloye 2004). Large volumes of rock debris originating from headwalls, moraines and weathering deposits are slowly transported within rock glaciers from their rooting zone to their fronts. In the Alps, most rock glaciers can be considered as sediment traps, because the sediment output at their margin is usually limited (Gärtner-Roer 2012). However, cases of rock glacier supplying torrential channels with sediments have been documented (e.g. Lugon and Stoffel 2010, Delaloye et al. 2013) Such rock glaciers can act as a sediment source for the triggering of gravitational processes propagating further downstream. Moreover, in such configuration the amount of sediment available is not a finite volume but is gradually renewed or increased as the rock glacier advances. These cases are therefore very specific, especially in the perspective of natural hazards assessment and mitigation. However, in the Alps very little is known about such type of rock glaciers. In addition, the sediment transfer rates between the fronts of the rock glaciers and the torrents are often not known. In this context, our study aims at (i) defining better the configurations in which a sedimentary connection exists between rock glaciers and torrential channels, (ii) localizing the cases of active rock glaciers connected to the torrential network and (iii) estimating approximate sediment transfer rates between the fronts and the torrential gullies. For that purpose, an inventory method for the classification of torrential catchments based on the analysis of aerial images and the computation of connectivity indexes have been developped. In addition, sediment transfer rates were estimated taking into account the geometry of the frontal areas and the velocity rates of the rock glaciers derived from DInSAR data. In

  19. Schmidt-hammer exposure-age dating (SHD) of Lateglacial rock glacier systems near the eastern margin of the European Alps

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas

    2016-04-01

    Rock glaciers are widespread permafrost landforms in Austria. Various rock glacier inventories list more than 4500 rock glaciers in the country; some 30-40% of them are intact. Relict (permafrost free) and pseudo-relict rock glaciers (sporadic and isolated permafrost particularly near the root zone) prevail in number. Rock glaciers are commonly formed over a period of several ka. Dating such landforms helps to understand palaeoclimatic conditions. In this study three rock glaciers consisting of gneiss were dated applying the Schmidt-hammer exposure-age dating (SHD) method. The rock glaciers are located at three neighbouring cirques in the Seckauer Tauern Range named Reichart Rock Glacier (RRG, area 1.26 km², length 1800 m, elevation range 1520-1940 m a.s.l.), Schöneben Rock Glacier (SRG, 0.11 km², 750 m, 1715-1905 m a.s.l.), and Dürrtal Rock Glacier (DRG, 0.08 km², 850 m, 1750-1980 m a.s.l.). RRG is one of the largest rock glaciers in Austria. All three landforms are influenced by lenses of permafrost at present (as indicated by ERT). During the LGM the Seckauer Tauern were covered by valley glaciers and deglaciation occurred presumably already early in the Alpine Lateglacial period. An analogue N-type Schmidt-hammer (proceq) was used for measuring the surface strength of stable blocks at the rock glacier surface by recording a rebound value (R-value) of a spring-loaded bolt. The R-value gives a relative measure of the surface hardness and hence time since exposure to weathering. Eight (RRG) or six (SRG, DRG) Schmidt-hammer measurement sites (with 50-100 individual readings) aligned along longitudinal transects (=former central flow line) between a talus slope (with relatively fresh boulders) in the root zone and the frontal ridge were measured. Mean R-value differences of 30.5 at RRG, 25.1 at SRG, and 20.7 at DRG were revealed along the three transects. The differences between the lowest and the highest R-value at the rock glaciers itself were 19.0 at RRG, 15

  20. A new 3-D thin-skinned rock glacier model based on helicopter GPR results from the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Merz, Kaspar; Green, Alan G.; Buchli, Thomas; Springman, Sarah M.; Maurer, Hansruedi

    2015-06-01

    Mountainous locations and steep rugged surfaces covered by boulders and other loose debris are the main reasons why rock glaciers are among the most challenging geological features to investigate using ground-based geophysical methods. Consequently, geophysical surveys of rock glaciers have only ever involved recording data along sparse lines. To address this issue, we acquired quasi-3-D ground-penetrating radar (GPR) data across a rock glacier in the Swiss Alps using a helicopter-mounted system. Our interpretation of the derived GPR images constrained by borehole information results in a novel "thin-skinned" rock glacier model that explains a concentration of deformation across a principal shear zone (décollement) and faults across which rock glacier lobes are juxtaposed. The new model may be applicable to many rock glaciers worldwide. We suggest that the helicopter GPR method may be useful for 3-D surveying numerous other difficult-to-access mountainous terrains.

  1. Glacier surge triggered by massive rock avalanche: Teleseismic and satellite image study of long-runout landslide onto RGO Glacier, Pamirs

    NASA Astrophysics Data System (ADS)

    Stark, C. P.; Wolovick, M.; Ekstrom, G.

    2012-12-01

    Glacier surges are thought to result from changes in resistance to sliding at the base of the ice mass. The reasons for such changes in basal conditions are not entirely understood, and this is in part because empirical constraints are severely limited. Recent work in the Karakoram and Pamir mountains, home to the majority of Earth's surging mountain glaciers, has boosted observational data, but has led to diametrically opposed interpretations of their glacier surging mechanics, ranging from thermal to hydrological switching. In this context we describe a surge of the RGO (Russian Geographical Society) Glacier in the Pamirs triggered by a massive rock avalanche off Mt Garmo in 2001. Initial reports pegged the RGO Glacier landslide as having been triggered in 2002 by strong ground motion originating from a nearby tectonic earthquake. We used multitemporal satellite imagery to establish failure must have struck in August-September 2001. This revised date was confirmed by reexamining teleseismic data recorded at stations in central Asia: it became clear that a landslide seismic source of magnitude Msw≈5.4 on 2001/09/02 had been misinterpreted as two tectonic sources located within kilometers of Mt Garmo. Exploiting a new technique we have developed for inverting long-period seismic waveforms, we show that a mass of rock and ice around 2.8×{}1011 kg collapsed to the SSE from an elevation of around 5800m, accelerated to a peak speed of about 60m/s, collided with the valley wall ˜ 2 km to the south and turned east to run out a further 6km over significant fractions of the accumulation and ablation zones of the RGO Glacier. Based on this estimate of landslide mass, we deduce that the supraglacial debris blanket generated by this rock avalanches averaged about 20m in thickness. By this reckoning, the Mt Garmo landslide is one of the largest in the last 33 years. Next we mapped the velocity field of the RGO Glacier over time using multitemporal satellite imagery. We

  2. Friction and dynamics of rock avalanches travelling on glaciers

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio Vittorio

    2014-05-01

    Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.

  3. Thermal and hydrologic attributes of rock glaciers and periglacial talus landforms: Sierra Nevada, California, USA

    Treesearch

    Constance I. Millar; Robert D. Westfall; Diane L. Delany

    2013-01-01

    To explore thermal regimes and hydrologic capacity of rock glaciers and related periglacial talus landforms, mini-thermochrons were deployed in and around potentially ice-embedded features of the Sierra Nevada. Results from pilot studies at 13 rock glaciers and 7 taluses indicate that outlet springs from these landforms generally do not desiccate but persist year...

  4. Can we use ice calving on glacier fronts as a proxy for rock slope failures?

    NASA Astrophysics Data System (ADS)

    Abellan, Antonio; Penna, Ivanna; Daicz, Sergio; Carrea, Dario; Derron, Marc-Henri; Jaboyedoff, Michel; Riquelme, Adrian; Tomas, Roberto

    2015-04-01

    Ice failures on glacier terminus show very similar fingerprints to rock-slope failure (RSF) processes, nevertheless, the investigation of gravity-driven instabilities that shape rock cliffs and glacier's fronts are currently dissociated research topics. Since both materials (ice and rocks) have very different rheological properties, the development of a progressive failure on mountain cliffs occurs at a much slower rate than that observed on glacier fronts, which leads the latter a good proxy for investigating RSF. We utilized a terrestrial Laser Scanner (Ilris-LR system from Optech) for acquiring successive 3D point clouds of one of the most impressive calving glacier fronts, the Perito Moreno glacier located in the Southern Patagonian Ice Fields (Argentina). We scanned the glacier terminus during five days (from 10th to 14th of March 2014) with very high accuracy (0.7cm standard deviation of the error at 100m) and a high density of information (200 points per square meter). Each data series was acquired at a mean interval of 20 minutes. The maximum attainable range for the utilized wavelength of the Ilris-LR system (1064 nm) was around 500 meters over massive ice (showing no-significant loss of information), being this distance considerably reduced on crystalline or wet ice short after the occurrence of calving events. As for the data treatment, we have adapted our innovative algorithms originally developed for the investigation of both precursory deformation and rockfalls to study calving events. By comparing successive three-dimensional datasets, we have investigated not only the magnitude and frequency of several ice failures at the glacier's terminus (ranging from one to thousands of cubic meters), but also the characteristic geometrical features of each failure. In addition, we were able to quantify a growing strain rate on several areas of the glacier's terminus shortly after their final collapse. For instance, we investigated the spatial extent of the

  5. The Morsárjökull rock avalanche in the southern part of the Vatnajökull glacier, south Iceland

    NASA Astrophysics Data System (ADS)

    Sæmundsson, Şorsteinn; Sigurősson, Ingvar A.; Pétursson, Halldór G.; Decaulne, Armelle; Jónsson, Helgi P.

    2010-05-01

    and it is evident that since that time the glacier has retreated considerably and during the last decade the melting has been very rapid. It is thought that undercutting of the mountain slope by glacial erosion and the retreat of the glacier are the main contributing factors leading to the rock avalanche. The glacial erosion has destabilized the slope, which is mainly composed of palagonite and dolerite rocks, affected by geothermal alteration. Hence a subsequent fracture formation has weakened the strength of the bedrock. However the exact triggering factor is not known. No seismic activity or meteorological signal such as heavy rainfall or intensive snowmelt recorded prior to the rock avalanche which could be interpreted as triggering factors. From 2007 considerable changes have been observed on the glacier. The ice-front has retreated considerably and the debris lobe of the rock avalanche has moved downward along with the glacier ice about 90-100 m per year. The rocky material, by insulating the ice, has reduced its melting, leading to a relative "thickening" of the ice beneath the rock avalanche debris up to 11-15 m per year. After three melting seasons the debris mass was about 29 m above the surrounding ice surface.

  6. Potential climatic refugia in semi-arid, temperate mountains: plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA

    Treesearch

    Constance I. Millar; Robert D. Westfall; Angela Evenden; Jeffrey G. Holmquist; Jutta Schmidt-Gengenbach; Rebecca S. Franklin; Jan Nachlinger; Diane L. Delany

    2015-01-01

    Unique thermal and hydrologic regimes of rock-glacier and periglacial talus environments support little-studied mountain ecosystems. We report the first studies of vascular plant and arthropod diversity for these habitats in the central Sierra Nevada, California, USA. Surfaces of active rock glaciers develop scattered islands of soil that provide habitat for vegetation...

  7. Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on Glaciers: Application to the 2016 Lamplugh Rock Avalanche in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy

    2018-01-01

    The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.

  8. Monitoring of rock glacier dynamics by multi-temporal UAV images

    NASA Astrophysics Data System (ADS)

    Morra di Cella, Umberto; Pogliotti, Paolo; Diotri, Fabrizio; Cremonese, Edoardo; Filippa, Gianluca; Galvagno, Marta

    2015-04-01

    During the last years several steps forward have been made in the comprehension of rock glaciers dynamics mainly for their potential evolution into rapid mass movements phenomena. Monitoring the surface movement of creeping mountain permafrost is important for understanding the potential effect of ongoing climate change on such a landforms. This study presents the reconstruction of two years of surface movements and DEM changes obtained by multi-temporal analysis of UAV images (provided by SenseFly Swinglet CAM drone). The movement rate obtained by photogrammetry are compared to those obtained by differential GNSS repeated campaigns on almost fifty points distributed on the rock glacier. Results reveals a very good agreements between both rates velocities obtained by the two methods and vertical displacements on fixed points. Strengths, weaknesses and shrewdness of this methods will be discussed. Such a method is very promising mainly for remote regions with difficult access.

  9. Assessing More than a Decade of Alaska/yukon, High Elevation, Glacier Ice/rock Landslides

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K.

    2017-12-01

    On September 14, 2005, an estimated 5.0x106 m3 of rock, glacier ice, and snow fell from below the summit of 3,236-m-high Mt. Steller, Alaska, onto a tributary of Bering Glacier. Next day photography of the slide and source area suggested that meltwater played a significant role in its origin. Aerial photography and space-based electro-optical imagery collected for months following the event recorded continuing evidence of meltwater flowing from the head-scarp region and continued ice and snow melt. We investigated five similar glacier ice-rock landslides. These originated from the north face of Mt. Steller in late 2005-early 2006, the south side of Waxell Ridge in late 2005-early 2006, Mt. Steele on July 24, 2007, Mt. Lituya on June 11, 2012, and Mt. La Perouse on February 16, 2014. None was triggered by a seismic event. Four were detected based on seismic events they generated. All source areas exhibited failed hanging glaciers and/or failed perennial snowfields. Five had detectable glacier hydrologic features (moulins, conduits, and collapsed englacial stream channels) in near-summit failed ice and snow margins. Four displayed fresh concave bedrock failure surfaces. All originated at locations where mean annual temperatures were below freezing. Our observations support water triggering each event. We propose that abnormally warm summer temperatures or extreme winter precipitation produced unusual volumes of water which saturated summit snow and ice and/or filled summit glacier channels and conduits with liquid water. Water reached the frozen water/bedrock interface, destabilizing the contact. Fresh concave bedrock failure surfaces suggest that glacier beds were adhering to steep bedrock surfaces composed of a mélange of freeze/thaw shattered rock held together by interstitial ice. When the mass of saturated glacier ice failed, the bedrock mélange also failed, exposing fresh bedrock scarp depressions and generating the observed gravel-dominated slide debris.

  10. Rock falls from Glacier Point above Camp Curry, Yosemite National Park, California

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Snyder, James B.

    1999-01-01

    A series of rock falls from the north face of Glacier Point above Camp Curry, Yosemite National Park, California, have caused reexamination of the rock-fall hazard because beginning in June, 1999 a system of cracks propagated through a nearby rock mass outlining a future potential rock fall. If the estimated volume of the potential rock fall fails as a single piece, there could be a risk from rock-fall impact and airborne rock debris to cabins in Camp Curry. The role of joint plane orientation and groundwater pressure in the fractured rock mass are discussed in light of the pattern of developing cracks and potential modes of failure.

  11. Hydrogeological Characterization of the Upper Camp Bird III Rock Glacier in the San Juan Mountains, Colorado Using Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Granados-Aguilar, R.; Giardino, J. R.; Everett, M. E.; Pondthai, P.; Ramsey, C. E.; Mmasa, D.; Witek, M.; Rodriguez, R.

    2017-12-01

    Global change is the set of variations in environmental conditions that significantly impact the Earth systems. Climate, sea level, land-use/land-cover, and atmospheric composition changes are the most recognized environmental global changes. Impacts of climatic variability can include decreased rainfall, snowpack, shorter snow seasons, and changes in the timing, frequency, and intensity of precipitation events in some areas of the world, whereas other regions can suffer from the opposite effects leading to events such as landslides, flooding and extraordinary snowfall. The proposed research intends to provide a characterization of the internal structure, including water storages, pathways, and thresholds, as well as an estimation of the volume of ice stored within a rock glacier to evaluate its potential as a freshwater resources. The area of study corresponds to the third level of Camp Bird Mine in Ouray, Colorado. The tongue-shaped active rock glacier of interest, Upper Camp Bird III, has not been previously studied in detail. The predominant lithologies in the study area are Mesozoic and Cenozoic. Orogenic events caused alteration of sedimentary and intrusive igneous rock as mineral rich, hydrothermal fluids deposited economically valuable minerals in the region. Traditional geological and geomorphological mapping techniques will be complemented with the use of unmanned aerial vehicles (UAV). To obtain a detailed representation of the internal structure and determine the boundaries between resistive (rocks, sediment, and ice) and conductive materials (water and ore deposits) of the rock glacier, time-domain and frequency-domain methods will be implemented. The G-TEM by Geonics Ltd. is an innovative controlled-source time-domain electromagnetic induction system. Using the G-TEM, the distribution of electrical conductivity in the subsurface can be mapped in order to characterize the internal structure of the rock glacier from 5-10 m depth and below. The EM

  12. The Rocks and Fossils of Glacier National Park: The Story of Their Origin and History

    USGS Publications Warehouse

    Ross, Clyde P.; Rezak, Richard

    1959-01-01

    The story of Glacier National Park begins about 500 million years ago, at a time when there were no mountains in the region - only a vast, exceedingly shallow sea, bordered by desolate plains. The sand, clay, and mud, in part very limy, that were laid down in this sea eventually hardened into the rocks that are now known as the Belt series. These are the principal rocks in the park. Scattered through these rocks are crinkled, limy masses of many forms, the remains of deposits made by colonies of algae. After the Belt series was laid down, successive seas slowly advanced and retreated through long ages across what is now Glacier National Park, burying the Belt rocks under younger ones. After another very long time, a gentle uplift, the forerunner of later events, brought this part of the continent above the reach of sea water for the last time. Much later, some 50 million years ago, the disturbance became far more intense. To climax this upheaval, a mass of rock thousands of feet thick and hundreds of miles long was shoved eastward for 35 miles or more. This tremendous dislocation, well exposed along the eastern boundary of the park, is known as the Lewis overthrust. When the rocks of the region emerged from the sea they began to be attacked by erosion. As successive periods of crustal movement and erosion continued, the younger rocks were slowly stripped off the Belt series and sculpture of the latter by weather and water shaped the early Rocky Mountains. The final episode in the park's geologic past was the ice age, beginning about a million years ago. Repeated advances and retreats of the great glaciers in the high valleys accentuated the mountain terrain and developed the scenic grandeur that is now Glacier National Park. One may say that the park is still in the ice age, for some glaciers still exist. The present report, companion to two more technical reports on the region, informally presents the story of the park's development through past eras for readers

  13. Detailed geomorphological mapping of debris-covered and rock glaciers in the Hólar area, Tröllaskagi Peninsula (northern Iceland).

    NASA Astrophysics Data System (ADS)

    Tanarro, Luis M.; Palacios, David; Zamorano, Jose J.; Andres, Nuria

    2017-04-01

    Most studies conducted on rock and debris-covered glaciers only include simplified geomorphological maps representing main units (ridges, furrows, front, and thermokarst depressions). The aim of this study is to develop a detailed geomorphological mapping of the Hóladalsjökull debris-covered glacier (65°42' N; 18°57' W) and the Fremri-Grjótárdalur rock glacier (65°43' N 19° W), located near Hólar, a village in the central area of the Trolläskagi peninsula (northern Iceland). The mapping process has been conducted using standard stereo-photointerpretation of aerial photographs and stereo-plotting of a topographic map at 1:2000 scale. Also, landforms have been represented in different transects. Lastly, the geomorphological map has been designed using the elevation digital model, and a 3D pdf file has been generated, allowing for better viewing and understanding the different units and their modelling. The geomorphological mapping of the Hóladalsjökull debris-covered glacier and the Fremri-Grjótárdalur rock glacier represents the prominent walls of their valley heads and their summits, which form a flat highland at 1,200-1,330 metres above sea level, covered by blockfield and patterned ground features. Rockfall and slide landforms are common processes at the foot of these 100-170 metre-high cirque-walls. Debris-covered glaciers and rock glaciers are born right under these walls, building up a spoon-shaped hollow around glacial ice, surrounded by young moraine ridges at their fronts. The dominant features in the Hóladalsjökull debris-covered glacier are large longitudinal ridges and furrows, stretching over 1.5 km in length in the central and western areas. Medium-sized thermokarst depressions (between 15-40 metres in diameter), often running parallel to the furrows, dot the surface of the debris-covered glacier. Parallel alternate ridges and furrows can be seen near the snout. Ridges are rugged and fall around 30-40 metres, with over 30 degree slopes

  14. Planetary science: are there active glaciers on Mars?

    PubMed

    Gillespie, Alan R; Montgomery, David R; Mushkin, Amit

    2005-12-08

    Head et al. interpret spectacular images from the Mars Express high-resolution stereo camera as evidence of geologically recent rock glaciers in Tharsis and of a piedmont ('hourglass') glacier at the base of a 3-km-high massif east of Hellas. They attribute growth of the low-latitude glaciers to snowfall during periods of increased spin-axis obliquity. The age of the hourglass glacier, considered to be inactive and slowly shrinking beneath a debris cover in the absence of modern snowfall, is estimated to be more than 40 Myr. Although we agree that the maximum glacier extent was climatically controlled, we find evidence in the images to support local augmentation of accumulation from snowfall through a mechanism that does not require climate change on Mars.

  15. Thermophysical Properties of Terrestrial Rock and Debris-covered Glaciers as Analogs for Martian Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Piatek, J. L.

    2009-03-01

    A survey of the thermophysical properties of terrestrial rock and debris-covered glaciers suggests these properties may be used to distinguish between massive debris-covered ice and intimate rock/ice mixtures in martian lobate debris aprons.

  16. Reconnaissance studies of potential petroleum source rocks in the Middle Jurassic Tuxedni Group near Red Glacier, eastern slope of Iliamna Volcano

    USGS Publications Warehouse

    Stanley, Richard G.; Herriott, Trystan M.; LePain, David L.; Helmold, Kenneth P.; Peterson, C. Shaun

    2013-01-01

    Previous geological and organic geochemical studies have concluded that organic-rich marine shale in the Middle Jurassic Tuxedni Group is the principal source rock of oil and associated gas in Cook Inlet (Magoon and Anders, 1992; Magoon, 1994; Lillis and Stanley, 2011; LePain and others, 2012; LePain and others, submitted). During May 2009 helicopter-assisted field studies, 19 samples of dark-colored, fine-grained rocks were collected from exposures of the Red Glacier Formation of the Tuxedni Group near Red Glacier, about 70 km west of Ninilchik on the eastern flank of Iliamna Volcano (figs. 1 and 3). The rock samples were submitted to a commercial laboratory for analysis by Rock-Eval pyrolysis and to the U.S. Geological Survey organic geochemical laboratory in Denver, Colorado, for analysis of vitrinite reflectance. The results show that values of vitrinite reflectance (percent Ro) in our samples average about 2 percent, much higher than the oil window range of 0.6–1.3 percent (Johnsson and others, 1993). The high vitrinite reflectance values indicate that the rock samples experienced significant heating and furthermore suggest that these rocks may have generated oil and gas in the past but no longer have any hydrocarbon source potential. The high thermal maturity of the rock samples may have resulted from (1) the thermaleffects of igneous activity (including intrusion by igneous rocks), (2) deep burial beneath Jurassic, Cretaceous, and Tertiary strata that were subsequently removed by uplift and erosion, or (3) the combined effects of igneous activity and burial.

  17. Unmanned Aerial Systems and DSM matching for rock glacier monitoring

    NASA Astrophysics Data System (ADS)

    Dall'Asta, Elisa; Forlani, Gianfranco; Roncella, Riccardo; Santise, Marina; Diotri, Fabrizio; Morra di Cella, Umberto

    2017-05-01

    Among other techniques, aerial and terrestrial photogrammetry have long been used to control the displacements of landslides and glaciers as well as for the detection of terrain morphological changes. Unmanned Aerial Systems (UAS) are today an efficient tool to perform data acquisition in rough or difficult terrain, both safely and quickly, avoiding hazards and risks for the operators while at the same time containing the survey costs. Since 2012 ARPAVdA (the Regional Environmental Protection Agency of Aosta Valley, Italy) periodically surveys with UAS photogrammetry the Gran Sometta rock glacier, the Agency main monitoring site for the climate change impacts on high-mountain areas and related infrastructures. A Digital Surface Model (DSM) and an orthophoto of the rock glacier are produced after each survey flight. In order to accurately georeference them in a stable reference system, a Global Navigation Satellite System (GNSS) campaign is carried out at each epoch, to update the coordinates of signalised Ground Control Points (GCPs), since they partly lay in unstable (moving) areas. In late August 2015 a survey flight has been executed with a senseFly eBee RTK, with differential corrections sent from a ground reference station. The block has been adjusted without GCP using, as control information, only the projection centres coordinates encoded in the images. The RMS of the differences found on twelve Check Points were about 4 cm in horizontal and 7 cm in elevation, i.e. practically the same accuracy found using GCP. Differences between the DSMs produced at the same epoch with block orientation performed with GCP and with GNSS-determined projection centres were also investigated. To evaluate the rock glacier displacement fields between two epochs, corresponding features were at first manually identified on the orthophotos by a trained operator. To avoid the manual time-consuming procedure and increase the density of displacement information, two automatic

  18. Terrestrial rock glaciers: a potential analog for Martian lobate flow features (LFF)

    NASA Astrophysics Data System (ADS)

    Sinha, Rishitosh K.; Vijayan, Sivaprahasam; Bharti, Rajiv R.

    2016-05-01

    Rock glaciers, regarded as cryospheric ice/water resource in the terrestrial-glacial systems based on their tongue/lobate-shaped flow characteristic and subsurface investigation using ground-penetrating radar. We examined the subsurface, geomorphology, climate-sensitivity and thermophysical properties of a Lobate Flow Feature (LFF) on Mars (30°-60° N and S hemispheres) to compare/assess the potentials of rock glaciers as an analog in suggesting LFFs to be a source of subsurface ice/water. LFFs are generally observed at the foot of impact craters' wall. HiRISE/CTX imageries from MRO spacecraft were used for geomorphological investigation of LFF using ArcMap-10.0 and subsurface investigation was carried out using data from MRO-SHARAD (shallow radar) after integrating with SiesWare-8.0. ENVI-5.0 was used to retrieve thermophysical properties of LFF from nighttime datasets (12.57 μm) acquired by THEMIS instrument-onboard the Mars Odyssey spacecraft and derive LFFs morphometry from MOLA altimeter point tracks onboard MGS spacecraft. Integrating crater chronology tool (Craterstats) with Arc Map, we have derived the formation age of LFF. Our investigation and comparison of LFF to rock glaciers revealed: (1) LFFs have preserved ice at depth 50m as revealed from SHARAD radargram and top-layer composed of rocky-debris material with thermal inertia ( 300-350 Jm-2 K-1s-1/2). (2) LFF formation age ( 10-100 Ma) corresponds to moderate scale debris covered glaciation of a shorter-span suggesting high sensitivity to obliquity-driven climatic shifts. (3) Presence of polygon cracks and high linear-arcuate furrow-and-ridges on the surface indicates presence of buried ice. This work is a significant step towards suggesting LFF to be a potential source of present-day stored ice/water on Mars.

  19. Using terrestrial laser scanning for differential measurement of interannual rock glacier movement in the Argentine Dry Andes

    NASA Astrophysics Data System (ADS)

    Kane, Renato R.

    Argentina has recently implemented laws to protect glaciers and buried ice in the Andes to improve the sustainability of scarce, long-term water resources. Therefore, all glaciers and buried ice terrains must be located and avoided in any commercial alterations of the landscape. Buried ice in this remote and often dangerous terrain typically is located via the use of remote-sensing techniques. This thesis applies one such technique, Light Detection and Ranging (LiDAR) in the form of Terrestrial Laser Scanning (TLS), to detect rock glacier movement that is indicative of flowing, buried ice not visible in near surface excavations. TLS surveys were completed at two locales, Los Azules and El Altar, in both AD 2013 and AD 2014 on landscapes where buried ice is suspected to have produced the current surface forms. Multiple TLS scans were co-registered with the use of benchmarks, both between scans and between years, which introduced quantifiable positional errors. Digital Elevation Models (DEMs) were derived from the point cloud data by standardizing the spacing of the points in the horizontal direction, creating 0.1 m by 0.1 m cells with elevation as the cell value. The DEMs for each year were subtracted from each other to yield a change in elevation. The surface roughness of the rock glaciers (vertical variability within each cell) was empirically determined and evaluated as a threshold for results. Both sites showed sub-decimeter interannual movements, and the direction of their movement is typical of forms with buried ice. The results of the study were validated using independent GPS data showing annual movement rates. Despite the downslope movement of these rock glaciers, the volume of ice contained within them remains unclear, and further study is required to assess the volume of water contained.

  20. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Winkler, Gerfried; Wagner, Thomas; Pauritsch, Marcus; Birk, Steffen; Kellerer-Pirklbauer, Andreas; Benischke, Ralf; Leis, Albrecht; Morawetz, Rainer; Schreilechner, Marcellus G.; Hergarten, Stefan

    2016-06-01

    More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006-2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.

  1. Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA; inventory, distribution and climatic relationships

    Treesearch

    Constance I. Millar; Robert D. Westfall

    2008-01-01

    Rock glaciers and related periglacial rock-ice features (RIFs) are abundant yet overlooked landforms in the Sierra Nevada, California, where they occur in diverse forms. We mapped 421 RIFs from field surveys, and grouped these into six classes based on morphology and location. These categories comprise a greater range of frozen-ground features than are commonly...

  2. Temperature dependence of ice-on-rock friction at realistic glacier conditions

    PubMed Central

    Savage, H.; Nettles, M.

    2017-01-01

    Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297

  3. Geomorphological activity at a rock glacier front detected with a 3D density-based clustering algorithm

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Tonini, Marj; Lane, Stuart N.

    2017-02-01

    Acquisition of high density point clouds using terrestrial laser scanners (TLSs) has become commonplace in geomorphic science. The derived point clouds are often interpolated onto regular grids and the grids compared to detect change (i.e. erosion and deposition/advancement movements). This procedure is necessary for some applications (e.g. digital terrain analysis), but it inevitably leads to a certain loss of potentially valuable information contained within the point clouds. In the present study, an alternative methodology for geomorphological analysis and feature detection from point clouds is proposed. It rests on the use of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), applied to TLS data for a rock glacier front slope in the Swiss Alps. The proposed methods allowed the detection and isolation of movements directly from point clouds which yield to accuracies in the following computation of volumes that depend only on the actual registered distance between points. We demonstrated that these values are more conservative than volumes computed with the traditional DEM comparison. The results are illustrated for the summer of 2015, a season of enhanced geomorphic activity associated with exceptionally high temperatures.

  4. A possible climate signal in the surface morphology and internal structure of Galena Creek Rock Glacier, Wyoming

    NASA Astrophysics Data System (ADS)

    Petersen, Eric; Holt, John; Levy, Joseph; Stuurman, Cassie; Nerozzi, Stefano; Cardenas, Benjamin; Pharr, James; Aylward, Dan; Schmidt, Logan; Hoey, William; Prem, Parvathy; Rambo, Jackie; Lim, YeJin; Maharaj, Kian

    2016-04-01

    Galena Creek Rock Glacier (GCRG) has been shown in previous studies to be a debris-covered glacier (e.g. Ackert, Jr., 1998), and is thus a target of interest as a record of climate and an element of the mountain hydrological system. The goal of this study was to investigate possible relationships between surface morphology and internal structure and composition of GCRG. This was achieved using ground-penetrating radar (GPR), time-domain electromagnetic sounding (TEM), and photogrammetry to produce digital terrain models (DTMs). We acquired 6 longitudinal GPR surveys at 50 and 100 MHz, 2 common midpoint GPR surveys, and 28 TEM soundings on GCRG from the head to the toe, and ground-based photogrammetry data were collected to produce a DTM of its cirque at 10 cm resolution. TEM soundings locally constrained the bulk thickness of GCRG to 26-75 meters. Common midpoint and hyperbola analyses of GPR surveys produced dielectric constants in the near subsurface of 4 in the upper glacier to 5-9 in the middle and lower glacier. These are consistent with clean ice and a mélange of rock with air and/or ice, respectively. GPR revealed a pervasive shallow reflector at 1-2.5m depth that we interpret to be the interface between the surface debris layer and glacier ice. There is increased structure and clutter in the GPR data beneath this interface as one moves down glacier. Observations were additionally made of a 40m wide, 4-5m deep circular thermokarst pond located on upper GCRG in the cirque. The walls of the pond revealed a cross-section of the top several meters of GCRG's interior: a dry surface layer of rocky debris 1-1.5m thick overlying pure glacier ice. An englacial debris band was also observed, roughly 50 cm thick and presenting at an apparent up-glacier dip of ~30 degrees, intersecting the surface near a subtle ridge resolved in the photogrammetry DTM. A GPR transect conducted near the pond over 6 similar ridges imaged 6 corresponding up-glacier dipping reflectors that

  5. Glaciers

    NASA Astrophysics Data System (ADS)

    Hambrey, Michael; Alean, Jürg

    2004-12-01

    Glaciers are among the most beautiful natural wonders on Earth, as well as the least known and understood, for most of us. Michael Hambrey describes how glaciers grow and decay, move and influence human civilization. Currently covering a tenth of the Earth's surface, glacier ice has shaped the landscape over millions of years by scouring away rocks and transporting and depositing debris far from its source. Glacier meltwater drives turbines and irrigates deserts, and yields mineral-rich soils as well as a wealth of valuable sand and gravel. However, glaciers also threaten human property and life. Our future is indirectly connected with the fate of glaciers and their influence on global climate and sea level. Including over 200 stunning photographs, the book takes the reader from the High-Arctic through North America, Europe, Asia, Africa, New Zealand and South America to the Antarctic. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for the first edition of Glaciers (Cambridge, 1995). Hambrey is also the author of Glacial Environments (British Columbia, 1994). JÜrg Alean is Professor of Geography at the Kantonsschule ZÜrcher Unterland in BÜlach, Switzerland.

  6. Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions

    USGS Publications Warehouse

    Clark, D.H.; Clark, M.M.; Gillespie, A.R.

    1994-01-01

    Ice-walled melt ponds on the surfaces of active valley-floor rock glaciers and Matthes (Little Ice Age) moraines in the southern Sierra Nevada indicate that most of these landforms consist of glacier ice under thin (ca. 1 - 10 m) but continuous covers of rock-fall-generated debris. These debris blankets effectively insulate the underlying ice and greatly reduce rates of ablation relative to that of uncovered ice. Such insulation explains the observations that ice-cored rock glaciers in the Sierra, actually debris-covered glaciers, are apparently less sensitive to climatic warming and commonly advance to lower altitudes than do adjacent bare-ice glaciers. Accumulation-area ratios and toe-to-headwall-altitude ratios used to estimate equilibrium-line altitudes (ELAs) of former glaciers may therefore yield incorrect results for cirque glaciers subject to abundant rockfall. Inadvertent lumping of deposits from former debris-covered and bare-ice glaciers partially explains an apparently anomalous regional ELA gradient reported for the pre-Matthes Recess Peak Neoglacial advance. Distinguishing such deposits may be important to studies that rely on paleo-ELA estimates. Moreover, Matthes and Recess Peak ELA gradients along the crest evidently depend strongly on local orographic effects rather than latitudinal climatic trends, indicating that simple linear projections and regional climatic interpretations of ELA gradients of small glaciers may be unreliable.

  7. The microbiome of glaciers and ice sheets.

    PubMed

    Anesio, Alexandre M; Lutz, Stefanie; Chrismas, Nathan A M; Benning, Liane G

    2017-01-01

    Glaciers and ice sheets, like other biomes, occupy a significant area of the planet and harbour biological communities with distinct interactions and feedbacks with their physical and chemical environment. In the case of the glacial biome, the biological processes are dominated almost exclusively by microbial communities. Habitats on glaciers and ice sheets with enough liquid water to sustain microbial activity include snow, surface ice, cryoconite holes, englacial systems and the interface between ice and overridden rock/soil. There is a remarkable similarity between the different specific glacial habitats across glaciers and ice sheets worldwide, particularly regarding their main primary producers and ecosystem engineers. At the surface, cyanobacteria dominate the carbon production in aquatic/sediment systems such as cryoconite holes, while eukaryotic Zygnematales and Chlamydomonadales dominate ice surfaces and snow dynamics, respectively. Microbially driven chemolithotrophic processes associated with sulphur and iron cycle and C transformations in subglacial ecosystems provide the basis for chemical transformations at the rock interface under the ice that underpin an important mechanism for the delivery of nutrients to downstream ecosystems. In this review, we focus on the main ecosystem engineers of glaciers and ice sheets and how they interact with their chemical and physical environment. We then discuss the implications of this microbial activity on the icy microbiome to the biogeochemistry of downstream ecosystems.

  8. Measuring Surface Deformation in Glacier Retreated Areas Based on Ps-Insar - Geladandong Glacier as a Case Study

    NASA Astrophysics Data System (ADS)

    Mohamadi, B.; Balz, T.

    2018-04-01

    Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF). In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.

  9. Matusevich Glacier

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 6, 2010 The Matusevich Glacier flows toward the coast of East Antarctica, pushing through a channel between the Lazarev Mountains and the northwestern tip of the Wilson Hills. Constrained by surrounding rocks, the river of ice holds together. But stresses resulting from the glacier’s movement make deep crevasses, or cracks, in the ice. After passing through the channel, the glacier has room to spread out as it floats on the ocean. The expanded area and the jostling of ocean waves prompts the ice to break apart, which it often does along existing crevasses. On September 6, 2010, the Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image of the margin of Matusevich Glacier. Shown here just past the rock-lined channel, the glacier is calving large icebergs. Low-angled sunlight illuminates north-facing surfaces and casts long shadows to the south. Fast ice anchored to the shore surrounds both the glacier tongue and the icebergs it has calved. Compared to the glacier and icebergs, the fast ice is thinner with a smoother surface. Out to sea (image left), the sea ice is even thinner and moves with winds and currents. Matusevich Glacier does not drain a significant amount of ice off of the Antarctic continent, so the glacier’s advances and retreats lack global significance. Like other Antarctic glaciers, however, Matusevich helps glaciologists form a larger picture of Antarctica’s glacial health and ice sheet volume. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Michon Scott based on image interpretation by Robert Bindschadler, NASA Goddard Space Flight Center, and Walt Meier, National Snow and Ice Data Center. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  10. Reconstructing Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments

    NASA Astrophysics Data System (ADS)

    Wittmeier, Hella E.; Bakke, Jostein; Vasskog, Kristian; Trachsel, Mathias

    2015-04-01

    Late Glacial and Holocene glacier fluctuations are important indicators of climate variability in the northern polar region and contain knowledge vital to understanding and predicting present and future climate changes. However, there still is a lack of robustly dated terrestrial climate records from Arctic Norway. Here, we present a high-resolution relative glacier activity record covering the past ∼10,000 cal. a BP from the northern outlet of the Langfjordjøkelen ice cap in Arctic Norway. This record is reconstructed from detailed geomorphic mapping, multi-proxy sedimentary fingerprinting and analyses of distal glacier-fed lake sediments. We used Principal Component Analysis to characterize sediments of glacial origin and trace them in a chain of downstream lakes. Of the variability in the sediment record of the uppermost Lake Jøkelvatnet, 73% can be explained by the first Principal Component axis and tied directly to upstream glacier erosion, whereas the glacial signal becomes weaker in the more distal Lakes Store Rundvatnet and Storvatnet. Magnetic susceptibility and titanium count rates were found to be the most suitable indicators of Holocene glacier activity in the distal glacier-fed lakes. The complete deglaciation of the valley of Sør-Tverrfjorddalen occurred ∼10,000 cal. a BP, followed by a reduced or absent glacier during the Holocene Thermal Optimum. The Langfjordjøkelen ice cap reformed with the onset of the Neoglacial ∼4100 cal. a BP, and the gradually increasing glacier activity culminated at the end of the Little Ice Age in the early 20th century. Over the past 2000 cal. a BP, the record reflects frequent high-amplitude glacier fluctuations. Periods of reduced glacier activity were centered around 1880, 1600, 1250 and 950 cal. a BP, while intervals of increased glacier activity occurred around 1680, 1090, 440 and 25 cal. a BP. The large-scale Holocene glacier activity of the Langfjordjøkelen ice cap is consistent with regional temperature

  11. Effects of volcanism on the glaciers of Mount St. Helens

    USGS Publications Warehouse

    Brugman, Melinda M.; Post, Austin

    1981-01-01

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 km2 (about 0.13 km3) of glacier snow and ice including a large part of Shoestring, Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystalization of snow and ice surviving on Mount St. Helens could cause and lubricate mudflows and generate outburst floods. Study of glaciers that remain on this active volcano may assist in recognizing potential hazards on other volcanoes and lead to new contributions to knowledge of the transient response of glaciers to changes in mass balance or geometry.

  12. Mechanism of the 2016 giant twin glacier collapse in Aru range, Tibet

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Leinss, S.; Kääb, A.; Kargel, J. S.; Yao, T.; Gascoin, S.; Leonard, G. J.; Berthier, E.; Karki, A.

    2017-12-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of two unnamed glaciers (Aru-1 and Aru-2) suddenly collapsed on 17 July 2016 and 21 September 2016 and transformed into a mass flow that ran out over a distance of over several km, killing nine people. These two events are unique and defined a new kind of glacier behavior almost never observed before. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). Using remote sensing observations and 3D thermo-mechanical modeling of the two glaciers, we reconstructed glacier thermal regime, thickness, basal friction evolution and ice damaging state prior to the collapse. We show that frictional change leading to the collapse occurred in the temperate areas of a polythermal structure that is likely close to equilibrium with the local climate. The collapses were driven by a fast and sustained friction change in the temperate part of the glacier for which the glacier shape was not able to adjust due to the cold-based parts providing strong resisting force to sliding. This led to high stresses on the cold margins of the glacier where ice deformation became partially accommodated by fracturing until the final collapse occurred. Field investigations reveal that those two glaciers are flowing on a soft and fine-grained sedimentary lithology prone to landslide activity in the presence of water. This suggests that fast friction change in the temperate part of the glacier is linked to shear strength weakening in the sediment and till underneath the glacier in response to increasing water pore pressure at the glacier base. The Kolka Glacier mass flow also occurred on pyroclastic rocks well known for their landslide activities. This suggests that the three gigantic glacier collapses documented to date involve specific bedrock lithology where failure is driven by shear strength weakening in the glacier till in a landslide-like process. Contrary to a

  13. Susitna Glacier, Alaska

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 27, 2009 Like rivers of liquid water, glaciers flow downhill, with tributaries joining to form larger rivers. But where water rushes, ice crawls. As a result, glaciers gather dust and dirt, and bear long-lasting evidence of past movements. Alaska’s Susitna Glacier revealed some of its long, grinding journey when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite passed overhead on August 27, 2009. This satellite image combines infrared, red, and green wavelengths to form a false-color image. Vegetation is red and the glacier’s surface is marbled with dirt-free blue ice and dirt-coated brown ice. Infusions of relatively clean ice push in from tributaries in the north. The glacier surface appears especially complex near the center of the image, where a tributary has pushed the ice in the main glacier slightly southward. A photograph taken by researchers from the U.S. Geological Survey (archived by the National Snow and Ice Data Center) shows an equally complicated Susitna Glacier in 1970, with dirt-free and dirt-encrusted surfaces forming stripes, curves, and U-turns. Susitna flows over a seismically active area. In fact, a 7.9-magnitude quake struck the region in November 2002, along a previously unknown fault. Geologists surmised that earthquakes had created the steep cliffs and slopes in the glacier surface, but in fact most of the jumble is the result of surges in tributary glaciers. Glacier surges—typically short-lived events where a glacier moves many times its normal rate—can occur when melt water accumulates at the base and lubricates the flow. This water may be supplied by meltwater lakes that accumulate on top of the glacier; some are visible in the lower left corner of this image. The underlying bedrock can also contribute to glacier surges, with soft, easily deformed rock leading to more frequent surges. NASA Earth Observatory image created by Jesse Allen and Robert

  14. Stratigraphic reconnaissance of the Middle Jurassic Red Glacier Formation, Tuxedni Group, at Red Glacier, Cook Inlet, Alaska

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) and U.S. Geological Survey (USGS) are implementing ongoing programs to characterize the petroleum potential of Cook Inlet basin. Since 2009 this program has included work on the Mesozoic stratigraphy of lower Cook Inlet, including the Middle Jurassic Tuxedni Group between Tuxedni and Iniskin bays (LePain and others, 2013; Stanley and others, 2013; fig. 5-1). The basal unit in the group, the Red Glacier Formation (fig. 5-2), is thought to be the principal source rock for oil produced in upper Cook Inlet, and available geochemical data support this contention (Magoon and Anders, 1992; Magoon, 1994). Despite its economic significance very little has been published on the formation since Detterman and Hartsock’s (1966) seminal contribution on the geology of the Iniskin–Tuxedni area nearly 50 years ago. Consequently its stratigraphy, contact relations with bounding formations, and source rock characteristics are poorly known. During the 2014 field season, a nearly continuous stratigraphic section through the Red Glacier Formation in its type area at Red Glacier was located and measured to characterize sedimentary facies and to collect a suite of samples for analyses of biostratigraphy, Rock-Eval pyrolysis, vitrinite reflectance, and sandstone composition (fig. 5-3).The poorly known nature of the Red Glacier Formation is likely due to its remote location, steep terrain, and the fact that the type section is split into two segments that are more than 3 km apart. The lower 375 m segment of the formation is on the ridge between Red Glacier and Lateral Glacier and the upper 1,009 m segment is on the ridge between Red Glacier and Boulder Creek (fig. 5-3). Structural complications in the area add to the difficulty in understanding how these two segments fit together.

  15. Mapping snow depth in complex alpine terrain with close range aerial imagery - estimating the spatial uncertainties of repeat autonomous aerial surveys over an active rock glacier

    NASA Astrophysics Data System (ADS)

    Goetz, Jason; Marcer, Marco; Bodin, Xavier; Brenning, Alexander

    2017-04-01

    Snow depth mapping in open areas using close range aerial imagery is just one of the many cases where developments in structure-from-motion and multi-view-stereo (SfM-MVS) 3D reconstruction techniques have been applied for geosciences - and with good reason. Our ability to increase the spatial resolution and frequency of observations may allow us to improve our understanding of how snow depth distribution varies through space and time. However, to ensure accurate snow depth observations from close range sensing we must adequately characterize the uncertainty related to our measurement techniques. In this study, we explore the spatial uncertainties of snow elevation models for estimation of snow depth in a complex alpine terrain from close range aerial imagery. We accomplish this by conducting repeat autonomous aerial surveys over a snow-covered active-rock glacier located in the French Alps. The imagery obtained from each flight of an unmanned aerial vehicle (UAV) is used to create an individual digital elevation model (DEM) of the snow surface. As result, we obtain multiple DEMs of the snow surface for the same site. These DEMs are obtained from processing the imagery with the photogrammetry software Agisoft Photoscan. The elevation models are also georeferenced within Photoscan using the geotagged imagery from an onboard GNSS in combination with ground targets placed around the rock glacier, which have been surveyed with highly accurate RTK-GNSS equipment. The random error associated with multi-temporal DEMs of the snow surface is estimated from the repeat aerial survey data. The multiple flights are designed to follow the same flight path and altitude above the ground to simulate the optimal conditions of repeat survey of the site, and thus try to estimate the maximum precision associated with our snow-elevation measurement technique. The bias of the DEMs is assessed with RTK-GNSS survey observations of the snow surface elevation of the area on and surrounding

  16. Posteruption glacier development within the crater of Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Schilling, S.P.; Carrara, P.E.; Thompson, R.A.; Iwatsubo, E.Y.

    2004-01-01

    The cataclysmic eruption of Mount St. Helens on May 18, 1980, resulted in a large, north-facing amphitheater, with a steep headwall rising 700 m above the crater floor. In this deeply shaded niche a glacier, here named the Amphitheater glacier, has formed. Tongues of ice-containing crevasses extend from the main ice mass around both the east and the west sides of the lava dome that occupies the center of the crater floor. Aerial photographs taken in September 1996 reveal a small glacier in the southwest portion of the amphitheater containing several crevasses and a bergschrund-like feature at its head. The extent of the glacier at this time is probably about 0.1 km2. By September 2001, the debris-laden glacier had grown to about 1 km2 in area, with a maximum thickness of about 200 m, and contained an estimated 120,000,000 m3 of ice and rock debris. Approximately one-third of the volume of the glacier is thought to be rock debris derived mainly from rock avalanches from the surrounding amphitheater walls. The newly formed Amphitheater glacier is not only the largest glacier on Mount St. Helens but its aerial extent exceeds that of all other remaining glaciers combined. Published by University of Washington.

  17. Debris-covered Himalayan glaciers under a changing climate: observations and modelling of Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Rowan, Ann; Quincey, Duncan; Egholm, David; Gibson, Morgan; Irvine-Fynn, Tristram; Porter, Philip; Glasser, Neil

    2016-04-01

    Many mountain glaciers are characterised in their lower reaches by thick layers of rock debris that insulate the glacier surface from solar radiation and atmospheric warming. Supraglacial debris modifies the response of these glaciers to climate change compared to glaciers with clean-ice surfaces. However, existing modelling approaches to predicting variations in the extent and mass balance of debris-covered glaciers have relied on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. Moreover, few data exist describing the mass balance of debris-covered glaciers and many observations are only made over short periods of time, but these data are needed to constrain and validate numerical modelling experiments. To investigate the impact of supraglacial debris on the response of a glacier to climate change, we developed a numerical model that couples the flow of ice and debris to include important feedbacks between mass balance, ice flow and debris accumulation. We applied this model to a large debris-covered Himalayan glacier - Khumbu Glacier in the Everest region of Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming air temperatures and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, the volume of Khumbu Glacier has reduced by 34%, while glacier area has reduced by only 6%. We predict a further decrease in glacier volume of 8-10% by AD2100 accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 years. For five months during the 2014 summer monsoon, we measured temperature profiles through supraglacial debris and proglacial discharge on Khumbu Glacier. We found that temperatures at the ice surface beneath 0.4-0.7 m of debris were sufficient to promote considerable

  18. Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: The case of the Tapado glacier, dry Andes of Chile (30°S)

    NASA Astrophysics Data System (ADS)

    Pourrier, J.; Jourde, H.; Kinnard, C.; Gascoin, S.; Monnier, S.

    2014-11-01

    The Tapado catchment is located in the upper Elqui river basin (4000-5550 m) in northern Chile. It comprises the Tapado glacial complex, which is an assemblage of the Tapado glacier and the glacial foreland (debris-covered glacier, rock glacier, and moraines). Although the hydrological functioning of this catchment is poorly known, it is assumed to actively supply water to the lower semi-arid areas of the Elqui river basin. To improve our knowledge of the interactions and water transfers between the cryospheric compartment (glacier, debris-covered glacier, and rock glacier) and the hydrological compartment (aquifers, streams), the results of monitoring of meteorological conditions, as well as discharge, conductivity and temperature of streams and springs located in the Tapado catchment were analyzed. The hydrological results are compared to results inferred from a ground penetrating radar (GPR) survey of the underground structure of the glacial foreland. Water production from the Tapado glacier was shown to be highly correlated with daily and monthly weather conditions, particularly solar radiation and temperature. The resulting daily and monthly streamflow cycles were buffered by the glacial foreland, where underground transfers took place through complex flow paths. However, the development of a thermokarst drainage network in a portion of the glacial foreland enabled rapid concentrated water transfers that reduced the buffer effect. The glacial foreland was shown to act as a reservoir, storing water during high melt periods and supplying water to downstream compartments during low melt periods. GPR observations revealed the heterogeneity of the internal structure of the glacial foreland, which is composed of a mixture of ice and rock debris mixture, with variable spatial ice content, including massive ice lenses. This heterogeneity may explain the abovementioned hydrological behaviors. Finally, calculation of a partial hydrological budget confirmed the

  19. Recent Activity of Glaciers of Mount Rainier, Washington

    USGS Publications Warehouse

    Sigafoos, Robert S.; Hendricks, E.L.

    1972-01-01

    Knowing the ages of trees growing on recent moraines at Mount Rainier, Wash., permits the moraines to be dated. Moraines which are ridges of boulders, gravel, sand, and dust deposited at the margins of a glacier, mark former limits of a receding glacier. Knowing past glacial activity aids our understanding of past climatic variations. The report documents the ages of moraines deposited by eight glaciers. Aerial photographs and planimetric maps show areas where detailed field studies were made below seven glaciers. Moraines, past ice positions, and sample areas are plotted on the photographs and maps, along with trails, roads, streams, and landforms, to permit critical areas to be identified in the future. Ground photographs are included so that sample sites and easily accessible moraines can be found along trails. Tables present data about trees sampled in areas near the glaciers of Mount Rainier, Wash. The data in the tables show there are modern moraines of different age around the mountain; some valleys contain only one modern moraiine; others contain as many as nine. The evidence indicates a sequence of modern glacial advances terminating at about the following A.D. dates: 1525, 1550, 1625-60, 1715, 1730-65, 1820-60, 1875, and 1910. Nisqually River valley near Nisqually Glacier contains one moraine formed before A.D. 1842; Tahoma Creek valley near South Tahoma Glacier contains three moraines formed before A.D. 1528; 1843, and 1864; South Puyallup River valley near Tahoma Glacier, six moraines A.D. 1544, 1761, 1841, 1851, 1863, 1898; Puyallup Glacier, one moraine, A.D. 1846; Carbon Glacier, four moraines, 1519, 1763, 1847, 1876; Winthrop Glacier, four moraines, 1655, 1716, 1760, amid 1822; Emmons Glacier, nine moraines, 1596, 1613, 1661, 1738, 1825, 1850, 1865, 1870, 1901; and Ohanapecosh Glacier, three moraines, 1741, 1846, and 1878. Abandoned melt-water and flood channels were identified within moraine complexes below three glaciers, and their time of

  20. Effects of lava-dome emplacement on the Mount St. Helens crater glacier

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Schilling, S. P.; Denlinger, R. P.; Vallance, J. W.

    2004-12-01

    Since the end of the 1981-1986 episode of lava-dome growth at Mount St. Helens, an unusual glacier has grown rapidly within the crater of the volcano. The glacier, which is fed primarily by avalanching from the crater walls, contains about 30% rock debris by volume, has a maximum thickness of about 220 m and a volume of about 120 million cubic m, and forms a crescent that wraps around the old lava dome on both east and west sides. The new (October 2004) lava dome in the south of the crater began to grow centered roughly on the contact between the old lava dome and the glacier, in the process uplifting both ice and old dome rock. As the new dome is spreading to the south, the adjacent glacier is bulging upward. Firn layers on the outer flank of the glacier bulge have been warped upward almost vertically. In contrast, ice adjacent to the new dome has been thoroughly fractured. The overall style of deformation is reminiscent of that associated with salt-dome intrusion. Drawing an analogy to sand-box experiments, we suggest that the glacier is being deformed by high-angle reverse faults propagating upward from depth. Comparison of Lidar images of the glacier from September 2003 and October 2004 reveals not only the volcanogenic bulge but also elevated domains associated with the passage of kinematic waves, which are caused by glacier-mass-balance perturbations and have nothing to do with volcanic activity. As of 25 October 2004, growth of the new lava dome has had negligible hydrological consequences. Ice-surface cauldrons are common consequences of intense melting caused by either subglacial eruptions (as in Iceland) or subglacial venting of hot gases (as presently taking place at Mount Spurr, Alaska). However, there has been a notable absence of ice-surface cauldrons in the Mount St. Helens crater glacier, aside from a short-lived pond formed where the 1 October eruption pierced the glacier. We suggest that heat transfer to the glacier base is inefficient because

  1. Afghanistan Glacier Diminution

    NASA Astrophysics Data System (ADS)

    Shroder, J. F.; Bishop, M.; Haritashya, U.; Olsenholler, J.

    2008-12-01

    Glaciers in Afghanistan represent a late summer - early fall source of melt water for late season crop irrigation in a chronically drought-torn region. Precise river discharge figures associated with glacierized drainage basins are generally unavailable because of the destruction of hydrological gauging stations built in pre-war times although historic discharge data and prior (1960s) mapped glacier regions offer some analytical possibilities. The best satellite data sets for glacier-change detection are declassified Cornona and Keyhole satellite data sets, standard Landsat sources, and new ASTER images assessed in our GLIMS (Global Land Ice Measurements from Space) Regional Center for Southwest Asia (Afghanistan and Pakistan). The new hyperspectral remote sensing survey of Afghanistan completed by the US Geological Survey and the Afghanistan Ministry of Mines offers potential for future detailed assessments. Long-term climate change in southwest Asia has decreased precipitation for millennia so that glaciers, rivers and lakes have all declined from prehistoric and historic highs. As many glaciers declined in ice volume, they increased in debris cover until they were entirely debris-covered or became rock glaciers, and the ice was protected thereby from direct solar radiation, to presumably reduce ablation rates. We have made a preliminary assessment of glacier location and extent for the country, with selected, more-detailed, higher-resolution studies underway. In the Great Pamir of the Wakhan Corridor where the largest glaciers occur, we assessed fluctuations of a randomly selected 30 glaciers from 1976 to 2003. Results indicate that 28 glacier-terminus positions have retreated, and the largest average retreat rate was 36 m/yr. High albedo, non-vegetated glacier forefields formed prior to 1976, and geomorphological evidence shows apparent glacier-surface downwasting after 1976. Climatic conditions and glacier retreat have resulted in disconnection of tributary

  2. Surface Hydrological Processes of Rock Glaciated Basins in the San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Mateo, E. I.

    2017-12-01

    Glaciers in the western United States have been examined in terms of their summer meltwater contributions to regional hydrological systems. In the San Juan Mountains of Colorado where glaciers do not and cannot exist due to a rising zero-degree isotherm, rock glaciers take the place of valley glaciers during the summer runoff period. Most of the rock glaciers in Colorado are located on a northerly slope aspect, however, there are multiple in the southwest region of the state that occur on different aspects. This study asked how slope aspect and rising air temperatures influenced the hydrological processes of streams below rock glaciers in the San Juan Mountains during the 2016 summer season. This project focused on three basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which are adjacent to each other and share a common peak, Gilpin Peak. Findings of this one-season study showed that air temperature significantly influenced stream discharge below each rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increased at a greater rate. The results also suggest that slope aspect of rock glacier basins influences stream discharge, but temperature and precipitation are likely larger components of the melt regimes. The continuation of data collection during the 2017 summer season has allowed for more detailed analysis of the relationship between air temperature and rock glacier melt. This continual expansion of the original dataset is crucial for understanding the hydrological processes of surface runoff below rock glaciers.

  3. Dynamics and internal structure of an Alaskan debris-covered glacier from repeat airborne photogrammetry and surface geophysics

    NASA Astrophysics Data System (ADS)

    Holt, John; Levy, Joseph; Petersen, Eric; Larsen, Chris; Fahnestock, Mark

    2016-04-01

    Debris-covered glaciers and rock glaciers encompass a range of compositions and activity, and can be useful paleoclimate indicators. They also respond differently to ongoing climate change than glaciers without a protective cover. Their flow dynamics are not well understood, and their unique surface morphologies, including lobate fronts and arcuate ridges, likely result from viscous flow influenced by a combination of composition, structure, and climatic factors. However, basic connections between flow kinematics and surface morphology have not yet been established, limiting our ability to understand these features. In order to begin to address this problem we have undertaken airborne and surface studies of multiple debris-covered glaciers in Alaska and the western U.S. Sourdough Rock Glacier in the St. Elias Mountains, Alaska, is completely debris-covered and exhibits numerous transverse compressional ridges. Its trunk also exhibits highly regular bumps and swales with a wavelength of ~175 m and amplitudes up to 12 m. In the middle trunk, lineations (boulder trains and furrows) bend around a point roughly 200m from the eastern edge. We acquired five high-resolution airborne surveys of Sourdough Rock Glacier between late 2013 and late 2015 using lidar and photogrammetry to assess annual and seasonal change at the sub-meter level. Differencing the DTMs provides vertical change while feature tracking in orthophotos provide horizontal velocities that indicate meters of annual motion. The flow field is highly correlated with surface features; in particular, compressional ridges in the lower lobe. Stranded, formerly active lobes are also apparent. Surface geophysical studies were undertaken to constrain internal structure and composition using a combination of ground-penetrating radar (GPR) at 50 and 100 MHz in six transects, and time-domain electromagnetic (TDEM) measurements at 47 locations, primarily in an along-flow transect and two cross-flow transects. We infer

  4. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2017-12-08

    The ice of a piedmont glacier spills from a steep valley onto a relatively flat plain, where it spreads out unconstrained like pancake batter. Elephant Foot Glacier in northeastern Greenland is an excellent example; it is particularly noted for its symmetry. But the largest piedmont glacier in North America (and possibly the world) is Malaspina in southeastern Alaska. On September 24, 2014, the Operational Land Imager (OLI) on Landsat 8 acquired this image of Malaspina Glacier. The main source of ice comes from Seward Glacier, located at the top-center of this image. The Agassiz and Libbey glaciers are visible on the left side, and the Hayden and Marvine glaciers are on the right. The brown lines on the ice are moraines—areas where soil, rock, and other debris have been scraped up by the glacier and deposited at its sides. Where two glaciers flow together, the moraines merge to form a medial moraine. Glaciers that flow at a steady speed tend to have moraines that are relatively straight. But what causes the dizzying pattern of curves, zigzags, and loops of Malaspina’s moraines? Glaciers in this area of Alaska periodically “surge,”meaning they lurch forward quickly for one to several years. As a result of this irregular flow, the moraines at the edges and between glaciers can become folded, compressed, and sheared to form the characteristic loops seen on Malaspina. For instance, a surge in 1986 displaced moraines on the east side of Malaspina by as much as 5 kilometers (3 miles). NASA Earth Observatory image by Jesse Allen, using Landsat data from the U.S. Geological Survey. Caption by Kathryn Hansen. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission

  5. Medial moraines of glaciers of the Copper River Basin, Alaska: Discrete landslides dominate over other sources

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Fischer, L.; Furfaro, R.; Huggel, C.; Korup, O.; Leonard, G. J.; Uhlmann, M.; Wessels, R. L.; Wolfe, D. F.

    2009-12-01

    Medial moraines are visually dominant structures of most large valley glaciers in the Copper River Basin (CRB), Alaska. Areally extensive but thin (usually <20 cm) accumulations of debris pose challenges for glacier mapping based on multispectral imagery, as done, for instance, in the GLIMS project. The sources of this material include large discrete landslides from wallrocks and from lateral moraines; diffuse contributions from rock falls and talus creep; rocks delivered via snow and ice avalanches; ingestion of lateral moraines along tributary convergences; and basal erosional debris. Evidence indicates that in CRB glaciers, discrete large avalanches predominate as the major contributors of moraine mass. Subglacial erosional debris is predominantly pulverized to small grain sizes and flushed. Many large, young avalanches exist on CRB glaciers. Evidence from colorimetry indicates that many medial moraines actually are landslides that have been sheared and swept downglacier, thus mimicking the form of other types of medial moraines formed where tributaries coalesce and flow down valley. Landcover classification of ASTER imagery, qualitative observations from air photos, and semiquantitative field-based estimations of rock color types indicate that on Allen Glacier, and other CRB glaciers, landslides are the sources of most medial moraines. On Allen and Root Glacier, for example, we see very few boulders with obvious signs of basal abrasion, whereas nearly all boulders exhibit signs of irregular fracture, for example in landslides. Such landslides have large effects on the thermal and mass balance of CRB glaciers, sometimes opposing or in other cases accentuating the effects of global/regional climate change. Considering the link between landslides and seismicity, and that Magnitude 8-9 earthquakes may occur nearby only about once a century, which is also the characteristic response time of large glaciers to climate shifts, seismicity must be considered along with

  6. Assessing Glacier Hazards At Ghiacciaio Del Belvedere, Macugnaga, Italian Alps

    NASA Astrophysics Data System (ADS)

    Haeberli, W.; Chiarle, M.; Mortara, G.; Mazza, A.

    The uppermost section of the Valle Anzasca behind and above the community of Macugnaga in the Italian Alps is one of the most spectacular high-mountain land- scapes in Europe, with gigantic rock walls and numerous steep hanging glaciers. Its main glacier, Ghiacciaio del Belvedere at the foot of the huge Monte Rosa east face, is a heavily debris-covered glacier flowing on a thick sediment bed. Problems with floods, avalanches and debris flows from this ice body have been known for extended time periods. Most recently, however, the evolution of this highly dynamic environ- ment has become more dramatic. An outburst of Lago delle Locce, an ice-dammed lake at the confluenec of the tributary Ghiacciaio delle Locce with Ghiacciaio del Belvedere, caused heavy damage in 1979 and necessitated site investigation and con- struction work to be done for flood protection. The intermittent glacier growth ten- dency in the 1970es induced strong bulging of the glacier surface and, in places, caused the glacier tongue to override historical morains and to destroy newly-grown forest stands. A surge-type flow acceleration started in the lower parts of the Monte- Rosa east face during summer 2000, leading to strong crevassing and deformation of Ghiacciaio del Belvedere and extreme bulging of its orographic right margin. High water pressure and accelerated movement lasted into winter 2001/2002: the ice now started overriding the LIA moraine near Rifugio Zamboni of the CAI. In addition but rather independently, a most active detachment zone for rock falls and debris flows developed for several years now in the east face of Monte Rosa, somewhat more to the south of the accelerated glacier movement and at an altitude where relatively warm permafrost must be expected. Besides the scientific interest in these phenomena, the growing hazard potential to the local infrastructure must be considered seriously. Es- pecially potentials for the destabilization of large rock and ice masses in the

  7. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  8. The Open Global Glacier Model

    NASA Astrophysics Data System (ADS)

    Marzeion, B.; Maussion, F.

    2017-12-01

    Mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Notable examples from the ice sheet community include the Parallel Ice Sheet Model or Elmer/Ice. While the atmospheric modeling community has a long tradition of sharing models (e.g. the Weather Research and Forecasting model) or comparing them (e.g. the Coupled Model Intercomparison Project or CMIP), recent initiatives originating from the glaciological community show a new willingness to better coordinate global research efforts following the CMIP example (e.g. the Glacier Model Intercomparison Project or the Glacier Ice Thickness Estimation Working Group). In the recent past, great advances have been made in the global availability of data and methods relevant for glacier modeling, spanning glacier outlines, automatized glacier centerline identification, bed rock inversion methods, and global topographic data sets. Taken together, these advances now allow the ice dynamics of glaciers to be modeled on a global scale, provided that adequate modeling platforms are available. Here, we present the Open Global Glacier Model (OGGM), developed to provide a global scale, modular, and open source numerical model framework for consistently simulating past and future global scale glacier change. Global not only in the sense of leading to meaningful results for all glaciers combined, but also for any small ensemble of glaciers, e.g. at the headwater catchment scale. Modular to allow combinations of different approaches to the representation of ice flow and surface mass balance, enabling a new kind of model intercomparison. Open source so that the code can be read and used by anyone and so that new modules can be added and discussed by the community, following the principles of open governance. Consistent in order to provide uncertainty measures at all realizable scales.

  9. Frequency, triggering factors and possible consequences of mass movements on outlet glaciers in Iceland.

    NASA Astrophysics Data System (ADS)

    Saemundsson, Thorsteinn; Margeirsson, Guðbjörn

    2016-04-01

    During the last 15 years several mass movements of various size and origin, e.g. rock avalanches, rock slides and debris slides have been observed to have fall on outlet glaciers in Iceland. This should not come as a surprise in this type of glacial environment, but in a way it does. When looking at the history only few mass movements are recorded to have fall on outlet glaciers in Iceland, during the decades before the year 2000 or since 1960. This "lack of mass movements" can be explained by the fact that fewer observations and monitoring were done in the past, but is it so or are we seeing increasing activity? Looking at the distribution of the known mass movements, two activity periods cam be identified. The former one around 1970 and the second one starting around 2000 and is still ongoing. Both of these periods are characterized by warmer climate leading to retreating phases of glaciers. Two larger mass movements are known from these two retreating periods. The former one occurred in January 1967. Then a large rockslide fell on the snout and into the glacial lake of the Steinholtsjökull outlet glacier in the northern side of the Eyjafjallajökull ice cap. The rockslide broke up the snout of the glacier and caused large floodwave bursting down the Steinholtsdalur valley transporting large volume of sediments down its path. The later one occurred in 2007, when a large rockavalanche fell on the Morsárjökull outlet glacier, in the southern side of the Vatnajökull ice cap. The avalanche debris covered around 1/5 of the glacier surface. Today the retreat and thinning of glaciers in Iceland are extremely rapid. The consequences of such a rapid retreat are e.g. unstable valley slopes surrounding the outlet glaciers, both in loose sediments and bedrock, thawing of mountain permafrost and not least formation of glacial lakes in front of the rapid retreating ice margins. Such conditions can become extremely hazardous, as seen by the above mentioned examples, both

  10. Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: the case of the Tapado glacier, dry Andes of Chile (30°S)

    NASA Astrophysics Data System (ADS)

    Pourrier, J.; Jourde, H.; Kinnard, C.; Gascoin, S.; Monnier, S.

    2013-12-01

    In the Dry Andes, high altitude glacierized catchments are important contributor to streamflow and aquifer recharge. In this study we focused on the Tapado catchment, (30°S, 9 km2, elevation range: 4000m - 5550m) located in the upper Elqui river basin in northern Chile. This catchment encompasses the Tapado glacial complex, composed of an assemblage of the Tapado glacier and the glacial foreland (debris-covered glacier, rock glacier and moraines). Here we present the results of intensive hydrometeorological observations conducted over the 2011 glacier melt season (February to April). Weather, discharge and water electrical conductivity were monitored near the glacier snout and at the outlet of the glacial foreland. GPR observations realized on the glacial foreland are used to verify or complete interpretations of underground transfer modalities. The results show that the water production from the Tapado glacier is highly correlated with weather conditions, in particular incoming shortwave radiation and air temperature. Resulting daily and seasonal streamflow variability is buffered by the glacial foreland, where underground transfers occur through complex flow paths. However, the development of a thermokarst drainage network in a part of the glacial foreland, allows fast and concentrated water transfers, which reduces this buffering effect. The glacial foreland is shown to act as a reservoir, storing water during period of strong ice melt and providing water to downstream areas during periods of low melt. The internal structure of the glacial foreland revealed by GPR observations corroborates these analyses. The south-western part is composed by massive ice, covered by rock debris. The north-eastern part is composed by mixed ice and rock debris, presenting spatially variable ice content. Finally, the computation of the catchment water balance shows that the Tapado catchment presents a particularly high specific discharge in summer under a dry hydro

  11. Influence of aeolian activities on the distribution of microbial abundance in glacier ice

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, X.-K.; Si, J.; Wu, G.-J.; Tian, L.-D.; Xiang, S.-R.

    2014-10-01

    Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent archives of microbial communities and climatic and environmental changes. However, it is uncertain about how aeolian processes that cause climatic changes control the distribution of microorganisms in the glacier ice. In the present study, microbial density, stable isotopic ratios, 18O / 16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztag Ata glacier and the Dunde ice cap. The ice core data showed that microbial abundance was often, but not always associated with high concentrations of particles. Results also revealed clear seasonal patterning with high microbial abundance occurring in both the cooling autumn and warming spring-summer seasons. Microbial comparisons among the neighbouring glaciers display a heterogeneous spatial pattern, with the highest microbial cell density in the glaciers lying adjacent to the central Asian deserts and lowest microbial density in the southwestern margin of the Tibetan Plateau. In conclusion, microbial data of the glaciers indicates the aeolian deposits of microorganisms in the glacier ice and that the spatial patterns of microorgansisms are related to differences in sources of microbial flux and intensity of aeolian activities in the current regions. The results strongly support our hypothesis of aeolian activities being the main agents controlling microbial load in the glacier ice.

  12. Preliminary assessment of landslide-induced wave hazards, Tidal Inlet, Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Jakob, Matthias; Motyka, Roman J.; Zirnheld, Sandra L.; Craw, Patricia

    2003-01-01

    A large potential rock avalanche above the northern shore of Tidal Inlet, Glacier Bay National Park, Alaska, was investigated to determine hazards and risks of landslide-induced waves to cruise ships and other park visitors. Field and photographic examination revealed that the 5 to 10 million cubic meter landslide moved between AD 1892 and 1919 after the retreat of Little Ice Age glaciers from Tidal Inlet by AD 1890. The timing of landslide movement and the glacial history suggest that glacial debuttressing caused weakening of the slope and that the landslide could have been triggered by large earthquakes of 1899-1900 in Yakutat Bay. Evidence of recent movement includes fresh scarps, back-rotated blocks, and smaller secondary landslide movements. However, until there is evidence of current movement, the mass is classified as a dormant rock slump. An earthquake on the nearby active Fairweather fault system could reactivate the landslide and trigger a massive rock slump and debris avalanche into Tidal Inlet. Preliminary analyses show that waves induced by such a landslide could travel at speeds of 45 to 50 m/s and reach heights up to 76 m with wave runups of 200 m on the opposite shore of Tidal Inlet. Such waves would not only threaten vessels in Tidal Inlet, but would also travel into the western arm of Glacier Bay endangering large cruise ships and their passengers.

  13. Malaspina Glacier, Alaska, Perspective with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Malaspina Glacier in southeastern Alaska is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    This perspective view was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Landsat views both visible and infrared light, which have been combined here into a color composite that generally shows glacial ice in light blue, snow in white, vegetation in green, bare rock in grays and tans, and the ocean (foreground) in dark blue. The back (northern) edge of the data set forms a false horizon that meets a false sky.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Glaciers are sensitive indicators of climatic change. They can grow and thicken with increasing snowfall and/or decreased melting. Conversely, they can retreat and thin if snowfall decreases and/or atmospheric temperatures rise and cause increased melting. Landsat imaging has been an excellent tool for mapping the changing geographic extent of glaciers since 1972. The elevation measurements taken by SRTM in February 2000 now provide a near-global baseline against which future non-polar region glacial thinning or thickening can be assessed.

  14. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis

    2016-04-01

    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold

  15. IceTrendr: a linear time-series approach to monitoring glacier environments using Landsat

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J. M.; Braaten, J.

    2017-12-01

    Arctic glaciers in Alaska and Canada have experienced some of the greatest ice mass loss of any region in recent decades. A challenge to understanding these changing ecosystems, however, is developing globally-consistent, multi-decadal monitoring of glacier ice. We present a toolset and approach that captures, labels, and maps glacier change for use in climate science, hydrology, and Earth science education using Landsat Time Series (LTS). The core step is "temporal segmentation," wherein a yearly LTS is cleaned using pre-processing steps, converted to a snow/ice index, and then simplified into the salient shape of the change trajectory ("temporal signature") using linear segmentation. Such signatures can be characterized as simple `stable' or `transition of glacier ice to rock' to more complex multi-year changes like `transition of glacier ice to debris-covered glacier ice to open water to bare rock to vegetation'. This pilot study demonstrates the potential for interactively mapping, visualizing, and labeling glacier changes. What is truly innovative is that IceTrendr not only maps the changes but also uses expert knowledge to label the changes and such labels can be applied to other glaciers exhibiting statistically similar temporal signatures. Our key findings are that the IceTrendr concept and software can provide important functionality for glaciologists and educators interested in studying glacier changes during the Landsat TM timeframe (1984-present). Issues of concern with using dense Landsat time-series approaches for glacier monitoring include many missing images during the period 1984-1995 and that automated cloud mask are challenged and require the user to manually identify cloud-free images. IceTrendr is much more than just a simple "then and now" approach to glacier mapping. This process is a means of integrating the power of computing, remote sensing, and expert knowledge to "tell the story" of glacier changes.

  16. Bed-Deformation Experiments Beneath a Temperate Glacier

    NASA Astrophysics Data System (ADS)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2002-12-01

    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  17. Experimental evidence that microbial activity lowers the albedo of glacier surfaces: the cryoconite casserole experiment.

    NASA Astrophysics Data System (ADS)

    Musilova, M.; Tranter, M.; Takeuchi, N.; Anesio, A. M.

    2014-12-01

    Darkened glacier and ice sheet surfaces have lower albedos, absorb more solar radiation and consequently melt more rapidly. The increase in glacier surface darkening is an important positive feedback to warming global temperatures, leading to ever growing world-wide ice mass loss. Most studies focus primarily on glacial albedo darkening caused by the physical properties of snow and ice surfaces, and the deposition of dark impurities on glaciers. To date, however, the important effects of biological activity have not been included in most albedo reduction models. This study provides the first experimental evidence that microbial activity can significantly decrease the albedo of glacier surfaces. An original laboratory experiment, the cryoconite casserole, was designed to test the microbial darkening of glacier surface debris (cryoconite) under simulated Greenlandic summer conditions. It was found that minor fertilisation of the cryoconite (at nutrient concentrations typical of glacial ice melt) stimulated extensive microbial activity. Microbes intensified their organic carbon fixation and even mined phosphorous out of the glacier surface sediment. Furthermore, the microbial organic carbon production, accumulation and transformation caused the glacial debris to darken further by 17.3% reflectivity (albedo analogue). These experiments are consistent with the hypothesis that enhanced fertilisation by anthropogenic inputs results in substantial amounts of organic carbon fixation, debris darkening and ultimately to a considerable decrease in the ice albedo of glacier surfaces on global scales. The sizeable amounts of microbially produced glacier surface organic matter and nutrients can thus be a vital source of bioavailable nutrients for subglacial and downstream environments.

  18. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis

    2015-10-01

    The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the

  19. Contrasting medial moraine development at adjacent temperate, maritime glaciers: Fox and Franz Josef Glaciers, South Westland, New Zealand

    NASA Astrophysics Data System (ADS)

    Brook, Martin; Hagg, Wilfried; Winkler, Stefan

    2017-08-01

    Medial moraines form important pathways for sediment transportation in valley glaciers. Despite the existence of well-defined medial moraines on several glaciers in the New Zealand Southern Alps, medial moraines there have hitherto escaped attention. The evolving morphology and debris content of medial moraines on Franz Josef Glacier and Fox Glacier on the western flank of the Southern Alps is the focus of this study. These temperate maritime glaciers exhibit accumulation zones of multiple basins that feed narrow tongues flowing down steep valleys and terminate 400 m above sea level. The medial moraines at both glaciers become very prominent in the lower ablation zones, where the medial moraines widen, and develop steeper flanks coeval with an increase in relative relief. Medial moraine growth appears somewhat self-limiting in that relief and slope angle increase eventually lead to transport of debris away from the medial moraine by mass-movement-related processes. Despite similarities in overall morphologies, a key contrast in medial moraine formation exists between the two glaciers. At Fox Glacier, the medial moraine consists of angular rockfall-derived debris, folded to varying degrees along flow-parallel axes throughout the tongue. The debris originates above the ELA, coalesces at flow-unit boundaries, and takes a medium/high level transport pathway before subsequently emerging at point-sources aligned with gently dipping fold hinges near the snout. In contrast at Franz Josef Glacier, the medial moraine emerges farther down-glacier immediately below a prominent rock knob. Clasts show a mix of angular to rounded shapes representing high level transport and subglacially transported materials, the latter facies possibly also elevated by supraglacial routing of subglacial meltwater. Our observations confirm that a variety of different debris sources, transport pathways, and structural glaciological processes can interact to form medial moraines within New Zealand

  20. Bacteria at glacier surfaces: microbial community structures in debris covered glaciers and cryoconites in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Azzoni, Roberto; Franzetti, Andrea; Ambrosini, Roberto; D'Agata, Carlo; Senese, Antonella; Minora, Umberto; Tagliaferri, Ilario; Diolaiuti, Guglielmina

    2014-05-01

    Supraglacial debris has an important role in the glacier energy budget and has strong influence on the glacial ecosystem. Sediment derives generally from rock inputs from nesting rockwalls and are abundant and continuous at the surface of debris-covered glaciers (i.e. DCGs; glaciers where the ablation area is mainly covered by rock debris) and sparse and fine on debris-free glaciers (DFGs). Recently, evidence for significant tongue darkening on retreating debris-free glaciers has been drawing increasing attention. Fine particles, the cryoconite, are locally abundant and may form cryoconite holes that are water-filled depressions on the surface of DFGs that form when a thin layer of cryoconite is heated by the sun and melts the underlying ice. There is increasing evidence that cryoconite holes also host highly diverse microbial communities and can significantly contribute to global carbon cycle. However, there is almost no study on microbial communities of the debris cover of DCGs and there is a lack of data from the temporal evolution of the microbial communities in the cryoconites. To fill these gaps in our knowledge we characterized the supraglacial debris of two Italian DCGs and we investigated the temporal evolution of microbial communities on cryoconite holes in DFG. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from samples collected distances from the terminus of two DCGs (Miage and Belvedere Glaciers - Western Italian Alps). Heterotrophic taxa dominated bacterial communities, whose structure changed during downwards debris transport. Organic carbon of these recently exposed substrates therefore is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We used ARISA fingerprinting and quantitative PCR to describe the structure and the evolution of the microbial communities and to estimate the number of the total

  1. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, Virendra Bahadur; Ramanathan, Al; Pottakkal, Jose George; Sharma, Parmanand; Linda, Anurag; Azam, Mohd Farooq; Chatterjee, C.

    2012-06-01

    A detailed analytical study of major cations (Ca2 + , Mg2 + , Na + , K + ) and anions (SO4^{2-}, HCO3-, Cl - , NO3-) of meltwater draining from Gangotri Glacier was carried out to understand major ion chemistry and to get an insight into geochemical weathering processes controlling hydrochemistry of the glacier. In the meltwater, the abundance order of cations and anions varied as follows: Ca2 + > Mg2 + > K + > Na + and SO4^{2-} > HCO3- > Cl - > NO3-, respectively. Calcium and magnesium are dominant cations while sulphate and bicarbonate are dominant anions. Weathering of rocks is the dominant mechanism controlling the hydrochemistry of drainage basin. The relative high contribution of (Ca+Mg) to the total cations (TZ + ), high (Ca+Mg)/(Na+K) ratio (2.63) and low (Na+K)/TZ + ratio (0.29) indicate the dominance of carbonate weathering as a major source for dissolved ions in the glacier meltwater. Sulphide oxidation and carbonation are the main proton supplying geochemical reactions controlling the rock weathering in the study area. Statistical analysis was done to identify various factors controlling the dissolved ionic strength of Gangotri Glacier meltwater.

  2. Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery

    USGS Publications Warehouse

    Coe, Jeffrey A.; Bessette-Kirton, Erin; Geertsema, Marten

    2018-01-01

    In the USA, climate change is expected to have an adverse impact on slope stability in Alaska. However, to date, there has been limited work done in Alaska to assess if changes in slope stability are occurring. To address this issue, we used 30-m Landsat imagery acquired from 1984 to 2016 to establish an inventory of 24 rock avalanches in a 5000-km2 area of Glacier Bay National Park and Preserve in southeast Alaska. A search of available earthquake catalogs revealed that none of the avalanches were triggered by earthquakes. Analyses of rock-avalanche magnitude, mobility, and frequency reveal a cluster of large (areas ranging from 5.5 to 22.2 km2), highly mobile (height/length < 0.3) rock avalanches that occurred from June 2012 through June 2016 (near the end of the 33-year period of record). These rock avalanches began about 2  years after the long-term trend in mean annual maximum air temperature may have exceeded 0 °C. Possibly more important, most of these rock avalanches occurred during a multiple-year period of record-breaking warm winter and spring air temperatures. These observations suggested to us that rock avalanches in the study area may be becoming larger because of rock-permafrost degradation. However, other factors, such as accumulating elastic strain, glacial thinning, and increased precipitation, may also play an important role in preconditioning slopes for failure during periods of warm temperatures.

  3. The potential for retreating alpine glaciers to alter alpine ecosystems in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Hall, E.; Baron, J.

    2013-12-01

    Glaciers are retreating at an unprecedented rate. In mid-latitude alpine ecosystems the presence of glaciers and rock glaciers govern rates and ecology of alpine and sub-alpine ecosystems. Changes in the thermal environment due to the loss of isothermal habitat and inputs from glacier melt chemistry are altering alpine ecosystems in unpredictable ways. In particular, glacier may be a source of nitrogen that is altering alpine ecosystem dynamics. Loch Vale Watershed (LVWS) located within Rocky Mountain National Park. LVWS contains a surface glacier (Andrew's glacier) and a rock glacier (Taylor's glacier) at the headwater of each of the two drainages within the watershed. We collected precipitation from a National Atmospheric Deposition Site and surface water from multiple alpine lakes and streams during a particularly high and low snow year in the Colorado Front Range. We also sampled stream and lake sediments at each site to analyze the associated microbial community. Concentrations of nitrate and ammonium, relative abundance of amoA (the gene responsible for a key step in the microbial nitrification pathway), and the dual isotope signal to nitrate all point to snow melt as a key deliverer of nitrogen to ecosystems along the Colorado Front Range. However, late summer surface water chemistry is isotopically similar to the chemistry of glacial ice. This suggests that retreating glacier may be an additional source of N to alpine ecosystems and have the potential to alter microbial community composition, biogeochemical rate processes, and ecosystem function. These dynamics are most likely not unique to the Colorado Front Range and should be globally distributed as glaciers continue to retreat in high altitude ecosystems around the world.

  4. Geology of the Byrd Glacier Discontinuity (Ross Orogen): New survey data from the Britannia Range, Antarctica

    USGS Publications Warehouse

    Carosi, R.; Giacomini, F.; Talarico, F.; Stump, E.

    2007-01-01

    Field activities in the Britannia Range (Transantarctic Mountains, Antarctica) highlighted new geological features around the so-called Byrd Glacier discontinuity. Recent field surveys revealed the occurrence of significant amounts of medium- to high-grade metamorphic rocks, intruded by abundant coarse-grained porphyritic granitoids. Most of the granitoids are deformed, with foliation parallel to the regional foliation in the metamorphics. Two main episodes of deformation are observed. Tight to isoclinal folds and penetrative axial plane foliation are related to the D1 phase, open folds to the D2. The main foliation (D1) trends nearly E-W in agreement with the trend in the southern portion of the Byrd Glacier. In most outcrops, granitic dykes are folded and stretched by the D2 deformation, which shows similar characteristics with the D2 deformation south of the Byrd Glacier. This suggests the occurrence in the Ross orogen of an orogen-normal structure south and north of the Byrd Glacier.

  5. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams.

    PubMed

    Wilhelm, Linda; Besemer, Katharina; Fasching, Christina; Urich, Tim; Singer, Gabriel A; Quince, Christopher; Battin, Tom J

    2014-08-01

    Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Thermo-hydro-mechanical stresses during repeat glacial cycles as preparatory factors for paraglacial rock slope instabilities

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz; Moore, Jeffrey R.; Gischig, Valentin; Loew, Simon

    2015-04-01

    Glaciation and deglaciation contribute to stress redistribution in alpine valley rock slopes, generating rock mass damage. However, the physical processes contributing to slope instability during glacial cycles are not well understood, and the mechanical reasoning remains vague. In addition to glacier loading and unloading, thermal strains affect newly exposed bedrock while changes in hillslope hydrology modify effective stresses. Together these can generate damage and reduce rock slope stability over time. Here we explore the role of coupled thermo-hydro-mechanical (THM) stress changes in driving long-term progressive damage and conditioning paraglacial rock slope failure in the Aletsch glacier region of Switzerland. We develop a 2D numerical model using the distinct element code UDEC, creating a fractured rock slope containing rock mass elements of intact rock, discontinuities, and fault zones. Topography, rock properties and glacier history are all loosely based on real conditions in the Aletsch valley. In-situ stresses representing pre-LGM conditions with inherent rock mass damage are initialized. We model stress changes through multiple glacier cycles during the Lateglacial and Holocene; stress redistribution is not only induced by glacier loading, but also by changes in bedrock temperatures and transient hillslope hydrology. Each THM response mechanism is tied to the changing ice extents, therefore stress changes and resulting rock mass damage can be explored in both space and time. We analyze cyclic THM stresses and resulting damage during repeat glacial cycles, and compare spatiotemporal outputs with the mapped landslide distribution in the Aletsch region. Our results extend the concept of glacial debuttressing, lead to improved understanding of the rock mass response to glacial cycles, and clarify coupled interactions driving paraglacial rock mass damage.

  7. An Active Englacial Hydrological System in a Cold Glacier: Blood Falls, Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Carr, C. G.; Pettit, E. C.; Carmichael, J.; Badgeley, J.; Tulaczyk, S. M.; Lyons, W. B.; Mikucki, J.

    2016-12-01

    Blood Falls is a supraglacial hydrological feature formed by episodic release of iron-rich subglacial brine derived from an extensive aquifer beneath the cold, polar, Taylor Glacier. While fluid transport in non-temperate ice typically occurs through meltwater delivery from the glacier surface to the bed (hydrofracturing, supraglacial lake drainage), Blood Falls represents the opposite situation: brine moves from a subglacial source to the glacier surface. Here, we present the first complete conceptual model for brine transport and release, as well as the first direct evidence of a wintertime brine release at Blood Falls obtained through year-round time-lapse photography. Related analyses show that brine pools subglacially underneath the northern terminus of Taylor Glacier, rather than flowing directly into proglacial Lake Bonney because ice-cored moraines and channelized surface topography provide hydraulic barriers. This pooled brine is pressurized by hydraulic head from the upglacier brine source region. Based on seismic data, we propose that episodic supraglacial release is initiated by high strain rates coupled with pressurized subglacial brine that drive intermittent subglacial and englacial fracturing. Ultimately, brine-filled basal crevasses propagate upward to link with surface crevasses, allowing brine to flow from the bed to the surface. The observation of wintertime brine release indicates that surface-generated meltwater is not necessary to trigger crack propagation or to maintain the conduit as previously suggested. The liquid brine persists beneath and within the cold ice (-17°C) despite ambient ice/brine temperature differences of as high as 10°C through both locally depressed brine freezing temperatures through cryoconcentration of salts and increased ice temperatures through release of latent heat during partial freezing of brine. The existence of an englacial hydrological system initiated by basal crevassing extends to polar glaciers a process

  8. Inspection of Alpine glaciers with cosmic-ray muon radiography

    NASA Astrophysics Data System (ADS)

    Nishiyama, Ryuichi; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Lechmann, Alessandro; Mair, David; Scampoli, Paola; Schlunegger, Fritz; Vladymyrov, Mykhailo

    2016-04-01

    the potential risk of rock fall on the onsite railway. We installed prototype detectors at two sites inside the Jungfrau tunnel crossing the Eiger mountain. The first site is located at 3160 m a.s.l. where the tunnel crosses the eastern flank of the Eiger. There, the thickness of the rock, which muons have to penetrate, ranges from 600 m to 1500 m. The second site is located at 3250 m a.s.l., just beneath the western flank of the Eiger. At this second site, the rock thickness is 300 - 1000 m. We chose emulsion films as muon detectors because they do not require power supply, a clear advantage in the harsh mountain environmental conditions. The effective area of the detectors is 1000cm2 for both sites. The foreseen exposure time will be 2 to 3 months. After this prototype experiment, we will install larger detectors in several sites in the tunnel. The stereo observation would make it possible to reconstruct the three-dimensional shape of the bedrock beneath the Eiger glacier.

  9. Geomorphic feedbacks between hillslopes and valley glaciers - implications for climate reconstructions and landscape evolution (GM Division Outstanding ECS Award Lecture and Penck Lecture)

    NASA Astrophysics Data System (ADS)

    Scherler, Dirk

    2017-04-01

    Glacial landscapes respond rapidly to global warming: glaciers retreat, permafrost degrades, and snow cover diminishes. These changes affect the stability of glacial landscapes, manifested by enhanced rockfall activity and more frequent catastrophic slope failures. Similar changes have accompanied deglaciation after the last glacial maximum, albeit of much greater magnitude, and with potentially important feedbacks between the dynamics of mountain glaciers and the landscapes they reside in. Here, I summarize recent observations from debris-covered valley glaciers and put them into context with a more general conceptual model of how glacial landscapes respond to warming periods. I will identify key research problems and provide preliminary results from ongoing studies. Ice-free areas that are located above glaciers generally consist of steep bedrock hillslopes (headwalls), where ambient temperatures are low enough to form bedrock permafrost, but the topography is too steep to accumulate significant amounts of ice on the surface. Because headwalls erode by rockfalls and rock avalanches that mobilize fractured bedrock, the rate-limiting factor is the growth of bedrock fractures. Current theory posits that bedrock fractures in cold regions primarily expand by segregation ice growth at subfreezing temperatures, which is known as frost cracking. Because frost cracking is temperature sensitive, there exists a temperature window of high frost-cracking intensity, which is thought to correspond to an elevation zone of enhanced sediment production. During warming periods, changes in the frost-cracking intensity combine with permafrost degradation and changing stresses due to ice thinning to destabilize steep headwalls and likely increase the flux of rocks that is shed to valley glaciers below. Even if temporarily buried in the ice, most rocks eventually melt out at the ice surface and form a supraglacial debris cover. Because debris cover thicker than 2 cm reduces conductive

  10. Massive Trentepohlia-bloom in a glacier valley of Mt. Gongga, China, and a new variety of Trentepohlia (Chlorophyta).

    PubMed

    Liu, Guoxiang; Zhang, Qi; Zhu, Huan; Hu, Zhengyu

    2012-01-01

    Trentepohlia is a genus of subaerial green algae which is widespread in tropical, subtropical, and also temperate regions with humid climates. For many years, small-scale Trentepohlia coverage had been found on the rocks of some glacier valleys on the northern slopes of Mt. Gongga, China. However, since 2005, in the Yajiageng river valley, most of the rocks are covered with deep red coloured algal carpets, which now form a spectacular sight and a tourist attraction known as 'Red-Stone-Valley'. Based on morphology and molecular data, we have named this alga as a new variety: Trentepohlia jolithus var. yajiagengensis var. nov., it differs from the type variety in that its end cells of the main filament are often rhizoid, unilateral branches. This new variety only grows on the native rock, both global warming and human activity have provided massive areas of suitable substrata: the rocks surfaces of the Yajiageng river valley floodplain were re-exposed because of heavy debris flows in the summer of 2005; plus human activities such as tourism and road-building have also created a lot of exposed rock! In summer, the glaciers of the northern slopes of Mt. Gongga have brought to the valleys wet and foggy air, ideal for Trentepohlia growth. The cells of the new variety are rich in secondary carotenoids (astaxanthin?), which helps the algal cells resistance to strong ultraviolet radiation at high altitudes (they are only found on rock surfaces at alt. 1900-3900 m); the cells are also rich in oils, which gives them high resistance to cold dry winters.

  11. Investigating Long-term Behavior of Outlet Glaciers in Greenland

    NASA Technical Reports Server (NTRS)

    Csatho, Beata; vanderVeen, Kees; Schenk, Toni

    2005-01-01

    Repeat surveys by airborne laser altimetry in the 1990s have revealed significant thinning of outlet glaciers draining the interior of the Greenland Ice Sheet, with thinning rates up to several meters per year. To fully appreciate the significance of these recent glacier changes, the magnitude of retreat and surface lowering must be placed within the broader context of the retreat since the Last Glacial Maximum and, more significantly, of the retreat following the temporary glacier advance during the Little Ice Age (LIA). The LIA maximum stand is marked by trimlines, sharp boundaries between recently deglacifated unvegetated rocks, and vegetated surfaces at higher elevations. The objective of this project was to demonstrate the use of remote sensing data to map these trimlines and other glacial geomorphologic features.

  12. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    NASA Astrophysics Data System (ADS)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  13. Malaspina Glacier, Alaska, Anaglyph with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This anaglyph view of Malaspina Glacier in southeastern Alaska was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Malaspina Glacier is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Numerous other features of the glaciers and the adjacent terrain are clearly seen when viewing this image at full resolution. The series of tonal arcs on Agassiz Glacier's extension onto the piedmont are called 'ogives.' These arcs are believed to be seasonal features created by deformation of the glacier as it passes over bedrock irregularities at differing speeds through the year. Assuming one light-and-dark ogive pair per year, the rate of motion of the glacial ice can be estimated (in this case, about 200 meters per year where the ogives are most prominent). Just to the west, moraine deposits abut the eroded bedrock terrain, forming a natural dam that has created a lake. Near the northwest corner of the scene, a recent landslide has deposited rock debris atop a small glacier. Sinkholes are common in many areas of the moraine deposits. The sinkholes form when

  14. Glaciers along proposed routes extending the Copper River Highway, Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    Three inland highway routes are being considered by the Alaska Department of Transportation and Public Facilities to connect the community of Cordova in southcentral Alaska to a statewide road system. The routes use part of a Copper River and Northwest Railway alignment along the Copper River through mountainous terrain having numerous glaciers. An advance of any of several glaciers could block and destroy the roadway, whereas retreating glaciers expose large quantities of unconsolidated, unvegetated, and commonly ice-rich sediments. The purpose of this study was to map historical locations of glacier termini near these routes and to describe hazards associated with glaciers and seasonal snow. Historical and recent locations of glacier termini along the proposed Copper River Highway routes were determined by reviewing reports and maps and by interpreting aerial photographs. The termini of Childs, Grinnell, Tasnuna, and Woodworth Glaciers were 1 mile or less from a proposed route in the most recently available aerial photography (1978-91); the termini of Allen, Heney, and Schwan Glaciers were 1.5 miles or less from a proposed route. In general, since 1911, most glaciers have slowly retreated, but many glaciers have had occasional advances. Deserted Glacier and one of its tributary glaciers have surge-type medial moraines, indicating potential rapid advances. The terminus of Deserted Glacier was about 2.1 miles from a proposed route in 1978, but showed no evidence of surging. Snow and rock avalanches and snowdrifts are common along the proposed routes and will periodically obstruct the roadway. Floods from ice-dammed lakes also pose a threat. For example, Van Cleve Lake, adjacent to Miles Glacier, is as large as 4.4 square miles and empties about every 6 years. Floods from drainages of Van Cleve Lake have caused the Copper River to rise on the order of 20 feet at Million Dollar Bridge.

  15. Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Gischig, Valentin S.; Ivy-Ochs, Susan; Loew, Simon

    2017-04-01

    Cycles of glaciation impose mechanical stresses on underlying bedrock as glaciers advance, erode, and retreat. Fracture initiation and propagation constitute rock mass damage and act as preparatory factors for slope failures; however, the mechanics of paraglacial rock slope damage remain poorly characterized. Using conceptual numerical models closely based on the Aletsch Glacier region of Switzerland, we explore how in situ stress changes associated with fluctuating ice thickness can drive progressive rock mass failure preparing future slope instabilities. Our simulations reveal that glacial cycles as purely mechanical loading and unloading phenomena produce relatively limited new damage. However, ice fluctuations can increase the criticality of fractures in adjacent slopes, which may in turn increase the efficacy of fatigue processes. Bedrock erosion during glaciation promotes significant new damage during first deglaciation. An already weakened rock slope is more susceptible to damage from glacier loading and unloading and may fail completely. We find that damage kinematics are controlled by discontinuity geometry and the relative position of the glacier; ice advance and retreat both generate damage. We correlate model results with mapped landslides around the Great Aletsch Glacier. Our result that most damage occurs during first deglaciation agrees with the relative age of the majority of identified landslides. The kinematics and dimensions of a slope failure produced in our models are also in good agreement with characteristics of instabilities observed in the field. Our results extend simplified assumptions of glacial debuttressing, demonstrating in detail how cycles of ice loading, erosion, and unloading drive paraglacial rock slope damage.

  16. The current evolution of complex high mountain debris-covered glacier systems and its relation with ground ice nature and distribution: the case of Rognes and Pierre Ronde area (Mont-Blanc range, France).

    NASA Astrophysics Data System (ADS)

    Bosson, Jean-Baptiste; Lambiel, Christophe

    2014-05-01

    . Electrical resistivity tomographies, kinematic data and ground surface temperature show that heterogeneous responses to climate forcing are occurring despites their small areas (> 0.3 km2). This complex situation is related to Holocene climate history and especially to glacier systems evolution since LIA. The current dynamics depend of ground ice nature and distribution. Five main behaviours can be highlighted: - Debris covered glacier areas are the most active. Their responses to climate forcing are relatively fast, especially through massive ice melt-out each summer. - Ice-cored rock glacier areas are quite active. The existence of massive glacier ice under few meters of debris explain the important surface lowering during the snow free period . - Ice-cemented rock glacier areas are characterised by winter and summer subhorizontal downslope creeping. - Moraine areas containing dead ice have heterogeneous activities (directions and values of detected movements) related to the ice vanishing. - Deglaciated moraine areas are almost inactive, except modest superficial paraglacial rebalancing.

  17. Instability of a highly vulnerable high alpine rock ridge: the lower Arête des Cosmiques (Mont Blanc massif, France)

    NASA Astrophysics Data System (ADS)

    Ravanel, L.; Deline, P.; Lambiel, C.; Vincent, C.

    2012-04-01

    Glacier retreat and permafrost degradation are actually more and more thought to explain the increasing instability of rock slopes and rock ridges in high mountain environments. Hot summers with numerous rockfalls we experienced over the last two decades in the Alps have indeed contributed to test/strengthen the hypothesis of a strong correlation between rockfalls and global warming through these two cryospheric factors. Rockfalls from recently deglaciated and/or thawing areas may have very important economic and social implications for high mountain infrastructures and be a fatal hazard for mountaineers. At high mountain sites characterized by infrastructures that can be affected by rockfalls, the monitoring of rock slopes, permafrost and glaciers is thus an essential element for the sustainability of the infrastructure and for the knowledge/management of risks. Our study focuses on a particularly active area of the Mont Blanc massif (France), the lower Arête des Cosmiques, on which is located the very popular Refuge des Cosmiques (3613 m a.s.l.). Since 1998, when a rockfall threatened a part of the refuge and forced to major stabilizing works, observations allowed to identify 10 detachments (20 m3 to > 1000 m3), especially on the SE face of the ridge. Since 2009, this face is yearly surveyed by terrestrial laser scanning to obtain high-resolution 3D models. Their diachronic comparison gives precise measurements of the evolution of the rock slope. Eight rock detachments have thus been documented (0.7 m3 to 256.2 m3). Rock temperature measurements at the ridge and the close Aiguille du Midi (3842 m a.s.l.), and observations of the evolution of the underlying Glacier du Géant have enable to better understand the origin of the strong dynamics of this highly vulnerable area: (i) rock temperature data suggest the presence of warm permafrost (i.e. close to 0°C) from the first meters to depth in the SE face, and cold permafrost in the NW face; (ii) as suggested by the

  18. The geomorphic impact of catastrophic glacier ice loss in mountain regions

    NASA Astrophysics Data System (ADS)

    Evans, S. G.

    2006-12-01

    Perhaps the most dramatic manifestation of global warming is catastrophic glacier ice loss in mountain regions. The geomorphic impact of this process was first outlined by Evans and Clague in 1994 and includes mountain slope instability, glacier avalanching, the formation and failure of moraine dammed lakes, and the formation and failure of ice dammed lakes. The present paper is an update of the 1994 publication and has three components. First, a global review of recent glacier-related geomorphic events is undertaken. Second, an analysis of two cases from the Coast Mountains of British Columbia - the 1975 Devastation Glacier landslide and the 1983 Nostetuko Lake outburst resulting from the failure of a moraine dam illustrates the interaction of glacier ice loss and related geomorphic events. At Devastation Glacier, approximately 13 M m3 of altered Quaternary volcanic rock and glacier ice was lost from the west flank of Pylon Peak in the Mount Meager volcanic complex. The events were initiated by a catastrophic rockslide, involving altered Quaternary pyroclastic rocks, which continued down Devastation Creek valley as a high velocity debris avalanche. The overall length of the slide path was 7 km and the vertical height of the path was 1220 m yielding a fahrboschung of 10°. Other large landslides occurred in Devastation Creek valley in 1931 and 1947. Stability analysis of the initial failure shows that the 1975 rockslide was the result of a complex history of glacial erosion, loading and unloading of the toe of the slide mass caused by the Little Ice Age advance and subsequent retreat of Devastation Glacier. The shearing resistance along the base of the rockslide mass was reduced prior to 1975 by substantial previous slope displacements related to glacial ice loss. Some of this displacement is likely to have occurred as subglacial slope deformation since ice fall and crevasse patterns suggest the presence of slide like shearing displacements below the base of

  19. Disruption of Drift glacier and origin of floods during the 1989-1990 eruptions of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Trabant, D.C.; Waitt, R.B.; Major, J.J.

    1994-01-01

    Melting of snow and glacier ice during the 1989-1990 eruption of Redoubt Volcano caused winter flooding of the Drift River. Drift glacier was beheaded when 113 to 121 ?? 106 m3 of perennial snow and ice were mechanically entrained in hot-rock avalanches and pyroclastic flows initiated by the four largest eruptions between 14 December 1989 and 14 March 1990. The disruption of Drift glacier was dominated by mechanical disaggregation and entrainment of snow and glacier ice. Hot-rock avalanches, debris flows, and pyroclastic flows incised deep canyons in the glacier ice thereby maintaining a large ice-surface area available for scour by subsequent flows. Downvalley flow rheologies were transformed by the melting of snow and ice entrained along the upper and middle reaches of the glacier and by seasonal snowpack incorporated from the surface of the lower glacier and from the river valley. The seasonal snowpack in the Drift River valley contributed to lahars and floods a cumulative volume equivalent to about 35 ?? 106 m3 of water, which amounts to nearly 30% of the cumulative flow volume 22 km downstream from the volcano. The absence of high-water marks in depressions and of ice-collapse features in the glacier indicated that no large quantities of meltwater that could potentially generate lahars were stored on or under the glacier; the water that generated the lahars that swept Drift River valley was produced from the proximal, eruption-induced volcaniclastic flows by melting of snow and ice. ?? 1994.

  20. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    NASA Astrophysics Data System (ADS)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  1. What do We Know the Snow Darkening Effect Over Himalayan Glaciers?

    NASA Technical Reports Server (NTRS)

    Yasunari, T. J.; Lau, K.-U.; Koster, R. D.; Suarez, M.; Mahanama, S. P.; Gautam, R.; Kim, K. M.; Dasilva, A. M.; Colarco, P. R.

    2011-01-01

    The atmospheric absorbing aerosols such as dust, black carbon (BC), organic carbon (OC) are now well known warming factors in the atmosphere. However, when these aerosols deposit onto the snow surface, it causes darkening of snow and thereby absorbing more energy at the snow surface leading to the accelerated melting of snow. If this happens over Himalayan glacier surface, the glacier meltings are expected and may contribute the mass balance changes though the mass balance itself is more complicated issue. Glacier has mainly two parts: ablation and accumulation zones. Those are separated by the Equilibrium Line Altitude (ELA). Above and below ELA, snow accumulation and melting are dominant, respectively. The change of ELA will influence the glacier disappearance in future. In the Himalayan region, many glacier are debris covered glacier at the terminus (i.e., in the ablation zone). Debris is pieces of rock from local land and the debris covered parts are probably not affected by any deposition of the absorbing aerosols because the snow surface is already covered by debris (the debris covered parts have different mechanism of melting). Hence, the contribution of the snow darkening effect is considered to be most important "over non debris covered part" of the Himalayan glacier (i.e., over the snow or ice surface area). To discuss the whole glacier retreat, mass balance of each glacier is most important including the discussion on glacier flow, vertical compaction of glacier, melting amount, etc. The contribution of the snow darkening is mostly associated with "the snow/ice surface melting". Note that the surface melting itself is not always directly related to glacier retreats because sometimes melt water refreezes inside of the glacier. We should discuss glacier retreats in terms of not only the snow darkening but also other contributions to the mass balance.

  2. Recent acceleration of Thwaites Glacier

    NASA Technical Reports Server (NTRS)

    Ferrigno, J. G.

    1993-01-01

    The first velocity measurements for Thwaites Glacier were made by R. J. Allen in 1977. He compared features of Thwaites Glacier and Iceberg Tongue on aerial photography from 1947 and 1967 with 1972 Landsat images, and measured average annual displacements of 3.7 and 2.3 km/a. Using his photogrammetric experience and taking into consideration the lack of definable features and the poor control in the area, he estimated an average velocity of 2.0 to 2.9 km/a to be more accurate. In 1985, Lindstrom and Tyler also made velocity estimates for Thwaites Glacier. Using Landsat imagery from 1972 and 1983, their estimates of the velocities of 33 points ranged from 2.99 to 4.02 km/a, with an average of 3.6 km/a. The accuracy of their estimates is uncertain, however, because in the absence of fixed control points, they assumed that the velocities of icebergs in the fast ice were uniform. Using additional Landsat imagery in 1984 and 1990, accurate coregistration with the 1972 image was achieved based on fixed rock points. For the period 1972 to 1984, 25 points on the glacier surface ranged in average velocity from 2.47 to 2.76 km/a, with an overall average velocity of 2.62 +/- 0.02 km/a. For the period 1984 to 1990, 101 points ranged in velocity from 2.54 to 3.15 km/a, with an overall average of 2.84 km/a. During both time periods, the velocity pattern showed the same spatial relationship for three longitudinal paths. The 8-percent acceleration in a decade is significant. This recent acceleration may be associated with changes observed in this region since 1986. Fast ice melted and several icebergs calved from the base of the Iceberg Tongue and the terminus of Thwaites Glacier. However, as early as 1972, the Iceberg Tongue had very little contact with the glacier.

  3. Regulation of ROCK Activity in Cancer

    PubMed Central

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  4. Late Pleistocene and Holocene Geology and Hazards at Glacier Peak Volcano, Washington

    NASA Astrophysics Data System (ADS)

    Vallance, J. W.; Van Eaton, A. R.; Ramsey, D. W.

    2015-12-01

    Recent fieldwork, improved radiocarbon dating, and mapping on recently acquired LiDAR base have better delineated timing, frequency, and style of volcanism at Glacier Peak. The work shows that, after Mount St. Helens, Glacier Peak is one of the most frequently active Cascade volcanoes. The volcano has erupted multiple times 13-14 ka, 5­-7 ka, 1-2.5 ka, and perhaps as recently as a few hundred years ago. The plinian eruptions of ~13.5 ka were much more voluminous than those of Mount St. Helens in 1980 and show that Glacier Peak is among the most explosive of Cascade volcanoes. These eruptions dispersed ash fallout hundreds of kilometers downwind in Idaho, Montana and Wyoming; produced a partly welded ignimbrite and a small debris avalanche; and caused lahars and flooding far across Puget Sound lowland. Numerous more recent eruptions during the periods 5-7 ka and 1-2.5 ka extruded lava domes whose hot rock avalanched across snow and ice to produce pyroclastic flows and lahars. These eruptions dispersed ash tens of to a hundred or more kilometers downwind. Resulting lahars and floods inundated as far as Puget Sound lowland. Glacier Peak is remote and hidden from most areas of the densely populated Puget Sound lowland; hence, it gets less attention than other prominent Cascade volcanoes like Mounts Rainier, Baker, and St. Helens. Despite its remote location, Glacier Peak poses substantial hazard because even small eruptions on ice-clad volcanoes can have devastating consequences. Distal threats include hazard to air traffic owing to ash plumes. Lahars and potential long-term sedimentation and flooding downstream pose threats to communities near rivers along Skagit and Stillaguamish River drainages. Farther downstream, sedimentation is likely to decrease channel capacity, increasing likelihood of floods. Lava flows, pyroclastic flows, and debris avalanches will threaten hikers in the wilderness near Glacier Peak.

  5. Columbia Glacier in 1984: disintegration underway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, M.F.; Rasmussen, L.A.; Miller, D.S.

    1985-01-01

    Columbia Glacier is a large, iceberg-calving glacier near Valdez, Alaska. The terminus of this glacier was relatively stable from the time of the first scientific studies in 1899 until 1978. During this period the glacier terminated partly on Heather Island and partly on a submerged moraine shoal. In December, 1978, the glacier terminus retreated from Heather Island, and retreat has accelerated each year since then, except during a period of anomalously low calving in 1980. Although the glacier has not terminated on Heather Island since 1978, a portion of the terminus remained on the crest of the moraine shoal untilmore » the fall of 1983. By December 8, 1983, that feature had receded more than 300 m from the crest of the shoal, and by December 14, 1984, had disappeared completely, leaving most of the terminus more than 2000 meters behind the crest of the shoal. Recession of the glacier from the shoal has placed the terminus in deeper water, although the glacier does not float. The active calving face of the glacier now terminates in seawater that is about 300 meters deep at the glacier centerline. Rapid calving appears to be associated with buoyancy effects due to deep water at the terminus and subglacial runoff. 12 refs., 10 figs.« less

  6. Using Muon Radiography to map the Bedrock Geometry underneath an active Glacier: A Case Study in the Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Lechmann, Alessandro; Mair, David; Nishiyama, Ryuichi; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Scampoli, Paola; Vladymyrov, Mykhailo; Schlunegger, Fritz

    2016-04-01

    In recent years, muon radiography has been successfully applied to tackle geological issues and has enjoyed an increasing interest, mainly because this methodology enriches the geophysical arsenal by another shallow subsurface imaging tool that may give independent constraints on material density. Muons that originate from the collision of cosmic particles with Earth's atmosphere are able to penetrate the material in question and can finally be recorded by a detector. The irradiation intensity can then be inverted to the density of the traversed material. Various successful two-dimensional attempts have already been made to image e.g. magma chambers inside volcanoes (Lesparre et al., 2012; Nishiyama et al., 2014; Tanaka et al., 2005), but this method has yet to be applied for mapping the base of glaciers, where the density contrasts between ice and underlying bedrock are even greater than those between magma and host rock. While a high Alpine setup limits the possibilities to deploy traditional geophysical methods for surveying the base of glaciers (because of inaccessible terrain, poor infrastructure or the presence of water in the ice), muon radiography might prove to be a promising alternative. The muon intensity data from stereo observation can be related to the three-dimensional geometry of the interface between the glacier and its bedrock. Given a suitable input model, this relation can be solved within the framework of geophysical inverse problems. The final model then gives geologists invaluable information on erosional mechanisms underneath active glaciers, as this has not yet been observed. We test this methodology for a site within the Jungfrau region, situated in the central Swiss Alps. Our first goal is to demonstrate the feasibility of the method through a case study at the Eiger glacier, starting from a toy model in a first phase and continuing with real data in a second phase. For this purpose, we installed cosmic-ray detectors at two sites inside

  7. Glaciers of Asia

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    2010-01-01

    This chapter is the ninth to be released in U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, a series of 11 chapters. In each of the geographic area chapters, remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, are used to analyze the specific glacierized region of our planet under consideration and to monitor glacier changes. Landsat images, acquired primarily during the middle to late 1970s and early 1980s, were used by an international team of glaciologists and other scientists to study various geographic regions and (or) to discuss related glaciological topics. In each glacierized geographic region, the present areal distribution of glaciers is compared, wherever possible, with historical information about their past extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of a growing international scientific effort to measure global environmental change on the Earth?s surface. The chapter is divided into seven geographic parts and one topical part: Glaciers of the Former Soviet Union (F-1), Glaciers of China (F-2), Glaciers of Afghanistan (F?3), Glaciers of Pakistan (F-4), Glaciers of India (F-5), Glaciers of Nepal (F?6), Glaciers of Bhutan (F-7), and the Paleoenvironmental Record Preserved in Middle-Latitude, High-Mountain Glaciers (F-8). Each geographic section describes the glacier extent during the 1970s and 1980s, the benchmark time period (1972-1981) of this volume, but has been updated to include more recent information. Glaciers of the Former Soviet Union are located in the Russian Arctic and various mountain ranges of Russia and the Republics of Georgia, Kyrgyzstan, Tajikistan, and Kazakstun. The Glacier Inventory of the USSR and the World Atlas of Ice and Snow Resources recorded a total of 28,881 glaciers covering an area of 78,938 square kilometers (km2). China includes many of the mountain-glacier

  8. Glacier elevation and mass change over the upper Maipo Basin, Central Andes, Chile.

    NASA Astrophysics Data System (ADS)

    Farías, David; Seehaus, Thorsten; Vivero, Sebastian; Braun, Matthias H.; Casassa, Gino

    2017-04-01

    The upper Maipo basin (33° S, 70° W, 5400 km2) is located 15 km from the eastern outskirts of the mega-city of Santiago. The basin is characterized by Mediterranean climate with marked winter and summer seasons and occasionally disturbed by large annual and multi-annual variations in temperature and precipitation (ENSO). The upper Maipo basin is the main glacierized region of Chile, where the last Chilean glacier inventory revealed a glacier extent of about 397.6 km2 distributed over 1009 glaciers larger than 0.01 km2. The glaciers located in this basin represent 2% of the total glacierized area in Chile. The 1009 glaciers in this area, compose of 708 rock glaciers (159.91 km2), 126 glaciarets (5.85 km2) and 175 valley and mountain glaciers (231.84 km2). Our focus in this study is to evaluate the suitability of TanDEM-X to derive geodetic glacier mass balance on small mountain glaciers. Our database comprises different digital elevation models (DEM) from historical cartography based on aerial photographs (1955), SRTM (2000), Lidar data and TanDEM-X (2015). The historical cartography was scanned and georeferenced with the aid of several GCPs derived from the Lidar dataset. The TanDEM-X data was processed using differential interferometry using SRTM C-band DEM as reference. Differences resulting from X- and C-band penetration are considered comparing X- and C-band SRTM data. All DEMs were horizontal and vertically co-registered to each other. Error assessment was done over stable ground (off-glacier). On our poster we present preliminary results about detailed quantification of glacier elevation and mass change in this area.

  9. Changes in the Surface Area of Glaciers in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khromova, T.; Nosenko, G.

    2012-12-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies the landscape changes in the glacial zone, origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, and etc. The presence of glaciers in itself threats to human life, economic activity and growing infrastructure. Economical and recreational human activity in mountain regions requires relevant information on snow and ice objects. Absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies, their volume and changes The first estimation of glaciers state and glaciers distribution in the big part of Northern Eurasia has been done in the USSR Glacier Inventory published in 1966 -1980 as a part of IHD activity. The Inventory is based on topographic maps and air photos and reflects the status of the glaciers in 1957-1970y. There is information about 23796 glaciers with area of 78222.3 km2 in the Inventory. It covers 23 glacier systems on Northern Eurasia. In the 80th the USSR Glacier Inventory has been transformed in the digital form as a part of the World Glacier Inventory. Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of XX century. In the paper we report about 15 000 glaciers outlines for Caucasus, Pamir, Tien-Shan, Altai, Syntar-Khayata, Cherskogo Range, Kamchatka and Russian Arctic which have been derived from ASTER and Landsat imagery and could be used for glacier changes evaluation. The results show that glaciers are retreating in all these regions. There is, however

  10. The health of glaciers: Recent changes in glacier regime

    USGS Publications Warehouse

    Meier, M.F.; Dyurgerov, M.B.; McCabe, G.J.

    2003-01-01

    Glacier wastage has been pervasive during the last century; small glaciers and those in marginal environments are disappearing, large mid-latitude glaciers are shrinking slightly, and arctic glaciers are warming. Net mass balances during the last 40 years are predominately negative and both winter and summer balances (accumulation and ablation) and mass turnover are increasing, especially after 1988. Two principal components of winter balance time-series explain about 50% of the variability in the data. Glacier winter balances in north and central Europe correlate with the Arctic Oscillation, and glaciers in western North America correlate with the Southern Oscillation and Northern Hemisphere air temperature. The degree of synchronization for distant glaciers relates to changes in time of atmospheric circulation patterns as well as differing dynamic responses.

  11. Glacier Swap

    NASA Image and Video Library

    2014-05-16

    ISS040-E-000298 (16 May 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  12. Glacier Swap

    NASA Image and Video Library

    2014-05-16

    ISS040-E-000297 (16 May 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  13. Glacier Swap

    NASA Image and Video Library

    2014-05-16

    ISS040-E-000296 (16 May 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  14. Glaciers of Europe

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    1993-01-01

    ALPS: AUSTRIAN: An overview is provided on the occurrence of the glaciers in the Eastern Alps of Austria and on the climatic conditions in this area, Historical documents on the glaciers have been available since the Middle Ages. Special glaciological observations and topographic surveys of individual glaciers were initiated as early as 1846. Recent data in an inventory based on aerial photographs taken in 1969 show 925 glaciers in the Austrian Alps with a total area of 542 square kilometers. Present research topics include studies of mass and energy balance, relations of glaciers and climate, physical glaciology, a complete inventory of the glaciers, and testing of remote sensing methods. The location of the glacier areas is shown on Landsat multispectral scanner images; the improved capabilities of the Landsat thematic mapper are illustrated with an example from the Oztaler Alpen group. ALPS: SWISS: According to a glacier inventory published in 1976, which is based on aerial photography of 1973, there are 1,828 glacier units in the Swiss Alps that cover a total area of 1fl42 square kilometers. The Rhonegletscher, currently the ninth largest in the country, was one of the first to be studied in detail. Its surface has been surveyed repeatedly; velocity profiles were measured, and the fluctuations of its terminus were mapped and recorded from 1874 to 1914. Recent research on the glacier has included climatological, hydrological, and massbalance studies. Glaciological research has been conducted on various other glaciers in Switzerland concerning glacier hydrology, glacier hazards, fluctuations of glacier termini, ice mechanics, ice cores, and mass balance. Good maps are available showing the extent of glaciers from the latter decades of the 19th century. More recently, the entire country has been mapped at scales of 1:25,000, 1:50,000, 1:100,000, 1:200,000, and 1:500,000. The 1:25,000-scale series very accurately represents the glaciers as well as locates

  15. Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes.

    PubMed

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2018-04-01

    A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnological and paleolimnological approaches were used to assess and compare ARDs generated by rock glaciers, a typical landform of the mountain permafrost domain, and their effects on alpine headwater lakes with similar morphometric features and underlying bedrock geology, but characterized by different intensities of frost action in their catchments during the year. We argue that ARD and its effects on lakes are more severe in the alpine periglacial belt with mean annual air temperatures (MAAT) between -2°C and +3°C, where groundwater persists in the liquid phase for most of the year, in contrast to ARD in the periglacial belt where frost action dominates (MAAT < -2°C). The findings clearly suggest that the ambient air temperature is an important factor affecting the ARD production in alpine periglacial environments. Applying the paleoecological analysis of morphological abnormalities in chironomids through the past millennium, we tested and rejected the hypothesis that unfavorable conditions for aquatic life in the ARD-stressed lakes are largely related to the temperature increase over recent decades, responsible for the enhanced release of ARD contaminants. Our results indicate that the ARDs generated in the catchments are of a long-lasting nature and the frequency of chironomid morphological deformities was significantly higher during the Little Ice Age (LIA) than during pre- or post-LIA periods, suggesting that lower water temperatures may increase the adverse impacts of ARD on aquatic invertebrates. This highlights that temperature-mediated modulations of the metabolism and life cycle of aquatic organisms should be considered when reconstructing

  16. Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009

    USGS Publications Warehouse

    Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

    2014-01-01

    We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6–145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0–145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.5–99.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.5–55.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.8–23.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.8–23.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.9–23.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

  17. Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Lovenbreen glacier, an Arctic glacier.

    PubMed

    Vardhan Reddy, Puram Vishnu; Shiva Nageswara Rao, Singireesu Soma; Pratibha, Mambatta Shankaranarayanan; Sailaja, Buddhi; Kavya, Bakka; Manorama, Ravoori Ruth; Singh, Shiv Mohan; Radha Srinivas, Tanuku Naga; Shivaji, Sisinthy

    2009-10-01

    Culturable bacterial diversity of Midtre Lovenbreen glacier, an Arctic glacier, was studied using 12 sediment samples collected from different points, along a transect, from the snout of Midtre Lovenbreen glacier up to the convergence point of the melt water stream with the sea. Bacterial abundance appeared to be closer to the convergence point of the glacial melt water stream with the sea than at the snout of the glacier. A total of 117 bacterial strains were isolated from the sediment samples. Based on 16S rRNA gene sequence analyses, the isolates (n=117) could be categorised in to 32 groups, with each group representing a different taxa belonging to 4 phyla (Actinobacteria, Bacilli, Flavobacteria and Proteobacteria). Representatives of the 32 groups varied in their growth temperature range (4-37 degrees C), in their tolerance to NaCl (0.1-1M NaCl) and in the growth pH range (2-13). Only 14 of 32 representative strains exhibited amylase, lipase and (or) protease activity and only one isolate (AsdM4-6) showed all three enzyme activities at 5 and 20 degrees C respectively. More than half of the isolates were pigmented. Fatty acid profile studies indicated that short-chain fatty acids, unsaturated fatty acids, branched fatty acids, cyclic and cis fatty acids are predominant in the psychrophilic bacteria.

  18. Response of major Greenland outlet glaciers to oceanic and atmospheric forcing: Results from numerical modeling on Petermann, Jakobshavn and Helheim Glacier.

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; Vieli, A.; Pattyn, F.; Van de Wal, R.

    2011-12-01

    Oceanic forcing has been suggested as a major trigger for dynamic changes of Greenland outlet glaciers. Significant melting near their calving front or beneath the floating tongue and reduced support from sea ice or ice melange in front of their calving front can result in retreat of the terminus or the grounding line, and an increase in calving activities. Depending on the geometry and basal topography of the glacier, these oceanic forcing can affect the glacier dynamic differently. Here, we carry out a comparison study between three major outlet glaciers in Greenland and investigate the impact of a warmer ocean on glacier dynamics and ice discharge. We present results from a numerical ice-flow model applied to Petermann Glacier in the north, Jakobshavn Glacier in the west, and Helheim Glacier in the southeast of Greenland.

  19. Hazard assessment of the Tidal Inlet landslide and potential subsequent tsunami, Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Wieczorek, G.F.; Geist, E.L.; Motyka, R.J.; Jakob, M.

    2007-01-01

    An unstable rock slump, estimated at 5 to 10????????10 6 m3, lies perched above the northern shore of Tidal Inlet in Glacier Bay National Park, Alaska. This landslide mass has the potential to rapidly move into Tidal Inlet and generate large, long-period-impulse tsunami waves. Field and photographic examination revealed that the landslide moved between 1892 and 1919 after the retreat of the Little Ice Age glaciers from Tidal Inlet in 1890. Global positioning system measurements over a 2-year period show that the perched mass is presently moving at 3-4 cm annually indicating the landslide remains unstable. Numerical simulations of landslide-generated waves suggest that in the western arm of Glacier Bay, wave amplitudes would be greatest near the mouth of Tidal Inlet and slightly decrease with water depth according to Green's law. As a function of time, wave amplitude would be greatest within approximately 40 min of the landslide entering water, with significant wave activity continuing for potentially several hours. ?? 2007 Springer-Verlag.

  20. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya

    NASA Astrophysics Data System (ADS)

    Rowan, Ann V.; Egholm, David L.; Quincey, Duncan J.; Glasser, Neil F.

    2015-11-01

    Many Himalayan glaciers are characterised in their lower reaches by a rock debris layer. This debris insulates the glacier surface from atmospheric warming and complicates the response to climate change compared to glaciers with clean-ice surfaces. Debris-covered glaciers can persist well below the altitude that would be sustainable for clean-ice glaciers, resulting in much longer timescales of mass loss and meltwater production. The properties and evolution of supraglacial debris present a considerable challenge to understanding future glacier change. Existing approaches to predicting variations in glacier volume and meltwater production rely on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. We developed a numerical model that couples the flow of ice and debris and includes important feedbacks between debris accumulation and glacier mass balance. To investigate the impact of debris transport on the response of a glacier to recent and future climate change, we applied this model to a large debris-covered Himalayan glacier-Khumbu Glacier in Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, Khumbu Glacier has lost 34% of its volume while its area has reduced by only 6%. We predict a decrease in glacier volume of 8-10% by AD2100, accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 yr. This detachment will accelerate rates of glacier decay, and similar changes are likely for other debris-covered glaciers in the Himalaya.

  1. Calculation and visualisation of future glacier extent in the Swiss Alps by means of hypsographic modelling

    NASA Astrophysics Data System (ADS)

    Paul, F.; Maisch, M.; Rothenbühler, C.; Hoelzle, M.; Haeberli, W.

    2007-02-01

    The observed rapid glacier wastage in the European Alps during the past 20 years already has strong impacts on the natural environment (rock fall, lake formation) as well as on human activities (tourism, hydro-power production, etc.) and poses several new challenges also for glacier monitoring. With a further increase of global mean temperature in the future, it is likely that Alpine glaciers and the high-mountain environment as an entire system will further develop into a state of imbalance. Hence, the assessment of future glacier geometries is a valuable prerequisite for various impact studies. In order to calculate and visualize in a consistent manner future glacier extent for a large number of individual glaciers (> 100) according to a given climate change scenario, we have developed an automated and simple but robust approach that is based on an empirical relationship between glacier size and the steady-state accumulation area ratio (AAR 0) in the Alps. The model requires digital glacier outlines and a digital elevation model (DEM) only and calculates new glacier geometries from a given shift of the steady-state equilibrium line altitude (ELA 0) by means of hypsographic modelling. We have calculated changes in number, area and volume for 3062 individual glacier units in Switzerland and applied six step changes in ELA 0 (from + 100 to + 600 m) combined with four different values of the AAR 0 (0.5, 0.6, 0.67, 0.75). For an AAR 0 of 0.6 and an ELA 0 rise of 200 m (400 m) we calculate a total area loss of - 54% (- 80%) and a corresponding volume loss of - 50% (- 78%) compared to the 1973 glacier extent. In combination with a geocoded satellite image, the future glacier outlines are also used for automated rendering of perspective visualisations. This is a very attractive tool for communicating research results to the general public. Our study is illustrated for a test site in the Upper Engadine (Switzerland), where landscape changes above timberline play an

  2. 2. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NNE. GIS N-37 43 44.3 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  3. Monitoring Jakobshavn Glacier using Sequential Landsat Images

    NASA Astrophysics Data System (ADS)

    Jian, Z.; Zhuoqi, C.; Cheng, X.

    2016-12-01

    Jakobshavn Glacier is the fastest (19 m per day) and one of the most active glaciers around the world. Discharging more than 35km3 of ice every year, its mass loss surpasses anyone else outside the Antarctic. From Landsat 8 OLI Images on August 14, 2015, we find a huge iceberg about 5 km2 calved from resulting in the front shrinking for 1060.8m. NSIDC ice velocity data and weather station data on Jakobshavn glacier are used to analyze the cause of calving. On one hand, upstream glacier push forward the Jakobshavn glacier westward continually, many cracks were formed over the glacier surface. Surface melting water flow into the interior of glaciers to accelerate calving. On the other hand with the gradually rising temperature, the bottom of glaciers accelerate ablation. When glaciers move into the ocean and the thin bottom can not provide strong enough support, calving occurs. Before this incident, we trace sequential Landsat data during 1986 to 2015. In 2010, it had another large-scale calving. We draw from our data that Jakobshavn retreated intensely in the past 30 years although in the last 10 years it appears more stable. The speed of glacier shrinking during 1996 to 2006 is three times as fast as past 10 years.

  4. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF DOME AT CENTER REAR. SAME VIEW AT CA-157-2. LOOKING NNE. GIS: N-37' 43 44.3 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  5. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier.

    PubMed

    Łokas, Edyta; Zaborska, Agata; Kolicka, Małgorzata; Różycki, Michał; Zawierucha, Krzysztof

    2016-10-01

    Surface of glaciers is covered by mineral and organic dust, together with microorganisms forming cryoconite granules. Despite fact that glaciers and ice sheets constitute significance part of land surface, reservoir of freshwater, and sites of high biological production, the knowledge on the cryoconite granules still remain unsatisfactory. This study presents information on radionuclide and heavy metal contents in cryoconites. Cryoconites collected from the Hans Glacier in SW Spitsbergen reveal high activity concentrations of anthropogenic ((238,239,240)Pu, (137)Cs, (90)Sr) and natural ((210)Pb) radionuclides. The (238)Pu/(239+240)Pu activity ratios in these cryoconites significantly exceed the mean global fallout ratio (0.025). The (238)Pu/(239+240)Pu ranged from 0.064 to 0.118. The (239+240)Pu/(137)Cs varied from 0.011 ± 0.003 to 0.030 ± 0.007. Such activity ratios as observed in these cryoconites were significantly higher than the values characterizing global fallout, pointing to possible contributions of these radionuclides from other sources. Heavy metals (Pb, Cd, Cu, Zn, Fe, and Mn) in cryoconites exceed both UCC concentrations and local rocks' concentrations, particularly for cadmium. The concentration ratios of stable lead isotopes ((206)Pb/(207)Pb, (208)Pb/(206)Pb) were determined to discriminate between the natural and anthropogenic sources of Pb in cryoconites and to confirm the strong anthropogenic contribution to heavy metal deposition in the Arctic. In investigated cryoconite holes, two groups of invertebrates, both extremophiles, Tardigrada and Rotifera were detected. Our study indicate that cryoconites are aggregates of mineral and organic substances on surfaces of glaciers are able to accumulate large amounts of airborne pollutants bound to extracellular polymeric substances secreted by microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Active water exchange and life near the grounding line of an Antarctic outlet glacier

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro; Aoki, Shigeru

    2014-08-01

    The grounding line (GL) of the Antarctic ice sheet forms the boundary between grounded and floating ice along the coast. Near this line, warm oceanic water contacts the ice shelf, producing the ice sheet's highest basal-melt rate. Despite the importance of this region, water properties and circulations near the GL are largely unexplored because in-situ observations are difficult. Here we present direct evidence of warm ocean-water transport to the innermost part of the subshelf cavity (several hundred meters seaward from the GL) of Langhovde Glacier, an outlet glacier in East Antarctica. Our measurements come from boreholes drilled through the glacier's ∼400-m-thick grounding zone. Beneath the grounding zone, we find a 10-24-m-deep water layer of uniform temperature and salinity (-1.45 °C; 34.25 PSU), values that roughly equal those measured in the ocean in front of the glacier. Moreover, living organisms are found in the thin subglacial water layer. These findings indicate active transport of water and nutrients from the adjacent ocean, meaning that the subshelf environment interacts directly and rapidly with the ocean.

  7. Topographic context of glaciers and perennial snowfields, Glacier National Park, Montana

    NASA Astrophysics Data System (ADS)

    Allen, Thomas R.

    1998-01-01

    Equilibrium-line altitudes (ELAs) of modem glaciers in the northern Rocky Mountains are known to correspond with regional climate, but strong subregional gradients such as across the Continental Divide in Glacier National Park, Montana, also exert topoclimatic influences on the ELA. This study analyzed the relationships between glacier and snowfield morphology, ELA, and surrounding topography. Glaciers and perennial snowfields were mapped using multitemporal satellite data from the Landsat Thematic Mapper and aerial photography within an integrated Geographic Information System (GIS). Relationships between glacier morphology and ELA were investigated using discriminant analysis. Four morphological categories of perennial snow and ice patches were identified: cirque glacier, niche glacier, ice cap, and snowfield. ELA was derived from overlaid glacier boundaries and Digital Elevation Models (DEMs) within the GIs. DEMs provided topographic variables and models of solar radiation and wind exposure/shelteredness. Regression analysis showed the effects of exposure; on snow accumulation, the strong influence of local topography through upslope zone morphology such as cirque backwalls, and the tendency for glaciers with high ELAs to exhibit compactness in morphology. Results highlight the relatively compact shape and larger area of glaciers adjacent to the Continental Divide. Discriminant analysis correctly predicted the type of glacier morphology in more than half the observations using factored variables of glacier shape, elevation range, and upslope area.

  8. Glacier Instability, Rapid Glacier Lake Growth and Related Hazards at Belvedere Glacier, Macugnaga, Italy

    NASA Astrophysics Data System (ADS)

    Huggel, C.; Kaeaeb, A.; Haeberli, W.; Mortara, G.; Chiarle, M.; Epifani, F.

    2002-12-01

    overtopping and failure of ice dam with catastrophic subglacial drainage. In consideration of the current bathymetric studies and ice thickness measurements from the 1980ies, it was assumed that the floatation equilibrium was possibly reached by end of June. In case of an ice dam, the maximum discharge of a related subglacial drainage was estimated at 200 m3/s, probably involving a large debris flow. Extension and nature of thermokarst processes of the lake/ice interface are currently studied by repeated bathymetric measurements and adaption of corresponding models. In July/August 2002, geodetic ice flow velocity measurements showed that the enhanced flow velocities have decreased probably indicat ing the end of the surge-like movement. In conclusion, the developments at Macugnaga are an excellent example illustrating the need for inte grated hazard assessments in consideration of complex process chains. The current situation requires studies on different aspects, such as rock instabilities, glacier dynamics and hydrology, geomorphody namics, and mitigation-construction planning.

  9. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2003-05-01

    Malaspina Glacier in southeastern Alaska is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes.

  10. Rapid Holocene glacier fluctuations in arctic Norway in concert with the strength and spatial pattern of the westerlies

    NASA Astrophysics Data System (ADS)

    Bakke, J.; Dahl, S.

    2011-12-01

    Alpine glaciers are often located in remote regions of the world, areas that only rarely are covered by instrumental records or biological proxy data. Reconstructions of glaciers have therefore proven useful for understanding past climate dynamics on both shorter and longer time-scales. Because of selective preservation of moraine ridges, such records do not exclude the possibility of multiple Holocene glacier advances. This problem is true regardless whether cosmogenic isotopes or lichenometry have been used to date the moraines, or based on radiocarbon dating of mega-fossils buried in till or underneath the moraines themselves. To overcome this problem Karlén (1976) initially suggested that glacial erosion and the associated production of rock-flour deposited in downstream distal glacier-fed lakes could provide continuous records of glacial fluctuations, hence overcoming the problem of selective moraine preservation. In recent years, new collaborative research efforts have developed the methods used to reconstruct past glacier activity based on sediments deposited in distal glacier-fed lakes. Records of glacier fluctuations as preserved in lake sediments now includes the application of various methods such as measuring the amount of minerogenic versus biologic matter (typically inferred from Loss-on-ignition (LOI)), grain size analysis (GSA), magnetic properties (MP), geochemical elements (GE), Rare-Earth Elements (REE), Bulk Sediment Density (BSD), but also other techniques such as XRF analyses. Several glaciers along the coast of Arctic Norway have been reconstructed based on multi-proxy approaches. Here we present data on Holocene glacier fluctuations from three geographical areas; the ice cap Folgefonna, the Okstindan glacier massif and from a small alpine glacier in Lyngen. In Scandinavia, the overall pattern of glacier growth and the onset of the Neoglacial previously have been attributed to the gradual weakening of summer insolation at high northern

  11. How do glacier inventory data aid global glacier assessments and projections?

    NASA Astrophysics Data System (ADS)

    Hock, R.

    2017-12-01

    Large-scale glacier modeling relies heavily on datasets that are collected by many individuals across the globe, but managed and maintained in a coordinated fashion by international data centers. The Global Terrestrial Network for Glaciers (GTN-G) provides the framework for coordinating and making available a suite of data sets such as the Randolph Glacier Inventory (RGI), the Glacier Thickness Dataset or the World Glacier Inventory (WGI). These datasets have greatly increased our ability to assess global-scale glacier mass changes. These data have also been vital for projecting the glacier mass changes of all mountain glaciers in the world outside the Greenland and Antarctic ice sheet, a total >200,000 glaciers covering an area of more than 700,000 km2. Using forcing from 8 to 15 GCMs and 4 different emission scenarios, global-scale glacier evolution models project multi-model mean net mass losses of all glaciers between 7 cm and 24 cm sea-level equivalent by the end of the 21st century. Projected mass losses vary greatly depending on the choice of the forcing climate and emission scenario. Insufficiently constrained model parameters likely are an important reason for large differences found among these studies even when forced by the same emission scenario, especially on regional scales.

  12. Listening to Glaciers: Passive hydroacoustics near marine-terminating glaciers

    USGS Publications Warehouse

    Pettit, E.C.; Nystuen, J.A.; O'Neel, Shad

    2012-01-01

    The catastrophic breakup of the Larsen B Ice Shelf in the Weddell Sea in 2002 paints a vivid portrait of the effects of glacier-climate interactions. This event, along with other unexpected episodes of rapid mass loss from marine-terminating glaciers (i.e., tidewater glaciers, outlet glaciers, ice streams, ice shelves) sparked intensified study of the boundaries where marine-terminating glaciers interact with the ocean. These dynamic and dangerous boundaries require creative methods of observation and measurement. Toward this effort, we take advantage of the exceptional sound-propagating properties of seawater to record and interpret sounds generated at these glacial ice-ocean boundaries from distances safe for instrument deployment and operation.

  13. Recent Developments of the GLIMS Glacier Database

    NASA Astrophysics Data System (ADS)

    Raup, B. H.; Berthier, E.; Bolch, T.; Kargel, J. S.; Paul, F.; Racoviteanu, A.

    2017-12-01

    Earth's glaciers are shrinking almost without exception, leading to changes in water resources, timing of runoff, sea level, and hazard potential. Repeat mapping of glacier outlines, lakes, and glacier topography, along with glacial processes, is critically needed to understand how glaciers will react to a changing climate, and how those changes will impact humans. To understand the impacts and processes behind the observed changes, it is crucial to monitor glaciers through time by mapping their areal extent, snow lines, ice flow velocities, associated water bodies, and thickness changes. The glacier database of the Global Land Ice Measurements from Space (GLIMS) initiative is the only multi-temporal glacier database capable of tracking all these glacier measurements and providing them to the scientific community and broader public.Recent developments in GLIMS include improvements in the database and web applications and new activities in the international GLIMS community. The coverage of the GLIMS database has recently grown geographically and temporally by drawing on the Randolph Glacier Inventory (RGI) and other new data sets. The GLIMS database is globally complete, and approximately one third of glaciers have outlines from more than one time. New tools for visualizing and downloading GLIMS data in a choice of formats and data models have been developed, and a new data model for handling multiple glacier records through time while avoiding double-counting of glacier number or area is nearing completion. A GLIMS workshop was held in Boulder, Colorado this year to facilitate two-way communication with the greater community on future needs.The result of this work is a more complete and accurate glacier data repository that shows both the current state of glaciers on Earth and how they have changed in recent decades. Needs for future scientific and technical developments were identified and prioritized at the GLIMS Workshop, and are reported here.

  14. Calving of Talyor Glacier, Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Carmichael, J. D.; Pettit, E. C.; Creager, K. C.; Hallet, B.

    2007-12-01

    Calving of tide-water glaciers has received considerable attention, with seismic arrays in Alaska, Greenland, and Antarctica devoted to their observation. In these environments, ice cliffs are directly coupled to oceanic temperatures. The land-based polar glaciers of the McMurdo Dry Valleys in Antarctica represent a simpler environment unaffected directly by water contact where other factors can be isolated. In particular, summer calving events of Taylor Glacier are observed to consist of precursory activity including crack growth, cliff overhang, and active seismicity at least 1 hour before collapse. We propose that collapse occurs only after a stress threshold has been crossed, evident from 'pre-calving' of ice from the cliff base 1-3 days prior to the major event. We provide photographic, seismic, and temperature data to illustrate the thermal and stress landscape for land-based calving of polar glaciers.

  15. Tropical Glaciers

    NASA Astrophysics Data System (ADS)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  16. Glacier retreat and associated sediment dynamics in proglacial areas: a case study from the Silvretta Alps, Austria

    NASA Astrophysics Data System (ADS)

    Felbauer, Lucia; Pöppl, Ronald

    2016-04-01

    Global warming results in an ongoing retreat of glaciers in the Alps, leaving behind large amounts of easily erodible sediments. In addition, the debuttressing of rock-walls and the decay of permafrost in the high mountain regions facilitates mass movements of potential disastrous consequences, such as rock falls, landslides and debris flows. Therefore, it is highly important to quantify the amount of sediments that are supplied from the different compartments and to investigate how glacial retreat influences sediment dynamics in proglacial areas. In the presented work glacier retreat and associated sediment dynamics were investigated in the Kromer valley (Silvretta Alps, Austria) by analyzing remote sensing data. Glacial retreat from the period of 1950 to 2012 was documented by interpreting aerial photographs. By digitizing the different stages of the glaciers for six time frames, changes in glacier area and length were mapped and quantified. In order to identify, characterize and quantify sediment dynamics in the proglacial areas a high resolution DEM of difference (DoD) between 2007 and 2012 was created and analyzed, further differentiating between different zones (e.g. valley bottom, hillslope) and types of geomorphic processes (e.g. fluvial, gravitational). First results will be presented at the EGU General Assembly 2016.

  17. Flow instabilities of Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    Turrin, James Bradley

    Over 300 of the largest glaciers in southern Alaska have been identified as either surge-type or pulse-type, making glaciers with flow instabilities the norm among large glaciers in that region. Consequently, the bulk of mass loss due to climate change will come from these unstable glaciers in the future, yet their response to future climate warming is unknown because their dynamics are still poorly understood. To help broaden our understanding of unstable glacier flow, the decadal-scale ice dynamics of 1 surging and 9 pulsing glaciers are investigated. Bering Glacier had a kinematic wave moving down its ablation zone at 4.4 +/- 2.0 km/yr from 2002 to 2009, which then accelerated to 13.9 +/- 2.0 km/yr as it traversed the piedmont lobe. The wave first appeared in 2001 near the confluence with Bagley Ice Valley and it took 10 years to travel ~64 km. A surge was triggered in 2008 after the wave activated an ice reservoir in the midablation zone, and it climaxed in 2011 while the terminus advanced several km into Vitus Lake. Ruth Glacier pulsed five times between 1973 and 2012, with peak velocities in 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. A typical pulse increased ice velocity 300%, from roughly 40 m/yr to 160 m/yr in the midablation zone, and involved acceleration and deceleration of the ice en masse; no kinematic wave was evident. The pulses are theorized to be due to deformation of a subglacial till causing enhanced basal motion. Eight additional pulsing glaciers are identified based on the spatiotemporal pattern of their velocity fields. These glaciers pulsed where they were either constricted laterally or joined by a tributary, and their surface slopes are 1-2°. These traits are consistent with an overdeepening. This observation leads to a theory of ice motion in overdeepenings that explains the cyclical behavior of pulsing glaciers. It is based on the concept of glaciohydraulic supercooling, and includes sediment transport and erosion

  18. Subglacial bedrock topography of an active mountain glacier in a high Alpine setting - insights from high resolution 3D cosmic-muon radiography of the Eiger glacier (Bern, Central Alps, Switzerland)

    NASA Astrophysics Data System (ADS)

    Mair, David; Lechmann, Alessandro; Nishiyama, Ryuichi; Schlunegger, Fritz; Ariga, Akitaka; Ariga, Tomoko; Scampoli, Paola; Vladymyrov, Mykhailo; Ereditato, Antonio

    2016-04-01

    Bedrock topography and therefore the spatial-altitudinal distribution of ice thickness constrain the ice flow as well as the erosional mechanisms of glaciers. Although the processes by which glaciers have shaped modern and past landscapes have been well investigated, little information is still available about the shape of the bedrock beneath active glaciers in steep Alpine cirques. Here, we we apply the cosmic-muon radiography technology, which uses nuclear emulsion detectors for imaging the bedrock surface. This method should provide information on the bedrock topography beneath a glacier and related ice thicknesses and subglacial meltwater pathways. We apply this technology to the cirque of the Eiger glacier, situated on the western flank of Eiger mountain, Central Swiss Alps. The Eiger glacier originates on the western flank of the Eiger at 3700 m a.s.l., from where it stretches along 2.6 km to the current elevation at 2300 m a.s.l.. The glacier consists of a concave cirque bordered by >40° steep flanks, thereby utilizing weaknesses within the fabric of the bedrock such as folds, joints and foliations. The middle reach hosts a bedrock ridge where glacier diffluence occurs. The lower reaches of the glacier are characterized by several transverse crevasses, while the terminal lobe hosts multiple longitudinal crevasses. A basal till and lateral margins border the ice flow along the lowermost reach. While subglacial erosion in the cirque has probably been accomplished by plucking and abrasion where the glacier might be cold-based, sub glacial melt water might have contributed to bedrock sculpting farther downslope where the ice flow is constrained by bedrock. Overdeepening of some tens of meters is expected in the upper reach of the glacier, which is quite common in cirques (Cook & Swift, 2012). Contrariwise, we expect several tens of meters-deep bedrock excavations (characterized by concave curvatures of bedrock surface) at the site of ice diffluence. The next

  19. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    NASA Astrophysics Data System (ADS)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  20. Glaciers of South America

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    1998-01-01

    Landsat images, together with maps and aerial photographs, have been used to produce glacier inventories, define glacier locations, and study glacier dynamics in the countries of South America, along with the Andes Mountains. In Venezuela, Colombia, Ecuador, and Bolivia, the small glaciers have been undergoing extensive glacier recession since the late 1800's. Glacier-related hazards (outburst floods, mud flows, and debris avalanches) occur in Colombia, in Ecuador, and associated with the more extensive (2,600 km2) glaciers of Peru. The largest area of glacier ice is found in Argentina and Chile, including the northern Patagonian ice field (about 4,200 km2) and the southern Patagonian ice field (about 13,000 km2), the largest glacier in the Southern Hemisphere outside Antarctica.

  1. Internationally coordinated glacier monitoring - a timeline since 1894

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Samuel U.; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Hoelzle, Martin; Machguth, Horst; Mölg, Nico; Paul, Frank; Raup, Bruce H.; Zemp, Michael

    2016-04-01

    glacier retreat and mass loss is a global phenomenon. Glaciological and geodetic observations show that the rates of the 21st-century mass loss are unprecedented on a global scale, for the time period observed, and probably also for recorded history, as indicated in glacier reconstructions from written and illustrated documents. The databases are supplemented by specific index datasets (e.g., glacier thickness data) and a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs (GPC - Glacier Photograph Collection) contains more than 15,000 pictures from around 500 glaciers, some of them dating back to the mid-19th century. Current efforts are to close remaining observational gaps regarding data both from in-situ measurements and remote sensing, to establish a well-distributed baseline for sound estimates of climate-related glacier changes and their impacts. Within the framework of dedicated capacity building and twinning activities, disrupted long-term mass balance programmes in Central Asia have recently been resumed, and the continuation of mass balance measurements in the Tropical Andes has been supported. New data also emerge from several research projects using NASA and ESA sensors and are actively integrated into the GTN-G databases. Key tasks for the future include the quantitative assessment of uncertainties of available measurements, and their representativeness for changes in the respective mountain ranges. For this, a well-considered integration of in-situ measurements, remotely sensed observations, and numerical modelling is required.

  2. Microbial biodiversity in glacier-fed streams

    PubMed Central

    Wilhelm, Linda; Singer, Gabriel A; Fasching, Christina; Battin, Tom J; Besemer, Katharina

    2013-01-01

    While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams. PMID:23486246

  3. Evolution of glacier-dammed lakes through space and time; Brady Glacier, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Capps, Denny M.; Clague, John J.

    2014-04-01

    Glacier-dammed lakes and their associated jökulhlaups cause severe flooding in downstream areas and substantially influence glacier dynamics. Brady Glacier in southeast Alaska is well suited for a study of these phenomena because it presently dams 10 large (> 1 km2) lakes. Our objectives are to demonstrate how Brady Glacier and its lakes have co-evolved in the past and to apply this knowledge to predict how the glacier and its lakes will likely evolve in the future. To accomplish these objectives, we georeferenced a variety of maps, airphotos, and optical satellite imagery to characterize the evolution of the glacier and lakes. We also collected bathymetry data and created bathymetric maps of select lakes. Despite small advances and retreats, the main terminus of Brady Glacier has changed little since 1880. However, it downwasted at rates of 2-3 m/y between 1948 and 2000, more than the regional average. The most dramatic retreat (2 km) and downwasting (120 m) have occurred adjacent to glacier-dammed lakes and are primarily the result of calving. Brady Glacier is a former tidewater glacier. With continued downwasting, Brady Glacier may return to a tidewater regime and enter into a phase of catastrophic retreat. The situation at Brady Glacier is not unique, and the lessons learned here can be applied elsewhere to identify future glacier-dammed lakes, jökulhlaups, and glacier instability.

  4. Icequake Tremors During Glacier Calving (Invited)

    NASA Astrophysics Data System (ADS)

    Walter, F.; O'Neel, S.; Bassis, J. N.; Fricker, H. A.; Pfeffer, W. T.

    2009-12-01

    Calving poses the largest uncertainty in the prediction of sea-level rise in response to global climate changes. A physically-based calving law has yet to be successfully implemented into ice-sheet models in order to adequately describe the mass loss of tidewater glaciers and ice shelves. Observations from a variety of glacial environments are needed in order to develop a theoretical framework for glacier calving. To this end, several recent investigations on glacier calving have involved the recording of seismic waves. In this context, the study of icequakes has been of high value, as it allows for detecting and monitoring of calving activity. However, there are unanswered fundamental questions concerning source aspects of calving-related seismic activity, such as focal depths of icequakes preceding and accompanying calving events, failure mechanisms and the role of fracturing and crevasse formation upstream from the glacier terminus. Icequake sources associated with opening of surface crevasses are well understood. As glacier ice is often homogeneous these waveforms are relatively simple and can be modeled using the moment tensor representation of a seismic point source. Calving-related seismicity, on the other hand, is more complex, and occurs near the terminus of a glacier, which is often highly heterogeneous due to pervasive crevassing. The signals last up to several minutes or even hours and exhibit both low-frequency (1-3Hz) as well as high-frequency (10-20Hz) energy or tremor-like waveforms. These characteristics can be explained by finite source properties, such as connecting and migrating fractures and repeated slip across contact planes between two bodies of ice. In this presentation we discuss sources of calving-related seismicity by comparing seismic calving records from several different glacial settings. We consider icequakes recorded during tidewater calving at Columbia Glacier, Alaska, during lake calving on Gornergletscher, Switzerland, and during

  5. Geologic characteristics of benthic habitats in Glacier Bay, southeast Alaska

    USGS Publications Warehouse

    Harney, Jodi N.; Cochrane, Guy R.; Etherington, Lisa L.; Dartnell, Pete; Golden, Nadine E.; Chezar, Hank

    2006-01-01

    In April 2004, more than 40 hours of georeferenced submarine digital video was collected in water depths of 15-370 m in Glacier Bay to (1) ground-truth existing geophysical data (bathymetry and acoustic reflectance), (2) examine and record geologic characteristics of the sea floor, and (3) investigate the relation between substrate types and benthic communities, and (4) construct predictive maps of seafloor geomorphology and habitat distribution. Common substrates observed include rock, boulders, cobbles, rippled sand, bioturbated mud, and extensive beds of living horse mussels and scallops. Four principal sea-floor geomorphic types are distinguished by using video observations. Their distribution in lower and central Glacier Bay is predicted using a supervised, hierarchical decision-tree statistical classification of geophysical data.

  6. A 3D clustering approach for point clouds to detect and quantify changes at a rock glacier front

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Tonini, Marj; Lane, Stuart N.

    2016-04-01

    Terrestrial Laser Scanners (TLS) are extensively used in geomorphology to remotely-sense landforms and surfaces of any type and to derive digital elevation models (DEMs). Modern devices are able to collect many millions of points, so that working on the resulting dataset is often troublesome in terms of computational efforts. Indeed, it is not unusual that raw point clouds are filtered prior to DEM creation, so that only a subset of points is retained and the interpolation process becomes less of a burden. Whilst this procedure is in many cases necessary, it implicates a considerable loss of valuable information. First, and even without eliminating points, the common interpolation of points to a regular grid causes a loss of potentially useful detail. Second, it inevitably causes the transition from 3D information to only 2.5D data where each (x,y) pair must have a unique z-value. Vector-based DEMs (e.g. triangulated irregular networks) partially mitigate these issues, but still require a set of parameters to be set and a considerable burden in terms of calculation and storage. Because of the reasons above, being able to perform geomorphological research directly on point clouds would be profitable. Here, we propose an approach to identify erosion and deposition patterns on a very active rock glacier front in the Swiss Alps to monitor sediment dynamics. The general aim is to set up a semiautomatic method to isolate mass movements using 3D-feature identification directly from LiDAR data. An ultra-long range LiDAR RIEGL VZ-6000 scanner was employed to acquire point clouds during three consecutive summers. In order to isolate single clusters of erosion and deposition we applied the Density-Based Scan Algorithm with Noise (DBSCAN), previously successfully employed by Tonini and Abellan (2014) in a similar case for rockfall detection. DBSCAN requires two input parameters, strongly influencing the number, shape and size of the detected clusters: the minimum number of

  7. The Devdorak ice-rock avalanche and consequent debris flow from the slope of Mt. Kazbek (Caucasus, Georgia) in 2014

    NASA Astrophysics Data System (ADS)

    Chernomorets, Sergey; Savernyuk, Elena; Petrakov, Dmitry; Dokukin, Mikhail; Gotsiridze, George; Gavardashvili, Givi; Drobyshev, Valery; Tutubalina, Olga; Zaporozhchenko, Eduard; Kamenev, Nikolay; Kamenev, Vladimir; Kääb, Andreas; Kargel, Jeffrey; Huggel, Christian

    2016-04-01

    degrees. Remnant ice in the transit zone has nearly melted by September 2015; however, the ice remains in the deposits near the glacier tongue and in the ice-rock avalanche deposits on the tongue. We have registered the advance of one of the termini of Devdorak Glacier. It moved forward by about 200 m from summer 2014 to September 2015, and became significantly higher. This part of the glacier was overloaded by the ice-rock avalanche deposits which provoked its advance, and should be closely monitored as it can raise the debris flow activity further. The hazard of new ice-rock avalanches and debris flows in the Devdorak gorge remains high. We have developed recommendation on the installation of an early warning system, continuation of glacier hazard monitoring, and suggestions on the construction of a road tunnel to mitigate the risk and avoid casualties in the future.

  8. Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard

    NASA Astrophysics Data System (ADS)

    de Wet, Gregory A.; Balascio, Nicholas L.; D'Andrea, William J.; Bakke, Jostein; Bradley, Raymond S.; Perren, Bianca

    2018-03-01

    Well-dated and highly resolved paleoclimate records from high latitudes allow for a better understanding of past climate change. Lake sediments are excellent archives of environmental change, and can record processes occurring within the catchment, such as the growth or demise of an upstream glacier. Here we present a Holocene-length, multi-proxy lake sediment record from proglacial lake Gjøavatnet on the island of Amsterdamøya, northwest Svalbard. Today, Gjøavatnet receives meltwater from the Annabreen glacier and contains a record of changes in glacier activity linked to regional climate conditions. We measured changes in organic matter content, dry bulk density, bulk carbon isotopes, elemental concentrations via Itrax core-scanning, and diatom community composition to reconstruct variability in glacier extent back through time. Our reconstruction indicates that glacially derived sedimentation in the lake decreased markedly at ∼11.1 cal kyr BP, although a glacier likely persisted in the catchment until ∼8.4 cal kyr BP. During the mid-Holocene (∼8.4-1.0 cal kyr BP) there was significantly limited glacial influence in the catchment and enhanced deposition of organic-rich sediment in the lake. The deposition of organic rich sediments during this time was interrupted by at least three multi-centennial intervals of reduced organic matter accumulation (∼5.9-5.0, 2.7-2.0, and 1.7-1.5 cal kyr BP). Considering our chronological information and a sedimentological comparison with intervals of enhanced glacier input, we interpret these intervals not as glacial advances, but rather as cold/dry episodes that inhibited organic matter production in the lake and surrounding catchment. At ∼1.0 cal kyr BP, input of glacially derived sediment to Gjøavatnet abruptly increased, representing the rapid expansion of the Annabreen glacier.

  9. Meltwater Induced Glacier Landslides - Waxell Ridge, AK

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K. M.; Bratton, D. A.; Keeler, R. H.; Noyles, C.

    2006-12-01

    Within the past year, two large landslides have originated from south-facing peaks on Waxell Ridge, the bedrock massif that separates the Bagley Icefield from Bering Glacier, Alaska. Each involves a near-summit hanging glacier. In each instance, the presence of meltwater appears to be a triggering factor. The largest of the two, which occurred on September 14, 2005, originated from just below the summit of 3,236-m-high Mt Steller and landed on the surface of Bering Glacier, nearly 2,500 m below. The Alaska Volcano Observatory estimated the volume of this landslide, which consisted of rock, glacier ice, and snow, to be approximately 50 million cubic meters. Unlike most large Alaskan glacier-related landslides, this one was not triggered by an earthquake. However, the energy that the slide released was intense enough to generate a seismic signal that was recorded around the world with magnitudes of 3.8 to greater than 5. The slide extended ~10 km down the Bering Glacier from the point of impact. Much of the surface on which the slide occurred had a slope >50 degrees. The second landslide, located ~6 km to the west of Mt Steller, originated from a secondary summit of a 2,500- m-high unnamed peak. The date of its occurrence is unknown, but its toe sits on winter 2005-2006 snow. Both slides have been examined from helicopter and fixed-wing overflights, and with a variety of vertical and oblique aerial photographs. Oblique aerial photographs obtained of the Mt Steller slide on September 15, 2005 depict a 10-15-m-diameter moulin or englacial stream channel in the truncated 30-m-thick glacier ice that comprises the east wall of the landslide scarp. The presence of this unusual glacial-hydrologic feature at an elevation above 3,000 m, suggests that a large volume of water had recently been flowing on Mt Steller's east ridge and that the water might have had a role in triggering the landslide. Similarly, there is evidence of an englacial channel on the west flank of the

  10. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  11. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%. Copyright © 2014, American Association for the Advancement of Science.

  12. Adapting to climate change at Glacier National Park, Montana, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Fagre, D. B.

    2009-12-01

    The impact of climate change on mountain watersheds has been studied at Glacier National Park, Montana since 1991. Despite a 14% increase in annual precipitation, glaciers have receded, snow packs have diminished, and late season stream discharge has declined. Snow melts one month earlier in the spring, leading to earlier hydrologic peaks and tree invasions of subalpine meadows. This has been largely driven by annual temperature increases that are 2-3 times greater than the global average for the past century. How do scientists and park managers adapt? Although stopping the glaciers from disappearing is not a management option, park staff have embarked on an aggressive education and interpretation effort to use melting glaciers as the segue into dialog about climate change. Media such as podcasts, handouts, posters, visitor center displays and roadside signage complement interpretive ranger-led talks about climate change and incorporate the latest glacial data from ongoing research. With few historic data on most animal populations, Glacier Park staff and other scientists are unable to assess the impacts of climate change to resources that the public cares about. They have recently initiated alpine wildlife monitoring programs to track populations of potentially climate-sensitive organisms such as the American pika (Ochotona princeps). Recognizing that climate change increases the frequency and severity of extreme weather events, design specifications for reconstruction of an alpine highway were adjusted to include larger culverts and hardened rock walls. Species that are dependent on cold water will be at risk as glaciers and snowfields disappear but managers cannot control these processes. However, they are proactively reducing other stressors to sensitive native fish species by removing exotic, introduced species that are competitors. In addition to these adaptation measures, Glacier Park has implemented shuttles, fleet conversions and enhanced building

  13. A new Glacier Inventory of the Antarctic Peninsula as compiled from pre-existing Datasets

    NASA Astrophysics Data System (ADS)

    Huber, J.; Cook, A. J.; Paul, F.; Zemp, M.

    2016-12-01

    The glaciers on the Antarctic Peninsula (AP) potentially make a large contribution to sea level rise. However, this contribution was difficult to estimate, as no complete glacier inventory (outlines, attributes, separation from the ice sheet) was available so far. This work fills the gap and presents a new glacier inventory of the AP north of 70° S based on digitally combining pre-existing datasets with GIS techniques. Rock outcrops are removed from the glacier basin outlines of Cook et al. (2014) by digital intersection with the latest layer of the Antarctic Digital Database (Burton-Johnson et al. 2016). Glacier-specific topographic parameters (e.g. mean elevation, slope and aspect) as well as hypsometry have been calculated from the DEM of Cook et al. (2012). We also assigned connectivity levels to all glaciers following the concept by Rastner et al. (2012). Moreover, the bedrock dataset of Huss and Farinotti (2014) enabled us to add ice thickness and volume for each glacier. The new inventory is available from the GLIMS database and consists of 1589 glaciers covering an area of 95273 km2, slightly more than the 90000 km2 covered by glaciers surrounding the Greenland Ice Sheet. The total ice volume is 34590 km3 of which 1/3 is below sea level. The hypsometric curve has a bimodal shape due to the special topography of the AP consisting mainly of ice caps with outlet glaciers. Most of the glacierized area is located at 200-500 m a.s.l. with a secondary maximum at 1500-1900 m. About 63% of the area is drained by marine-terminating glaciers and ice shelf tributary glaciers cover 35% of the area. This combination results in a high sensitivity of the glaciers to climate change for several reasons: (1) only slightly rising equilibrium line altitudes would expose huge additional areas to ablation, (2) rising ocean temperatures increase melting of marine terminating glaciers, and (3) ice shelves have a buttressing effect on their feeding glaciers and their collapse would

  14. [Chemical composition and daily variation of melt water during ablation season in monsoonal temperate Glacier region: a case study of Baishui Glacier No. 1].

    PubMed

    Zhu, Guo-Feng; Pu, Tao; He, Yuan-Qing; Wang, Pei-Zhen; Kong, Jian-Long; Zhang, Ning-Ning; Xin, Hui-Juan

    2012-12-01

    Melt water samples collected continuously from 29 August to 3 September 2009 in the Baishui Glacier No. 1 at elevation of 4750 m were analyzed for pH, conductivity, delta18O and inorganic ions. The results showed that the pH had obvious diurnal variations and was increased slightly by the influence of precipitation. The dissolution of alkaline soluble salts in the dust was the main reason for the increase of melt water conductivity; the value of delta18O was relatively low in strong ablation period and high in slight ablation period. Different from other research areas, the concentrations of Na+, K+, which were influenced by lithological and marine water vapor, were higher than that of Mg2+ in the study area; HCO3- and Ca2+ accounted for more than 80% of total ions in snow and ice melt water, indicating that the ions mainly came from limestone and the melt water was a typical carbonate solution; The content of melt water had an obvious daily change with temperature change, but the response amplitudes were different; Monsoon transport, local rock lithology, human industrial and agricultural activities were the main sources of inorganic ions and the deciding factors of the ion composition in the Baishui Glacier No. 1.

  15. 125 years of glacier survey of the Austrian Alpine Club: results and future challenges

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea

    2016-04-01

    One of the aims of the German and Austrian Alpine Club was the scientific investigation of the Alps. In 1891, several years after Swiss initiatives, Richter put out a call to contribute to regular glacier length surveys in the Eastern Alps. Since then more than 100 glaciers have been surveyed on a first biannual and later annual basis. The database includes measured data showing a general glacier retreat since 1891, with two periods of glacier advances in the 1920s and 1980s. Less well known are the sketches and reports which illustrate, for instance, changes in surface texture. The interpretation of length change data requires a larger sample of data for a reasonable interpretation on a regional scale. Nearly every time series in the long history of investigation includes gaps, e.g. in cases of problematic snout positions on steep rock walls or in lakes, or of debris-covered tongues. Current climate change adds the problem of glaciers splitting up into several smaller glaciers which behave differently. Several basic questions need to be addressed to arrive at a most accurate prolongated time series: How should measurements on disintegrating or debris-covered (and thus more or less stagnating) glaciers be documented, and how can we homogenize length change time series? Despite of uncertainties, length change data are amongst the longest available records, bridging the gap to moraine datings of the early holocene.

  16. Hazardous Glaciers In Switzerland: A Statistical Analysis of Inventory Data

    NASA Astrophysics Data System (ADS)

    Raymond, M.; Funk, M.; Wegmann, M.

    Because of the recent increase in both occupation and economical activities in high mountain areas, a systematic overview of potential hazard zones of glaciers is needed to avoid the constuction of settlements and infrastructures in endangered areas in fu- ture. Historical informations about glacier disasters show that catastrophic events can happen repeatedly for the same causes and with the same dramatic consequences. Past catastrophic events are not only useful to identify potentially dangerous glaciers, but represent an indication of the kind of glacier hazards to expect for any given glacier. An inventory containing all known events having caused damages in the past has been compiled for Switzerland. Three different types of glacier hazards are distinguished , e.g. ice avalanches, glacier floods and glacier length changes.Hazardous glaciers have been identified in the alpine cantons of Bern, Grison, Uri, Vaud and Valais so far. The inventory data were analysed in terms of periodicity of different types of events as well as of damage occured.

  17. Rapid thinning of Pine Island Glacier in the early Holocene.

    PubMed

    Johnson, J S; Bentley, M J; Smith, J A; Finkel, R C; Rood, D H; Gohl, K; Balco, G; Larter, R D; Schaefer, J M

    2014-02-28

    Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet, has been undergoing rapid thinning and retreat for the past two decades. We demonstrate, using glacial-geological and geochronological data, that Pine Island Glacier (PIG) also experienced rapid thinning during the early Holocene, around 8000 years ago. Cosmogenic (10)Be concentrations in glacially transported rocks show that this thinning was sustained for decades to centuries at an average rate of more than 100 centimeters per year, which is comparable with contemporary thinning rates. The most likely mechanism was a reduction in ice shelf buttressing. Our findings reveal that PIG has experienced rapid thinning at least once in the past and that, once set in motion, rapid ice sheet changes in this region can persist for centuries.

  18. Modeled climate-induced glacier change in Glacier National Park, 1850-2100

    USGS Publications Warehouse

    Hall, M.H.P.; Fagre, D.B.

    2003-01-01

    The glaciers in the Blackfoot-Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45??C (?? 0. 15??C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide-induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.

  19. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  20. Joint-bounded crescentic scars formed by subglacial clast-bed contact forces: Implications for bedrock failure beneath glaciers

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.; Everest, J. D.; Eyles, N.

    2017-08-01

    Glaciers and ice sheets are important agents of bedrock erosion, yet the precise processes of bedrock failure beneath glacier ice are incompletely known. Subglacially formed erosional crescentic markings (crescentic gouges, lunate fractures) on bedrock surfaces occur locally in glaciated areas and comprise a conchoidal fracture dipping down-ice and a steep fracture that faces up-ice. Here we report morphologically distinct crescentic scars that are closely associated with preexisting joints, termed here joint-bounded crescentic scars. These hitherto unreported features are ca. 50-200 mm deep and involve considerably more rock removal than previously described crescentic markings. The joint-bounded crescentic scars were found on abraded rhyolite surfaces recently exposed (< 20 years) beneath a retreating glacier in Iceland, as well as on glacially sculpted Precambrian gneisses in NW Scotland and various Precambrian rocks in Ontario, glaciated during the Late Pleistocene. We suggest a common formation mechanism for these contemporary and relict features, whereby a boulder embedded in basal ice produces a continuously migrating clast-bed contact force as it is dragged over the hard (bedrock) bed. As the ice-embedded boulder approaches a preexisting joint in the bedrock, stress concentrations build up in the bed that exceed the intact rock strength, resulting in conchoidal fracturing and detachment of a crescentic wedge-shaped rock fragment. Subsequent removal of the rock fragment probably involves further fracturing or crushing (comminution) under high contact forces. Formation of joint-bounded crescentic scars is favoured by large boulders at the base of the ice, high basal melting rates, and the presence of preexisting subvertical joints in the bedrock bed. We infer that the relative scarcity of crescentic markings in general on deglaciated surfaces shows that fracturing of intact bedrock below ice is difficult, but that preexisting weaknesses such as joints greatly

  1. Glacier monitoring and glacier-climate interactions in the tropical Andes: A review

    NASA Astrophysics Data System (ADS)

    Veettil, Bijeesh Kozhikkodan; Wang, Shanshan; Florêncio de Souza, Sergio; Bremer, Ulisses Franz; Simões, Jefferson Cardia

    2017-08-01

    In this review, we summarized the evolution of glacier monitoring in the tropical Andes during the last few decades, particularly after the development of remote sensing and photogrammetry. Advantages and limitations of glacier mapping, applied so far, in Venezuela, Colombia, Ecuador, Peru and Bolivia are discussed in detail. Glacier parameters such as the equilibrium line altitude, snowline and mass balance were given special attention in understanding the complex cryosphere-climate interactions, particularly using remote sensing techniques. Glaciers in the inner and the outer tropics were considered separately based on the precipitation and temperature conditions within a new framework. The applicability of various methods to use glacier records to understand and reconstruct the tropical Andean climate between the Last Glacial Maximum (11,700 years ago) and the present is also explored in this paper. Results from various studies published recently were analyzed and we tried to understand the differences in the magnitudes of glacier responses towards the climatic perturbations in the inner tropics and the outer tropics. Inner tropical glaciers, particularly those in Venezuela and Colombia near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increase in temperature. Surface energy balance experiments show that outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. We also analyzed the gradients in glacier response to climate change from the Pacific coast towards the Amazon Basin as well as with the elevation. Based on the current trends synthesised from recent studies, it is hypothesized that the glaciers in the inner tropics and the southern wet outer tropics will disappear first as a response to global warming whereas glaciers in the northern wet outer tropics and dry outer tropics show resistance to warming trends due to

  2. Ice thickness profile surveying with ground penetrating radar at Artesonraju Glacier, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel; Rabatel, Antoine; McKinney, Daene; Condom, Thomas; Cochacin, Alejo; Davila Roller, Luzmilla

    2014-05-01

    Tropical glaciers are an essential component of the water resource systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glaciers in terms of thickness changes. In the upper Paron Valley (Cordillera Blanca, Peru), an emerging lake has begun to form at the terminus of the Artesonraju Glacier, and this lake has key features, including overhanging ice and loose rock likely to create slides, that could trigger a catastrophic GLOF if the lake continues to grow. Because the glacier mass balance and lake mass balance are closely linked, ice thickness measurements and measurements of the bed slope of the Artesonraju Glacier and underlying bedrock can give us an idea of how the lake is likely to evolve in the coming decades. This study presents GPR data taken in July 2013 at the Artesonraju Glacier as part of a collaboration between the Unidad de Glaciologia y Recursos Hidricos (UGRH) of Peru, the Institut de Recherche pour le Développement (IRD) of France and the University of Texas at Austin (UT) of the United States of America. Two different GPR units belonging to UGRH and UT were used for subsurface imaging to create ice thickness profiles and to characterize the total volume of ice in the glacier. A common midpoint

  3. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m

  4. The Border Ranges fault system in Glacier Bay National Park, Alaska: Evidence for major early Cenozoic dextral strike-slip motion

    USGS Publications Warehouse

    Smart, K.J.; Pavlis, T.L.; Sisson, V.B.; Roeske, S.M.; Snee, L.W.

    1996-01-01

    The Border Ranges fault system of southern Alaska, the fundamental break between the arc basement and the forearc accretionary complex, is the boundary between the Peninsular-Alexander-Wrangellia terrane and the Chugach terrane. The fault system separates crystalline rocks of the Alexander terrane from metamorphic rocks of the Chugach terrane in Glacier Bay National Park. Mylonitic rocks in the zone record abundant evidence for dextral strike-slip motion along north-northwest-striking subvertical surfaces. Geochronologic data together with regional correlations of Chugach terrane rocks involved in the deformation constrain this movement between latest Cretaceous and Early Eocene (???50 Ma). These findings are in agreement with studies to the northwest and southeast along the Border Ranges fault system which show dextral strike-slip motion occurring between 58 and 50 Ma. Correlations between Glacier Bay plutons and rocks of similar ages elsewhere along the Border Ranges fault system suggest that as much as 700 km of dextral motion may have been accommodated by this structure. These observations are consistent with oblique convergence of the Kula plate during early Cenozoic and forearc slivering above an ancient subduction zone following late Mesozoic accretion of the Peninsular-Alexander-Wrangellia terrane to North America.

  5. Recent Glaciers on Mars: Description and Solar System Perspective

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-11-01

    Active or recently active ice deposits occur on Mars at middle and high latitudes in fretted terrain, around massifs in highlands east of Hellas and in southern Argyre, on crater walls in the highlands, and in the south polar cap. Most mid-latitude icy flows are debris covered, apparently stagnant, and eroded by partial sublimation. Others are scarred by fresh crevasses and gullies, thus suggesting recent deformation and surface melting. Erosional features include a variety of small-scale relief elements due mainly to sublimation, but sublimation has not obliterated evidence of flow. Similar to terrestrial glaciers in many respects, there are also notable differences, especially in the nature of accumulation. Deformation of the south polar cap is indicated by folding, boudinage, strike-slip or normal faulting, forebulge tectonics near scarps, and thrust faulting. The north polar cap locally also exhibits flow indicators. The south cap's glacial features suggest interbedding of two or more types of ice of differing volatility and rheology, plus a locally deforming surficial dry-ice cap overlying the other materials. Major ice types may include two (or more) of the following, in order of highest to lowest mechanical strength: CO2 clathrate hydrate, water ice, water ice containing traces of liquid-soluble salts, water ice containing traces of solid-soluble acids, and CO2 ice; dust is another variable. Within our Solar System, the closest geomorphic analog to icy Martian flows are Earth's alpine glaciers, rock glaciers, and continental ice sheets, though key differences are apparent. If made dominantly of water ice, important and recent climatic shifts seem to be implicated. Ice-flow landforms also occur on some outer planet satellites; among them are Io, Europa, Enceladus, Ariel, and Triton. Volatile flows on these bodies may involve diverse materials, such as sulfur, water ice, hydrated salts, ammonia-water ices, and nitrogen ice. Most of these would not be suitable

  6. Modelling The Energy And Mass Balance Of A Black Glacier

    NASA Astrophysics Data System (ADS)

    Grossi, G.; Taschner, S.; Ranzi, R.

    A distributed energy balance hydrologic model has been implemented to simulate the melting season of the Belvedere glacier, situated in the Anza river basin (North- Western Italy) for a few years. The Belvedere Glacier is an example of SblackS glacier, ´ since the ablation zone is covered by a significant debris layer. The glacierSs termi- nus has an altitude of 1785 m asl which is very unusual for the Southern side of the European Alps. The model accounts for the energy exchange processes at the inter- face between the atmospheric boundary layer and the snow/ice/debris layer. To run the model hydrometeorological and physiographic data were collected, including the depth of the debris cover and the tritium (3H) concentration in the glacial river. Mea- surements of the soil thermal conductivity were carried out during a field campaign organised within the glaciers monitoring GLIMS project, at the time of the passage of the Landsat and the Terra satellites last 15 August 2001. A comparison of the different energy terms simulated by the model assigns a dominant role to the shortwave radia- tion, which provides the highest positive contribution to the energy available for snow- and ice-melt, while the sensible heat turns out to be the second major source of heat. Longwave radiation balance and latent heat seem to be less relevant and often nega- tive. The role of the debris cover is not negligible, since its thermal insulation causes, on average, a decrease in the ice melt volume. One of the model variables is the tem- perature of the debris cover, which can be a useful information when a black glacier is to be monitored through remote sensing techniques. The visible and near infrared radi- ation data do not always provide sufficient information to detect the glaciers' margins beneath the debris layer. For this reason the information of the different thermal sur- face characteristics (pure ice, debris covered ice, rock), proved by the energy balance model results was

  7. Recent Observations and Structural Analysis of Surge-Type Glaciers in the Glacier Bay Area

    NASA Astrophysics Data System (ADS)

    Mayer, H.; Herzfeld, U. C.

    2003-12-01

    The Chugach-St.-Elias Mountains in North America hold the largest non-polar connected glaciated area of the world. Most of its larger glaciers are surge-type glaciers. In the summer of 2003, we collected aerial photographic and GPS data over numerous glaciers in the eastern St. Elias Mountains, including the Glacier Bay area. Observed glaciers include Davidson, Casement, McBride, Riggs, Cushing, Carroll, Rendu, Tsirku, Grand Pacific, Melbern, Ferris, Margerie, Johns Hopkins, Lamplugh, Reid, Burroughs, Morse, Muir and Willard Glaciers, of which Carroll, Rendu, Ferris, Grand Pacific, Johns Hopkins and Margerie Glaciers are surge-type glaciers. Our approach utilizes a quantitative analysis of surface patterns, following the principles of structural geology for the analysis of brittle-deformation patterns (manifested in crevasses) and ductile deformation patterns (visible in folded moraines). First results will be presented.

  8. A revised Canadian perspective: progress in glacier hydrology

    NASA Astrophysics Data System (ADS)

    Munro, D. Scott

    2005-01-01

    Current research into glacier hydrology is occurring at a time when glaciers around the world, particularly those whose hydrological regimes affect populated areas, are shrinking as they go through a state of perpetual negative annual mass balance. Small glaciers alone are likely to contribute 0·5 to 1 mm year-1 to global sea-level rise, with associated reductions in local freshwater resources, impacts upon freshwater ecosystems and increased risk of hazard due to outburst floods. Changes to the accumulation regimes of glaciers and ice sheets may be partly responsible, so the measurement and distribution of snowfall in glacierized basins, a topic long represented in non-glacierized basin research, is now beginning to receive more attention than it did before, aided by the advent of reliable automatic weather stations that provide data throughout the year. Satellite data continue to be an important information source for summer meltwater estimation, as distributed models, and their need for albedo maps, continue to develop. This further entails the need for simplifications to energy balance components, sacrificing point detail so that spatial calculation may proceed more quickly. The understanding of surface meltwater routing through the glacier to produce stream outflow continues to be a stimulating area of research, as demonstrated by activity at the Trapridge Glacier, Canada, and Canadian involvement in the Haut Glacier d'Arolla, Switzerland. As Canadian glacier monitoring continues to evolve, effort must be directed toward developing situations where mass balance, meltwater generation and flow routing studies can be done together at selected sites. Copyright

  9. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes

    PubMed Central

    Korup, Oliver; Montgomery, David R.; Hewitt, Kenneth

    2010-01-01

    Despite longstanding research on the age and formation of the Tibetan Plateau, the controls on the erosional decay of its margins remain controversial. Pronounced aridity and highly localized rock uplift have traditionally been viewed as limits to the dissection of the plateau by bedrock rivers. Recently, however, glacier dynamics and landsliding have been argued to retard headward fluvial erosion into the plateau interior by forming dams and protective alluvial fill. Here, we report a conspicuous clustering of hundreds of natural dams along the Indus and the Tsangpo Rivers where these cross the Himalayan syntaxes. The Indus is riddled by hundreds of dams composed of debris from catastrophic rock avalanches, forming the largest concentration of giant landslide dams known worldwide, whereas the Tsangpo seems devoid of comparable landslide dams. In contrast, glacial dams such as river-blocking moraines in the headwaters of both rivers are limited to where isolated mountain ranges intersect the regional snowline. We find that to first-order, high local topographic relief along both rivers corresponds to conspicuously different knickzones and differences in the type and potential longevity of these dams. In both syntaxes, glacier and landslide dams act as a negative feedback in response to fluvial dissection of the plateau margins. Natural damming protects bedrock from river incision and delays headward knickpoint migration, thereby helping stabilize the southwestern and southeastern margins of the Tibetan Plateau in concert with the effects of upstream aridity and localized rock uplift. PMID:20212156

  10. Shallow Repeating Seismic Events Under an Alpine Glacier at Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Allstadt, K.; Thelen, W. A.; Malone, S. D.; Vidale, J. E.; de Angelis, S.; Moran, S. C.

    2010-12-01

    We observed a swarm of repeating sequences of seismic events during three weeks in May and June 2010 near the summit of Mount Rainier, Washington. These sequences likely marked stick-slip motion at the base of alpine glaciers. The dominant set of nearly identical earthquakes repeated more than 4000 times and had no diurnal variation in recurrence interval nor amplitude. A second set of earthquakes recurred about 500 times with a strong diurnal pattern. We also detected 14 other minor sets of repeating earthquakes of less than 20 occurrences during this time. Due to the low amplitudes of these events, we were able to locate only the dominant sequence by stacking 4000 signals. This event was located about 1km north of the crater, near the top of Winthrop glacier. Both volcanoes and glaciers groan and pop frequently, with great variability and energy. The low-frequency radiation and periodic recurrence of these events mimic more ominous volcano grumbles, but the shallow location, correspondence with weather, and sometimes diurnal patterns indicate ice-related sources. The most likely scenario is that a rapid influx of spring meltwater to the lower portions of these glaciers after several days of warm temperatures overwhelmed underdeveloped subglacial conduits, driving water into basal cavities and till. This decreases effective pressure at the base of the glacier, thus temporarily increasing basal slip rates. The earthquakes we observed may be generated by repeated stick-slip motion over bedrock bumps or other asperities under these glaciers near the summit as they were pulled along by down-glacier acceleration. The low frequency nature of these earthquakes is a path effect due to wave propagation through the glacial ice and surficial rock layers of the volcano. These sequences underline the difficulties in differentiating glacial noise from signs of magmatic unrest while monitoring volcanoes.

  11. Food Web Structure in a Harsh Glacier-Fed River

    PubMed Central

    Clitherow, Leonie R.; Carrivick, Jonathan L.; Brown, Lee E.

    2013-01-01

    Glacier retreat is occurring across the world, and associated river ecosystems are expected to respond more rapidly than those in flowing waters in other regions. The river environment directly downstream of a glacier snout is characterised by extreme low water temperature and unstable channel sediments but these habitats may become rarer with widespread glacier retreat. In these extreme environments food web dynamics have been little studied, yet they could offer opportunities to test food web theories using highly resolved food webs owing to their low taxonomic richness. This study examined the interactions of macroinvertebrate and diatom taxa in the Ödenwinkelkees river, Austrian central Alps between 2006 and 2011. The webs were characterised by low taxon richness (13–22), highly connected individuals (directed connectance up to 0.19) and short mean food chain length (2.00–2.36). The dominant macroinvertebrates were members of the Chironomidae genus Diamesa and had an omnivorous diet rich in detritus and diatoms as well as other Chironomidae. Simuliidae (typically detritivorous filterers) had a diet rich in diatoms but also showed evidence of predation on Chironomidae larvae. Food webs showed strong species-averaged and individual size structuring but mass-abundance scaling coefficients were larger than those predicted by metabolic theory, perhaps due to a combination of spatial averaging effects of patchily distributed consumers and resources, and/or consumers deriving unquantified resources from microorganisms attached to the large amounts of ingested rock fragments. Comparison of food web structural metrics with those from 62 published river webs suggest these glacier-fed river food web properties were extreme but in line with general food web scaling predictions, a finding which could prove useful to forecast the effects of anticipated future glacier retreat on the structure of aquatic food webs. PMID:23613751

  12. GLACIER Express Rack Setup

    NASA Image and Video Library

    2010-09-01

    ISS024-E-012995 (1 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  13. A complete glacier inventory of the Antarctic Peninsula based on Landsat 7 images from 2000 to 2002 and other preexisting data sets

    NASA Astrophysics Data System (ADS)

    Huber, Jacqueline; Cook, Alison J.; Paul, Frank; Zemp, Michael

    2017-02-01

    The glaciers on the Antarctic Peninsula (AP) potentially make a large contribution to sea level rise. However, this contribution has been difficult to estimate since no complete glacier inventory (outlines, attributes, separation from the ice sheet) is available. This work fills the gap and presents a new glacier inventory of the AP north of 70° S, based on digitally combining preexisting data sets with geographic information system (GIS) techniques. Rock outcrops have been removed from the glacier basin outlines of Cook et al. (2014) by intersection with the latest layer of the Antarctic Digital Database (Burton-Johnson et al., 2016). Glacier-specific topographic parameters (e.g., mean elevation, slope and aspect) as well as hypsometry have been calculated from the DEM of Cook et al. (2012). We also assigned connectivity levels to all glaciers following the concept by Rastner et al. (2012). Moreover, the bedrock data set of Huss and Farinotti (2014) enabled us to add ice thickness and volume for each glacier. The new inventory is available from the Global Land Ice Measurements from Space (GLIMS) database (doi:10.7265/N5V98602) and consists of 1589 glaciers covering an area of 95 273 km2, slightly more than the 89 720 km2 covered by glaciers surrounding the Greenland Ice Sheet. Hence, compared to the preexisting data set of Cook et al. (2014), this data set covers a smaller area and one glacier less due to the intersection with the rock outcrop data set. The total estimated ice volume is 34 590 km3, of which one-third is below sea level. The hypsometric curve has a bimodal shape due to the unique topography of the AP, which consists mainly of ice caps with outlet glaciers. Most of the glacierized area is located at 200-500 m a.s.l., with a secondary maximum at 1500-1900 m. Approximately 63 % of the area is drained by marine-terminating glaciers, and ice-shelf tributary glaciers cover 35 % of the area

  14. The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A

    USGS Publications Warehouse

    Trabant, D.C.; Krimmel, R.M.; Echelmeyer, K.A.; Zirnheld, S.L.; Elsberg, D.H.

    2003-01-01

    Hubbard Glacier is the largest tidewater glacier in North America. In contrast to most glaciers in Alaska and northwestern Canada, Hubbard Glacier thickened and advanced during the 20th century. This atypical behavior is an important example of how insensitive to climate a glacier can become during parts of the calving glacier cycle. As this glacier continues to advance, it will close the seaward entrance to 50 km long Russell Fjord and create a glacier-dammed, brackish-water lake. This paper describes measured changes in ice thickness, ice speed, terminus advance and fjord bathymetry of Hubbard Glacier, as determined from airborne laser altimetry, aerial photogrammetry, satellite imagery and bathymetric measurements. The data show that the lower regions of the glacier have thickened by as much as 83 m in the last 41 years, while the entire glacier increased in volume by 14.1 km3. Ice speeds are generally decreasing near the calving face from a high of 16.5 m d-1 in 1948 to 11.5 m d-1 in 2001. The calving terminus advanced at an average rate of about 16 m a-1 between 1895 and 1948 and accelerated to 32 m a-1 since 1948. However, since 1986, the advance of the part of the terminus in Disenchantment Bay has slowed to 28 m a-1. Bathymetric data from the lee slope of the submarine terminal moraine show that between 1978 and 1999 the moraine advanced at an average rate of 32 m a-1, which is the same as that of the calving face.

  15. Grinnell and Sperry Glaciers, Glacier National Park, Montana: A record of vanishing ice

    USGS Publications Warehouse

    Johnson, Arthur

    1980-01-01

    Grinnell and Sperry Glaciers, in Glacier National Park, Mont., have both shrunk considerably since their discovery in 1887 and 1895, respectively. This shrinkage, a reflection of climatic conditions, is evident when photographs taken at the time of discovery are compared with later photographs. Annual precipitation and terminus-recession measurements, together with detailed systematic topographic mapping since 1900, clearly record the changes in the character and size of these glaciers. Grinnell Glacier decreased in area from 530 acres in 1900 to 315 acres in 1960 and to 298 acres in 1966. Between 1937 and 1969 the terminus receded nearly 1,200 feet. Periodic profile measurements indicate that in 1969 the surface over the main part of the glacier was 25-30 feet lower than in 1950. Observations from 1947 to 1969 indicate annual northeastward movement ranging from 32 to 52 feet and generally averaging 35-45 feet. The annual runoff at the glacier is estimated to be 150 inches, of which approximately 6 inches represents reduction in glacier volume. The average annual runoff at a gaging station on Grinnell Creek 1.5 miles downvalley from the glacier for the 20-year period, 1949-69, was 100 inches. The average annual precipitation over the glacier was probably 120-150 inches. Sperry Glacier occupied 800 acres in 1901; by 1960 it covered only 287 acres, much of its upper part having disappeared from the enclosing cirque. From 1938 to 1969 certain segments of the terminus receded more than 1,000 feet. Profile measurements dating from 1949 indicate a lowering of the glacier surface below an altitude of 7,500 feet, but a fairly constant or slightly increased elevation of the surface above an altitude of 7,500 feet. Along one segment of the 1969 terminus the ice had been more than 100 feet thick in 1950. According to observations during 1949-69, average annual downslope movement was less than 15 feet per year in the central part of the glacier and slightly more rapid toward

  16. The 2016 gigantic twin glacier collapses in Tibet: towards an improved understanding of large glacier instabilities and their potential links to climate change

    NASA Astrophysics Data System (ADS)

    Gilbert, Adrien; Leinss, Silvan; Evans, Steve; Tian, Lide; Kääb, Andreas; Kargel, Jeffrey; Gimbert, Florent; Chao, Wei-An; Gascoin, Simon; Bueler, Yves; Berthier, Etienne; Yao, Tandong; Huggel, Christian; Farinotti, Daniel; Brun, Fanny; Guo, Wanqin; Leonard, Gregory

    2017-04-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of an unnamed glacier (Aru-1) suddenly collapsed on 17 July 2016 and transformed into a mass flow that ran out over a distance of over 8 km, killing nine people and hundreds of cattle. Remarkably, a second glacier detachment with similar characteristics (Aru-2) took place 2.6 km south of the July event on 21 September 2016. These two events are unique in several aspects: their massive volumes (66 and 83 Mm3 respectively), the low slope angles (<13°) of the failed glacier sections, the maximum avalanche speeds (> 200 km h-1) and their close timing within two months. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). The uncommon occurrence of such large glacier failures suggest that such events require very specific conditions that could be linked to glacier thermal regime, bedrock lithology and morphology, geothermal activity or a particular climate setting. Using field and remote sensing observations, retrospective climate analysis, mass balance and thermo-mechanical modeling of the two glaciers in Tibet, we investigate the processes involved in the twin collapses. It appears that both, mostly cold-based glaciers, started to surge about 7-8 years ago, possibly in response to a long period of positive mass balance (1995-2005) followed by a sustained increase of melt water delivery to the glacier bed in the polythermal lower accumulation zone (1995-2016). Inversion of friction conditions at the base of the glacier constrained by surface elevation change rate for both glaciers shows a zone of very low basal friction progressively migrating downward until the final collapse. We interpret this to be the signature of the presence of high-pressure water dammed at the bed by the glacier's frozen periphery and toe. Large areas of low friction at the bed led to high shear stresses along the frozen side walls as evident in surface ice

  17. Dissolved trace and minor elements in cryoconite holes and supraglacial streams, Canada Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Fortner, Sarah K.; Lyons, W. Berry

    2018-04-01

    Here we present a synthesis of the trace element chemistry in melt on the surface Canada Glacier, Taylor Valley, McMurdo Dry Valleys (MDV), Antarctica ( 78°S). The MDV is largely ice-free. Low accumulation rates, strong winds, and proximity to the valley floor make these glaciers dusty in comparison to their inland counterparts. This study examines both supraglacial melt streams and cryoconite holes. Supraglacial streams on the lower Canada Glacier have median dissolved (<0.4 µm) concentrations of Fe, Mn, As, Cu, and V of 71.5, 75.5, 3.7, 4.6, and 4.3 nM. All dissolved Cd concentrations and the vast majority of Pb values are below our analytical detection (i.e. 0.4 and 0.06 nM). Chemical behavior did not follow similar trends for eastern and western draining waters. Heterogeneity likely reflects distinctions eolian deposition, rock:water ratios, and hydrologic connectivity. Future increases in wind-delivered sediment will likely drive dynamic responses in melt chemistry. For elements above detection limits, dissolved concentrations in glacier surface melt are within an order of magnitude of concentrations observed in proglacial streams (i.e. flowing on the valley floor). This suggests that glacier surfaces are an important source of downstream chemistry. The Fe enrichment of cryoconite water relative to N, P, or Si exceeds enrichment observed in marine phytoplankton. This suggests that the glacier surface is an important source of Fe to downstream ecosystems.

  18. Southwest Greenland's Alpine Glacier History: Recent Glacier Change in the Context of the Holocene Geologic Record

    NASA Astrophysics Data System (ADS)

    Larocca, L. J.; Axford, Y.; Lasher, G. E.; Lee, C. W.

    2017-12-01

    Due to anthropogenic climate change, the Arctic region is currently undergoing major transformation, and is expected to continue warming much faster than the global average. To put recent and future changes into context, a longer-term understanding of this region's past response to natural climate variability is needed. Given their sensitivity to modest climate change, small alpine glaciers and ice caps on Greenland's coastal margin (beyond the Greenland Ice Sheet) represent ideal features to record climate variability through the Holocene. Here we investigate the Holocene history of a small ( 160 square km) ice cap and adjacent alpine glaciers, located in southwest Greenland approximately 50 km south of Nuuk. We employ measurements on sediment cores from a glacier-fed lake in combination with geospatial analysis of satellite images spanning the past several decades. Sedimentary indicators of sediment source and thus glacial activity, including organic matter abundance, inferred chlorophyll-a content, sediment major element abundances, grain size, and magnetic susceptibility are presented from cores collected from a distal glacier-fed lake (informally referred to here as Per's Lake) in the summer of 2015. These parameters reflect changes in the amount and character of inorganic detrital input into the lake, which may be linked to the size of the upstream glaciers and ice cap and allow us to reconstruct their status through the Holocene. Additionally, we present a complementary record of recent changes in Equilibrium Line Altitude (ELA) for the upstream alpine glaciers. Modern ELAs are inferred using the accumulation area ratio (AAR) method in ArcGIS via Landsat and Worldview-2 satellite imagery, along with elevation data obtained from digital elevation models (DEMs). Paleo-ELAs are inferred from the positions of moraines and trim lines marking the glaciers' most recent expanded state, which we attribute to the Little Ice Age (LIA). This approach will allow us to

  19. Predicting the response of seven Asian glaciers to future climate scenarios using a simple linear glacier model

    NASA Astrophysics Data System (ADS)

    Ren, Diandong; Karoly, David J.

    2008-03-01

    Observations from seven Central Asian glaciers (35-55°N; 70-95°E) are used, together with regional temperature data, to infer uncertain parameters for a simple linear model of the glacier length variations. The glacier model is based on first order glacier dynamics and requires the knowledge of reference states of forcing and glacier perturbation magnitude. An adjoint-based variational method is used to optimally determine the glacier reference states in 1900 and the uncertain glacier model parameters. The simple glacier model is then used to estimate the glacier length variations until 2060 using regional temperature projections from an ensemble of climate model simulations for a future climate change scenario (SRES A2). For the period 2000-2060, all glaciers are projected to experience substantial further shrinkage, especially those with gentle slopes (e.g., Glacier Chogo Lungma retreats ˜4 km). Although nearly one-third of the year 2000 length will be reduced for some small glaciers, the existence of the glaciers studied here is not threatened by year 2060. The differences between the individual glacier responses are large. No straightforward relationship is found between glacier size and the projected fractional change of its length.

  20. Do Glaciers on Cascade Volcanoes Behave Differently Than Other Glaciers in the Region?

    NASA Astrophysics Data System (ADS)

    Riedel, J. L.; Ryane, C.; Osborn, J.; Davis, T.; Menounos, B.; Clague, J. J.; Koch, J.; Scott, K. M.; Reasoner, M.

    2006-12-01

    It has been suggested that glaciers on two stratovolcanoes in the Cascade Range of Washington state, Mt. Baker and Glacier Peak, achieved their maximum extent of the past 10,000 years during the early Holocene. These findings differ from most evidence in western North America, which indicates that Little Ice Age moraines represent the most extensive glacier advances of the Holocene. Significant early Holocene advances are difficult to reconcile with the documented warm, dry conditions at this time in western North America. Our data indicate that glaciers on these volcanoes responded similarly to Holocene climatic events as glaciers in other areas in Washington and British Columbia. Heavy winter accumulation and favorable hypsometry have been proposed as the explanations for the unusual behavior of glaciers on volcanoes compared to similar-sized glaciers elsewhere in the Cascade Range. However, glacier mass balance on the volcanoes is controlled by not only these factors, but also by glacier geometry, snow erosion and ablation. Accumulation zones of glaciers on isolated Cascade stratovolcanoes are high, but are narrow at the top. For example, the accumulation zone of Deming Glacier on the southwest side of Mt. Baker extends above 3000 m asl, but due to its wedge shape lies largely below 2500 m asl. Furthermore, glaciers on Mt. Baker and other symmetrical volcanoes have high ablation rates because they are not shaded, and south-southwest aspects are subject to erosion of snow by prevailing southwesterly winds. Modern glacier observations in the North Cascades quantify the important influence of aspect and snow erosion on glacier mass balance. For example, average equilibrium line altitude (ELA) of Easton Glacier on the south flank of Mt. Baker is 2160 m, whereas the ELA of a north-facing cirque glacier 25km to the east is 2040m. Our research at Mt. Baker contradicts the claim of extensive early Holocene advances on the south flank of the volcano. Tephra set SC, which

  1. Developing a visual moraine classification scheme to support investigations into the Holocene glacier chronology of the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Kaufung, Eva; Winkler, Stefan

    2014-05-01

    The Southern Alps of New Zealand have provided one of only a few suitable study sites for investigating Holocene glacier chronologies in the mid-latitudinal Southern Hemisphere. Although a considerable number of studies have been conducted during the past few decades, these generally focus on a very limited number of glacier forelands. Additionally, those glaciers studied have often been selected because of their accessibility rather than their representativeness for the whole region. A common drawback of many regional studies is the lack of attention to glacial geomorphology and the mode of moraine formation with the dating of such landforms in chronological context. With the Southern Alps characterized by very dynamic geomorphological process-systems and a high seismic activity, this seems unfortunate as it causes a relatively high potential "geomorphological uncertainty" with any published glacier chronology and its subsequent palaeoclimatological interpretation. Future investigations into the Holocene glacier chronology in the Southern Alps need to address those existing shortcomings and, consequently, should achieve a representative spatial distribution of study sites in order to overcome the current strong data bias towards few, albeit relatively well-studied glacier forelands. The specific regional geomorphological environment of the Southern Alps requires, furthermore, a thorough assessment of any moraine selected for the subsequent dating in consideration of its "reliability" if it is considered as evidence of specific former glacier variations. With more than 3000 potential glacier forelands in the entire mountain range, careful selection of future targets for successful chronological field work is essential. We present the preliminary results of an ongoing, time-efficient study to apply different remote sensing sources (aerial photography, Google Earth, satellite images) to evaluate the potential of certain glacier forelands for detailed ground

  2. Surge of Hispar Glacier, Pakistan, between 2013 and 2017 detected from remote sensing observations

    NASA Astrophysics Data System (ADS)

    Rashid, Irfan; Abdullah, Tariq; Glasser, Neil F.; Naz, Heena; Romshoo, Shakil Ahmad

    2018-02-01

    This study analyses the behaviour of an actively surging glacier, Hispar, in Pakistan using remote sensing methods. We used 15 m panchromatic band of Landsat 8 OLI from 2013 to 2017 to assess the changes in glacier velocity, glacier geomorphology and supraglacial water bodies. For the velocity estimation, correlation image analysis (CIAS) was used, which is based on normalized cross-correlation (NCC) of satellite data. On-screen digitization was employed to quantify changes in the glacier geomorphology and dynamics of supraglacial water bodies on the glacier. Our velocity estimates indicate that the upper part of the glacier is presently undergoing an active surge which not only affects the debris distribution but also impacts the development of supraglacial water bodies. Velocities in the actively surging part of the main glacier trunk and its three tributaries reach up to 900 m yr- 1. The surge of Hispar also impacts the distribution of supraglacial debris causing folding of the medial moraines features present on the glacier surface. Changes in the number and size of supraglacial lakes and ponds were also observed during the observation period from 2013 to 2017.

  3. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    NASA Astrophysics Data System (ADS)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Tropical glaciers are an essential component of the water resources systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glacier mass balance. This study presents GPR data taken in July 2012 at the Arteson glacier in the Cordillera Blanca, Peru. A new lake has begun to form at the terminus of the Arteson glacier, and this lake has key features, including overhanging ice and loose rock likely to create landslides, that could trigger a catastrophic GLOF if the lake continues to grow. This new lake is part of a series of three lakes that have formed below the Arteson glacier. The two lower lakes, Artesonraju and Paron, are much larger so that if there were an avalanche or landslide into the new lake below Arteson glacier, the impact could potentially be more catastrophic than a GLOF from one single lake. Estimates of how the lake mass balance is likely to evolve due to the retreating glacier are key to assessing the flood risk from this dynamic three-lake system. Because the glacier mass balance and lake mass balance are closely linked, the ice thickness measurements and measurements of the bed slope of the Arteson glacier and underlying bedrock give us a clue to how the lake is likely to evolve. GPR measurements of

  4. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings

    NASA Astrophysics Data System (ADS)

    Truffer, Martin; Motyka, Roman J.

    2016-03-01

    Glacier change is ubiquitous, but the fastest and largest magnitude changes occur in glaciers that terminate in water. This includes the most rapidly retreating glaciers, and also several advancing ones, often in similar regional climate settings. Furthermore, water-terminating glaciers show a large range in morphology, particularly when ice flow into ocean water is compared to that into freshwater lakes. All water-terminating glaciers share the ability to lose significant volume of ice at the front, either through mechanical calving or direct melt from the water in contact. Here we present a review of the subaqueous melt process. We discuss the relevant physics and show how different physical settings can lead to different glacial responses. We find that subaqueous melt can be an important trigger for glacier change. It can explain many of the morphological differences, such as the existence or absence of floating tongues. Subaqueous melting is influenced by glacial runoff, which is largely a function of atmospheric conditions. This shows a tight connection between atmosphere, oceans and lakes, and glaciers. Subaqueous melt rates, even if shown to be large, should always be discussed in the context of ice supply to the glacier front to assess its overall relevance. We find that melt is often relevant to explain seasonal evolution, can be instrumental in shifting a glacier into a different dynamical regime, and often forms a large part of a glacier's mass loss. On the other hand, in some cases, melt is a small component of mass loss and does not significantly affect glacier response.

  5. Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming

    NASA Astrophysics Data System (ADS)

    Bliss, A. K.; Stamper, B.

    2017-12-01

    Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.

  6. Long-term monitoring of glacier dynamics of Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Friedl, Peter; Seehaus, Thorsten; Wendt, Anja; Braun, Matthias

    2017-04-01

    The Antarctic Peninsula is one of the world`s most affected regions by Climate Change. Dense and long time series of remote sensing data enable detailed studies of the rapid glaciological changes in this area. We present results of a study on Fleming Glacier, which was the major tributary glacier of former Wordie Ice Shelf, located at the south-western side of the Antarctic Peninsula. Since the ice shelf disintegrated in a series of events starting in the 1970s, only disconnected tidewater glaciers have remained today. As a reaction to the loss of the buttressing force of the ice shelf, Fleming Glacier accelerated and dynamically thinned. However, all previous studies conducted at Wordie Bay covered only relatively short investigation periods and ended in 2008 the latest. Hence it was not well known how long the process of adaption to the changing boundary conditions exactly lasts and how it is characterized in detail. We provide long time series (1994 - 2016) of glaciological parameters (i.e. ice extent, velocity, grounding line position, ice elevation) for Fleming Glacier obtained from multi-mission remote sensing data. For this purpose large datasets of previously active (e.g. ERS, Envisat, ALOS PALSAR, Radarsat-1) as well as currently recording SAR sensors (e.g. Sentinel-1, TerraSAR-X, TanDEM-X) were processed and combined with data from other sources (e.g. optical images, laser altimeter and ice thickness data). The high temporal resolution of our dataset enables us to present a detailed history of 22 years of glacial dynamics at Fleming Glacier after the disintegration of Wordie Ice Shelf. We found strong evidence for a rapid grounding line retreat of up to 13 km between 2008 and 2011, which led to a further amplification of dynamic ice thinning. Today Fleming Glacier seems to be far away from approaching a new equilibrium. Our data show that the current glacier dynamics of Fleming Glacier are not primarily controlled by the loss of the ice shelf anymore, but

  7. Ocean forcing drives glacier retreat sometimes

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Ultee, E.; Ma, Y.

    2015-12-01

    Observations show that marine-terminating glaciers respond to climate forcing nonlinearly, with periods of slow or negligible glacier advance punctuated by abrupt, rapid retreat. Once glacier retreat has initiated, glaciers can quickly stabilize with a new terminus position. Alternatively, retreat can be sustained for decades (or longer), as is the case for Columbia Glacier, Alaska where retreat initiated ~1984 and continues to this day. Surprisingly, patterns of glacier retreat show ambiguous or even contradictory correlations with atmospheric temperature and glacier surface mass balance. Despite these puzzles, observations increasingly show that intrusion of warm subsurface ocean water into fjords can lead to glacier erosion rates that can account for a substantial portion of the total mass lost from glaciers. Here we use a simplified flowline model to show that even relatively modest submarine melt rates (~100 m/a) near the terminus of grounded glaciers can trigger large increases in iceberg calving leading to rapid glacier retreat. However, the strength of the coupling between submarine melt and calving is a strong function of the geometry of the glacier (bed topography, ice thickness and glacier width). This can lead to irreversible retreat when the terminus is thick and grounded deeply beneath sea level or result in little change when the glacier is relatively thin, grounded in shallow water or pinned in a narrow fjord. Because of the strong dependence on glacier geometry, small perturbations in submarine melting can trigger glaciers in their most advanced—and geometrically precarious—state to undergo sudden retreat followed by much slower re-advance. Although many details remain speculative, our model hints that some glaciers are more sensitive than others to ocean forcing and that some of the nonlinearities of glacier response to climate change may be attributable to variations in difficult-to-detect subsurface water temperatures that need to be better

  8. Wakata with Glacier on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-20

    S119-E-006764 (20 March 2009) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata is pictured on Discovery's middeck with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER). The astronauts changed out the International Space Station's glacier with a new one on March 20 to return urine, saliva, and blood samples from the Expedition 18 crew to Earth with Discovery's STS-119 astronauts. Wakata will be serving with both the current (Expedition 18) and the following (Expedition 19) crews aboard the station.

  9. Glacier-derived August runoff in northwest Montana

    USGS Publications Warehouse

    Clark, Adam; Harper, Joel T.; Fagre, Daniel B.

    2015-01-01

    The second largest concentration of glaciers in the U.S. Rocky Mountains is located in Glacier National Park (GNP), Montana. The total glacier-covered area in this region decreased by ∼35% over the past 50 years, which has raised substantial concern about the loss of the water derived from glaciers during the summer. We used an innovative weather station design to collect in situ measurements on five remote glaciers, which are used to parameterize a regional glacier melt model. This model offered a first-order estimate of the summer meltwater production by glaciers. We find, during the normally dry month of August, glaciers in the region produce approximately 25 × 106 m3 of potential runoff. We then estimated the glacier runoff component in five gaged streams sourced from GNP basins containing glaciers. Glacier-melt contributions range from 5% in a basin only 0.12% glacierized to >90% in a basin 28.5% glacierized. Glacier loss would likely lead to lower discharges and warmer temperatures in streams draining basins >20% glacier-covered. Lower flows could even be expected in streams draining basins as little as 1.4% glacierized if glaciers were to disappear.

  10. Recent thinning of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Sugiyama, S.; Sakakibara, D.; Sawagaki, T.; Maruyama, M.

    2014-12-01

    Ice discharge from calving glaciers has increased in the Greenland ice sheet (GrIS), and this increase plays important roles in the volume change of GrIS and its contribution to sea level rise. Thinning of GrIS calving glaciers has been studied by the differentiation of digital elevation models (DEMs) derived by satellite remote-sensing (RS). Such studies rely on the accuracy of DEMs, but calibration of RS data with ground based data is difficult. This is because field data on GrIS calving glaciers are few. In this study, we combined field and RS data to measure surface elevation change of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland (77°41'18″N, 68°29'47″W). The fast flowing part of the glacier is approximately 3 km wide and 10 km long. Ice surface elevation within 6 km from the glacier terminus was surveyed in the field in July 2013 and 2014, by using the global positioning system. We also measured the surface elevation over the glacier on August 20, 2007 and September 4, 2010, by analyzing Advanced Land Observing Satellite (ALOS), Panchromatic remote-sensing Instrument for Stereo Mapping (PRISM) images. We calibrated the satellite derived elevation data with our field measurements, and generated DEM for each year with a 25 m grid mesh. The field data and DEMs were compared to calculate recent glacier elevation change. Mean surface elevation change along the field survey profiles were -16.3±0.2 m (-5.3±0.1 m yr-1) in 2007-2010 and -10.8±0.2 m (-3.8±0.1 m yr-1) in 2010-2013. These rates are much greater than those observed on non-calving ice caps in the region, and similar to those reported for other calving glaciers in northwestern Greenland. Loss of ice was greater near the glacier terminus, suggesting the importance of ice dynamics and/or interaction with the ocean.

  11. Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile

    NASA Astrophysics Data System (ADS)

    Bravo, Claudio; Loriaux, Thomas; Rivera, Andrés; Brock, Ben W.

    2017-07-01

    Glacier melt is an important source of water for high Andean rivers in central Chile, especially in dry years, when it can be an important contributor to flows during late summer and autumn. However, few studies have quantified glacier melt contribution to streamflow in this region. To address this shortcoming, we present an analysis of meteorological conditions and ablation for Universidad Glacier, one of the largest valley glaciers in the central Andes of Chile at the head of the Tinguiririca River, for the 2009-2010 ablation season. We used meteorological measurements from two automatic weather stations installed on the glacier to drive a distributed temperature-index and runoff routing model. The temperature-index model was calibrated at the lower weather station site and showed good agreement with melt estimates from an ablation stake and sonic ranger, and with a physically based energy balance model. Total modelled glacier melt is compared with river flow measurements at three sites located between 0.5 and 50 km downstream. Universidad Glacier shows extremely high melt rates over the ablation season which may exceed 10 m water equivalent in the lower ablation area, representing between 10 and 13 % of the mean monthly streamflow at the outlet of the Tinguiririca River Basin between December 2009 and March 2010. This contribution rises to a monthly maximum of almost 20 % in March 2010, demonstrating the importance of glacier runoff to streamflow, particularly in dry years such as 2009-2010. The temperature-index approach benefits from the availability of on-glacier meteorological data, enabling the calculation of the local hourly variable lapse rate, and is suited to high melt regimes, but would not be easily applicable to glaciers further north in Chile where sublimation is more significant.

  12. Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change.

    PubMed

    Anacona, Pablo Iribarren; Kinney, Josie; Schaefer, Marius; Harrison, Stephan; Wilson, Ryan; Segovia, Alexis; Mazzorana, Bruno; Guerra, Felipe; Farías, David; Reynolds, John M; Glasser, Neil F

    2018-03-13

    The environmental, socioeconomic and cultural significance of glaciers has motivated several countries to regulate activities on glaciers and glacierized surroundings. However, laws written to specifically protect mountain glaciers have only recently been considered within national political agendas. Glacier Protection Laws (GPLs) originate in countries where mining has damaged glaciers and have been adopted with the aim of protecting the cryosphere from harmful activities. Here, we analyze GPLs in Argentina (approved) and Chile (under discussion) to identify potential environmental conflicts arising from law restrictions and omissions. We conclude that GPLs overlook the dynamics of glaciers and could prevent or delay actions needed to mitigate glacial hazards (e.g. artificial drainage of glacial lakes) thus placing populations at risk. Furthermore, GPL restrictions could hinder strategies (e.g. use of glacial lakes as reservoirs) to mitigate adverse impacts of climate change. Arguably, more flexible GPLs are needed to protect us from the changing cryosphere.

  13. Malaspina Glacier: a modern analog to the Laurentide Glacier in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavson, T.C.; Boothroyd, J.C.

    1985-01-01

    The land-based temperate Malaspina Glacier is a partial analog to the late Wisconsinan Laurentide Ice Sheet that occupied New England and adjacent areas. The Malaspina occupies a bedrock basin similar to basins occupied by the margin of the Laurentide Ice Sheet. Ice lobes of the Malaspina are similar in size to end moraine lobes in southern New England and Long Island,New York. Estimated ice temperature, ablation rates, surface slopes and meltwater discharge per unit of surface area for the Laurentide Ice Sheet are similar to those for the Malaspina Glacier. In a simple hydrologic-fluvial model for the Malaspina Glacier meltwatermore » moves towards the glacier bed and down-glacier along intercrystalline pathways, crevasses and moulins, and a series of tunnels. Regolith and bedrock at the glacier floor, which are eroded and transported by subglacial and englacial streams, are the sources of essentially all fluvio-lacustrine sediment on the Malaspina Foreland. Supraglacial eskers containing coarse gravels occur as much as 100 m above the glacier bed and are evidence that bedload can be lifted hydraulically. Subordinant amounts of sediment are contributed to outwash by small surface streams draining the ice margin. By analogy a similar hydrologic-fluvial system existed along the southeastern margin of the Laurentide Ice Sheet. Subglacial regolith and bedrock eroded from beneath the Laurentide Ice Sheet by meltwater was also the source of most glaciofluvial and glaciolacustrine deposits in southern New England, not sediment carried to the surface of the ice sheet along shear planes and washed off the glacier by meltwater.« less

  14. Khurdopin Glacier, Pakistan

    NASA Image and Video Library

    2018-03-26

    In October 2016, the Khurdopin Glacier in Pakistan began a rapid surge after 20 years of little movement. By March, 2017, a large lake had formed in the Shimshal River, where the glacier had formed a dam. Fortunately, the river carved an outlet through the glacier before the lake could empty catastrophically. In this pair of ASTER images, acquired August 20, 2015 and May 21, 2017, the advance of the Khurdopin Glacier (dark gray and white "river" in lower right quarter of image) is obvious by comparing the before and after images. The images cover an area of 25 by 27.8 km, and are located at 36.3 degrees north, 75.5 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22304

  15. Glacier shrinkage and water resources in the Andes

    NASA Astrophysics Data System (ADS)

    Francou, Bernard; Coudrain, Anne

    For more than a century glaciers around the world have been melting as air temperatures rise due to a combination of natural processes and human activity. The disappearance of these glaciers can have wide-ranging effects, such as the creation of new natural hazards or changes in stream flow that could threaten water suppliesSome of the most dramatic melting has occurred in the Andes mountain range in South America. To highlight the climatic and glacial change in the Andes and to encourage the scientific community to strengthen the glacier observation network that stretches from Colombia to the Patagonian ice fields, the Instituto Nacional de Recursos Naturales (INRENA), Perú, and the Institute of Research and Development (IRD), France, recently organized the second Symposium on Mass Balance of Andean Glaciers in Huaráz,Perú.

  16. Glacier microseismicity

    USGS Publications Warehouse

    West, Michael E.; Larsen, Christopher F.; Truffer, Martin; O'Neel, Shad; LeBlanc, Laura

    2010-01-01

    We present a framework for interpreting small glacier seismic events based on data collected near the center of Bering Glacier, Alaska, in spring 2007. We find extremely high microseismicity rates (as many as tens of events per minute) occurring largely within a few kilometers of the receivers. A high-frequency class of seismicity is distinguished by dominant frequencies of 20–35 Hz and impulsive arrivals. A low-frequency class has dominant frequencies of 6–15 Hz, emergent onsets, and longer, more monotonic codas. A bimodal distribution of 160,000 seismic events over two months demonstrates that the classes represent two distinct populations. This is further supported by the presence of hybrid waveforms that contain elements of both event types. The high-low-hybrid paradigm is well established in volcano seismology and is demonstrated by a comparison to earthquakes from Augustine Volcano. We build on these parallels to suggest that fluid-induced resonance is likely responsible for the low-frequency glacier events and that the hybrid glacier events may be caused by the rush of water into newly opening pathways.

  17. Glacier calving, dynamics, and sea-level rise. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, M.F.; Pfeffer, W.T.; Amadei, B.

    1998-08-01

    The present-day calving flux from Greenland and Antarctica is poorly known, and this accounts for a significant portion of the uncertainty in the current mass balance of these ice sheets. Similarly, the lack of knowledge about the role of calving in glacier dynamics constitutes a major uncertainty in predicting the response of glaciers and ice sheets to changes in climate and thus sea level. Another fundamental problem has to do with incomplete knowledge of glacier areas and volumes, needed for analyses of sea-level change due to changing climate. The authors proposed to develop an improved ability to predict the futuremore » contributions of glaciers to sea level by combining work from four research areas: remote sensing observations of calving activity and iceberg flux, numerical modeling of glacier dynamics, theoretical analysis of the calving process, and numerical techniques for modeling flow with large deformations and fracture. These four areas have never been combined into a single research effort on this subject; in particular, calving dynamics have never before been included explicitly in a model of glacier dynamics. A crucial issue that they proposed to address was the general question of how calving dynamics and glacier flow dynamics interact.« less

  18. Development of Adygine glacier complex (glacier and proglacial lakes) and its link to outburst hazard

    NASA Astrophysics Data System (ADS)

    Falatkova, Kristyna; Schöner, Wolfgang; Häusler, Hermann; Reisenhofer, Stefan; Neureiter, Anton; Sobr, Miroslav; Jansky, Bohumir

    2017-04-01

    Mountain glacier retreat has a well-known impact on life of local population - besides anxiety over water supply for agriculture, industry, or households, it has proved to have a direct influence on glacier hazard occurrence. The paper focuses on lake outburst hazard specifically, and aims to describe the previous and future development of Adygine glacier complex and identify its relationship to the hazard. The observed glacier is situated in the Northern Tien Shan, with an area of 4 km2 in northern exposition at an elevation range of 3,500-4,200 m a.s.l. The study glacier ranks in the group of small-sized glaciers, therefore we expect it to respond faster to changes of the climate compared to larger ones. Below the glacier there is a three-level cascade of proglacial lakes at different stages of development. The site has been observed sporadically since 1960s, however, closer study has been carried out since 2007. Past development of the glacier-lake complex is analyzed by combination of satellite imagery interpretations and on-site measurements (geodetic and bathymetric survey). A glacier mass balance model is used to simulate future development of the glacier resulting from climate scenarios. We used the simulated future glacier extent and the glacier base topography provided by GPR survey to assess potential for future lake formation. This enables us to assess the outburst hazard for the three selected lakes with an outlook for possible/probable hazard changes linked to further complex succession/progression (originating from climate change scenarios). Considering the proximity of the capital Bishkek, spreading settlements, and increased demand for tourism-related infrastructure within the main valley, it is of high importance to identify the present and possible future hazards that have a potential to affect this region.

  19. Glacier Changes in the Nanga Parbat Region, NW Himalaya: A longitudinal study over 160 years (1856-2016)

    NASA Astrophysics Data System (ADS)

    Nüsser, Marcus; Schmidt, Susanne

    2017-04-01

    Against the background of the prominent Himalayan glacier debate of the past decade, global concerns were raised about the severe consequences of detected and expected changes in the South Asian cryosphere. Due to the lack of historical glaciological data in the Himalayan region, studies of glacier changes over long time periods are rare. The present study seeks to analyze and quantify glacier changes in the Nanga Parbat region between 1856 and 2016. Due to the steep topography and great vertical span, the debris-covered glaciers of the mountain massif are largely fed by avalanches of different size. This impact of snow and ice re-distribution by avalanches is often neglected in glacier mass-balances. Therefore, an integrated approach was used to investigate the glacier changes and the impact of avalanches. This approach includes (1) a re-photographic survey with images from several expeditions between 1934 and 2010, (2) mapping during own field surveys between 1992 and 2010, as well as (3) the analyses of remote sensing data (Corona, QuickBird, KompSat, Landsat, etc. and DEM) and (4) historical topographic maps. The re-photographic survey allows for direct comparisons and illustrates glacier changes over a span of seventy years. Changes of glacier lengths were quantified by using remote sensing data and the topographic map of 1934. In order to calculate glacier surface changes, a digital elevation model (DEM) with a spatial resolution of 30 x 30 m2 was derived from the digitized contour lines of the topographic map from 1934 and compared to SRTM-DEM (30 x 30 m2) and ALOS-DSM. Based on remote sensing time-series, avalanche deposits on glaciers were mapped in order to identify their magnitude and frequencies. To calculate the potential glacier catchment, area of steep rock walls and the ratio between accumulation and ablation zones were calculated for each glacier basin. Our field based investigations show that the glaciers in the Rupal Valley are characterized by

  20. Hasty retreat of glaciers in the Palena province of Chile

    NASA Astrophysics Data System (ADS)

    Paul, F.; Mölg, N.; Bolch, T.

    2013-12-01

    . Typically, these glaciers lost contact to the accumulation areas of tributaries and now consist of an ablation area only. Furthermore, numerous pro-glacial lakes formed or expanded rapidly, increasing the local hazard potential. On the other hand, some glaciers located on or near to (still active) volcanoes have also advanced in the same time period. Observed trends in temperature (decreasing) are in contrast to the observed strong glacier shrinkage.

  1. Patagonia Glacier, Chile

    NASA Image and Video Library

    2001-07-21

    This ASTER image was acquired on May 2, 2000 over the North Patagonia Ice Sheet, Chile near latitude 47 degrees south, longitude 73 degrees west. The image covers 36 x 30 km. The false color composite displays vegetation in red. The image dramatically shows a single large glacier, covered with crevasses. A semi-circular terminal moraine indicates that the glacier was once more extensive than at present. ASTER data are being acquired over hundreds of glaciers worldwide to measure their changes over time. Since glaciers are sensitive indicators of warming or cooling, this program can provide global data set critical to understand climate change. This image is located at 46.5 degrees south latitude and 73.9 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02670

  2. Characterization of Dust Emissions from an Actively Retreating Glacier

    NASA Astrophysics Data System (ADS)

    King, J.

    2017-12-01

    The Kaskawulsh glacier in Yukon, Canada, part of the St. Elias Mountain Glacier system, is experiencing increased ablation from rising air temperatures and in 2016 changed its main fluvial outlet (the Slims River and Kluane Lake) for the first time in over 300 years to drain into the Gulf of Alaska. In the recent earth history, changes in temperature within glaciated valleys have produced large amounts of wind-blown dust, evident in layers of loess within surrounding soils. Mineral aerosols in the atmosphere affect the environment of the earth through their direct effect on solar radiation, modifying cloud processes, and ground insolation, while the deposition of mineral aerosols can provide essential nutrients for ocean and terrestrial productivity. This potential drastic reduction in fluvial inputs into Kluane Lake will result in the rapid exposure of deltaic sediments and extended periods of dust emissions, similar to those suggested to occur during the rapid warming in the early Holocene. This drastic change already starting to occur makes this system an excellent natural laboratory for investigating the impact of dust storms under past and future climates. This research is focused on analyzing the connections between proglacial valley dust emissions and glacier dynamics, within ancient and modern climates. Measurements made directly in the valley of dust emission frequency, local climatological data analysis, and a remote sensing analysis approach in 2016 and 2017, have been combined to provide an insight into the effects that rapid changes in proglacial systems can have on dust dynamics. Strong interdependencies exist between glacier mass and diurnal winds, as well as air temperature and river levels, that combine to control the magnitude and frequency of dust emissions. The methodology utilized in this study could be applied to similar regions to produce estimates of dust emissions where direct measurements are minimal or difficult to attain, and can be fed

  3. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  4. The length of the glaciers in the world - a straightforward method for the automated calculation of glacier center lines

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Huss, M.

    2014-05-01

    Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where DEM quality is good (East Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a central parameter to global glacier inventories. Global and regional scaling laws might proof beneficial in conceptual glacier models.

  5. Asia High Mountain Glacier Mass Balance

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Su, X.; Shang, K.; Cogley, J. G.; Zhang, G.; Howat, I. M.; Braun, A.; Kuo, C. Y.

    2015-12-01

    The Asian High Mountain encompassing the Qinghai-Tibetan Plateau has the largest glaciated regions in the world outside of Greenland and Antarctica. The Tibetan Plateau is the source or headwater of many major river systems, which provide water resources to more than a billion people downstream. The impact of climate change on the Tibetan Plateau physical processes, including mountain glacier wastage, permafrost active layer thickening, the timing and the quantity of the perennial snowpack melt affecting upstream catchments, river runoffs, land-use, have significant effects on downstream water resources. Exact quantification of the Asian High Mountain glacier wastage or its mass balance on how much of the melt water contributes to early 21st century global sea-level rise, remain illusive or the published results are arguably controversial. The recent observed significant increase of freshwater storage within the Tibetan Plateaus remains a limitation to exactly quantify mountain glacier wastage. Here, we provide an updated estimate of Asia high mountain glacier mass balance using satellite geodetic observations during the last decade, accounting for the hydrologic and other processes, and validated against available in situ mass balance data.

  6. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    Calving front of the Perito Moreno Glacier (Argentina). Contrary to the majority of the glaciers from the southern Patagonian ice field, the Perito Moreno Glacier is currently stable. It is also one of the most visited glaciers in the world. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: Etienne Berthier, Université de Toulouse NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  8. MELFI / GLACIER Transfers

    NASA Image and Video Library

    2013-03-12

    ISS034-E-067263 (12 March 2013) --- Canadian astronaut Chris Hadfield, right, assists fellow Expedition 34 flight engineer and NASA astronaut Tom Marshburn during Minus Eighty-Degree Laboratory Freezer for International Space Station (MELFI)operations. The two are doing transfers of samples connected to the General Laboratory Active Cryogenic ISS Experiment Refrigerator or GLACIER in the U.S. lab Destiny.

  9. Susitna Glacier, Alaska

    NASA Image and Video Library

    2010-09-13

    Folds in the lower reaches of valley glaciers can be caused by powerful surges of tributary ice streams. This phenomenon is spectacularly displayed by the Sustina Glacier in the Alaska Range as seen by NASA Terra spacecraft.

  10. Rapid Late Holocene glacier fluctuations reconstructed from South Georgia lake sediments using novel analytical and numerical techniques

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Werner, Johannes; Paasche, Øyvind; Rosqvist, Gunhild

    2016-04-01

    The collapse of ice shelves, rapidly retreating glaciers and a dramatic recent temperature increase show that Southern Ocean climate is rapidly shifting. Also, instrumental and modelling data demonstrate transient interactions between oceanic and atmospheric forcings as well as climatic teleconnections with lower-latitude regions. Yet beyond the instrumental period, a lack of proxy climate timeseries impedes our understanding of Southern Ocean climate. Also, available records often lack the resolution and chronological control required to resolve rapid climate shifts like those observed at present. Alpine glaciers are found on most Southern Ocean islands and quickly respond to shifts in climate through changes in mass balance. Attendant changes in glacier size drive variations in the production of rock flour, the suspended product of glacial erosion. This climate response may be captured by downstream distal glacier-fed lakes, continuously recording glacier history. Sediment records from such lakes are considered prime sources for paleoclimate reconstructions. Here, we present the first reconstruction of Late Holocene glacier variability from the island of South Georgia. Using a toolbox of advanced physical, geochemical (XRF) and magnetic proxies, in combination with state-of-the-art numerical techniques, we fingerprinted a glacier signal from glacier-fed lake sediments. This lacustrine sediment signal was subsequently calibrated against mapped glacier extent with the help of geomorphological moraine evidence and remote sensing techniques. The outlined approach enabled us to robustly resolve variations of a complex glacier at sub-centennial timescales, while constraining the sedimentological imprint of other geomorphic catchment processes. From a paleoclimate perspective, our reconstruction reveals a dynamic Late Holocene climate, modulated by long-term shifts in regional circulation patterns. We also find evidence for rapid medieval glacier retreat as well as a

  11. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  12. Field evidence for control of quarrying by rock bridges in jointed bedrock

    NASA Astrophysics Data System (ADS)

    Hooyer, T. S.; Cohen, D. O.; Iverson, N. R.

    2011-12-01

    Quarrying is generally thought to be the most important mechanism by which glaciers erode bedrock. In quarrying models it is assumed that slow, subcritical, growth of pre-existing cracks rate-limits the process and occurs where there are large stress differences in the bed, such as near rock bumps where ice separates from the bed to form water-filled cavities. Owing to the direction of principal stresses in rocks associated with sliding and resultant cavity formation, models predict that quarrying will occur along cracks oriented perpendicular to the ice flow direction or parallel to zones of ice-bed contact. Preglacial cracks in rocks will tend to propagate mainly downward, and in sedimentary or some metamorphic rocks will merge with bedding planes, thereby helping to isolate rock blocks for dislodgement. In contrast to these model assumptions, new measurements of quarried surface orientations in the deglaciated forefield of nine glaciers in Switzerland and Canada indicate a strong correlation between orientations of pre-existing joints and quarried bedrock surfaces, independent of ice flow direction or ice-water contact lines. The strong correlation persists across all rock types, and rocks devoid of major joints lack quarried surfaces. We propose a new conceptual model of quarrying that idealizes the bedrock as a series of blocks separated by discontinuous preglacial joints containing intact rock bridges. Bridges concentrate stress differences caused by normal and shear forces acting at the rock surface. Failure of bridges is caused by slow subcritical crack growth enhanced by water pressure fluctuations. To lend credibility to this new model, we show field evidence of failed rock bridges in quarried surfaces and of rib marks on plumose structures that we interpret as arrest fracture fronts due to transient subglacial water-pressure fluctuations.

  13. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2002-02-26

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating. This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03475

  14. Glacier-terminus fluctuations in the Wrangell and Chugach mountains resulting from non-climate controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, M.; Hall, D.K.; Benson, C.S.

    Non-climatically controlled fluctuations of glacier termini were studied in two regions in Alaska. In the Wrangell Mountains, eight glaciers on Mt. Wrangell, an active volcano, have been monitored over the past 30 years using terrestrial surveys, aerial photogrammetry and digitally registered satellite images. Results, which are consistent between different methods of measurement, indicate that the termini of most glaciers were stationary or had retreated slightly. However, the termini of the 30-km-long Ahtna Glacier and the smaller Center and South MacKeith glaciers began to advance in the early 1960s and have advanced steadily at rates between 5 and 18 m yr-1more » since then. These three glaciers flow from the summit caldera of ML Wrangell near the active North Crater, where increased volcanic heating since 1964 has melted over 7 x 107 M3 of ice. The authors suspect that volcanic meltwater has changed the basal conditions for the glaciers, resulting in their advance. In College Fjord, Prince William Sound, the terminus fluctuations of two tidewater glaciers have been monitored since 1931 by terrestrial surveying, photogrammetry, and most recently, from satellite imagery. Harvard Glacier, a 40-kmlong tidewater glacier, has been advancing steadily at nearly 20 m yr-1 since 1931, while the adjacent Yale Glacier has retreated at approximately 50 m yr-1 during the same period, though for short periods, both rates have been much higher.« less

  15. Water flow through temperate glaciers

    USGS Publications Warehouse

    Fountain, A.G.; Walder, J.S.

    1998-01-01

    Understanding water movement through a glacier is fundamental to several critical issues in glaciology, including glacier dynamics, glacier-induced floods, and the prediction of runoff from glacierized drainage basins. to this end we have synthesized a conceptual model os water movement through a temperate glacier from the surface to the outlet stream. Processes that regulate the rate and distribution of water input at the glacier surface and that regulate water movement from the surface to the bed play important but commonly neglected roles in glacier hydrology. Where a glacier is covered by a layer of porous, permeable firn (the accumulation zone), the flux of water to the glacier interior varies slowly because the firn temporarily stores water and thereby smooths out variations in the supply rate. In the firn-free ablation zone, in contrast, the flux of water into the glacier depends directly on the rate of surface melt or rainfall and therefore varies greatly in time. Water moves from the surface to the bed through an upward branching arborescent network consisting of both steeply inclined conduits, formed by the enlargement of intergranular veins, and gently inclined conduits, sprqwned by water flow along the bottoms of near-surface fractures (crevasses). Englacial drainage conduits deliver water to the glacier bed at a linited number of points, probably a long distance downglacier of where water enters the glacier. Englacial conduits supplied from the accumulation zone are quasi steady state features that convey the slowly varying water flux delivered via the firn. their size adjusts so that they are usually full of water and flow is pressurized. In contrast, water flow in englacial conduits supplied from the ablation area is pressurized only near times of peak daily flow or during rainstorms; flow is otherwise in an open-channel configuration. The subglacial drainage system typically consists of several elements that are distinct both morpphologically and

  16. Rock avalanche deposits in Alai Valley, Central Asia: misinterpretation of glacial record

    NASA Astrophysics Data System (ADS)

    Reznichenko, Natalya; Davies, Tim; Robinson, Tom; De Pascale, Gregory

    2013-04-01

    The reconstruction of Quaternary glaciations has been restricted by conventional approaches with resulting contradictions in interpretation of the regional glacial record, that recently have been subjected to critical re-evaluation. Along with uncertainties in dating techniques and their applicability to particular landforms (Kirkbride and Winkler, 2012), it has recently been demonstrated that the presence of rock avalanche debris in a landform can be unequivocally detected; this allows for the first time definitive identification of and distinction between glacial moraines and landslide deposits. It also identifies moraines that have formed due to rock avalanche deposition on glaciers, possibly with no associated climatic signal (Reznichenko et al., 2012). Confusion between landslide deposits and moraines is evident for ranges in Central Asia (e.g., Hewitt, 1999) where the least-studied glacial record is selectively correlated with established glacial chronologies in Alpine ranges, which in turn masks the actual glacial extent and their responses to climate change, tectonics and landsliding activity. We describe examples in the glaciated Alai Valley, large intermountain depression between the Zaalay Range of the Northern Pamir and the Alay Range of the Southern Tien-Shan, showing that some large Quaternary deposits classically interpreted as moraines are of rock avalanche origin. Sediment from these deposits has been tested for the presence of agglomerates that are only produced under high stress conditions during rock avalanche motion, and are absent from glacial sediments (Reznichenko et al., 2012). This reveals that morphologically-similar deposits have radically different geneses: rock avalanche origin for a deposit in the Komansu river catchment and glacial origin for deposits in the Ashiktash and Kyzylart catchments. The enormous Komansu rock avalanche deposit, probably triggered by a rupture of the Main Pamir thrust, currently covers about 100 km2 with a

  17. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    NASA Astrophysics Data System (ADS)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  18. Geologic and hydrologic hazards in glacierized basins in North America resulting from 19th and 20th century global warming

    USGS Publications Warehouse

    O'Connor, J. E.; Costa, J.E.

    1993-01-01

    Alpine glacier retreat resulting from global warming since the close of the Little Ice Age in the 19th and 20th centuries has increased the risk and incidence of some geologic and hydrologic hazards in mountainous alpine regions of North America. Abundant loose debris in recently deglaciated areas at the toe of alpine glaciers provides a ready source of sediment during rainstorms or outburst floods. This sediment can cause debris flows and sedimentation problems in downstream areas. Moraines built during the Little Ice Age can trap and store large volumes of water. These natural dams have no controlled outlets and can fail without warning. Many glacier-dammed lakes have grown in size, while ice dams have shrunk, resulting in greater risks of ice-dam failure. The retreat and thinning of glacier ice has left oversteepened, unstable valley walls and has led to increased incidence of rock and debris avalanches. ?? 1993 Kluwer Academic Publishers.

  19. Icefall, Lambert Glacier, Antarctica

    NASA Image and Video Library

    2017-12-08

    Image taken 12/2/2000: The Lambert Glacier in Antarctica, is the world's largest glacier. The focal point of this image is an icefall that feeds into the Lambert glacier from the vast ice sheet covering the polar plateau. Ice flows like water, albeit much more slowly. Cracks can be seen in this icefall as it bends and twists on its slow-motion descent 1300 feet (400 meters) to the glacier below. This Icefall can be found on Landsat 7 WRS Path 42 Row 133/134/135, center: -70.92, 69.15. To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/

  20. Ocean Warming of Petermann Fjord and Glacier, North Greenland

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Washam, P.; Padman, L.; Nicholls, K. W.

    2016-02-01

    Petermann Fjord connects one of the largest floating ice shelves of Greenland to Nares Strait between northern Canada and Greenland. First ocean temperatures under the ice shelf and in the fjord were recorded in 2002 and 2003, respectively. Last observations were taken in August of 2015 as part of an interdisciplinary experiment of US, Swedish, and British scientists. The new ocean data include hydrographic sections along and across the 450-m deep sill at the entrance of the fjord, sections along and across the 200-m thick terminus of the glacier, and time series from three ocean-weather stations that collect ocean temperature, salinity, and pressure data from under the ice shelf of Petermann Gletscher in near real time. Our ocean data cover the entire 2002-2015 time period when we find statistically significant changes of ocean properties in space and time. The ocean under the ice shelf connects to ambient Nares Strait and to the grounding zone of the glacier at daily to weekly time scales via temperature and salinity correlation. More specifically, we find 1. substantial and significant ocean warming of deep fjord waters at Interannual time scales, 2. intense and rapid renewal of bottom waters inside the 1000-m deep fjord, and 3. large fluctuations of temperature and salinity within about 30-m of the glacier ice-ocean interface at daily to weekly time scales. Figure: Map of the study area with 2015 locations of CTD casts (blue and green dots), ocean-weather stations (green dots), and differential GPS (red triangles). Red contours are bottom depths at 500 and 1000-m while thick black line indicates the grounding zone where the glacier connects to the bed rock below.

  1. Byrd Glacier, Antarctica

    NASA Image and Video Library

    2008-11-17

    Byrd Glacier is a major glacier in Antarctica; it drains an extensive area of the polar plateau and flows eastward between the Britannia Range and the Churchill Mountains to discharge into the Ross Ice Shelf. This image is from NASA Terra satellite.

  2. Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India

    NASA Astrophysics Data System (ADS)

    Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd

    2015-04-01

    Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002

  3. Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces.

    PubMed

    Franzetti, Andrea; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Mayer, Christoph; Azzoni, Roberto S; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto

    2016-12-01

    Biological processes on glacier surfaces affect glacier reflectance, influence surface energy budget and glacier response to climate warming, and determine glacier carbon exchange with the atmosphere. Currently, carbon balance of supraglacial environment is assessed as the balance between the activity of oxygenic phototrophs and the respiration rate of heterotrophic organisms. Here we present a metagenomic analysis of tiny wind-blown supraglacial sediment (cryoconite) from Baltoro (Pakistani Karakoram) and Forni (Italian Alps) glaciers, providing evidence for the occurrence in these environments of different and previously neglected metabolic pathways. Indeed, we observed high abundance of heterotrophic anoxygenic phototrophs, suggesting that light might directly supplement the energy demand of some bacterial strains allowing them to use as carbon source organic molecules, which otherwise would be respired. Furthermore, data suggest that CO 2 could be produced also by microbiologically mediated oxidation of CO, which may be produced by photodegradation of organic matter.

  4. GLIMS Glacier Database: Status and Challenges

    NASA Astrophysics Data System (ADS)

    Raup, B. H.; Racoviteanu, A.; Khalsa, S. S.; Armstrong, R.

    2008-12-01

    GLIMS (Global Land Ice Measurements from Space) is an international initiative to map the world's glaciers and to build a GIS database that is usable via the World Wide Web. The GLIMS programme includes 70 institutions, and 25 Regional Centers (RCs), who analyze satellite imagery to map glaciers in their regions of expertise. The analysis results are collected at the National Snow and Ice Data Center (NSIDC) and ingested into the GLIMS Glacier Database. The database contains approximately 80 000 glacier outlines, half the estimated total on Earth. In addition, the database contains metadata on approximately 200 000 ASTER images acquired over glacierized terrain. Glacier data and the ASTER metadata can be viewed and searched via interactive maps at http://glims.org/. As glacier mapping with GLIMS has progressed, various hurdles have arisen that have required solutions. For example, the GLIMS community has formulated definitions for how to delineate glaciers with different complicated morphologies and how to deal with debris cover. Experiments have been carried out to assess the consistency of the database, and protocols have been defined for the RCs to follow in their mapping. Hurdles still remain. In June 2008, a workshop was convened in Boulder, Colorado to address issues such as mapping debris-covered glaciers, mapping ice divides, and performing change analysis using two different glacier inventories. This contribution summarizes the status of the GLIMS Glacier Database and steps taken to ensure high data quality.

  5. 36 CFR 13.1112 - May I collect rocks and minerals?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false May I collect rocks and minerals? 13.1112 Section 13.1112 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and...

  6. 36 CFR 13.1112 - May I collect rocks and minerals?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false May I collect rocks and minerals? 13.1112 Section 13.1112 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and...

  7. Reconnaissance stratigraphy of the Red Glacier Formation (Middle Jurassic) near Hungryman Creek, Cook Inlet basin, Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.

    2016-01-01

    Geochemical data suggest the source of oil in upper Cook Inlet fields is Middle Jurassic organic-rich shales in the Tuxedni Group (Magoon and Anders, 1992; Lillis and Stanley, 2011; LePain and others, 2012, 2013). Of the six formations in the group (Detterman, 1963), the basal Red Glacier Formation is the only unit that includes fine-grained rocks in outcrop that appear to be organic-rich (fig. 3-1). In an effort to better understand the stratigraphy and source-rock potential of the Red Glacier Formation, the Alaska Division of Geological & Geophysical Surveys, in collaboration with the Alaska Division of Oil and Gas and the U.S. Geological Survey, has been investigating the unit in outcrop between Tuxedni Bay and the type section at Lateral and Red glaciers (Stanley and others, 2013; LePain and Stanley, 2015; Helmold and others, 2016 [this volume]). Fieldwork in 2015 focused on a southeast-trending ridge south of Hungryman Creek, where the lower 60–70 percent of the formation (400–500 m) is exposed and accessible, except for the near-vertical faces of three segments near the southeast end of the ridge (figs. 3-2 and 3-3). Three stratigraphic sections were measured along the ridge to document facies and depositional environments (figs. 3-3 and 3-4). Steep terrain precluded study of the upper part of the formation exposed east of the ridge. This report includes a preliminary summary of findings from the 2015 field season.

  8. Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, G.C.; Calkin, P.E.; Post, A.

    The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronouslymore » with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.« less

  9. Sediment transport drives tidewater glacier periodicity.

    PubMed

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  10. Attribution of glacier fluctuations to climate change

    NASA Astrophysics Data System (ADS)

    Oerlemans, J.

    2012-04-01

    Glacier retreat is a worlwide phenomenon, which started around the middle of the 19th century. During the period 1800-1850 the number of retreating and advancing glaciers was roughly equal (based on 42 records from different continents). During the period 1850-1900 about 92% of all mountain glaciers became shorter (based on 65 records). After this, the percentage of shrinking glaciers has been around 90% until the present time. The glacier signal is rather coherent over the globe, especially when surging and calving glaciers are not considered (for such glaciers the response to climate change is often masked by length changes related to internal dynamics). From theoretical studies as well as extensive meteorological work on glaciers, the processes that control the response of glaciers to climate change are now basically understood. It is useful to make a difference between geometric factors (e.g. slope, altitudinal range, hypsometry) and climatic setting (e.g. seasonal cycle, precipitation). The most sensitive glaciers appear to be flat glaciers in a maritime climate. Characterizing the dynamic properties of a glacier requires at least two quantities: the climate sensitivity, expressing how the equilibrium glacier state depends on the climatic conditions, and the response time, indicating how fast a glacier approaches a new equilibrium state after a stepwise change in the climatic forcing. These quantities can be estimated from relatively simple theory, showing that differences among glaciers are substantial. For larger glaciers, climate sensitivities (in terms of glacier length) vary from 1 to 8 km per 100 m change in the equilibrium-line altitude. Response times are mainly in the range of 20 to 200 years, with most values between 30 and 80 years. Changes in the equilibrium-line altitude or net mass balance of a glacier are mainly driven by fluctuations in air temperature, precipitation, and global radiation. Energy-balance modelling for many glaciers shows that

  11. Recent Advances in the GLIMS Glacier Database

    NASA Astrophysics Data System (ADS)

    Raup, Bruce; Cogley, Graham; Zemp, Michael; Glaus, Ladina

    2017-04-01

    Glaciers are shrinking almost without exception. Glacier losses have impacts on local water availability and hazards, and contribute to sea level rise. To understand these impacts and the processes behind them, it is crucial to monitor glaciers through time by mapping their areal extent, changes in volume, elevation distribution, snow lines, ice flow velocities, and changes to associated water bodies. The glacier database of the Global Land Ice Measurements from Space (GLIMS) initiative is the only multi-temporal glacier database capable of tracking all these glacier measurements and providing them to the scientific community and broader public. Here we present recent results in 1) expansion of the geographic and temporal coverage of the GLIMS Glacier Database by drawing on the Randolph Glacier Inventory (RGI) and other new data sets; 2) improved tools for visualizing and downloading GLIMS data in a choice of formats and data models; and 3) a new data model for handling multiple glacier records through time while avoiding double-counting of glacier number or area. The result of this work is a more complete glacier data repository that shows not only the current state of glaciers on Earth, but how they have changed in recent decades. The database is useful for tracking changes in water resources, hazards, and mass budgets of the world's glaciers.

  12. Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards

    NASA Astrophysics Data System (ADS)

    Fugazza, Davide; Scaioni, Marco; Corti, Manuel; D'Agata, Carlo; Azzoni, Roberto Sergio; Cernuschi, Massimo; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele

    2018-04-01

    Tourists and hikers visiting glaciers all year round face hazards such as sudden terminus collapses, typical of such a dynamically evolving environment. In this study, we analyzed the potential of different survey techniques to analyze hazards of the Forni Glacier, an important geosite located in Stelvio Park (Italian Alps). We carried out surveys in the 2016 ablation season and compared point clouds generated from an unmanned aerial vehicle (UAV) survey, close-range photogrammetry and terrestrial laser scanning (TLS). To investigate the evolution of glacier hazards and evaluate the glacier thinning rate, we also used UAV data collected in 2014 and a digital elevation model (DEM) created from an aerial photogrammetric survey of 2007. We found that the integration between terrestrial and UAV photogrammetry is ideal for mapping hazards related to the glacier collapse, while TLS is affected by occlusions and is logistically complex in glacial terrain. Photogrammetric techniques can therefore replace TLS for glacier studies and UAV-based DEMs hold potential for becoming a standard tool in the investigation of glacier thickness changes. Based on our data sets, an increase in the size of collapses was found over the study period, and the glacier thinning rates went from 4.55 ± 0.24 m a-1 between 2007 and 2014 to 5.20 ± 1.11 m a-1 between 2014 and 2016.

  13. Gyldenlove Glacier

    NASA Image and Video Library

    2011-04-11

    On April 11, 2011, IceBridge finally got the clear weather necessary to fly over glaciers in southeast Greenland. But with clear skies came winds of up to 70 knots, which made for a bumpy ride over the calving front of glaciers like Gyldenlove. Operation IceBridge, now in its third year, makes annual campaigns in the Arctic and Antarctic where science flights monitor glaciers, ice sheets and sea ice. Credit: NASA/GSFC/Michael Studinger To learn more about Ice Bridge go to: www.nasa.gov/mission_pages/icebridge/news/spr11/index.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  14. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  15. Brief communication: Getting Greenland's glaciers right - a new data set of all official Greenlandic glacier names

    NASA Astrophysics Data System (ADS)

    Bjørk, A. A.; Kruse, L. M.; Michaelsen, P. B.

    2015-12-01

    Place names in Greenland can be difficult to get right, as they are a mix of Greenlandic, Danish, and other foreign languages. In addition, orthographies have changed over time. With this new data set, we give the researcher working with Greenlandic glaciers the proper tool to find the correct name for glaciers and ice caps in Greenland and to locate glaciers described in the historic literature with the old Greenlandic orthography. The data set contains information on the names of 733 glaciers, 285 originating from the Greenland Ice Sheet (GrIS) and 448 from local glaciers and ice caps (LGICs).

  16. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.

    2010-12-01

    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow

  17. A Worldwide Glacier Information System to go

    NASA Astrophysics Data System (ADS)

    Mölg, N.; Steinmann, M.; Zemp, M.

    2016-12-01

    In the forefront of the Paris Climate Conference COP21 in December 2015, the WGMS and UNESCO jointly launched a glacier application for mobile devices. This new information system aims at bringing scientifically sound facts and figures on worldwide glacier changes to decision makers at governmental and intergovernmental levels as well as reaching out to the interested public. The wgms Glacier App provides a map interface based on satellite images that display all the observed glaciers in the user's proximity. Basic information is provided for each glacier, including photographs and general information on size and elevation. Graphs with observation data illustrate the glacier's development, along with information on latest principal investigators and their sponsoring agencies as well as detailed explanations of the measurement types. A text search allows the user to filter the glacier by name, country, region, measurement type and the current "health" status, i.e. if the glacier has gained or lost ice over the past decade. A compass shows the closest observed glaciers in all directions from the user's current position. Finally, the card game allows the user to compete against the computer on the best monitored glaciers in the world. Our poster provides a visual entrance point to the wgms Glacier App and, hence, provides access to fluctuation series of more than 3'700 glaciers around the world.

  18. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Wagnon, Patrick; Vincent, Christian; Shea, Joseph M.; Immerzeel, Walter W.; Kraaijenbrink, Philip; Shrestha, Dibas; Soruco, Alvaro; Arnaud, Yves; Brun, Fanny; Berthier, Etienne; Futi Sherpa, Sonam

    2017-04-01

    Approximately 25% of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is -0.93 m year-1 or -0.84 m water equivalent per year (w.e. a-1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37mw.e. a-1. The debris-covered portion of the glacier thus has an area averaged mass balance of -1.21+/-0.2mw.e. a-1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8mw.e. a-1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.

  19. Antarctic Peninsula Tidewater Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Scambos, T. A.; Haran, T. M.; Wellner, J. S.; Domack, E. W.; Vernet, M.

    2015-12-01

    The northern Antarctic Peninsula (nAP, north of 66°S) is a north-south trending mountain range extending transverse across the prevailing westerly winds of the Southern Ocean resulting in an extreme west-to-east precipitation gradient. Snowfall on the west side of the AP is one to two orders of magnitude higher than the east side. This gradient drives short, steep, fast-flowing glaciers into narrow fjords on the west side, while longer lower-sloping glaciers flow down the east side into broader fjord valleys. This pattern in ice dynamics affects ice-ocean interaction on timescales of decades to centuries, and shapes the subglacial topography and submarine bathymetry on timescales of glacial cycles. In our study, we calculate ice flux for the western and eastern nAP using a drainage model that incorporates the modern ice surface topography, the RACMO-2 precipitation estimate, and recent estimates of ice thinning. Our results, coupled with observed rates of ice velocity from InSAR (I. Joughin, personal communication) and Landsat 8 -derived flow rates (this study), provide an estimate of ice thickness and fjord depth in grounded-ice areas for the largest outlet glaciers. East-side glaciers either still terminate in or have recently terminated in ice shelves. Sedimentary evidence from the inner fjords of the western glaciers indicates they had ice shelves during LIA time, and may still have transient floating ice tongues (tabular berg calvings are observed). Although direct oceanographic evidence is limited, the high accumulation rate and rapid ice flux implies cold basal ice for the western nAP glaciers and therefore weak subglacial discharge relative to eastern nAP glaciers and or other tidewater fjord systems such as in Alaska. Finally, despite lower accumulation rates on the east side, the large elongate drainage basins result in a greater ice flux funneled through fewer deeper glaciers. Due to the relation between ice flux and erosion, these east-side glaciers

  20. Patagonia Glacier, Chile

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This ASTER images was acquired on May 2, 2000 over the North Patagonia Ice Sheet, Chile near latitude 47 degrees south, longitude 73 degrees west. The image covers 36 x 30 km. The false color composite displays vegetation in red. The image dramatically shows a single large glacier, covered with crevasses. A semi-circular terminal moraine indicates that the glacier was once more extensive than at present. ASTER data are being acquired over hundreds of glaciers worldwide to measure their changes over time. Since glaciers are sensitive indicators of warming or cooling, this program can provide global data set critical to understand climate change.

    This image is located at 46.5 degrees south latitude and 73.9 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud

  1. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling

    NASA Astrophysics Data System (ADS)

    Sharp, Martin; Parkes, John; Cragg, Barry; Fairchild, Ian J.; Lamb, Helen; Tranter, Martyn

    1999-02-01

    Bacterial populations found in subglacial meltwaters and basal ice are comparable to those in the active layer of permafrost and orders of magnitude larger than those found in ice cores from large ice sheets. Populations increase with sediment concentration, and 5% 24% of the bacteria are dividing or have just divided, suggesting that the populations are active. These findings (1) support inferences from recent studies of basal ice and meltwater chemistry that microbially mediated redox reactions may be important at glacier beds, (2) challenge the view that chemical weathering in glacial environments arises from purely inorganic reactions, and (3) raise the possibilities that redox reactions are a major source of protons consumed in subglacial weathering and that these reactions may be the dominant proton source beneath ice sheets where meltwaters are isolated from an atmospheric source of CO2. Microbial mediation may increase the rate of sulfide oxidation under subglacial conditions, a suggestion supported by the results of simple weathering experiments. If subglacial bacterial populations can oxidize and ferment organic carbon, it is important to reconsider the fate of soil organic carbon accumulated under interglacial conditions in areas subsequently overridden by Pleistocene ice sheets.

  2. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  3. Comparison of Glaciological and Gravimetric Glacier Mass Balance Measurements of Taku and Lemon Creek Glaciers, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Vogler, K.; McNeil, C.; Bond, M.; Getraer, B.; Huxley-Reicher, B.; McNamara, G.; Reinhardt-Ertman, T.; Silverwood, J.; Kienholz, C.; Beedle, M. J.

    2017-12-01

    Glacier-wide annual mass balances (Ba) have been calculated for Taku (726 km2) and Lemon Creek glaciers (10.2 km2) since 1946 and 1953 respectively. These are the longest mass balance records in North America, and the only Ba time-series available for Southeast Alaska, making them particularly valuable for the global glacier mass balance monitoring network. We compared Ba time-series from Taku and Lemon Creek glaciers to Gravity Recovery and Climate Experiment (GRACE) mascon solutions (1352 and 1353) during the 2004-2015 period to assess how well these gravimetric solutions reflect individual glaciological records. Lemon Creek Glacier is a challenging candidate for this comparison because it is small compared to the 12,100 km2 GRACE mascon solutions. Taku Glacier is equally challenging because its mass balance is stable compared to the negative balances dominating its neighboring glaciers. Challenges notwithstanding, a high correlation between the glaciological and gravimetrically-derived Ba for Taku and Lemon Creek glaciers encourage future use of GRACE to measure glacier mass balance. Additionally, we employed high frequency ground penetrating radar (GPR) to measure the variability of accumulation around glaciological sites to assess uncertainty in our glaciological measurements, and the resulting impact to Ba. Finally, we synthesize this comparison of glaciological and gravimetric mass balance solutions with a discussion of potential sources of error in both methods and their combined utility for measuring regional glacier change during the 21st century.

  4. Changing Climate Drives Lagging and Accelerating Glacier Responses and Accelerating Adjustments of the Hazard Regime

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey

    2013-04-01

    advances) of glaciers due to historic and future anthropogenic and longer term climate change relate to a changing glacier hazard regime. Climate change is connected to changes in the geographic distribution and magnitudes of potentially hazardous glacier lakes, large rock and ice avalanches, ice-dammed rivers, and surges. I shall consider these changes in hazard environment in relation to response-time theory and dynamical divergences from idealized response-time theory. Case histories of certain hazard-prone regions, including developments in fast-response-type glaciers and slow-response glaciers and ice sheets will also be discussed. In short, there will be a strong tendency of the hazard regimes of glacierized regions to shift far more rapidly in the 21st century than they did in the 20th century. The magnitude of the shifts will be more dramatic than any simple linear scaling to climate warming would suggest; this is largely because, due to lagging responses, glaciers are still trying to catch up to a new equilibrium for 20th century climate, while climate change remains a moving target that will drive accelerating glacier responses (including responses in hazard environments) in most glacierized regions.

  5. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    Calving front of the Upsala Glacier (Argentina). This glacier has been thinning and retreating at a rapid rate during the last decades – from 2006 to 2010, it receded 43.7 yards (40 meters) per year. During summer 2012, large calving events prevented boat access to the glacier. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: Etienne Berthier, Université de Toulouse NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Glorious Glacier

    NASA Image and Video Library

    2016-07-15

    This image has low-sun lighting that accentuates the many transverse ridges on this slope, extending from Euripus Mons (mountains). These flow-like structures were previously called "lobate debris aprons," but the Shallow Radar (SHARAD) instrument on MRO has shown that they are actually debris-covered flows of ice, or glaciers. There is no evidence for present-day flow of these glaciers, so they appear to be remnants of past climates. http://photojournal.jpl.nasa.gov/catalog/PIA20745

  7. Scaling the Teflon Peaks: Rock type and the generation of extreme relief in the glaciated western Alaska Range

    USGS Publications Warehouse

    Ward, Dylan J.; Anderson, Robert S.; Haeussler, Peter J.

    2012-01-01

    Parts of the Alaska Range (Alaska, USA) stand in prominent exception to the “glacial buzzsaw hypothesis,” which postulates that terrain raised above the ELA is rapidly denuded by glaciers. In this paper, we discuss the role of a strong contrast in rock type in the development of this exceptional terrain. Much of the range is developed on pervasively fractured flysch, with local relief of 1000–1500 m, and mean summit elevations that are similar to modern snow line elevations. In contrast, Cretaceous and Tertiary plutons of relatively intact granite support the range's tallest mountains (including Mt. McKinley, or Denali, at 6194 m), with 2500–5000 m of local relief. The high granitic peaks protrude well above modern snow lines and support many large glaciers. We focus on the plutons of the Denali massif and the Kichatna Mountains, to the west. We use field observations, satellite photos, and digital elevation data to demonstrate how exhumation of these plutons affects glacier longitudinal profiles, the glacial drainage network, and the effectiveness of periglacial processes. In strong granite, steep, smooth valley walls are maintained by detachment of rock slabs along sheeting joints. These steep walls act as low-friction surfaces (“Teflon”), efficiently shedding snow. Simple scaling calculations show that this avalanching may greatly enhance the health of the modern glaciers. We conclude that, in places such as Denali, unusual combinations of rapid tectonic uplift and great rock strength have created the highest relief in North America by enhancing glacial erosion in the valleys while preserving the peaks.

  8. Geomatic methods applied to the study of the front position changes of Johnsons and Hurd Glaciers, Livingston Island, Antarctica, between 1957 and 2013

    NASA Astrophysics Data System (ADS)

    Rodríguez Cielos, Ricardo; Aguirre de Mata, Julián; Díez Galilea, Andrés; Álvarez Alonso, Marina; Rodríguez Cielos, Pedro; Navarro Valero, Francisco

    2016-08-01

    Various geomatic measurement techniques can be efficiently combined for surveying glacier fronts. Aerial photographs and satellite images can be used to determine the position of the glacier terminus. If the glacier front is easily accessible, the classic surveys using theodolite or total station, GNSS (Global Navigation Satellite System) techniques, laser-scanner or close-range photogrammetry are possible. When the accessibility to the glacier front is difficult or impossible, close-range photogrammetry proves to be useful, inexpensive and fast. In this paper, a methodology combining photogrammetric methods and other techniques is applied to determine the calving front position of Johnsons Glacier. Images taken in 2013 with an inexpensive nonmetric digital camera are georeferenced to a global coordinate system by measuring, using GNSS techniques, support points in accessible areas close to the glacier front, from which control points in inaccessible points on the glacier surface near its calving front are determined with theodolite using the direct intersection method. The front position changes of Johnsons Glacier during the period 1957-2013, as well as those of the land-terminating fronts of Argentina, Las Palmas and Sally Rocks lobes of Hurd glacier, are determined from different geomatic techniques such as surface-based GNSS measurements, aerial photogrammetry and satellite optical imagery. This provides a set of frontal positions useful, e.g., for glacier dynamics modeling and mass balance studies.Link to the data repository: https://doi.pangaea.de/10.1594/PANGAEA.845379.

  9. The influence of glacier ice temperature on the long-term evolution of longitudinal valley profiles: Can a landscape escape from the "glacial buzzsaw"?

    NASA Astrophysics Data System (ADS)

    Dühnforth, M.; Anderson, R. S.; Colgan, W.

    2012-04-01

    limited to sites where the basal ice is at the PMP. Glacial erosion rate is parameterized as a function of sliding velocity, which in turn depends upon a flotation fraction that is parameterized to account for annual variations in the glacial hydrologic system. We explore the long-term glacial erosion pattern when the landscape is subjected to different rock uplift rates, and to climates ranging from continental to maritime. Of specific interest to us are conditions that favor polythermal glaciers in which the basal ice at high elevations becomes cold. In such cases, rock uplift can outpace limited glacial erosion, allowing high peaks to escape from the "glacial buzzsaw" while basal ice at lower elevations remains at the PMP, allowing sliding and erosion. These simulations also allow a more formal assessment of the conditions under which cold basal ice can be invoked to explain low glacial erosion rates, and the conditions under which variations in rock erodibility may instead be invoked as the major control on erosion.

  10. Testing geographical and climatic controls on glacier retreat

    NASA Astrophysics Data System (ADS)

    Freudiger, Daphné; Stahl, Kerstin; Weiler, Markus

    2015-04-01

    Glacier melt provides an important part of the summer discharge in many mountainous basins. The understanding of the processes behind the glacier mass losses and glacier retreats observed during the last century is therefore relevant for a sustainable management of the water resources and reliable models for the prediction of future changes. The changes in glacier area of 49 sub-basins of the Rhine River in the Alps were analyzed for the time period 1900-2010 by comparing the glacier areas of Siegfried maps for the years 1900 and 1940 with satellite derived glacier areas for the years 1973, 2003 and 2010. The aim was to empirically investigate the controls of glacier retreat and its regional differences. All glaciers in the glacierized basins retreated over the last 110 years with some variations in the sub-periods. However, the relative changes in glacier area compared to 1900 differed for every sub-basin and some glaciers decreased much faster than others. These observed differences were related to a variety of different potential controls derived from different sources, including mean annual solar radiation on the glacier surface, average slope, mean glacier elevation, initial glacier area, average precipitation (summer and winter), and the precipitation catchment area of the glacier. We fitted a generalized linear model (GLM) and selected predictors that were significant to assess the individual effects of the potential controls. The fitted model explains more than 60% of the observed variance of the relative change in glacier area with the initial area alone only explaining a small proportion. Some interesting patterns emerge with higher average elevation resulting in higher area changes, but steeper slopes or solar radiation resulting in lower relative glacier area changes. Further controls that will be tested include snow transport by wind or avalanches as they play an important role for the glacier mass balance and potentially reduce the changes in glacier

  11. Glacier, Glacial Lake, and Ecological Response Dynamics of the Imja Glacier-Lake-Moraine System, Nepal

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Shugar, D. H.; Leonard, G. J.; Haritashya, U. K.; Harrison, S.; Shrestha, A. B.; Mool, P. K.; Karki, A.; Regmi, D.

    2016-12-01

    Glacier response dynamics—involving a host of processes—produce a sequence of short- to long-term delayed responses to any step-wise, oscillating, or continuous trending climatic perturbation. We present analysis of Imja Lake, Nepal and examine its thinning and retreat and a sequence of the detachment of tributaries; the inception and growth of Imja Lake and concomitant glacier retreat, thinning, and stagnation, and relationships to lake dynamics; the response dynamics of the ice-cored moraine; the development of the local ecosystem; prediction of short-term dynamical responses to lake lowering (glacier lake outburst flood—GLOF—mitigation); and prospects for coming decades. The evolution of this glacier system provides a case study by which the global record of GLOFs can be assessed in terms of climate change attribution. We define three response times: glacier dynamical response time (for glacier retreat, thinning, and slowing of ice flow), limnological response time (lake growth), and GLOF trigger time (for a variety of hazardous trigger events). Lake lowering (to be completed in August 2016; see AGU abstract by D. Regmi et al.) will reduce hazards, but we expect that the elongation of the lake and retreat of the glacier will continue for decades after a pause in 2016-2017. The narrowing of the moraine dam due to thaw degradation of the ice-cored end moraine means that the hazard due to Imja Lake will soon again increase. We examine both long-term response dynamics, and two aspects of Himalayan glaciers that have very rapid responses: the area of Imja Lake fluctuates seasonally and even with subseasonal weather variations in response to changes in lake temperature and glacier meltback; and as known from other studies, glacier flow speed can vary between years and even on shorter timescales. The long-term development and stabilization of glacial moraines and small lacustrine plains in drained lake basins impacts the development of local ecosystems

  12. Glacier generated floods

    USGS Publications Warehouse

    Walder, J.S.; Fountain, A.G.; ,

    1997-01-01

    Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.

  13. Internationally coordinated glacier monitoring: strategy and datasets

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

    2014-05-01

    Internationally coordinated monitoring of long-term glacier changes provide key indicator data about global climate change and began in the year 1894 as an internationally coordinated effort to establish standardized observations. Today, world-wide monitoring of glaciers and ice caps is embedded within the Global Climate Observing System (GCOS) in support of the United Nations Framework Convention on Climate Change (UNFCCC) as an important Essential Climate Variable (ECV). The Global Terrestrial Network for Glaciers (GTN-G) was established in 1999 with the task of coordinating measurements and to ensure the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. The basic monitoring principles must be relevant, feasible, comprehensive and understandable to a wider scientific community as well as to policy makers and the general public. Data access has to be free and unrestricted, the quality of the standardized and calibrated data must be high and a combination of detailed process studies at selected field sites with global coverage by satellite remote sensing is envisaged. Recently a GTN-G Steering Committee was established to guide and advise the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. Several online databases containing a wealth of diverse data types having different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. For world-wide inventories, data are now available through (a) the World Glacier Inventory containing tabular information of about 130,000 glaciers covering an area of around 240,000 km2, (b) the GLIMS-database containing digital outlines of around 118,000 glaciers with different time stamps and

  14. Quantifying Tropical Glacier Mass Balance Sensitivity to Climate Change Through Regional-Scale Modeling and The Randolph Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Malone, A.

    2017-12-01

    Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.

  15. Glaciers of Greenland

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    1995-01-01

    Landsat imagery, combined with aerial photography, sketch maps, and diagrams, is used as the basis for a description of the geography, climatology, and glaciology, including mass balance, variation, and hazards, of the Greenland ice sheet and local ice caps and glaciers. The Greenland ice sheet, with an estimated area of 1,736,095+/-100 km2 and volume of 2,600,000 km3, is the second largest glacier on the planet and the largest relict of the Ice Age in the Northern Hemisphere. Greenland also has 48,599+/-100 km2 of local ice caps and other types of glaciers in coastal areas and islands beyond the margin of the ice sheet.

  16. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes ( ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes ( Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake ( Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  17. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    USGS Publications Warehouse

    Sauber, J.M.; Molnia, B.F.

    2004-01-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML???2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (M s=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  18. The recent glacier changes in Mongolian Altai Mountains

    NASA Astrophysics Data System (ADS)

    Yabuki, H.; Ohata, T.

    2009-12-01

    In the 4th IPCC report (AR-4) is reported that global warming in recent years is a clear thing. Shrinkage of the mountain glacier and two poles is reporting as an observation fact as the actual condition of the cryosphere by warming. There are mass balance reports of the glacier of 80 of world by WGMS (World Glacier Monitoring Service) as a report of the actual condition of glacier mass balance change, and the actual condition of the glacier mass change in world is clarified. In the report of WGMS, after 1980’s the glacier mass balance, in the Europe Alps and the Alaska region are decreases, and in Scandinavia region are increases. On the other hand, the glacier mass balance in the Russia Altai Mountains located in Central Asia has the little change after 1980’s. These are research using the long-term observational data of Russian region of western part of Altai Mountains. The Altai Mountains including Russia, China, and Mongolia Kazakhstan, and there are description to a World Glacier Inventory (WGI) about the glaciers of Russia, China and Kazakhstan area, but the glaciers of a Mongolian area, there are no description to the WGI. There is almost no information on the glacier of a Mongolian Altai region, and there are many unknown points about glacier change of the whole Altai Mountain region. In this research, while research clarified the present condition of glacier distribution of the Mongolia Altai region, the actual condition of a glacier change in recent years was clarified by comparison with the past topographical map. In this research, the glacier area was distinguished based on the satellite image of the Mongolian glacier regions. The used satellite image were 17 Landsat 7 ETM+ in 1999 to 2002. The glacier distinguishes using NDSI (Normalized Difference Snow Index) indexusing Band5 and Band2. The topographical map of the Mongolian area was got based on the distribution information on this satellite glacier area. The topographical map is 1/100,000 which

  19. Isolation and Characterization of the Lytic Cold-Active Bacteriophage MYSP06 from the Mingyong Glacier in China.

    PubMed

    Li, Mingyuan; Wang, Jilian; Zhang, Qi; Lin, Lianbing; Kuang, Anxin; Materon, Luis Alberto; Ji, Xiuling; Wei, Yunlin

    2016-02-01

    As unique ecological systems, glaciers are characterized by low temperatures and low nutrient levels, which allow them to be considered as “living fossils” for the purpose of researching the evolution of life and the environmental evolution of the earth. Glaciers are also natural microbial “reservoirs”. In this work, a lytic cold-active bacteriophage designated MYSP06 was isolated from Janthinobacterium sp. MYB06 from the Mingyong Glacier in China, and its major characteristics were determined. Electron microscopy revealed that bacteriophage MYSP06 had an isometric head (74 nm) and a long tail (10 nm in width, 210 nm in length). It was classified as a Siphoviridae with an approximate genome size of 65–70 kb. A one-step growth curve revealed that the latent and burst periods were 95 and 65 min, respectively, with an average burst size of 16 bacteriophage particles per infected cell. The bacteriophage particles (100 %) adsorbed to the host cells within 10 min after infection. Moreover, the pH value and thermal stability of bacteriophage MYSP06 were also investigated. The maximum stability of the bacteriophage was observed at the optimal pH 7.0, and the bacteriophage became completely unstable at the extremely alkaline pH 11.0; however, it was comparatively stable at the acidic alkaline pH 6.0. As MYSP06 is a cold-active bacteriophage with a lower production temperature, its characterization and its relationship with its host Janthinobacterium sp. MYB06 deserve further study.

  20. Is organic matter found in glaciers similar to soil organic matter? A detailed molecular-level investigation of organic matter found in cryoconite holes on the Athabasca Glacier

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Xu, Y.; Eyles, N.; Simpson, A. J.; Baer, A.

    2009-04-01

    Cryoconite is a dark-coloured, dust-like material found on the surfaces of glaciers. Cryoconite has received much interest recently because cryoconite holes, which are produced by accelerated ice melt, act as habitats for microbes on glacier surfaces and accelerate ice melt. To the best of our knowledge, cyroconite organic matter (COM) has not yet been chemically characterized at the molecular level. In this study, organic matter biomarkers and a host of Nuclear Magnetic Resonance (NMR) techniques were used to characterize COM from the Athabasca Glacier in the Canadian Rocky Mountains. The research questions that were targeted by this study include: 1) what are the sources of COM on the Athabasca Glacier; 2) are there any biomarker and/or NMR evidence for microbial community activity in the cryoconite holes; and 3) is the COM structurally similar to terrestrial OM? Solvent extracts contained large quantities of fatty acids, n-alkanols, n-alkanes, wax esters and sterols. A large contribution of C23, C25 and C27 relative to C29 and C31 n-alkanes suggests that allochthonous COM is mainly from lower order plants (mosses, lichens). This is confirmed by the absence of lignin phenols (after copper (II) oxidation) in extracts and NMR analyses of COM. Solution-state 1H NMR reveals prominent signals from microbial components, while solid-state 13C Cross Polarization Magic Angle Spinning NMR analysis shows an atypically high alkyl/O-alkyl ratio, suggesting that COM is unique compared to organic matter found in nearby soils. The NMR results suggest that COM is dominated by microbial-derived compounds which were confirmed by phospholipid fatty acid analysis, which showed a significant microbial contribution, primarily from bacteria and minor microeukaryotes. Both biomarker and NMR data suggest that COM likely supports active microbial communities on the Athabasca Glacier and that COM composition is uniquely different than that found in terrestrial environments. Our data

  1. The GLIMS Glacier Database

    NASA Astrophysics Data System (ADS)

    Raup, B. H.; Khalsa, S. S.; Armstrong, R.

    2007-12-01

    The Global Land Ice Measurements from Space (GLIMS) project has built a geospatial and temporal database of glacier data, composed of glacier outlines and various scalar attributes. These data are being derived primarily from satellite imagery, such as from ASTER and Landsat. Each "snapshot" of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. We have implemented two web-based interfaces to the database; one enables exploration of the data via interactive maps (web map server), while the other allows searches based on text-field constraints. The web map server is an Open Geospatial Consortium (OGC) compliant Web Map Server (WMS) and Web Feature Server (WFS). This means that other web sites can display glacier layers from our site over the Internet, or retrieve glacier features in vector format. All components of the system are implemented using Open Source software: Linux, PostgreSQL, PostGIS (geospatial extensions to the database), MapServer (WMS and WFS), and several supporting components such as Proj.4 (a geographic projection library) and PHP. These tools are robust and provide a flexible and powerful framework for web mapping applications. As a service to the GLIMS community, the database contains metadata on all ASTER imagery acquired over glacierized terrain. Reduced-resolution of the images (browse imagery) can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The interactive map application allows the user to constrain by time what data appear on the map. For example, ASTER or glacier outlines from 2002 only, or from Autumn in any year, can be displayed. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), Map

  2. Detecting glacier-bed overdeepenings for glaciers in the Western Italian Alps using the GlabTop2 model: the test site of the Rutor Glacier, Aosta Valley

    NASA Astrophysics Data System (ADS)

    Viani, Cristina; Machguth, Horst; Huggel, Christian; Perotti, Luigi; Giardino, Marco

    2016-04-01

    It is expected that the rapid retreat of glaciers, observed in the European Alps and other mountain regions of the world, will continue in the future. One of the most evident and relevant consequences of this phenomenon is the formation of new glacier lakes in recently deglaciated areas. During glacier retreat overdeepened parts of the glacier bed become exposed and, in some cases, filled with water. It is important to understand where these new lakes can appear because of the associated potential risks (i.e. lake outburst and consequent flood) and opportunities (tourism, hydroelectricity, water reservoir, etc.) especially in densely populated areas such as the European Alps. GlabTop2 (Glacier Bed Topography model version 2) allows to model glacier bed topography over large glaciated areas combining digital terrain information and slope-related estimates of glacier thickness. The model requires a minimum set of input data: glaciers outlines and a surface digital elevation model (DEM). In this work we tested the model on the Rutor Glacier (8,1 km2) located in the Aosta Valley. The glacier has a well-known history of a series of glacier lake outburst floods between 1430 AD and 1864 AD due to front fluctuations. After the last advance occurred during the 70s of the previous century, glacier shrinkage has been continuous and new lakes have formed in newly exposed overdeepenings. We applied GlabTop2 to DEMs derived from historical data (topographic maps and aerial photos pair) representing conditions before the proglacial lake formation. The results obtained have been compared with the present situation and existing lakes. Successively we used the model also on present-day DEMs, which are of higher resolution than the historical derived ones, and compared the modeled bed topography with an existing bedrock map obtained by in-situ geophysical investigations (GPR surveys). Preliminary results, obtained with the 1991 surface model, confirm the robustness of GlabTop2 in

  3. Glaciers in Patagonia: Controversy and prospects

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Alho, P.; Buytaert, W.; Célleri, R.; Cogley, J. G.; Dussaillant, A.; Guido, Z.; Haeberli, W.; Harrison, S.; Leonard, G.; Maxwell, A.; Meier, C.; Poveda, G.; Reid, B.; Reynolds, J.; Rodríguez, C. A. Portocarrero; Romero, H.; Schneider, J.

    2012-05-01

    Lately, glaciers have been subjects of unceasing controversy. Current debate about planned hydroelectric facilities—a US7- to 10-billion megaproject—in a pristine glacierized area of Patagonia, Chile [Romero Toledo et al., 2009; Vince, 2010], has raised anew the matter of how glaciologists and global change experts can contribute their knowledge to civic debates on important issues. There has been greater respect for science in this controversy than in some previous debates over projects that pertain to glaciers, although valid economic motivations again could trump science and drive a solution to the energy supply problem before the associated safety and environmental problems are understood. The connection between glaciers and climate change—both anthropogenic and natural—is fundamental to glaciology and to glaciers' practical importance for water and hydropower resources, agriculture, tourism, mining, natural hazards, ecosystem conservation, and sea level [Buytaert et al., 2010; Glasser et al., 2011]. The conflict between conservation and development can be sharper in glacierized regions than almost anywhere else. Glaciers occur in spectacular natural landscapes, but they also supply prodigious exploitable meltwater.

  4. Glacier recession in Iceland and Austria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.K.; Williams, R.S. Jr.; Bayr, K.J.

    1992-03-01

    It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewatermore » glacier cycle. 21 refs.« less

  5. Assessing streamflow sensitivity to variations in glacier mass balance

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis

    2014-01-01

    The purpose of this paper is to evaluate relationships among seasonal and annual glacier mass balances, glacier runoff and streamflow in two glacierized basins in different climate settings. We use long-term glacier mass balance and streamflow datasets from the United States Geological Survey (USGS) Alaska Benchmark Glacier Program to compare and contrast glacier-streamflow interactions in a maritime climate (Wolverine Glacier) with those in a continental climate (Gulkana Glacier). Our overall goal is to improve our understanding of how glacier mass balance processes impact streamflow, ultimately improving our conceptual understanding of the future evolution of glacier runoff in continental and maritime climates.

  6. Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland

    NASA Astrophysics Data System (ADS)

    Kos, Andrew; Amann, Florian; Strozzi, Tazio; Delaloye, Reynald; Ruette, Jonas; Springman, Sarah

    2016-12-01

    The destabilization and catastrophic failure of landslides triggered by retreating glaciers is an expected outcome of global climate change and poses a significant threat to inhabitants of glaciated mountain valleys around the globe. Of particular importance are the formation of landslide-dammed lakes, outburst floods, and related sediment entrainment. Based on field observations and remote sensing of a deep-seated landslide, located at the present-day terminus of the Great Aletsch Glacier, we show that the spatiotemporal response of the landslide to glacier retreat is rapid, occurring within a decade. Our observations uniquely capture the critical period of increase in slope deformations, onset of failure, and show that measured displacements at the crown and toe regions of the landslide demonstrate a feedback mechanism between glacier ice reduction and response of the entire landslide body. These observations shed new light on the geomorphological processes of landslide response in paraglacial environments, which were previously understood to occur over significantly longer time periods.

  7. Exploring the mobility of cryoconite on High-Arctic glaciers

    NASA Astrophysics Data System (ADS)

    Irvine-Fynn, T. D.; Hodson, A. J.; Bridge, J. W.; Langford, H.; Anesio, A.; Ohlanders, N.; Newton, S.

    2010-12-01

    There has been a growing awareness of the significance of biologically active dust (cryoconite) on the energy balance of, and nutrient cycling at glacier surfaces. Moreover, researchers have estimated the mass of biological material released from glacier ice to downstream environments and ecosystems, including the melt-out of cells from emergent ice in the ablation area. However, the processes, rates and mechanisms of cryoconite mobility and transport have not been fully explored. For many smaller valley glaciers in the High-Arctic, the climate dictates only a thin (~ 1m) layer of ice at the glacier surface is at the melting point during the summer months. This surface ice is commonly characterized by an increased porosity in response to incident energy and hydraulic conditions, and has been termed the “weathering crust”. The presence of cryoconite, with its higher radiation absorption, exacerbates the weathering crust development. Thus, crucially, the transport of cryoconite is not confined to simply a ‘smooth’ ice surface, but rather also includes mobility in the near-surface ice matrix. Here, we present initial results from investigations of cryoconite transport at Midtre Lovénbreen and Longyearbreen, two north-facing valley glaciers in Svalbard (Norway). Using time-lapse imagery, we explore the transport rates of cryoconite on a glacier surface and consider the associations between mobility and meteorological conditions. Results suggest some disparity between micro-, local- and plot-scale observations of cryoconite transport: the differences imply controlling influences of cryoconite volume, ice surface topography and ice structure. While to examine the relative volumes of cryoconite exported from the glacier surface by supraglacial streams we employ flow cytometry, using SYBR-Green-II staining to identify the biological component of the suspended load. Preliminary comparisons between shallow (1m) ice cores and in-stream concentrations suggest

  8. Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington

    NASA Astrophysics Data System (ADS)

    Osborn, Gerald; Menounos, Brian; Ryane, Chanone; Riedel, Jon; Clague, John J.; Koch, Johannes; Clark, Douglas; Scott, Kevin; Davis, P. Thompson

    2012-08-01

    Glaciers on stratovolcanoes of the Pacific Northwest of North America offer opportunities for dating late Pleistocene and Holocene glacier advances because tephra and fossil wood are common in lateral moraines and in glacier forefields. We capitalize on this opportunity by examining the Holocene glacial record at Mount Baker, an active stratovolcano in northwest Washington. Earlier workers concluded that glaciers on Mount Baker during the early Holocene were more extensive than during the Little Ice Age and hypothesized that the explanation lay in unusual climatic or hypsometric effects peculiar to large volcanoes. We show that the main argument for an early Holocene glacier advance on Mount Baker, namely the absence of ca 10,000-year-old tephra on part of the south flank of the mountain, is incorrect. Moreover, a lake-sediment core indicates that a small cirque moraine previously thought be of early Holocene age is also likely older than the tephra and consequently of late Pleistocene age. Lateral and end moraines and wood mats ca 2 km downvalley of the present snout of Deming Glacier indicate that an advance during the Younger Dryas interval was little more extensive than the climactic Little Ice Age advance. Tephra and wood between tills in the left lateral moraine of Easton Glacier suggest that ice on Mount Baker was restricted in the early Holocene and that Neoglaciation began ca 6 ka. A series of progressively more extensive Neoglacial advances, dated to about 2.2, 1.6, 0.9, and 0.4 ka, are recorded by stacked tills in the right lateral moraine of Deming Glacier. Intervening retreats were long enough to allow establishment of forests on the moraine. Wood mats in moraines of Coleman and Easton glaciers indicate that Little Ice Age expansion began before 0.7 ka and was followed by retreat and a readvance ca 0.5 ka. Tree-ring and lichen data indicate glaciers on the south side of the mountain reached their maximum extents in the mid-1800s. The similarity between

  9. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    This ice cave in Belcher Glacier (Devon Island, Canada) was formed by melt water flowing within the glacier ice. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: Angus Duncan, University of Saskatchewan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Activity and diversity of methane-oxidizing bacteria along a Norwegian sub-Arctic glacier forefield.

    PubMed

    Mateos-Rivera, Alejandro; Øvreås, Lise; Wilson, Bryan; Yde, Jacob C; Finster, Kai W

    2018-05-01

    Methane (CH4) is one of the most abundant greenhouse gases in the atmosphere and identification of its sources and sinks is crucial for the reliability of climate model outputs. Although CH4 production and consumption rates have been reported from a broad spectrum of environments, data obtained from glacier forefields are restricted to a few locations. We report the activities of methanotrophic communities and their diversity along a chronosequence in front of a sub-Arctic glacier using high-throughput sequencing and gas flux measurements. CH4 oxidation rates were measured in the field throughout the growing season during three sampling times at eight different sampling points in combination with laboratory incubation experiments. The overall results showed that the methanotrophic community had similar trends of increased CH4 consumption and increased abundance as a function of soil development and time of year. Sequencing results revealed that the methanotrophic community was dominated by a few OTUs and that a short-term increase in CH4 concentration, as performed in the field measurements, altered slightly the relative abundance of the OTUs.

  11. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    USGS Publications Warehouse

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  12. "Focus on glaciers": an exposition of geo-photos to attract interest on a vanishing beauty

    NASA Astrophysics Data System (ADS)

    Rossi, Giuliana; Bohm, Gualtiero; Saraò, Angela

    2016-04-01

    Public awareness of the effects of industrial activity on the environment and climate is growing, but the information needs to be disseminated to a larger number of people, of all ages, to be effective. Images can certainly be an optimal tool to communicate the important message of global warming effects and, thanks to the digital techniques, photography is gaining a new popularity. Anybody, owning just a phone or a tablet, has a camera to catch images that can be immediately spread worldwide via web sites, on-line newspapers, social media or blogs to convey messages and emotions. Fine art photography can surely help in attracting interest and in educating people. For this reason, we organize an exposition of artistic pictures; the beauty of the images attracts the eyes of the public, discovering an unknown reality and gives the opportunity to illustrate the dramatic retreat of the Alpine glaciers, and the majesty of the Antarctic landscape, put in danger by the climate changes. The glaciers are the main characters, with the infinite grey-blue shadows due to change in ice density, the spectacular staircases created by the seracs, and the contrast with the embedding rocks. A sub-set of the images will be presented in this context.

  13. Glaciers of Antarctica

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    1988-01-01

    Of all the world?s continents Antarctica is the coldest, the highest, and the least known. It is one and a half times the size of the United States, and on it lies 91 percent (30,109,800 km3) of the estimated volume of all the ice on Earth. Because so little is known about Antarctic glaciers compared with what is known about glaciers in populated countries, satellite imagery represents a great leap forward in the provision of basic data. From the coast of Antarctica to about 81?south latitude, there are 2,514 Landsat nominal scene centers (the fixed geographic position of the intersection of orbital paths and latitudinal rows). If there were cloud-free images for all these geographic centers, only about 520 Landsat images would be needed to provide complete coverage. Because of cloud cover, however, only about 70 percent of the Landsat imaging area, or 55 percent of the continent, is covered by good quality Landsat images. To date, only about 20 percent of Antarctica has been mapped at scales of 1:250,000 or larger, but these maps do include about half of the coastline. The area of Antarctica that could be planimetrically mapped at a scale of 1:250,000 would be tripled if the available Landsat images were used in image map production. This chapter contains brief descriptions and interpretations of features seen in 62 carefully selected Landsat images or image mosaics. Images were chosen on the basis of quality and interest; for this reason they are far from evenly spaced around the continent. Space limitations allow less than 15 percent of the Landsat imaging area of Antarctica to be shown in the illustrations reproduced in this chapter. Unfortunately, a wealth of glaciological and other features of compelling interest is present in the many hundreds of images that could not be included. To help show some important features beyond the limit of Landsat coverage, and as an aid to the interpretation of certain features seen in the images, 38 oblique aerial photographs

  14. Geomicrobiology of a Supraglacial Stream on the Cotton Glacier, Victoria Land, Antarctica.

    NASA Astrophysics Data System (ADS)

    Foreman, C. M.; Morris, C. E.; Cory, R. M.

    2006-12-01

    The Cotton Glacier lies in the Transantarctic Mountains north of Cape Roberts and has a limited catchment area in the Clare and St. Johns ranges, but receives a large amount of sedimentary deposits from surrounding areas. The bedrock geology of the area is dominated by basement granite and Ferrar dolerite sills, with minor amounts of amphibolite and schist sandwiched between granite bodies. A unique fluvial system forms on the Cotton Glacier as a result of its location in the Transantarctic Mountains. The prevailing winds converge and deposit debris on the Cotton Glacier, warming up the surface and increasing meltwater production. During the austral summer of 2004-2005 we sampled a braided stream that flowed from mid glacier into a series of crevasses downstream. While low in dissolved organic carbon (44-47 μM C) and nutrients the supraglacial stream on the Cotton Glacier is capable of sustaining life, with bacterial cell abundances from 2.7 - 8.2 x 104 cells ml-1, and bacterial production ranging from 58.84 - 293.18 ng C d-1. Isolates recovered from the Cotton Glacier produced a rainbow of pigment colors and were similar to those recovered from other icy systems (Cytophaga- Flavobateria-Bacteroides and β-Proteobacteria lineages), suggesting that the occurrence of these related phylotoyes from diverse environs is due to similar survival strategies allowing them to remain active at sub- zero temperatures and survive multiple freeze-thaw events. Two isolates from the Cotton Glacier have been shown to possess ice nucleating activity. These bacteria can catalyze ice formation at -3.5°C and colder temperatures and likely possess Type I ice nuclei proteins. The fluorescence and absorbance spectra of the filtered Cotton Glacier water were analyzed to characterize the dissolved organic matter (DOM). The absorbance spectra of the Cotton Glacier sample exhibited a peak around 270 nm, which disappeared over time in the dark at 4°C. Analysis of excitation-emission matrices

  15. Radio-echo sounding of Caucasus glaciers

    NASA Astrophysics Data System (ADS)

    Lavrentiev, Ivan; Kutuzov, Stanislav; Vasilenko, Evgeny; Macheret, Yuri

    2013-04-01

    Accurate glacier volume and ice-thickness estimations are highly important for many glaciological applications. Recent glacier reduction is affecting local river discharge and contributes to the global sea level rise. However, direct measurements of ice thickness are very sparse due to its high cost and laboriousness. One of the glacierized mountain regions with a lack of direct ice-thickness measurements is Caucasus. So far data for several seismic and GPR profiles have been reported for only 3 glaciers from more than 1.7 thousands located in Caucasus. In 2010-2012 a number of ground base and airborne radio-echo sounding surveys have been accomplished in Caucasus Mountains using 20 MHz monopulse radar VIRL-6. Special aerial version of this ground penetrating radar was designed for helicopter-born measurements. The radar has a relatively long (10 m) receiving and transmitting antennas, which together with receiving, recording and transmitting devices can be mounted on a special girder, being suspended from a helicopter. VIRL-6 radar is light weight and can be quickly transformed into ground version. Equipment has been used on 16 glaciers including biggest glacier in Caucasus - Bezengi (36 km2) most of which have a highly crevassed surfaces and heterogeneous internal structure. Independent data were obtained also for two glaciers using ground version of the same VIRL-6 radar. In total more than 120 km of radar profiles were obtained. Results showed good agreement between ground and aerial measurements. Ice-thickness values exceeded 420 m for some of the Central Caucasus glaciers. Successful use of VIRL-6 radar in Caucasus opens up the possibility of using such equipment on different types of glaciers in polar and mountain regions, including temperate, polythermal and surging glaciers.

  16. Malaspina Glacier

    NASA Image and Video Library

    2017-12-08

    NASA image captured August 31, 2000 The tongue of the Malaspina Glacier, the largest glacier in Alaska, fills most of this image. The Malaspina lies west of Yakutat Bay and covers 1,500 sq. MI (3,880 sq. km). Credit: NASA/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  17. Quantifying global warming from the retreat of glaciers.

    PubMed

    Oerlemans, J

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure: one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  18. Glacier Geophysics: Dynamic response of glaciers to changing climate may shed light on processes in the earth's interior.

    PubMed

    Kamb, B

    1964-10-16

    From physical measurements on glaciers and experimental studies of ice properties a framework of concept and theory is being built which bids fair to place glaciers among the more quantitatively understandable phenomena in the earth sciences. Measurements of flow velocity, deformation and stress, ice thickness and channel configuration, temperature, internal structure of theice, mass and energy balance, and response to meteorological variables all contribute to this understanding, as do still other measurements hardly discussed here, such as electrical properties, radioactive age measurements, and detailed studies of chemical and isotopic composition. The obvious goals of this work-the interpretation of past and present glacier fluctuations in terms of changes in world climate, and the prediction of glacier behavior-remain elusive, even though a good conceptual groundwork has been laid for dealing with the more tractable aspects of these problems. Intriguing recent discoveries have been made about such matters as the way in which glaciers react dynamically to changing conditions, the inter-relations between thermal regime and ice motion, the structural mechanisms of glacier flow, and the changes produced in ice by flow. One can recognize in these developments the possibility that concepts derived from the study of glacier flow may be applicable to phenomena of solid deformation deep in the earth. In this way glacier geophysics may have a useful impact beyond the study of glaciers themselves.

  19. Future streamflow droughts in glacierized catchments: the impact of dynamic glacier modelling and changing thresholds

    NASA Astrophysics Data System (ADS)

    Van Tiel, Marit; Van Loon, Anne; Wanders, Niko; Vis, Marc; Teuling, Ryan; Stahl, Kerstin

    2017-04-01

    In glacierized catchments, snowpack and glaciers function as an important storage of water and hydrographs of highly glacierized catchments in mid- and high latitudes thus show a clear seasonality with low flows in winter and high flows in summer. Due to the ongoing climate change we expect this type of storage capacity to decrease with resultant consequences for the discharge regime. In this study we focus on streamflow droughts, here defined as below average water availability specifically in the high flow season, and which methods are most suitable to characterize future streamflow droughts as regimes change. Two glacierized catchments, Nigardsbreen (Norway) and Wolverine (Alaska), are used as case study and streamflow droughts are compared between two periods, 1975-2004 and 2071-2100. Streamflow is simulated with the HBV light model, calibrated on observed discharge and seasonal glacier mass balances, for two climate change scenarios (RCP 4.5 & RCP 8.5). In studies on future streamflow drought often the same variable threshold of the past has been applied to the future, but in regions where a regime shift is expected this method gives severe "droughts" in the historic high-flow period. We applied the new alternative transient variable threshold, a threshold that adapts to the changing hydrological regime and is thus better able to cope with this issue, but has never been thoroughly tested in glacierized catchments. As the glacier area representation in the hydrological modelling can also influence the modelled discharge and the derived streamflow droughts, we evaluated in this study both the difference between the historical variable threshold (HVT) and transient variable threshold (TVT) and two different glacier area conceptualisations (constant area (C) and dynamical area (D)), resulting in four scenarios: HVT-C, HVT-D, TVT-C and TVT-D. Results show a drastic decrease in the number of droughts in the HVT-C scenario due to increased glacier melt. The deficit

  20. Ocean impact on Nioghalvfjerdsfjorden Glacier, Northeast Greenland

    NASA Astrophysics Data System (ADS)

    Schaffer, Janin; Kanzow, Torsten; von Appen, Wilken-Jon; Mayer, Christoph

    2017-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers around Greenland. The largest of three outlet glaciers draining the Northeast Greenland Ice Stream is Nioghalvfjerdsfjorden Glacier (also referred to as 79 North Glacier). Historic observations showed that warm waters of Atlantic origin are present in the subglacial cavity below the 80 km long floating ice tongue of the Nioghalvfjerdsfjorden Glacier and cause strong basal melt at the grounding line, but to date it has been unknown how those warm water enter the cavity. In order to understand how Atlantic origin waters carry heat into the subglacial cavity beneath Nioghalvfjerdsfjorden Glacier, we performed bathymetric, hydrographic, and velocity observations in the vicinity of the main glacier calving front aboard RV Polarstern in summer 2016. The bathymetric multibeam data shows a 500 m deep and 2 km narrow passage downstream of a 310 m deep sill. This turned out to be the only location deep enough for an exchange of Atlantic waters between the glacier cavity and the continental shelf. Hydrographic and velocity measurements revealed a density driven plume in the vicinity of the glacier calving front causing a rapid flow of waters of Atlantic origin warmer 1°C into the subglacial cavity through the 500 m deep passage. In addition, glacially modified waters flow out of the glacier cavity below the 80 m deep ice base. In the vicinity of the glacier, the glacially modified waters form a distinct mixed layer situated above the Atlantic waters and below the ambient Polar water. At greater distances from the glacier this layer is eroded by lateral mixing with ambient water. Based on our observations we will present an estimate of the ocean heat transport into the subglacial cavity. In comparison with historic observations we find an increase in Atlantic water temperatures throughout the last 20 years. The resulting

  1. Bathymetry of Patagonia glacier fjords and glacier ice thickness from high-resolution airborne gravity combined with other data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E.; Rivera, A.; Bunetta, M.

    2012-12-01

    The North and South Patagonia Ice fields are the largest ice masses outside Antarctica in the Southern Hemisphere. During the period 1995-2000, these glaciers lost ice at a rate equivalent to a sea level rise of 0.105 ± 0.001 mm/yr. In more recent years, the glaciers have been thinning more quickly than can be explained by warmer air temperatures and decreased precipitation. A possible cause is an increase in flow speed due to enhanced ablation of the submerged glacier fronts. To understand the dynamics of these glaciers and how they change with time, it is critical to have a detailed view of their ice thickness, the depth of the glacier bed below sea or lake level, how far inland these glaciers remain below sea or lake level, and whether bumps or hollows in the bed may slow down or accelerate their retreat. A grid of free-air gravity data over the Patagonia Glaciers was collected in May 2012 and October 2012, funded by the Gordon and Betty Moore Foundation (GBMF) to measure ice thickness and sea floor bathymetry. This survey combines the Sander Geophysics Limited (SGL) AIRGrav system, SGL laser altimetry and Chilean CECS/UCI ANDREA-2 radar. To obtain high-resolution and high-precision gravity data, the helicopter operates at 50 knots (25.7 m/s) with a grid spacing of 400m and collects gravity data at sub mGal level (1 Gal =1 Galileo = 1 cm/s2) near glacier fronts. We use data from the May 2012 survey to derive preliminarily high-resolution, high-precision thickness estimates and bathymetry maps of Jorge Montt Glacier and San Rafael Glacier. Boat bathymetry data is used to optimize the inversion of gravity over water and radar-derived thickness over glacier ice. The bathymetry maps will provide a breakthrough in our knowledge of the ice fields and enable a new era of glacier modeling and understanding that is not possible at present because ice thickness is not known.

  2. The contribution of glacier melt to streamflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaner, Neil; Voisin, Nathalie; Nijssen, Bart

    2012-09-13

    Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier meltmore » contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.« less

  3. Glacier Sensitivity Across the Andes

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Lowell, T. V.; Rupper, S.

    2010-12-01

    Most of the research on causes driving former glacial fluctuations, and the climatic signals involved, has focused on the comparisons of sequences of glacial events in separate regions of the world and their temporal-phasing relationship with terrestrial or extraterrestrial climate-forcing mechanisms. Nevertheless the climatic signals related with these glacial advances are still under debate. This impossibility to resolve these questions satisfactorily have been generally attributed to the insufficiently precise chronologies and unevenly distributed records. However, behind these ideas lies the implicit assumption that glaciers situated in different climate regimes respond uniformly to similar climatic perturbations. This ongoing research is aimed to explore the climate-glacier relationship at regional scale, through the analysis of the spatial variability of glacier sensitivity to climatic change. By applying a Surface Energy Mass Balance model (SEMB) developed by Rupper and Roe (2008) to glaciers located in different climatic regimes, we analyzed the spatial variability of mass balance changes under different baseline conditions and under different scenarios of climatic change. For the sake of this research, the analysis is being focused on the Andes, which in its 9,000 km along the western margin of South America offers an unparalleled climatic diversity. Preliminary results suggest that above some threshold of climate change (a hypothetical uniform perturbation), all the glaciers across the Andes would respond in the “same direction” (advancing or retreating). Below that threshold, glaciers located in some climatic regimes may be insensitive to the specific perturbation. On the other hand, glaciers located in different climatic regimes may exhibit a “different magnitude” of change under a uniform climatic perturbation. Thus, glaciers located in the dry Andes of Perú, Chile and Argentina are more sensitive to precipitation changes than variations in

  4. Glacier-specific elevation changes in western Alaska

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Le Bris, Raymond

    2013-04-01

    Deriving glacier-specific elevation changes from DEM differencing and digital glacier outlines is rather straight-forward if the required datasets are available. Calculating such changes over large regions and including glaciers selected for mass balance measurements in the field, provides a possibility to determine the representativeness of the changes observed at these glaciers for the entire region. The related comparison of DEM-derived values for these glaciers with the overall mean avoids the rather error-prone conversion of volume to mass changes (e.g. due to unknown densities) and gives unit-less correction factors for upscaling the field measurements to a larger region. However, several issues have to be carefully considered, such as proper co-registration of the two DEMs, date and accuracy of the datasets compared, as well as source data used for DEM creation and potential artefacts (e.g. voids). In this contribution we present an assessment of the representativeness of the two mass balance glaciers Gulkana and Wolverine for the overall changes of nearly 3200 glaciers in western Alaska over a ca. 50-year time period. We use an elevation change dataset from a study by Berthier et al. (2010) that was derived from the USGS DEM of the 1960s (NED) and a more recent DEM derived from SPOT5 data for the SPIRIT project. Additionally, the ASTER GDEM was used as a more recent DEM. Historic glacier outlines were taken from the USGS digital line graph (DLG) dataset, corrected with the digital raster graph (DRG) maps from USGS. Mean glacier specific elevation changes were derived based on drainage divides from a recently created inventory. Land-terminating, lake-calving and tidewater glaciers were marked in the attribute table to determine their changes separately. We also investigated the impact of handling potential DEM artifacts in three different ways and compared elevation changes with altitude. The mean elevation changes of Gulkana and Wolverine glaciers (about -0

  5. New Zealand Glaciers

    NASA Image and Video Library

    2017-03-09

    New Zealand contains over 3,000 glaciers, most of which are in the Southern Alps on the South Island. Since 1890, the glaciers have been retreating, with short periods of small advances, as shown in this image from NASA Terra spacecraft. The image cover an area of 39 by 46 km, and are located at 43.7 degrees south, 170 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA21509

  6. Lake sediment-based Late Holocene glacier reconstruction reveals medieval retreat and two-phase Little Ice Age on subantarctic South Georgia

    NASA Astrophysics Data System (ADS)

    van der Bilt, W. G. M.; Bakke, J.; Werner, J.; Paasche, O.; Rosqvist, G. N.; Vatle, S. S.

    2016-12-01

    Southern Ocean climate is rapidly changing. Yet beyond the instrumental period (± 100 years), our comprehension of climate variability in the region is restricted by a lack of high-resolution paleoclimate records. Alpine glaciers, ubiquitous on Southern Ocean islands, may provide such data as they rapidly respond to climate shifts, recording attendant changes in extent by variations in glacial erosion. Rock flour, the fine-grained fraction of this process, is suspended in meltwater streams and transfers this signal to the sediments of downstream lakes, continuously recording glacier history. Here, we use this relationship and present the first reconstruction of the Late Holocene (1250 cal. yr BP - present) glacier history of the Southern Ocean island of South Georgia, using sediments from the glacier-fed Middle Hamberg lake. Variations are resolved on multi-centennial scales due to robust chronological control. To fingerprint a glacial erosion signal, we employed a set of routinely used physical, geochemical and magnetic parameters. Using Titanium counts, validated against changes in sediment density and grain size distribution, we continuously reconstruct glacier variations over the past millennium. Refining local moraine evidence and supporting evidence from other Southern Hemisphere sites, this study shows a progressive diminishing of consecutive Late Holocene advances. These include a two-stage Little Ice Age, in agreement with other Southern Hemisphere glacier evidence. The presented record furthermore captures an unreported retreat phase behind present limits around 500 cal. yr BP.

  7. Glaciers in 21st Century Himalayan Geopolitics

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers are ablating rapidly the world over. Nowhere are the rates of retreat and downwasting greater than in the Hindu Kush-Himalaya (HKH) region. It is estimated that over the next century, 40,000 square kilometers of present glacier area in the HKH region will become ice free. Most of this area is in major valleys and the lowest glaciated mountain passes. The existence and characteristics of glaciers have security impacts, and rapidly changing HKH glaciers have broad strategic implications: (1) Glaciers supply much of the fresh water and hydroelectric power in South and Central Asia, and so glaciers are valuable resources. (2) Shared economic interests in water, hydroelectricity, flood hazards, and habitat preservation are a force for common cause and reasoned international relations. (3) Glaciers and their high mountains generally pose a natural barrier tending to isolate people. Historically, they have hindered trade and intercultural exchanges and have protected against aggression. This has further promoted an independent spirit of the region's many ethnic groups. (4) Although glaciers are generally incompatible with human development and habitation, many of the HKH region's glaciers and their mountains have become sanctuaries and transit routes for militants. Siachen Glacier in Kashmir has for 17 years been "the world's highest battlefield," with tens of thousands of troops deployed on both sides of the India/Pakistan line of control. In 1999, that conflict threatened to trigger all-out warfare, and perhaps nuclear warfare. Other recent terrorist and military action has taken place on glaciers in Kyrgyzstan and Tajikistan. As terrorists are forced from easily controlled territories, many may tend to migrate toward the highest ground, where definitive encounters may take place in severe alpine glacial environments. This should be a major concern in Nepali security planning, where an Army offensive is attempting to reign in an increasingly robust and brutal

  8. A fjord-glacier coupled system model

    NASA Astrophysics Data System (ADS)

    de Andrés, Eva; Otero, Jaime; Navarro, Francisco; Prominska, Agnieszka; Lapazaran, Javier; Walczowski, Waldemar

    2017-04-01

    With the aim of studying the processes occurring at the front of marine-terminating glaciers, we couple a fjord circulation model with a flowline glacier dynamics model, with subglacial discharge and calving, which allows the calculation of submarine melt and its influence on calving processes. For ocean modelling, we use a general circulation model, MITgcm, to simulate water circulation driven by both fjord conditions and subglacial discharge, and for calculating submarine melt rates at the glacier front. To constrain freshwater input to the fjord, we use estimations from European Arctic Reanalysis (EAR). To determine the optimal values for each run period, we perform a sensitivity analysis of the model to subglacial discharge variability, aimed to get the best fit of model results to observed temperature and salinity profiles in the fjord for each of these periods. Then, we establish initial and boundary fjord conditions, which we vary weekly-fortnightly, and calculate the submarine melt rate as a function of depth at the calving front. These data are entered into the glacier-flow model, Elmer/Ice, which has been added a crevasse-depth calving model, to estimate the glacier terminus position at a weekly time resolution. We focus our study on the Hansbreen Glacier-Hansbukta Fjord system, in Southern Spitsbergen, Svalbard, where a large set of data are available for both glacier and fjord. The bathymetry of the entire system has been determined from ground penetrating radar and sonar data. In the fjord we have got temperature and salinity data from CTDs (May to September, 2010-2014) and from a mooring (September to May, 2011-2012). For Hansbreen, we use glacier surface topography data from the SPIRIT DEM, surface mass balance from EAR, centre line glacier velocities from stake measurements (May 2005-April 2011), weekly terminus positions from time-lapse photos (Sept. 2009-Sept. 2011), and sea-ice concentrations from time-lapse photos and Nimbus-7 SMMR and DMSP SSM

  9. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus.

    PubMed

    Ji, Xiuling; Zhang, Chunjing; Fang, Yuan; Zhang, Qi; Lin, Lianbing; Tang, Bing; Wei, Yunlin

    2015-02-01

    As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.

  10. Tracing Multi-Scale Climate Change at Low Latitude from Glacier Shrinkage

    NASA Astrophysics Data System (ADS)

    Moelg, T.; Cullen, N. J.; Hardy, D. R.; Kaser, G.

    2009-12-01

    Significant shrinkage of glaciers on top of Africa's highest mountain (Kilimanjaro, 5895 m a.s.l.) has been observed between the late 19th century and the present. Multi-year data from our automatic weather station on the largest remaining slope glacier at 5873 m allow us to force and verify a process-based distributed glacier mass balance model. This generates insights into energy and mass fluxes at the glacier-atmosphere interface, their feedbacks, and how they are linked to atmospheric conditions. By means of numerical atmospheric modeling and global climate model simulations, we explore the linkages of the local climate in Kilimanjaro's summit zone to larger-scale climate dynamics - which suggests a causal connection between Indian Ocean dynamics, mesoscale mountain circulation, and glacier mass balance. Based on this knowledge, the verified mass balance model is used for backward modeling of the steady-state glacier extent observed in the 19th century, which yields the characteristics of local climate change between that time and the present (30-45% less precipitation, 0.1-0.3 hPa less water vapor pressure, 2-4 percentage units less cloud cover at present). Our multi-scale approach provides an important contribution, from a cryospheric viewpoint, to the understanding of how large-scale climate change propagates to the tropical free troposphere. Ongoing work in this context targets the millennium-scale relation between large-scale climate and glacier behavior (by downscaling precipitation), and the possible effects of regional anthropogenic activities (land use change) on glacier mass balance.

  11. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    The Aletsch Glacier in Switzerland is the largest valley glacier in the Alps. Its volume loss since the middle of the 19th century is well-visible from the trimlines to the right of the image. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: Frank Paul, University of Zurich NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. A GRASS GIS module to obtain an estimation of glacier behavior under climate change: A pilot study on Italian glacier

    NASA Astrophysics Data System (ADS)

    Strigaro, Daniele; Moretti, Massimiliano; Mattavelli, Matteo; Frigerio, Ivan; Amicis, Mattia De; Maggi, Valter

    2016-09-01

    The aim of this work is to integrate the Minimal Glacier Model in a Geographic Information System Python module in order to obtain spatial simulations of glacier retreat and to assess the future scenarios with a spatial representation. The Minimal Glacier Models are a simple yet effective way of estimating glacier response to climate fluctuations. This module can be useful for the scientific and glaciological community in order to evaluate glacier behavior, driven by climate forcing. The module, called r.glacio.model, is developed in a GRASS GIS (GRASS Development Team, 2016) environment using Python programming language combined with different libraries as GDAL, OGR, CSV, math, etc. The module is applied and validated on the Rutor glacier, a glacier in the south-western region of the Italian Alps. This glacier is very large in size and features rather regular and lively dynamics. The simulation is calibrated by reconstructing the 3-dimensional dynamics flow line and analyzing the difference between the simulated flow line length variations and the observed glacier fronts coming from ortophotos and DEMs. These simulations are driven by the past mass balance record. Afterwards, the future assessment is estimated by using climatic drivers provided by a set of General Circulation Models participating in the Climate Model Inter-comparison Project 5 effort. The approach devised in r.glacio.model can be applied to most alpine glaciers to obtain a first-order spatial representation of glacier behavior under climate change.

  13. Debris thickness patterns on debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  14. SAR investigations of glaciers in northwestern North America

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Harrison, William D.

    1995-01-01

    The objective of this project was to investigate the utility of satellite synthetic aperture radar (SAR) imagery for measurement of geophysical parameters on Alaskan glaciers relevant to their mass balance and dynamics, including: (1) the positions of firn lines (late-summer snow lines); (2) surface velocities on fast-flowing (surging) glaciers, and also on slower steady-flow glaciers; and (3) the positions and changes in the positions of glacier termini. Preliminary studies of topography and glacier surface velocity with SAR interferometry have also been carried out. This project was motivated by the relationships of multi-year to decadal changes in glacier geometry to changing climate, and the probable significant contribution of Alaskan glaciers to rising sea level.

  15. Remote Sensing Observations of Advancing and Surging Tidewater Glaciers

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Kääb, A.; Nuth, C.; Girod, L.; Truffer, M.; Fahnestock, M. A.

    2017-12-01

    Progress has been made in understanding the glaciological frontiers of tidewater glacier dynamics and surge dynamics, though many aspects of these topics are not well-understood. Advances in the processing of digital elevation models (DEMs) from ASTER imagery, as well as the increased availability and temporal density of satellite images such as Landsat and the Sentinel missions, provide an unprecedented wealth of satellite data over glaciers, providing new opportunities to learn about these topics. As one of the largest glaciated regions in the world outside of the Greenland and Antarctic ice sheets, glaciers in Alaska and adjacent regions in Canada have been highlighted for their elevated contributions to global sea level rise, through both high levels of melt and frontal ablation/calving from a large number of tidewater glaciers. The region is also home to a number of surging glaciers. We focus on several tidewater glaciers in the region, including Turner, Tsaa, Harvard, and Meares Glaciers. Turner Glacier is a surge-type tidewater glacier with a surge period of approximately eight years, while Tsaa Glacier is a tidwewater glacier that has shown rapid swings in terminus position on the order of a year. Harvard and Meares Glaciers have been steadily advancing since at least the mid-20th century, in contrast with neighboring glaciers that are retreating. Using a combination of ASTER, Landsat, and Sentinel data, we present and examine high-resolution time series of elevation, velocity, and terminus position for these glaciers, as well as updated estimates of volume change and frontal ablation rates, including on sub-annual time scales. Preliminary investigations of elevation change on Turner Glacier show that changes are most pronounced in the lower reaches of the glacier, below a prominent icefall approximately 15km from the head of the glacier. On Harvard and Meares Glaciers, elevation changes in the upper reaches of both glaciers have been generally small or

  16. Prolific Sources of Icequakes: The Mulock and Skelton Glaciers, Antarctica

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Lough, A. C.; Anandakrishnan, S.; Nyblade, A.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.

    2015-12-01

    The Mulock and Skelton Glaciers are large outlet glaciers that flow through the Transantarctic Mountains and into the Ross Ice Shelf. A regional seismic deployment in the central Transantarctic Mountains (TAM) in 1999-2000 led to the identification of 63 events in the vicinity of Mulock and Skelton Glaciers [Bannister and Kennett, 2002]. A more recent study utilizing seismic data collected as part of the POLENET/A-NET and AGAP projects during 2009 again identified significant seismicity associated with these glaciers and suggested that many of these events were icequakes based on their shallow depths [Lough, 2014]. These two glaciers represent the most seismically active regions in the TAM aside from the well-studied David Glacier region [Danesi et al, 2007; Zoet et al., 2012]. In addition, many of the icequakes from this region have magnitude ML > 2.5, in contrast to most glacial events that are generally of smaller magnitude. Using the waveforms of previously identified icequakes as templates, nearby POLENET/A-NET, AGAP, and GSN seismic stations were scanned using a cross-correlation method to find similar waveforms. We then used a relative location algorithm to determine high-precision locations and depths. The use of regional velocity models derived from recent seismic studies facilitates accurate absolute locations that we interpret in the context of the local geological and glacial features. The icequakes are concentrated in heavily crevassed regions associated with steep bedrock topography, likely icefalls. Future work will focus on determining whether these events are associated with stick-slip events at the bed of the glacier and/or crevasse formation near the surface. In addition the temporal pattern of seismicity will also be examined to search for repeating icequakes, which have been identified at the base of several other glaciers.

  17. Glacier lake outburst floods caused by glacier shrinkage: case study of Ala-Archa valley, Kyrgyz Ala Too, northern Tian Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Petrakov, D.; Erochin, S. A.; Harbor, J.; Ivanov, M.; Rogozhina, I.; Stroeven, A. P.; Usubaliev, R.

    2012-12-01

    composed of stagnant ice and debris. With the water discharge being merely a few m3/s, the GLOF transformed into a debris flow beyond a steep front of rock glacier, which is within 150 m downstream of the lake. After rushing through the ca. 7 km-long Adygene valley, the debris flow formed a fan in the Ala-Archa valley and transformed into a flood. The flood wave reached Bishkek located more than 40 km downstream. This led to a panic amongst local dwellers and Bishkek residents. The maximum discharge of the debris flow in the lower part of the Adygene valley was assessed as 300 m3/s and the discharge of the flood in Bishkek as 35 m3/s. The latter exceeds the standard discharge of the Ala-Archa river substantially. Although no fatalities resulted from this event, economic losses as a consequence of a destroyed mineral water factory could possibly amount to USD 200000, which is a substantial sum by Kyrgyz standards. Because of the prior history, it is expected that GLOFs from the Teztor valley will recur in the upcoming years. We conclude that installation of an early warning system in lower Adygene valley is needed to prevent further damage in the study area.

  18. A complex relationship between calving glaciers and climate

    USGS Publications Warehouse

    Post, A.; O'Neel, S.; Motyka, R.J.; Streveler, G.

    2011-01-01

    Many terrestrial glaciers are sensitive indicators of past and present climate change as atmospheric temperature and snowfall modulate glacier volume. However, climate interpretations based on glacier behavior require careful selection of representative glaciers, as was recently pointed out for surging and debris-covered glaciers, whose behavior often defies regional glacier response to climate [Yde and Paasche, 2010]. Tidewater calving glaciers (TWGs)mountain glaciers whose termini reach the sea and are generally grounded on the seaflooralso fall into the category of non-representative glaciers because the regional-scale asynchronous behavior of these glaciers clouds their complex relationship with climate. TWGs span the globe; they can be found both fringing ice sheets and in high-latitude regions of each hemisphere. TWGs are known to exhibit cyclic behavior, characterized by slow advance and rapid, unstable retreat, largely independent of short-term climate forcing. This so-called TWG cycle, first described by Post [1975], provides a solid foundation upon which modern investigations of TWG stability are built. Scientific understanding has developed rapidly as a result of the initial recognition of their asynchronous cyclicity, rendering greater insight into the hierarchy of processes controlling regional behavior. This has improved the descriptions of the strong dynamic feedbacks present during retreat, the role of the ocean in TWG dynamics, and the similarities and differences between TWG and ice sheet outlet glaciers that can often support floating tongues.

  19. Wakata with GLACIER in U.S. Lab

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010016 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  20. Wakata with GLACIER in U.S. Lab

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010017 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  1. Evaluating glacier movement fluctuations using remote sensing: A case study of the Baird, Patterson, LeConte, and Shakes glaciers in central Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Davidson, Robert Howard

    Global Land Survey (GLS) data encompassing Landsat Multispectral Scanner (MSS), Landsat 5's Thematic Mapper (TM), and Landsat 7's Enhanced Thematic Mapper Plus (ETM+) were used to determine the terminus locations of Baird, Patterson, LeConte, and Shakes Glaciers in Alaska in the time period 1975-2010. The sequences of the terminuses locations were investigated to determine the movement rates of these glaciers with respect to specific physical and environmental conditions. GLS data from 1975, 1990, 2000, 2005, and 2010 in false-color composite images enhancing ice-snow differentiation and Iterative Self-Organizing (ISO) Data Cluster Unsupervised Classifications were used to 1) quantify the movement rates of Baird, Patterson, LeConte, and Shakes Glaciers; 2) analyze the movement rates for glaciers with similar terminal terrain conditions and; 3) analyze the movement rates for glaciers with dissimilar terminal terrain conditions. From the established sequence of terminus locations, movement distances were quantified between the glacier locations. Movement distances were then compared to see if any correlation existed between glaciers with similar or dissimilar terminal terrain conditions. The Global Land Ice Measurement from Space (GLIMS) data was used as a starting point from which glacier movement was measured for Baird, Patterson, and LeConte Glaciers only as the Shakes Glacier is currently not included in the GLIMS database. The National Oceanographic and Atmospheric Administration (NOAA) temperature data collected at the Petersburg, Alaska, meteorological station (from January 1, 1973 to December 31, 2009) were used to help in the understanding of the climatic condition in this area and potential impact on glaciers terminus. Results show that glaciers with similar terminal terrain conditions (Patterson and Shakes Glaciers) and glaciers with dissimilar terminal terrain conditions (Baird, Patterson, and LeConte Glaciers) did not exhibit similar movement rates

  2. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology

  3. Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland

    PubMed Central

    Selmes, Nick; James, Timothy D.; Edwards, Stuart; Martin, Ian; O'Farrell, Timothy; Aspey, Robin; Rutt, Ian; Nettles, Meredith; Baugé, Tim

    2015-01-01

    Abstract During summer 2013 we installed a network of 19 GPS nodes at the ungrounded margin of Helheim Glacier in southeast Greenland together with three cameras to study iceberg calving mechanisms. The network collected data at rates up to every 7 s and was designed to be robust to loss of nodes as the glacier calved. Data collection covered 55 days, and many nodes survived in locations right at the glacier front to the time of iceberg calving. The observations included a number of significant calving events, and as a consequence the glacier retreated ~1.5 km. The data provide real‐time, high‐frequency observations in unprecedented proximity to the calving front. The glacier calved by a process of buoyancy‐force‐induced crevassing in which the ice downglacier of flexion zones rotates upward because it is out of buoyant equilibrium. Calving then occurs back to the flexion zone. This calving process provides a compelling and complete explanation for the data. Tracking of oblique camera images allows identification and characterisation of the flexion zones and their propagation downglacier. Interpretation of the GPS data and camera data in combination allows us to place constraints on the height of the basal cavity that forms beneath the rotating ice downglacier of the flexion zone before calving. The flexion zones are probably formed by the exploitation of basal crevasses, and theoretical considerations suggest that their propagation is strongly enhanced when the glacier base is deeper than buoyant equilibrium. Thus, this calving mechanism is likely to dominate whenever such geometry occurs and is of increasing importance in Greenland. PMID:27570721

  4. Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

    PubMed

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Reina, Manuel; Martínez-Estrada, Ofelia M; Soriano, Francesc X

    2015-01-01

    Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option.

  5. Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica

    NASA Astrophysics Data System (ADS)

    Denis, Delphine; Crosta, Xavier; Schmidt, Sabine; Carson, Damien S.; Ganeshram, Raja S.; Renssen, Hans; Bout-Roumazeilles, Viviane; Zaragosi, Sebastien; Martin, Bernard; Cremer, Michel; Giraudeau, Jacques

    2009-06-01

    This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier-sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier-sea ice-ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice-ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier-sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier-sea ice-ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.

  6. Shifts in diversity and function of lake bacterial communities upon glacier retreat

    PubMed Central

    Peter, Hannes; Sommaruga, Ruben

    2016-01-01

    Global climate change is causing a wastage of glaciers and threatening biodiversity in glacier-fed ecosystems. The high turbidity typically found in those ecosystems, which is caused by inorganic particles and result of the erosive activity of glaciers is a key environmental factor influencing temperature and light availability, as well as other factors in the water column. Once these lakes loose hydrological connectivity to glaciers and turn clear, the accompanying environmental changes could represent a potential bottleneck for the established local diversity with yet unknown functional consequences. Here, we study three lakes situated along a turbidity gradient as well as one clear unconnected lake and evaluate seasonal changes in their bacterial community composition and diversity. Further, we assess potential consequences for community functioning. Glacier runoff represented a diverse source community for the lakes and several taxa were able to colonize downstream turbid habitats, although they were not found in the clear lake. Operational taxonomic unit-based alpha diversity and phylogenetic diversity decreased along the turbidity gradient, but metabolic functional diversity was negatively related to turbidity. No evidence for multifunctional redundancy, which may allow communities to maintain functioning upon alterations in diversity, was found. Our study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear. PMID:26771929

  7. Shifts in diversity and function of lake bacterial communities upon glacier retreat.

    PubMed

    Peter, Hannes; Sommaruga, Ruben

    2016-07-01

    Global climate change is causing a wastage of glaciers and threatening biodiversity in glacier-fed ecosystems. The high turbidity typically found in those ecosystems, which is caused by inorganic particles and result of the erosive activity of glaciers is a key environmental factor influencing temperature and light availability, as well as other factors in the water column. Once these lakes loose hydrological connectivity to glaciers and turn clear, the accompanying environmental changes could represent a potential bottleneck for the established local diversity with yet unknown functional consequences. Here, we study three lakes situated along a turbidity gradient as well as one clear unconnected lake and evaluate seasonal changes in their bacterial community composition and diversity. Further, we assess potential consequences for community functioning. Glacier runoff represented a diverse source community for the lakes and several taxa were able to colonize downstream turbid habitats, although they were not found in the clear lake. Operational taxonomic unit-based alpha diversity and phylogenetic diversity decreased along the turbidity gradient, but metabolic functional diversity was negatively related to turbidity. No evidence for multifunctional redundancy, which may allow communities to maintain functioning upon alterations in diversity, was found. Our study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear.

  8. A new satellite-derived glacier inventory for Western Alaska

    NASA Astrophysics Data System (ADS)

    Le Bris, Raymond; Frey, Holger; Paul, Frank; Bolch, Tobias

    2010-05-01

    Glaciers and ice caps are essential components of studies related to climate change impact assessment. Glacier inventories provide the required baseline data to perform the related analysis in a consistent and spatially representative manner. In particular, the calculation of the current and future contribution to global sea-level rise from heavily glacierized regions is a major demand. One of the regions, where strong mass losses and geometric changes of glaciers have been observed recently is Alaska. Unfortunately, the digitally available data base of glacier extent is quite rough and based on rather old maps from the 1960s. Accordingly, the related calculations and extrapolations are imprecise and an updated glacier inventory is urgently required. Here we present first results of a new glacier inventory for Western Alaska that is prepared in the framework of the ESA project GlobGlacier and is based on freely available orthorectified Landsat TM and ETM+ scenes from USGS. The analysed region covers the Tordrillo, Chigmit and Chugach Mts. as well as the Kenai Peninsula. In total, 8 scenes acquired between 2002 and 2009 were used covering c. 20.420 km2 of glaciers. All glacier types are present in this region, incl. outlet glaciers from icefields, glacier clad volcanoes, and calving glaciers. While well established automated glacier mapping techniques (band rationing) are applied to map clean and slightly dirty glacier ice, many glaciers are covered by debris or volcanic ash and outlines need manual corrections during post-processing. Prior to the calculation of drainage divides from DEM-based watershed analysis, we performed a cross-comparative analysis of DEMs from USGS, ASTER (GDEM) and SRTM 1 for Kenai Peninsula. This resulted in the decision to use the USGS DEM for calculating the drainage divides and most of the topographic inventory parameters, and the more recent GDEM to derive minimum elevation for each glacier. A first statistical analysis of the results

  9. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories

    NASA Astrophysics Data System (ADS)

    Wu, Kunpeng; Liu, Shiyin; Jiang, Zongli; Xu, Junli; Wei, Junfeng; Guo, Wanqin

    2018-01-01

    Due to the influence of the Indian monsoon, the Kangri Karpo Mountains in the south-east of the Tibetan Plateau is in the most humid and one of the most important and concentrated regions containing maritime (temperate) glaciers. Glacier mass loss in the Kangri Karpo is an important contributor to global mean sea level rise, and changes run-off distribution, increasing the risk of glacial-lake outburst floods (GLOFs). Because of its inaccessibility and high labour costs, information about the Kangri Karpo glaciers is still limited. Using geodetic methods based on digital elevation models (DEMs) derived from 1980 topographic maps from the Shuttle Radar Topography Mission (SRTM) (2000) and from TerraSAR-X/TanDEM-X (2014), this study has determined glacier elevation changes. Glacier area and length changes between 1980 and 2015 were derived from topographical maps and Landsat TM/ETM+/OLI images. Results show that the Kangri Karpo contained 1166 glaciers with an area of 2048.50 ± 48.65 km2 in 2015. Ice cover diminished by 679.51 ± 59.49 km2 (24.9 ± 2.2 %) or 0.71 ± 0.06 % a-1 from 1980 to 2015, although nine glaciers advanced. A glacierized area of 788.28 km2, derived from DEM differencing, experienced a mean mass loss of 0.46 ± 0.08 m w.e. a-1 from 1980 to 2014. Shrinkage and mass loss accelerated significantly from 2000 to 2015 compared to 1980-2000, consistent with a warming climate.

  10. Geenland Glacier Albedo Variability

    NASA Astrophysics Data System (ADS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  11. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  12. Five 'Supercool' Icelandic Glaciers

    NASA Astrophysics Data System (ADS)

    Knudsen, O.; Roberts, M. J.; Roberts, M. J.; Tweed, F. S.; Russell, A. J.; Lawson, D. E.; Larson, G. J.; Evenson, E. B.; Bjornsson, H.

    2001-12-01

    Sediment entrainment by glaciohydraulic supercooling has recently been demonstrated as an effective process at Matanuska glacier, Alaska. Although subfreezing meltwater temperatures have been recorded at several Alaskan glaciers, the link between supercooling and sediment accretion remains confined to Matanuska. This study presents evidence of glaciohydraulic supercooling and associated basal ice formation from five Icelandic glaciers: Skeidarárjökull, Skaftafellsjökull, Kvíárjökull, Flaájökull, and Hoffellsjökull. These observations provide the best example to-date of glaciohydraulic supercooling and related sediment accretion outside Alaska. Fieldwork undertaken in March, July and August 2001 confirmed that giant terraces of frazil ice, diagnostic of the presence of supercooled water, are forming around subglacial artesian vents. Frazil flocs retrieved from these vents contained localised sandy nodules at ice crystal boundaries. During periods of high discharge, sediment-laden frazil flocs adhere to the inner walls of vents, and continue to trap suspended sediment. Bands of debris-rich frazil ice, representing former vents, are texturally similar to basal ice exposures at the glacier margins, implying a process-form relationship between glaciohydraulic freeze-on and basal ice formation. It is hypothesised that glaciohydraulic supercooling is generating thick sequences of basal ice. Observations also confirm that in situ melting of basal ice creates thick sedimentary sequences, as sediment structures present in the basal ice can be clearly traced into ice-marginal ridges. Glaciohydraulic supercooling is an effective sediment entrainment mechanism at Icelandic glaciers. Supercooling has the capacity to generate thick sequences of basal ice and the sediments present in basal ice can be preserved. These findings are incompatible with established theories of intraglacial sediment entrainment and basal ice formation; instead, they concur with, and extend, the

  13. Identifying surging glaciers in the Central Karakoram for improved climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Bolch, Tobias; Mölg, Nico; Rastner, Philipp

    2015-04-01

    Several recent studies have investigated glacier changes in the Karakoram mountain range, a region where glaciers behave differently (mass gain and advancing tongues) compared to most other regions in the world. Attribution of this behaviour to climate change is challenging, as many glaciers in the Karakoram are of surge type and have actively surged in the recent past. The measured changes in length, area, volume or velocity in this region are thus depending on the time-period analysed and include non-climatic components. Hence, a proper analysis of climate change impacts on glaciers in this region requires a separation of the surging from the non-surging glaciers. This is challenging as the former often lack the typical surface characteristics such as looped moraines (e.g. when they are steep and small) and/or they merge (during a surge) with a larger non-surging glacier and create looped moraines on its surface. By analysing time series of satellite images that are available since 1961, the heterogeneous behaviour of glaciers in the Karakoram can be revealed. In this study, we have analysed changes in glacier terminus positions in the Karakoram over different time periods from 1961 to 2014 for several hundred glaciers using Corona KH-4 and KH-4B, Hexagon KH-9, Terra ASTER, and Landsat MSS, TM, ETM+ and OLI satellite data. For the last 15 years, high-speed animations of image time-series reveal details of glacier flow and surge dynamics that are otherwise difficult to detect. For example, several of the larger glaciers with surging tributaries (e.g. Panmah, Sarpo Laggo, Skamri, K2 glacier) are stationary and downwasting despite the mass contributions from the surging glaciers. The analysis of the entire time series reveals a complex pattern of changes through time with retreating, advancing, surging and stationary glaciers that are partly regionally clustered. While most of the non-surging glaciers show only small changes in terminus position (±100 m or less

  14. Modelling Internal Heterogeneities in Debris-Covered Glaciers: the Potential to Link Morphology and Climate

    NASA Astrophysics Data System (ADS)

    Stuurman, C. M.; Holt, J.; Levy, J.

    2016-12-01

    On Earth and Mars, debris-covered glaciers (DCGs) often exhibit arcuate ridges transverse to the flow direction. Additionally, there exists some evidence linking internal structure (which is controlled in part by climate) in DCGs with surface microtopography. A better understanding of the relationship between englacial debris bands, compressional stresses, and debris-covered glacier microtopography will augment understanding of formational environments and mechanisms for terrestrial and martian DCGs. In order to better understand relationships between DCG surface morphology and internal debris bands, we combine field observations with finite-element modeling techniques to relate internal structure of DCGs to their surface morphologies. A geophysical survey including time-domain electromagnetic and ground-penetrating radar techniques of the Galena Creek Rock Glacier, WY was conducted over two field seasons in 2015/2016. Geomorphic analysis by surface observation and photogrammetry, including examination of a cirque-based thermokarst, was used to guide and complement geophysical sounding methods. Very clean ice below a 1 m thick layer of debris was directly observed on the walls of a 40 m diameter thermokarst pond near the accumulation zone. An englacial debris band 0.7 m thick dipping 30o intersected the wall of the pond. Transverse ridges occur at varying ridge-to-ridge wavelengths at different locations on the glacier. The GPR data supports the idea that surface ridges correlate with the intersection of debris layers and the surface. Modelling evidence is consistent with the observation of ridges at debris-layer/surface intersections, with compressional stresses buckling ice up-stream of the debris band.

  15. The energy balance on the surface of a tropical glacier tongue. Investigations on glacier Artesonraju, Cordillera Blanca, Perú.

    NASA Astrophysics Data System (ADS)

    Juen, I.; Mölg, T.; Wagnon, P.; Cullen, N. J.; Kaser, G.

    2006-12-01

    The Cordillera Blanca in Perú is situated in the Outer Tropics spanning from 8 to 10 ° South. Solar incidence and air temperature show only minor seasonal variations whereas precipitation occurs mainly from October to April. An energy balance station was installed on the tongue of glacier Artesonraju (4850 m a.s.l.) in March 2004. In this study each component of the energy balance on the glacier surface is analysed separately over a full year, covering one dry and one wet season. During the dry season glacier melt at the glacier tongue is app. 0.5 m we per month. In the wet season glacier melt is twice as much with 1 m we per month. This is due to higher energy fluxes and decreased sublimation during the wet season. With an energy balance model that has already been proved under tropical climate conditions (Mölg and Hardy, 2004) each energy flux is changed individually to evaluate the change in the amount of glacier melt. First results indicate that a change in humidity related variables affects glacier melt very differently in the dry and wet season, whereas a change in air temperature changes glacier melt more constantly throughout the year.

  16. Geomicrobiology of basal ice in a temperate glacier: implications for primary microbial production and export, elemental cycling and soil formation

    NASA Astrophysics Data System (ADS)

    Toubes-Rodrigo, Mario; Potgieter-Vermaak, Sanja; Sen, Robin; Elliott, David R.; Cook, Simon J.

    2017-04-01

    Basal ice is a significant sub-glacial component of glaciers and ice sheets that arises from ice-bedrock/substrate interaction. As a result, basal ice of a glacier retains a distinctive physical and chemical signature characterised by a high sediment- and low bubble-content and selective ionic enrichment. Previous research concluded that sediment entrapped in the basal ice matrix originates from the bedrock/substrate, and harbours an active microbial community. However, the nature and significance of the microbial community inhabiting basal ice facies remains poorly characterised. This paper reports on an integrated chemical, mineralogical, and microbial community analysis of basal ice in the subglacial environment at Svínafellsjökull, in south-east Iceland. Basal ice sediment supported 10E7 cells g^-1 and, based on glacier velocity and sediment flux, an estimated 10E17 cells a^-1 are exported to the glacier foreland. Furthermore, 16S rRNA gene analysis highlighted a glacier basal ice bacterial community dominated by Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi. Sequences ascribed to chemolithotrophic-related species (Thiobacillus, Syderoxidans) were highly abundant. Minerological analyses of basal ice sediment confirmed dominant silicates and iron-containing minerals that represent susceptible substrates open to oxidation by the aforementioned chemolithotrophs. Previous studies have suggested that basal ice could constitute a good analogue for astrobiology. Svínafellsjökull and Mars geology are similar - volcanically derived rocks with a high abundance of silicates and iron-rich minerals, reinforcing this idea. Understanding where the limits of life in extreme environments, such as debris-rich basal ice, could help to unravel how life on other planets could succeed, and could help to identify which markers to use in order to find it. In dark and isolated basal ice niches, the dominating chemolithotrophic bacterial community are likely to act

  17. An Analysis of Mass Balance of Chilean Glaciers

    NASA Astrophysics Data System (ADS)

    Ambinakudige, S.; Tetteh, L.

    2013-12-01

    Glaciers in Chile range from very small glacierets found on the isolated volcanoes of northern Chile to the 13,000 sq.km Southern Patagonian Ice Field. Regular monitoring of these glaciers is very important as they are considered as sensitive indicators of climate change. Millions of people's lives are dependent on these glaciers for fresh water and irrigation purpose. In this study, mass balances of several Chilean glaciers were estimated using Aster satellite images between 2007 and 2012. Highly accurate DEMs were created with supplementary information from IceSat data. The result indicated a negative mass balance for many glaciers indicating the need for further monitoring of glaciers in the Andes.

  18. Arctic polynya and glacier interactions

    NASA Astrophysics Data System (ADS)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring

  19. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  20. A new glacier inventory for the Karakoram-Pamir region

    NASA Astrophysics Data System (ADS)

    Rastner, P.; Paul, F.; Bolch, T.; Moelg, N.

    2015-12-01

    High-quality glacier inventories are required as a reference dataset to determine glacier changes and model their reaction to climate change, among others. In particular in High Mountain Asia such an inventory was missing for several heavily glacierized regions with reportedly strongly changing glaciers. As a contribution to GLIMS and the Randolph Glacier Inventory (RGI) we have mapped all glaciers in the Karakoram and Pamir region within the framework of ESAs Glaciers_cci project. Glacier mapping was performed using the band ratio method (TM3/TM5) and manual editing of Landsat TM/ETM+ imagery acquired around the year 2000. The mapping was challenged by frequent seasonal snow at high elevations, debris-covered glacier tongues, and several surging glaciers. We addressed the snow issue by utilizing multi-temporal imagery and improved manual mapping of debris-covered glacier tongues with ALOS PALSAR coherence images. Slow disintegration of glacier tongues after a surge (leaving still-connected dead ice) results in a difficult identification of the terminus and assignment of entities. Drainage divides were derived from the ASTER GDEM II and manually corrected to calculate topographic parameters. All glaciers larger 0.02 km2 cover an area of about 21,700 km2 in the Karakoram and about 11,800 km² in the Pamir region. Most glaciers are in the 0.1-0.5 km2 size class for Pamir, whereas for the Karakoram they are in the class <0.1 km2. Glaciers between 1 and 5 km2 contribute more than 30% to the total area in Pamir, whereas for the Karakoram region it is only 17%. The mean glacier elevation in the Karakoram (Pamir) region is 5426 (4874) m. A comparison with other recently published inventories reveals differences in the interpretation of glacier extents (mainly in the accumulation region) that would lead to large area changes if unconsidered for change assessment across different inventories.

  1. Global glacier and ice sheet surface velocities derived from 31 years of Landsat imagery

    NASA Astrophysics Data System (ADS)

    Gardner, A. S.; Scambos, T. A.; Fahnestock, M. A.

    2016-12-01

    Glaciers and ice sheets are contributing substantial volumes of water to the world's oceans due to enhanced melt resulting from changes in ocean and atmospheric conditions and respective feedbacks. Improving understanding of the processes leading to accelerated rates of ice loss is necessary for reducing uncertainties sea level projections. One key to doing this is to assemble and analyze long records of glacier change that characterize grounded ice response to changes in driving stress, buttressing, and basal conditions. As part of the NASA funded GO_LIVE project we exploit 31 years of Landsat imagery to construct detailed time histories of global glacier velocities. Early exploration of the dataset reveals the diversity of information to be gleaned: sudden tidewater glacier speedups in the Antarctic Peninsula, rifting of Antarctic ice shelves, high variability in velocities near glacier grounding lines, frequent surge activity in the mountainous regions of Alaska and High Mountain Asia, and the slowdown of land-terminating valley glaciers in Arctic Canada and elsewhere.

  2. A global assessment of the societal impacts of glacier outburst floods

    NASA Astrophysics Data System (ADS)

    Carrivick, Jonathan L.; Tweed, Fiona S.

    2016-09-01

    societal impact are to be better understood. We note that future modelling of the global impact of glacier floods cannot assume that the same trends will continue and will need to consider combining land-use change with probability distributions of geomorphological responses to climate change and to human activity.

  3. Satellite Observations of Glacier Surface Velocities in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Melkonian, A. K.; Pritchard, M. E.

    2012-12-01

    Glaciers in southeast Alaska are undergoing rapid changes and are significant contributors to sea level rise. A key to understanding the ice dynamics is knowledge of the surface velocities, which can be used with ice thickness measurements to derive mass flux rates. For many glaciers in Alaska, surface velocity estimates either do not exist or are based on data that are at least a decade old. Here we present updated maps of glacier surface velocities in southeast Alaska produced through a pixel tracking technique using synthetic aperture radar data and high-resolution optical imagery. For glaciers with previous velocity estimates, we will compare the results and discuss possible implications for ice dynamics. We focus on Glacier Bay and the Stikine Icefield, which contain a number of fast-flowing tidewater glaciers including LeConte, Johns Hopkins, and La Perouse. For the Johns Hopkins, we will also examine the influence a massive landslide in June 2012 had on flow dynamics. Our velocity maps show that within Glacier Bay, the highest surface velocities occur on the tidewater glaciers. La Perouse, the only Glacier Bay glacier to calve directly into the Pacific Ocean, has maximum velocities of 3.5 - 4 m/day. Johns Hopkins Glacier shows 4 m/day velocities at both its terminus and in its upper reaches, with lower velocities of ~1-3 m/day in between those two regions. Further north, the Margerie Glacier has a maximum velocity of ~ 4.5 m/day in its upper reaches and a velocity of ~ 2 m/day at its terminus. Along the Grand Pacific terminus, the western terminus fed by the Ferris Glacier displays velocities of about 1 m/day while the eastern terminus has lower velocities of < 0.5 m/day. The lake terminating glaciers along the Pacific coast have overall lower surface velocities, but they display complex flow patterns. The Alsek Glacier displays maximum velocities of 2.5 m/day above where it divides into two branches. Velocities at the terminus of the northern branch reach 1

  4. Release of PCBs from Silvretta glacier (Switzerland) investigated in lake sediments and meltwater.

    PubMed

    Pavlova, P A; Zennegg, M; Anselmetti, F S; Schmid, P; Bogdal, C; Steinlin, C; Jäggi, M; Schwikowski, M

    2016-06-01

    This study is part of our investigations about the release of persistent organic pollutants from melting Alpine glaciers and the relevance of the glaciers as secondary sources of legacy pollutants. Here, we studied the melt-related release of polychlorinated biphenyls (PCBs) in proglacial lakes and glacier streams of the catchment of the Silvretta glacier, located in the Swiss Alps. To explore a spatial and temporal distribution of chemicals in glacier melt, we combined two approaches: (1) analysing a sediment record as an archive of past remobilization and (2) passive water sampling to capture the current release of PCBs during melt period. In addition, we determined PCBs in a non-glacier-fed stream as a reference for the background pollutant level in the area. The PCBs in the sediment core from the Silvretta lake generally complied with trends of PCB emissions into the environment. Elevated concentrations during the most recent ten years, comparable in level with times of the highest atmospheric input, were attributed to accelerated melting of the glacier. This interpretation is supported by the detected PCB fractionation pattern towards heavier, less volatile congeners, and by increased activity concentrations of the radioactive tracer (137)Cs in this part of the sediment core. In contrast, PCB concentrations were not elevated in the stream water, since no significant difference between pollutant concentrations in the glacier-fed and the non-glacier-fed streams was detected. In stream water, no current decrease of the PCBs with distance from the glacier was observed. Thus, according to our data, an influence of PCBs release due to accelerated glacier melt was only detected in the proglacial lake, but not in the other compartments of the Silvretta catchment.

  5. Characterization of meltwater 'ingredients' at the Haig Glacier, Canadian Rockies: the importance of glaciers to regional water resources

    NASA Astrophysics Data System (ADS)

    Miller, K.; Marshall, S.

    2017-12-01

    With rising temperatures, Alberta's glaciers are under stresses which change and alter the timing, amount, and composition of meltwater contributions to rivers that flow from the Rocky Mountains. Meltwater can be stored within a glacier or it can drain through the groundwater system, reducing and delaying meltwater delivery to glacier-fed streams. This study tests whether the glacier meltwater is chemically distinct from rain or snow melt, and thus whether meltwater contributions to higher-order streams that flow from the mountains can be determined through stream chemistry. Rivers like the Bow, North Saskatchewan, and Athabasca are vital waterways for much of Alberta's population. Assessing the extent of glacier meltwater is vital to future water resource planning. Glacier snow/ice and meltwater stream samples were collected during the 2017 summer melt season (May- September) and analyzed for isotope and ion chemistry. The results are being used to model water chemistry evolution in the melt stream through the summer season. A chemical mixing model will be constructed to determine the fractional contributions to the Haig meltwater stream from precipitation, surface melt, and subglacial meltwaters. Distinct chemical water signatures have not been used to partition water sources and understand glacier contributions to rivers in the Rockies. The goal of this work is to use chemical signatures of glacial meltwater to help assess the extent of glacier meltwater in Alberta rivers and how this varies through the summer season.

  6. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    Small valley glacier exiting the Devon Island Ice Cap in Canada. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: Alex Gardner, Clark University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. A multitemporal probabilistic error correction approach to SVM classification of alpine glacier exploiting sentinel-1 images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Callegari, Mattia; Marin, Carlo; Notarnicola, Claudia; Carturan, Luca; Covi, Federico; Galos, Stephan; Seppi, Roberto

    2016-10-01

    In mountain regions and their forelands, glaciers are key source of melt water during the middle and late ablation season, when most of the winter snow has already melted. Furthermore, alpine glaciers are recognized as sensitive indicators of climatic fluctuations. Monitoring glacier extent changes and glacier surface characteristics (i.e. snow, firn and bare ice coverage) is therefore important for both hydrological applications and climate change studies. Satellite remote sensing data have been widely employed for glacier surface classification. Many approaches exploit optical data, such as from Landsat. Despite the intuitive visual interpretation of optical images and the demonstrated capability to discriminate glacial surface thanks to the combination of different bands, one of the main disadvantages of available high-resolution optical sensors is their dependence on cloud conditions and low revisit time frequency. Therefore, operational monitoring strategies relying only on optical data have serious limitations. Since SAR data are insensitive to clouds, they are potentially a valid alternative to optical data for glacier monitoring. Compared to past SAR missions, the new Sentinel-1 mission provides much higher revisit time frequency (two acquisitions each 12 days) over the entire European Alps, and this number will be doubled once the Sentinel1-b will be in orbit (April 2016). In this work we present a method for glacier surface classification by exploiting dual polarimetric Sentinel-1 data. The method consists of a supervised approach based on Support Vector Machine (SVM). In addition to the VV and VH signals, we tested the contribution of local incidence angle, extracted from a digital elevation model and orbital information, as auxiliary input feature in order to account for the topographic effects. By exploiting impossible temporal transition between different classes (e.g. if at a given date one pixel is classified as rock it cannot be classified as

  8. Geographic Names of Iceland's Glaciers: Historic and Modern

    USGS Publications Warehouse

    Sigurðsson, Oddur; Williams, Richard S.

    2008-01-01

    Climatic changes and resulting glacier fluctuations alter landscapes. In the past, such changes were noted by local residents who often documented them in historic annals; eventually, glacier variations were recorded on maps and scientific reports. In Iceland, 10 glacier place-names are to be found in Icelandic sagas, and one of Iceland's ice caps, Snaefellsjokull, appeared on maps of Iceland published in the 16th century. In the late 17th century, the first description of eight of Iceland's glaciers was written. Therefore, Iceland distinguishes itself in having a more than 300-year history of observations by Icelanders on its glaciers. A long-term collaboration between Oddur Sigurdsson and Richard S. Williams, Jr., led to the authorship of three books on the glaciers of Iceland. Much effort has been devoted to documenting historical glacier research and related nomenclature and to physical descriptions of Icelandic glaciers by Icelanders and other scientists from as far back as the Saga Age to recent (2008) times. The first book, Icelandic Ice Mountains, was published by the Icelandic Literary Society in 2004 in cooperation with the Icelandic Glaciological Society and the International Glaciological Society. Icelandic Ice Mountains was a glacier treatise written by Sveinn Palsson in 1795 and is the first English translation of this important scientific document. Icelandic Ice Mountains includes a Preface, including a summary of the history and facsimiles of page(s) from the original manuscript, a handwritten copy, and an 1815 manuscript (without maps and drawings) by Sveinn Palsson on the same subject which he wrote for Rev. Ebenezer Henderson; an Editor's Introduction; 82 figures, including facsimiles of Sveinn Palsson's original maps and perspective drawings, maps, and photographs to illustrate the text; a comprehensive Index of Geographic Place-Names and Other Names in the treatise; References, and 415 Endnotes. Professional Paper 1746 (this book) is the second

  9. Get Close to Glaciers with Satellite Imagery.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1986-01-01

    Discusses the use of remote sensing from satellites to monitor glaciers. Discusses efforts to use remote sensing satellites of the Landsat series for examining the global distribution, mass, balance, movements, and dynamics of the world's glaciers. Includes several Landsat images of various glaciers. (TW)

  10. Hypsometric control on glacier mass balance sensitivity in Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Sass, L.; Arendt, A. A.; O'Neel, S.; Kienholz, C.; Larsen, C.; Burgess, E. W.

    2015-12-01

    Mass loss from glaciers in Alaska is dominated by strongly negative surface balances, particularly on small, continental glaciers but can be highly variable from glacier to glacier. Glacier hypsometry can exert significant control on mass balance sensitivity, particularly if the equilibrium line altitude (ELA) is in a broad area of low surface slope. In this study, we explore the spatial variability in glacier response to future climate forcings on the basis of hypsometry. We first derive mass balance sensitivities (30-70 m ELA / 1° C and 40-90 m ELA / 50% decrease in snow accumulation) from the ~50-year USGS Benchmark glaciers mass balance record. We subsequently assess mean climate fields in 2090-2100 derived from the IPCC AR5/CMIP5 RCP 6.0 5-model mean. Over glaciers in Alaska, we find 2-4° C warming and 10-20% increase in precipitation relative to 2006-2015, but a corresponding 0-50% decrease in snow accumulation due to rising temperatures. We assess changes in accumulation area ratios (AAR) to a rising ELA using binned individual glacier hypsometries. For an ELA increase of 150 m, the mean statewide AAR drops by 0.45, representing a 70% reduction in accumulation area on an individual glacier basis. Small, interior glaciers are the primary drivers of this reduction and for nearly 25% of all glaciers, the new ELA exceeds the glacier's maximum elevation, portending eventual loss. The loss of small glaciers, particularly in the drier interior of Alaska will significantly modify streamflow properties (flashy hydrographs, earlier and reduced peak flows, increased interannual variability, warmer temperatures) with poorly understood downstream ecosystem and oceanographic impacts.

  11. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)

    NASA Astrophysics Data System (ADS)

    Tielidze, Levan G.; Wheate, Roger D.

    2018-01-01

    There have been numerous studies of glaciers in the Greater Caucasus, but none that have generated a modern glacier database across the whole mountain range. Here, we present an updated and expanded glacier inventory at three time periods (1960, 1986, 2014) covering the entire Greater Caucasus. Large-scale topographic maps and satellite imagery (Corona, Landsat 5, Landsat 8 and ASTER) were used to conduct a remote-sensing survey of glacier change, and the 30 m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM; 17 November 2011) was used to determine the aspect, slope and height distribution of glaciers. Glacier margins were mapped manually and reveal that in 1960 the mountains contained 2349 glaciers with a total glacier surface area of 1674.9 ± 70.4 km2. By 1986, glacier surface area had decreased to 1482.1 ± 64.4 km2 (2209 glaciers), and by 2014 to 1193.2 ± 54.0 km2 (2020 glaciers). This represents a 28.8 ± 4.4 % (481 ± 21.2 km2) or 0.53 % yr-1 reduction in total glacier surface area between 1960 and 2014 and an increase in the rate of area loss since 1986 (0.69 % yr-1) compared to 1960-1986 (0.44 % yr-1). Glacier mean size decreased from 0.70 km2 in 1960 to 0.66 km2 in 1986 and to 0.57 km2 in 2014. This new glacier inventory has been submitted to the Global Land Ice Measurements from Space (GLIMS) database and can be used as a basis data set for future studies.

  12. Monitoring the morphological evolution of complex glaciers: the Planpincieux case-study (Mont Blanc - Aosta Valley)

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Manconi, Andrea; Allasia, Paolo; Curtaz, Michèle; Vagliasindi, Marco; Bertolo, Davide

    2014-05-01

    The Planpincieux Glacier (PG) is located on the Italian side of the Grandes Jorasses massif, Mont Blanc, Italy. This area is historically known for the occasional activation of ice falls events from the frontal part of the glacier. The PG is a so-called "polythermal" glacier, meaning that the liquid water present at contact between ice and the bedrock in the lower part of the glacier itself plays an important role in the glacier dynamics, and ice falls might occur in a sudden and unpredictable fashion. In this scenario, the accurate analysis of the glacier morphological evolution assumes a crucial role. Starting from 2012, within the framework of the regional plan for glaciers risk detection, a research project was set up to study the Planpincieux Glacier and evaluate the potential hazard concerning the possible activation of large ice or ice-snow avalanches triggered by icefall events in that area. Dynamics of such avalanches, as well as potentially endangered areas, have been evaluated in an expertise by the SLF Institute. Therefore, the availability of both qualitative information and quantitative measurements relevant to the glacier movements represented a primary goal. After a careful evaluation of several possible technical solutions to achieve displacement monitoring also based on the results of a preliminary study managed by the ETH Zurich (prof. M. Funk), we installed an experimental monitoring station located on the opposite side of the valley, at the top of the Mt. de la Saxe, ca. 3.5 km away from the main target. The monitoring station is composed of two modules, including: (i) a surveillance module, based on a medium resolution digital camera, observing large part of the slope; (ii) a photogrammetric module, based on a high resolution digital camera equipped with a 300mm optical zoom, pointed on the Planpincieux glacier front. At this stage, our analyses focused mainly on the qualitative assessment and recognition of impulsive phenomena affecting the

  13. Bacterial Microbiota Associated with the Glacier Ice Worm Is Dominated by Both Worm-Specific and Glacier-Derived Facultative Lineages

    PubMed Central

    Murakami, Takumi; Segawa, Takahiro; Dial, Roman; Takeuchi, Nozomu; Kohshima, Shiro; Hongoh, Yuichi

    2017-01-01

    The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures between the ice worm and glacier surface samples. Several bacterial phylotypes were detected almost exclusively in the ice worms, and these bacteria were phylogenetically affiliated with either animal-associated lineages or, interestingly, clades mostly consisting of glacier-indigenous species. The former included bacteria that belong to Mollicutes, Chlamydiae, Rickettsiales, and Lachnospiraceae, while the latter included Arcicella and Herminiimonas phylotypes. Among these bacteria enriched in ice worm samples, Mollicutes, Arcicella, and Herminiimonas phylotypes were abundantly and consistently detected in the ice worm samples; these phylotypes constituted the core microbiota associated with the ice worm. A fluorescence in situ hybridization analysis showed that Arcicella cells specifically colonized the epidermis of the ice worms. Other bacterial phylotypes detected in the ice worm samples were also abundantly recovered from the respective habitat glaciers; these bacteria may be food for ice worms to digest or temporary residents. Nevertheless, some were overrepresented in the ice worm RNA samples; they may also function as facultative gut bacteria. Our results indicate that the community structure of bacteria associated with ice worms is distinct from that in the associated glacier and includes worm-specific and facultative, glacier-indigenous lineages. PMID:28302989

  14. Bacterial Microbiota Associated with the Glacier Ice Worm Is Dominated by Both Worm-Specific and Glacier-Derived Facultative Lineages.

    PubMed

    Murakami, Takumi; Segawa, Takahiro; Dial, Roman; Takeuchi, Nozomu; Kohshima, Shiro; Hongoh, Yuichi

    2017-03-31

    The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures between the ice worm and glacier surface samples. Several bacterial phylotypes were detected almost exclusively in the ice worms, and these bacteria were phylogenetically affiliated with either animal-associated lineages or, interestingly, clades mostly consisting of glacier-indigenous species. The former included bacteria that belong to Mollicutes, Chlamydiae, Rickettsiales, and Lachnospiraceae, while the latter included Arcicella and Herminiimonas phylotypes. Among these bacteria enriched in ice worm samples, Mollicutes, Arcicella, and Herminiimonas phylotypes were abundantly and consistently detected in the ice worm samples; these phylotypes constituted the core microbiota associated with the ice worm. A fluorescence in situ hybridization analysis showed that Arcicella cells specifically colonized the epidermis of the ice worms. Other bacterial phylotypes detected in the ice worm samples were also abundantly recovered from the respective habitat glaciers; these bacteria may be food for ice worms to digest or temporary residents. Nevertheless, some were overrepresented in the ice worm RNA samples; they may also function as facultative gut bacteria. Our results indicate that the community structure of bacteria associated with ice worms is distinct from that in the associated glacier and includes worm-specific and facultative, glacier-indigenous lineages.

  15. Spatio-temporal Variation in Glacier Ice as Habitat for Harbor Seals in an Alaskan Tidewater Glacier Fjord

    NASA Astrophysics Data System (ADS)

    Womble, J. N.; McNabb, R. W.; Gens, R.; Prakash, A.

    2015-12-01

    Some of the largest aggregations of harbor seals (Phoca vitulina richardii) in Alaska occur in tidewater glacier fjords where seals rest upon icebergs that are calved from tidewater glaciers into the marine environment. The distribution, amount, and size of floating ice in fjords are likely important factors influencing the spatial distribution and abundance of harbor seals; however, fine-scale characteristics of ice habitat that are used by seals have not been quantified using automated methods. We quantified the seasonal changes in ice habitat for harbor seals in Johns Hopkins Inlet, a tidewater glacier fjord in Glacier Bay National Park, Alaska, using aerial photography, object-based image analysis, and spatial models. Aerial photographic surveys (n = 53) were conducted of seals and ice during the whelping (June) and molting (August) seasons from 2007-2014. Surveys were flown along a grid of 12 transects and high-resolution digital photos were taken directly under the plane using a vertically aimed camera. Seal abundance and spatial distribution was consistently higher during June (range: 1,672-4,340) than August (range: 1,075-2,582) and corresponded to the spatial distribution and amount of ice. Preliminary analyses from 2007 suggest that the average percent of icebergs (ice ≥ than 1.6m2) and brash ice (ice < 1.6m2) per scene were greater in June (icebergs: 1.8% ± 1.6%; brash ice: 43.8% ± 38.9%) than August (icebergs: 0.2% ± 0.7%; brash ice; 15.8% ± 26.4%). Iceberg angularity (an index of iceberg shape) was also greater in June (1.7 ± 0.9) than August (0.9 ± 0.9). Potential factors that may influence the spatio-temporal variation in ice habitat for harbor seals in tidewater glacier fjords include frontal ablation rates of glaciers, fjord circulation, and local winds. Harbor seals exhibit high seasonal fidelity to tidewater glacier fjords, thus understanding the relationships between glacier dynamics and harbor seal distribution will be critical for

  16. Increased Melting of Glaciers during Cotopaxi volcano awakening in 2015

    NASA Astrophysics Data System (ADS)

    Ramon, Patricio; Vallejo, Silvia; Almeida, Marco; Gomez, Juan Pablo; Caceres, Bolivar

    2016-04-01

    Cotopaxi (5897 m), located about 50 km south of Quito (Ecuador), is one of the most active volcanoes in the Andes and its historical eruptions have caused a great impact on the population by the generation of lahars along its three main drainages (N, S, E). Starting on April 2015 the seismic monitoring networks and the SO2 gas detection network in May 2015 showed a significant increase from their background values, in June a geodetic instrument located in the NE flank started to record inflation; all this indicated the beginning of a new period of unrest. On August 14, five small phreatic explosions occurred, accompanied by large gas and ash emissions, ash falls were reported to the W of the volcano and to the S of Quito capital city. Three new episodes of ash and gas emissions occurred afterwards and towards the end of November 2015, the different monitoring parameters indicated a progressive reduction in the activity of the volcano. Since August 18 almost weekly overflights were made in order to conduct thermal (FLIR camera), visual and SO2 gas monitoring. Towards the end of August thermal measurements showed for the first time the presence of new thermal anomalies (13.5 to 16.3 °C) located in the crevices of the N glaciers, at the same time fumarolic gases were observed coming out from those fractures. On a flight made on September 3, the presence of water coming out from the basal fronts of the northern glaciers was clearly observed and the formation of narrow streams of water running downslope, while it was evident the appearance of countless new crevices in the majority of glacier ends, but also new cracks and rockslides on the upper flanks. All this led to the conclusion that an abnormal process was producing the melting of the glaciers around the volcano. Starting on September it was possible to observe the presence of small secondary lahars descending several streams and we estimated that many of them are due to increased glacier melting. Later

  17. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  18. Morphological characteristics of overdeepenings in high-mountain glacier beds

    NASA Astrophysics Data System (ADS)

    Haeberli, Wilfried; Cochachin, Alejo; Fischer, Urs; Giráldez, Claudia; Linsbauer, Andreas; Salazar, Cesar

    2014-05-01

    the parameters surface area, length, width, depth, volume, forward/adverse slope and their statistical interrelations are determined with their corresponding uncertainty ranges. For sample (b) basal shear stress (as used in the model), thermal ice types, glacier size/type, relation to flow characteristics (position along flow, confined-unconfined, confluence-diffluence-channel-forefield) are also included. As a principal problem thereby remains the unsolved question of when exactly the overdeepenings had formed (present-day conditions, Holocene maximum stages, ice ages?). Some results nevertheless remain safe. The most striking phenomenon is the high variability of geometries observed with modelled as well as measured forms: small features can, for instance, be deep and large features shallow. Overdeepenings can form under conditions of low to high basal shear stresses at cirque, confluence, channel and terminus positions. Rather than the exact size, locations and general parameter values of overdeepenings from different model runs appear to be robust and comparable. Only weak correlations seem to exist between the investigated geometrical parameters; rather uncertain indications are found of an optimal elongation for maximum depths. Inclinations of adverse slopes do not differ significantly from those of forward slopes and are in most cases far higher than limiting values for floatation within the overdeepenings. Lakes, which fill exposed overdeepenings, can be dammed by huge (lateral/terminal) moraines or may form in polished rock beds but have comparable spreads of geometrical characteristics in both cases.

  19. Passive microwave (SSM/I) satellite predictions of valley glacier hydrology, Matanuska Glacier, Alaska

    USGS Publications Warehouse

    Kopczynski, S.E.; Ramage, J.; Lawson, D.; Goetz, S.; Evenson, E.; Denner, J.; Larson, G.

    2008-01-01

    We advance an approach to use satellite passive microwave observations to track valley glacier snowmelt and predict timing of spring snowmelt-induced floods at the terminus. Using 37 V GHz brightness temperatures (Tb) from the Special Sensor Microwave hnager (SSM/I), we monitor snowmelt onset when both Tb and the difference between the ascending and descending overpasses exceed fixed thresholds established for Matanuska Glacier. Melt is confirmed by ground-measured air temperature and snow-wetness, while glacier hydrologic responses are monitored by a stream gauge, suspended-sediment sensors and terminus ice velocity measurements. Accumulation area snowmelt timing is correlated (R2 = 0.61) to timing of the annual snowmelt flood peak and can be predicted within ??5 days. Copyright 2008 by the American Geophysical Union.

  20. Debris supply to mountain glaciers and how it effects their sensitivity to climate change - A case study from the Chhota Shigri Glacier, India

    NASA Astrophysics Data System (ADS)

    Scherler, D.; Egholm, D. L.

    2017-12-01

    Debris-covered glaciers are widespread in the Himalaya and other steep mountain ranges. They testify to active erosion of ice-free bedrock hillslopes that tower above valley glaciers, sometimes more than a kilometer high. It is well known that supraglacial debris cover significantly reduces surface ablation rates and thereby influences glacial mass balances and runoff. However, the dynamic evolution of debris cover along with climatic and topographic changes is poorly understood. Here, we present ice-free hillslope erosion rates derived from 10Be concentrations in the ablation-dominated medial moraine of the Chhota Shigri Glacier, Indian Himalaya. We combine our empirical, field-based approach with a numerical model of frost-related sediment production and glacial debris transport to (1) assess patterns of ice-free hillslope erosion that are permissible with observed patterns of debris cover, and (2) explore the coupled response of glaciers and ice-free hillslopes to climatic changes. Measured 10Be concentrations increase downglacier from 3×104 to 6×104 atoms (g quartz) -1, yielding hillslope erosion rates of 1.3-0.6 mm yr-1. The accumulation of 10Be during debris residence on the ice surface can only account for a small fraction (<20%) of the downglacier increase. Other potential explanations include (1) heterogeneous source areas with different average productions rates, and (2) homogeneous source areas but temporally variable erosion rates. We used the 10Be-derived hillslope erosion rates to define debris supply rates from ice-free bedrock hillslopes in the numerical ice and landscape evolution model iSOSIA. Based on available mass balance and ice thickness data, the calibrated model reproduces the medial moraine of the Chhota Shogri Glacier quite well, although uncertainties exist due to the transient disequilibrium of the glacier, i.e., the current debris cover was fed into the glacier during the Little Ice Age (LIA), and thus under different boundary

  1. Comparative Analysis of Glaciers in the Chugach-St.-Elias Mountains

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Mayer, H.

    2003-12-01

    The phenomenon of glacier surges has to date been studied for only relatively few examples. 136 of the 204 surge-type glaciers in North America listed by Post (1969) are located in the St. Elias Mountains. In August 2003 we increased our data inventory of observations on surge glaciers by collecting material for 19 glaciers in the Glacier Bay area and neighboring regions in the eastern St. Elias Mountains, including 6 surge-type glaciers (Carroll, Rendu, Ferris, Grand Pacific, Margerie, and Johns Hopkins Glaciers). Analyses utilize digital video and photographic data, satellite data and GPS data. Geostatistical classification parameters and algebraic parameters characteristic of surge motions are derived for selected glaciers. During the 1993-1995 surge of Bering Glacier the entire surface of Alaska's longest glacier was crevassed and could be segmented into several dynamic provinces, where patterns changed as the surge progressed and the affected areas expanded downglacier and upglacier, finally affecting the Bagley Ice Field. The middle moraine of Grand Pacific and Ferris Glaciers is pushed over to the Grand Pacific side, caused by a recent surge of the heavily crevassed Ferris Glacier. The front of Johns Hopkins Glacier advances, as its lower reaches are affected by a surge. The surge history of Bering Glacier goes back to the Holocene, whereas Carroll and Rendu Glaciers have surged only 3-4 times. These observations pose questions on the possible relationship between surge dynamics and climatic changes.

  2. A new glacier inventory for 2009 reveals spatial and temporal variability in glacier response to atmospheric warming in the Northern Antarctic Peninsula, 1988-2009

    NASA Astrophysics Data System (ADS)

    Davies, B. J.; Carrivick, J. L.; Glasser, N. F.; Hambrey, M. J.; Smellie, J. L.

    2011-12-01

    The Northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse published data for glacier classification, morphology, area, length or altitude. This paper firstly uses ASTER images from 2009 and a SPIRIT DEM from 2006 to classify the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island. Secondly, this paper uses LANDSAT-4 and ASTER images from 1988 and 2001 and data from the Antarctic Digital Database (ADD) from 1997 to document glacier change 1988-2009. From 1988-2001, 90 % of glaciers receded, and from 2001-2009, 79 % receded. Glaciers on the western side of Trinity Peninsula retreated relatively little. On the eastern side of Trinity Peninsula, the rate of recession of ice-shelf tributary glaciers has slowed from 12.9 km2 a-1 (1988-2001) to 2.4 km2 a-1 (2001-2009). Tidewater glaciers on the drier, cooler Eastern Trinity Peninsula experienced fastest recession from 1988-2001, with limited frontal retreat after 2001. Land-terminating glaciers on James Ross Island also retreated fastest in the period 1988-2001. Large tidewater glaciers on James Ross Island are now declining in areal extent at rates of up to 0.04 km2 a-1. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula. Strong variability in tidewater glacier recession rates may result from the influence of glacier length, altitude, slope and hypsometry on glacier mass balance. High snowfall means that the glaciers on the Western Peninsula are not currently rapidly receding. Recession rates on the eastern side of Trinity Peninsula are slowing as the floating ice tongues retreat into the fjords and the glaciers reach a

  3. Airfields on Antarctic Glacier Ice

    DTIC Science & Technology

    1989-12-01

    glacier ice Vu., vA2 2~ FEB 0C DLSPM ONSAEM- T r it Cover: Blue ice areas near the Scott Glacier. There is a possible landing field at 86035"S, 148025"W...pi. Ii7 t E 9 v 1.. - Site$ At Moliunt HoWe t87*20S. 14W 0W) -nd P-411 lardain t leois lower than that of clear Glacier (85ൎ’S, 16795T~) wur-a...emphasis much more vigorous than isthecasein thehighin- on the area of Mount Howe and D’Angelo Bluff teior of Antarctica. For example, near Mawson

  4. Post-Little Landscape and Glacier Change in Glacier Bay National Park: Documenting More than a Century of Variability with Repeat Photography

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Karpilo, R. D.; Pranger, H. S.

    2004-12-01

    Historical photographs, many dating from the late-19th century are being used to document landscape and glacier change in the Glacier Bay area. More than 350 pre-1980 photographs that show the Glacier Bay landscape and glacier termini positions have been acquired by the authors. Beginning in 2003, approximately 150 of the sites from which historical photographs had been made were revisited. At each site, elevation and latitude and longitude were recorded using WAAS-enabled GPS. Compass bearings to photographic targets were also determined. Finally, using the historical photographs as a composition guide, new photographs were exposed using digital imaging and film cameras. In the laboratory, 21st century images and photographs were compared with corresponding historical photographs to determine, and to better understand rates, timing, and mechanics of Glacier Bay landscape evolution, as well as to clarify the response of specific glaciers to changing climate and environment. The comparisons clearly document rapid vegetative succession throughout the bay; continued retreat of larger glaciers in the East Arm of the bay; a complex pattern of readvance and retreat of the larger glaciers in the West Arm of the bay, coupled with short-term fluctuations of its smaller glaciers; transitions from tidewater termini to stagnant, debris-covered termini; fiord sedimentation and erosion; development of outwash and talus features; and many other dramatic changes. As might be expected, 100-year-plus photo comparisons show significant changes throughout the Glacier Bay landscape, especially at the southern ends of East and West Arms. Surprisingly, recent changes, occurring since the late-1970s were equally dramatic, especially documenting the rapid thinning and retreat of glaciers in upper Muir Inlet.

  5. Subduction / exhumation dynamics: Petrochronology in the Glacier-Rafray slice (Western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Burn, Marco; Lanari, Pierre; Engi, Martin

    2014-05-01

    Petrochronology is the combination of in situ age-dating, geothermobarometry and structural geology and aims to unravel Pressure-Temperature-deformation-time (P-T-ɛ-t) paths. To link P-T conditions to deformation stages is daily business for metamorphic petrologists, but recent micro-mapping techniques (XMapTools program) provide an additional tool to achieve this goal. Absolute age is often difficult to assess in metamorphic rocks, as it is challenging to link specific P-T conditions to most of the mineral chronometers. Allanite is a common accessory phase in high-P metamorphic rocks and is a potential target to determine Th(-U)/Pb ages. Allanite from a leucocratic gneiss of the Glacier-Rafray slice in the western Alps consists of several chemically different zones: one major zone can be linked to a first high-P phengite generation. To determine the age of this high-P growth zone we used La-ICP-MS in situ techniques, which allowed us to date an appropriate growth rim per grain. Even so particular care was required when evaluating the isotope signals laser ablation leads to the excavation of a volume, which potentially can be chemically and/or age-zoned. We have developed a new method to track changes in the plasma during the ablation. This method aims to identify discrete age zones. La-ICP-MS spectra have been modeled so as to reproduce the shape of the spectra measured. These results indicate that high-P allanite first grew in equilibrium with phengite at 84 ± 4 Ma, whereas a second growth event occurred at ~40 Ma. A final epidotic rim grew at greenschist facies conditions, but this stage could not be dated. These findings have implications for our interpretation of several units in the Western Alps: In the Sesia Zone (former Adriatic margin), the earliest high-P metamorphism occurred at 85 Ma (Regis et al., 2014), precisely as the first high-P peak we discovered in the Glacier-Rafray slice. Austroalpine klippen such as this are commonly seen as extensional

  6. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 1. Effect of Percolating Meltwater on their Distribution in Glacier Ice.

    PubMed

    Pavlova, Pavlina Aneva; Jenk, Theo Manuel; Schmid, Peter; Bogdal, Christian; Steinlin, Christine; Schwikowski, Margit

    2015-12-15

    In Alpine regions, glaciers act as environmental archives and can accumulate significant amounts of atmospherically derived pollutants. Due to the current climate-warming-induced accelerated melting, these pollutants are being released at correspondingly higher rates. To examine the effect of melting on the redistribution of legacy pollutants in Alpine glaciers, we analyzed polychlorinated biphenyls in an ice core from the temperate Silvretta glacier, located in eastern Switzerland. This glacier is affected by surface melting in summer. As a result, liquid water percolates down and particles are enriched in the current annual surface layer. Dating the ice core was a challenge because meltwater percolation also affects the traditionally used parameters. Instead, we counted annual layers of particulate black carbon in the ice core, adding the years with negative glacier mass balance, that is, years with melting and subsequent loss of the entire annual snow accumulation. The analyzed samples cover the time period 1930-2011. The concentration of indicator PCBs (iPCBs) in the Silvretta ice core follows the emission history, peaking in the 1970s (2.5 ng/L). High PCB values in the 1990s and 1930s are attributed to meltwater-induced relocation within the glacier. The total iPCB load at the Silvretta ice core site is 5 ng/cm(2). A significant amount of the total PCB burden in the Silvretta glacier has been released to the environment.

  7. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    PubMed

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  8. Effect of fjord geometry on tidewater glacier stability

    NASA Astrophysics Data System (ADS)

    Åkesson, Henning; Nisancioglu, Kerim H.; Nick, Faezeh M.

    2016-04-01

    Many marine-terminating glaciers have thinned, accelerated and retreated during the last two decades, broadly consistent with warmer atmospheric and oceanic conditions. However, these patterns involve considerable spatial and temporal variability, with diverse glacier behavior within the same regions. Similarly, reconstructions of marine-terminating glaciers indicate highly asynchronous retreat histories. While it is well known that retrograde slopes can cause marine ice sheet instabilities, the effect of lateral drag and fjord width has received less attention. Here, we test the hypothesis that marine outlet glacier stability is largely controlled by fjord width, and to a less extent by regional climate forcing. We employ a dynamic flowline model on idealized glacier geometries (representative of different outlet glaciers) to investigate geometric controls on decadal and longer times scales. The model accounts for driving and resistive stresses of glacier flow as well as along-flow stress transfer. It has a physical treatment of iceberg calving and a time-adaptive grid allowing for continuous tracking of grounding-line migration. We apply changes in atmospheric and oceanic forcing and show how wide and narrow fjord sections foster glacier (in)stabilities. We also evaluate the effect of including a surface mass balance - elevation feedback in such a setting. Finally, the relevance of these results to past and future marine-terminating glacier stability is discussed.

  9. Quantifying the Mass Flux, Erosion Rates and Geomorphological Impact of Surging Karakoram Glaciers

    NASA Astrophysics Data System (ADS)

    Quincey, D. J.; Glasser, N. F.; King, O.

    2017-12-01

    Surge-type glaciers switch between phases of rapid and slow flow on timescales of a few years to decades. Here, we describe glacier-surface debris changes, surface-elevation changes and velocity changes through surges lasting five to ten years on ten different Karakoram glaciers (Khurdopin, Gasherbrum, Kunyang, Braldu, Chong Khumdan, Qiogeli, Saxintulu, Shakesiga, Skamri and Unnamed). We use these data to characterise their geomorphological imprint on the landscape, calculate a minimum mass flux for each of the surges and provide first-order estimates of bed erosion rates. Surface debris transport through the surges includes widespread rearrangement of surface debris features, folding and the concentration of debris near glacier termini, confluences and margins. Ice and debris-flux is partly dependent on the style of the surge, and in particular whether a surge-front propagates down-glacier during the active phase. Erosion rates also depend on the style and longevity of the surge, but are largely comparable between each of the studied datasets. We conclude by estimating the geomorphic work undertaken during surge events in comparison to work carried out by non-surging glaciers in the same region.

  10. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier.

    PubMed

    Segawa, Takahiro; Ishii, Satoshi; Ohte, Nobuhito; Akiyoshi, Ayumi; Yamada, Akinori; Maruyama, Fumito; Li, Zhongqin; Hongoh, Yuichi; Takeuchi, Nozomu

    2014-10-01

    Cryoconites are microbial aggregates commonly found on glacier surfaces where they tend to take spherical, granular forms. While it has been postulated that the microbes in cryoconite granules play an important role in glacier ecosystems, information on their community structure is still limited, and their functions remain unclear. Here, we present evidence for the occurrence of nitrogen cycling in cryoconite granules on a glacier in Central Asia. We detected marker genes for nitrogen fixation, nitrification and denitrification in cryoconite granules by digital polymerase chain reaction (PCR), while digital reverse transcription PCR analysis revealed that only marker genes for nitrification and denitrification were abundantly transcribed. Analysis of isotope ratios also indicated the occurrence of nitrification; nitrate in the meltwater on the glacier surface was of biological origin, while nitrate in the snow was of atmospheric origin. The predominant nitrifiers on this glacier belonged to the order Nitrosomonadales, as suggested by amoA sequences and 16S ribosomal RNA pyrosequencing analysis. Our results suggest that the intense carbon and nitrogen cycles by nitrifiers, denitrifiers and cyanobacteria support abundant and active microbes on the Asian glacier. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Uncovering glacier dynamics beneath a debris mantle

    NASA Astrophysics Data System (ADS)

    Lefeuvre, P.-M.; Ng, F. S. L.

    2012-04-01

    Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of

  12. ICESat laser altimetry over small mountain glaciers

    NASA Astrophysics Data System (ADS)

    Treichler, Désirée; Kääb, Andreas

    2016-09-01

    Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003-2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs - a result of spatio-temporal merging - has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around -0.36 ± 0.07 m ice per year. This regional

  13. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  14. Glacier discharge and climate variations

    NASA Astrophysics Data System (ADS)

    Dominguez, M. Carmen; Rodriguez-Puebla, Concepcion; Encinas, Ascension H.; Visus, Isabel; Eraso, Adolfo

    2010-05-01

    Different studies account for the warming in the polar regions that consequently would affect Glacier Discharge (GD). Since changes in GD may cause large changes in sensible and latent heat fluxes, we ask about the relationships between GD and climate anomalies, which have not been quantified yet. In this study we apply different statistical methods such as correlation, Singular Spectral Analysis and Wavelet to compare the behaviour of GD data in two Experimental Pilot Catchments (CPE), one (CPE-KG-62°S) in the Antarctica and the other (CPE-KVIA-64°N) in the Arctic regions. Both CPE's are measuring sub- and endo-glacier drainage for recording of glacier melt water run-off. The CPE-KG-62°S is providing hourly GD time series since January 2002 in Collins glacier of the Maxwell Bay in King George Island (62°S, 58°W). The second one, CPE-KVIA-64°N, is providing hourly GD time series since September 2003 in the Kviarjökull glacier of the Vatnajökull ice cap in Iceland (64°N, 16°W). The soundings for these measurements are pressure sensors installed in the river of the selected catchments for the ice cap (CPE-KG-62°S) and in the river of the glacier for (CPE-KVIA-64°N). In each CPE, the calibration function between level and discharge has been adjusted, getting a very high correlation coefficient (0.99 for the first one and 0.95 for the second one), which let us devise a precise discharge law for the glacier. We obtained relationships between GD with atmospheric variables such as radiation, temperature, relative humidity, atmospheric pressure and precipitation. We also found a negative response of GD to El Niño teleconnection index. The results are of great interest due to the GD impact on the climate system and in particular for sea level rise.

  15. Glacier Dynamics and Outburst Flood Potential from the Imja and Thulagi Glacier-Lake Systems (Nepal)

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Leonard, Gregory; Regmi, Dhananjay; Haritashya, Umesh; Chand, Mohan; Pradhan, Suresh; Sapkota, Nawaraj; Byers, Alton; Joshi, Sharad; McKinney, Daene; Mool, Pradeep; Somos-Valenzuela, Marcelo; Huggel, Christian

    2015-04-01

    Thulagi and Imja lakes are, according to ICIMOD, among Nepal's most dangerous glacier lakes, i.e., most likely to cause death and destruction in case of a glacier lake outburst flood (GLOF). Imja Lake and the associated Imja and Lhoste-Shar glaciers have been intensively studied; Thulagi Glacier and its lake are much less studied. Collectively, we have undertaken a series of increasingly thorough bathymetric and land surveys and satellite remote sensing analyses of Imja Lake and its glacier setting. We are analyzing several expeditions' data to build a detailed assessment of the glacier and lake to better establish the dynamical evolution of the system and its future GLOF potential. Our most recent, most complete bathymetric survey of Imja Lake has revealed a much greater volume (75,200,000 cubic meters) and maximum depth (149.8 m) than found before. Our analysis suggests that not all possible Imja GLOF scenarios would result in devastation. Some moraine melt-through or down-cutting mechanisms -- perhaps induced by extreme monsoon precipitation or an earthquake -- could generate outbursts lasting from 10,000-100,000 seconds ("slow GLOFs"), thus limiting peak flows and downstream damage. The potential damage from a slow GLOF from Imja Lake -- even if there is a large total volume -- is lessened by the relatively low peak discharge and because the major villages downstream from Imja Lake are situated just outside of and above a deep, broad outwash and debris-flow channel system. Imja and other glaciers in the area have built a large fan, now deeply trenched, which is able to accommodate the peak discharges of potential slow GLOFs, such that Dingboche and other villages would be spared. However, local geomorphology also bears evidence of "fast GLOFs," such as may be issued by a tsunami, which could be initiated by a large mass movement into Imja Lake and which might override and damage the end moraine in <100 seconds. Dingboche and other villages are vulnerable to

  16. Updating the New Zealand Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Baumann, S. C.; Anderson, B.; Mackintosh, A.; Lorrey, A.; Chinn, T.; Collier, C.; Rack, W.; Purdie, H.

    2017-12-01

    The last complete glacier inventory of New Zealand dates from the year 1978 (North Island 1988) and was manually constructed from oblique aerial photographs and geodetic maps (Chinn 2001). The inventory has been partly updated by Gjermundsen et al. (2011) for the year 2002 (40% of total area) and by Sirguey & More (2010) for the year 2009 (32% of total area), both using ASTER satellite imagery. We used Landsat 8 OLI/TIRS satellite data from February/March 2016 to map the total glaciated area. Clean and debris-covered ice were mapped semi-automatically. The band ratio approach was used for clean ice (ratio: red/SWIR). We mapped debris-covered ice using a supervised classification (maximum likelihood). Manual post processing was necessary due to misclassifications (e.g. lakes, clouds) or mapping in shadowed areas. It was also necessary to manually combine the clean and debris-covered parts into single glaciers. Additional input data for the post processing were Sentinel 2 images from the same time period, orthophotos from Land Information New Zealand (resolution: 0.75 m, date: Nov 2014), and the 1978/88 outlines from the GLIMS database (http://www.glims.org/). As the Sentinel 2 data were more heavily cloud covered compared to the Landsat 8 images, they were only used for post processing and not for the classification itself. Initial results show that New Zealand glaciers covered an area of about 1050 km² in 2016, a reduction of 16% since 1978. Approximately 17% of glacier area was covered in surface debris. The glaciers in the central Southern Alps around Mt Cook reduced in area by 24%. Glaciers in the North Island of New Zealand reduced by 71% since 1988, and only 2 km² of ice cover remained in 2016. Chinn, TJH (2001). "Distribution of the glacial water resources of New Zealand." Journal of Hydrology (NZ) 40(2): 139-187 Gjermundsen, EF, Mathieu, R, Kääb, A, Chinn, TJH, Fitzharris, B & Hagen, JO (2011). "Assessment of multispectral glacier mapping methods and

  17. Surge-type glaciers in the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Kriti; Bolch, Tobias

    2016-04-01

    Surge-type glaciers in High Mountain Asia are mostly observed in Karakoram and Pamir. However, few surge-type glaciers also exist in the Tien Shan, but have not comprehensively studied in detail in the recent literature. We identified surge-type glaciers in the Tien Shan either from available literature or by manual interpretation using available satellite images (such as Corona, Hexagon, Landsat, SPOT, IRS) for the period 1960 to 2014. We identified 39 possible surge-type glaciers, showing typical characteristics like looped moraines. Twenty-two of them rapidly advanced during different periods or a surge was clearly described in the literature. For the remaining possible surge-type glaciers either the advance, in terms of time and length, were not mentioned in detail in the literature, or the glaciers have remained either stable or retreated during the entire period of our study. Most of the surge-type glaciers cluster in the Inner Tien Shan (especially in the Ak-Shiirak rage) and the Central Tien Shan, are in size and are facing North, West or North West. Pronounced surge events were observed for North Inylchek and Samoilowitsch glaciers, both of which are located in the Central Tien Shan. Samoilowitsch Glacier retreated by more than 3 km between 1960 (length ~8.9 km) and 1992 (~5.8 km), advanced by almost 3 km until 2006 and slightly retreated thereafter. The most pronounced advance occurred between 2000 and 2002. DEM differencing (based on SRTM3 data and stereo Hexagon and Cartosat-1 data) revealed a significant thickening in the middle reaches (reservoir area) of the glacier between 1973 and 2000 while the surface significantly lowered in the middle and upper parts of the glacier between 2000 and 2006. Hence, the ice mass was transferred to the lower reaches (receiving area) and caused the advance with a maximum thickening of more than 80 m. The ~30 km long North Inylchek Glacier retreated since 1943 and showed a very rapid advance of ~3.5 km especially in

  18. Fate of Glaciers in the Tibetan Plateau by 2100

    NASA Astrophysics Data System (ADS)

    Duan, K.

    2017-12-01

    As the third polar on the Earth, the Tibetan plateau holds more than 40,000 glaciers which have experienced a rapid retreat in recent decades. The variability of equilibrium line altitude (ELA) indicates expansion and wastage of glacier directly. Here we simulated the ELA variability in the Tibetan Plateau based on a full surface energy and mass balance model. The simulation results are agreement with the observations. The ELAs have risen at a rate of 2-8m/a since 1970 throughout the Plateau, especially in the eastern Plateau where the ELAs have risen to or over the top altitude of glacier, indicating the glaciers are accelerating to melting over there. Two glaciers, XD glacier in the center of the Plateau and Qiyi glacier in the Qilian Mountain, are chosen to simulate its future ELA variability in the scenarios of RCP2.6, RCP4.5 and RCP 8.5 given by IPCC. The results show the ELAs will arrive to its maximum in around 2040 in RCP2.6, while the ELAs will be over the top altitude of glaciers in 2035-2045 in RCP4.5 and RCP8.5, suggesting the glaciers in the eastern Plateau will be melting until the disappear of the glaciers by the end of 2100.

  19. Arctic Warming and Sea Ice Diminution Herald Changing Glacier and Cryospheric Hazard Regimes

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Bush, Andrew; Leonard, Gregory

    2013-04-01

    The recent expansion of summertime melt zones in both Greenland and some Arctic ice caps, and the clearing of perennial sea ice from much of the Arctic, may presage more rapid shifts in mass balances of land ice than glaciologists had generally expected. The summer openings of vast stretches of open water in the Arctic, particularly in straits and the Arctic Ocean shores of the Queen Elizabeth Islands and along some Greenland coastal zones, must have a large impact on summer and early autumn temperatures and precipitation now that the surface boundary condition is no longer limited by the triple-point temperature and water-vapor pressure of H2O. This state change in the Arctic probably is part of the explanation for the expanded melt zones high in the Greenland ice sheet. However, Greenland and the Canadian Arctic are vast regions subject to climatic influences of multiple marine bodies, and the situation with sea ice and climate change remains heterogeneous, and so the local climate feedbacks from sea ice diminution remain patchy. Projected forward just a few decades, it is likely that sea ice will play a significant role in the Queen Elizabeth Islands and around Greenland only in the winter months. The region is in the midst of a dramatic climate change that is affecting the mass balances of the Arctic's ice bodies; some polar-type glaciers must be transforming to polythermal, and polythermal ones to maritime-temperate types. Attendant with these shifts, glacier response times will shorten, the distribution and sizes of glacier lakes will change, unconsolidated debris will be debuttressed, and hazards-related dynamics will shift. Besides changes to outburst flood, debris flow, and rock avalanche occurrences, the tsunami hazard (with ice and debris landslide/avalanche triggers) in glacierized fjords and the surge behaviors of many glaciers is apt to increase or shift locations. For any given location, the past is no longer the key to the present, and the present

  20. Combining a Distributed Melt Model and Meteorological Data of Shackleton Glacier, Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Jiskoot, H.

    2010-12-01

    identified from a satellite image and field measurements, constant daily values of longwave radiation as a function of percent cloud cover, and sensible heat input as a function of air temperature, katabatic wind, surface roughness and elevation. Latent heat was considered negligible. Novel aspects of the melt model include a valley temperature threshold for katabatic wind (using on and off ice temperatures and katabatic wind speed) and slope corrected area melt and radiation calculations. In an attempt to quantify energy balance effects of tributary-trunk detachment due to glacier recession related glacier fragmentation, special attention was paid to the potential influence from lateral moraines and valley walls and very dirty ice on the ablation in ice marginal regions. Observations suggest that, when katabatic wind diminishes, heat advection from an even moderately warmer lateral moraine can raise nearby glacier temperature substantially. This suggests that a combination of katabatic wind fields and proximity to lateral moraines/rock walls may be important in calculations of sensible heat contribution to surface melt in recently fragmented glacier systems.

  1. Application of terrestrial photogrammetry for the mass balance calculation on Montasio Occidentale Glacier (Julian Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Carturan, Luca; Calligaro, Simone; Blasone, Giacomo; Guarnieri, Alberto; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio

    2014-05-01

    Digital elevation models (DEMs) of glaciated terrain are commonly used to measure changes in geometry and hence infer the mass balance of glaciers. Different tools and methods exist to obtain information about the 3D geometry of terrain. Recent improvements on the quality and performance of digital cameras for close-range photogrammetry, and the development of automatic digital photogrammetric processing makes the 'structure from motion' photogrammetric technique (SfM) competitive for high quality 3D models production, compared to efficient but also expensive and logistically-demanding survey technologies such as airborn and terrestrial laser scanner (TLS). The purpose of this work is to test the SfM approach, using a consumer-grade SLR camera and the low-cost computer vision-based software package Agisoft Photoscan (Agisoft LLC), to monitor the mass balance of Montasio Occidentale glacier, a 0.07km2, low-altitude, debris-covered glacier located in the Eastern Italian Alps. The quality of the 3D models produced by the SfM process has been assessed by comparison with digital terrain models obtained through TLS surveys carried out at the same dates. TLS technique has indeed proved to be very effective in determining the volume change of this glacier in the last years. Our results shows that the photogrammetric approach can produce point cloud densities comparable to those derived from TLS measurements. Furthermore, the horizontal and vertical accuracies are also of the same order of magnitude as for TLS (centimetric to decimetric). The effect of different landscape characteristics (e.g. distance from the camera or terrain gradient) and of different substrata (rock, debris, ice, snow and firn) was also evaluated in terms of SfM reconstruction's accuracy vs. TLS. Given the good results obtained on the Montasio Occidentale glacier, it can be concluded that the terrestrial photogrammetry, with the advantageous features of portability, ease of use and above all low costs

  2. Community patterns of the small riverine benthos within and between two contrasting glacier catchments

    PubMed Central

    Eisendle-Flöckner, Ursula; Jersabek, Christian D; Kirchmair, Martin; Hashold, Kerstin; Traunspurger, Walter

    2013-01-01

    Ongoing glacial retreat is expected to lead to numerous changes in glacier-fed rivers. This study documents the development of community composition of the hitherto widely neglected micro- and meiobenthos (MMB: bacteria, fungi, algae, protists, and meiofauna) in glacier rivers in response to the distinct habitat conditions driven by different stages of (de)glacierization. Our model is based on the glacier catchments of the Möll River (MC) and Kleinelendbach stream (KC), in the Austrian Alps, with 60% and 25% glacierization and glacier retreats of 403 and 26 m, respectively, since 1998. Analyses of overall catchment diversity and resemblance patterns showed that neither intense glacierization nor rapid deglacierization were predominant MMB determinants. This was ascribed to the specific environmental conditions at the MC, where the rapidly retreating Pasterze glacier has formed a harsh unstable proglacial, but also a benign floodplain area, with the former suppressing and the latter supporting the structural development of the MMB. Comparisons of similarly aged riverine habitats of the MC proglacial and the KC main channel further evidenced developmental suppression of the MMB (64 taxa) by the rapidly retreating MC glacier, unlike the moderate glacial retreat in the KC (130 taxa). Habitat conditions interacting with melt periods explained the differences in MMB resemblance patterns, which themselves differentially reflected the spatiotemporal habitat settings imposed by the different glacier activities. The varying glacial influences were represented by a glaciality index (GIm) based on water temperature, electrical conductivity, and stream bed stability. The taxonomic richness of nematodes, rotifers, algae, and diatoms was distinctly related to this index, as were most MMB abundances. However, the strongest relationships to the GIm were those of nematode abundances and maturity. Our observations highlight the intense response of the MMB to ongoing glacier retreat

  3. Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies

    NASA Astrophysics Data System (ADS)

    Zawierucha, Krzysztof; Ostrowska, Marta; Kolicka, Małgorzata

    2017-06-01

    For several years it has been of interest to astrobiologists to focus on Earth's glaciers as a habitat that can be similar to glaciers on other moons and planets. Microorganisms on glaciers form consortia - cryoconite granules (cryoconites). They are granular/spherical mineral particles connected with archaea, cyanobacteria, heterotrophic bacteria, algae, fungi, and micro animals (mainly Tardigrada and Rotifera). Cryophilic organisms inhabiting glaciers have been studied in different aspects: from taxonomy, ecology and biogeography, to searching of biotechnological potentials and physiological strategies to survive in extreme glacial habitats. However, they have never been used in astrobiological experiments. The main aim of this paper is brief review of literature and supporting assumptions that cryoconite granules and microinvertebrates on glaciers, are promising models in astrobiology for looking for analogies and survival strategies in terms of icy planets and moons. So far, astrobiological research have been conducted on single strains of prokaryotes or microinvertebrates but never on a consortium of them. Due to the hypothetical similarity of glaciers on the Earth to those on other planets these cryoconites consortia of microorganisms and glacier microinvertebrates may be applied in astrobiological experiments instead of the limno-terrestrial ones used currently. Those consortia and animals have qualities to use them in such studies and they may be the key to understanding how organisms are able to survive, reproduce and remain active at low temperatures.

  4. Hydro-chemical Characterization of Glacier Melt Water of Ponkar Glacier, Manang, Nepal.

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Sandeep, S.

    2017-12-01

    The study was carried out in Ponkar Glacier, representing Himalayan glacier of Nepal. The study aims in determining the physical-chemical properties of the glacier melt water. The sampling sites included moraine dammed, Ponkar Lake at 4100 m a.s.l to the downstream glaciated stream at 3580 m a.s.l. The water samples were collected from the seven different sites. Temperature was recorded by digital multi-thermometer on site. The samples were brought to the laboratory and the parameters were analyzed according to the APHA, AWWA and WEF standards. The glacier meltwater was slightly basic with pH 7.44 (±0.307). The meltwater was found to be in the range 30-60 which implies the water is moderately soft resulting value of concentration 36.429±8.664 mg CaCO3 L-1 and the electrical conductivity was found to be 47.14 (±11.18) µS/cm. The concentration of anion was in the order of HCO3 - > Cl- > SO42- > NO3- > TP-PO43- with the concentration 194.286±40.677, 55.707±30.265, 11.533±1.132 mgL-1, 1.00±0.7 mgL-1 and 0.514±0.32 mgL-1 respectively. Calcium carbonate weathering was found out to be the major source of dissolved ions in the region. The heavy metals were found in the order Al>Fe>Mn>Zn with concentration 1.34±0.648, 1.103±0.917, 0.08±0.028 and 0.023±0.004 mgL-1 respectively. The concentration of iron, manganese and zinc in some sites were below the detection limit. These results represent baseline data for the physical-chemical properties of the glacier meltwater

  5. Seasonal variability in ice-front position, glacier speed, and surface elevation at Helheim Glacier, SE Greenland, from 2010-2016

    NASA Astrophysics Data System (ADS)

    Kehrl, L. M.; Joughin, I. R.; Shean, D. E.

    2016-12-01

    Marine-terminating glaciers can be very sensitive to changes in ice-front position, depending on their geometry. If a nearly grounded glacier retreats into deeper water, the glacier typically must speed up to produce the additional longitudinal and lateral stress gradients necessary to restore force balance. This speedup often causes thinning, which can increase the glacier's susceptibility to further retreat. In this study, we combine satellite observations and numerical modeling (Elmer/Ice) to investigate how seasonal changes in ice-front position affect glacier speed and surface elevation at Helheim Glacier, SE Greenland, from 2010-2016. Helheim's calving front position fluctuated about a mean position from 2010-2016. During 2010/11, 2013/14, and 2015/16, Helheim seasonally retreated and advanced along a reverse bed slope by > 3 km. During these years, the glacier retreated from winter/spring to late summer and then readvanced until winter/spring. During the retreat, Helheim sped up by 20-30% and thinned by 20 m near its calving front. This thinning caused the calving front to unground, and a floating ice tongue was then able to readvance over the following winter with limited iceberg calving. The advance, which continued until the glacier reached the top of the bathymetric high, caused the glacier to slow and thicken. During years when Helheim likely did not form a floating ice tongue, iceberg calving continued throughout the winter. Consequently, the formation of this floating ice tongue may have helped stabilize Helheim after periods of rapid retreat and dynamic thinning. Helheim's rapid retreat from 2001-2005 also ended when a floating ice tongue formed and readvanced over the 2005/06 winter. These seasonal retreat/advance cycles may therefore be important for understanding Helheim's long-term behavior.

  6. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    Aerial view of the Sverdrup Glacier, a river of ice that flows from the interior of the Devon Island Ice Cap (Canada) into the ocean. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: Alex Gardner, Clark University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    Melt water ponded at surface in the accumulation zone of Columbia Glacier, Alaska, in July 2008. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: W. Tad Pfeffer, University of Colorado at Boulder NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    Peripheral glaciers and ice caps (isolated from the main ice sheet, which is seen in the upper right section of the image) in eastern Greenland. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: Frank Paul, University of Zurich NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Climate sensitivity of Tibetan Plateau glaciers - past and future implications

    NASA Astrophysics Data System (ADS)

    Heyman, Jakob; Hubbard, Alun; Stroeven, Arjen P.; Harbor, Jonathan M.

    2013-04-01

    The Tibetan Plateau is one of the most extensively glaciated, non-Polar regions of the world, and its mountain glaciers are the primary source of melt water for several of the largest Asian rivers. During glacial cycles, Tibetan Plateau glaciers advanced and retreated multiple times, but remained restricted to the highest mountain areas as valley glaciers and ice caps. Because glacier extent is dominantly controlled by climate, the past extent of Tibetan glaciers provide information on regional climate. Here we present a study analyzing the past maximum extents of glaciers on the Tibetan Plateau with the output of a 3D glacier model, in an effort to quantify Tibetan Plateau climate. We have mapped present-day glaciers and glacial landforms deposited by formerly more extensive glaciers in eight mountain regions across the Tibetan Plateau, allowing us to define present-day and past maximum glacier outlines. Using a high-resolution (250 m) higher-order glacier model calibrated against present-day glacier extents, we have quantified the climate perturbations required to expand present-day glaciers to their past maximum extents. We find that a modest cooling of at most 6°C for a few thousand years is enough to attain past maximum extents, even with 25-75% precipitation reduction. This evidence for limited cooling indicates that the temperature of the Tibetan Plateau remained relatively stable over Quaternary glacial cycles. Given the significant sensitivity to temperature change, the expectation is perhaps that a future warmer climate might result in intense glacier reduction. We have tested this hypothesis and modeled the future glacier development for the three mountain regions with the largest present-day glacier cover using a projected warming of 2.8 to 6.2°C within 100 years (envelope limits from IPCC). These scenarios result in dramatic glacier reductions, including 24-100% ice volume loss after 100 years and 77-100% ice volume loss after 300 years.

  10. Educating K-12 Students about Glacier Dynamics in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Hamilton, G. S.

    2005-12-01

    Public awareness of climate change is growing in the United States. Popular movies, books and magazines are frequently addressing the issue of global warming - some with careful scientific research, but many with unrealistic statements. Early education about the basic principles and processes of climate change is necessary for the general public to distinguish fact from fiction. The U.S. National Science Foundation's GK-12 program (GK-12; grades K to 12) currently in its sixth year, provides an opportunity for scientific enrichment for students and their teachers at the K-12 level through collaborative pairings with science and engineering graduate students (the Fellows). The NSF GK-12 program at the University of Maine has three goals: to enrich the scientific education of the students by providing role models, expertise, and equipment that may not be accessible otherwise; to provide professional development for the teachers through curriculum enrichment and participation at science conferences; and to improve the teaching and communication skills of the Fellows. The University of Maine is one of over 100 U. S. universities participating in this program. During the 2004-05 academic year, 11 graduate and one undergraduate student Fellows, advised by University faculty members, taught at schools across the state of Maine. Fellows from, biology, earth science, ecology, engineering, food science, forestry, and marine science, and taught in their area of expertise. We created a hands-on activity for middle and high school students that describes glacier mass balance in a changing climate. The students make a glacier using glue, water and detergent ('flubber') and construct a glacier valley using plastic sheeting. Flubber behaves in mechanically similar ways to glacier ice, undergoing plastic deformation at low stresses and exhibiting brittle failure at high stresses. Students are encouraged to run several tests with different values for valley slope, glacier mass

  11. Potential sources of bacteria colonizing the cryoconite of an Alpine glacier

    PubMed Central

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio

    2017-01-01

    We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Ice-marginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any ice-marginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes. PMID:28358872

  12. Potential sources of bacteria colonizing the cryoconite of an Alpine glacier.

    PubMed

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto

    2017-01-01

    We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Ice-marginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any ice-marginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes.

  13. Theoretical Foundations of Remote Sensing for Glacier Assessment and Mapping

    NASA Technical Reports Server (NTRS)

    Bishop, Michael P.; Bush, Andrew B. G.; Furfaro, Roberto; Gillespie, Alan R.; Hall, Dorothy K.; Haritashya, Umesh K.; Shroder, John F., Jr.

    2014-01-01

    The international scientific community is actively engaged in assessing ice sheet and alpine glacier fluctuations at a variety of scales. The availability of stereoscopic, multitemporal, and multispectral satellite imagery from the optical wavelength regions of the electromagnetic spectrum has greatly increased our ability to assess glaciological conditions and map the cryosphere. There are, however, important issues and limitations associated with accurate satellite information extraction and mapping, as well as new opportunities for assessment and mapping that are all rooted in understanding the fundamentals of the radiation transfer cascade. We address the primary radiation transfer components, relate them to glacier dynamics and mapping, and summarize the analytical approaches that permit transformation of spectral variation into thematic and quantitative parameters. We also discuss the integration of satellite-derived information into numerical modeling approaches to facilitate understandings of glacier dynamics and causal mechanisms.

  14. Dynamic interactions between glacier and glacial lake in the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-04-01

    A number of supraglacial lakes formed on the termini of debris-covered glaciers in the Bhutan Himalaya as a result of glacier retreat due to climate change. The terminal part of the lake-terminating glaciers flow faster than that of the land-terminating glaciers because the basal ice motion is enhanced by high subglacial water pressure generated by lake water. Increased ice flux caused by the accelerated glacier flow could be dissipated through the calving process which reduced the glacier thickness. It is important to understand the interaction between lake formation and glacier dynamics. Although glacier flow velocity has been measured by remote-sensing analysis in several regions of the Himalayas, glacier thinning rates have not been observed by neither in-situ nor remote-sensing approaches. The lack of field data raises limitation to interpretations for glacier dynamics. We investigate the influence of the presence/absence of glacial lakes on glacier dynamics and changes in surface elevation. We study two debris-covered glaciers in the Lunana region, the Bhutan Himalaya. Thorthormi Glacier is a land-terminating glacier with some supraglacial lakes while Lugge Glacier is a lake-terminating glaciers. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier (-5.4--2.4 m yr-1) was much more negative than that of the land-terminating Thorthormi Glacier (-3.3-0.6 m yr-1). Surface flow speed of the Thorthormi Glacier measured during 2002-2004 was faster in the upper reaches (~90 m yr-1) and reduced toward the downstream (40 m yr-1). In contrast, the surface flow speed at the Lugge Glacier measured in the same periods was 40-55 m yr-1 and the greatest at the lower most part. Observed spatial distribution of surface flow velocity at both glaciers were evaluated by a two-dimensional numerical flow model. Calculated emergence velocities are 1

  15. ROCK1 in AgRP neurons regulates energy expenditure and locomotor activity in male mice.

    PubMed

    Huang, Hu; Lee, Seung Hwan; Ye, Chianping; Lima, Ines S; Oh, Byung-Chul; Lowell, Bradford B; Zabolotny, Janice M; Kim, Young-Bum

    2013-10-01

    Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Here, we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1-deficient mice displayed central leptin resistance, as evidenced by impaired Signal Transducer and Activator of Transcription 3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support previous work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of antiobesity therapeutics.

  16. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The

  17. Southern Alaska as an Example of the Long-Term Consequences of Mountain Building Under the Influence of Glaciers

    NASA Technical Reports Server (NTRS)

    Meigs, Andrew; Sauber, Jeanne

    2000-01-01

    Southern Alaska is a continent-scale region of ongoing crustal deformation within the Pacific-North American plate boundary zone. Glaciers and glacial erosion have dictated patterns of denudation in the orogen over the last approx. 5 My. The orogen comprises three discrete topographic domains from south to north, respectively: (1) the Chugach/St. Elias Range; (2) the Wrangell Mountains; and (3) the eastern Alaska Range. Although present deformation is distributed across the orogen, much of the shortening and uplift are concentrated in the Chugach/St. Elias Range. A systematic increase in topographic wavelength of the range from east to west reflects east-to-west increases in the width of a shallowly-dipping segment of the plate interface, separation of major upper plate structures, and a decrease in the obliquity of plate motion relative to the plate boundary. Mean elevation decays exponentially from approx. 2500 m to approx. 1100 m from east to west, respectively. Topographic control on the present and past distribution of glaciers is indicated by close correspondence along the range between mean elevation and the modern equilibrium line altitude of glaciers (ELA) and differences in the modern ELA, mean annual precipitation and temperature across the range between the windward, southern and leeward, northern flanks. Net, range- scale erosion is the sum of: (1) primary bedrock erosion by glaciers and (2) erosion in areas of the landscape that are ice-marginal and are deglaciated at glacial minima. Oscillations between glacial and interglacial climates controls ice height and distribution, which, in turn, modulates the locus and mode of erosion in the landscape. Mean topography and the mean position of the ELA are coupled because of the competition between rock uplift, which tends to raise the ELA, and enhanced orographic precipitation accompanying mountain building, which tends to lower the ELA. Mean topography is controlled both by the 60 deg latitude and maritime

  18. Mechanisms and Simulation of accelerated shrinkage of continental glaciers: a case study of Urumqi Glacier No. 1 Eastern Tianshan, Central Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhongqin; Ren, Jiawen; Li, Huilin; Wang, Puyu; Wang, Feiteng

    2016-04-01

    Similar to most mountain glaciers in the world, Urumqi Glacier No. 1 (UG1), the best observed glacier in China with continued glaciological and climatological monitoring records of longer than 50 years has experienced an accelerated recession during the past several decades. The purpose of this study is to investigate the acceleration of recession. By taking UG1 as an example, we analyze the generic mechanisms of acceleration of shrinkage of continental mountain glaciers. The results indicate that the acceleration of mass loss of UG1 commenced first in 1985 and second in 1996 and that the latter was more vigorous. The air temperature rises during melting season, the ice temperature augment of the glacier and the albedo reduction on the glacier surface are considered responsible for the accelerated recession. In addition, the simulations of the accelerated shrinkage of UG1 are introduced.

  19. Recent advances in analysis and prediction of Rock Falls, Rock Slides, and Rock Avalanches using 3D point clouds

    NASA Astrophysics Data System (ADS)

    Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.

    2014-12-01

    The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances

  20. Sediment connectivity evolution on an alpine catchment undergoing glacier retreat

    NASA Astrophysics Data System (ADS)

    Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric

    2014-05-01

    Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into

  1. Mass loss on Himalayan glacier endangers water resources

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie M.; Thompson, Lonnie G.; Tandong, Yao; Mosley-Thompson, Ellen; Schotterer, Ulrich; Alfimov, Vasily; Beer, Jürg; Eikenberg, Jost; Davis, Mary E.

    2008-11-01

    Ice cores drilled from glaciers around the world generally contain horizons with elevated levels of beta radioactivity including 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. Ice cores collected in 2006 from Naimona'nyi Glacier in the Himalaya (Tibet) lack these distinctive marker horizons suggesting no net accumulation of mass (ice) since at least 1950. Naimona'nyi is the highest glacier (6050 masl) documented to be losing mass annually suggesting the possibility of similar mass loss on other high-elevation glaciers in low and mid-latitudes under a warmer Earth scenario. If climatic conditions dominating the mass balance of Naimona'nyi extend to other glaciers in the region, the implications for water resources could be serious as these glaciers feed the headwaters of the Indus, Ganges, and Brahmaputra Rivers that sustain one of the world's most populous regions.

  2. Observed Changes in the Himalayan Glaciers: Multiple Driving Factors

    NASA Astrophysics Data System (ADS)

    Romshoo, Shakil; Rashid, Irfan; Abdullah, Tariq; Fayaz, Midhat

    2017-04-01

    There is lack of credible knowledge about Himalayan cryosphere as is evident from the contradictory reports about the status of the glaciers in the region. Glacier behavior in Himalaya has to be understood and interpreted in light of the multiple driving factors; topography, climate and anthropocene. The observed changes in Himalayan glaciers, determined by studying a few hundred glaciers in the Himalaya, indicated that the glacier response varies across different ranges. Satellite images (1990-2015), DEM, altimetry data supported by selective field campaigns, were used to map the changes in glacier boundaries, snout, ELA, AAR, volume, thickness, debris cover and several other glacier parameters. The glaciers across the six ranges of Pir Panjal (PR), Greater Himalaya (GH), Shamasbari (SR), Zanaskar (ZR), Leh (LR) and Karakorum (KR) showed quite varied changes. It was observed that the glaciers in the KR show the least glacial area recession (1.59%) primarily due to the extreme cold winters with -18oC average temperature. Other glacial parameters like snout, ELA, AAR and glacier volume also showed very little changes in the KR during the period. The glaciers in the LR, with an average winter temperature of -6o C, have shrunk, on an average, by 4.19 % during the period, followed by the glaciers in the ZR showing a loss of 5.46%. The highest glacier retreat of 7.72% and 6.94% was observed in the GH and SR with the average winter temperature of -1.3oc and -6.2oc respectively. In the PR, almost all the glaciers have vanished during the last 6-7 decades due to the increasing winter temperatures. The glaciers in the Kashmir showed an overall recession of 26.40% in area which is one of the highest reported for the Himalayan glaciers. The glaciers in the valley showed the maximum reduction in thickness (2.56m) using the IceSat data from 2000-08 while as the Karakoram glaciers showed the least reduction in thickness (0.53m). It was found that the maximum recession of glacial

  3. Partitioning the Water Budget in a Glacierized Basin

    NASA Astrophysics Data System (ADS)

    O'Neel, S.; Sass, L.; McGrath, D.; McNeil, C.; Myers, K. F.; Bergstrom, A.; Koch, J. C.; Ostman, J. S.; Arendt, A. A.; LeWinter, A.; Larsen, C. F.; Marshall, H. P.

    2017-12-01

    Glaciers couple to the ecosystems in which they reside through their mass balance and subsequent runoff. The unique timing and composition of glacier runoff notably impacts ecological and socio-economically important processes, including thermal modulation of streams, nearshore primary production, and groundwater exchange. Predicting how these linkages will evolve as glaciers continue to retreat requires a better understanding of basin- to region-scale water budgets. Here we develop a partitioned water balance for Alaska's Wolverine Glacier basin for 2016. Our presentation will highlight mass-balance forcing and sensitivity, as well as analyses of hydrometric and geochemical partitioning. These observations provide constraints for hypsometry-based regional projections of glacier change, which form the basis of future biogeochemical scenarios. Local climate records show relatively minor warming and drying over the 1967 -2016 interval, yet the impact on the glacier was substantial; the average annual balance rate over the study interval is -0.5 m/yr. We performed a sensitivity experiment that suggests that elevation-independent processes drive first-order variability in glacier-wide mass balance solutions Analysis of runoff and precipitation data suggest that previously ignored components of the hydrologic cycle (groundwater, evapotranspiration, off-glacier snowpack storage, and snow redistribution) may substantially contribute to the basin wide water budget. Initial geochemical assessments (carbon, water isotopes, major ions) highlight unique source signatures (glacier-derived, snow-melt, groundwater), which will be further explored using a mixing model approach. Applying a range of climate forcings over centennial time-scales suggests the regional equilibrium line altitude is likely to increase by more than 100 m, which will result in extensive glacier area losses. Such changes will likely modify the runoff from this basin by increasing inter-annual streamflow

  4. Digital outlines and topography of the glaciers of the American West

    USGS Publications Warehouse

    Fountain, Andrew G.; Hoffman, Matthew; Jackson, Keith; Basagic, Hassan; Nylen, Thomas; Percy, David

    2007-01-01

    Alpine glaciers have generally receded during the past century (post-“Little Ice Age”) because of climate warming (Oerlemans and others, 1998; Mann and others, 1999; Dyurgerov and Meier, 2000; Grove, 2001). This general retreat has accelerated since the mid 1970s, when a shift in atmospheric circulation occurred (McCabe and Fountain, 1995; Dyurgerov and Meier, 2000). The loss in glacier cover has had several profound effects. First, the shrinkage of glaciers results in a net increase in stream flow, typically in late summer when water supplies are at the lowest levels (Fountain and Tangborn, 1985). This additional water is important to ecosystems (Hall and Fagre, 2003) and to human water needs (Tangborn, 1980). However, if shrinkage continues, the net contribution to stream flow will diminish, and the effect upon these benefactors will be adverse. Glacier shrinkage is also a significant factor in current sea level rise (Meier, 1984; Dyurgerov and Meier, 2000). Second, many of the glaciers in the West Coast States are located on stratovolcanoes, and continued recession will leave oversteepened river valleys. These valleys, once buttressed by ice are now subject to failure, creating conditions for lahars (Walder and Driedger, 1994; O’Connor and others, 2001). Finally, reduction or loss of glaciers reduce or eliminate glacial activity as an important geomorphic process on landscape evolution and alters erosion rates in high alpine areas (Hallet and others, 1996). Because of the importance of glaciers to studies of climate change, hazards, and landscape modification, glacier inventories have been published for Alaska (Manley, in press), China (http://wdcdgg.westgis.ac.cn/DATABASE/Glacier/Glacier.asp), Nepal (Mool and others, 2001), Switzerland (Paul and others, 2002), and the Tyrolian Alps of Austria (Paul, 2002), among other locales. To provide the necessary data for assessing the magnitude and rate of glacier change in the American West, exclusive of Alaska

  5. Glacier Dynamics Within a Small Alpine Cirque

    NASA Astrophysics Data System (ADS)

    Sanders, J. W.; Cuffey, K. M.; MacGregor, K. R.; Kavanaugh, J. L.; Dow, C. F.

    2008-12-01

    Cirques, with their steep walls and overdeepened basins, have captivated the imagination of scientists since the mid-1800s. Glaciers in cirques, by generating these spectacular amphitheater-shaped landforms, contribute significantly to erosion in the core of mountain ranges and are one of the principal agents responsible for the relief structure at high elevations. Yet comprehensive studies of the dynamics of cirque glaciers, and their link to erosional processes, have never been undertaken. To this end, we acquired an extensive new set of measurements at the West Washmawapta Glacier, which sits in a cirque on the east side of Helmet Mountain in the Vermillion Range of the Canadian Rockies. Ice thickness surveys with ground penetrating radar revealed that the glacier occupies a classic bowl-shaped depression complete with a nearly continuous riegel. Using GPS-derived surface velocities of a glacier-wide grid network and the tilt of one borehole, we calculated the complete force balance of the glacier. This analysis also produced a map of basal sliding velocity and a value for the viscosity of temperate ice. We will discuss the implications of these findings for the problem of how cirques are formed by glacial erosion.

  6. 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction

    NASA Astrophysics Data System (ADS)

    Badino, Federica; Ravazzi, Cesare; Vallè, Francesca; Pini, Roberta; Aceti, Amelia; Brunetti, Michele; Champvillair, Elena; Maggi, Valter; Maspero, Francesco; Perego, Renata; Orombelli, Giuseppe

    2018-04-01

    Sedimentary archives at or near the timberline ecotone in Alpine glaciated areas contain records to study Holocene climate change and the interplay between climate, ecosystems, and humans. We focused on records of timberline and glacier oscillations in the Rutor Glacier forefield (Western Italian Alps) in the last 8800 years. Human activity in this area was negligible for most of the Holocene. We adopted an integrative stratigraphic approach including proxies for glacier advance and timberline estimation, sedimentary events, and reconstructed temperatures. Changes in timberline ecotone correlate to climate until the Middle Ages. Pollen-stratigraphic evidence of a primary plant succession highlights a lag beween local deglaciation and the first reliable 14C age. The radiocarbon chronology points to a prolonged phase of glacier contraction between 8.8 and 3.7 ka cal BP. Even later the glacier remained within its LIA limits. Between 8.4 and 4 ka cal BP MAT-inferred TJuly fluctuated near 12.4 °C, ca. 3.1 °C higher than today. During this period, a Pinus cembra forest belt grew at 2600 m asl with an upper limit of tree groves placed 434 ± 310 m above the current open forest limit. This Holocene phase of thermal maximum ended between 3.98 and 3.51 ± 70 ka cal BP and with a substantial rearrangement of forest composition; temperature reconstruction shows a decrease of 1.8 °C. This climate deterioration concluded the Subboreal thermal optimum, mirroring glacial advances widely documented in the Alps. The Rutor Glacier advanced at ca. AD 1093 ± 65, and remained inside the LIA maximum extent. The LIA started since AD 1594, and culminated between AD 1751 and 1864.

  7. Earth's Climate History from Glaciers and Ice Cores

    NASA Astrophysics Data System (ADS)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  8. Temporal variability of bacterial communities in cryoconite on an alpine glacier.

    PubMed

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto

    2017-04-01

    Cryoconite holes, that is, small ponds that form on glacier surface, are considered the most biologically active environments on glaciers. Bacterial communities in these environments have been extensively studied, but often through snapshot studies based on the assumption of a general stability of community structure. In this study, the temporal variation of bacterial communities in cryoconite holes on the Forni Glacier (Italian Alps) was investigated by high throughput DNA sequencing. A temporal change of bacterial communities was observed with autotrophic Cyanobacteria populations dominating communities after snowmelt, and heterotrophic Sphingobacteriales populations increasing in abundance later in the season. Bacterial communities also varied according to hole depth and area, amount of organic matter in the cryoconite and oxygen concentration. However, variation in environmental features explained a lower fraction of the variation in bacterial communities than temporal variation. Temporal change along ablation season seems therefore more important than local environmental conditions in shaping bacterial communities of cryoconite of the Forni Glacier. These findings challenge the assumption that bacterial communities of cryoconite holes are stable. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Copernicus Big Data and Google Earth Engine for Glacier Surface Velocity Field Monitoring: Feasibility Demonstration on San Rafael and San Quintin Glaciers

    NASA Astrophysics Data System (ADS)

    Di Tullio, M.; Nocchi, F.; Camplani, A.; Emanuelli, N.; Nascetti, A.; Crespi, M.

    2018-04-01

    The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaciers stability, landscape erosion). The leading idea of this work is to continuously retrieve glaciers surface velocity using free ESA Sentinel-1 SAR imagery and exploiting the potentialities of the Google Earth Engine (GEE) platform. GEE has been recently released by Google as a platform for petabyte-scale scientific analysis and visualization of geospatial datasets. The algorithm of SAR off-set tracking developed at the Geodesy and Geomatics Division of the University of Rome La Sapienza has been integrated in a cloud based platform that automatically processes large stacks of Sentinel-1 data to retrieve glacier surface velocity field time series. We processed about 600 Sentinel-1 image pairs to obtain a continuous time series of velocity field measurements over 3 years from January 2015 to January 2018 for two wide glaciers located in the Northern Patagonian Ice Field (NPIF), the San Rafael and the San Quintin glaciers. Several results related to these relevant glaciers also validated with respect already available and renown software (i.e. ESA SNAP, CIAS) and with respect optical sensor measurements (i.e. LANDSAT8), highlight the potential of the Big Data analysis to automatically monitor glacier surface velocity fields at global scale, exploiting the synergy between GEE and Sentinel-1 imagery.

  10. Global-scale hydrological response to future glacier mass loss

    NASA Astrophysics Data System (ADS)

    Huss, Matthias; Hock, Regine

    2018-01-01

    Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1-4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (`peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

  11. Glacier Elevation Change in Western Nyainqentanglha Range, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Kang, S.; Zhang, G.

    2016-12-01

    Glacier retreat is a focus in the world with the global warming, local water resources and sea level rise was influenced greatly. Glacier area in western Nyainqentanglha range have a change of -6.8 to -18.2 percent from 1970 to 2010, the area in the northern slope decreased by larger rate. Changes in glacier area can not be used to estimate glacier mass variation. In this study, we use Landsat OLI images to extract glacier outlines, then glacier elevation change was calculated by Differential interferometry of TerraSAR-X/TanDEM-X and SRTM-C DEM. The decreasing rate of glacier elevation in the western Nyainqentanglha range was -0.28 ±0.11 m yr-1 during 2000 to 2014, the northern slope of -0.44 ±0.11 m yr-1 show a faster annual thinning rate than the southern slope of -0.22 ±0.11 m yr-1, which is conform to the area change trend. Detailed study of the typical glaciers elevation change suggests that , zhadang glacier represent the annual thinning rate of -0.61±0.11 m yr-1, 41 points elevation was measured by RTK-GPS in the field expedition in 2013, this values was used to validate the DInSAR results. The correlation coefficient between them was 0.77. Gurenhekou glacier in the south slope shows glacier elevation change of -0.25 m w.e. yr-1, the value is similar to -0.31 m w.e. yr-1 investigated by stakes and snow pits. Glacier have an elevation change of -0.70 m yr-1 head-ward 500 m from the terminus position along centre line, it approximate to -0.85 m yr-1 measured by RTK-GPS. Otherwise the height difference of zero lies at 5764 m which is close to the average ELA of 5777 m measured by stakes and snow pits. Glacier and climate change interacted with each other. Temperature in western Nyainqentanglha range showed prominent increasing trend from 1964 to 2014, precipitation have increased slowly meanwhile and can not make up the mass loss affected by warming temperature, Glaciers elevation have lowered in recent decades.

  12. Exploration of Uncertainty in Glacier Modelling

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    1999-01-01

    There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.

  13. Chronological constraints on the Holocene glacier dynamics of the Argentière Glacier (Mont Blanc massif, France) based on cosmogenic nuclide dating

    NASA Astrophysics Data System (ADS)

    Protin, Marie; Schimmelpfennig, Irene; Mugnier, Jean-Louis; Ravanel, Ludovic; Deline, Philip; Le Roy, Melaine; Moreau, Luc; Aster Team

    2017-04-01

    While reconstruction of glacier fluctuations during the Holocene provides important information about the glacier response to natural climate change, it is still a challenge to accurately constrain chronologies of past glacier advances and retreats. Moraine deposits and roches moutonnées represent valuable geomorphic markers of advanced glacier extensions, while the currently ongoing glacier melt uncovers proglacial bedrock that can be used as a new archive to investigate the durations when a glacier was in retreated position during the Holocene. Our study focuses on the Mont-Blanc massif (MBM), located in the Western Alps and hosting some of the largest glaciers of Europe. Chronologies of Holocene glacier fluctuations in this area are still sparse, even if recent studies considerably improved the temporal reconstruction of Holocene advances of some glaciers in the MBM and locations near-by (e.g. Le Roy et al., 2015). Here we present preliminary 10Be exposure ages obtained from moraine boulders, roches moutonnées and pro- and subglacial bedrock in the area of the Argentière Glacier, located on the north-western flank of the MBM. The ages of moraine boulders and roche moutonnée surfaces outboard of the investigated moraines suggest that the Early Holocene deglaciation of this area started around 11 ka ago. Also, 10Be measurements of recently deglaciated bedrock surfaces indicate that the glacier was at a position at least as retracted as today for a minimum duration of 7 ka throughout the Holocene. The 10Be measurement of one sample from a surface that is currently still covered by 60 m of ice suggests that the glacier was shorter than today for at least a duration of 3 ka. These first results will soon be completed with in situ 14C measurements, which will allow us to quantify and take into account subglacial erosion rates and thus to more accurately determine the cumulative duration of pro- and subglacial bedrock exposure during the Holocene.

  14. Reducing risks from hazardous glacier lakes in the Cordillera Blanca (Peru): Six decades of experience and perspectives for the future

    NASA Astrophysics Data System (ADS)

    Portocarrero, Cesar; Cochachin, Alejo; Frey, Holger; González, Cesar; Haeberli, Wilfried; Huggel, Christian

    2016-04-01

    Outbursts from glacier lakes at various spatial and temporal scales have had marked geomorphological effects in many mountain ranges. In many glacierized Andean mountain regions substrates of human settlements made out of flood and debris-flow deposits are testimonies of such events. Examples in the Cordillera Blanca, Peru, are the towns of Caraz, Carhuaz or parts of Huaraz. Continued glacier shrinking since the end of the Little Ice Age caused the formation or enlargement of numerous lakes. The outburst of Laguna Palcacocha, destroying the centre of Huaraz and causing more than 1800 losses of life in December 1941, marked the beginning of systematic risk reduction work in Peru. Corresponding efforts included glacier and lake inventories, hazard assessments, definition of high-risk situations, and completion of engineering work for lake-level lowering in more than 30 cases. The latter comprises outlet reinforcements on morainic dams as well as artificial tunnels in bedrock thresholds. This work has been remarkably efficient as documented in the latest case of the Laguna Huallcacocha (Carhuaz-Ancash), where the earlier made installations withstood the erosive power of an impact wave from an ice avalanche in 2015. In the case of the Laguna 513, the impact wave and far-reaching flood caused by a rock/ice avalanche from Nevado Hualcán in April 2010 showed that the risk had been essentially reduced by the preventive lake-level lowering in the early 1990s but not to zero. Risk assessments, planning, construction and non-structural risk reduction efforts continue. Work is in progress to increase the safety of Laguna Palcacocha where extensive assessments and model calculations had been carried out. Risks related to rock/ice avalanches into lakes from steep icy slopes and related to de-buttressing processes as well as long-term permafrost degradation increases. Based on morphological indications and numerical modelling (GlabTop) an inventory of possible future lakes

  15. Quantifying seasonal velocity at Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Miles, E.; Quincey, D. J.; Miles, K.; Hubbard, B. P.; Rowan, A. V.

    2017-12-01

    While the low-gradient debris-covered tongues of many Himalayan glaciers exhibit low surface velocities, quantifying ice flow and its variation through time remains a key challenge for studies aimed at determining the long-term evolution of these glaciers. Recent work has suggested that glaciers in the Everest region of Nepal may show seasonal variability in surface velocity, with ice flow peaking during the summer as monsoon precipitation provides hydrological inputs and thus drives changes in subglacial drainage efficiency. However, satellite and aerial observations of glacier velocity during the monsoon are greatly limited due to cloud cover. Those that do exist do not span the period over which the most dynamic changes occur, and consequently short-term (i.e. daily) changes in flow, as well as the evolution of ice dynamics through the monsoon period, remain poorly understood. In this study, we combine field and remote (satellite image) observations to create a multi-temporal, 3D synthesis of ice deformation rates at Khumbu Glacier, Nepal, focused on the 2017 monsoon period. We first determine net annual and seasonal surface displacements for the whole glacier based on Landsat-8 (OLI) panchromatic data (15m) processed with ImGRAFT. We integrate inclinometer observations from three boreholes drilled by the EverDrill project to determine cumulative deformation at depth, providing a 3D perspective and enabling us to assess the role of basal sliding at each site. We additionally analyze high-frequency on-glacier L1 GNSS data from three sites to characterize variability within surface deformation at sub-seasonal timescales. Finally, each dataset is validated against repeat-dGPS observations at gridded points in the vicinity of the boreholes and GNSS dataloggers. These datasets complement one another to infer thermal regime across the debris-covered ablation area of the glacier, and emphasize the seasonal and spatial variability of ice deformation for glaciers in High

  16. Satellite image atlas of glaciers of the world

    USGS Publications Warehouse

    ,

    1994-01-01

    The world's glaciers react to and interact with changes in global and regional climates. Most mountain glaciers worldwide have been retreating since the latter part of the 19th century; global sea level has risen about 10 centimeters during the past century. Glaciers vary in size as a result of several factors, of which climate variation is probably the most important. The reasons we are interested in glacier variation include its connection to climate change and to global sea level.

  17. Contribution of SAR interferometry (InSAR) to the study of alpine glaciers. The example of Forni Glacier (Central Alps, Italy): preliminary results

    NASA Astrophysics Data System (ADS)

    Sterzai, P.; Mancini, F.; Corazzato, C.; D Agata, C.; Diolaiuti, G.

    2003-04-01

    Aiming at reconstructing superficial velocity and volumetric variations of alpine glaciers, SAR interferometry (InSAR) technique is, for the first time in Italy, applied jointly with the glaciological classic field methods. This methodology with its quantitative results provides, together with other space geodesy techniques like GPS, some fundamental elements for the estimation of the climate forcing and the evaluation of the future glacier trend. InSAR is usually applied to antarctic glaciers and to other wide extralpine glaciers, detectable by the SAR orbits; in the Italian Alps, the limited surface area of the glaciers and the deformation of radar images due to strong relief effect, reduce the applicability of this tecnique. The chosen glacier is suitable for this kind of study both for its large size and for the many field data collected and available for the interferometric results validation. Forni Glacier is the largest valley glacier in the Italian Alps and represents a good example of long term monitoring of a valley glacier in the Central Alps. It is a north facing valley glacier formed by 3 ice streams, located in Italian Lombardy Alps (46 23 50 N, 10 35 00 E). In 2002 its area was approximately 13 km2, extending from 2500 to 3684 m a.s.l., with a maximum width of approximately 7500 m and a maximum length of about 5000 m. Available data include mass-balance measurements on the glacier tongue (from the hydrological year 1992-1993 up to now), frontal variations data from 1925 up to now, topographical profiling by means of GPS techniques and profiles of the glacier bed by geoelectrical surveys (VES) (Guglielmin et alii, 1995) and by seismic surveys (Merlanti et alii, 2001). In order to apply radar interferometry on this glacier eight ERS SAR RAW images have been purchased, in addition to the Digital Elevation Model from IGM (Geographic Military Institute), and repeat pass interferometry used. Combining the different passes, differential interferograms are

  18. Hillslope failure and paraglacial reworking of sediments in response to glacier retreat, Fox Valley, New Zealand.

    NASA Astrophysics Data System (ADS)

    McColl, Samuel T.; Fuller, Ian C.; Anderson, Brian; Tate, Rosie

    2017-04-01

    Climate and glacier fluctuations influence sediment supply to glacier forelands, which in turn influences down-valley hazards to infrastructure and tourism within glacier forelands. At Fox Glacier, one of New Zealand's most iconic and popular glaciers, rapid retreat has initiated a range of hillslope and valley floor responses, that present a cascade of hazards and changes that need to be carefully managed. Fox Glacier has retreated many kilometres historically, with 2.6 km of retreat since the mid-20th century, and a phase of rapid retreat of 50-340 m per year since 2009. To study the system response to past and ongoing glacial retreat at the Fox valley, morphological changes are being observed using time-lapse photography and the annual collection of high-resolution digital elevation models (DEMs) and orthophoto mosaics. The DEMs are being produced using Structure from Motion photogrammetry from UAV/RPAS and helicopter platforms, and are being used, along with manual ground surveying, to produce ground surface change models (DoDs; DEMs of Difference) and sediment budgets for the valley. Results from time-lapse photography and DoDs show that glacial retreat has initiated destabilisation and (mostly chronic) mass movement of surficial glacial sediments on the valley slopes near the glacier terminus. Alluvial fans farther down valley are actively growing, reworking glacial and landslide sediments from tributary catchments. These paraglacial sediments being delivered to the proglacial river from the glacier terminus and alluvial fans are driving aggradation of the valley floor of decimetres to metres per year and maintaining a highly dynamic braid plain. Valley floor changes also include the melting of buried dead ice, which are causing localised subsidence at the carpark and one of the alluvial fans. The unstable slopes and active debris fans, aggrading and highly active river channel, ground subsidence, add to the spectacle but also the hazards of the Fox valley

  19. Processes driving rapid morphological changes observed on the Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Quincey, Duncan; Rowan, Ann; Gibson, Morgan; Irvine-Fynn, Tristram; King, Owen; Watson, Scott

    2016-04-01

    The response of many Himalayan glaciers to climatic change is complicated by the presence of a supraglacial debris cover, which leads to a suite of processes controlling mass loss that are not commonly found where glaciers are debris-free. Here, we present a range of field, surface topographic and ice-dynamical observations acquired from Khumbu Glacier in Nepal, to describe and quantify these processes in fine spatial and temporal resolution. Like many other debris-covered glaciers in the Himalaya, the debris-covered tongue of the Khumbu Glacier is heavily in recession. For at least two decades, the lower ablation area has been stagnant as surface lowering in the mid-ablation zone has led to ever decreasing driving stresses. Contemporary velocity data derived from TerraSAR-X imagery confirms that the active-inactive ice boundary can now be found 5 km from the glacier terminus and that the maximum velocity, immediately below the icefall, is around 70 m per year. These data show that in this upper part of the ablation zone, the glacier velocity has not changed during the last 20 years, suggesting that at least above the icefall the glacier remains healthy. Across the stagnant debris-covered tongue there have been marked surface morphological changes. Mapping from 2004 shows relatively few surface ponds, a homogeneous debris-covered surface, and a small area towards the terminus supporting soil formation and low vegetation. Mapping from field observations in 2014 shows an abundance of surface meltwater, a more heterogeneous surface texture associated with many exposed ice cliffs, and a long (3 km) zone of stable terrain where soils are developing and, in places, low scrub can be found. Most dramatically, a string of surface ponds occupying the true-left lowermost 2 km of ice have expanded and coalesced, suggesting the glacier has crossed a threshold leading towards large glacial lake development. Two fine-resolution DEMs derived from Structure-from-Motion in spring

  20. Exploring tidewater glacier retreat using past and current observations at Columbia Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    O'Neel, S.; Pfeffer, W. T.; Howat, I. M.; Conway, H.; Columbia Glacier Consortium

    2010-12-01

    Since fulfilling Austin Post’s prediction of impending retreat in the late 1970s, Columbia Glacier has repeatedly surprised both casual and careful observers with its ability for rapid change. Over the last three decades, Columbia Glacier has lost approximately 18 km of its original 66 km length, while thinning by approximately 50% at the present terminus. The total ice volume lost to the Gulf of Alaska Estimates upwards of 120 km3 constrain the total ice volume lost to the Gulf of Alaska. Recently, the terminus supported a ~1.5 km long floating tongue for over than a year, contradicting the common assumption that the mechanical properties of temperate ice prohibit flotation over sustained time intervals. The rich history of study offers an opportunity to better understand tidewater glacier retreat, and a valuable analog to the dynamic instability underway at several ice sheet outlet glaciers. Current research aims to improve processing resolution of existing aerial photographic data, while complimenting the 30-year photogrammetric record with a suite of field observations. Recent instrumentation includes: oblique time lapse and still imagery, semi-permanent GPS, airborne radar, mass balance, passive seismology and LiDAR. This presentation will focus on innovative methods developed in recent field seasons, sharing insight each has provided into the retreat process . 1The Columbia Glacier Consortium consists of: Fabian Walter (SIO), Kenichi Matsuoka (NPI), Ben Smith (UW), Ethan Welty (CU-Boulder), Chris Larsen (UAF), Dave Finnegan (CRREL), Dan McNamara (USGS), Yushin Ahn (OSU), Julie Markus (OSU), Adam LeWinter (EIS).

  1. Mountain glaciation drives rapid oxidation of rock-bound organic carbon

    PubMed Central

    Horan, Kate; Hilton, Robert G.; Selby, David; Ottley, Chris J.; Gröcke, Darren R.; Hicks, Murray; Burton, Kevin W.

    2017-01-01

    Over millions of years, the oxidation of organic carbon contained within sedimentary rocks is one of the main sources of carbon dioxide to the atmosphere, yet the controls on this emission remain poorly constrained. We use rhenium to track the oxidation of rock-bound organic carbon in the mountain watersheds of New Zealand, where high rates of physical erosion expose rocks to chemical weathering. Oxidative weathering fluxes are two to three times higher in watersheds dominated by valley glaciers and exposed to frost shattering processes, compared to those with less glacial cover; a feature that we also observe in mountain watersheds globally. Consequently, we show that mountain glaciation can result in an atmospheric carbon dioxide source during weathering and erosion, as fresh minerals are exposed for weathering in an environment with high oxygen availability. This provides a counter mechanism against global cooling over geological time scales. PMID:28983510

  2. Glacier shrinkage driving global changes in downstream systems.

    PubMed

    Milner, Alexander M; Khamis, Kieran; Battin, Tom J; Brittain, John E; Barrand, Nicholas E; Füreder, Leopold; Cauvy-Fraunié, Sophie; Gíslason, Gísli Már; Jacobsen, Dean; Hannah, David M; Hodson, Andrew J; Hood, Eran; Lencioni, Valeria; Ólafsson, Jón S; Robinson, Christopher T; Tranter, Martyn; Brown, Lee E

    2017-09-12

    Glaciers cover ∼10% of the Earth's land surface, but they are shrinking rapidly across most parts of the world, leading to cascading impacts on downstream systems. Glaciers impart unique footprints on river flow at times when other water sources are low. Changes in river hydrology and morphology caused by climate-induced glacier loss are projected to be the greatest of any hydrological system, with major implications for riverine and near-shore marine environments. Here, we synthesize current evidence of how glacier shrinkage will alter hydrological regimes, sediment transport, and biogeochemical and contaminant fluxes from rivers to oceans. This will profoundly influence the natural environment, including many facets of biodiversity, and the ecosystem services that glacier-fed rivers provide to humans, particularly provision of water for agriculture, hydropower, and consumption. We conclude that human society must plan adaptation and mitigation measures for the full breadth of impacts in all affected regions caused by glacier shrinkage.

  3. Glacier shrinkage driving global changes in downstream systems

    PubMed Central

    Khamis, Kieran; Battin, Tom J.; Brittain, John E.; Barrand, Nicholas E.; Füreder, Leopold; Cauvy-Fraunié, Sophie; Gíslason, Gísli Már; Jacobsen, Dean; Hannah, David M.; Hodson, Andrew J.; Hood, Eran; Lencioni, Valeria; Ólafsson, Jón S.; Robinson, Christopher T.; Tranter, Martyn; Brown, Lee E.

    2017-01-01

    Glaciers cover ∼10% of the Earth’s land surface, but they are shrinking rapidly across most parts of the world, leading to cascading impacts on downstream systems. Glaciers impart unique footprints on river flow at times when other water sources are low. Changes in river hydrology and morphology caused by climate-induced glacier loss are projected to be the greatest of any hydrological system, with major implications for riverine and near-shore marine environments. Here, we synthesize current evidence of how glacier shrinkage will alter hydrological regimes, sediment transport, and biogeochemical and contaminant fluxes from rivers to oceans. This will profoundly influence the natural environment, including many facets of biodiversity, and the ecosystem services that glacier-fed rivers provide to humans, particularly provision of water for agriculture, hydropower, and consumption. We conclude that human society must plan adaptation and mitigation measures for the full breadth of impacts in all affected regions caused by glacier shrinkage. PMID:28874558

  4. Cirque glacier on South Georgia shows centennial variability over the last 7000 years

    NASA Astrophysics Data System (ADS)

    Oppedal, Lea T.; Bakke, Jostein; Paasche, Øyvind; Werner, Johannes P.; van der Bilt, Willem G. M.

    2018-02-01

    A 7000 year-long cirque glacier reconstruction from South Georgia, based on detailed analysis of fine-grained sediments deposited downstream in a bog and a lake, suggests continued presence during most of the Holocene. Glacier activity is inferred from various sedimentary properties including magnetic susceptibility (MS), dry bulk density (DBD), loss-on-ignition (LOI) and geochemical elements (XRF), and tallied to a set of terminal moraines. The two independently dated sediment records document concurring events of enhanced glacigenic sediment influx to the bog and lake, whereas the upstream moraines afford the opportunity to calculate past Equilibrium Line Altitudes (ELA) which has varied in the order of 70 m altitude. Combined, the records provide new evidence of cirque glacier fluctuations on South Georgia. Based on the onset of peat formation, the study site was deglaciated prior to 9900±250 years ago when Neumayer tidewater glacier retreated up-fjord. Changes in the lake and bog sediment properties indicate that the cirque glacier was close to its maximum Holocene extent between 7200±400 and 4800±200 cal BP, 2700±150 and 2000±200 cal BP, 500±150-300±100 cal BP, and in the 20th century (likely 1930s). The glacier fluctuations are largely in-phase with reconstructed Patagonian glaciers, implying that they respond to centennial climate variability possibly connected to corresponding modulations of the Southern Westerly Winds.

  5. Dramatical reduction of Cotopaxi Glaciers during the last volcano awakening 2015-2016

    NASA Astrophysics Data System (ADS)

    Cáceres, B. E.

    2016-12-01

    Cotopaxi Volcano is located over the eastern cordillera in the Ecuadorian Andes. During the last 50 years it has been a high reduction in its ice coverage corresponding to 54.8%. The ice lost was increased during the last volcano awakening. There was an increment on ice coverage lost of 4,5 % during August 2015 to January 2016. The increment on ice coverage lost was correlated to the presence of volcanic ash over the volcano. The quantity of volcanic ash was about 50% of the total area of glacier. This increment produced the change of albedo values from migration since white to gray-black appearance. The normal glaciers behavior related to the location of the equilibrium altitude(ELA) for the Ecuadorian Andes which correspond to 5100 meters above sea level and the response to climate change during August 2015 to January 2016 was also influenced by the increment on the volcano activity. The temperature on various zones of the volcano top was increased during that period. The ice cover for the Cotopaxi glaciers was analyzed using the method provided by World Glacier Monitoring Service (WGMS). Recent monitoring parameters such as seismicity, gas emissions and others show that the volcano activity has been reduced. During the last four months an increment on the precipitation and frequent snow falls have been wash out the recent ash falls and covered the ancient ash. This produced a lowering of the albedo to normal values. The rapid retreat of the glacier was reduced due to the recent climatic conditions.

  6. Seismic Monitoring of Ice Generated Events at the Bering Glacier

    NASA Astrophysics Data System (ADS)

    Fitzgerald, K.; Richardson, J.; Pennington, W.

    2008-12-01

    The Bering Glacier, located in southeast Alaska, is the largest glacier in North America with a surface area of approximately 5,175 square kilometers. It extends from its source in the Bagley Icefield to its terminus in tidal Vitus Lake, which drains into the Gulf of Alaska. It is known that the glacier progresses downhill through the mechanisms of plastic crystal deformation and basal sliding. However, the basal processes which take place tens to hundreds of meters below the surface are not well understood, except through the study of sub- glacial landforms and passive seismology. Additionally, the sub-glacial processes enabling the surges, which occur approximately every two decades, are poorly understood. Two summer field campaigns in 2007 and 2008 were designed to investigate this process near the terminus of the glacier. During the summer of 2007, a field experiment at the Bering Glacier was conducted using a sparse array of L-22 short period sensors to monitor ice-related events. The array was in place for slightly over a week in August and consisted of five stations centered about the final turn of the glacier west of the Grindle Hills. Many events were observed, but due to the large distance between stations and the highly attenuating surface ice, few events were large enough to be recorded on sufficient stations to be accurately located and described. During August 2008, six stations were deployed for a similar length of time, but with a closer spacing. With this improved array, events were located and described more accurately, leading to additional conclusions about the surface, interior, and sub-glacial ice processes producing seismic signals. While the glacier was not surging during the experiment, this study may provide information on the non-surging, sub-glacial base level activity. It is generally expected that another surge will take place within a few years, and baseline studies such as this may assist in understanding the nature of surges.

  7. A Mini-Surge on theRyder Glacier, Greenland Observed via Satelite Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Tulaczyk, S.; Fahnestock, M.; Kwok, R.

    1996-01-01

    A dramatic short term speed up of the Ryder glacier has been detected using satellite radar interferometry. The accelerated flow represents a substantial, though short-lived, change in the ice discharge from this basin. We believe that meltwater was involved in this event, either as an active participant, as meltwater-filled lakes on the surface of the glacier drained during the period of rapid motion.

  8. Extending Glacier Monitoring into the Little Ice Age and Beyond

    NASA Astrophysics Data System (ADS)

    Nussbaumer, S. U.; Gärtner-Roer, I.; Zemp, M.; Zumbühl, H. J.; Masiokas, M. H.; Espizua, L. E.; Pitte, P.

    2011-12-01

    Glaciers are among the best natural proxies of climatic changes and, as such, a key variable within the international climate observing system. The worldwide monitoring of glacier distribution and fluctuations has been internationally coordinated for more than a century. Direct measurements of seasonal and annual glacier mass balance are available for the past six decades. Regular observations of glacier front variations have been carried out since the late 19th century. Information on glacier fluctuations before the onset of regular in situ measurements have to be reconstructed from moraines, historical evidence, and a wide range of dating methods. The majority of corresponding data is not available to the scientific community which challenges the reproducibility and direct comparison of the results. Here, we present a first approach towards the standardization of reconstructed Holocene glacier front variations as well as the integration of the corresponding data series into the database of the World Glacier Monitoring Service (www.wgms.ch), within the framework of the Global Terrestrial Network for Glaciers (www.gtn-g.org). The concept for the integration of these reconstructed front variations into the relational glacier database of the WGMS was jointly elaborated and tested by experts of both fields (natural and historical sciences), based on reconstruction series of 15 glaciers in Europe (western/central Alps and southern Norway) and 9 in southern South America. The reconstructed front variation series extend the direct measurements of the 20th century by two centuries in Norway and by four in the Alps and in South America. The storage of the records within the international glacier databases guarantees the long-term availability of the data series and increases the visibility of the scientific research which - in historical glaciology - is often the work of a lifetime. The standardized collection of reconstructed glacier front variations from southern Norway

  9. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska

    USGS Publications Warehouse

    Lilledahl, Anna K.; Gadeke, Anne; O'Neel, Shad; Gatesman, T. A.; Douglas, T. A.

    2017-01-01

    Arctic river discharge has increased in recent decades although sources and mechanisms remain debated. Abundant literature documents permafrost thaw and mountain glacier shrinkage over the past decades. Here we link glacier runoff to aquifer recharge via a losing headwater stream in subarctic Interior Alaska. Field measurements in Jarvis Creek (634 km2), a subbasin of the Tanana and Yukon Rivers, show glacier meltwater runoff as a large component (15–28%) of total annual streamflow despite low glacier cover (3%). About half of annual headwater streamflow is lost to the aquifer (38 to 56%). The estimated long-term change in glacier-derived aquifer recharge exceeds the observed increase in Tanana River base flow. Our findings suggest a linkage between glacier wastage, aquifer recharge along the headwater stream corridor, and lowland winter discharge. Accordingly, glacierized headwater streambeds may serve as major aquifer recharge zones in semiarid climates and therefore contributing to year-round base flow of lowland rivers.

  10. Rapid ice-rock avalanches versus gradual glacial processes? Implications for the natural hazard potential in the Karakoram Mountains (Pakistan)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam

    2016-04-01

    There is a growing concern about extreme mass movements from combined ice-rock avalanches in glaciated environments areas in the light of increasing settlement activities in mountains and their forelands. Recent devastating events, such as those from Huascaran (Peru) in 1970 or Kolka (Caucasus) in 2002, have been an eye-opener in terms of the large run-out-distances and their hazard potential. At the same time there is a variety of topographic settings and distinct triggers of ice and rock failures, which leads in turn to a broad spectrum of multi-phase processes, such as the possible propagation of rock-ice-masses onto glacial surfaces with subsequent debris flows. These events are often not directly observable, and a sound interpretation of the sedimentary record is needed. However, the origin and process dynamics of giant debris accumulations in different mountain regions of the world is discussed increasingly controversially. In the last decade a lot of debris accumulations, which were classified formerly as moraines, were reinterpreted as products of mass movements. In this context, the study presented here, focuses on a case example from the upper Chapursan Valley at the Afghan-Pakistan border (Karakoram Range, Pakistan). The Chapursan Valley floor and the adjacent sediment cones are covered with an outstanding hummocky debris landscape over a length of about 10 km and a width of up to 1 km with individual hummocks reaching about 10 m in height. These landforms overlap with the zone of permanent settlement. According to local legends and reports of early travelers in this region, one of the largest settlement concentrations formerly occurred in the upper Chapursan Valley and was destroyed by a natural disaster. Geomorphological field investigations, sedimentological studies, a comparison of satellite images, an analysis of historical data and interviews with the local inhabitants were carried out to unravel the origin of the hummocky terrain. The results show

  11. Will mountain regions dominated by small headwater glaciers experience the same paraglacial response as large valley systems?

    NASA Astrophysics Data System (ADS)

    Kirkbride, Martin P.; Deline, Philip

    2017-04-01

    Rapid 20th Century and early 21st Century retreat of cirque glaciers in the western European Alp has revealed extensive forelands across and onto which a variety of thermal, slope and fluvial process operate. These effect a transition from a subglacial to a proglacial landsystem, by reworking sediment and reorganising drainage networks. The landsystem achieves a state of preservation once no more adjustment is possible due to buffering by channel network evolution, channel armouring, vegetation growth, and (rarely) sediment exhaustion. We find that no consistent trajectory of change across all sites. Rather, paraglacial responses in the cirque environment show differences from the classical valley-glacier landscape response model, involving variable slope-channel coupling. Reasons for diverse and site-specific behaviour include inherited landforms of deglaciation (glacier ice core survival and degradation), scale and gradient, and surface materials (bedrock, fine till, and/or blocky till). At some cirques, these are anticipated to restrict the downstream propagation of a paraglacial "signal" of diffusion of fluvial-transported sediment through the catchment. At others, such a signal may be propagated from the headwater basin. However a high proportion of glacial material generally remains within the glacier foreland, due to some combination of (1) formation of proglacial basin sediment traps; (2) inefficiency of disorganised fluvial networks, (3) armouring of cirque floors by coarse melt-out-tills, and (4) locking of streams into rock-controlled channels. These effects appear to be more pronounce for the early 21st century paraglacial landsystems than they were for the post-"Little Ice Age" maximum landsystems of the late 19th Century at the same sites. The long-term preservation potential of most recent primary glacial deposits and within-cirque paraglacial landforms appears to be high. These landform assemblages represent the dramatic termination from the long

  12. Sensitivity and Response of Bhutanese Glaciers to Atmospheric Warming

    NASA Technical Reports Server (NTRS)

    Rupper, Summer; Schaefer, Joerg M.; Burgener, Landon K.; Koenig, Lora S.; Tsering, Karma; Cook, Edward

    2013-01-01

    Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. However, the most conservative results indicate that, even if climate were to remain at the present-day mean values, almost 10% of Bhutan s glacierized area would vanish and the meltwater flux would drop by as much as 30%. Under the conservative scenario of an additional 1 C regional warming, glacier retreat is going to continue until about 25% of Bhutan s glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%. Citation

  13. Surging glaciers in Iceland - research status and future challenges

    NASA Astrophysics Data System (ADS)

    Ingolfsson, Olafur

    2013-04-01

    Twenty six Icelandic outlet glaciers, ranging from 0.5-1.500 km2, are known to surge, with terminal advances ranging from of few tens of meters to about 10 km. The geomorphic signatures of surges vary, from large-scale folded and thrusted end moraine systems, extensive dead-ice fields and drumlinized forefields to drift sheets where fast ice-flow indicators are largely missing. Case studies from the forefields of Brúarjökull, Eyjabakkajökull and Múlajökull surging glaciers will be presented. At Brúarjökull, extremely rapid ice flow during surge was sustained by overpressurized water causing decoupling beneath a thick sediment sequence that was coupled to the glacier. The ice-marginal position of the 1890 surge is marked by a sedimentary wedge formed within five days and a large moraine ridge that formed in about one day ("instantaneous end-moraine"). Three different qualitative and conceptual models are required to explain the genesis of the Eyjabakkajökull moraines: a narrow, single-crested moraine ridge at the distal end of a marginal sediment wedge formed in response to decoupling of the subglacial sediment from the bedrock and associated downglacier sediment transport; large lobate end moraine ridges with multiple, closely spaced, asymmetric crests formed by proglacial piggy-back thrusting; moraine ridges with different morphologies may reflect different members of an end moraine continuum. A parallel study highlighting the surge history of Eyjabakkajökull over the last 4400 years suggests climate control on surge frequencies. The Múlajökull studies concern an active drumlin field (>100 drumlins) that is being exposed as the glacier retreats. The drumlins form through repeated surges, where each surge causes deposition of till bed onto the drumlin while similtaneously eroding the sides. Finally, a new landsystem model for surging North Iceland cirque glaciers will be introduced. References Benediktsson,I. Ö., Schomacker, A., Lokrantz, H. & Ing

  14. Glacialmorphological reconstruction of glacier advances and glacial lake outburst floods at the Cachapoal glacier in the Dry Central Andes of Chile (34°S)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam; Charrier, Reynaldo

    2013-04-01

    Throughout the Andes Mountain range of South America a general trend of glacier shrinkage has taken place in the last century. Only a few glaciers have shown a rather non-continuous trend of glacier retreat and temporally advanced or even surged during the mid-19th to 20th century. One of the earliest assumed glacier surges has occurred in the upper Cachapoal catchment area at the homonymous glacier. In climatic respect the Cachapoal glacier is located in the transition zone from the most southern part of the Dry Central Andes of Chile to the more humid zone of the Wet Andes. The region is affected mainly by winter precipitation deriving from the Westerlies. The debris-covered, 12 km-long Cachapoal glacier represents one of the largest valley glaciers in the Central Andes. It is an avalanche-fed glacier with an almost 1500 m-high head wall in its upper catchment area flowing down from Picos del Barroso (5180 m) and terminates at an elevation of 2630 m a.s.l. with a bifurcated glacier tongue. A large moraine complex, almost 2 km in length and 500 m in width, separates the two glacier lobes. During times of advanced glacier tongue positions the Ríos Molina and Cachapoal may be have blocked independently at two distinct localities which are situated about 2300 m apart from each other. A blockage with temporal lake formation has occurred at least in the years 1848, 1955 and 1981 (cf. Plagemann 1887, Peña 1981), from which the rupture of the earliest glacier barrier has been the most devastating. This event is locally reminded as "la gran avenida en seco" in the historical record. Geomorphological evidence of the past historical and modern glacier expansions is given in the proglacial area by a fresh dead-ice hummocky topography and glacial trimlines at the valley flanks. More down valley broad outwash plains and boulder clusters indicate past high energy floods produced by glacier lake outbursts. Regarding the small size of the catchment area of the Río Molina

  15. Mountain glaciers caught on camera

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-12-01

    Many glaciers around the world are melting, and new research is showing some of the dramatic details. Ulyana Horodyskyj, a graduate student at the Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, set up cameras to take time-lapse photographs of three lakes on a glacier in Nepal. This allowed her and her colleagues to see the supraglacial lake drain in real time for the first time, making it possible to estimate how much water was involved and how long it took for the lake to drain and refill. Horodyskyj said in a press conference at the AGU Fall Meeting that such observations of supraglacial lakes are valuable because in a warming climate, melting glaciers can lead to formation of supraglacial lakes.

  16. Small Glacier Area Studies: A New Approach for Turkey

    NASA Technical Reports Server (NTRS)

    Yavasli, Dogukan D.; Tucker, Compton J.

    2012-01-01

    Many regions of Earth have glaciers that have been neglected for study because they are small. We report on a new approach to overcome the problem of studying small glaciers, using Turkey as an example. Prior to our study, no reliable estimates of Turkish glaciers existed because of a lack of systematic mapping, difficulty in using Landsat data collected before 1982, snowpack vs. glacier ice differentiation using existing satellite data and aerial photography, the previous high cost of Landsat images, and a lack of high-resolution imagery of small Turkish glaciers. Since 2008, a large number of < 1 m satellite images have become available at no cost to the research community. In addition, Landsat data are now free of charge from the U.S. Geological Survey, enabling the use of multiple images. We used 174 Landsat and eight high-resolution satellite images to document the areal extent of Turkish glaciers from the 1970s to 2007-2011. Multiple Landsat images, primarily Thematic Mapper (TM) data from 1984 to 2011, enabled us to minimize differentiation problems between snow and glacier ice, a potential source of error. In addition, we used Ikonos, Quickbird, and World View-1 & -2 very high-resolution imagery to evaluate our TM accuracies and determine the area of nine smaller glaciers in Turkey. We also used five Landsat-3 Return Beam Videcon (RBV) 30 m pixel resolution images, all from 1980, for six glaciers. The total area of Turkish glaciers decreased from 23 km2 in the 1970s to 10.1 km2 in 2007-2011. By 2007-2011, six Turkish glaciers disappeared, four were < 0.3 km2, and only three were 1.0 km2 or larger. No trends in precipitation from 1970 to 2006 and cloud cover from 1980 to 2010 were found, while surface temperatures increased, with summer minimum temperatures showing the greatest increase. We conclude that increased surface temperatures during the summer were responsible for the 56% recession of Turkish glaciers from the 1970s to 2006-2011.

  17. Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Hoffmann, Helene; Kerch, Johanna; Sold, Leo; Fischer, Andrea

    2018-01-01

    Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.

  18. Glacier Changes in the Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.

    2014-12-01

    We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet

  19. Modeling and Understanding the Mass Balance of Himalayan Glaciers

    NASA Astrophysics Data System (ADS)

    Rengaraju, S.; Achutarao, K. M.

    2017-12-01

    Changes in glaciers are among the most visible manifestations of a changing climate. Retreating glaciers have significant impacts on global sea-level rise and stream flow of rivers. Modeling the response of glaciers to climate change is important for many reasons including predicting changes in global sea level and water resources. The mass balance of a glacier provides a robust way of ascertaining whether there has been a net loss or gain of ice from the glacier. The mass balance reflects all of the meteorological forcing of the glacier - from the accumulation of snow and the combined losses from ablation and sublimation. The glaciers in the Himalayan region are considered sensitive to climate change and their fate under climate change is critical to the billions of humans that rely on rivers originating from these glaciers. Owing to complex terrain and harsh climate, Himalayan glaciers have historically been poorly monitored and this makes it harder to understand and predict their fate.In this study we model the observed mass balance of Himalayan glaciers using the methods of Radic and Hock (2011) and analyze the response to future changes in climate based on the model projections from the Coupled Model Intercomparison Project Phase-5 (CMIP5; Taylor et al., 2012). We make use of available observations of mass balance from various sources for 14 glaciers across the Himalayas. These glaciers are located across distinct climatic conditions - from the Karakoram and Hindu Kush in the West that are fed by winter precipitation caused by westerly disturbances to the Eastern Himalayas where the summer monsoon provides the bulk of the precipitation. For the historical observed period, we use the ECMWF Re-Analysis (ERA-40) for temperature and VASClimO (GPCC) data at 2.5°x2.5° resolution to calibrate the mass balance model. We evaluate the CMIP5 model simulations for their fidelity in capturing the distinct climatic conditions across the Himalayas in order to select

  20. Malaspina Glacier, Alaska as seen from STS-66 Atlantis

    NASA Image and Video Library

    1994-11-14

    STS066-117-014 (3-14 Nov. 1994) --- Malaspina Glacier can be seen in this north-northeastern photograph taken in November, 1994. The glacier, located in the south shore of Alaska is a classic example of a piedmont glacier lying along the foot of a mountain range. The principal source of ice for the glacier is provided by the Seward Ice Field to the north (top portion of the view) which flows through three narrow outlets onto the coastal plain. The glacier moves in surges that rush earlier-formed moraines outward into the expanding concentric patterns along the flanks of the ice mass.

  1. The Propagation of a Surge Front on Bering Glacier, Alaska, 2001-2011

    NASA Technical Reports Server (NTRS)

    Turrin, James; Forster, Richard R.; Larsen, Chris; Sauber, Jeanne

    2013-01-01

    Bering Glacier, Alaska, USA, has a 20 year surge cycle, with its most recent surge reaching the terminus in 2011. To study this most recent activity a time series of ice velocity maps was produced by applying optical feature-tracking methods to Landsat-7 ETM+ imagery spanning 2001-11. The velocity maps show a yearly increase in ice surface velocity associated with the down-glacier movement of a surge front. In 2008/09 the maximum ice surface velocity was 1.5 plus or minus 0.017 kilometers per a in the mid-ablation zone, which decreased to 1.2 plus or minus 0.015 kilometers per a in 2009/10 in the lower ablation zone, and then increased to nearly 4.4 plus or minus 0.03 kilometers per a in summer 2011 when the surge front reached the glacier terminus. The surge front propagated down-glacier as a kinematic wave at an average rate of 4.4 plus or minus 2.0 kilometers per a between September 2002 and April 2009, then accelerated to 13.9 plus or minus 2.0 kilometers per a as it entered the piedmont lobe between April 2009 and September 2010. Thewave seems to have initiated near the confluence of Bering Glacier and Bagley Ice Valley as early as 2001, and the surge was triggered in 2008 further down-glacier in the mid-ablation zone after the wave passed an ice reservoir area.

  2. What Influences Climate and Glacier Change in the Southwestern China?

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.

    2012-01-01

    The subject of climate change in the areas of the Tibetan Plateau (TP) and the Himalayas has taken on increasing importance because of available water resources from their mountain glaciers. Many of these glaciers over the region have been retreating, while some are advancing and stable. Other studies report that some glaciers in the Himalayas show acceleration on their shrinkage. However, the causes of the glacier meltings are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. However, it is vital that we pursue further study to enable the future prediction on glacier changes.

  3. Terricolous Lichens in the Glacier Forefield of the Morteratsch Glacier (Eastern Alps, Graubünden, Switzerland)

    PubMed Central

    Bilovitz, Peter O.; Nascimbene, Juri; Mayrhofer, Helmut

    2016-01-01

    Summary Three sampling sites were established at increasing distance from the Morteratsch glacier to investigate lichen communities on soil in the glacier forefield. The survey yielded 13 lichen species and one lichenicolous fungus. Peltigera extenuata (Nyl. ex Vain.) Lojka (Peltigerales) is new to the canton of Graubünden. PMID:26877564

  4. Dry calving processes at the ice cliff of an antarctic local glacier: the study case of Strandline Glacier (Northern Victoria Land, Antarctica)

    NASA Astrophysics Data System (ADS)

    Smiraglia, C.; Motta, M.; Vassena, G.; Diolaiuti, G.

    2003-04-01

    In Antartic coastal area, where the ice sheet and the large outlet glaciers do not reach the sea and where some rugged mountain chains are often present, many small glaciers can be found. They are the so called local or alpine type glaciers, which have their terminus ground-based such as the real alpine glaciers and rarely reach the main valley floors. They are practically isolated and independent from the supply flowing down from the plateau and their mass balance is mainly controlled by sublimation and aeolic erosion and accumulation. The glaciers closer to the coast are submitted to the melting as well, and when the terminus is cliff-shaped they are also affected by dry calving. The most known and studied Antarctic local glaciers are placed in the Dry Valleys region (Chinn, 1985), but this kind of glaciers is also diffused all along the Northern Victoria Land coastal region (Chinn and others, 1989). Since the first Italian Antarctic expedition (1985), many studies have been carried out on this type of glaciers, which can be usefull for detailed mass balance evaluations and for obtaining information about the effects of the present climatic dynamics on the Antarctic coastal environment (Baroni and Orombelli, 1987; Baroni and others, 1995; Meneghel, 1999; Vassena and others., 2001). The Strandline Glacier (74 41 S; 164 07 E), in particular is a small alpine glacier (0,79 kmq) on the coast of Terra Nova Bay, Northern Victoria Land; it is a cold glacier where accumulation and ablation basins are mainly controlled by wind processes. Its terminus forms in the central part a grounded ice cliff about 30 m high, about 130 m far from the sea. On that glacier mass balance, surface velocity and calving rate were measured. During the southern summer season 2000-2001 many topographycal profiles of the ice cliff were surveyed by using both classical topographical and glaciological methods (total station and stakes) and GPS technique. It was so possible to detect the short term

  5. Fossil debris-covered glaciers in Demanda Sierra (Northern Spain): geomorphological research and 10Be cosmogenic exposure dating

    NASA Astrophysics Data System (ADS)

    Fernández-Fernández, José M.; Palacios, David; Andrés, Nuria; Schimmelpfennig, Irene; Gómez-Villar, Amelia; Santos-González, Javier; Álvarez-Martínez, Javier; Arnáez, José; Úbeda, José; García-Ruiz, José M.

    2017-04-01

    The Demanda Sierra, at altitudes above 2000 m.a.s.l., is located in the Iberian Range (Northern Iberian Peninsula, 42°15' N). The main divide extends from west to east between 3°25' W and 2°52' W. The most relevant evidences of Pleistocene glaciation are found in small cirques above 1800 m a.s.l., most of them in the northern face. These cirques hosted small-size glaciers with ice tongues <1 km in length that deposited moraines composed of angular blocks with scarce fine matrix. Several rock glaciers were identified in previous papers. Nevertheless, recent fieldwork suggests the reinterpretation of the large chaotic angular block accumulations without fine matrix as fossil debris-covered glaciers. To elucidate such a complex issue, two north-facing cirques in the Mencilla Peak (42°11'11" N, 3°18'45" W; 1932 m a.s.l.) and a southeast-facing cirque in the San Lorenzo Peak (42°14'28" N, 2°58'31" W; 2261 m a.s.l.) have been selected as they host similar block accumulations. The aim of this paper is: 1) to identify the debris-covered glacier features in such block accumulations; 2) to present the chronology obtained for the first time from debris-covered glaciers and to put them in the context of deglaciation in the Iberian Range and in the Iberian Peninsula and the Mediterranean mountains; 3) to analyze the glacier evolution during the deglaciation. To carry out these objectives, different methodological approaches and techniques have been applied: 1) detailed geomorphological mapping at 1:1000 scale over stereoscopic pairs, high-resolution LIDAR Digital Elevation Models and fieldwork to identify glacial and debris-covered glacier features (e.g. moraines, ridges, furrows, etc.); 2) Cosmogenic Exposure Dating (CED), 10Be, applied to 18 quartzite samples taken from stable boulders over moraine ridges or fossil debris-covered glaciers; 3) glacier reconstruction for modelling the glacier evolution at different stages; 4) Equilibrium Line Altitude (ELA) calculation

  6. Hydro-sliding and the Springtime Dynamical Evolution of Kennicott Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Armstrong, W. H., Jr.; Anderson, R. S.

    2017-12-01

    Glacier basal motion is a poorly understood aspect of glacier mechanics that is responsible for the majority of ice flux on fast-flowing glaciers, enables rapid changes in glacier motion, and provides the means by which glaciers shape alpine landscapes. We collect hydrometerologic data and GPS-derived ice surface motion to probe the link between subglacial water pressure and the evolution of glacier velocity on Kennicott Glacier, Alaska. We find a chaotic timeseries of >50 m fill-and-drain sequences on the well-connected ice-marginal Donoho Falls Lake. Glacier velocity in the down-glacier reach responds sensitively to lake stage, with high amplitude diurnal velocity fluctuations during high or rising stage. The timing of velocity peaks precedes peak stage by 2-3 hours, and synchronously shifts earlier in the day throughout our observation period. We find the up-glacier station appears to first speed up in response to longitudinal coupling with accelerating down-glacier ice before responding to local variations in basal traction. We find the transition to responding to local basal conditions results in the glacier behaving more uniformly, with similar magnitude diurnal velocity fluctuations, synchronous timing of velocity extrema across the 10 km study reach, and steadier longitudinal strain rates.

  7. Mountain Glaciers and Ice Caps

    USGS Publications Warehouse

    Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.

    2011-01-01

    Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.

  8. Evaluating the Impact of Glacier Shrinkage on Water Supply at Volcán Chimborazo, Ecuador

    NASA Astrophysics Data System (ADS)

    La Frenierre, J.; Mark, B. G.

    2013-12-01

    Glaciers play a critical hydrologic role in mountain watersheds worldwide, and the potential effect of persistent glacier shrinkage on water supply is justly regarded as one of the key climate change impacts that the scientific and development communities must endeavor to understand. The relationship between glaciers and water supply is particularly acute in the tropical Andes, where irrigation is often essential for the sustainability of agricultural livelihoods. In Ecuador, the glaciers of Volcán Chimborazo (6267 m.a.s.l.) are a highly-visible component of the local hydrologic system and irrigators in the communities that surround the mountain are concerned about their potential vulnerability in the face of noticeable recent glacier retreat on the mountain. Here, I present results from an integrated study that quantifies the rate of glacier retreat at Chimborazo since the mid-1980s, estimates the present-day contribution of glacier melt to total discharge in the mountain's most glacierized watershed, and assays the implications of changing hydrologic conditions on water users in the region. Methods employed include direct hydrologic and glaciologic measurements, analysis of hydrologic tracers, remote sensing techniques, and social research activities such as household surveys and focus groups. Over the past quarter-century, increased water stress has been a key driver of shifting livelihood patterns in the agrarian communities below the mountain, with persistent glacier retreat one of multiple biophysical and socio-economic forcing mechanisms. Since 1986, Chimborazo has lost 20.5% of its glacier surface area (0.8%/yr). While station records indicate patterns of climate change consistent with those reported elsewhere in the tropical Andes (temperature increase of 1.1°C/decade; no statistically-significant changes in precipitation since 1985), there is a very strong local perception that surface water sources are diminishing and that rainfall patterns are

  9. The LIA history of the "Glacier des Bossons" (Mont Blanc area, France): a new high-resolution glacier length curve based on historical documents

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Samuel U.; Zumbühl, Heinz J.

    2010-05-01

    Historical and proxy-records have documented a partly asynchronous evolution in temperature, precipitation and glacial variations between European regions during the Little Ice Age (LIA), and the causes of these temporal anomalies are yet being poorly understood. To address this question, highly resolved glacier reconstructions going far back in time based on historical documents (for the last 500 years) or on dendrochronological and radiocarbon dating (for the Holocene) are very important as they give valuable insights in past climate. However, such reconstructions exist only for few glaciers worldwide, depending on the public perception and the accessibility of the corresponding glacier and its surrounding area. One of these regions of interest is the well-documented Mont Blanc area. Here, we present a new high-resolution reconstruction of length changes for the "Glacier des Bossons", situated in the French part of the Mont Blanc area. This reconstruction is based on historical material newly discovered, that has not been evaluated so far for glacier reconstructions. More than 200, often unpublished, artworks (paintings, drawings, prints), photographs, maps and written accounts have been critically analysed and give an univocal picture of the glacier's history. Especially noteworthy are the drawings by Jean-Antoine Linck, Samuel Birmann and Eugène Viollet-le-Duc which depict meticulously the glacier's extent during the vast advance and subsequent retreat during the 19th century. The new reconstruction dates back to AD 1580. Maxima of the "Glacier des Bossons" are proved around 1610/1643, 1685, 1712, 1780, 1818, 1854, 1892, 1921, 1941, and 1983. The LIA maximum extent was reached in 1818. Until the present, the glacier has lost about 1.5 kilometres in length, and it is nowadays shorter than at any time during the reconstruction period. The length curve of the "Glacier des Bossons" is finally analysed regarding climate data and also compared with the nearby "Mer

  10. 40 Years of Glacier Change across the Himalayas

    NASA Astrophysics Data System (ADS)

    Maurer, J. M.; Schaefer, J. M.; Rupper, S.

    2017-12-01

    Himalayan glaciers are central to societies, ecologies, and landscapes in South Asia. Retreating glaciers have been observed in the Himalayas from in-situ and satellite remote sensing measurements, yet different approaches provide a wide range of mass budget estimates. As glaciers respond dynamically to climate over decades and centuries, more observations of past glacier states are needed to gain perspective on existing shorter-timespan ice loss estimates, minimize effects of interannual variability, and to robustly evaluate glacier dynamics. Here we use a new suite of DEMs (digital elevation models) to estimate geodetic mass balance for over 1000 Himalayan glaciers spanning a 2000 km transect, during the years 1975-2000 and 2001-2016. Recent advances in DEM extraction from declassified Hexagon filmstrips, along with new public access to the global ASTER database have allowed for this large-scale analysis of regional ice loss. An average trendline (using a 30-glacier moving-window) reveals a spatially coherent ice loss signal across the entire transect during both periods, consistent with atmospheric warming as the primary Himalaya-wide driver of change. Our estimate of mean annual ice losses during the more recent period is approximately twice as negative (-0.39 ± 0.1 m.w.e. a-1) compared to the 1975-2000 baseline (-0.18 ± 0.1 m.w.e. a-1). This two-fold acceleration of ice loss during the 21st century agrees with the global average, parallel with recent observations of increasing rates of sea level rise. These surface-integrated geodetic mass balances are negligibly influenced by ice flow dynamics, thus are indicative of climate-driven glacier responses. Further analyses utilizing satellite-derived ice surface velocities will afford deconvolution of the surface mass balance and ice fluxes, providing additional insights into the dynamic responses of the glaciers.

  11. Patagonian Glacier Advances in Concert with those in Western North America

    NASA Astrophysics Data System (ADS)

    Maurer, M. K.; Menounos, B.; Clague, J. J.; osborn, G.

    2012-12-01

    The question of whether Holocene glacier advances in the Northern and Southern hemispheres are synchronous remains open. Here we report on the evidence for late Holocene advances at Stoppani Glacier (54.78° S, 68.98° W), 50 km west of Ushuaia, Argentina, and compare this record to glacier fluctuations in western North America. The glacier is an outlet glacier of the Darwin Cordillera icefield, has an area of 92 km2 and descends to 80 m asl. Wood mats containing stumps in growth position are separated by units of till in a 100-m-high section through the northeast lateral moraine. Radiocarbon ages on the wood mats and stumps decrease up-section, demonstrating that Stoppani Glacier advanced successively farther over the past 3800 years. The earliest of the advances is recorded by a till overlying peat containing wood that returned a calibrated radiocarbon age of 3.83-3.64 ka (kilo calendar years BP). This advance coincides with a well documented glacier advance in western Canada, the so-called '4.2 ka event' [4.2-3.8 ka]. Stoppani Glacier further thickened and overran stumps in growth position at 3.16-2.95 and at 2.86-2.76 ka; both of these events are contemporaneous with widespread advances of alpine glaciers in British Columbia and Alberta. A fourth advance of Stoppani Glacier at about 2.30-2.01 ka coincides with advances of Deming Glacier on Mount Baker, Washington, USA [2.35-2.15 ka], and several glaciers in the Coast Mountains of British Columbia, Canada. The final advance of Stoppani Glacier began about 0.29 ka when the glacier thickened, overran a vegetated surface, and deposited till that forms the crest of the moraine. This advance coincides with the maximum, classical, Little Ice Age advance of nearly all glaciers in western North America. Collectively, our data indicate that Stoppani Glacier advanced in step with glaciers in western North America during the late Holocene. The most parsimonious explanation is that century-scale climate forcing

  12. Area and Elevation Changes of a Debris-Covered Glacier and a Clean-Ice Glacier Between 1952-2013 Using Aerial Images and Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Lardeux, P.; Glasser, N. F.; Holt, T.; Irvine-Fynn, T. D.; Hubbard, B. P.

    2015-12-01

    Since 1952, the clean-ice Glacier Blanc has retreated twice as fast as the adjacent debris-covered Glacier Noir. Located in the French Alps and separated by only 1 km, both glaciers experience the same climatic conditions, making them ideal to evaluate the impact of debris cover on glacier evolution. We used aerial photographs from 16 acquisitions from 1952 to 2013 to reconstruct and analyze glacier elevation changes using Structure-from-Motion (SfM) techniques. Here, we present the process of developing sub-metric resolution digital elevation models (DEMs) from these aerial photographs. By combining 16 DEMs, we produced a dataset of elevation changes of Glacier Noir and Glacier Blanc, including time-series analysis of lateral and longitudinal profiles, glacier hypsometry and mass balance variation. Our preliminary results indicate that Glacier Noir and Glacier Blanc have both thinned to a similar magnitude, ≤ 20 m, despite a 1 km retreat for Glacier Blanc and only 500 m for Glacier Noir. However, these elevation change reconstructions are hampered by large uncertainties, principally due to the lack of independent camera calibration on the historical imagery. Initial attempts using posteriori correction grids have proven to significantly increase the accuracy of these data. We will present some of the uncertainties and solutions linked to the use of SfM on such a large scale and on such an old dataset. This study demonstrates how SfM can be used to investigate long-term trends in environmental change, allowing glacier monitoring to be up-scaled. It also highlights the need for on-going validation of methods to increase the accuracy and precision of SfM in glaciology. This work is not only advancing our understanding of the role of the debris layer, but will also aid glacial geology more generally with, for example, detailed geomorphological analysis of proglacial terrain and Quaternary sciences with quick and accurate reconstruction of a glacial paleo-environment.

  13. One Isotope, Two Tales: using plant and cosmogenic 14C to constrain Holocene glacier activity on Baffin Island.

    NASA Astrophysics Data System (ADS)

    Pendleton, S.; Miller, G. H.; Lifton, N. A.; Young, N. E.

    2017-12-01

    As the cryosphere continues to undergo rapid and accelerating change, it is more important than ever to understand past glacier activity to predict the future of the cryosphere. However, continuous Holocene glacier records are notoriously difficult to reconstruct because an advancing glacier will re-incorporate previous deposits so that moraines typically only record the farthest downvalley glacier expansion. Here we combine dates of ice margin advance from in situ dead vegetation with in situ cosmogenic 14C (in situ 14C) from preserved bedrock surfaces at the same locations to further constrain the timing of ice-free episodes during the Holocene following deglaciation on southern Baffin Island. Radiocarbon ages from recently exposed in situ plants suggest that ice last advanced over sample locations at 9.4, 9.2, 9.0, and 3.7 ka and that they remained ice covered until modern times. Associated in situ 14C inventories are variable, but well above background levels, suggesting some amount of Holocene in situ 14C production. Using plant 14C ages representing the beginning of ice coverage and in situ 14C inventories representative of exposure prior to ice coverage, a simple model of cosmogenic in situ 14C production (accounting for muon production through ice) provides constraints timing and duration of ice-free times at sample locations prior to their most recent burial. Using conservative Holocene ice thicknesses, the locations buried at 9.4, 9.2, and 9.0 ka require, at minimum, 1000 years of pre-burial exposure to match the observed in situ 14C inventory. This suggests these locations were ice free by at least 10 ka and likely earlier. The in situ 14C inventory at the location buried at 3.7 ka limits prior exposure to 2000 years, suggesting that this location experienced more complex Holocene ice cover/burial history. These pilot data show that valuable information regarding periods of exposure is contained within in situ 14C inventories. Additional paired plant and

  14. Repeat Photography of Alaskan Glaciers and Landscapes as Both Art and as a Means of Communicating Climat Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2013-12-01

    For nearly 15 years, I have used repeat photography of Alaskan glaciers and landscapes to communicate to fellow scientists, policymakers, the media, and society that Alaskan glaciers and landscapes have been experiencing significant change in response to post-Little Ice Age climate change. I began this pursuit after being contacted by a U.S. Department of the Interior senior official who requested unequivocal and unambiguous documentation that climate change was real and underway. After considering several options as to how best respond to this challenge, I decided that if a picture is worth a thousand words, then a pair of photographs, both with the same field of view, spanning a century or more, and showing dramatic differences, would speak volumes to documenting that dynamic climate change is occurring over a very broad region of Alaska. To me, understating the obvious with photographic pairs was the best mechanism to present irrefutable, unambiguous, nonjudgmental, as well as unequivocal visual documentation that climate change was both underway and real. To date, more than 150 pairs that meet these criteria have been produced. What has surprised me most is that the many of the photographs contained in the pairs present beautiful images of stark, remote landscapes that convey the majestic nature of this dynamic region with its unique topography and landscapes. Typically, over periods of just several decades, the photographed landscapes change from black and white to blue and green. White ice becomes blue water and dark rock becomes lush vegetation. Repeat photography is a technique in which a historical photograph and a modern photograph, both having the same field of view, are compared and contrasted to quantitatively and qualitatively determine their similarities and differences. I have used this technique from both ground-based photo stations and airborne platforms at Alaskan locations in Kenai Fjords National Park, Glacier Bay National Park and Preserve

  15. Complex Greenland outlet glacier flow captured

    PubMed Central

    Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  16. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Molnia, B. F.; Luthcke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spada, G.

    2004-12-01

    footprint returns to estimate glacier ice elevations and surface characteristics. To obtain the optimal ICESat results, we are reprocessing the ICESat data from Alaska to provide a well-calibrated regional ICESat solution. We anticipate that our ICESat results combined with earlier data will provide new constraints on the temporal and spatial variations in ice volume of individual Alaskan mountain ranges. These results allow us to address how recent melting of the southern Alaska glaciers contribute to short-term sea-level rise. Our results will also enable us to quantify crustal stress changes due to ice mass fluctuations and to assess the influence of ice mass changes on the seismically active southern Alaskan plate boundary zone.

  17. Glacier mass budget measurements by hydrologic means

    USGS Publications Warehouse

    Tangborn, Wendell V.

    1966-01-01

    Ice storage changes for the South Cascade Glacier drainage basin were determined for the 1957–1964 period using basin runoff and precipitation measurements. Measurements indicate that evaporation and condensation are negligible compared with the large runoff and precipitation values. Runoff, measured by a stream discharge station, averaged 4.04 m/yr; precipitation, determined by snow accumulation measurements at a central point on the glacier and by storage gages, averaged 3.82 m/yr, resulting in a basin net loss of about 0.22 m/yr. During the same period, South Cascade Glacier net budgets were determined by ablation stakes, snow density-depth profiles, and maps. The average glacier net budget for the period was −0.61sol;yr of water. This amount is equivalent to −0.26 m of water when averaged over the drainage basin (43% glacier-covered), which is in fair agreement with the net storage change measured by hydrologic methods. Agreement between the two methods for individual years is slightly less perfect.

  18. Diversity and Assembling Processes of Bacterial Communities in Cryoconite Holes of a Karakoram Glacier.

    PubMed

    Ambrosini, Roberto; Musitelli, Federica; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Mayer, Christoph; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Franzetti, Andrea

    2017-05-01

    Cryoconite holes are small ponds that form on the surface of glaciers that contain a dark debris, the cryoconite, at the bottom and host active ecological communities. Differences in the structure of bacterial communities have been documented among Arctic and mountain glaciers, and among glaciers in different areas of the world. In this study, we investigated the structure of bacterial communities of cryoconite holes of Baltoro Glacier, a large (62 km in length and 524 km 2 of surface) glacier of the Karakoram, by high-throughput sequencing of the V5-V6 hypervariable regions of the 16S rRNA gene. We found that Betaproteobacteria dominated bacterial communities, with large abundance of genera Polaromonas, probably thanks to its highly versatile metabolism, and Limnohabitans, which may have been favoured by the presence of supraglacial lakes in the area where cryoconite holes were sampled. Variation in bacterial communities among different sampling areas of the glacier could be explained by divergent selective processes driven by variation in environmental conditions, particularly pH, which was the only environmental variable that significantly affected the structure of bacterial communities. This variability may be due to both temporal and spatial patterns of variation in environmental conditions.

  19. Changes of glacier, glacier-fed rivers and lakes in Altai Tavan Bogd National Park, Western Mongolia, based on multispectral satellite data from 1990 to 2017

    NASA Astrophysics Data System (ADS)

    Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, N.

    2017-12-01

    Impacts on glaciers and water resource management have been altering through climate changes in Mongolia territory characterized by dry and semi-arid climate with low precipitation. Melting glaciers are early indicators of climate change unlike the response of the forests which is slower and takes place over a long period of time. Mountain glaciers are important environmental components of local, regional, and global hydrological cycles. The study calculates an overview of changes for glacier, glacier-fed rivers and lakes in Altai Tavan Bogd mountain, the Western Mongolia, based on the indexes of multispectral data and the methods typically applied in glacier studies. Were utilized an integrated approach of Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) to combine Landsat, MODIS imagery and digital elevation model, to identify glacier cover are and quantify water storage change in lakes, and compared that with and climate parameters including precipitation, land surface temperature, evaporation, moisture. Our results show that melts of glacier at the study area has contributed to significantly increase of water storage of lakes in valley of The Altai Tavan Bogd mountain. There is hydrologic connection that lake basin is directly fed by glacier meltwater.

  20. Using Metaphorical Models for Describing Glaciers

    ERIC Educational Resources Information Center

    Felzmann, Dirk

    2014-01-01

    To date, there has only been little conceptual change research regarding conceptions about glaciers. This study used the theoretical background of embodied cognition to reconstruct different metaphorical concepts with respect to the structure of a glacier. Applying the Model of Educational Reconstruction, the conceptions of students and scientists…

  1. The physical basis of glacier volume-area scaling

    USGS Publications Warehouse

    Bahr, D.B.; Meier, M.F.; Peckham, S.D.

    1997-01-01

    Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume. Copyright 1997 by the American Geophysical Union.

  2. Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988-2009

    NASA Astrophysics Data System (ADS)

    Davies, B. J.; Carrivick, J. L.; Glasser, N. F.; Hambrey, M. J.; Smellie, J. L.

    2012-09-01

    The northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse data for glacier classification, morphology, area, length or altitude. This paper firstly classifies the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island in 2009 AD. Secondly, this paper documents glacier change 1988-2009. In 2009, the glacierised area was 8140±262 km2. From 1988-2001, 90% of glaciers receded, and from 2001-2009, 79% receded. This equates to an area change of -4.4% for Trinity Peninsula eastern coast glaciers, -0.6% for western coast glaciers, and -35.0% for ice-shelf tributary glaciers from 1988-2001. Tidewater glaciers on the drier, cooler eastern Trinity Peninsula experienced fastest shrinkage from 1988-2001, with limited frontal change after 2001. Glaciers on the western Trinity Peninsula shrank less than those on the east. Land-terminating glaciers on James Ross Island shrank fastest in the period 1988-2001. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula, with warming temperatures affecting the precipitation-starved glaciers on the eastern coast more than on the western coast. Reduced shrinkage on the western Peninsula may be a result of higher snowfall, perhaps in conjunction with the fact that these glaciers are mostly grounded. Rates of area loss on the eastern side of Trinity Peninsula are slowing, which we attribute to the floating ice tongues receding into the fjords and reaching a new dynamic equilibrium. The rapid shrinkage of tidewater glaciers on James Ross Island is likely to continue because of their low elevations and flat profiles. In contrast, the higher and steeper

  3. Glacial lakes amplify glacier recession in the central Himalaya

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann

    2016-04-01

    The high altitude and high latitude regions of the world are amongst those which react most intensely to climatic change. Across the Himalaya glacier mass balance is predominantly negative. The spatial and temporal complexity associated with this ice loss across different glacier clusters is poorly documented however, and our understanding of the processes driving change is limited. Here, we look at the spatial variability of glacier hypsometry and glacial mass loss from three catchments in the central Himalaya; the Dudh Koshi basin, Tama Koshi basin and an adjoining section of the Tibetan Plateau. ASTER and SETSM digital elevation models (2014/15), corrected for elevation dependant biases, co-registration errors and along or cross track tilts, are differenced from Shuttle Radar Topographic Mission (SRTM) data (2000) to yield surface lowering estimates. Landsat data and a hypsometric index (HI), a classification scheme used to group glaciers of similar hypsometry, are used to examine the distribution of glacier area with altitude in each catchment. Surface lowering rates of >3 m/yr can be detected on some glaciers, generally around the clean-ice/debris-cover boundary, where dark but thin surface deposits are likely to enhance ablation. More generally, surface lowering rates of around 1 m/yr are more pervasive, except around the terminus areas of most glaciers, emphasising the influence of a thick debris cover on ice melt. Surface lowering is only concentrated at glacier termini where glacial lakes have developed, where surface lowering rates are commonly greater than 2.5 m/yr. The three catchments show contrasting hypsometric distributions, which is likely to impact their future response to climatic changes. Glaciers of the Dudh Koshi basin store large volumes of ice at low elevation (HI > 1.5) in long, debris covered tongues, although their altitudinal range is greatest given the height of mountain peaks in the catchment. In contrast, glaciers of the Tama Koshi

  4. View of 'Shadow Rock' taken during third extravehicular activity

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., Apollo 16 lunar module pilot, exposed this view of 'Shadow Rock' with his 70mm Hasselblad camera during the mission's third and final extravehicular activity (EVA-3), on April 23, 1972. This particular stop was referenced as Station #13. The scoop, a geological hand tool, leans against the rock and helps give an idea of the size. Station #13 is a little southeast of the North Ray crater at the Descartes area.

  5. Climate-induced glacier and snow loss imperils alpine stream insects

    USGS Publications Warehouse

    Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.

    2017-01-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine streams. Though progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects – the meltwater stonefly Lednia tumana and the glacier stonefly Zapada glacier – were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (20 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions.

  6. Neoglacial fluctuations of Deming Glacier, Mt. Baker, Washington USA.

    NASA Astrophysics Data System (ADS)

    Osborn, G.; Menounos, B.; Scott, K.; Clague, J. J.; Tucker, D.; Riedel, J.; Davis, P.

    2007-12-01

    Deming Glacier flows from the upper west slopes of Mt. Baker, a stratovolcano in the Cascade Range of Washington, USA. The north and south lateral moraines of Deming Glacier are composed of at least four tills separated by layers of detrital wood and sheared stumps in growth position. The stratigraphy records fluctuations of the glacier during the Holocene. The outer ten rings of an in situ stump from the middle wood layer, which is about 40 m below the north lateral moraine crest and 1.2 km downvalley from the present glacier terminus, yielded an age of 1750 ± 50~~ 14C yr BP [1810-1550 cal yr BP]. The stump revealed at least 300 rings and thus records a period of landscape stability and relatively restricted glaciation for several hundred years prior to ca. 1750 14C yr BP . Samples from the lowest wood layer also have been submitted for radiocarbon dating. Outer rings of detrital wood samples collected from two wood mats exposed in the south lateral moraine, 2.3 km downvalley of the glacier terminus, returned radiocarbon ages of 1600 ± 30~~ 14C yr BP [1550- 1410 cal yr BP] and 430 ± 30~~ 14C yr BP [AD 1420-1620]. These data indicate that Deming Glacier advanced over a vegetated moraine sometime after 1810 cal yr BP to a position less extensive that it achieved at the peak of the Little Ice Age. The glacier then receded before it began its final and most extensive Holocene advance after AD 1420. The older advance is correlative with the 'First Millennium AD' advance, recently recognized throughout western North America. The younger advance coincides with an advance of Mt. Baker's Easton Glacier [AD 1430-1630], and advances of many alpine glaciers elsewhere in western North America. Our data suggest that glaciers on Mt. Baker fluctuated in a similar manner to alpine glaciers in the Coast Mountains of British Columbia and in other mountain ranges of northwest North America during Neoglaciation.

  7. Accessing the inaccessible: making (successful) field observations at tidewater glacier termini

    NASA Astrophysics Data System (ADS)

    Kienholz, C.; Amundson, J. M.; Jackson, R. H.; Motyka, R. J.; Nash, J. D.; Sutherland, D.

    2017-12-01

    Glaciers terminating in ocean water (tidewater glaciers) show complex dynamic behavior driven predominantly by processes at the ice-ocean interface (sedimentation, erosion, iceberg calving, submarine melting). A quantitative understanding of these processes is required, for example, to better assess tidewater glaciers' fate in our rapidly warming environment. Lacking observations close to glacier termini, due to unpredictable risks from calving, hamper this understanding. In an effort to remedy this lack of knowledge, we initiated a large field-based effort at LeConte Glacier, southeast Alaska, in 2016. LeConte Glacier is a regional analog for many tidewater glaciers, but better accessible and observable and thus an ideal target for our multi-disciplinary effort. Our ongoing campaigns comprise measurements from novel autonomous vessels (temperature, salinity and current) in the immediate proximity of the glacier terminus and additional surveys (including multibeam bathymetry) from boats and moorings in the proglacial fjord. These measurements are complemented by iceberg and glacier velocity measurements from time lapse cameras and a portable radar interferometer situated above LeConte Bay. GPS-based velocity observations and melt measurements are conducted on the glacier. These measurements provide necessary input for process-based understanding and numerical modeling of the glacier and fjord systems. In the presentation, we discuss promising initial results and lessons learned from the campaign.

  8. Use of the Coastal and Marine Ecological Classification Standard (CMECS) for Geological Studies in Glacier Bay, Alaska

    NASA Astrophysics Data System (ADS)

    Cochrane, G. R.; Hodson, T. O.; Allee, R.; Cicchetti, G.; Finkbeiner, M.; Goodin, K.; Handley, L.; Madden, C.; Mayer, G.; Shumchenia, E.

    2012-12-01

    The U S Geological Survey (USGS) is one of four primary organizations (along with the National Oceanographic and Atmospheric Administration, the Evironmental Protection Agency, and NatureServe) responsible for the development of the Coastal and Marine Ecological Classification Standard (CMECS) over the past decade. In June 2012 the Federal Geographic Data Committee approved CMECS as the first-ever comprehensive federal standard for classifying and describing coastal and marine ecosystems. The USGS has pioneered the application of CMECS in Glacier Bay, Alaska as part of its Seafloor Mapping and Benthic Habitat Studies Project. This presentation briefly describes the standard and its application as part of geological survey studies in the Western Arm of Glacier Bay. CMECS offers a simple, standard framework and common terminology for describing natural and human influenced ecosystems from the upper tidal reaches of estuaries to the deepest portions of the ocean. The framework is organized into two settings, biogeographic and aquatic, and four components, water column, geoform, substrate, and biotic. Each describes a separate aspect of the environment and biota. Settings and components can be used in combination or independently to describe ecosystem features. The hierarchical arrangement of units of the settings and components allows users to apply CMECS to the scale and specificity that best suits their needs. Modifiers allow users to customize the classification to meet specific needs. Biotopes can be described when there is a need for more detailed information on the biota and their environment. USGS efforts focused primarily on the substrate and geoform components. Previous research has demonstrated three classes of bottom type that can be derived from multibeam data that in part determine the distribution of benthic organisms: soft, flat bottom, mixed bottom including coarse sediment and low-relief rock with low to moderate rugosity, and rugose, hard bottom. The

  9. Reconstruction of late Holocene glacier retreat and relevant climatic and topographic patterns in southeastern Tibet by glacier mapping and equilibrium line altitude calculation

    NASA Astrophysics Data System (ADS)

    Loibl, David; Lehmkuhl, Frank

    2014-05-01

    Temperate glaciers in the eastern Nyainqêntanglha range, southeastern Tibet, are highly sensitive to climate change and are therefore of particular high interest for research on late Holocene changes of the monsoonal climate in High Asia. However, due to the remoteness of the area, the scarcity of empirical data, and the challenges to remote sensing work posed by cloud and snow cover, knowledge about the glacier dynamics and changes is still very limited. We applied a remote sensing approach that allowed a comprehensive regional glacier survey despite the few available data. Geomorphologic characteristics, distribution and late Holocene changes of 1964 glaciers were mapped from one of the few appropriate late summer satellite images: a Landsat ETM+ scene from September 23, 1999. The glacier dataset was subsequently parameterized by DEM supported measurements. Complex climate-relief-glacier interactions were studied in detail for three large glaciers in neighboring valleys. Despite their spatial proximity, these display strong heterogeneity in terms of catchment morphology, debris cover, and glacier characteristics. The results of this case study then provided the conceptual basis to use geomorphological evidence, i.e. trimlines and latero-frontal moraines, to obtain quantitative data on the changes since the Little Ice Age (LIA) maximum glacier advance. Statistical analysis of glacier length change revealed an average retreat of ~ 40 % and a trend towards stronger retreat for smaller glaciers. An evaluation of different methods to calculate equilibrium line altitudes (ELAs) indicates that an optimized toe-to-ridge altitude method (TRAM) outperforms other methods in settings with complex topography and a lack of mass-balance measurements. However, a large number of glacier measurements is crucial for high quality TRAM results and special attention has to be paid to different morphological glacier characteristics: debris-cover, reconstitution, valley floor

  10. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the central Tibetan Plateau and driving force analysis

    NASA Astrophysics Data System (ADS)

    Song, C.; Sheng, Y.

    2015-12-01

    High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).

  11. Limits to lichenometry

    NASA Astrophysics Data System (ADS)

    Rosenwinkel, Swenja; Korup, Oliver; Landgraf, Angela; Dzhumabaeva, Atyrgul

    2015-12-01

    Lichenometry is a straightforward and inexpensive method for dating Holocene rock surfaces. The rationale is that the diameter of the largest lichen scales with the age of the originally fresh rock surface that it colonised. The success of the method depends on finding the largest lichen diameters, a suitable lichen-growth model, and a robust calibration curve. Recent critique of the method motivates us to revisit the accuracy and uncertainties of lichenometry. Specifically, we test how well lichenometry is capable of resolving the ages of different lobes of large active rock glaciers in the Kyrgyz Tien Shan. We use a bootstrapped quantile regression to calibrate local growth curves of Xanthoria elegans, Aspicilia tianshanica, and Rhizocarpon geographicum, and report a nonlinear decrease in dating accuracy with increasing lichen diameter. A Bayesian type of an analysis of variance demonstrates that our calibration allows discriminating credibly between rock-glacier lobes of different ages despite the uncertainties tied to sample size and correctly identifying the largest lichen thalli. Our results also show that calibration error grows with lichen size, so that the separability of rock-glacier lobes of different ages decreases, while the tendency to assign coeval ages increases. The abundant young (<200 yr) specimen of fast-growing X. elegans are in contrast with the fewer, slow-growing, but older (200-1500 yr) R. geographicum and A. tianshanica, and record either a regional reactivation of lobes in the past 200 years, or simply a censoring effect of lichen mortality during early phases of colonisation. The high variance of lichen sizes captures the activity of rock-glacier lobes, which is difficult to explain by regional climatic cooling or earthquake triggers alone. Therefore, we caution against inferring palaeoclimatic conditions from the topographic position of rock-glacier lobes. We conclude that lichenometry works better as a tool for establishing a relative

  12. Ocean-Glaciers Interactions in the Southern Svalbard Fjord, Hornsund.

    NASA Astrophysics Data System (ADS)

    Walczowski, W.; Beszczynska-Moeller, A.; Prominska, A.; Kruss, A.

    2017-12-01

    The Arctic fjords constitute a link between the ocean and land, therefore there are highly vulnerable to warming and are expected to exhibit the earliest environmental changes resulting from anthropogenic impacts on climate. In the Arctic, the inshore boundary of a fjord system is usually dominated by tidewater glaciers while its offshore boundary is strongly influenced by warm oceanic waters. Improved understanding of the fjord-ocean exchange and processes within Arctic fjords is of a highest importance because their response to atmospheric, oceanic and glacial variability provides a key to understand the past and to forecast the future of the high latitude glaciers and Arctic climate. The results of field measurements in the Hornsund fjord (southern Svalbard), collected under the Polish-Norwegian projects GLAERE and AWAKE-2, will be presented. Interannual variability of warm Atlantic water entering the fjord, seasonal changes of ocean properties in the glacier bays and the structure of the water column in the vicinity of the glacier termination will be addressed. Direct contact of warm oceanic water with a glacier's wall causes submarine melting, undercutting and glacier calving. Turbulent plumes of subglacial meltwater constitute an important mechanism of heat transfer and also influence a glacier retreat. However our understanding of these processes is limited due to problems with obtaining in situ data close to the glacier wall. Therefore special attention will be paid to observations of the underwater parts of Hornsund glaciers and new measurements of water column fine structure and mixing in the turbulent meltwater plumes.

  13. Rapid changes in glacier surface processes and downstream river basin in the Central Himalayan region

    NASA Astrophysics Data System (ADS)

    Haritashya, U. K.; Strattman, K.; Kargel, J. S.

    2017-12-01

    A high altitude glacierized region in the central Himalaya hosts thousands of glaciers and originates major rivers like the Ganges and Yamuna. This region has seen significant changes in last few decades due to climate system coupling involving the westerlies and the monsoon, high seismic activities, complex topography, extensive glacier debris cover, and widespread mass movement. Consequently, we analyzed regional variability in hundreds of glacier surface processes and downstream river basins of varying geomorphology using a variety of satellite imagery from the early 1990s to 2017. Our results indicate a massive increase in supraglacial ponds in south facing glaciers. Several of these ponds are either seasonal and forms exactly at the same location every year or forms at the beginning of the melt season and drains out as the season progresses from April to July/August. We also observed evolution in size of these ponds in the last two decades to the point where some of them now seem to be stationary and might increase in size and develop large lake in the future. To understand our result and melting pattern in the region, we also analyzed ice velocity and surface temperature; both of which reveals a temporal shift in the pattern. Glacier surface temperatures, especially show a warming pattern in recent years and strong correlation with debris cover. Additionally, we also observed changes in the downstream region both around the river bed and steep slopes where massive erosion of Himalayan glaciers are depositing and transporting excessive amount of sediments. Overall, our results are discussed in the context of better landscape evolution modeling from the top of the glacier to the several km downstream from the glacier terminus.

  14. Examining a Half Century of Northwestern North American Glacier Behavior

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Fahey, M. J.; Friesen, B.; Josberger, E. G.

    2015-12-01

    In 1957, as part of the United States' contribution to the International Geophysical Year (IGY), the American Geographical Society (AGS) initiated a multi-institutional mapping project to produce 1:10,000-scale topographic maps of nine northwestern North American glaciers. The project's goal was to prepare precise maps at large scales of selected small glaciers to form a permanent record of the condition of these glaciers so that at a future date they could be resurveyed and compared. Continued surveys would give the history of wastage and accumulation, and more accurate interpretation of the response of these glaciers to meteorological and other factors. The resulting maps and a descriptive summary brochure were published in 1960 by the American Geographical Society. The USGS Global Fiducials Program (GFP) began to systematically image the same nine glaciers approximately half-century after its IGY mapping. The results of the GFP analyses would permit the types of comparisons that were envisioned by the IGY project. Imagery of each of these nine glaciers has been collected from multiple sources, including Next View licensed commercial imagery, vertical and oblique aerial photography, Landsat, and US National Imagery Systems. Exploitation of the imagery has resulted in the production of new 21st century maps that can be compared and contrasted with the vintage AGS map set. Comparison will permit the calculation of a number of parameters which will provide a direct insight into the changes that northwestern North American glaciers have been experiencing during the past half century. Specifically, these comparisons will permit the calculation of changes in glacier length, area, thickness, and volume; computation of rates of glacier advance and/or retreat, rates of glacier thickening and/or thinning, and rates of volume change; production of digital elevation models (DEMs); and generation of velocity fields from crevasse migration. The subsequent re-mapping and

  15. Younger Dryas glaciers in the High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Hughes, Philip; Fink, David

    2016-04-01

    Twelve cirque glaciers formed during the Younger Dryas on the mountains of Aksoual (3912 m a.s.l.) and Adrar el Hajj (3129 m a.s.l.) in the Marrakesh High Atlas. Moraines in two separate cirques on these mountains have been dated using 10Be and 36Cl exposure dating. In both cirques the age scatter is relatively small (13.8-10.1 ka) and all ages overlap within error with the Younger Dryas (12.9-11.7 ka). The glaciers were small and covered <2 km2 and formed on north-facing slopes. However, the altitudinal range of the glaciers was very large, with equilibrium line altitudes (ELAs) ranging from 2470 and 3560 m. This large range is attributed to local topoclimatic factors with the lowest glacier (confirmed as Younger Dryas in age by 3 exposure ages) occupying a very steep cirque floor where a combination of steep glacier gradient and a large potential avalanche catchment enabled its low-lying position. This indicates that caution should be taken when using single glacier sites for reconstructing regional palaeoclimate, especially those formed in steep catchments that have strong topoclimatic controls. The average ELA of the twelve Younger Dryas glaciers was c. 3109 m a.s.l. (St Dev = 325 m) and this represents an ELA depression of > 1000 m from the modern theoretical regional ELA. Under precipitation values similar to today this would require a mean annual temperature depression of 9°C. Moreover, the glacier-climate modelling indicates that it is very unlikely that climate was drier than today during the Younger Dryas in the Marrakesh High Atlas.

  16. Preliminary assessment of active rock slope instabilities in the high Himalaya of Bhutan

    NASA Astrophysics Data System (ADS)

    Dini, Benedetta; Manconi, Andrea; Leith, Kerry; Loew, Simon

    2016-04-01

    The small kingdom of Bhutan, nested between India and Tibet (between 88° and 92° east and 26° and 28° north), is characterised by markedly different landscapes and climatic zones. V-shaped, forest-covered valleys in the south, affected by the monsoonal rains, give gradually way to steep, barren slopes of U-shaped valleys in the drier north, host of the highest peaks, a large number of glaciers and glacial lakes. A transition zone of vegetated, elevated plateaus collects the towns in which most of the population lives. Landslides in the high Himalaya of Bhutan have not been extensively studied despite the primary and secondary hazards related to them. The regulations and restrictions to travel to and within Bhutan imposed by the government, as well as the extremely rugged terrain hinder the accessibility to remote slopes and valleys, both of which have resulted in lack of data and investigations. In this work, we aim at producing an inventory of large rock slope instabilities (> 1 million m3) across the high Himalaya of Bhutan, identifying types of failure, assessing the activity and analysing the distribution of landslides in combination with predisposing and preparatory factors, such as lithology, tectonic structures, hypsometry, deglaciation, fluvial erosive power and climate. At this stage, we rely on the information retrieved through satellite remote sensing data, i.e. medium and high resolution DEMs, optical images and space borne Synthetic Aperture Radar (SAR) data. An initial inventory was compiled based on the identification of geomorphological features associated with slope instabilities using the available Google Earth images. Moreover, we assessed the SAR data coverage and the expected geometrical distortions by assuming different sensors (ERS, Envisat, and ALOS Palsar-1). As we are mainly interested in detecting the surface deformation related to large unstable slopes by applying Differential SAR, we also computed the percentage of potentially

  17. Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Buzzini, Pietro; Turchetti, Benedetta; Diolaiuti, Guglielmina; D'Agata, Carlo; Martini, Alessandro; Smiraglia, Claudio

    The meltwaters draining from two glaciers in the Italian Alps contain metabolically active yeasts isolable by culture-based laboratory procedures. The average number of culturable yeast cells in the meltwaters was 10 20 colony-forming units (CFU) L-1, whereas supraglacial stream waters originating from overlying glacier ice contained <1 CFU L-1. Yeast cell number increased as the suspended-sediment content of the water samples increased. Basidiomycetous yeasts represent >80% of isolated strains (Cryptococcus spp. and Rhodotorula spp. were 33.3% and 17.8% of total strains, respectively). Culturable yeasts were psychrotolerant, predominantly obligate aerobes and able to degrade organic macromolecules (e.g. starch, esters, lipids, proteins). To the authors' knowledge, this is the first study to report the presence of culturable yeasts in meltwaters originating from glaciers. On the basis of these results, it is reasonable to suppose that the viable yeasts observed in meltwaters derived predominantly from the subglacial zone and that they originated from the subglacial microbial community. Their metabolic abilities could contribute to the microbial activity occurring in subglacial environments.

  18. Rock-slope failure activity and geological crises in western Norway

    NASA Astrophysics Data System (ADS)

    Hilger, Paula; Hermanns, Reginald L.; Myhra, Kristin S.; Gosse, John C.; Ivy-Ochs, Susan; Etzelmüller, Bernd

    2017-04-01

    In Norway a compilation of terrestrial cosmogenic nuclide (TCN) ages of rock-avalanche deposits suggests a close link of rock-slope failures related to deglaciation. Although ages spread over several thousand years at the end of the Late Pleistocene, 50% of all documented events occurred within 1000 years after deglaciation. It is therefore likely that debuttressing triggered most of the events. The same data set suggests that 25% of the events occurred during a period stretching until the Holocene thermal maximum (HTM). These events might be interpreted as possible reactions to additional factors such as the thawing of high-altitude permafrost. An example of a geological crisis following deglaciation and before the HTM are seven lobate rock-avalanche deposits mapped under the slope of the Vora mountain (1450 m asl.) in the Nordfjord area of western Norway. Three events of this rock-slope failure cluster date within a short time period of 2000 years, where modelling studies indicate that high-altitude permafrost was present. After the HTM rock-slope failures are distributed temporally and spatially rather evenly throughout the Holocene and western Norway. But there are two independent local clusters with frequent rock slides during a short time span. (1) At the active Mannen rock-slope instability several rock-avalanche and rockslide deposits were mapped on the valley bottom. Stratigraphic relations combined with TCN dating suggest that at least one event occurred when the valley bottom was below the marine limit. TCN ages of further four lobes cluster around 5.2 ka BP, which does not coincide with any other rock-avalanche occurrence in the region. The top of the north facing 1295 m high unstable slope concurs with the currently estimated permafrost boundary. Preliminary TCN ages of the sliding surface indicate that larger parts of the mountain did not become active until the climate maximum. It is likely that due to structural complexity not allowing for any easy

  19. Mapping tide-water glacier dynamics in east Greenland using landsat data

    USGS Publications Warehouse

    Dwyer, John L.

    1995-01-01

    Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.

  20. Temporal dynamics of suspended sediment transport in a glacierized Andean basin

    NASA Astrophysics Data System (ADS)

    Mao, Luca; Carrillo, Ricardo

    2017-06-01

    Suspended sediment transport can affect water quality and aquatic ecosystems, and its quantification is of the highest importance for river and watershed management. Suspended sediment concentration (SSC) and discharge were measured at two locations in the Estero Morales, a Chilean Andean stream draining a small basin (27 km2) hosting glacierized areas of about 1.8 km2. Approximately half of the suspended sediment yield (470 t year- 1 km- 2) was transported during the snowmelt period and half during glacier melting. The hysteresis patterns between discharge and SSC were calculated for each daily hydrograph and were analysed to shed light on the location and activity of different sediment sources at the basin scale. During snowmelt, an unlimited supply of fine sediments is provided in the lower and middle part of the basin and hysteresis patterns tend to be clockwise as the peaks in SSC precede the peak of discharge in daily hydrographs. Instead, during glacier melting the source of fine sediments is the proglacial area, producing counterclockwise hysteresis. It is suggested that the analysis of hysteretic patterns over time provides a simple concept for interpreting variability of location and activity of sediment sources at the basin scale.

  1. Geochemical processes leading to the precipitation of subglacial carbonate crusts at Bossons glacier, Mont Blanc Massif (French Alps)

    NASA Astrophysics Data System (ADS)

    Thomazo, Christophe; Buoncristiani, Jean-Francois; Vennin, Emmanuelle; Pellenard, Pierre; Cocquerez, Theophile; Mugnier, Jean L.; Gérard, Emmanuelle

    2017-09-01

    Cold climate carbonates can be used as paleoclimatic proxies. The mineralogy and isotopic composition of subglacially precipitated carbonate crusts provide insights into the subglacial conditions and processes occurring at the meltwater-basement rock interface of glaciers. This study documents such crusts discovered on the lee side of a gneissic roche moutonnée at the terminus of the Bossons glacier in the Mont Blanc Massif area (France). The geological context and mineralogical investigations suggest that the Ca used for the precipitation of large crystals of radial fibrous sparite observed in these crusts originated from subglacial chemical weathering of Ca-bearing minerals of the local bedrock (plagioclase and amphibole). Measurements of the carbon and oxygen isotope compositions in the crusts indicate precipitation at, or near to, equilibrium with the basal meltwater under open system conditions during refreezing processes. The homogeneous and low carbonate δ13C values (ca. -11.3‰) imply a large contribution of soil organic carbon to the Bossons subglacial meltwater carbon reservoir at the time of deposition. In addition, organic remains trapped within the subglacially precipitated carbonate crusts give an age of deposition around 6500 years cal BP suggesting that the Mid-Holocene climatic and pedological optima are archived in the Bossons glacier carbonate crusts.

  2. Ice thickness measurements and volume estimates for glaciers in Norway

    NASA Astrophysics Data System (ADS)

    Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.

    2014-05-01

    Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected

  3. Climate Change and Glacier Retreat: Scientific Fact and Artistic Opportunity

    NASA Astrophysics Data System (ADS)

    Fagre, D. B.

    2008-12-01

    Mountain glaciers continue to retreat rapidly over most of the globe. In North America, at Glacier National Park, Montana, recent research results from Sperry Glacier (2005-2007) indicate negative mass balances are now 3-4 times greater than in the 1950s. A geospatial model of glacier retreat in the Blackfoot-Jackson basin suggested all glaciers would be gone by 2030 but has proved too conservative. Accelerated glacier shrinkage since the model was developed has mirrored an increase in actual annual temperature that is almost twice the rate used in the model. The glaciers in Glacier National Park are likely to be gone well before 2030. A variety of media, curricula, and educational strategies have been employed to communicate the disappearance of the glaciers as a consequence of global warming. These have included everything from print media and television coverage to podcasts and wayside exhibits along roads in the park. However, a new thrust is to partner with artists to communicate climate change issues to new audiences and through different channels. A scientist-artist retreat was convened to explore the tension between keeping artistic products grounded in factually-based reality while providing for freedom to express artistic creativity. Individual artists and scientists have worked to create aesthetic and emotional images, using painting, poetry, music and photography, to convey core messages from research on mountain ecosystems. Finally, a traveling art exhibit was developed to highlight the photography that systematically documents glacier change through time. The aim was to select photographs that provide the most compelling visual experience for an art-oriented viewer and also accurately reflect the research on glacier retreat. The exhibit opens on January 11, 2009

  4. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  5. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-09

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.

  6. Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.

    2015-12-01

    Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.

  7. Review of levoglucosan in glacier snow and ice studies: Recent progress and future perspectives.

    PubMed

    You, Chao; Xu, Chao

    2018-03-01

    Levoglucosan (LEV) in glacier snow and ice layers provides a fingerprint of fire activity, ranging from modern air pollution to ancient fire emissions. In this study, we review recent progress in our understanding and application of LEV in glaciers, including analytical methods, transport and post-depositional processes, and historical records. We firstly summarize progress in analytical methods for determination of LEV in glacier snow and ice. Then, we discuss the processes influencing the records of LEV in snow and ice layers. Finally, we make some recommendations for future work, such as assessing the stability of LEV and obtaining continuous records, to increase reliability of the reconstructed ancient fire activity. This review provides an update for researchers working with LEV and will facilitate the further use of LEV as a biomarker in paleo-fire studies based on ice core records. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Glacier Change and Biologic Succession: a new Alaska Summer Research Academy (ASRA) Science Camp Module for Grades 8-12 in Glacier Bay National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Drake, J.; Good, C.; Fatland, R.; Hakala, M.; Woodford, R.; Donohoe, R.; Brenner, R.; Moriarty, T.

    2008-12-01

    During the summer of 2008, university faculty and instructors from southeast Alaska joined the University Alaska Fairbanks(UAF)Alaska Summer Research Academy(ASRA)to initiate a 12-day module on glacier change and biologic succession in Glacier Bay National Park. Nine students from Alaska, Colorado, Massachusetts, and Texas, made field observations and collected data while learning about tidewater glacier dynamics, plant succession, post-glacial uplift, and habitat use of terrestrial and marine vertebrates and invertebrates in this dynamic landscape that was covered by 6,000 km2 of ice just 250 years ago. ASRA students located their study sites using GPS and created maps in GIS and GOOGLE Earth. They deployed salinometers and temperature sensors to collect vertical profiles of seawater characteristics up-bay near active tidewater glacier termini and down-bay in completely deglaciated coves. ASRA student data was then compared with data collected during the same time period by Juneau undergraduates working on the SEAMONSTER project in Mendenhall Lake. ASRA students traversed actively forming, up-bay recessional moraines devoid of vegetation, and the fully reforested Little Ice Age terminal moraine near Park Headquarters in the lower bay region. Students surveyed marine organisms living between supratidal and subtidal zones near glaciers and far from glaciers, and compared up-bay and down-bay communities. Students made observations and logged sightings of bird populations and terrestrial mammals in a linear traverse from the bay's northwestern most fjord near Mt. Fairweather for 120 km to the bay's entrance, south of Park Headquarters at Bartlett Cove. One student constructed an ROV and was able to deploy a video camera and capture changing silt concentrations in the water column as well as marine life on the fjord bottom. Students also observed exhumed Neoglacial spruce forests and visited outcrops of Silurian reef faunas, now fossilized in Alexander terrane

  9. Ice-proximal sediment dynamics and their effect on the stability of Muir Glacier, Alaska: A case study of non-climatic glacier response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, L.E.; Powell, R.D.

    1992-01-01

    Recent studies have shown that water depth at tidewater termini affect calving rates and, therefore, glacier mass balance and terminus stability. Grounding-line water depths are themselves governed by glacial and marine processes that interact during the formation of morainal bank depocenters. These morainal banks can fluctuate 10s of meters in height within an interval of a few weeks. Recent investigations in Glacier Bay have focused on quantitatively assessing sediment budgets in the ice-proximal environment. The monitoring of morainal banks in upper Muir Inlet has included repeated bathymetric mapping, sediment trap studies, bottom grab sampling, glacier and iceberg sampling, and submersiblemore » ROV investigations within 1 km of the terminus. Such relationships are important in interpreting recent changes in the dynamics of Muir Glacier where a century of retreat has been succeeded by quasi stability. The new glacier regime has accompanied basin infilling from approximately 100 m depth to a maximum of 52 m at the grounding line. Two large grounding-line fans have aggraded to deltas and reduced the length of the calving margin from 900 m to 290 m wide. These effects have reduced the ice flow velocities by 45%. Annual morainal bank growth ranged from 10[sup 6] to 10[sup 7] m[sup 3] and is the result of glacifluvial dumping, suspension settling from turbid overflow plumes, debris dumping from ice-cliff and iceberg melting, glacier squeezing and pushing of morainal bank sediment, and sediment gravity flow processes. Each of these processes are an integral facet of the morainal bank dynamics and glacier response. These studies of Muir Glacier indicate that glacier response to sediment dynamics need to be addresses before climatic implications are made.« less

  10. Distinct patterns of seasonal Greenland glacier velocity

    PubMed Central

    Moon, Twila; Joughin, Ian; Smith, Ben; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Usher, Mika

    2014-01-01

    Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. Key Points First multi-region seasonal velocity measurements show regional differences Seasonal velocity fluctuations on most glaciers appear meltwater controlled Seasonal development of efficient subglacial drainage geographically divided PMID:25821275

  11. A Century of Retreat at Portage Glacier, South-Central Alaska

    USGS Publications Warehouse

    Kennedy, Ben W.; Trabant, Dennis C.; Mayo, Lawrence R.

    2006-01-01

    Introduction: The Portage Glacier, in south-central Alaska, is viewed by thousands of visitors annually who come to the U.S. Forest Service Begich, Boggs Visitor Center located on the road system between Anchorage and Whittier, Alaska. During the past century, the terminus of the glacier has retreated nearly 5 kilometers to its present location (fig. 1). Like other glaciers that terminate in water, such as Columbia Glacier near Valdez or Mendenhall Glacier near Juneau, Portage Glacier has experienced accelerated retreats in recent decades that likely were initially triggered by climate change begun at the end of the Little Ice Age in the mid-1800s and subsequently controlled in recent history primarily by calving of the glacier terminus. Photographic records of the terminus covering 1914 until present day track the patterns of retreat. These data, coupled with USGS climate information collected from the southern end of the ice field, provide insight to the patterns of retreat that might be observed in the future.

  12. Glacier Erosion and Response to Climate in Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Koppes, M.; Hallet, B.; Stewart, R.

    2006-12-01

    A vibrant dimension in current research on landscape evolution is the potential impact of climate change on erosion rates due to differences in efficiency of glacial and non-glacial erosion processes. The climate-sensitive rate and spatial distribution of erosion can be as important as the tectonic environment in determining the development of mountain ranges. To evaluate properly how glacial erosion influences orogenic processes and reflects climate variability, it is necessary to understand how ice dynamics control erosion rates. The Patagonian Andes are a unique laboratory for documenting glacial erosion in a range of precipitation and thermal regimes, as zonal atmospheric circulation in the region creates strong latitudinal gradients. We will present relevant findings from two tidewater glaciers in Chilean Patagonia: San Rafael glacier, which drains the northern portion of the North Patagonian Icefield (46.6S, 74W), and Marinelli glacier, the largest glacier in the Cordillera Darwin of Tierra del Fuego (54.6S, 69W). Both glaciers have been in steady retreat during the latter half of the 20th century, and both calve into a fjord or lagoon, which provides an efficient trap for the sediment eroded by the glacier and deposited at the calving front. The reconstructed flux of ice into the glaciers is compared to the retreat of the ice fronts and to the sediment flux to examine the influence of ice dynamics on the rate of glacier erosion. NCEP-NCAR Reanalysis climate data, adjusted to local conditions by correlation with automatic weather stations installed at the glacier termini and coupled to a model of orographic enhancement of precipitation over the glacier basin, were used to reconstruct the daily precipitation input into and ablation output from the glaciers during the last 50 years. The sediment flux out of the glaciers during this period was calculated from acoustic reflection profiles of the sediments accumulated in the proglacial fjords, and used to infer

  13. Features of the recovery process of the Kolka glacier after the disaster of 2002

    NASA Astrophysics Data System (ADS)

    Nosenko, G.; Rototaeva, O.; Nikitin, S.

    2017-12-01

    supplied from the hanging glaciers decreased from the previous 31% to 17%. Fumarolic activity in the crown area of the starboard side of the circus is preserved and this circumstance the restoration of the Kolka glacier.

  14. Modelling distributed mountain glacier volumes: A sensitivity study in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Huss, Matthias; Fischer, Andrea; Otto, Jan Christoph

    2017-04-01

    Knowledge about the spatial ice thickness distribution in glacier covered mountain regions and the elevation of the bedrock underneath the glaciers yields the basis for numerous applications in geoscience. Applications include the modelling of glacier dynamics, natural risk analyses and studies on mountain hydrology. Especially in recent times of accelerating and unprecedented changes of glacier extents, the remaining ice volume is of interest regarding future glacier and sea level scenarios. Subglacial depressions concern because of their hazard potential in case of sudden releases of debris or water. A number of approaches with different level of complexity have been developed in the past years to infer glacier ice thickness from surface characteristics. Within the FUTURELAKES project, the ice thickness estimation method presented by Huss and Farinotti (2012) was applied to all glaciers in the Austrian Alps based on glacier extents and surface topography corresponding to the three Austrian glacier inventories (1969 - 1997 - 2006) with the aim to predict size and location of future proglacial lakes. The availability of measured ice thickness data and a time series of glacier inventories of Austrian glaciers, allowed carrying out a sensitivity study of the key parameter, the apparent mass balance gradient. First, the parameters controlling the apparent mass balance gradient of 58 glaciers where calibrated glacier-wise with the aim to minimize mean deviations and mean absolute deviations to measured ice thickness. The results were analysed with respect to changes of the mass balance gradient with time. Secondly, we compared the observed to modelled ice thickness changes. For doing so, glacier-wise as well as regional means of mass balance gradients have been used. The results indicate that the initial values for the apparent mass balance gradient have to be adapted to the changing conditions within the four decades covered by the glacier inventories. The gradients

  15. Exploring the hydropower potential of future ice-free glacier basins

    NASA Astrophysics Data System (ADS)

    Round, Vanessa; Farinotti, Daniel; Huss, Matthias

    2017-04-01

    The retreat of glaciers over the next century will present new challenges related to water availability and cause significant changes to the landscape. The construction of dams in areas becoming ice-free has previously been suggested as a mitigation measure against changes to water resources in the European Alps. In Switzerland, a number of hydropower dams already exist directly below glaciers, and the hydropower potential of natural lakes left by retreating glaciers has been recognised. We expand these concepts to the regional, and ultimately global, scale to assess the potential of creating hydropower dams in glacier basins, encouraged by advantages such as relatively low ecological and social impacts, and the possibility to replicate the water storage capabilities of glaciers. In a first order assessment, dam volumes are computed using a subglacial topography model and dam walls simulated at the terminus of each glacier. Potential power production is then estimated from projected glacier catchment runoff until 2100 based on the Global Glacier Evolution Model (GloGEM), and penstock head approximated from a global digital elevation model. Based on this, a feasibility ranking system is presented which takes into account various proxies for cost, demand and impact, such as proximity to populations and existing infrastructure, geological risks and threatened species. The ultimate objective is to identify locations of glacier retreat which could most feasibly and beneficially be used for hydropower production.

  16. Estimating glacier response times and disequilibrium in a changing climate

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Koutnik, M.; Roe, G.

    2017-12-01

    Glaciers respond to climate variations according to a characteristic timescale that, for most mountain glaciers, is on the order of 10—100 years. An important consequence of this multi-decadal memory is that a glacier's transient response to a climate trend exhibits a persistent lag behind the equilibrium response. In the context of anthropogenic warming, this means that most glaciers are currently well out of equilibrium, and that a substantial amount of retreat is committed even without further warming. The degree of disequilibrium depends fundamentally on the glacier response timescale, making it an important parameter to constrain. A common and robust metric for the response timescale is τ=H/bt, where H and bt are characteristic values for ice thickness and the terminus mass-balance rate, respectively. However, sparse observations, climate variability, and glacier disequilibrium make it difficult to define these characteristic values. We compare several sources of uncertainty that will affect estimates of the response timescale and thus the degree of disequilibrium. Ice thickness is poorly constrained for many glaciers, which bears directly on estimates of the response timescale. However, errors may also arise from estimating thickness and mass-balance rates in a variable climate. We assess how noisy mass balance and observed terminus fluctuations introduce sampling errors into estimates of the glacier's response timescale and the expected equilibrium response to a climate change. Additionally, the instantaneous value of τ evolves during sustained warming as the glacier thins and retreats. Perhaps counterintuitively, τ can increase if retreat into higher elevations exceeds thinning. This has implications for estimating the timescale based on currently observed geometry and mass balance. We use shallow-ice and 3-stage linear models to explore these effects with synthetic glacier geometries and climate forcings. In this way, we can diagnose the geometric and

  17. Climate-induced glacier and snow loss imperils alpine stream insects.

    PubMed

    Giersch, J Joseph; Hotaling, Scott; Kovach, Ryan P; Jones, Leslie A; Muhlfeld, Clint C

    2017-07-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snow melt-driven alpine streams. Although progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects - the meltwater stonefly (Lednia tumana) and the glacier stonefly (Zapada glacier) - were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (24 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions. © 2016

  18. Colonization of maritime glacier ice by bdelloid Rotifera.

    PubMed

    Shain, Daniel H; Halldórsdóttir, Katrín; Pálsson, Finnur; Aðalgeirsdóttir, Guðfinna; Gunnarsson, Andri; Jónsson, Þorsteinn; Lang, Shirley A; Pálsson, Hlynur Skagfjörð; Steinþórssson, Sveinbjörn; Arnason, Einar

    2016-05-01

    Very few animal taxa are known to reside permanently in glacier ice/snow. Here we report the widespread colonization of Icelandic glaciers and ice fields by species of bdelloid Rotifera. Specimens were collected within the accumulation zones of Langjökull and Vatnajökull ice caps, among the largest European ice masses. Rotifers reached densities up to ∼100 individuals per liter-equivalent of glacier ice/snow, and were freeze-tolerant. Phylogenetic analyses indicate that glacier rotifers are polyphyletic, with independent ancestries occurring within the Pleistocene. Collectively, these data identify a previously undescribed environmental niche for bdelloid rotifers and suggest their presence in comparable habitats worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic).

    PubMed

    Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta

    2016-12-01

    The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.

  20. Holocene glacier variability and Neoglacial hydroclimate at Ålfotbreen, western Norway

    NASA Astrophysics Data System (ADS)

    Gjerde, Marthe; Bakke, Jostein; Vasskog, Kristian; Nesje, Atle; Hormes, Anne

    2016-02-01

    Glaciers and small ice caps respond rapidly to climate perturbations (mainly winter precipitation, and summer temperature), and the mass-balance of glaciers located in western Norway is governed mainly by winter precipitation (Pw). Records of past Pw can offer important insight into long-term changes in atmospheric circulation, but few proxies are able to accurately capture winter climate variations in Scandinavia. Reconstructions of equilibrium-line-altitude (ELA) variations from glaciers that are sensitive to changes in Pw therefore provide a unique opportunity to quantify past winter climate in this region. Here we present a new, Holocene glacier activity reconstruction for the maritime ice cap Ålfotbreen in western Norway, based on investigations of distal glacier-fed lake sediments and modern mass balance measurements (1963-2010). Several lake sediment cores have been subject to a suite of laboratory analyses, including measurements of physical parameters such as dry bulk density (DBD) and loss-on-ignition (LOI), geochemistry (XRF), surface magnetic susceptibility (MS), and grain size distribution, to identify glacial sedimentation in the lake. Both radiocarbon (AMS 14C) and 210Pb dating were applied to establish age-depth relationships in the sediment cores. A novel approach was used to calibrate the sedimentary record against a simple ELA model, which allowed reconstruction of continuous ELA changes for Ålfotbreen during the Neoglacial (when Ålfotbreen was present, i.e. the last ∼1400 years). Furthermore, the resulting ELA variations were combined with an independent summer temperature record to calculate Neoglacial Pw using the 'Liestøl equation'. The resulting Pw record is of higher resolution than previous reconstructions from glaciers in Norway and shows the potential of glacier records to provide high-resolution data reflecting past variations in hydroclimate. Complete deglaciation of the Ålfotbreen occurred ∼9700 cal yr BP, and the ice cap was