Sample records for active sand sheet

  1. Monitoring Sand Sheets and Dunes

    NASA Image and Video Library

    2017-06-12

    NASA's Mars Reconnaissance Orbiter (MRO) captured this crater featuring sand dunes and sand sheets on its floor. What are sand sheets? Snow fall on Earth is a good example of sand sheets: when it snows, the ground gets blanketed with up to a few meters of snow. The snow mantles the ground and "mimics" the underlying topography. Sand sheets likewise mantle the ground as a relatively thin deposit. This kind of environment has been monitored by HiRISE since 2007 to look for movement in the ripples covering the dunes and sheets. This is how scientists who study wind-blown sand can track the amount of sand moving through the area and possibly where the sand came from. Using the present environment is crucial to understanding the past: sand dunes, sheets, and ripples sometimes become preserved as sandstone and contain clues as to how they were deposited The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25 centimeters (9.8 inches) per pixel (with 1 x 1 binning); objects on the order of 75 centimeters (29.5 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA21757

  2. OSL age and stratigraphy of the Strauss sand sheet in New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Hall, Stephen A.; Goble, Ronald J.

    2015-07-01

    The Strauss sand sheet occurs in south-central New Mexico, USA, and northern Chihuahua, Mexico, covering an area of about 4740 km2. Its chronology is determined by 19 OSL ages. The sand sheet formed primarily during three phases of eolian deflation and deposition, each phase with a separate sand source and under different climatic and environmental circumstances. The first phase of eolian sedimentation occurred 45 to 15 ka with the deposition of unit 1. The sand source for the first phase was beach-related features along the eastern shoreline of pluvial Lake Palomas in Mexico. The glacial-age climate was cool, wet, and windy because of the southern path of the jet stream at that time. After 15 ka, with the onset of warmer conditions of the Bølling-Allerød, the shutting down of the Palomas sand source, and wet conditions of the Younger Dryas, the sand sheet stabilized with weak soil development in unit 1. By 11 ka, the climate shifted to Holocene drying conditions and the second phase of sand accumulation began, forming unit 2; the sand source was the local deflation of the previously deposited unit 1 sand. The sand sheet stabilized again by 1.9 ka with slightly wetter late Holocene climate; a weak soil formed in unit 2 sand. About A.D. 1500 and extending to about A.D. 1850 or later, an A horizon formed on the sand sheet, probably in response to a desert grassland vegetation during the period of wet climate of the Little Ice Age. In an anthropogenic third phase of eolian activity, after A.D. 1850, the vegetation was likely disturbed by overgrazing; and the unit 2 and A horizon (unit 3) sands were deflated, resulting in the deposition of a thin layer of massive eolian sand (unit 4) across the sand sheet. By about A.D. 1900 mesquite shrubs had increased in abundance; and deflated sand, largely from unit 2, began to accumulate around the shrubs, forming coppice dunes (unit 5). Mesquite coppice dunes continued to increase in number and volume during the twentieth

  3. Holocene reworking of a sand sheet in the Merrimack Embayment, Western Gulf of Maine

    USGS Publications Warehouse

    Hein, C.J.; FitzGerald, D.M.; Barnhardt, W.

    2007-01-01

    Recent bathymetric, backscatter, and seafloor sediment samples demonstrate that a large sand sheet was formed in the inner shelf by the reworking of the Merrimack River lowstand delta (deposited 12 kya; currently at 45 m depth) and braid plain during the Holocene transgression. Asymmetric bedforms and distinct grain size distributions suggest the sand sheet is actively being reworked by inner-shelf processes. Bottom sediments range from silty sand at the submerged delta to coarse sand and fine gravel in the innermost shelf (depth: 10-50 m). Coarse-grained sand comprises an expansive (32 km2 ) featureless sand sheet centered off the Merrimack River. Fine-grained sand discontinuously overlies this sand sheet in many locations and forms long wavelength (100 – 800 m), low amplitude (1-2 m), asymmetrical bedforms. Sets of these bedforms are oriented from slightly oblique offshore to onshore; several bedform sets are located within 1 km and oriented orthogonally to one another. Along the paleo-delta front north-northwest oriented bedforms are dominant. Inshore of these features, the bedforms become more closely spaced and have orientations to the west and westsouthwest. Preliminary data suggest that the combined forcings of instantaneous storm-wave generated shear stress and storm-induced currents associated with high energy northeast storm events may be responsible for sand sheet reworking and bedform development.

  4. Ganges Chasma Sand Sheet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Today's sand sheet is located in the Ganges Chasma portion of Valles Marineris. As with yesterday's image, note that the dune forms are seen only at the margin and that the interior of the sand sheet at this resolution appears to completely lack dune forms.

    Image information: VIS instrument. Latitude -6.4, Longitude 310.7 East (49.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Sand Sheet on Crater Floor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    As with yesterday's image, this dune field is located inside a crater, in this case an unnamed crater at 26 degrees North latitude. In this VIS image the dunes are coalescing into a sand sheet, note the lack of dune forms to the north of the small hills. The presence of ridges and hills in the area is affecting the dune shapes.

    Image information: VIS instrument. Latitude 26.4, Longitude 62.7 East (297.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology

  6. The Carolina Sandhills: Quaternary eolian sand sheets and dunes along the updip margin of the Atlantic Coastal Plain province, southeastern United States

    USGS Publications Warehouse

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard; Mahan, Shannon; Garrity, Christopher P.; Aleman Gonzalez, Wilma B.; Dobbs, Kerby M.

    2016-01-01

    The Carolina Sandhills is a physiographic region of the Atlantic Coastal Plain province in the southeastern United States. In Chesterfield County (South Carolina), the surficial sand of this region is the Pinehurst Formation, which is interpreted as eolian sand derived from the underlying Cretaceous Middendorf Formation. This sand has yielded three clusters of optically stimulated luminescence ages: (1) 75 to 37 thousand years ago (ka), coincident with growth of the Laurentide Ice Sheet; (2) 28 to 18 ka, coincident with the last glacial maximum (LGM); and (3) 12 to 6 ka, mostly coincident with the Younger Dryas through final collapse of the Laurentide Ice Sheet. Relict dune morphologies are consistent with winds from the west or northwest, coincident with modern and inferred LGM January wind directions. Sand sheets are more common than dunes because of effects of coarse grain size (mean range: 0.35–0.59 mm) and vegetation. The coarse grain size would have required LGM wind velocities of at least 4–6 m/sec, accounting for effects of colder air temperatures on eolian sand transport. The eolian interpretation of the Carolina Sandhills is consistent with other evidence for eolian activity in the southeastern United States during the last glaciation.

  7. System Controls on the South Texas Sand Sheet

    NASA Astrophysics Data System (ADS)

    Barrineau, Clifton Patrick

    Semi-stabilized dune systems are important indicators of Quaternary drought variability across central North America. The South Texas sand sheet (STSS) is the southernmost relict dune system in central North America and is exposed to higher evapotranspiration and moisture variability than similar landscapes farther north. This study uses multi-scale analysis of LiDAR data, geophysical surveys, optically stimulated luminescence dates of core samples, and X-ray fluorescence analysis to identify historical periods of desertification across the STSS. These data suggest long-term relationships between climate, ecological disturbances, geological framework, and desertification. Aeolian activations dated at ca. 75, 230, 2000, 4100, and 6600 yr bp correspond to periods of persistent regional drought, changes in sediment supply, and anthropogenic disturbances of native ecology. From these results it appears that regionalized activation in semi-stabilized dune systems is controlled primarily by climatic variations that reduce the overall moisture available for maintaining vigorous vegetation growth, while localized activation patterns depend more on stresses related to site-specific morphodynamics as well as human activity. With enhanced aridity forecast for much of central North America through the 21 st century, understanding the specific thresholds of desertification is an important step towards building a conceptual model of desertification in semi-stabilized dune landscapes.

  8. HAER COLO,1COMCI,2A (sheet 1 of 2) Highline Canal, Sand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HAER COLO,1-COMCI,2A- (sheet 1 of 2) - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  9. HAER COLO,1COMCI,2A (sheet 2 of 2) Highline Canal, Sand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HAER COLO,1-COMCI,2A- (sheet 2 of 2) - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  10. Insights from Askja sand sheet, Iceland, as a depositional analogue for the Bagnold Dune Field, Gale Crater, Mars.

    NASA Astrophysics Data System (ADS)

    Ukstins, I.; Sara, M.; Riishuus, M.; Schmidt, M. E.; Yingst, R. A.; Berger, J.

    2017-12-01

    Examining the compositional effect of aeolian transport and sorting processes on basaltic sands is significant for understanding the evolution of the Bagnold dune field, as well as other martian soils and sedimentary units. We use the Askja sand sheet, Iceland, as a testbed to quantify the nature of soil production and aeolian transport processes in a mafic system. Basalts from Askja and surrounding volcanic units, which can have high MgO (5-18 wt %) and high Fe2O3 (5-18 wt %), have been weathered to form mafic volcaniclastic deposits which are incorporated into a 40-km long sand sheet to the E-SE of the caldera, ranging from 10 cm to 10 m thick, and covering 240 km2. Ash and lava from the 2014-2015 Holuhraun eruption were emplaced onto the southeastern part of the sand sheet. The SW section is deflationary and defined by very fine to medium grained basaltic sand with ventifact cobbles and boulders. The central part is inflating and dominated by very fine-grained sand, relict lava fields, and small to large sand ripples (1 to 30 cm). The NE portion is also inflating but accumulation is limited to topographic depressions. Bulk chemistry of >200 sand samples are similar to Martian crust (SiO2: 48-52 wt %, MgO: 5-8 wt %, Fe2O3: 13-15 wt %). MgO concentrations vary with distance along the sand sheet, increasing by 1.5% over 10 km in the downwind direction (E, NE), then maintaining a relatively consistent concentration of 6.75 wt % over 18 km. Mean equancy of grains decreases 15 % to the E over 10 km followed by a plateau at 65 to 75 %. Material at depth tends to be of higher sphericity than material on or near the surface. Notably, MgO increases while the sphericity decreases and both data sets level off at 10 km, which suggests these two variables are related. These indicate input of material with prismoidal morphology around 10 km, and may be due to the Holuhraun eruption.

  11. Shallow gas reservoir in a Pleistocene transgressive sand sheet developed during the drowning of retrograde delta lobes, Louisiana continental shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flakes, L.G.; Fillon, R.H.

    1996-12-31

    A strongly negative seismic amplitude discovered in our 3-D data set at 450 ms has been tied to the interface marking the top of a thick sand section ca. -1300 ft sub-sea. Sequence stratigraphic and stacking pattern analysis of SP and GR logs point to a Late Pleistocene low-stand delta bar origin for the thick, blocky sands in the lower part of the section. Resistivity data shows the delta bar sands are wet with salt water while an uppermost, thin sand member, capped by shale constituting a notable flooding surface, and potential vertical seal, exhibited a high resistivity signature. Withmore » other evidence, this is considered to reflect the presence of free gas in the sand`s pore spaces. An amplitude extraction made to evaluate the reservoir potential of the gas-charged sand member revealed a pattern consistent with three, deltaic lobes aligned along a former drainage axis. The mapped features are considered the result of retrograde delta migration and geomorphic evolution in response to rising sea levels late in the low stand. The upper, gas-charged sand member was interpreted, based on modern analogs, as a transgressive sand sheet containing a combination of facies related to the sub-environments of delta lobe destruction and flooding during rapid marine transgression, e.g.: re-worked barrier island; marine sand shoal; and, inner neuritic shelf sands. The Chandeleur Islands and Ship Shoal are modern examples of these features. Because of the relatively thin but widespread character and good sand quality expected for a transgressive sand sheet, this prospect was selected as a low-risk, low-cost candidate for horizontal drilling and completion.« less

  12. Shallow gas reservoir in a Pleistocene transgressive sand sheet developed during the drowning of retrograde delta lobes, Louisiana continental shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flakes, L.G.; Fillon, R.H.

    1996-01-01

    A strongly negative seismic amplitude discovered in our 3-D data set at 450 ms has been tied to the interface marking the top of a thick sand section ca. -1300 ft sub-sea. Sequence stratigraphic and stacking pattern analysis of SP and GR logs point to a Late Pleistocene low-stand delta bar origin for the thick, blocky sands in the lower part of the section. Resistivity data shows the delta bar sands are wet with salt water while an uppermost, thin sand member, capped by shale constituting a notable flooding surface, and potential vertical seal, exhibited a high resistivity signature. Withmore » other evidence, this is considered to reflect the presence of free gas in the sand's pore spaces. An amplitude extraction made to evaluate the reservoir potential of the gas-charged sand member revealed a pattern consistent with three, deltaic lobes aligned along a former drainage axis. The mapped features are considered the result of retrograde delta migration and geomorphic evolution in response to rising sea levels late in the low stand. The upper, gas-charged sand member was interpreted, based on modern analogs, as a transgressive sand sheet containing a combination of facies related to the sub-environments of delta lobe destruction and flooding during rapid marine transgression, e.g.: re-worked barrier island; marine sand shoal; and, inner neuritic shelf sands. The Chandeleur Islands and Ship Shoal are modern examples of these features. Because of the relatively thin but widespread character and good sand quality expected for a transgressive sand sheet, this prospect was selected as a low-risk, low-cost candidate for horizontal drilling and completion.« less

  13. Rover Track in Sand Sheet Near Martian Sand Dune

    NASA Image and Video Library

    2015-12-10

    The rippled surface of the first Martian sand dune ever studied up close fills this view of "High Dune" from the Mast Camera (Mastcam) on NASA's Curiosity rover. This site is part of the "Bagnold Dunes" field along the northwestern flank of Mount Sharp. The dunes are active, migrating up to about one yard or meter per year. The component images of this mosaic view were taken on Nov. 27, 2015, during the 1,176th Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the sand would appear under daytime lighting conditions on Earth. The annotated version includes superimposed scale bars of 30 centimeters (1 foot) in the foreground and 100 centimeters (3.3 feet) in the middle distance. Malin Space Science Systems, San Diego, built and operates Curiosity's Mastcam. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built the rover and manages the project for NASA's Science Mission Directorate, Washington. http://photojournal.jpl.nasa.gov/catalog/PIA20169

  14. Natural and human controls of the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel)

    NASA Astrophysics Data System (ADS)

    Roskin, J.; Sivan, D.; Shtienberg, G.; Roskin, E.; Porat, N.; Bookman, R.

    2015-12-01

    The study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport around the Roman-Byzantine ruins of Caesarea, Israel. Beach sand, sand sheets, nebkha, linear and transverse dunes as well as parabolic and transverse interdunes along two transects were sampled in the current study down to their substrate. Sixteen new optically stimulated luminescence ages cluster at ∼5.9-3.3 ka, ∼1.2-1.1 ka (800-900 AD) and ∼190-120 years ago (1825-1895 AD) indicating times of middle and late Holocene sand sheet depositions and historical dune stabilization. The first age cluster indicates that beach sand accumulated when rates of global sea level rise declined around 6-5 ka. Until ∼4 ka sand sheets encroached up to 2.5 km inland. Historical and archaeological evidence points to sand mobilization since the first century AD. Sand sheets dating to 1.2-1.1 ka, coevally found throughout the dunefield represent sand stabilization due to vegetation reestablishment attributed to gradual and fluctuating decline in human activity from the middle Early Islamic period until the 10th century. Historical and chronological evidence of the existence of transverse and coppice dunes from the 19th century suggest that dunes only formed in the last few centuries. The study illustrates the initial role of natural processes, in this case decline in global sea level rise and the primary and later role of fluctuating human activity upon coastal sand mobility. The study distinguishes between sand sheets and dunes and portrays them as sensors of environmental changes.

  15. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Wolfe, Stephen A.; Morse, Peter D.; Neudorf, Christina M.; Kokelj, Steven V.; Lian, Olav B.; O'Neill, H. Brendan

    2018-05-01

    Contemporary sand wedges and sand veins are active in seasonally frozen ground within the extensive discontinuous permafrost zone in Northwest Territories, Canada. The region has a subarctic continental climate with 291 mm a-1 precipitation, -4.1 °C mean annual air temperature, warm summers (July mean 17.0 °C), and cold winters (January mean -26.6 °C). Five years of continuous observations indicate that interannual variation of the ground thermal regime is dominantly controlled by winter air temperature and snow cover conditions. At sandy sites, thin snow cover and high thermal conductivity promote rapid freezing, high rates of ground cooling, and low near-surface ground temperatures (-15 to -25 °C), resulting in thermal contraction cracking to depths of 1.2 m. Cracking potentials are high in sandy soils when air temperatures are <-30 °C on successive days, mean freezing season air temperatures are ≤-17 °C, and snow cover is <0.15 m thick. In contrast, surface conditions in peatlands maintain permafrost, but thermal contraction cracking does not occur because thicker snow cover and the thermal properties of peat prolong freezeback and maintain higher winter ground temperatures. A combination of radiocarbon dating, optical dating, and stratigraphic observations were used to differentiate sand wedge types and formation histories. Thermal contraction cracks that develop in the sandy terrain are filled by surface (allochthonous) and/or host (autochthonous) material during the thaw season. Epigenetic sand wedges infilled with allochthonous sand develop within former beach sediments beneath an active eolian sand sheet. Narrower and deeper syngenetic wedges developed within aggrading eolian sand sheets, whereas wider and shallower antisyngenetic wedges developed in areas of active erosion. Thermal contraction cracking beneath vegetation-stabilized surfaces leads to crack infilling by autochthonous host and overlying organic material, with resultant downturning and

  16. Origins of late- Pleistocene coastal dune sheets, Magdalena and Guerrero Negro, from continental shelf low-stand supply (70-20 ka), under conditions of southeast littoral- and eolian-sand transport, in Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Peterson, Curt D.; Murillo-Jiménez, Janette M.; Stock, Errol; Price, David M.; Hostetler, Steve W.; Percy, David

    2017-10-01

    Shallow morpho-stratigraphic sections (n = 11) in each of two large coastal dune sheets including the Magdalena (7000 km2) and Guerrero Negro (8000 km2) dune sheets, from the Pacific Ocean side of Baja California Sur, Mexico, have been analyzed for dune deposit age. The shallow morpho-stratigraphic sections (∼2-10 m depth) include 11 new TL and 14C ages, and paleosol chronosequences, that differentiate cemented late Pleistocene dune deposits (20.7 ± 2.1 to 99.8 ± 9.4 ka) from uncemented Holocene dune deposits (0.7 ± 0.05 to at least 3.2 ± 0.3 ka). Large linear dune ridges (5-10 m in height) in the dune sheet interiors trend southeast and are generally of late Pleistocene age (∼70-20 ka). The late Pleistocene dune deposits reflect eolian transport of marine sand across the emerged continental shelf (30-50 km southeast distance) from low-stand paleo-shorelines (-100 ± 25 m elevation), which were locally oriented nearly orthogonal to modeled deep-water wave directions (∼300° TN). During the Holocene marine transgression, onshore and alongshore wave transport delivered remobilized shelf-sand deposits to the nearshore areas of the large dune sheets, building extensive barrier islands and sand spits. Submerged back-barrier lagoons generally precluded marine sand supply to dune sheet interiors in middle to late Holocene time, though exceptions occur along some ocean and lagoon shorelines. Reactivation of the late Pleistocene dune deposits in the dune sheet interiors lead to generally thin (1-3 m thickness), but widespread, covers of Holocene dune deposits (0.41 ± 0.05 to 10.5 ± 1.6 ka). Mechanical drilling will be required to penetrate indurated subsoil caliche layers to reach basal Pleistocene dune deposits.

  17. Blending foundry sands with soil: Effect on dehydrogenase activity.

    PubMed

    Dungan, Robert S; Kukier, Urzsula; Lee, Brad

    2006-03-15

    Each year U.S. foundries landfill several million tons of sand that can no longer be used to make metalcasting molds and cores. A possible use for these materials is as an ingredient in manufactured soils; however, potentially harmful metals and resin binders (used to make cores) may adversely impact the soil microbial community. In this study, the dehydrogenase activity (DHA) of soil amended with molding sand (clay-coated sand known as "green sand") or core sands at 10%, 30%, and 50% (dry wt.) was determined. The green sands were obtained from iron, aluminum, and brass foundries; the core sands were made with phenol-formaldehyde or furfuryl alcohol based resins. Overall, incremental additions of these sands resulted in a decrease in the DHA which lasted throughout the 12-week experimental period. A brass green sand, which contained high concentrations of Cu, Pb, and Zn, severely impacted the DHA. By week 12 no DHA was detected in the 30% and 50% treatments. In contrast, the DHA in soil amended with an aluminum green sand was 2.1 times higher (all blending ratios), on average, at week 4 and 1.4 times greater (30% and 50% treatments only) than the controls by week 12. In core sand-amended soil, the DHA results were similar to soils amended with aluminum and iron green sands. Increased activity in some treatments may be a result of the soil microorganisms utilizing the core resins as a carbon source. The DHA assay is a sensitive indicator of environmental stress caused by foundry sand constituents and may be useful to assess which foundry sands are suitable for beneficial use in the environment.

  18. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  19. Anthropogenic initiation and acceleration of aeolian dune activity within the northern European Sand Belt and societal feedbacks over the last 2500 yrs

    NASA Astrophysics Data System (ADS)

    Lungershausen, Uta; Larsen, Annegret; Bork, Hans-Rudolf; Duttmann, Rainer

    2017-04-01

    In North-Western Europe, Pleistocene sand sheets have been re-activated during phases of Holocene deforestation and agricultural land-use. Although there are temporal overlaps between anthropogenic activity and sand sheet re-activation, the root cause and subsequent feedbacks between aeolian activity and societal response remain largely unknown. Here, we seek to establish cause and effect by examining the detailed co-variation in both the timing and magnitude of aeolian and anthropogenic activity through the quantification of Holocene dune sediments in combination with archaeological and pollen records. These records indicate a series of complex phases of aeolian activity followed by landscape stabilization, which we attribute primarily to changing patterns of human impact. We find that a steady increase in dune deposition rates in the Medieval Period corresponds to an increase in settlement activity and deforestation ( 1000-1500 AD). At their peak, Medieval deposition rates were 3.4-times larger than during the late Pleistocene, which was the period experiencing the most favourable natural conditions for aeolian sediment transport in the past 11600 years. Prior to the Medieval Period, relative land-surface stability (depositional hiatus) persisted from the late Pleistocene until the Roman Iron Age Period (0-400 AD), in which deforestation to fuel iron production had a minor impact on aeolian activity, as indicated by the lowest recorded deposition rate (0.12 t/ha/a ± 0.02 t/ha/a). Following the Medieval Period peak in aeolian deposition rates, aeolian activity diminishes rapidly, and coincides with the abandonment of nearby human settlement. This can be interpreted as a direct positive feedback in which Medieval agricultural overexploitation crossed sufficient aeolian activity thresholds to render the landscape practically unworkable for cropping agriculture. Based on our findings and a comprehensive review of Northern European sand belt activity, we interpret a

  20. Environmental Education Activity Sheets 1-11.

    ERIC Educational Resources Information Center

    Halsey, Clifton F.; And Others

    These activity sheets, developed by personnel of the Agricultural Extension Service of the University of Minnesota, were designed for youth group campers but may be used by other populations and individuals. Each activity sheet focuses on a separate topic: (1) Selecting Suitable Uses for Land, (2) Measuring the Steepness of Land, (3) Determining…

  1. Simple stochastic cellular automaton model for starved beds and implications about formation of sand topographic features in terms of sand flux

    NASA Astrophysics Data System (ADS)

    Endo, Noritaka

    2016-12-01

    A simple stochastic cellular automaton model is proposed for simulating bedload transport, especially for cases with a low transport rate and where available sediments are very sparse on substrates in a subaqueous system. Numerical simulations show that the bed type changes from sheet flow through sand patches to ripples as the amount of sand increases; this is consistent with observations in flume experiments and in the field. Without changes in external conditions, the sand flux calculated for a given amount of sand decreases over time as bedforms develop from a flat bed. This appears to be inconsistent with the general understanding that sand flux remains unchanged under the constant-fluid condition, but it is consistent with the previous experimental data. For areas of low sand abundance, the sand flux versus sand amount (flux-density relation) in the simulation shows a single peak with an abrupt decrease, followed by a long tail; this is very similar to the flux-density relation seen in automobile traffic flow. This pattern (the relation between segments of the curve and the corresponding bed states) suggests that sand sheets, sand patches, and sand ripples correspond respectively to the free-flow phase, congested phase, and jam phase of traffic flows. This implies that sand topographic features on starved beds are determined by the degree of interference between sand particles. Although the present study deals with simple cases only, this can provide a simplified but effective modeling of the more complicated sediment transport processes controlled by interference due to contact between grains, such as the pulsatory migration of grain-size bimodal mixtures with repetition of clustering and scattering.

  2. Lateral dimension-dependent antibacterial activity of graphene oxide sheets.

    PubMed

    Liu, Shaobin; Hu, Ming; Zeng, Tingying Helen; Wu, Ran; Jiang, Rongrong; Wei, Jun; Wang, Liang; Kong, Jing; Chen, Yuan

    2012-08-21

    Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (<10 μg/mL). In contrast, when incubating with small GO sheets up to 4 h, the inactivation rate of E. coli cells continues increasing. The increase of small GO sheet concentration also results in persistent increases in their antibacterial activity. In this study, GO sheets with different lateral sizes are all well dispersed, and their oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot

  3. Late Holocene eolian activity in the mineralogically mature Nebraska Sand Hills

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W.; Swinehart, J.B.; Cowherd, S.D.; Mahan, S.A.; Bush, C.A.; Madole, R.F.; Maat, P.B.

    1997-01-01

    The age of sand dunes in the Nebraska Sand Hills has been controversial, with some investigators suggesting a full-glacial age and others suggesting that they were last active in the late Holocene. New accelerator mass spectrometry radiocarbon ages of unaltered bison bones and organic-rich sediments suggest that eolian sand deposition occurred at least twice in the past 3000 14C yr B.P. in three widely separated localities and as many as three times in the past 800 14C yr at three other localities. These late Holocene episodes of eolian activity are probably the result of droughts more intense than the 1930s "Dust Bowl" period, based on independent Great Plains climate records from lake sediments and tree rings. However, new geochemical data indicate that the Nebraska Sand Hills are mineralogically mature. Eolian sands in Nebraska have lower K-feldspar (and K2O, Rb, and Ba) contents than most possible source sediments and lower K-feldspar contents than dunes of similar age in Colorado. The most likely explanation for mineralogical maturity is reduction of sand-sized K-feldspar to silt-sized particles via ballistic impacts due to strong winds over many cycles of eolian activity. Therefore, dunes of the Nebraska Sand Hills must have had a long history, probably extending over more than one glacial-interglacial cycle, and the potential for reactivation is high, with or without a future greenhouse warming. ?? 1997 University of Washington.

  4. Discrimination of active and inactive sand from remote sensing - Kelso dunes, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Paisley, Elizabeth C. I.; Lancaster, Nicholas; Gaddis, Lisa R.; Greeley, Ronald

    1991-01-01

    Landsat TM images, field data, and laboratoray reflectance spectra were examined for the Kelso dunes, Mojave Desert, California to assess the use of visible and near-infrared (VNIR) remote sensing data to discriminate aeolian sand populations on the basis of spectral brightness. Results show that areas of inactive sand have a larger percentage of dark, fine-grained materials compared to those composed of active sand, which contain less dark fines and a higher percentage of quartz sand-size grains. Both areas are spectrally distinct in the VNIR, suggesting that VNIR spectral data can be used to discriminate active and inactive sand populations in the Mojave Desert. Analysis of laboratory spectra was complicated by the presence of magnetite in the active sands, which decreases their laboratory reflectance values to those of inactive sands. For this application, comparison of TM and laboratory spectra suggests that less than 35 percent vegetation cover does not influence the TM spectra.

  5. Holocene beach buildup and coastal aeolian sand incursions off the Nile littoral cell

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Sivan, Dorit; Shtienberg, Gilad; Porat, Naomi; Bookman, Revital

    2017-04-01

    Israel's coastal plain is abundant with sand originating from the Nile littoral cell. The inland windblown loose sand has formed 3-6 km wide lobe-like sand and dune fields currently comprised of foredunes, linear and northeasterly facing transverse and parabolic dunes that are currently stabilized by vegetation. This study reviews the architecture and history of the these dune fields aiming to: (a) Date the timings of beach accretion, and sand and dune incursions. (b) Discriminate between natural and human-induced forcing factors of sand mobilization and stabilization in time and space. (c) Present a model of the dunescape development. (d) Assess scenarios of sand transport in the future charcaterized by intense human impact and climate change. Luminescence ages, radiocarbon dates and relative ages from previously published geological and archaeological reports, historical texts, together with new optically stimulated luminescence (OSL) ages and stratigraphic and sedimentological data are analyzed. The deposition, mobilizations and preservation of the sand bodies, initially induced by the decline in sea level rise at 6-4 ka, were later controlled by historic land-use intensity and modern land-use/negligence practices. At 6 ka, beach sand buildup rapidly started. Where aeolianite ridges bordered the coast, pulses of sand with biogenic carbonate grains unconformably draped the ridges and rapidly consolidated into a distinct sandy calcarenite unit. Further east, sand sheets and low dunes partly pedogenized following their incursion, but did not cement. The water retention capacities of the sand sheets enabled the establishment of a sand-stabilizing vegetation cover that probably became an attractive environment for fuel and grazing. The growing Hellenistic-Roman-Byzantine ( 2.4-1.3 ka) populations probably led to increased consumption and massive destruction of sand stabilizing vegetation, enabling sand erodibility and mobilization during winter storms. The sand

  6. Shorter intervals between great earthquakes near Sendai: Scour ponds and a sand layer attributable to A.D. 1454 overwash

    NASA Astrophysics Data System (ADS)

    Sawai, Yuki; Namegaya, Yuichi; Tamura, Toru; Nakashima, Rei; Tanigawa, Koichiro

    2015-06-01

    A sparsely documented tsunami in 1454 may subdivide the recurrence interval between the 869 and 2011 tsunamis near Sendai, as judged from geomorphic, stratigraphic, and archival evidence. Pond-filled breaches cut across beach ridges on century-old topographic maps. The basal pond deposit in one of these breaches postdates 1454. Stratigraphy on Sendai Plain includes a sand sheet that contains marine and brackish diatoms. Radiocarbon ages suggest that the sheet dates to 1406-1615 (2σ), and written records for this interval in Tohoku mention a tsunami in 1454. The inferred inundation extended 1.0-2.5 km inland from an approximate medieval shoreline. Simulated tsunamis that best account for the sand sheet require a thrust earthquake of moment magnitude 8.4 or larger. If the sand sheet represents the 1454 tsunami, the two most recent intervals between great thrust earthquakes in Sendai region spanned 585 and 557 years.

  7. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  8. Seabed Gradient Controlling Onshore Transport Rates of Surf Sand during Beach Retreat by Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Lee, Hee Jun; Yi, Hi-Il

    2018-03-01

    A simple relationship is proposed for the onshore transport rates of surf-zone sand to evaluate the beach retreat caused by sea level rise. It suggests that the preservation potential of surf sand is proportional inversely to the seabed gradient during beach retreat. According to this relationship, the erosional remnants of surf sand would be more readily developed on a gentler shelf collectively as transgressive sand sheets. This finding may explain the previous studies regarding the Korean shelves that proposed that the Holocene transgressive sand sheets (HTSS) occur not in the steep eastern shelf but in the gentle western shelf. In line with such presence/absence of the HTSS are the results from some coastal seismic profiles obtained in the present study. The profiles indicate that sand deposits are restricted within the nearshore in the eastern coast, whereas they are persistently traceable to the offshore HTSS in the western coast. Tide is proven to have a negligible influence on the total duration of surf-zone processes. This study may be useful in predicting the consequences of the beach retreat that takes place worldwide as sea levels rise as a result of global warming.

  9. Holocene eolian activity in the Minot dune field, North Dakota

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

    1997-01-01

    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  10. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    PubMed

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Controls on late Holocene drift-sand dynamics: the role of people and climate on inland aeolian activity in the Netherlands

    NASA Astrophysics Data System (ADS)

    Pierik, Harm Jan; Van Lanen, Rowin; Gouw-Bouman, Marjolein; Groenewoudt, Bert; Wallinga, Jakob; Hoek, Wim

    2017-04-01

    Holocene drift-sand activity is commonly linked directly to either population pressure (via agricultural activity) or to climate change (e.g. storminess). In the Pleistocene sand areas of the Netherlands small-scale Holocene aeolian activity occurred since the Neolithic, whereas large scale drift-sand activity started during the Middle Ages (especially after AD 1000. This last phase coincides with the intensification of farming and demographic pressure, but is also commonly associated with a colder climate and enhanced storminess. This raises the question to what extent drift-sand activity can be attributed to human activities or to natural forcing factors. In this study we compare the spatial and chronological patterns of drift-sand occurrence for four characteristic Pleistocene sand regions in the Netherlands. For this, we compiled a new supra-regional overview of dates related to drift-sand activity (14C, OSL, archaeological and historical), that we compared with existing national soil maps, historical-route networks, and vegetation and climate reconstructions. Results show a steady occurrence of aeolian activity between 1000 BC and AD 1000, interrupted by remarkable dip in aeolian activity around 2000 BP, probably caused by changing land-use practices or by lower storminess. It is evident that human pressure on the landscape was most influential on initiating sand drifting: this is supported by more frequent occurrence close to routes and the uninterrupted increase in drift-sand activity after ca AD 1000 during periods of high population density and large-scale deforestation. Once triggered by human activities, the drift-sand development was probably further enhanced several centuries later during the cold and more stormy Little Ice Age (AD 1570-1900).

  12. Exceptional marine sand bodies in the Paleozoic of Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, R.D.; Kuykendall, M.D.; Hooker, E.O.

    Of the wide variety of sandstone reservoirs in Oklahoma, the most unusual types of sand bodies are present in the Atokan Spiro Sandstone, Devonian Misener Sandstone, and Morrowan lower Morrow Sandstone. The common factors are that upon correlation and mapping these units are channel-like (fluvial-deltaic) in geometry, but from petrographic evidence are quartz-rich shallow-marine units, with the exclusion of intraclastic and diagenetic constituents. Stratigraphic mapping of the Spiro Sandstone of the Arkoma basin indicates two types of sand bodies: channel and sheet. The marine channel-like deposits, 10-150 ft thick, probably were deposited on a paleosurface produced by a pre-Atokan unconformity.more » Examination of cores and outcrop indicate that both the channel and sheet Spiro sands contain shallow-marine fossils, limestones, peloidal chamosite, burrows, and bioturbation, all indicative of a shallow-marine setting. The Misener Sandstone of north-central Oklahoma ranges from 10 to 100 ft thick with sharp boundaries. It was deposited in pre-Frisco/Woodford eroded paleochannels. Core evidence for shallow-marine deposition is glauconite, phosphatic fossils and clasts, burrows, and bioturbation. These were probably deposited in an embayed, estuary-like environment. The lower Morrow Sandstone of the Anadarko basin is similar in geometry, except that the sand bodies are multistoried and multilateral and do not appear to be associated with a regional unconformity. The lower Morrow sandstones, usually 30-60 ft thick. commonly are elongated and deposited parallel to the shoreline. Deposition is inferred to be shallow-marine from marine fossils and glauconite.« less

  13. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux.

    PubMed

    Ayoub, F; Avouac, J-P; Newman, C E; Richardson, M I; Lucas, A; Leprince, S; Bridges, N T

    2014-09-30

    Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100 km scale) of τ(s)=0.01±0.0015 N m(-2).

  14. Development and evaluation of adsorption sheet (HD safe sheet-U) using active carbon for the purpose of the preventing the contamination diffusion of urinary excreted anticancer drug.

    PubMed

    Sato, Junya; Ohkubo, Haruka; Sasaki, Yuki; Yokoi, Makoto; Hotta, Yasunori; Kudo, Kenzo

    2017-01-01

    Certain amount of anticancer drugs is excreted in the urine of patients receiving anticancer drugs, and urinary scattering including anticancer drugs at excretion has become a route of anticancer drug contamination. Therefore, we developed an active carbon sheet (HD safe sheet-U) that prevented diffusion by adsorbing anticancer drugs including that excreted in urine. The present study conducted a performance evaluation of this sheet. The adsorption performance of active carbon to anticancer drug in the urine was evaluated by determining concentration changes in the active carbon suspension (5 mg/mL) of 14 kinds of anticancer drugs (cyclophosphamide, ifosfamide, carboplatin, cisplatin, methotrexate, 5-fluorouracil, cytarabine, gemcitabine, doxorubicin, epirubicin, paclitaxel, docetaxel, etoposide, and irinotecan) diluted with artificial urine. Adhesion of the anticancer drug dropping on the sheet to a slipper sole was evaluated because urine including anticancer drugs is scattered on the floor, which can spread by adhering to shoe soles of patients and healthcare workers. The performance of the active carbon sheet was compared with two other types of medical adsorption sheets used as control sheets. Anticancer drugs diluted with artificial urine (1 mL) were dropped on the active carbon sheet and the two control sheets. The sheets were trod with slippers made by polyvinyl chloride. The adhered anticancer drug was wiped off and its quantity was determined. A remarkable decrease in anticancer drug concentrations, except for cisplatin, was detected by mixture of active carbon in the artificial urine (0-79.6%). The quantity of anticancer drug adhesion to slipper soles from the active carbon sheet was significantly lower compared with that observed for the two control sheets for eight kinds of anticancer drugs (cyclophosphamide, ifosfamide, carboplatin, methotrexate, cytarabine, gemcitabine, doxorubicin, and docetaxel). There was no adhesion in cyclophosphamide and

  15. 75 FR 3915 - Environmental Documents Prepared in Support of Sand and Gravel Activities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... of Sand and Gravel Activities on the Outer Continental Shelf AGENCY: Minerals Management Service... Environmental Policy Act (NEPA), the Council on Environmental Quality regulations (40 CFR parts 1500-1508), and... Impact (FONSI) prepared and/or adopted by the MMS for three sand and gravel activities proposed on the...

  16. The mechanical behavior of cross-rolled beryllium sheet

    NASA Technical Reports Server (NTRS)

    Henkener, J. A.; Spiker, I. K.; Castner, W. L.

    1992-01-01

    In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures.

  17. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand.

    PubMed

    Holden, P A; LaMontagne, M G; Bruce, A K; Miller, W G; Lindow, S E

    2002-05-01

    Low pollutant substrate bioavailability limits hydrocarbon biodegradation in soils. Bacterially produced surface-active compounds, such as rhamnolipid biosurfactant and the PA bioemulsifying protein produced by Pseudomonas aeruginosa, can improve bioavailability and biodegradation in liquid culture, but their production and roles in soils are unknown. In this study, we asked if the genes for surface-active compounds are expressed in unsaturated porous media contaminated with hexadecane. Furthermore, if expression does occur, is biodegradation enhanced? To detect expression of genes for surface-active compounds, we fused the gfp reporter gene either to the promoter region of pra, which encodes for the emulsifying PA protein, or to the promoter of the transcriptional activator rhlR. We assessed green fluorescent protein (GFP) production conferred by these gene fusions in P. aeruginosa PG201. GFP was produced in sand culture, indicating that the rhlR and pra genes are both transcribed in unsaturated porous media. Confocal laser scanning microscopy of liquid drops revealed that gfp expression was localized at the hexadecane-water interface. Wild-type PG201 and its mutants that are deficient in either PA protein, rhamnolipid synthesis, or both were studied to determine if the genetic potential to make surface-active compounds confers an advantage to P. aeruginosa biodegrading hexadecane in sand. Hexadecane depletion rates and carbon utilization efficiency in sand culture were the same for wild-type and mutant strains, i.e., whether PG201 was proficient or deficient in surfactant or emulsifier production. Environmental scanning electron microscopy revealed that colonization of sand grains was sparse, with cells in small monolayer clusters instead of multilayered biofilms. Our findings suggest that P. aeruginosa likely produces surface-active compounds in sand culture. However, the ability to produce surface-active compounds did not enhance biodegradation in sand culture

  18. Ice-sheet sourced juxtaposed turbidite systems in Labrador Sea

    USGS Publications Warehouse

    Hesse, R.; Klaucke, I.; Ryan, William B. F.; Piper, D.J.W.

    1997-01-01

    Ice-sheet sourced Pleistocene turbidite systems of the Labrador Sea are different from non-glacially influenced systems in their facies distribution and depositional processes. Two large-scale sediment dispersal systems are juxtaposed, one mud-dominated and associated with the Northwest Atlantic Mid-Ocean Channel (NAMOC), the other sand-dominated and forming a huge submarine braided sandplain. Co-existence of the two systems reflects grain-size separation of the coarse and fine fractions on an enormous scale, caused by sediment winnowing at the entrance points of meltwater from the Laurentide Ice Sheet (LIS) to the sea (Hudson Strait, fiords) and involves a complex interplay of depositional and redepositional processes. The mud-rich NAMOC system is multisourced and represents a basinwide converging system of tributary canyons and channels. It focusses its sand load to the central trunk channel in basin centre, in the fashion of a "reverse" deep-sea fan. The sand plain received its sediment from the Hudson Strait by turbidity currents that were generated either by failure of glacial prodelta slopes at the ice margin, or by direct meltwater discharges with high bedload concentration. We speculate that the latter might have been related to subglacial-lake outburst flooding through the Hudson Strait, possibly associated with ice-rafting (Heinrich) events.

  19. [Environmental toxicity of waste foundry sand].

    PubMed

    Zhang, Hai-Feng; Wang, Yu-Jue; Wang, Jin-Lin; Huang, Tian-You; Xiong, Ying

    2013-03-01

    The metal leaching characteristics and volatile organic compounds (VOCs) of five different types of waste foundry sands were analyzed with the toxicity characteristic leaching procedure (TCLP) and head space-gas chromatography (HS-GC). Microtox and soil dehydrogenase activity (DHA) tests were then used to evaluate the bio-effects of these waste sands. The results showed that due to the different metals poured and casting materials used to make the sand molds, there was significant difference among the five waste foundry sands in the compositions and concentrations of metal and organic pollutants. The concentrations of Fe in the leachates of iron and steel casting waste foundry sand exceeded the maximal allowable concentrations specified in the National Standard of Drinking Water Quality, whereas the As concentration in the leachate of aluminum casting waste foundry sand exceeded the standard. The five waste foundry sands had quite different compositions and levels of VOCs, which resulted in different levels of inhibition effects on the luminescent bacteria (30% and 95%). Additionally, the soil DHA tests suggested that metal pollutants in waste foundry sands may inhibit the soil microbial activity, whereas organics in the sands may slightly promote the microbial activity. The results of this study indicated that the waste foundry sands may pose considerable threat to the environment when improperly disposed.

  20. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    PubMed

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Submarine sand ridges and sand waves in the eastern part of the China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  2. MAHLI at the Rocknest sand shadow: Science and science-enabling activities

    NASA Astrophysics Data System (ADS)

    Minitti, M. E.; Kah, L. C.; Yingst, R. A.; Edgett, K. S.; Anderson, R. C.; Beegle, L. W.; Carsten, J. L.; Deen, R. G.; Goetz, W.; Hardgrove, C.; Harker, D. E.; Herkenhoff, K. E.; Hurowitz, J. A.; Jandura, L.; Kennedy, M. R.; Kocurek, G.; Krezoski, G. M.; Kuhn, S. R.; Limonadi, D.; Lipkaman, L.; Madsen, M. B.; Olson, T. S.; Robinson, M. L.; Rowland, S. K.; Rubin, D. M.; Seybold, C.; Schieber, J.; Schmidt, M.; Sumner, D. Y.; Tompkins, V. V.; Van Beek, J. K.; Van Beek, T.

    2013-11-01

    Martian solar days 57-100, the Mars Science Laboratory Curiosity rover acquired and processed a solid (sediment) sample and analyzed its mineralogy and geochemistry with the Chemistry and Mineralogy and Sample Analysis at Mars instruments. An aeolian deposit—herein referred to as the Rocknest sand shadow—was inferred to represent a global average soil composition and selected for study to facilitate integration of analytical results with observations from earlier missions. During first-time activities, the Mars Hand Lens Imager (MAHLI) was used to support both science and engineering activities related to sample assessment, collection, and delivery. Here we report on MAHLI activities that directly supported sample analysis and provide MAHLI observations regarding the grain-scale characteristics of the Rocknest sand shadow. MAHLI imaging confirms that the Rocknest sand shadow is one of a family of bimodal aeolian accumulations on Mars—similar to the coarse-grained ripples interrogated by the Mars Exploration Rovers Spirit and Opportunity—in which a surface veneer of coarse-grained sediment stabilizes predominantly fine-grained sediment of the deposit interior. The similarity in grain size distribution of these geographically disparate deposits support the widespread occurrence of bimodal aeolian transport on Mars. We suggest that preservation of bimodal aeolian deposits may be characteristic of regions of active deflation, where winnowing of the fine-sediment fraction results in a relatively low sediment load and a preferential increase in the coarse-grained fraction of the sediment load. The compositional similarity of Martian aeolian deposits supports the potential for global redistribution of fine-grained components, combined with potential local contributions.

  3. Regional aeolian dynamics and sand mixing in the Gran Desierto - Evidence from Landsat Thematic Mapper images

    NASA Technical Reports Server (NTRS)

    Blount, Grady; Greeley, Ronald; Christensen, Phillip R.; Smith, Milton O.; Adams, John B.

    1990-01-01

    Mesoscale mapping of spatial variations in sand composition of the Gran Desierto (Sonora, Mexico) was carried out on multispectral Landsat TM images of this region, making it possible to examine the dynamic development of sand sheets and dunes. Compositions determined from remote imagery were found to agree well with samples from selected areas. The sand populations delineated were used to describe the sediment source areas, transport paths, and deposition sites. The image analysis revealed important compositional variations aver large areas that were not readily apparent in the field data.

  4. Cytotoxicity of yellow sand in lung epithelial cells.

    PubMed

    Kim, Y H; Kim, K S; Kwak, N J; Lee, K H; Kweon, S A; Lim, Y

    2003-02-01

    The present study was carried out to observe the cytotoxicity of yellow sand in comparison with silica and titanium dioxide in a rat alveolar type II cell line (RLE-6TN). Yellow sand (China Loess) was obtained from the loess layer in the Gunsu Province of China. The mean particle diameter of yellow sand was about 0.003 +/- 0.001 mm. Major elements of yellow sand were Si(27.7 +/- 0.6%), Al(6.01 +/- 0.17%), and Ca(5.83 +/- 0.23%) in that order. Silica and yellow sand significantly decreased cell viability and increased [Ca2+]i. All three particles increased the generation of H2O2. TiO2 did not change Fenton activity, while silica induced a slight increase of Fenton activity. In contrast, yellow sand induced a significant increase of Fenton activity. Silica, yellow sand and TiO2 induced significant nitrite formations in RLE-6TN cells. Silica showed the highest increase in nitrite formation, while yellow sand induced the least formation of nitrite. Silica and yellow sand increased the release of TNF-a. Based on these results, we suggest that yellow sand can induce cytotoxicity in RLE-6TN cells and reactive oxygen species, Fenton activity and reactive nitrogen species might be involved in this toxicity.

  5. Solvent extraction of oil-sand components for determination of trace elements by neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, F.S.; Filby, R.H.

    Instrumental neutron activation analysis was used to measure the concentrations of 30 elements in Athabasca oil sands and oil-sand components. The oil sands were separated into solid residue, bitumen, and fines by Soxhlet extraction with toluene-bitumen extract. The mineral content of the extracted bitumen was dependent on the treatment of the oil sand prior to extraction. The geochemically important and organically associated trace element contents of the bitumen (and asphaltenes) were determined by subtracting the mineral contributions from the total measured concentrations. The method allows analysis of the bitumen without the necessity of ultracentrifugation or membrane filtration, which might removemore » geochemically important components of the bitumen. The method permits classification of trace elements into organic and inorganic combinations.« less

  6. Monthly activity of Phlebotominae sand flies in Sistan-Baluchistan Province, Southeast Iran.

    PubMed

    Kassiri, H; Javadian, E; Sharififard, M

    2013-01-01

    The monthly activity of sand flies, which are vectors of leishmaniasis, was studied from May to October 1997 in three regions (plains, mountainous, coastal) of the Sistan-Bluchistan Province using sticky paper traps. In each village, three houses were selected. 30 sticky traps were installed indoors (bedroom, guestroom, toilet, bathroom) and 30 were installed outdoors (rodent burrows, wall cracks). In total, 8,558 and 1,596 sand fly specimens were collected and identified from outdoors and indoors, respectively. Ten species of Phlebotomus and eight species of Sergentomyia were collected outdoors, and nine species of Phlebotomus and 10 species of Sergentomyia were collected indoors. Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) was the predominant species found indoors in the plains region (58.4% of insects caught in the region) and was active during the whole study period. The P. papatasi peaks of activity were in early May and early October. Sergentomyia clydei (Sinton) was found to be the most abundant species outdoors in the plains region and comprised 64.7% of the total insects caught in the region. Sergentomyia clydei and S. tiberiadis (Alder, Theodor, and Lourie) were the predominant indoor and outdoor, respectively, species from the mountainous region, making up 19.8% and 35%, respectively, of all the insects caught in the region. Phlebotomus sergenti Parrot is a proven vector of urban cutaneous leishmaniasis, and P. alexandri (Sinton) is a probable vector of Kala-Azar, and both were collected during this study. Phlebotomus papatasi was the most predominant species collected indoors in the coastal region (50.8%), its peak activity was in May. Sergentomyia sintoni Pringle was the most predominant species collected outdoors in the coastal region (36.4%), and its peak activity was in October. Awareness of the peak activity times of sand flies can be useful in developing strategies to control the flies.

  7. Monthly Activity of Phlebotominae Sand Flies in Sistan-Baluchistan Province, Southeast Iran

    PubMed Central

    Kassiri, H.; Javadian, E.; Sharififard, M.

    2013-01-01

    The monthly activity of sand flies, which are vectors of leishmaniasis, was studied from May to October 1997 in three regions (plains, mountainous, coastal) of the Sistan-Bluchistan Province using sticky paper traps. In each village, three houses were selected. 30 sticky traps were installed indoors (bedroom, guestroom, toilet, bathroom) and 30 were installed outdoors (rodent burrows, wall cracks). In total, 8,558 and 1,596 sand fly specimens were collected and identified from outdoors and indoors, respectively. Ten species of Phlebotomus and eight species of Sergentomyia were collected outdoors, and nine species of Phlebotomus and 10 species of Sergentomyia were collected indoors. Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) was the predominant species found indoors in the plains region (58.4% of insects caught in the region) and was active during the whole study period. The P. papatasi peaks of activity were in early May and early October. Sergentomyia clydei (Sinton) was found to be the most abundant species outdoors in the plains region and comprised 64.7% of the total insects caught in the region. Sergentomyia clydei and S. tiberiadis (Alder, Theodor, and Lourie) were the predominant indoor and outdoor, respectively, species from the mountainous region, making up 19.8% and 35%, respectively, of all the insects caught in the region. Phlebotomus sergenti Parrot is a proven vector of urban cutaneous leishmaniasis, and P. alexandri (Sinton) is a probable vector of Kala-Azar, and both were collected during this study. Phlebotomus papatasi was the most predominant species collected indoors in the coastal region (50.8%), its peak activity was in May. Sergentomyia sintoni Pringle was the most predominant species collected outdoors in the coastal region (36.4%), and its peak activity was in October. Awareness of the peak activity times of sand flies can be useful in developing strategies to control the flies. PMID:24784790

  8. Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers

    PubMed Central

    Heaney, Christopher D.; Sams, Elizabeth; Dufour, Alfred P.; Brenner, Kristen P.; Haugland, Richard A.; Chern, Eunice; Wing, Steve; Marshall, Stephen; Love, David C.; Serre, Marc; Noble, Rachel; Wade, Timothy J.

    2011-01-01

    Background Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. Methods In 2007, visitors at two recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days later, participants answered questions about health symptoms since the visit. F+ coliphage, Enterococcus, Bacteroidales, fecal Bacteroides, and Clostridium spp. in wet sand were measured using culture and molecular methods. Results We analyzed 144 wet sand samples and completed 4,999 interviews. Adjusted odds ratios (aORs) were computed, comparing those in the highest tertile of fecal indicator exposure with those who reported no sand contact. Among those digging in sand compared with those not digging in sand, a molecular measure of Enterococcus spp. (calibrator cell equivalents/g) in sand was positively associated with gastrointestinal (GI) illness (aOR = 2.0 [95% confidence interval (CI) = 1.2–3.2]) and diarrhea (2.4 [1.4–4.2]). Among those buried in sand, point estimates were greater for GI illness (3.3 [1.3–7.9]) and diarrhea (4.9 [1.8–13]). Positive associations were also observed for culture-based Enterococcus (colony-forming units/g) with GI illness (aOR digging = 1.7 [1.1–2.7]) and diarrhea (2.1 [1.3–3.4]). Associations were not found among non-swimmers with sand exposure. Conclusions We observed a positive relationship between sand contact activities and enteric illness as a function of concentrations of fecal microbial pollution in beach sand. PMID:22157306

  9. Comparisons of Unconsolidated Sediments Analyzed by APXS (MSL-Curiosity) within Gale Crater, Mars: Soils, Sands of the Barchan and Linear Dunes of the Active Bagnold Dune Field, and Ripple-field Sands.

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; O'Connell-Cooper, C.; Spray, J. G.; Gellert, R.; Boyd, N. I.; Desouza, E.

    2017-12-01

    The MSL-APXS has analyzed a variety of unconsolidated sediments within the Gale impact crater, including soils, sands from barchan [High, Namib dunes], and linear dunes [Nathan Bridges, Mount Desert dunes], within the active Bagnold dune field, and sands from two smaller ripple fields ("mega-ripples"). The Gale "soils" (unsorted, unconsolidated sediments, ranging from fine-grained particles (including dust) to coarser "pebbly" material [>2 mm]), are, to a large degree, similar to Martian basaltic soils quantified by APXS, at Gusev crater (MER-A_Spirit) and Meridiani Planum (MER-B_Opportunity). Some local contributions are indicated by, for example, the enriched K levels (relative to a martian average basaltic soil [ABS]) within coarser Gale soil samples, and a Cr, Mn, Fe enrichment within finer-grained samples. Sands (grain size 62 µm to 2 mm) of the Bagnold dunes, generally, exhibit elevated Mg and Ni, indicating enrichment from olivine and pyroxene, but depleted S, Cl and Zn, indicating high activity levels and low dust. Compositional differences, related both to position within a dune (i.e., crest versus off-crest sand), and type of dune (linear versus barchan), are identified. Off-crest sands have Na, Al, Si, K, P contents similar to (or slightly depleted, relative to) the ABS, enrichment in Mg, and low dust content, whilst crest sands contain very high Mg and Ni (relative to the ABS), low felsic elemental concentrations and very low dust content. Cr is significantly enriched (and, to a lesser degree, Mn, Fe, Ti) in the off-crest sands of the linear dunes. In contrast, barchan dunes off-crest sands have Cr, Mn, Fe, and Ti abundances similar to those in the Gale soils. Additionally, Ni concentrations in barchan dunes off-crest sands are enriched relative to the linear dunes. Analyses from a small, isolated "mega-ripple" reveal a composition similar to that of the Gale soils, including a high dust content. The second mega-ripple, within a larger ripple field, is

  10. A study of global sand seas

    USGS Publications Warehouse

    McKee, Edwin D.

    1979-01-01

    The birth of the idea that led to this publication on "Global Sand Seas" dates back to the late 1920's. At that time I was engaged in a study of the Coconino Sandstone of Arizona's Grand Canyon. Considerable controversy existed then as to whether this sandstone was a subaqueous deposit or was composed of wind-formed dunes. It became apparent that definitive literature was sparse or lacking on types of dunes, global distribution of these types, the mechanics of their development, the precise nature of their internal structure of cross-stratificiation, and the relation of wind systems to these sand forms. Especially lacking were data on criteria that could confidently be used in the recognition of ancient dunes. The common denominator in this publication is eolian sand bodies. Although the book is concerned primarily with desert sand seas, the subject matter is not restricted to deserts; it includes many references to deposits of coastal sand and to sand bodies in humid climates. Nor does the book deal exclusively with dunes, which, according to most definitions, involve mounds or hills. Many references are made to sand sheets, sand stringers, and other types of sand deposits that have no prominent topographic expression. All sand bodies accumulated by the action of wind are discussed. Chapters A-J of this publication are primarily topical. Chapters cover the grain texture, the color, and the structure of modern dunes and other eolian sands. Special treatment is given to the relation of wind data to dune interpretation, the evolution of form in current-deposited sand bodies as determined from experimental studies, and the discriminant analysis technique for differentiating between coastal and inland desert sands. This topical part of the publication also includes an analysis of criteria used in ancient deposits to interpret their eolian genesis and a consideration of economic application of the principles described, including a discussion of potentials and problems

  11. Sand Waves in Tidal Channels

    DTIC Science & Technology

    2007-01-01

    sincerely thank Steven Borgeld, from Humboldt State University, for providing the grain size data for the Humboldt Entrance Channel. iv SAND...Wave Characteristics at Moriches Inlet... 182 APPENDIX VII – Sediment Data , Humboldt Entrance Channel, CA ........................... 186 References...waves may be limited by wave action, sand supply, and dredging activity. Bathymetric data collected at Humboldt Inlet, California, show sand waves

  12. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  13. Occupational exposure to airborne asbestos from phenolic molding material (Bakelite) during sanding, drilling, and related activities.

    PubMed

    Mowat, Fionna; Bono, Michael; Lee, R J; Tamburello, Susan; Paustenbach, Dennis

    2005-10-01

    In this study, a historical phenolic (Bakelite) molding material, BMMA-5353, was tested to determine the airborne concentrations of asbestos fibers released during four different activities (sawing, sanding, drilling, and cleanup of dust generated from these activities). Each activity was performed for 30 min, often in triplicate. The primary objective for testing BMMA-5353 was to quantitatively determine the airborne concentration of asbestos fibers, if any, in the breathing zone of workers. Uses of this product typically did not include sawing or sanding, but it may have been drilled occasionally. For this reason, only small quantities were sawed, sanded, and drilled in this simulation study. Personal (n = 40), area (n = 80), and background/clearance (n = 88) air samples were collected during each activity and analyzed for total fiber concentrations using phase contrast microscopy (PCM) and, for asbestos fiber counts, transmission electron microscopy (TEM). The raw PCM-total fiber concentrations were adjusted based on TEM analyses that reported the fraction of asbestos fibers, to derive a PCM-asbestos concentration that would enable calculation of an 8-hour time-weighted average (TWA). The estimated 8-hour TWAs ranged from 0.006 to 0.08 fibers per cubic centimeter using a variety of worker exposure scenarios. Therefore, assuming an exposure scenario in which a worker uses power tools to cut and sand products molded from BMMA-5353 and similar products in the manner evaluated in this study, airborne asbestos concentrations should not exceed current or historical occupational exposure limits.

  14. A bright intra-dune feature on Titan and its implications for sand formation and transport

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon; Barnes, Jason W.; Rodriguez, Sebastien; Cornet, Thomas; Brossier, Jeremy; Soderblom, Jason M.; Le Mouélic, Stephane; Sotin, Christophe; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger Nelson; Nicholson, Philip D.; Baines, Kevin

    2017-10-01

    Organic sands cover much of Titan’s equatorial belt, gathered into longitudinal dunes about a kilometer wide and hundreds of kilometers long. At the end of the Cassini era, questions of how such a vast volume of saltable material is or was created on Titan remain unanswered. At least two possible mechanisms suggested for forming sand-sized particles involve liquids: (1) evaporite deposition and erosion and (2) flocculation of material within a lake. Transporting sand from the lakes and seas of Titan’s poles to the equatorial belt is not strongly supported by Cassini observations: the equatorial belt sits higher than the poles and no sheets or corridors of travelling sand have been identified. Thus, previous sites of equatorial surface liquids may be of interest for understanding sand formation, such as the suggested paleoseas Tui and Hotei Regio. A newly identified feature in the VIMS data sits within the Fensal dune field but is distinct from the surrounding sand. We investigate this Bright Fensal Feature (BFF) using data from Cassini VIMS and RADAR. Specifically, we find spectral similarities between the BFF and both sand and Hotei Regio. The RADAR cross sectional backscatter is similar to neighboring dark areas, perhaps sand covered interdunes. We use this evidence to constrain the BFF’s formation history and discuss how this intra-dune feature may contribute to the processes of sand transport and supply.

  15. Comparison on characteristic of Mesoparticle Graphene Sand Composite (MGSC) using different types of sugar to remove methylene blue

    NASA Astrophysics Data System (ADS)

    Zularisam, A. W.; Wahida, Norul; Alfian, Ahmad

    2017-07-01

    This paper presents the green method to synthesis two types of adsorbent called mesoparticle graphene sand composite (MGSC) by using table sugar (MGSCts) and arenga palm sugar (MGSCaps) as different carbon sources to remove methylene blue acted as a dye model. Immobilisations of these materials on sand were introduced by using pyrolysis method without binder usage. Sand was treated by removing deleterious materials before sieved. The solutions of sugar were prepared and heated to 95 °C. The sand and sugar solutions were mixed and constantly stirred before putting them in furnace with nitrogen environment to produce MGSCts and MGSCaps. The composites were activated by using concentrated sulphuric acid to open the pores and maximise the capacity of absorbency. The analyses on the characteristic of both MGSCts and MGSCaps were conducted through field emission scanning electron microscope (FESEM), elemental dispersive x-ray (EDX) and elemental mapping (EM). FESEM analyses exhibited that the coating process was done uniformly as there were layers of coating sheets formation on the sand particles surfaces. After conducting EDX and EM, there were major elements found in both MGSCts and MGSCaps which were carbon, oxygen and silica. EM exhibited the distribution of these elements were scattered on the MGSC’s surfaces. Removal of methylene blue was successfully carried out by using both MGSCts and MGSCaps, with maximum removal up to 40% at the first hour of contact time.

  16. Ages, distributions, and origins of upland coastal dune sheets in Oregon, USA

    USGS Publications Warehouse

    Peterson, C.D.; Stock, E.; Price, D.M.; Hart, R.; Reckendorf, F.; Erlandson, J.M.; Hostetler, S.W.

    2007-01-01

    A total of ten upland dune sheets, totaling 245??km in combined length, have been investigated for their origin(s) along the Oregon coast (500??km in length). The ages of dune emplacement range from 0.1 to 103??ka based on radiocarbon (36 samples) and luminescence (46 samples) dating techniques. The majority of the emplacement dates fall into two periods of late-Pleistocene age (11-103??ka) and mid-late-Holocene age (0.1-8??ka) that correspond to marine low-stand and marine high-stand conditions, respectively. The distribution of both the late-Pleistocene dune sheets (516??km2 total surface area) and the late-Holocene dune sheets (184??km2) are concentrated (90% of total surface area) along a 100??km coastal reach of the south-central Oregon coast. This coastal reach lies directly landward of a major bight (Heceta-Perpetua-Stonewall Banks) on the continental shelf, at depths of 30-200??m below present mean sea level (MSL). The banks served to trap northward littoral drift during most of the late-Pleistocene conditions of lowered sea level (- 50 ?? 20??m MSL). The emerged inner-shelf permitted cross-shelf, eolian sand transport (10-50??km distance) by onshore winds. The depocenter sand deposits were reworked by the Holocene marine transgression and carried landward by asymmetric wave transport during early- to mid-Holocene time. The earliest dated onset of Holocene dune accretion occurred at 8??ka in the central Oregon coast. A northward migration of Northeast Pacific storm tracks to the latitude of the shelf depocenter (Stonewall, Perpetua, Heceta Banks) in Holocene time resulted in eastward wave transport from the offshore depocenter. The complex interplay of coastal morphology, paleosea-level, and paleoclimate yielded the observed peak distribution of beach and dune sand observed along the south-central Oregon coast. ?? 2007 Elsevier B.V. All rights reserved.

  17. Science Learning in the Sand.

    ERIC Educational Resources Information Center

    Sexton, Ursula

    1997-01-01

    Presents activities that allow students to think about the Earth in a contextual manner and become familiar with constructive and destructive processes as they relate to sand - its origins, cyclical processes, and yielding of new products. Explores the bigger idea with a developmentally appropriate study of water, rocks, sand, physical phenomena,…

  18. The Geodiversity in Drift Sand Landscapes of The Netherlands

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel

    2015-04-01

    The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2

  19. Documenting the global impacts of beach sand mining

    NASA Astrophysics Data System (ADS)

    Young, R.; Griffith, A.

    2009-04-01

    For centuries, beach sand has been mined for use as aggregate in concrete, for heavy minerals, and for construction fill. The global extent and impact of this phenomenon has gone relatively unnoticed by academics, NGOs, and major news sources. Most reports of sand mining activities are found at the very local scale (if the mining is ever documented at all). Yet, sand mining in many localities has resulted in the complete destruction of beach (and related) ecosystems along with severe impacts to coastal protection and tourism. The Program for the Study of Developed Shorelines at Western Carolina University and Beachcare.org have initiated the construction of a global database of beach sand mining activities. The database is being built through a combination of site visits and through the data mining of media resources, peer reviewed papers, and reports from private and governmental entities. Currently, we have documented sand mining in 35 countries on 6 continents representing the removal of millions of cubic meters of sand. Problems extend from Asia where critical infrastructure has been disrupted by sand mining to the Caribbean where policy reform has swiftly followed a highly publicized theft of sand. The Program for the Study of Developed Shorelines recently observed extensive sand mining in Morocco at the regional scale. Tens of kilometers of beach have been stripped of sand and the mining continues southward reducing hope of a thriving tourism-based economy. Problems caused by beach sand mining include: destruction of natural beaches and the ecosystems they protect (e.g. dunes, wetlands), habitat loss for globally important species (e.g. turtles, shorebirds), destruction of nearshore marine ecosystems, increased shoreline erosion rates, reduced protection from storms, tsunamis, and wave events, and economic losses through tourist abandonment and loss of coastal aesthetics. The threats posed by sand mining are made even more critical given the prospect of a

  20. Standards Development Activities at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, D. L.; Beeson, H. D.; Saulsberry, R. L.; Julien, H. L.; Woods, S. S.

    2003-01-01

    The development of standards and standard activities at the JSC White Sands Test Facility (WSTF) has been expanded to include the transfer of technology and standards to voluntary consensus organizations in five technical areas of importance to NASA. This effort is in direct response to the National Technology Transfer Act designed to accelerate transfer of technology to industry and promote government-industry partnerships. Technology transfer is especially important for WSTF, whose longterm mission has been to develop and provide vital propellant safety and hazards information to aerospace designers, operations personnel, and safety personnel. Meeting this mission is being accomplished through the preparation of consensus guidelines and standards, propellant hazards analysis protocols, and safety courses for the propellant use of hydrogen, oxygen, and hypergols, as well as the design and inspection of spacecraft pressure vessels and the use of pyrovalves in spacecraft propulsion systems. The overall WSTF technology transfer program is described and the current status of technology transfer activities are summarized.

  1. Earth-like sand fluxes on Mars.

    PubMed

    Bridges, N T; Ayoub, F; Avouac, J-P; Leprince, S; Lucas, A; Mattson, S

    2012-05-09

    Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving--implying large sand fluxes--or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar.

  2. Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng

    2016-06-01

    The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.

  3. All about Me: Reproducible Activity Sheets To Develop Self-Esteem in Your Students.

    ERIC Educational Resources Information Center

    Palomares, Susanna

    This document contains a set of reproducible activity sheets for teachers to use in enhancing the self-esteem of their students. Designed to supplement other approaches being used by teachers, the activities in this book can be used to infuse esteem-building activities into the core curriculum. The activities are organized around several…

  4. Sand-grain micromorphology used as a sediment-source indicator for Kharga Depression dunes (Western Desert, S Egypt)

    NASA Astrophysics Data System (ADS)

    Woronko, B.; Dłużewski, M.; Woronko, D.

    2017-12-01

    Roundness and surface-feature characteristics of sand grains collected from two dune ridges in Kharga Depression (southern Egypt) were tested for potential use as source-to-sink indicators of dunes movement. Grain examination was accommodated through Scanning Electron Microscope (SEM) analysis. Five grain types were distinguished: A) fresh; B) sheet precipitated with ;raindrop; structures; C) platy precipitated; D) broken; and E) with chemically etched surfaces-each type diagnostic of a specific geomorphic inheritance. Regarding the level of sphericity, these grains were subdivided into nine roundness classes (0.1-0.9), where angular grains are marked by 0.1 and very well-rounded grains by 0.9. Significant roundness and grain-type surface variations are observed both along dune ridges and between them. Poorly and medium-rounded grain populations dominate, along with sheet-precipitated grains. The contribution of well- and very well-rounded grains is low. The northern part of both eastern and western dune ridges is characterized by grains that represent high-energy aqueous environments with well-rounded grains, whereas platy precipitated grains with a lower level of roundness are concentrated in the middle part of the dune ridges. The southern part of the Kharga Depression is again characterized by sheet-precipitated grains. Our results indicate that the northern part of dune ridges in the Kharga Depression is mainly built of sands that originate from beyond the depression (e.g., Ghard Abu-Maharik) and the weathered deposits of the Nubian and Moghra Sandstones. The dunes in central and southern part of the Kharga Depression also derive sand from a local depression bottom comprised of playa and fluvial deposits. The growing importance of the local sand source may be explained by the lowering of the local groundwater table, which resulted in playa drying. This groundwater loss resulted in the degradation of the vegetation cover, facilitating an increase in wind

  5. A High Resolution Look at Black Sand Particles from Sand Dunes of Saudi Arabia Using Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Aburizaiza, O. S.; Siddique, A.; Hershey, D. L.; Guerrieri, D. A.; Qurashi, J.; Abbass, M.; Blake, D. R.; Khwaja, H. A.

    2013-12-01

    Particulate air pollution is a problem of health concern. The microscopic make-up of different varieties of sand particles found and collected at a sand dune site in Badr, Saudi Arabia has been determined. Primary emphasis is given to the use of multiple high resolution electron microscopy (viz., Scanning Electron Microscopy with Energy Dispersive X-ray spectrometry (SEM/EDS) and Laser Scanning Microscopy (LSM)) to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of ';coatings or contaminants' adsorbed or carried on by the black sand particles. White sand contains natural coarse particles associated with wind-blown releases from crustal surfaces, weathering of an igneous/metamorphic rock source, and volcanic activities. Silicates (alumino-silicates) and quartz (clear, milky, rose) dominate white sand and rest appears to contain calcite, olivine, feldspar, and magnetite. Black sand particles exhibit very different morphologies and microstructures (surface roughness) compared with white sand and volcanic ash. Morphological analyses have shown that the black sand contain ultrafine particles. Black sand is strongly magnetic, which indicates the mineral magnetite (strongly magnetic) or elemental iron. Iron, C, O, Ti, Si, V, and S particles dominate the black sand. Natural and anthropogenic sources have been implicated for the observed particles. Analysis revealed that the surface of white sand particles is mainly covered with the fine particles. It is known that emissions from combustion contain carbon soot and other contaminants that are easily absorbed by soil particles during a long-range transport.

  6. Coupled changes in sand grain size and sand transport driven by changes in the upstream supply of sand in the Colorado River: relative importance of changes in bed-sand grain size and bed-sand area

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Melis, T.S.

    2007-01-01

    Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady

  7. Sheet flow and suspended sediment due to wave groups in a large wave flume

    USGS Publications Warehouse

    Dohmen-Janssen, C. M.; Hanes, D.M.

    2005-01-01

    A series of sand bed experiments was carried out in the Large Wave Flume in Hannover, Germany as a component of the SISTEX99 experiment. The experiments focussed on the dynamic sediment response due to wave group forcing over a flat sand bed in order to improve understanding of cross-shore sediment transport mechanisms and determine sediment concentrations, fluxes and net transport rates under these conditions. Sediment concentrations were measured within the sheet flow layer (thickness in the order of 10 grain diameters) and in the suspension region (thickness in the order of centimetres). Within the sheet flow layer, the concentrations are highly coherent with the instantaneous near-bed velocities due to each wave within the wave group. However, in the suspension layer concentrations respond much more slowly to changes in near-bed velocity. At several centimetres above the bed, the suspended sediment concentrations vary on the time scale of the wave group, with a time delay relative to the peak wave within the wave group. The thickness of the sheet flow changes with time. It is strongly coherent with the wave forcing, and is not influenced by the history or sequence of the waves within the group. The velocity of the sediment was also measured within the sheet flow layer some of the time (during the larger wave crests of the group), and the velocity of the fluid was measured at several cm above the sheet flow layer. The grain velocity and concentration estimates can be combined to estimate the sediment flux. The estimates were found to be consistent with previous measurements under monochromatic waves. Under these conditions, without any significant mean current, the sediment flux within the sheet flow layer was found to greatly exceed the sediment flux in the suspension layer. As a result, net transport rates under wave groups are similar to those under monochromatic waves. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say

  9. Elastic behavior and onset of cracking in cement composite plates reinforced by perforated thin steel sheets

    NASA Astrophysics Data System (ADS)

    Aronchik, V.

    1996-03-01

    Thin cement mortar plates reinforced by perforated thin steel sheets have been tested in four-point flexure loading. Six kinds of sheet reinforcement and to additional ones (for control) were used. Perforated sheets of the Daugavpils Factory of Machinery Chains differed by their thickness (0.6-1.8 mm), shape (round, rectangular, oval, "dumbbell"), and mark of steel (St. 08, 50, 70). Dimensions of plantes were 100×20×2 cm. Cements-sand mortar with a 1∶2 ratio of cement PZ35 and river sand of 3 mm grains was used as a matrix. Control specimens of similar dimensions and matrix were reinforced by wire cages and meshes (ferrocement). The testing was performed using an UMM-5 testing machine. Maximum deflection (at the midspan), tension, and shear strains were recorded. The expeimental data are presented in tables and graphs. The testing results showed that the elasticity modulus of material was in good agreement with the "admixture rule;" an onset of cracking for all types (excluding one) practically did not differ from reference samples; the mode of fracture in typical cases included an adhesion failure and significant shear strains. In one case the limit of the tension strength of the reinforcement was achieved.

  10. Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity.

    PubMed

    Wei, Fulan; Qu, Cunye; Song, Tieli; Ding, Gang; Fan, Zhipeng; Liu, Dayong; Liu, Yi; Zhang, Chunmei; Shi, Songtao; Wang, Songlin

    2012-09-01

    Cell sheet engineering has been developed as an alternative approach to improve mesenchymal stem cell-mediated tissue regeneration. In this study, we found that vitamin C (Vc) was capable of inducing telomerase activity in periodontal ligament stem cells (PDLSCs), leading to the up-regulated expression of extracellular matrix type I collagen, fibronectin, and integrin β1, stem cell markers Oct4, Sox2, and Nanog as well as osteogenic markers RUNX2, ALP, OCN. Under Vc treatment, PDLSCs can form cell sheet structures because of increased cell matrix production. Interestingly, PDLSC sheets demonstrated a significant improvement in tissue regeneration compared with untreated control dissociated PDLSCs and offered an effective treatment for periodontal defects in a swine model. In addition, bone marrow mesenchymal stem cell sheets and umbilical cord mesenchymal stem cell sheets were also well constructed using this method. The development of Vc-mediated mesenchymal stem cell sheets may provide an easy and practical approach for cell-based tissue regeneration. Copyright © 2011 Wiley Periodicals, Inc.

  11. Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand

    NASA Astrophysics Data System (ADS)

    Sangoju, Bhaskar; Ramesh, G.; Bharatkumar, B. H.; Ramanjaneyulu, K.

    2017-09-01

    Most of the states in our country have banned sand quarrying from the river beds, causing a scarcity of natural river sand for the construction sector. Manufacture sand (M-sand) is one of the alternate solutions to replace the river sand (R-sand) in concrete. The main aim of the present study is to evaluate the durability parameters of concrete with M-sand when compared to that of concrete with R-sand. Corrosion of reinforcement is one of the main deteriorating mechanisms of reinforced concrete due to the ingress of chloride ions or carbon-di-oxide. For comparative evaluation of durability parameters, accelerated tests such as Rapid Chloride Permeability Test, Rapid Chloride Migration Test and accelerated carbonation test were carried out on specimens of R-sand and M-sand. All tests were carried out after 90 days of casting. Test results reveal that the durability parameters of the concrete with M-sand in chloride induced environment is relatively better than that of concrete with R-sand and hence is recommended to use M-sand as a replacement to R-sand.

  12. Origin of a classic cratonic sheet sandstone: Stratigraphy across the Sauk II-Sauk III boundary in the Upper Mississippi Valley

    USGS Publications Warehouse

    Runkel, Anthony C.; McKay, R.M.; Palmer, A.R.

    1998-01-01

    The origin of cratonic sheet sandstones of Proterozoic and early Paleozoic age has been a long-standing problem for sedimentologists. Lower Paleozoic strata in the Upper Mississippi Valley are best known for several such sandstone bodies, the regional depositional histories of which are poorly understood. We have combined outcrop and subsurface data from six states to place the Upper Cambrian Wonewoc (Ironton and Galesville) Sandstone in a well-constrained stratigraphic framework across thousands of square kilometers. This framework makes it possible for the first time to construct a regional-scale depositional model that explains the origin of this and other cratonic sheet sandstones. The Wonewoc Sandstone, although mapped as a single contiguous sheet, is a stratigraphically complex unit that was deposited during three distinct conditions of relative sea level that span parts of four trilobite zones. During a relative highstand of sea level in Crepicephalus Zone time, quartzose sandstone lithofacies aggraded more or less vertically in nearshore-marine and terrestrial environments across much of the present-day out-crop belt around the Wisconsin arch. At the same time, finer grained, feldspathic sandstone, siltstone, and shale aggraded in deeper water immediately seaward of the quartzose sand, and shale and carbonate sediment accumulated in the most distal areas. During Aphelaspis and Dunderbergia Zones time a relative fall in sea level led to the dispersal of quartzose sand into a basinward-tapering, sheet-like body across much of the Upper Mississippi Valley. During early Elvinia Zone time a major transgression led to deposition of a second sheet sandstone that is generally similar to the underlying regressive sheet. The results of this investigation also demonstrate how subtle sequence-bounding unconformities may be recognized in mature, cratonic siliciclastics. We place the Sauk II-Sauk III subsequence boundary at the base of the coarsest bed in the Wonewoc

  13. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  14. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  15. Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration.

    PubMed

    Nakazawa, Yoshifumi; Matsui, Yoshihiko; Hanamura, Yusuke; Shinno, Koki; Shirasaki, Nobutaka; Matsushita, Taku

    2018-07-01

    Superfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation-flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment. First, we developed a method to detect and quantify trace concentration of carbon particles in the sand filtrate. This method consisted of 1) sampling particles with a membrane filter and then 2) using image analysis software to manipulate a photomicrograph of the filter so that black spots with a diameter >0.2 μm (considered to be carbon particles) could be visualized. Use of this method revealed that CSF removed a very high percentage of SPAC: approximately 5-log in terms of particle number concentrations and approximately 6-log in terms of particle volume concentrations. When waters containing 7.5-mg/L SPAC and 30-mg/L PAC, concentrations that achieved the same adsorption performance, were treated, the removal rate of SPAC was somewhat superior to that of PAC, and the residual particle number concentrations for SPAC and PAC were at the same low level (100-200 particles/mL). Together, these results suggest that SPAC can be used in place of PAC in CSF treatment without compromising the quality of the filtered water in terms of particulate matter contamination. However, it should be noted that the activated carbon particles after sand filtration were smaller in terms of particle size and were charge-neutralized to a lesser extent than the activated carbon particles before sand filtration. Therefore, the tendency of small particles to escape in the filtrate would appear

  16. Sand waves at the mouth of San Francisco Bay, California

    USGS Publications Warehouse

    Barnard, Patrick L.; Hanes, Daniel M.; Kvitek, Rikk G.; Iampietro, Pat J.

    2006-01-01

    A multibeam bathymetric survey that produced unprecedented high resolution images of the mouth of San Francisco Bay was conducted in 2004 and 2005. The survey, performed over forty-four days by the Seafloor Mapping Lab at California State University, Monterey Bay, consisted of 1,138 track lines, 1.1 billion soundings, and covered an area of 154 km2 (60 mi2). The goals of this survey were to analyze sediment transport pathways at the mouth of San Francisco Bay and to calculate bathymetric change since the last survey was completed in 1956. The survey showed that significant bathymetric changes have occurred over the past 50 years. It also revealed that the study area contains sand waves that are among the largest and bedform morphologies that are among the most varied in the world. This set of five sheets shows views of the sand waves on the seafloor from different perspectives along with descriptive text.

  17. Timing and origin for sand dunes in the Green River Lowland of Illinois, upper Mississippi River Valley, USA

    USGS Publications Warehouse

    Miao, X.; Hanson, P.R.; Wang, Hongfang; Young, A.R.

    2010-01-01

    The recent increase in dune studies in North America has been heavily focused in the Great Plains, while less attention has historically been given to the dune fields east of the Mississippi River. Here we report ages and suggest a potential sediment source for sand dunes in the Green River Lowland, Illinois, which may provide a better understanding of the dynamic interactions between eolian, glacial, lacustrine and fluvial processes that shaped the landscapes of the upper Midwest. Seven coherent optically stimulated luminescence ages (OSL, or optical ages) obtained from four sites suggest that major dune construction in the Green River Lowland occurred within a narrow time window around 17,500 ago. This implies either an enhanced aridity or an episodic increase of sediment supply at 17,500 years ago, or combination of the both. Contrary to previous assertions that dune sand was sourced from the deflation of the underlying outwash sand deposited when the Lake Michigan Lobe retreated from the area, we propose that Green River Lowland dunes sand originated from the Green Bay Lobe through the Rock River. Specifically, sediment supply increased in the Rock River valley during drainage of Glacial Lake Scuppernong, which formed between ???18,000 and 17,000 years ago, when the Green Bay Lobe retreated from its terminal moraine. The lake drained catastrophically through the Rock River valley, providing glacial sediment and water to erode the preexisting sandy sediments. Throughout the remainder of the late Pleistocene, the Laurentide Ice Sheet drained into larger more northerly glacial lakes that in turn drained through other river valleys. Therefore, the dunes in the Green River Lowland formed only during the catastrophic drainage of Glacial Lake Scuppernong, but were stabilized through the remainder of the Pleistocene. This scenario explains the abrupt dune construction around 17,500 years ago, and explains the lack of later dune activity up to the Pleistocene

  18. Sand transportation and reverse patterns over leeward face of sand dune

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  19. Pilot randomized trial of a volitional help sheet-based tool to increase leisure time physical activity in breast cancer survivors.

    PubMed

    Chapman, Janine; Fletcher, Chloe; Flight, Ingrid; Wilson, Carlene

    2018-05-16

    To develop and test a volitional help sheet-based tool to improve physical activity in breast cancer survivors compared to a standard self-generated implementation intention intervention. Pilot randomized trial conducted online over 3 months. Participants were randomized to an online volitional help sheet (n = 50) or implementation intention (n = 51) intervention. Measures were taken at baseline, 1 and 3 months. The main outcome measure was moderate-strenuous leisure time physical activity. Secondary outcomes were health-related quality of life and mood. Participants exposed to the volitional help sheet and implementation intention interventions showed similar effects after 1 month, with both groups reporting a significant increase in moderate-strenuous physical activity. After 3 months, the initial increase in physical activity was maintained by the volitional help sheet group, but not the implementation intention group. Improvements were also found for negative affect and emotional quality of life. While both interventions show promise in promoting physical activity in breast cancer survivors, the volitional help sheet may be more effective for facilitating lasting change and emotional well-being. Findings suggest that the volitional help sheet may have potential to offer a cost-effective contribution to consumer-led tertiary preventive health. Future research should test these initial findings in a definitive trial. Statement of contribution What is already known on this subject? Physical activity is important for optimizing health in breast cancer survivors. Despite this, physical activity in this cohort remains low. Theory-based strategies are needed to help breast cancer survivors independently manage and maintain regular physical activity over the long term. What does this study add? Online planning interventions can improve physical activity in breast cancer survivors. Volitional help sheets, but not implementation intentions, show sustained

  20. Litter Control Achievement - Ohio 4-H Club Score Sheet [and] Activity Guides 1 through 7. 4-H Pilot Program 918.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Seven activity guides, evaluation sheet, and club scoresheet have been prepared for Ohio 4-H clubs' litter education program. Topics of the seven activity guides include: (1) general guidelines and types of activities; (2) little known facts about waste/litter; (3) guidelines for a walking tour; (4) fact sheet (questionnaire) related to garbage;…

  1. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  2. Utilisation of Sand from Kaolin Washing for the Manufacture of Alkali-activated Artificial Sandstone

    NASA Astrophysics Data System (ADS)

    Vavro, Martin; Vavro, Leona; Mec, Pavel; Soucek, Kamil; Pticen, Frantisek; Reiterman, Pavel

    2017-04-01

    Sandstones represent a traditional natural stones which are widely used in Czech architecture and sculpture over a long time. Thanks to their relatively easy workability, sandstones provide a wide range of stone products and also represent a popular material for architectural and sculptural purposes. In the field of restoration of artworks, they are therefore often used for manufacturing stone statue copies originally made from the same or similar type of stone. Despite a relatively common and varied occurrence of natural sandstones, the method of the artificial stone facsimiles creation in the form of various cast elements is also often applied in restoration practice. The history of application of artificial stones in civil engineering and architecture goes back to the ancient times, i.e. to Roman antiquity and possibly up to the time of ancient Egypt. The lack of appropriate natural rock, suitable in the view of colour, grain size or texture is the main reason of manufacturing copies based on synthetic mixtures. The other reason is high financial costs to create a sculpture copy from natural materials. Mixtures made from white and/or grey cements, sands, carefully selected crushed stone or well graded natural gravels, and mineral coloring pigments or mixtures with acrylate, polyester, and epoxy resins binder are the most frequently used artificial materials for cast stone manufacturing. This paper aims to bring information about composition and properties of artificial sandstones made from alkali-activated binder mixtures based on metakaolin and granulated blast furnace slag. The filler of this artificial stone is represented by fine-grained sand generated during kaolin wet processing. Used sand is mainly formed by quartz, feldspars, micas (muscovite > biotite), residual kaolin, and to a lesser extent also by Fe oxyhydroxides ("limonite"), titanium dioxide mineral (probably anatase), and carbonate mineral unidentified in detail. Annual Czech production of this

  3. Sands at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.

    2014-05-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  4. Sands at Gusev Crater, Mars

    USGS Publications Warehouse

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  5. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2011-01-01

    Domestic production of industrial sand and gravel in 2010 was about 26.5 Mt (29.2 million st), a 6-percent increased from 2009. Certain end uses of industrial sand and gravel, such as sand for container glass, golf course sand, recreational sand, specialty glass and water filtration, showed increased demand in 2010.

  6. Sand dredging and environmental efficiency of artisanal fishermen in Lagos state, Nigeria.

    PubMed

    Sowunmi, Fatai A; Hogarh, Jonathan N; Agbola, Peter O; Atewamba, Calvin

    2016-03-01

    Environmentally detrimental input (water turbidity) and conventional production inputs were considered within the framework of stochastic frontier analysis to estimate technical and environmental efficiencies of fishermen in sand dredging and non-dredging areas. Environmental efficiency was low among fishermen in the sand dredging areas. Educational status and experience in fishing and sand dredging were the factors influencing environmental efficiency in the sand dredging areas. Average quantity of fish caught per labour- hour was higher among fishermen in the non-dredging areas. Fishermen in the fishing community around the dredging areas travelled long distance in order to reduce the negative effect of sand dredging on their fishing activity. The study affirmed large household size among fishermen. The need to regulate the activities of sand dredgers by restricting license for sand dredging to non-fishing communities as well as intensifying family planning campaign in fishing communities to reduce the negative effect of high household size on fishing is imperative for the sustainability of artisanal fishing.

  7. Drivers of drift sand dynamics; a reconstruction for the Wekeromse Zand, the Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Chantal; Sonneveld, Marthijn; Wallinga, Jakob

    2013-04-01

    Inland active drift sand landscapes are regarded as unique ecosystems of great historical and geomorphological value. Recent studies have highlighted the role of multiple factors in the initiation and stabilization of drift sand landscapes. To unravel the importance of different forcings (e.g. agricultural practices, climate) and their interplay, insight in the chronology of drift sand dynamics is essential. In this study, we aimed to reconstruct the dynamics of the drift sand landscape of the Wekeromse Zand (central Netherlands) and to develop a conceptual model to understand the processes involved. The Wekeromse Zand study area (370 ha) is located on the border of a central push moraine and is characterised by open active drift sands (14 ha) and vegetated hills and valleys. The surroundings are dominated by modern agricultural practices, and remnants from ancient iron age Celtic Field systems showing that the area has been in agricultural use since at least the Iron Age. For the study area we: i) analysed historical maps going back to the early 19th century, ii) performed a field survey to map the palaeolandscape (before drift sand activation) and iii) employed optically stimulated luminescence (OSL) dating of drift sand deposits on 11 samples from two locations to determine the timing of drift sand deposition. Analysis of the available topographic maps showed no substantial aeolean activity of the area outside its morphological boundaries. OSL dating revealed that two drift sand layers were deposited between 1373 and 1462 AD and between 1680 and 1780 AD. A layer with a higher organic matter content was found at one of the sites. This suggests that the Wekeromse Zand has known three relatively stable periods: i) a period between the start of the Holocene to the Late Medieval Period, ii) in between the Medieval climatic optimum and the climatic Maunder minimum, and iii) current situation. Despite the fact that agricultural activities occurred in this area from the

  8. Sand dune tracking from satellite laser altimetry

    NASA Astrophysics Data System (ADS)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  9. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia's deserts

    NASA Astrophysics Data System (ADS)

    Hesse, Paul P.; Telfer, Matt W.; Farebrother, Will

    2017-04-01

    The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002-2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants <50 cm tall, and (2) >400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.

  10. River of Sand

    NASA Image and Video Library

    2016-09-21

    A dominant driver of surface processes on Mars today is aeolian (wind) activity. In many cases, sediment from this activity is trapped in low-lying areas, such as craters. Aeolian features in the form of dunes and ripples can occur in many places on Mars depending upon regional wind regimes. The Cerberus Fossae are a series of discontinuous fissures along dusty plains in the southeastern region of Elysium Planitia. This rift zone is thought to be the result of combined volcano-tectonic processes. Dark sediment has accumulated in areas along the floor of these fissures as well as inactive ripple-like aeolian bedforms known as "transverse aeolian ridges" (TAR). Viewed through HiRISE infrared color, the basaltic sand lining the fissures' floor stands out as deep blue against the light-toned dust covering the region. This, along with the linearity of the fissures and the wave-like appearance of the TAR, give the viewer an impression of a river cutting through the Martian plains. However, this river of sand does not appear to be flowing. Analyses of annual monitoring images of this region have not detected aeolian activity in the form of ripple migration thus far. http://photojournal.jpl.nasa.gov/catalog/PIA21063

  11. Sand ramps as palaeoenvironmental archives: Integrating general principles and regional contexts through reanalysis of the Klipkraal Sands, South Africa

    NASA Astrophysics Data System (ADS)

    Rowell, Alexandra L. K.; Thomas, David S. G.; Bailey, Richard M.; Holmes, Peter J.

    2018-06-01

    Sand ramps occur on a continuum of topographically-controlled landforms, ranging from purely aeolian features (climbing/falling dunes) to talus cones and alluvial fans. Sand ramps have been identified as potentially important palaeoenvironmental archives in dryland regions that possess relatively few Quaternary proxy records. Their utility however requires not only good age control of depositional phases but clear identification of process regimes, determined through morphological and sedimentological analyses, with several recent studies indicating the complexities of palaeoenvironmental interpretations and the controls of ramp development (Bateman et al., 2012; Rowell et al., 2018). Klipkraal Sands is a sand ramp on the north-eastern margin of the semi-arid Karoo that has been important for inferences of the extent of southern African Late Quaternary aeolian activity (Thomas et al., 2002). We reanalyse this feature, in the light of both its significance and other recent studies that have inferred extensive southern African LGM aeolian activity (Telfer et al., 2012, 2014). New sedimentological data and twelve OSL dates indicate the Klipkraal Sands formed episodically between 100-0.14 ka, rather than accumulating rapidly, while sedimentological data question the aeolian affinities of the bulk of the feature. Therefore, Klipkraal is reinterpreted as showing no particular affinity to the LGM, with sediments locally sourced with a significant colluvial component. Only the upper historical sediments can be clearly interpreted as aeolian deposits. A complex interplay of processes is suggested, for which a meaningful palaeoenvironmental interpretation cannot be easily defined. This implies that the local geomorphic processes and controls operating on sand ramps need to be established before they can be fully utilised as palaeoenvironmental archives, with implications for their interpretation worldwide.

  12. Simulating Sand Behavior through Terrain Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.

    2013-12-01

    Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by

  13. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2012-01-01

    Domestic production of industrial sand and gravel in 2011 was about 30 Mt (33 million st), increasing slightly compared with 2010. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  14. Aeolian sand transport and aeolian deposits on Venus: A review

    NASA Astrophysics Data System (ADS)

    Kreslavsly, Mikhail A.; Bondarenko, Nataliya V.

    2017-06-01

    We review the current state of knowledge about aeolian sand transport and aeolian bedforms on planet Venus. This knowledge is limited by lack of observational data. Among the four planetary bodies of the Solar System with sufficient atmospheres in contact with solid surfaces, Venus has the densest atmosphere; the conditions there are transitional between those for terrestrial subaerial and subaqueous transport. The dense atmosphere causes low saltation threshold and short characteristic saltation length, and short scale length of the incipient dunes. A few lines of evidence indicate that the typical wind speeds exceed the saltation threshold; therefore, sand transport would be pervasive, if sand capable of saltation is available. Sand production on Venus is probably much slower than on the Earth; the major terrestrial sand sinks are also absent, however, lithification of sand through sintering is expected to be effective under Venus' conditions. Active transport is not detectable with the data available. Aeolian bedforms (transverse dunes) resolved in the currently available radar images occupy a tiny area on the planet; however, indirect observations suggest that small-scale unresolved aeolian bedforms are ubiquitous. Aeolian transport is probably limited by sand lithification causing shortage of saltation-capable material. Large impact events likely cause regional short-term spikes in aeolian transport by supplying a large amount of sand-size particles, as well as disintegration and activation of older indurated sand deposits. The data available are insufficient to understand whether the global aeolian sand transport occurs or not. More robust knowledge about aeolian transport on Venus is essential for future scientific exploration of the planet, in particular, for implementation and interpretation of geochemical studies of surface materials. High-resolution orbital radar imaging with local to regional coverage and desirable interferometric capabilities is the

  15. BRITICE-CHRONO: Constraining rates and style of marine-influenced ice sheet decay to provide a data-rich playground for ice sheet modellers

    NASA Astrophysics Data System (ADS)

    Clark, Chris

    2014-05-01

    Uncertainty exists regarding the fate of the Antarctic and Greenland ice sheets and how they will respond to forcings from sea level and atmospheric and ocean temperatures. If we want to know more about the mechanisms and rate of change of shrinking ice sheets, then why not examine an ice sheet that has fully disappeared and track its retreat through time? If achieved in enough detail such information could become a data-rich playground for improving the next breed of numerical ice sheet models to be used in ice and sea level forecasting. We regard that the last British-Irish Ice Sheet is a good target for this work, on account of its small size, density of information and with its numerous researchers already investigating it. BRITICE-CHRONO is a large (>45 researchers) NERC-funded consortium project comprising Quaternary scientists and glaciologists who will search the seafloor around Britain and Ireland and parts of the landmass in order to find and extract samples of sand, rock and organic matter that can be dated (OSL; Cosmogenic; 14C) to reveal the timing and rate of change of the collapsing British-Irish Ice Sheet. The purpose is to produce a high resolution dataset on the demise on an ice sheet - from the continental shelf edge and across the marine to terrestrial transition. Some 800 new date assessments will be added to those that already exist. This poster reports on the hypotheses that underpin the work. Data on retreat will be collected by focusing on 8 transects running from the continental shelf edge to a short distance (10s km) onshore and acquiring marine and terrestrial samples for geochronometric dating. The project includes funding for 587 radiocarbon, 140 OSL and 158 TCN samples for surface exposure dating; with sampling accomplished by two research cruises and 16 fieldwork campaigns. Results will reveal the timing and rate of change of ice margin recession for each transect, and combined with existing landform and dating databases, will be

  16. Visible-light promoted catalytic activity of dumbbell-like Au nanorods supported on graphene/TiO2 sheets towards hydrogenation reaction.

    PubMed

    Dai, Yunqian; Zhu, Mingyun; Wang, Xiaotian; Wu, Yanan; Huang, Chengqian; Fu, Wanlin; Meng, Xiangyu; Sun, Yueming

    2018-06-15

    In this work, the rationally-designed sharp corners on Au nanorods tremendously improved the catalytic activity, particularly in the presence of visible light irradiation, towards the hydrogenation of 4-nitrophenol to 4-aminophenol. A strikingly increased rate constant of 50.6 g -1 s -1 L was achieved in M-Au-3, which was 41.8 times higher than that of parent Au nanorods under dark conditions. The enhanced activities were proportional to the extent of the protruding sharp corners. Furthermore, remarkably enhanced activities were achieved in novel ternary Au/RGO/TiO 2 sheets, which were endowed with a 52.0 times higher rate constant than that of straight Au nanorods. These remarkably enhanced activities were even higher than those of previously reported 3-5 nm Au and 3 nm Pt nanoparticles. It was systematically observed that there are three aspects to the synergistic effects between Au and RGO sheets: (i) electron transfer from RGO to Au, (ii) a high concentration of p-nitrophenol close to dumbbell-like Au nanorods on RGO sheets, and (iii) increased local reaction temperature from the photothermal effect of both dumbbell-like Au nanorods and RGO sheets.

  17. Visible-light promoted catalytic activity of dumbbell-like Au nanorods supported on graphene/TiO2 sheets towards hydrogenation reaction

    NASA Astrophysics Data System (ADS)

    Dai, Yunqian; Zhu, Mingyun; Wang, Xiaotian; Wu, Yanan; Huang, Chengqian; Fu, Wanlin; Meng, Xiangyu; Sun, Yueming

    2018-06-01

    In this work, the rationally-designed sharp corners on Au nanorods tremendously improved the catalytic activity, particularly in the presence of visible light irradiation, towards the hydrogenation of 4-nitrophenol to 4-aminophenol. A strikingly increased rate constant of 50.6 g‑1 s‑1 L was achieved in M-Au-3, which was 41.8 times higher than that of parent Au nanorods under dark conditions. The enhanced activities were proportional to the extent of the protruding sharp corners. Furthermore, remarkably enhanced activities were achieved in novel ternary Au/RGO/TiO2 sheets, which were endowed with a 52.0 times higher rate constant than that of straight Au nanorods. These remarkably enhanced activities were even higher than those of previously reported 3–5 nm Au and 3 nm Pt nanoparticles. It was systematically observed that there are three aspects to the synergistic effects between Au and RGO sheets: (i) electron transfer from RGO to Au, (ii) a high concentration of p-nitrophenol close to dumbbell-like Au nanorods on RGO sheets, and (iii) increased local reaction temperature from the photothermal effect of both dumbbell-like Au nanorods and RGO sheets.

  18. Molecular Diversity between Salivary Proteins from New World and Old World Sand Flies with Emphasis on Bichromomyia olmeca, the Sand Fly Vector of Leishmania mexicana in Mesoamerica

    PubMed Central

    Townsend, Shannon; Pasos-Pinto, Silvia; Sanchez, Laura; Rasouli, Manoochehr; B. Guimaraes-Costa, Anderson; Aslan, Hamide; Francischetti, Ivo M. B.; Oliveira, Fabiano; Becker, Ingeborg; Kamhawi, Shaden; Ribeiro, Jose M. C.; Jochim, Ryan C.; Valenzuela, Jesus G.

    2016-01-01

    Background Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B. olmeca salivary proteins and their relationship to salivary proteins from other sand fly species. Methods and Findings A cDNA library of the salivary glands of wild-caught B. olmeca was constructed, sequenced, and analyzed. We identified transcripts encoding for novel salivary proteins from this sand fly species and performed a comparative analysis between B. olmeca salivary proteins and those from other sand fly species. With this new information we present an updated catalog of the salivary proteins specific to New World sand flies and salivary proteins common to all sand fly species. We also report in this work the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein present in this sand fly species. Conclusions This study provides information on the first transcriptome of a sand fly from Mesoamerica and adds information to the limited repertoire of salivary transcriptomes from the Americas. This comparative analysis also shows a fast degree of evolution in salivary proteins from New World sand flies as compared with Old World sand flies. PMID:27409591

  19. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  20. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  1. The role of aluminum in slow sand filtration.

    PubMed

    Weber-Shirk, Monroe L; Chan, Kwok Loon

    2007-03-01

    Engineering enhancement of slow sand filtration has been an enigma in large part because the mechanisms responsible for particle removal have not been well characterized. The presumed role of biological processes in the filter ripening process nearly precluded the possibility of enhancing filter performance since interventions to enhance biological activity would have required decreasing the quality of the influent water. In previous work, we documented that an acid soluble polymer controls filter performance. The new understanding that particle removal is controlled in large part by physical chemical mechanisms has expanded the possibilities of engineering slow sand filter performance. Herein, we explore the role of naturally occurring aluminum as a ripening agent for slow sand filters and the possibility of using a low dose of alum to improve filter performance or to ripen slow sand filters.

  2. Broadband Scattering from Sand and Sand/Mud Sediments with Extensive Environmental Characterization

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Broadband Scattering from Sand and Sand/ Mud Sediments...TERM GOALS To model the effects of volume heterogeneities, both discrete and continuous, in scattering from sand and mud sediments. A better...IMP2 has been used extensively during TREX13 and BayEx14 to measure the porosity in both sand and mud sediments. Analysis of this recent data inspired a

  3. Development of a check sheet for collecting information necessary for occupational safety and health activities and building relevant systems in overseas business places.

    PubMed

    Kajiki, Shigeyuki; Kobayashi, Yuichi; Uehara, Masamichi; Nakanishi, Shigemoto; Mori, Koji

    2016-06-07

    This study aimed to develop an information gathering check sheet to efficiently collect information necessary for Japanese companies to build global occupational safety and health management systems in overseas business places. The study group consisted of 2 researchers with occupational physician careers in a foreign-affiliated company in Japan and 3 supervising occupational physicians who were engaged in occupational safety and health activities in overseas business places. After investigating information and sources of information necessary for implementing occupational safety and health activities and building relevant systems, we conducted information acquisition using an information gathering check sheet in the field, by visiting 10 regions in 5 countries (first phase). The accuracy of the information acquired and the appropriateness of the information sources were then verified in study group meetings to improve the information gathering check sheet. Next, the improved information gathering check sheet was used in another setting (3 regions in 1 country) to confirm its efficacy (second phase), and the information gathering check sheet was thereby completed. The information gathering check sheet was composed of 9 major items (basic information on the local business place, safety and health overview, safety and health systems, safety and health staff, planning/implementation/evaluation/improvement, safety and health activities, laws and administrative organs, local medical care systems and public health, and medical support for resident personnel) and 61 medium items. We relied on the following eight information sources: the internet, company (local business place and head office in Japan), embassy/consulate, ISO certification body, university or other educational institutions, and medical institutions (aimed at Japanese people or at local workers). Through multiple study group meetings and a two-phased field survey (13 regions in 6 countries), an information

  4. Adverse effects of inhaled sand dust particles on the respiratory organs of sheep and goats exposed to severe sand storms in Mongolia.

    PubMed

    Kobayashi, Yoshimi; Shimada, Akinori; Nemoto, Mai; Morita, Takehito; Adilbish, Altanchimeg; Bayasgalan, Mungun-Ochir

    2014-01-01

    Sand storms in Mongolia have increased in frequency and scale, resulting in increased exposure of the inhabitants of Asian countries, including Japan and Korea, to Asian sand dust (ASD), which results in adverse effects on the respiratory system. However, there is no information on the health risks of severe sand storms in domestic animals in Mongolia. The aim of the study was to investigate the effects of sand dust particles on the respiratory organs, including the lungs and tracheobronchial lymph nodes, of sheep and goats exposed to severe sand storms in Mongolia. Seven adult sheep and 4 adult goats that had been exposed to sand storms and 3 sheep with no history of exposure were included in this study. Lung tissues and tracheobronchial lymph nodes were subjected to histopathological and immunohistochemical examination. The mineralogical contents of the lungs and lymph nodes were determined using inductively coupled plasma atomic emission spectroscopy. Fibrosis and granulomatous lesions comprising macrophages containing fine sand dust particles were observed exclusively in the lungs of sheep and goats exposed to sand storms. The activity of macrophages was also demonstrated by the presence of IL-6, TNF, and lysozyme. In addition, silicon, which is the major element of ASD (kosa aerosol), was detected exclusively in the lung tissues of the exposed animals. Our findings suggest that exposure to sand dust particles may affect the respiratory systems of domestic animals during their relatively short life span.

  5. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  6. Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India.

    PubMed

    Niveditha, Vedavyas R; Sridhar, Kandikere R

    2014-11-01

    The raw and processed (cooked and cooked + solid-state fermented with Rhizopus oligosporus) split beans of two landraces of coastal sand dune wild legumes (Canavalia cathartica and Canavalia maritima) of the southwest coast of India were examined for bioactive compounds (total phenolics, tannins and vitamin C) and antioxidant potential (total antioxidant activity, ferrous-ion chelating capacity, DPPH free radical-scavenging activity and reducing activity). One-way ANOVA revealed significant elevation of bioactive compounds as well as antioxidant activities in fermented beans compared to raw and cooked beans in both legumes (p < 0.001). The EC50 values in fermented beans of both legumes were significantly lowest compared to raw and cooked beans (p < 0.001). In principal component analysis, total phenolics along with antioxidant activities (total antioxidant, ferrous-ion chelating and free radical-scavenging activities) of fermented beans of C. cathartica, while total antioxidant and free radical-scavenging activities of fermented beans of C. maritima were clustered. The present study demonstrated that split beans of coastal sand dune Canavalia fermented by R. oligosporus endowed with high bioactive principles as well as antioxidant potential and thus serve as future nutraceutical source.

  7. Early Islamic inter-settlement agroecosystems in coastal sand, Yavneh dunefield, eastern Mediterranean coast, Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Taxel, Itamar

    2017-04-01

    assortment of Early Islamic artifacts but the relatively younger OSL ages of the underlying grey sand and absence of older Byzantine pottery suggests that the artifacts were rapidly dispersed upon the surface, probably from an abandoned and possibly partly pedogenized town dump dating to the 8th-10th century. The sites are interpreted to be part of an extensive agroecosystem comprised of berm-bordered agricultural plots in lows that allowed easy manual or root access to the high water table. The sites' character and ages closely resembles the well-preserved crisscross berms and inter-berm depressions south of ancient Caesarea that date to 0.86 ka (Roskin et al., 2015). The agricultural activity probably lasted no more than several decades to one century but its utility remains a question. The study documents a challenging attempt to utilize uncultivated sand sheets in a Mediterranean environment for agroecosystem expansion, income, control and "greening" of the terrain. This effort partly reminisces other Early Islamic agricultural water systems (e.g. qanats) in arid regions. It demonstrates that spatial agroecosystems can be developed in times that are not necessarily characterized by socio-political stability.

  8. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    EPA Pesticide Factsheets

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  9. Sand Filter Technology

    DTIC Science & Technology

    2016-08-01

    Approved for public release: distribution unlimited TDS-NAVFAC-EXWC-PW-1604 Aug 2016 Sand Filter Technology This report summarizes the...findings from a demonstration of sand filter technology to determine whether the technology will save energy with a simple payback within the...EXWC) performed the evaluation at the Naval Air Station Lemoore, CA. The two year evaluation period began with one year of sand filter operation

  10. Voluntary exercise enhances activity rhythms and ameliorates anxiety- and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes.

    PubMed

    Tal-Krivisky, Katy; Kronfeld-Schor, Noga; Einat, Haim

    2015-11-01

    Physical exercise is a non-pharmacological treatment for affective disorders. The mechanisms of its effects are unknown although some suggest a relationship to synchronization of circadian rhythms. One way to explore mechanisms is to utilize animal models. We previously demonstrated that the diurnal fat sand rat is an advantageous model for studying the interactions between photoperiods and mood. The current study was designed to evaluate the effects of voluntary exercise on activity rhythms and anxiety and depression-like behaviors in sand rats as a step towards better understanding of the underlying mechanisms. Male sand rats were housed in short photoperiod (SP; 5h light/19 h dark) or neutral light (NP; 12h light/12h dark) regimens for 3 weeks and divided into subgroups with or without running wheels. Activity was monitored for 3 additional weeks and then animals were tested in the elevated plus-maze, the forced swim test and the social interaction test. Activity rhythms were enhanced by the running wheels. As hypothesized, voluntary exercise had significant effects on SP animals' anxiety- and depression-like behaviors but not on NP animals. Results are discussed in the context of interactions between physical exercise, circadian rhythms and mood. We suggest that the sand rat model can be used to explore the underlying mechanism of the effects of physical exercise for mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Modelling the effects of ice-sheet activity on CO2 outgassing by Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Armitage, J. J.; Ferguson, D.; Petersen, K. D.; Creyts, T. T.

    2017-12-01

    Glacial cycles may play a significant role in mediating the flux of magmatic CO2 between the Earth's mantle and atmosphere. In Iceland, it is thought that late-Pleistocene deglaciation led to a significant volcanic pulse, evidenced by increased post-glacial lava volumes and changes in melt chemistry consistent with depressurization. Investigating the extent to which glacial activity may have affected volcanic CO2 emissions from Iceland, and crucially over what timescale, requires detailed knowledge of how the magma system responded to the growth and collapse of the ice-sheet before and after the LGM. To investigate this, we coupled a model of magma generation and transport with a history of ice-sheet activity. Our results show that the emplacement and removal of the LGM ice-sheet likely led to two significant pulses of magmatic CO2. The first, and most significant of these, is associated with ice-sheet growth and occurs as the magma system recovers from glacial loading. This recovery happens from the base of the melting region upwards, producing a pulse of CO2 rich magma that is predicted to reach the surface around 20 ka after the loading event, close in time to the LGM. The second peak in CO2 output occurs abruptly following deglaciation as a consequence of increased rates of melt generation and transport in the shallow mantle. Although these post-glacial melts are relatively depleted in CO2, the increase in magma flux leads to a short-lived period of elevated CO2 emissions. Our results therefore suggest a negative feedback, whereby ice-sheet growth produces a delayed pulse of magmatic CO2, which, in addition to increased geothermal heat flux, may contribute towards driving deglaciation, which itself then causes further magmatism and CO2 outgassing. This model is consistent with the seismic structure of the asthenosphere below Iceland, and the established compositional and volumetric trends for sub- and post-glacial volcanism in Iceland. These trends show that

  12. Saltation of Non-Spherical Sand Particles

    PubMed Central

    Wang, Zhengshi; Ren, Shan; Huang, Ning

    2014-01-01

    Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement. PMID:25170614

  13. The Karakum and Kyzylkum sand seas dynamics; mapping and palaeoclimatic interpretations

    NASA Astrophysics Data System (ADS)

    Maman, Shimrit; Blumberg, Dan G.; Tsoar, Haim; Porat, Naomi

    2015-04-01

    Sand seas are large basins in deserts that are mantled by wind-swept sand and that exhibit varying degrees of vegetation cover. Wilson (1973) was the first to globally map and classify sand seas. Beyond Wilson's maps, however, little research has been published regarding the Karakum and Kyzylkum sand seas of Central Asia. Wilson's maps delineate active ergs from inactive ergs based solely on precipitation. His assumption of annual average rainfall as a factor determining mobility vs. stability of sand seas is too simplistic and does not take into consideration other factors such as biogenic soil crusts and wind power, both of which are known to have major effects on the dynamics of sand dunes. Literature related to mapping and classifying the Central Asian ergs by remote sensing or sand sea classification state (stable/active) is lacking. Moreover, the palaeoclimatic significance of dunes in Central Asia is difficult to assess, as there has been few studies of dune stratigraphy and numerical ages are lacking. Optically stimulated luminescence (OSL) is a firm optical dating method that is used to determine the elapsed time since quartz grains were last exposed to sunlight, thus, their burial. Yet, absolute ages indicating mobilization and stabilization of these sands, are still inadequately known and are here under discussion. The broad concern of this research was to determine the dynamics of the Central Asian sand seas and study the palaeoclimatic changes that brought to their stabilization. As there are no reliable maps or aeolian discussion of these sands, establishment of a digital data base was initially conducted, focusing on identifying and mapping these sand seas. The vast area and inaccessibility make traditional mapping methods virtually impossible. A variety of space-borne imagery both optical and radar, with varying spectral and spatial resolutions was used. These images provided the basis for mapping sand distribution, dune forms, and vegetation cover

  14. Global sand trade is paving the way for a tragedy of the sand commons

    NASA Astrophysics Data System (ADS)

    Torres, A.; Brandt, J.; Lear, K.; Liu, J.

    2016-12-01

    In the first 40 years of the 21st century, planet Earth is highly likely to experience more urban land expansion than in all of history, an increase in transportation infrastructure by more than a third, and a great variety of land reclamation projects. While scientists are beginning to quantify the deep imprint of human infrastructure on biodiversity at large scales, its off-site impacts and linkages to sand mining and trade have been largely ignored. Sand is the most widely used building material in the world. With an ever-increasing demand for this resource, sand is being extracted at rates that far exceed its replenishment, and is becoming increasingly scarce. This has already led to conflicts around the world and will likely lead to a "tragedy of the sand commons" if sustainable sand mining and trade cannot be achieved. We investigate the environmental and socioeconomic interactions over large distances (telecouplings) of infrastructure development and sand mining and trade across diverse systems through transdisciplinary research and the recently proposed telecoupling framework. Our research is generating a thorough understanding of the telecouplings driven by an increasing demand for sand. In particular, we address three main research questions: 1) Where are the conflicts related to sand mining occurring?; 2) What are the major "sending" and "receiving" systems of sand?; and 3) What are the main components (e.g. causes, effects, agents, etc.) of telecoupled systems involving sand mining and trade? Our results highlight the role of global sand trade as a driver of environmental degradation that threatens the integrity of natural systems and their capacity to deliver key ecosystem services. In addition, infrastructure development and sand mining and trade have important implications for other sustainability challenges such as over-fishing and global warming. This knowledge will help to identify opportunities and tools to better promote a more sustainable use

  15. Collisionless current sheet equilibria

    NASA Astrophysics Data System (ADS)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  16. Sand filter clogging by septic tank effluent.

    PubMed

    Spychała, M; Błazejewski, R

    2003-01-01

    The aim of this study was to characterise conditions and factors affecting fine sand clogging by septic tank effluent on the basis of physical modelling. The physical model consisted of 12 sand columns dosed with sewage from one household (5 persons), preliminary treated in a septic tank. Hydraulic loadings of the sand filters were equal to 82 mm/d. The mean discharge from sand columns, measured as the effluent volume collected during 10 minutes, decreased significantly over the experiment period from 34 cm3/min in August 2000 to 20 cm3/min in August 2001 at the same temperature of about 20 degrees C. First the columns clogged almost completely after 480 days in December 2001, however six columns had remained unclogged till the end of the experiment (March 2002). The temperature had a significant impact on hydraulic conductivity. A vertical distribution of accumulated mass and biomass was investigated in partly clogged sand. Microscopic survey of the clogging layer showed a presence of live micro-organisms, residuals of dead micro-organisms, particularly pieces of small animal armour and many fibres. These particles accelerated the accumulation of solids in the upper clogging layer. The study indicated that temperature impact on the filter hydraulic conductivity was more significant for biological activity, than for sewage viscosity.

  17. Ventilatory and cardiometabolic responses to unilateral sanding in elderly women with ischemic heart disease: a pilot study.

    PubMed

    Muraki, T; Kujime, K; Kaneko, T; Su, M; Ueba, Y

    1991-08-01

    This study was undertaken to investigate how 8 elderly women with ischemic heart disease would respond to a unilateral sanding activity. Three ventilatory measures-expiratory tidal volume, respiratory rate, and expiratory volume--and four cardiometabolic measures--metabolic equivalent, systolic blood pressure, heart rate, and pressure rate product--were continuously recorded during the sanding activity. The two independent variables were angle of the sanding board and sanding velocity. The activity was graded to yield five conditions: (a) sitting at rest; (b) 0 degrees at 15 cycles per min (cpm); (c) 0 degrees at 30 cpm; (d) 15 degrees at 15 cpm; and (e) 15 degrees at 30 cpm. The findings indicated that increasing the angle of the board while holding the velocity constant did not always increase the mean values of the ventilatory and cardiometabolic measures. However, increasing the velocity while holding the angle constant always increased the mean values of the dependent variables. The data also indicated that the metabolic equivalent reached during the sanding activity was no greater than 2, which corresponds to a light activity, such as playing a musical instrument. Replication of the study with a larger sample size may further elucidate the behavior of these two functions during a graded sanding activity. In the present study, a unilateral sanding activity by elderly patients with cardiac impairment was shown to provide valuable data on ventilatory and cardiometabolic functions. The study also demonstrated that a unilateral sanding activity can be safely used as a graded activity in occupational therapy for the cardiac rehabilitation of elderly women.

  18. Teen Sexual Activity, Pregnancy and Childbearing among Latinos in the United States. Fact Sheet.

    ERIC Educational Resources Information Center

    National Campaign To Prevent Teen Pregnancy, Washington, DC.

    The Latino population is the fastest-growing major racial/ethnic group in the United States. By 2020, approximately 16 percent of the population will be Latino. This increase will be even more pronounced among teens. This fact sheet summarizes data from the National Vital Statistics Reports on reported sexual activity, pregnancy rates, and…

  19. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  20. Mapping the Potential for Eolian Surface Activity in Grasslands of the High Plains using Landsat Images

    NASA Technical Reports Server (NTRS)

    Gutmann, Ethan Dain

    2002-01-01

    There are over 100,000 square kilometers of eolian sand dunes and sand sheets in the High Plains of the central United States. These land-forms may be unstable and may reactivate again as a result of land-use, climate change, or natural climatic variability. The main goal of this thesis was to develop a model that could be used to map an estimate of future dune activity. Multi-temporal calibrated Landsats 5 Thematic Mapper (TM) and 7 Enhanced Thematic Map per Plus (ETM+) NDVI imagery were used in conjunction with the CENTURY vegetation model to correlate vegetation cover to climatic variability. This allows the creation of a predicted vegetation map which, combined with current wind and soil data, was used to create a potential sand transport map for range land in the High Plains under drought conditions.

  1. Bio-grout based on microbially induced sand solidification by means of asparaginase activity

    PubMed Central

    Li, Mengmeng; Fu, Qing-Long; Zhang, Qiuzhuo; Achal, Varenyam; Kawasaki, Satoru

    2015-01-01

    Bio-grout, a new ground improvement method, has been recently developed to improve the mechanical properties, decrease the permeability of porous materials, reinforce or repair cementitious materials and modify the properties of soil or sand. Bio-grout production depends on microbially induced calcite precipitation (MICP), which is driven mainly by an enzyme, urease. However, urease-based MICP process produces excessive ammonia, in addition to secondary pollution generated by urea that is used as substrate in it. In the present study, we reported asparaginase-based MICP process for sand bio-grout development using Bacillus megaterium, and results were also compared with urease-based bio-grouts. The asparaginase activity led to significantly less ammonia production compared to urease without compromising with desired properties of a novel grout. The UCS of bio-grout was obtained at 980 kPa, while the permeability was decreased substantially. The mineralogical composition of precipitated substance was identified as calcite using XRD and the crystal morphology was observed under SEM. The mass percentage of calcite in bio-grout was calculated by thermogravimetric analysis and XCT verified calcite precipitation in it. The results confirmed that biocalcification by means of bacterial asparaginase is a potential solution for geotechnical problems. The asparaginase-based MICP process could be of wider acceptance in future. PMID:26525435

  2. Missing links between histones and RNA Pol II arising from SAND?

    USDA-ARS?s Scientific Manuscript database

    Eukaryotic SAND domain-containing proteins bind DNA and are implicated in direct target gene activation and chromatin-mediated gene regulation. We summarize our recent results demonstrating that the Arabidopsis SAND domain protein ULTRAPETALA1 (ULT1) plays a key role in counteracting target gene rep...

  3. Subglacial conditions under the Weichselian Ice Sheet (Central-WesternPoland)

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela

    2010-05-01

    The bed underlying the last Scandinavian Ice Sheet in Poland consisted of an unlithified material susceptible under appropriate subglacial conditions to active deformations under the normal and the driving stress. The thermodynamics at the ice-sediment contact zone had a significant influence for the ice movement character, especially velocity and the ice cap longitudinal profile. Clues of those paleoglaciological processes are recorded in structures and textures of subglacial sediments and the deformation structures are one of the most useful indicator for processes interpretation in basal environment The research area is placed in the Great Poland Lowland in the central-western part of Poland. Detailed investigations were carried out in several outcrops situated within the range of maximal Leszno (Brandenburger) phase extent and recessional Poznan phase (Frankfurter) of the Weichselian Ice Sheet. Those glacial events are not sufficiently dated however, it is known, that they probably took place between 20 000 and 16 000 BP in this region. The purpose of this study is to propose a model of subglacial conditions during till deposition under advancing Weichselian Ice Sheet using the lithofacies analysis as a main tool. Sedimentological analysis in each of the places of investigation was carried out by the means of a macroscopic evidence of deposits texture and structure together with the detailed identification of contact boundaries between individual lithofacies, till fabric measurements on the basis of at least 30 elongated clasts, the calculation of eigenvectors and eigenvalues and laboratory analysis of grain-size distribution using wet and dry (mechanical) sieving techniques. Results show that the fabric characteristics of subglacial tills and underlying sediments are significantly diversified. In general three types of subglacial tills were recognized - lodgement, deformation and melt-out till. Some of vertical profiles showed complexes of lithofacies, and the

  4. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon.

    PubMed

    Zipf, Mariah Siebert; Pinheiro, Ivone Gohr; Conegero, Mariana Garcia

    2016-07-01

    One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Experimental investigation of cephapirin adsorption to quartz filter sands and dune sands

    NASA Astrophysics Data System (ADS)

    Peterson, Jonathan W.; O'Meara, Theresa A.; Seymour, Michael D.

    2008-08-01

    Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08-0.36 wt%). In the aqueous concentration range investigated (11-112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50-3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06-0.35 mm diameter), and the smallest quartz filter sand investigated (0.43-0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients ( K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.

  6. Sand pulses and sand patches on the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Grams, Paul E.; Buscombe, Daniel; Topping, David; Mueller, Erich R.

    2017-01-01

    Alluvial sandbars occur in lateral recirculation zones (eddies) along the Colorado River in Grand Canyon National Park (Schmidt, 1990). Resource managers periodically release controlled floods from the upstream Glen Canyon Dam to rebuild these bars (Grams et al., 2015), which erode during fluctuating dam releases, and by hillslope runoff and wind deflation (Hazel et al., 2010). Because the dam blocks upstream sediment, episodic floods from tributaries provide the only supply to replace eroded sand; and much of this sand originates from a single tributary (Topping et al., 2000). Here, we present new evidence for the downstream translation of the sand component of these sediment inputs as discontinuous sand pulses. Improved understanding of the behaviour of these sand pulses may be used to adjust the timing, magnitude, and duration of controlled floods to maximize potential for deposition on sandbars in different segments of the 450 km-long Grand Canyon.

  7. Evidence of Active Dune Sand on the Great Plains in the 19th Century from Accounts of Early Explorers

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Holliday, Vance T.

    1995-03-01

    Eolian sand is extensive over the Great Plains of North America, but is at present mostly stabilized by vegetation. Accounts published by early explorers, however, indicate that at least parts of dune fields in Nebraska, Colorado, Kansas, New Mexico, and Texas were active in the 19th century. Based on an index of dune mobility and a regional tree-ring record, the probable causes for these periods of greater eolian activity are droughts, accompanied by higher temperatures, which greatly lowered the precipitation-to-evapotranspiration ratio and diminished the cover of stabilizing vegetation. In addition, observations by several explorers, and previous historical studies, indicate that rivers upwind of Great Plains dune fields had shallow, braided, sandy channels, as well as intermittent flow in the 19th century. Wide, braided, sandy rivers that were frequently dry would have increased sand supplies to active dune fields. We conclude that dune fields in the Great Plains are extremely sensitive to climate change and that the potential for reactivation of stabilized dunes in the future is high, with or without greenhouse warming.

  8. Photocatalytic activity and antimicrobial properties of paper sheets modified with TiO2/Sodium alginate nanocomposites.

    PubMed

    Abdel Rehim, Mona H; El-Samahy, Magda A; Badawy, Abdelrahman A; Mohram, Maysa E

    2016-09-05

    Photocatalytic paper sheets were prepared by addition of different ratios of TiO2/Sodium alginate (TSA) nanocomposite. The modified paper sheets were characterized by XRD, TGA. Their morphology was studied by scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Photocatalytic activity of modified paper has been studied by analysis of chemical oxygen demand (COD) of waste-water. The results confirmed the mineralization of the waste-water and enhanced removal of chemical oxygen demand (COD) by increasing the amount of photocatalyst in the paper. Moreover, the results also confirmed that presence of sodium alginate as biopolymer increased adhesion of nanoparticles to paper fibers and reduced the harmful effect of the photocatalyst on them. The paper sheets containing 7% as well as 15% TSA showed high photocatalytic activity and anti-bacterial effect against Salmonella typhimurium higher than standard antibiotic beside other microorganisms such as Candida albicans. The maximum antimicrobial effect was found in case of specimen loaded with 15% TSA. Moreover, it was found that by adding 20% TSA to the paper matrix, the properties of the paper composite collapse. The obtained results confirm the possible utilization of the modified paper in both hygienic and food packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Are Adolescents Talking with Their Parents about Sex before Becoming Sexually Active? Fact Sheet

    ERIC Educational Resources Information Center

    Leuschner, Kristin

    2010-01-01

    This paper examines parent-child discussions of sexual behavior. It finds consistency in the timing and content of such discussions; however, many parents and children do not discuss key topics, such as birth control, before adolescents become sexually active. [This fact sheet is based on Megan K. Beckett, Marc N. Elliott, Steven Martino, David E.…

  10. Altitude of the top of the Sparta Sand and Memphis Sand in three areas of Arkansas

    USGS Publications Warehouse

    Pugh, Aaron L.; Westerfield, Paul W.; Gonthier, Gerard; Poynter, David T.

    1998-01-01

    The Sparta Sand and Memphis Sand form the second most productive aquifer in Arkansas. The Sparta Sand and Memphis Sand range in thick- ness from 0 to 900 feet, consisting of fine- to medium-grained sands interbedded with layers of silt, clay, shale, and minor amounts of lignite. Within the three areas of interest, the top surface of the Sparta Sand and Memphis Sand dips regionally east and southeast towards the axis of the Mississippi Embayment syncline and Desha Basin. Local variations in the top surface may be attributed to a combination of continued development of structural features, differential compaction, localized faulting, and erosion of the surface prior to subsequent inundation and deposition of younger sediments.

  11. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    PubMed

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  12. Geohydrology of the glacial-outwash aquifer in the Baldwinsville area, Seneca River, Onondaga County, New York

    USGS Publications Warehouse

    Pagano, Timothy S.; Terry, David B.; Ingram, Arlynn W.

    1986-01-01

    Seven sheets of map data comprise this geohydrologic report. Sheet 1, surficial geology, illustrates the distribution of: open water areas; artificial fill; made land; urban land; alluvial silt and sand; alluvial sand and gravel; peat, marl, muck and clay; lake silt and/or clay; delta sand and gravel; beach sand and gravel; outwash sand and gravel; ice contact sand and ground; thick till cover bedrock; and thin till over bedrock over the Baldwinsville Area. Sheet 2, geologic sections, shows the layering of the aforementioned components below the surface layer. Sheet 3 illustrates the water infiltration of soil zone. Sheet 4 depicts the aquifer thickness. Sheet 5 illustrates the potentiometric surface, and Sheet 6 the well yield. Finally, Sheet 7 shows the land use in the region, specifically: industrial and extractive; commercial and services; transportation; farmland; forestland; residential; open public land; and water and wetlands. (Lantz-PTT)

  13. Depositional settings of sand beaches along whitewater rivers

    USGS Publications Warehouse

    Vincent, K.R.; Andrews, E.D.

    2008-01-01

    The numbers and sizes of sand beaches suitable for recreation along selected whitewater rivers in the western United States depend on sand concentrations, range of discharge and the size, frequency and type of depositional settings. River-width expansions downstream from constrictions are the predominant depositional setting for sand beaches in the upper Grand Canyon and along five Wild and Scenic Rivers in Idaho, but not along other rivers. Beaches located upstream from constrictions are rare, in general, except in the Grand Canyon. Beaches found in expansions without constrictions dominate depositional sites along the Yampa and Green Rivers, are fairly common along the rivers in Idaho, but are relatively rare in the Grand Canyon. The magnitude of flow expansion is a reliable predictor of beach size. Beaches located on the inside of curves are uncommon, in general, but can be important recreation sites. The mid-channel bar setting is the least important from a recreation standpoint because that setting is rare and beaches there are typically small, and emergent only at low flow. The frequency of beaches is highly variable among rivers and the concentration of sand in transport is only partially responsible. Of the rivers studied, the unregulated Yampa River carries the highest concentrations of suspended sand and has among the most beaches (1.2 beaches km-1). Emergent sand beaches are essentially nonexistent along the Deschutes River and are rare along other Oregon rivers, yet these rivers transport some sand. Sand beaches are fairly common (0.8-1.1 beaches km-1) along the regulated Colorado River, but are comparatively rare (0.6 beaches km-1) along the unregulated Middle Fork Salmon River. The suspended sand concentrations in study reaches of these two rivers are similar, and the difference in the frequency of beaches may be largely because the processes that create beach-deposition settings are less active along the Middle Fork Salmon.

  14. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.

    PubMed

    Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E

    2013-09-28

    Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.

  15. Aeolian sedimentation in the middle buntsandstein in the eifel north-south depression zone: Summary of the variability of sedimentary processes in a buntsandstein erg as a base for evaluation of the mutual relationships between aeolian sand seas and fluvial river systems in the mid-european buntsandstein

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    The spectrum of aeolian depositional subenvironments in the upper Middle Buntsandstein Karlstal-Schichten sequence in the Eifel North-South-zone at the western margin of the Mid-European Triassic Basin comprises trains of larger and higher narrowly-spaced dunes in sand seas, isolated smaller and lower widely-spaced dunes in floodplains and interdune playas, dry interdune sheet sands, damp interdune adhesive sandflats, wet interdune playa lakes, rainfall runoff watercourses and ephemeral channels cutting through the dune belt, and deflation gravel lag veneers. Distinction of aeolian and fluvial sediments within the succession of closely intertonguing wind- and water-laid deposits is possible by independent analysis of the conventional criteria and the more modern stratification styles. Thick cross-bedded aeolian sand sequences originate as barchanoid-type dunes which accumulate and migrate in the regime of narrow to wide unimodal southeasterly to southwesterly trade winds in low northern palaeolatitude in summer when the intertropical convergence zone is shifted to the north. The predominantly transverse-ridge dunes accrete mainly by grainfall and subcritical climbing of wind ripples, subordinately also by grainflow interfingering with grainfall. Horizontal-laminated aeolian sands form as sand sheets in dry interdune playas by subcritical migration of wind ripple trains, rarely also by plane bed accretion. Thin cross-bedded dune sands or horizontal-laminated aeolian sands capping fluvial cyclothems originate by deflation of emerged alluvial bar sands during low-water stages and subsequent accumulation of the winnowed sand as widely-spaced dunelets or chains of wind ripples in desiccated parts of the adjoining floodplain. The aeolian sand layers at the base of lacustrine cyclothems record migration of isolated little dunes across the dry playa floor at the beginning of a wetting-upwards cyclothem, with the sand deriving from deflation of fluvial incursions or

  16. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets.

    PubMed

    Liang, Qinghua; Shi, Yao; Ma, Wangjing; Li, Zhi; Yang, Xinmin

    2012-12-05

    Graphene oxide (GO)-Ag(3)PO(4) nanocomposites synthesized through a facile solution approach via electrostatic interaction were investigated as excellent photocatalysts for the degradation of rhodamine B (RhB) under visible light irradiation. SEM and TEM observations indicate that Ag(3)PO(4) nanospheres of ~120 nm in diameter were well dispersed and anchored onto the exfoliated GO sheets. The characterizations of FTIR and Raman demonstrated the existence of strong charge interactions between GO sheets and Ag(3)PO(4) nanospheres. As compared to Ag(3)PO(4) nanospheres alone, the attachments of GO sheets led to a band gap narrowing (2.10 eV) and a strong absorbance in the near infrared region (NIR). The photoluminescence (PL) analysis indicates a more efficient separation of electron-hole pairs in the GO-Ag(3)PO(4) nanocomposites. Notably, the incorporation of GO sheets not only significantly enhances the photocatalytic activity but also improves the structural stability of Ag(3)PO(4). The positive synergistic effects between Ag(3)PO(4) nanospheres and GO sheets are proposed to contribute to the improved photocatalytic properties. A possible photocatalytic mechanism of the GO-Ag(3)PO(4) nanocomposites was assumed as well. The integration of these advantages enables such GO-Ag(3)PO(4) hybrid material to be a nice photocatalyst for broad applications in a sewage treatment system.

  17. Application of SIR-B data for groundwater exploration in the Arabian shield and sand-drift monitoring in the AN Nafud and Al Jafurah fringe areas, Kingdom of Saudi Arabia

    NASA Technical Reports Server (NTRS)

    Berlin, G. L.; Tarabzouni, M. A.; Munshi, Z. M. N.; Chavez, P. S., Jr.

    1984-01-01

    The primary objectives of the investigation are to determine fully the utility of Shuttle Imaging Radar-B (SIR-B) images for providing valuable surface indicators for ground-water prospecting in the Arabian shield and to identify and assess defining characteristics of sand sheets, sand streaks, and sand dunes in the fringe areas of An Nafud and Al Jafurah. Specific objectives include the determination of the incremental contribution of incidence angle to the total information that can be extracted from SIR-B standard and digitally-enhanced images in the AL Jafurah fringe area; the determination of the incremental contribution of digitally-registered multisensor images; and the development of a groundwater exploration plan for the Ha'il test area in the Arabian Shield.

  18. Fecal indicators in sand, sand contact, and risk of enteric illness among beach-goers

    EPA Science Inventory

    BACKGROUND: Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. METHODS: In 2007, visitors at 2 recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days...

  19. Experimental Recreation of Large-Scale Coastal Bedforms and Hummocky Cross-Stratification in Sheet Flow Conditions

    NASA Astrophysics Data System (ADS)

    Vermaas, T.; Kleinhans, M. G.; Huisman, C.; Schretlen, J. L.; van der Werf, J. J.; Ribberink, J. S.; Ruessink, G.

    2010-12-01

    In shallow marine environments various types of large bed forms emerge under waves and currents. There is no consensus on whether and how these bedforms can be classified in a genetically meaningful sense. Hypotheses for their genesis vary from a large variety of causal mechanisms for a number of different ripples to a single growing instability mechanism, reflecting a limited understanding. Our objective is to understand the formative mechanism of a family of large bedforms referred to as Large Wave Ripples in coastal literature and Hummocks in sedimentological literature, which also describes the hummocky cross stratification (HCS) found in the sedimentary rock record. The formative conditions for hummocks have been debated extensively, particularly whether currents or specific particle sizes were required. We collected and compared existing field and laboratory data and we conducted a full scale experiment in the Hannover Grosse Welle wave flume (300 m long, 5 m wide and 7 m deep). Experiments were done for several conditions, including a storm sequence, with 0.7-1.7 m regular trochoidal waves or irregular waves with periods of 5-7.5 s over sand with mean particle sizes of 0.256 (in 2007) or 0.137 mm (in 2008). Bed profiles were collected mechanically and acoustically. A conductivity probe (CCM) was used to measure sheet flow thickness or absence and near-bed flow and suspended sand concentrations were measured in detail with acoustical profilers. From the data collection, we found that there is no distinction empirically between LWR and Hummocks. Both are found around the inception of sheet flow and have the same dimensions. In the experiments we produced short wave ripples superimposed on large wave ripples below and in the transition to sheet flow conditions. The SWR were well predicted by a recent particle-size dependent ripple length predictor. No available predictor matched the LWR dimensions. The LWR remained present in strong sheet flow conditions and

  20. A statistical study of current-sheet formation above solar active regions based on selforganized criticality

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.

    2013-09-01

    We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  1. Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times

    NASA Technical Reports Server (NTRS)

    Cattell, C. A.; Mozer, F. S.

    1982-01-01

    An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.

  2. Mechanism of groundwater arsenic removal by goethite-coated mineral sand

    NASA Astrophysics Data System (ADS)

    Cashion, J. D.; Khan, S. A.; Patti, A. F.; Adeloju, S.; Gates, W. P.

    2017-11-01

    Skye sand (Vic, Australia) has been considered for arsenic removal from groundwater. Analysis showed that the silica sand is coated with poorly crystalline goethite, hematite and clay minerals. Mössbauer spectra taken following arsenic adsorption revealed changes in the recoilless fraction and relaxation behaviour of the goethite compared to the original state, showing that the goethite is the main active species.

  3. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6

    PubMed Central

    Nowicki, Sophie M.J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2018-01-01

    Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on the Greenland and Antarctic Ice Sheets. In this paper, we describe the framework for ISMIP6 and its relationship to other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice sheet – climate models as well as standalone ice sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change. PMID:29697697

  4. Prey-sensing and orientational behaviors of sand scorpions

    NASA Astrophysics Data System (ADS)

    Brownell, Philip

    2000-03-01

    Sand scorpions use exquisitely sensitive vibrational and chemosensory systems to locate prey and identify prospective mates active on the sand surface. Prey location is determined by input to a static array of 8 vibration-sensitive receptors, each responding as phase-locked accelerometers to compressional and surface waves conducted through sand. Angular orientation of the target is determined from passing surface (Rayleigh) waves, target distance possibly from the time delay between arrival of compressional and surface waves. For localization and identification of prospective mates, male scorpions use sexually dimorphic chemosensory appendages, the pectines, which are swept over a static stimulus field (chemical trail deposited on sand). These organs support a 2D array of closely-spaced (freq = 100/mm) sensilla containing more than 10^6 neurons, all projecting with great topographic precision to the central nervous system. Movement of this sensory array over a static stimulus field creates timing within the sensory signal. The potential importance of timing as a means of increasing sensitivity and selectivity of sensory response in two distinctly different modes is discussed.

  5. Basic Residues of β-Sheet A Contribute to Heparin Binding and Activation of Vaspin (Serpin A12).

    PubMed

    Ulbricht, David; Oertwig, Kathrin; Arnsburg, Kristin; Saalbach, Anja; Pippel, Jan; Sträter, Norbert; Heiker, John T

    2017-01-20

    Many members of the serine protease inhibitor (serpin) family are activated by glycosaminoglycans (GAGs). Visceral adipose tissue-derived serpin (vaspin), serpin A12 of the serpin family, and its target protease kallikrein 7 (KLK7) are heparin-binding proteins, and inhibition of KLK7 by vaspin is accelerated by heparin. However, the nature of GAG binding to vaspin is not known. Here, we measured vaspin binding of various glycosaminoglycans and low molecular weight heparins by microscale thermophoresis and analyzed acceleration of protease inhibition by these molecules. In addition, basic residues contributing to heparin binding and heparin activation were identified by a selective labeling approach. Together, these data show that vaspin binds heparin with high affinity (K D = 21 ± 2 nm) and that binding takes place at a basic patch on top of β-sheet A and is different from other heparin-binding serpins. Mutation of basic residues decreased heparin binding and activation of vaspin. Similarly, reactive center loop insertion into sheet A decreased heparin binding because it disturbs the basic cluster. Finally, using vaspin-overexpressing keratinocyte cells, we show that a significant part of secreted vaspin is bound in the extracellular matrix on the cell surface. Together, basic residues of central β-sheet A contribute to heparin binding and activation of vaspin. Thus, binding to GAGs in the extracellular matrix can direct and regulate vaspin interaction with target proteases or other proteins and may play an important role in the various beneficial functions of vaspin in different tissues. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Sand waves on an epicontinental shelf: Northern Bering Sea

    USGS Publications Warehouse

    Field, M.E.; Nelson, C.H.; Cacchione, D.A.; Drake, D.E.

    1981-01-01

    Sand waves and current ripples occupy the crests and flanks of a series of large linear sand ridges (20 km ?? 5 km ?? 10 m high) lying in an open-marine setting in the northern Bering Sea. The sand wave area, which lies west of Seward Peninsula and southeast of Bering Strait, is exposed to the strong continuous flow of coastal water northward toward Bering Strait. A hierarchy of three sizes of superimposed bedforms, all facing northward, was observed in successive cruises in 1976 and 1977. Large sand waves (height 2 m; spacing 200 m) have smaller sand waves (height 1 m; spacing 20 m) lying at a small oblique angle on their stoss slopes. The smaller sand waves in turn have linguoid ripples on their stoss slopes. Repeated studies of the sand wave fields were made both years with high-resolution seismic-reflection profiles, side-scan sonographs, underwater photographs, current-meter stations, vibracores, and suspended-sediment samplers. Comparison of seismic and side-scan data collected along profile lines run both years showed changes in sand wave shape that indicate significant bedload transport within the year. Gouge marks made in sediment by keels of floating ice also showed significantly different patterns each year, further documenting modification to the bottom by sediment transport. During calm sea conditions in 1977, underwater video and camera observations showed formation and active migration of linguoid and straight-crested current ripples. Current speeds 1 m above the bottom were between 20 and 30 cm/s. Maximum current velocities and sand wave migration apparently occur when strong southwesterly winds enhance the steady northerly flow of coastal water. Many cross-stratified sand bodies in the geologic record are interpreted as having formed in a tidal- or storm-dominated setting. This study provides an example of formation and migration of large bedforms by the interaction of storms with strong uniform coastal currents in an open-marine setting. ?? 1981.

  7. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2006-01-01

    In 2005, domestic production of industrial sand and gravel was about 31 Mt, a 5% increase from 2004. This increase was bouyed by robust construction and petroleum sectors of the US economy. Based on estimated world production figures, the United States was the world's leading producer and consumer of industrial sand and gravel. In the short term, local shortages of industrial sand and gravel will continue to increase.

  8. Exploring the Sandy Province of Herschel Crater

    NASA Image and Video Library

    2017-09-04

    This view from NASA's Mars Reconnaissance Orbiter shows the downwind stretches of a sand sheet in central part of the much larger Herschel Crater. This sandy province began kilometers upwind in a string of barchan sand dunes. As the north-to-south blowing wind weakened downwind, it could no longer fashion the sand into dunes but rather into amorphously-shaped sand sheets. While perhaps not awe-inspiringly beautiful, sand sheets can tell us about Mars' current and past environmental conditions as a piece of the puzzle for understanding habitability. Having dunes upwind of sheets is the opposite situation Earth has, where upwind sand sheets evolve downwind into sand dunes. This mystery is receiving ongoing research to to understand these sandy differences between Earth and Mars. https://photojournal.jpl.nasa.gov/catalog/PIA21933

  9. A growing Leaf as a Sheet of an Active Solid

    NASA Astrophysics Data System (ADS)

    Sharon, Eran

    A growing leaf is a thin sheet of active solid, which expands while obeying the laws of mechanics. The effective rheology of this active solid is nontrivial, allowing the leaf to increase its area by orders of magnitude, keeping its ''proper'' geometry. The questions of what the characteristics of the leaf growth field are and how it is regulated without any central ''headquarter'' are still open. I will present measurements of natural leaf growth with high time and space resolution. These show that the growth is a highly fluctuating process in both time and space. We suggest that the entire statistics of the growth field, not just its averages contain information important for the understanding of growth regulation. In another set of experiments we measure the effect of mechanical stress on deformation and growth. The measured effective rheology is viscoelastic with time varying parameters, indicating remodeling of the tissue in response to extended application of mechanical stress.

  10. Compressive behavior of fine sand.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trendsmore » were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.« less

  11. Identification of ex-sand mining area using optical and SAR imagery

    NASA Astrophysics Data System (ADS)

    Indriasari, Novie; Kusratmoko, Eko; Indra, Tito Latif; Julzarika, Atriyon

    2018-05-01

    Open mining activities in Sumedang Regency has been operated since 1984 impacted to degradation of environment due to large area of ex-mining. Therefore, identification of ex-mining area which generally been used for sand mining is crucial and important to detect and monitor recent environmental degradation impacted from the ex-mining activities. In this research, identification ex-sand mining area using optical and SAR data in Sumedang Regency will be discussed. We use Landsat 5 TM acquisition date August 01, 2009 and Landsat 8 OLI acquired on June 24, 2016 to identify location of sand mining area, processed using Tasselled Cap Trasformation (TCT), while the landform deformation approached using ALOS PALSAR in 2009 and ALOS PALSAR 2 in 2016 processed using SAR interferometry (InSAR) method. The results show that TCT and InSAR method can can be used to identify the areas of ex-sand mining clearly. In 2016 the total area of ex-mining were 352.92 Ha. The land deformation show that during 7 years period since 2009 has impacted to the deformation at 7 meters.

  12. Electromyographic study of the upper extremity during bilateral sanding: unresisted and resisted conditions.

    PubMed

    Spaulding, S J; Robinson, K L

    1984-04-01

    Electromyographic information was obtained from seven right shoulder complex muscles in nine subjects (three normal, three paraplegic, and three quadriplegic) during the occupational therapy activity of bilateral sanding on an incline board, an activity that has been recommended as a treatment modality to strengthen the triceps brachii. Electromyography revealed that the anterior and middle portions of the deltoid were the muscles most responsible for the subjects' arm movements during both resisted and unresisted bilateral sanding . Triceps lateralis and medialis were also active during the up phase, but not as consistently as the deltoid. Pectoralis major and biceps brachii were not extensively active in most subjects. The small size and heterogeneity of the subject sample limits the generalizations of our findings. However, graded resisted bilateral sanding does appear to be an appropriate activity for strengthening the shoulder muscle group, especially the deltoid and triceps brachii, in the tested patient populations.

  13. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.

    PubMed

    Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle

    2009-02-01

    The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust.

  14. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan.

    PubMed

    Hassan, Mo'awia Mukhtar; Widaa, Sally Osman; Osman, Osman Mohieldin; Numiary, Mona Siddig Mohammed; Ibrahim, Mihad Abdelaal; Abushama, Hind Mohammed

    2012-03-07

    Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL) is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. Sand flies were collected from Surogia village, (Khartoum State), Rahad Game Reserve (eastern Sudan) and White Nile area (Central Sudan) using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1) of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE), non-specific carboxylesterases (EST), glutathione-S-transferases (GSTs) and cytochrome p450 monooxygenases (Cyt p450). Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT), permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years.

  15. Ice Sheet Model Intercomparison Project (ISMIP6) Contribution to CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie M. J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2016-01-01

    Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this paper, we describe the framework for ISMIP6 and its relationship with other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice-sheetclimate models as well as standalone ice-sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice-sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

  16. Dylan Pritchett, Storyteller. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Evans, Karen L. B.

    Designed to be used before and after attending a storytelling performance by Dylan Pritchett, this cue sheet presents information about the performance and suggests activities that can be done with classmates, friends, or family members. The cue sheet discusses where and why people tell stories, what makes a story good for telling, what makes a…

  17. Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Cheng-Hsien; Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan; Low, Ying Min, E-mail: ceelowym@nus.edu.sg

    2016-05-15

    Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial,more » and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.« less

  18. Windblown Sand in Ganges Chasma

    NASA Image and Video Library

    2017-04-25

    Dark, windblown sand covers intricate sedimentary rock layers in this image captured by NASA's Mars Reconnaissance Orbiter (MRO) from Ganges Chasma, a canyon in the Valles Marineris system. These features are at once familiar and unusual to those familiar with Earth's beaches and deserts. Most sand dunes on Earth are made of silica-rich sand, giving them a light color; these Martian dunes owe their dark color to the iron and magnesium-rich sand found in the region. https://photojournal.jpl.nasa.gov/catalog/PIA21600

  19. Seismotectonic implications of sand blows in the southern Mississippi Embayment

    USGS Publications Warehouse

    Cox, R.T.; Hill, A.A.; Larsen, D.; Holzer, T.; Forman, S.L.; Noce, T.; Gardner, C.; Morat, J.

    2007-01-01

    We explore seismically-induced sand blows from the southern Mississippi Embayment and their implications in resolving the question of near or distal epicentral source region. This was accomplished using aerial photography, field excavations, and cone penetration tests. Our analysis shows that three sand blow fields exhibit a distinct chronology of strong ground motion for the southern embayment: (1) The Ashley County, Arkansas sand blow field, near the Arkansas/Louisiana state border, experienced four Holocene sand venting episodes; (2) to the north, the Desha County field experienced at least three episodes of liquefaction; and (3) the Lincoln-Jefferson Counties field experienced at least one episode. Cone penetration tests (CPT) conducted in and between the sand blow fields suggest that the fields may not be distal liquefaction associated with New Madrid seismic zone earthquakes but rather are likely associated with strong earthquakes on local faults. This conclusion is consistent with the differences in timing of the southern embayment sand venting episodes and those in the New Madrid seismic zone. These results suggest that active tectonism and strong seismicity in intraplate North America may not be localized at isolated weak spots, but rather widespread on fault systems that are favorably oriented for slip in the contemporary stress field. ?? 2006 Elsevier B.V. All rights reserved.

  20. Community airborne particulate matter from mining for sand used as hydraulic fracturing proppant.

    PubMed

    Peters, Thomas M; O'Shaughnessy, Patrick T; Grant, Ryan; Altmaier, Ralph; Swanton, Elizabeth; Falk, Jeffrey; Osterberg, David; Parker, Edith; Wyland, Nancy G; Sousan, Sinan; Stark, Aimee Liz; Thorne, Peter S

    2017-12-31

    Field and laboratory studies were conducted to evaluate the impact of proppant sand mining and processing activities on community particulate matter (PM) concentrations. In field studies outside 17 homes within 800m of sand mining activities (mining, processing, and transport), respirable (PM 4 ) crystalline silica concentrations were low (<0.4μg/m 3 ) with crystalline silica detected on 7 samples (2% to 4% of mass). In long-term monitoring at 6 homes within 800m of sand mining activities, the highest daily mean PM concentrations observed were 14.5μg/m 3 for PM 2.5 and 37.3μg/m 3 for PM 10 , although infrequent (<3% of time), short-term elevated PM concentrations occurred when wind blew over the facility. In laboratory studies, aerosolized sand was shown to produce respirable-sized particles, containing 6% to 19% crystalline silica. Dispersion modeling of a mine and processing facility indicated that PM 10 can exceed standards short distances (<40m) beyond property lines. Lastly, fence-line PM and crystalline silica concentrations reported to state agencies were substantially below regulatory or guideline values, although several excursions were observed for PM 10 when winds blew over the facility. Taken together, community exposures to airborne particulate matter from proppant sand mining activities at sites similar to these appear to be unlikely to cause chronic adverse health conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sand Volcano Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)

  2. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2010-01-01

    Domestic production of industrial sand and gravel in 2009 was about 27 Mt (30 million st), declining by 10 percent compared with 2008. Certain end uses of industrial sand and gravel, such as foundry and glassmaking sand, may have declined by a factor greater than 10 percent in 2009. U.S. apparent consumption was 24.7 Mt (27.2 million st) in 2009, down by 10 percent from the previous year, and imports declined to 83 kt (91,000 st).

  3. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry.

    PubMed

    Bois, G; Piché, Y; Fung, M Y P; Khasa, D P

    2005-05-01

    Recent improvements in the management of oil sand tailings used by the Canadian oil sand industry have resulted in the production of composite tailing sands (CT): a new challenging material for reclamation work. Jack pine (Pinus banksiana Lamb.), hybrid poplar (Populus deltoides Bartr. ex Marsh. xPopulus nigra L.) and red clover (Trifolium pratense L.) plants were used in an 8-week greenhouse bioassay to evaluate the mycorrhizal inoculum potential of CT. This inoculum potential was compared with that of three other reclamation materials [common tailing sands (TS), deep overburden (OB) and muskeg peat (MK)], and with three sites reclaimed in 1982 (R82), 1988 (R88) and 1999 (R99). CT was devoid of active mycorrhizal propagules while all other materials showed some level of inoculum potential. Arbuscular mycorrhizal fungi were observed on roots of clover or poplar grown in TS, OB, and all substrates containing peat (MK, R82, R88 and R99). Pine roots were also colonized by vesicle-forming hyphae of an unidentified fine endophyte and by dark septate fungi. Ectomycorrhizas (ECM) were observed on pine and poplar grown in OB, MK, and in soils from the two older reclaimed sites (R82 and R88). Using morpho- and molecular typing, six ECM fungi were identified to the genus or species level: Laccaria sp., Thelephora americana, Wilcoxina sp. (E-strain), Tuber sp. (I-type), a Sebacinoid, and a Pezizales species. Laccaria sp. and Wilcoxina sp. were the most frequently observed ECM species.

  4. Sandscape - engaging people in Met Office science through sand sculpture

    NASA Astrophysics Data System (ADS)

    Liggins, Felicity; Dowell, Ellen; Wardley, Jamie; Jamieson, Claire

    2017-04-01

    In 2015, the Met Office's award-winning outreach programme, designed to inspire the next generation of scientists and engineers, delivered one of its most ambitious and creative activities to date. It explored how scientists and artists can come together to create an engaging experience for young people and families. This activity was called Sandscape. Sandscape is an interactive sand sculpture workshop exploring how weather and climate affect our health. Budding sand sculptors are shown how to fashion elaborate structures from sand and water - creating a landscape with bridges, skyscrapers, forests and factories. As they work, participants are encouraged by the scientists delivering the activity to reflect on what makes a healthy city, considering how the natural and built environments influence air quality and circulation and how this impacts our health. Topics discussed include urban heat islands, air pollution and dispersion modelling, pollen forecasting and predicting the wind-borne spread of animal diseases. Each hour long workshop culminates in a dramatic demonstration that uses dry ice to represent clean air circulating from mountains, along rivers and into cities. Here we present an overview of Sandscape, identify the strengths and challenges of such a collaborative, innovative and playful approach to public engagement and share the results of our evaluation. Sandscape was originally supported by the Met Office and the Wellcome Trust, and produced by Einstein's Garden in collaboration with the Met Office, scientists from the University of Exeter and sand sculptors from Sand in Your Eye. It was first presented in Einstein's Garden at Green Man festival 2015, an independent music and arts festival held annually in Wales, and has since been invited to run at the 2015 Bournemouth Arts By the Sea Festival and Teignmouth's TRAIL Sculpture Festival in the summer of 2016.

  5. The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries: Plasma Sheet Ion Composition

    DOE PAGES

    Denton, M. H.; Thomsen, M. F.; Reeves, G. D.; ...

    2017-10-03

    The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H + ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H +, O +, and He + ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux ofmore » each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O + and He +) become increasingly important during such periods as charge-exchange reactions result in faster loss for H + than for O + or He +. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.« less

  6. The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries: Plasma Sheet Ion Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, M. H.; Thomsen, M. F.; Reeves, G. D.

    The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H + ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H +, O +, and He + ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux ofmore » each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O + and He +) become increasingly important during such periods as charge-exchange reactions result in faster loss for H + than for O + or He +. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.« less

  7. Microbial strengthening of loose sand.

    PubMed

    Banagan, B L; Wertheim, B M; Roth, M J S; Caslake, L F

    2010-08-01

    To test whether the addition of Flavobacterium johnsoniae could increase the strength of saturated Ottawa 30 sand. A box model was built that simulates groundwater-like flow through a main sand compartment. Strength tests were performed at seven locations and at two depths, 10.8 and 20.3 cm below the top of the tank, using a vane shear device before and after the addition of bacteria. After the addition of Fl. johnsoniae, sand samples were obtained from multiple sampling ports on the vertical sides of the box model. The presence of a bacterial biofilm was confirmed by staining these sand samples with SYTO-9 and Alexa Fluor 633 and viewing with a confocal microscope. The average shear strength increases after the addition of Fl. johnsoniae were 15.2-87.5%, depending on the experimental conditions. Flavobacterium johnsoniae caused a statistically significant increase in the strength of saturated Ottawa 30 sand. Biofilm-forming bacteria can increase the shear strength of saturated sand. The addition of biofilm-forming bacteria to a building site may be an alternate method to mitigate the effects of liquefaction.

  8. Tyler sands play entices operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, K.

    Encouraging seismic data and recent discoveries are causing a renewed interest in an intensive exploration effort in central Montana's Tyler play. With new subsurface information obtained from recent seismic surveys, geologists are reviewing the elusive Tyler sands from a different perspective. Several operators are competing for lease positions through farmouts and joint ventures and increased drilling activity is expected to begin within the next year.

  9. Effects of Full-Scale Beach Renovation on Fecal Indicator Levels in Shoreline Sand and Water

    PubMed Central

    Hernandez, Rafael J.; Hernandez, Yasiel; Jimenez, Nasly H.; Piggot, Alan M.; Klaus, James S.; Feng, Zhixuan; Reniers, Ad; Solo-Gabriele, Helena M.

    2013-01-01

    Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3 to 72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8 CFU/g to 12 CFU/g) (p<0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 1011 CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 1011 CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in

  10. Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water.

    PubMed

    Hernandez, Rafael J; Hernandez, Yasiel; Jimenez, Nasly H; Piggot, Alan M; Klaus, James S; Feng, Zhixuan; Reniers, Ad; Solo-Gabriele, Helena M

    2014-01-01

    Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3-72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8-12 CFU/g) (P < 0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 10(11) CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 10(11) CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in biofilm

  11. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan

    PubMed Central

    2012-01-01

    Background Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL) is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. Methods Sand flies were collected from Surogia village, (Khartoum State), Rahad Game Reserve (eastern Sudan) and White Nile area (Central Sudan) using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1) of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE), non-specific carboxylesterases (EST), glutathione-S-transferases (GSTs) and cytochrome p450 monooxygenases (Cyt p450). Results Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT), permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. Conclusions The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years. PMID:22397726

  12. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  13. Clouds enhance Greenland ice sheet meltwater runoff.

    PubMed

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  14. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    PubMed

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  15. Dark grains of sand: a geological storytelling

    NASA Astrophysics Data System (ADS)

    Gallo Maresca, Magda

    2017-04-01

    In the secondary Italian school the Earth science learning begins at first year, in synergy with other natural science subjects such as Astronomy, Chemistry and Biology. Italian teachers have to focus on the landscape geomorphological aspects and often Earth processes are difficult to display since they are related to certain phenomena happened during the past and often far from the involved country. In order to better understand the environment surrounding us, very simple and poor materials, like sands, allow the teachers to create attractive lab experiences. According to the IBSE (Inquiry Based Science Education) approach, a learning unit has been implemented starting from a walking along the light carbonate beaches of the Adriatic sea: a smart look to the sands ("engage step"), stroke the students fantasy pushing them to explore some strange black grains on the sands. Dirty sands? Or rock landscape, soil degradation and Ofanto river and coastal processes (erosion, transportation and deposition)? This was the teaching challenge. Due to the youngest age, a third level, guided inquiry, was adopted so the teacher is the "guide of inquiry" encouraging the students using the research question ("Why is the sand dark?", "Do all sands look the same?", "Where does it come from?") and driving the students around their investigation plans ("How can I measure grain size?"). A procedure to answer the above questions and validate the results and explanations has been implemented to allow the students to be proactive in their study. During the learning activities will be the students to ask for field trip to elaborate their new knowledge, verify and visualize the speculated processes. The teaching skills allow to address several geosciences domains such as mineralogy, petrology, regional geology and geodynamics as well as other scientific disciplines such as mathematics (more specifically statistics), forensic science and even life sciences (the presence of bioclasts might

  16. Earth observations taken during the STS-103 mission

    NASA Image and Video Library

    1999-12-24

    STS103-710-084 (19-27 December 1999)--- One of the astronauts aboard the Earth-orbiting Space Shuttle Discovery used a handheld 70mm camera to photograph the great sand seas which occupy northern Algeria. They are Grand Erg Oriental (Eastern Sand Sea) and Grand Erg Occidental (Western Sand Sea). Both sand seas occupy depressions that are separated by a north-south rise called Mizab. Ergs are areas of large accumulations of sand that take the form of actively shifting dunes, fossilized dunes, or extensive sand sheets.

  17. Optimal swimming of a sheet.

    PubMed

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  18. Evaluation of sand fills.

    DOT National Transportation Integrated Search

    1973-11-01

    A popular construction technique in south Louisiana for many years has been the use of river sand to establish foundations for highways. The abundance of river sand and the need for it in excavation backfill operations across Louisiana's marshlands h...

  19. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  20. Episodic Eolian Sand Deposition in the Past 4000 Years in Cape COD National Seashore, Massachusetts, USA in Response to Possible Hurricane/storm and Anthropogenic Disturbances

    NASA Astrophysics Data System (ADS)

    Forman, Steven

    2015-02-01

    The eolian sand depositional record for a dune field within Cape Cod National Seashore, Massachusetts is posit as a sensitive indicator of environmental disturbances in the late Holocene from a combination of factors such as hurricane/storm and forest fire occurrence, and anthropogenic activity. Stratigraphic and sedimentologic observations, particularly the burial of spodosol-like soils, and associated 14C and OSL ages that are concordant indicate at least six eolian depositional events at ca. 3750, 2500, 1800, 960, 430 and <250 years ago. The two oldest events are documented at just one locality and thus, the pervasiveness of this eolian activity is unknown. However, the four younger events are identified in three or more sites and show evidence for dune migration and sand sheet accretion. The timing of eolian deposition, particularly the initiation age, corresponds to documented periods of increased storminess/hurricane activity in the North Atlantic Ocean at ca. 2.0 to 1.6, and 1.0 ka and also a wetter coastal climate, which suppressed the occurrence of forest fire. Thus, local droughts are not associated with periods of dune movement in this mesic environment. Latest eolian activity on outer Cape Cod commenced in the past 300 to 500 years and may reflect multiple factors including broad-scale landscape disturbance with European colonization, an increased incidence of forest fires and heightened storminess. Eolian systems of Cape Cod appear to be sensitive to landscape disturbance and prior to European settlement may reflect predominantly hurricane/storm disturbance, despite generally mesic conditions in past 4 ka.

  1. Faecal indicator bacteria enumeration in beach sand: a comparison study of extraction methods in medium to coarse sands.

    PubMed

    Boehm, A B; Griffith, J; McGee, C; Edge, T A; Solo-Gabriele, H M; Whitman, R; Cao, Y; Getrich, M; Jay, J A; Ferguson, D; Goodwin, K D; Lee, C M; Madison, M; Weisberg, S B

    2009-11-01

    The absence of standardized methods for quantifying faecal indicator bacteria (FIB) in sand hinders comparison of results across studies. The purpose of the study was to compare methods for extraction of faecal bacteria from sands and recommend a standardized extraction technique. Twenty-two methods of extracting enterococci and Escherichia coli from sand were evaluated, including multiple permutations of hand shaking, mechanical shaking, blending, sonication, number of rinses, settling time, eluant-to-sand ratio, eluant composition, prefiltration and type of decantation. Tests were performed on sands from California, Florida and Lake Michigan. Most extraction parameters did not significantly affect bacterial enumeration. anova revealed significant effects of eluant composition and blending; with both sodium metaphosphate buffer and blending producing reduced counts. The simplest extraction method that produced the highest FIB recoveries consisted of 2 min of hand shaking in phosphate-buffered saline or deionized water, a 30-s settling time, one-rinse step and a 10 : 1 eluant volume to sand weight ratio. This result was consistent across the sand compositions tested in this study but could vary for other sand types. Method standardization will improve the understanding of how sands affect surface water quality.

  2. Host association and the capacity of sand flies as vectors of lizard malaria in Panama.

    PubMed

    Kimsey, R B

    1992-08-01

    In this paper the capacity of sand flies (Lutzomyia) as vectors of parasites that cause malaria in anoles (Anolis limifrons) in the Zona de Canal, Panama was investigated. Inhabiting all study plots, often in local abundance, L. trinidadensis emerged as the principal candidate sand fly vector; the results of surveys did not suggest a likely mosquito vector. Although L. trinidadensis and infected anoles co-inhabited all plots, their abundances seemed unrelated. No evidence that sand flies parasitized anoles was uncovered. As anole activity patterns in daylight reciprocate with those of sand flies and at night anoles seem to avoid locations that sand flies frequent, anoles may evade sand fly bites altogether. Further, these sand flies occurred in close numerical and ecological association with Thecadactylus rapicauda, a reclusive moist forest gecko, often parasitizing these hosts in large numbers. Thus, sand flies lack capacity as vectors of malaria-causing parasites in central Panamanian anoles.

  3. Obtaining higher-accuracy estimates of water-rich rocks and water-poor sand dunes on Mars in active neutron experiments

    NASA Astrophysics Data System (ADS)

    Gabriel, T. S. J.; Hardgrove, C.; Litvak, M. L.; Nowicki, S.; Mitrofanov, I. G.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; Moersch, J.; Harshman, K.; Kozyrev, A.; Malakhov, A. V.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Vostrukhin, A.; Thompson, L. M.

    2017-12-01

    The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory Curiosity Rover delivers high-energy (14.1 MeV) pulses of neutrons into the surface when operating in "active" mode. Neutrons are moderated in the subsurface and return to two detectors to provide a time-of-flight profile in 64 time-bins in epithermal and thermal energy ranges. Results are compared to simulations of the experiment in the Monte Carlo N-Particle Transport Code where several aspects are modeled including the DAN detectors, neutron source, rover components, and underlying rock. Models can be improved by increasing the fidelity of the rock geochemistry as informed by instruments including the Alpha Particle X-Ray Spectrometer (APXS). Furthermore, increasing the fidelity of the rock morphology in models is enabled by the suite of imaging instruments on the rover.To rapidly interpret DAN data a set of pre-simulated generic rock density and bulk geochemistry models are compared to several DAN active observations. While, to first order, this methodology provides an indication of significant geochemical changes in the subsurface, higher-fidelity models should be used to provide accurate constraints on water content, depth of geologic layers, or abundance of neutron absorbers. For example, in high-silicon, low-iron rocks observed along the rover's traverse, generic models can differ by several wt%H2O from models that use APXS measurements of nearby drill samples. Accurate measurements of high-silicon targets are necessary in outlining the extent of aqueous alteration and hydrothermal activity in Gale Crater. Additionally, we find that for DAN active experiments over sand dunes best-fit models can differ by greater than 0.5 wt%HO when the upper layer density is reduced by 0.6 g/cm3 to account for the low-bulk density of sand. In areas where the rock geochemistry differs little from generic models the difference in results is expectedly less disparate. We report refined wt%HO values

  4. Ice sheets play important role in climate change

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; MacAyeal, Douglas R.; Andrews, John T.; Bartlein, Patrick J.

    Ice sheets once were viewed as passive elements in the climate system enslaved to orbitally generated variations in solar radiation. Today, modeling results and new geologic records suggest that ice sheets actively participated in late-Pleistocene climate change, amplifying or driving significant variability at millennial as well as orbital timescales. Although large changes in global ice volume were ultimately caused by orbital variations (the Milankovitch hypothesis), once in existence, the former ice sheets behaved dynamically and strongly influenced regional and perhaps even global climate by altering atmospheric and oceanic circulation and temperature.Experiments with General Circulation Models (GCMs) yielded the first inklings of ice sheets' climatic significance. Manabe and Broccoli [1985], for example, found that the topographic and albedo effects of ice sheets alone explain much of the Northern Hemisphere cooling identified in paleoclimatic records of the last glacial maximum (˜21 ka).

  5. Early Childhood: Discovery through Sand Play.

    ERIC Educational Resources Information Center

    McIntyre, Margaret

    1982-01-01

    Suggestions are given for using sand play to teach science related vocabulary and concepts to preschool and primary age children by using dry sand, wet sand, different sizes and shapes of spoons and containers, sieves, and funnels. (DC)

  6. Asbestos in play sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, A.M.; Nolan, R.P.

    1987-04-02

    A letter in the New England Journal of Medicine (Oct. 2 issue) stated that a carbonate sand marketed in New Jersey was contaminated with 2 to 4 percent tremolite asbestos. The authors were called on by one of the federal agencies to repeat the analysis of this sand, specifically for its asbestos content. The sand was pulverized and immersed in oils with known refractive indexes, and the predominant amphibole was characterized by polarized light microscopy. The optical characteristics were noted, and the indexes of refraction were measured and found to be consistent with tremolite. On the basis of optical characterization,more » the authors concluded that all the tremolite visualized with light microscopy consisted of large, single cleavage fragments and was not asbestiform. They used the technique of x-ray diffraction, as did the author of the original report, which showed the presence of an amphibole mineral (probably tremolite) in the carbonate sand. The technique was not used, and cannot be used, to distinguish between the tremolite habits (asbestiform or nonasbestiform). An acid-insoluble residue, recovered from the carbonate sand, was examined by analytic electron microscopy. The tremolite grains were observed to consist of single untwinned, crystalline fragments. Few defects were noted. Selected area electron diffraction nets were indicative of fragments lying near or at the common amphibole cleavage plane. These characteristics are consistent with cleavage fragments and not asbestos. Aspect ratios reflected short particles (less than 5.1). On the basis of their examination of the carbonate play sand, they conclude that it did not contain tremolite asbestos.« less

  7. Growth Factor-Reinforced ECM Fabricated from Chemically Hypoxic MSC Sheet with Improved In Vivo Wound Repair Activity.

    PubMed

    Du, Hui-Cong; Jiang, Lin; Geng, Wen-Xin; Li, Jing; Zhang, Rui; Dang, Jin-Ge; Shu, Mao-Guo; Li, Li-Wen

    2017-01-01

    MSC treatment can promote cutaneous wound repair through multiple mechanisms, and paracrine mediators secreted by MSC are responsible for most of its therapeutic benefits. Recently, MSC sheet composed of live MSCs and their secreted ECMs was reported to promote wound healing; however, whether its ECM alone could accelerate wound closure remained unknown. In this study, Nc-ECM and Cc-ECM were prepared from nonconditioned and CoCl 2 -conditioned MSC sheets, respectively, and their wound healing properties were evaluated in a mouse model of full-thickness skin defect. Our results showed that Nc-ECM can significantly promote wound repair through early adipocyte recruitment, rapid reepithelialization, enhanced granulation tissue growth, and augmented angiogenesis. Moreover, conditioning of MSC sheet with CoCl 2 dramatically enriched its ECM with collagen I, collagen III, TGF- β 1, VEGF, and bFGF via activation of HIF-1 α and hence remarkably improved its ECM's in vivo wound healing potency. All the Cc-ECM-treated wounds completely healed on day 7, while Nc-ECM-treated wounds healed about 85.0% ± 8.6%, and no-treatment wounds only healed 69.8% ± 9.6% ( p < 0.05). Therefore, we believe that such growth factor-reinforced ECM fabricated from chemically hypoxic MSC sheet has the potential for clinical translation and will lead to a MSC-derived, cost-effective, bankable biomaterial for wound management.

  8. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ziyin; Jin, Xianglong; Zhou, Jieqiong; Zhao, Dineng; Shang, Jihong; Li, Shoujun; Cao, Zhenyi; Liang, Yuyang

    2017-06-01

    Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320-200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.

  9. AFRICAN MUSIC SPEAKS, NO. 6--PROJECT CUE, A TV UTILIZATION SHEET.

    ERIC Educational Resources Information Center

    BROWN, ROBERT M.

    FOURTEEN SETS OF EDUCATIONAL TV UTILIZATION GUIDE SHEETS WERE PREPARED AS TEACHER AIDS. THESE SHEETS COVER SUCH AREAS AS SYNOPSIS OF SUBJECT, SUGGESTED PREPARATION (PRETELECAST), KEY WORDS, WHAT PUPILS SHOULD LOOK AND LISTEN FOR, SUGGESTED FOLLOWUP ACTIVITIES, SUGGESTED RELATED ACTIVITIES, SUGGESTED EVALUATION, AND SUGGESTED RELATED MATERIALS.…

  10. The use of Papuan iron sand and river sand for fine aggregate in mortar for nuclear radiation shield application

    NASA Astrophysics Data System (ADS)

    Dahlan, K.; Haryati, E.; Aninam, Y. S.

    2018-03-01

    This study explores the effect of fine aggregate on mortar properties and its application as a nuclear shield. This study was based on a hypothesis that the types of aggregate applied as radiation shield determined the level of its effectiveness on preventing nuclear radiation. There are two types and sources of fine aggregate that was used as main ingredients for mortar production in this research, namely iron sand and river sand. Both types of sand were derived from the respective regions of Sarmi and Jayapura, Papua. The results showed that the mortar materials that were produced with the iron sand provided better results in dispelling radiation than that of river sand. The compressive strength of fine aggregate from the iron sand was 21.62 MPa, while the compressive strength of the river sand was 16.8 MPa. Measuring the attenuation coefficient of material, we found that the largest aggregated value of mortar with fine iron sand reached 0.0863 / cm. On the other hand, the smallest HVT (Half Value Thickness) was obtained from the iron sand mortar, at 8.03 cm.

  11. Faecal indicator bacteria enumeration in beach sand: A comparison study of extraction methods in medium to coarse sands

    USGS Publications Warehouse

    Boehm, A.B.; Griffith, J.; McGee, C.; Edge, T.A.; Solo-Gabriele, H. M.; Whitman, R.; Cao, Y.; Getrich, M.; Jay, J.A.; Ferguson, D.; Goodwin, K.D.; Lee, C.M.; Madison, M.; Weisberg, S.B.

    2009-01-01

    Aims: The absence of standardized methods for quantifying faecal indicator bacteria (FIB) in sand hinders comparison of results across studies. The purpose of the study was to compare methods for extraction of faecal bacteria from sands and recommend a standardized extraction technique. Methods and Results: Twenty-two methods of extracting enterococci and Escherichia coli from sand were evaluated, including multiple permutations of hand shaking, mechanical shaking, blending, sonication, number of rinses, settling time, eluant-to-sand ratio, eluant composition, prefiltration and type of decantation. Tests were performed on sands from California, Florida and Lake Michigan. Most extraction parameters did not significantly affect bacterial enumeration. anova revealed significant effects of eluant composition and blending; with both sodium metaphosphate buffer and blending producing reduced counts. Conclusions: The simplest extraction method that produced the highest FIB recoveries consisted of 2 min of hand shaking in phosphate-buffered saline or deionized water, a 30-s settling time, one-rinse step and a 10 : 1 eluant volume to sand weight ratio. This result was consistent across the sand compositions tested in this study but could vary for other sand types. Significance and Impact of the Study: Method standardization will improve the understanding of how sands affect surface water quality. ?? 2009 The Society for Applied Microbiology.

  12. Sand-wave movement on Little Georges Bank

    USGS Publications Warehouse

    Twichell, David C.

    1983-01-01

    A 1-x-1.5-km area on Little Georges Bank (centered at 41?08?N., 68?04?W.) was mapped three times during a ten-month period by sidescan sonar and echo-sounding techniques to assess the morphology and mobility of sand waves on Georges Bank. Sand-wave amplitudes in the survey area ranged from 1-11 m although most were 5-7 m. Wavelengths were not constant as the crests were sinuous and in places, even bifurcated. The sand waves are asymmetrical with their steepest sides facing northwest; however, gradients of their steep sides mostly are 4?-10? which is well below the angle of repose for sand in water. Sand waves tended to have greater relief and a sharper asymmetry during the survey in September than during those in June or April. During the survey period the sand waves moved but the direction and rate of motion was variable. Even along an individual sand wave some parts moved as much as 60 m between surveys while other parts apparently remained stationary. The sand waves were asymmetrical, but movement was not consistently in the direction that the steep sides faced. Along the same sand wave, parts moved to the northwest while other parts moved to the southeast. Despite the complex pattern of sand motion, the mean displacement of the sand waves was below the resolution of the survey technique; to resolve it, a longer survey is needed.

  13. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey.

    PubMed

    Orgün, Y; Altinsoy, N; Sahin, S Y; Güngör, Y; Gültekin, A H; Karahan, G; Karacik, Z

    2007-06-01

    This paper represents the first reports on the natural and anthropogenic radionuclides in Kestanbol granitic pluton and surrounding rocks, and coastal region of the Ezine town. To assess the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate and the external hazard index were calculated, and in situ gamma dose rates were measured. The high-activity concentrations were measured in the pluton and sands, which was originated mainly from the pluton, due to the presence of zircon, allanite, monazite, thorite, uranothorite and apatite. The average activity concentrations of (238)U, (232)Th and (40)K are 174.78, 204.69 and 1171.95 Bq kg(-1) for pluton, and 290.36, 532.04 and 1160.75 Bq kg(-1) for sands, respectively. (137)Cs in Ezine region ranged from 0-6.57 Bq kg(-1). The average absorbed dose rate for the granitic and sand samples were calculated to be 251.6 and 527.92 nGy h(-1), respectively. The maximum contribution to the total absorbed gamma dose rate in air was due to the (232)Th (52.3% for pluton and 67.1% for sands). The Raeq activities of the pluton and sands are higher than the recommended maximum value of 370 Bq kg(-1) criterion limit of Raeq activity for building materials.

  14. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  15. Diffuse light-sheet microscopy for stripe-free calcium imaging of neural populations.

    PubMed

    Taylor, Michael A; Vanwalleghem, Gilles C; Favre-Bulle, Itia A; Scott, Ethan K

    2018-06-19

    Light-sheet microscopy is used extensively in developmental biology and neuroscience. One limitation of this approach is that absorption and scattering produces shadows in the illuminating light sheet, resulting in stripe artifacts. Here, we introduce diffuse light-sheet microscopes that use a line diffuser to randomize the light propagation within the image plane, allowing the light sheets to reform after obstacles. We incorporate diffuse light sheets in two existing configurations: selective plane illumination microscopy (SPIM) in which the sample is illuminated with a static sheet of light, and digitally scanned light sheet (DSLS) in which a thin Gaussian beam is scanned across the image plane during each acquisition. We compare diffuse light-sheet microscopes to their conventional counterparts for calcium imaging of neural activity in larval zebrafish. We show that stripe artifacts can cast deep shadows that conceal some neurons, and that the stripes can flicker, producing spurious signals that could be interpreted as biological activity. Diffuse light sheets mitigate these problems, illuminating the blind spots produced by stripes and removing artifacts produced by the stripes' movements. The upgrade to diffuse light sheets is simple and inexpensive, especially in the case of DSLS, where it requires the addition of one optical element. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Numerical simulation of wind-sand movement in the reversed flow region of a sand dune with a bridge built downstream.

    PubMed

    He, Wei; Huang, Ning; Xu, Bin; Wang, Wenbo

    2018-04-23

    A bridge built inside the reversed flow region of a sand dune will change the characteristics of wind-sand movement in this region. The Reynolds-averaged Navier-Stokes simulation and discrete particle tracing are used to simulate the wind-sand movement around a sand dune with a bridge built inside the reversed region. Three cases with different bridge positions are studied. The results show that 1) compared with the isolated dune case, a tall bridge built at the leeward toe leads to an increase in the deposition rate on the leeward slope and a longer reversed flow region downstream of the sand dune; meanwhile, the high speed of crosswind on the bridge indicates that some measures should be taken to protect trains from strong crosswind; 2) a low bridge at the leeward toe has little effect on the sand deposition and reversed flow region of the dune; however, low sand transport rate and crosswind speed on the bridge show that anti-crosswind/sand measures should be taken according to the actual situation and 3) a low bridge on the leeward slope has little effect on the length of reversed flow region, however, high crosswind speed and sand flux on the bridge reveal the need of anti-crosswind/sand measures on the bridge. Moreover, the bridges in the reversed flow region increase the sand flux near the leeward crest; as a result, the moving patterns of the sand dune are changed.

  17. Sand and gravel mining: effects on ground water resources in Hancock county, Maine, USA

    NASA Astrophysics Data System (ADS)

    Peckenham, John M.; Thornton, Teresa; Whalen, Bill

    2009-01-01

    Based on this preliminary study, existing sand and gravel mining regulations (in Maine, USA) can be inferred to provide some protection to water resources. Sand and gravel deposits are important natural resources that have dual uses: mining for construction material and pumping for drinking water. How the mining of sand and gravel affects aquifers and change aquifer vulnerability to contamination is not well documented. Mining regulations vary greatly by state and local jurisdiction. This study test metrics to measure the effectiveness of mining regulations. The sand and gravel aquifer system studied is covered with former and active gravel pits to nearly 25% of its areal extent. Data from homeowner interviews and field measurements found scant evidence of changes in water quantity. Water quality analyses collected from springs, streams, ponds and wells indicate that the aquifer was vulnerable to contamination by chloride and nitrate. However, water quality changes can not be related directly to mining activities.

  18. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.

  19. Critical state of sand matrix soils.

    PubMed

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  20. Sand Sources Near Athabasca Valles

    NASA Image and Video Library

    2014-10-29

    This image captured by NASA Mars Reconnaissance Orbiter shows a small channel cutting into young volcanic lavas in a region where massive catastrophic flooding took place in the relatively recent past. The Athabasca Valles region includes a vast lava flow, thought to be the youngest on Mars, with even younger outflow channels that were carved by running water. The source of the water is believed to be the Cerberus Fossae valleys to the north, which may have penetrated to an over-pressurized aquifer in the subsurface. Nowadays, erosion by gravity, wind, and frost gradually wears down the rims of the outflow channels. In this scene, we see dark materials along the channel rim that were probably exposed by this erosion. The dark materials are less red than the surrounding surface and so they appear blue in this enhanced color picture. Viewed close up, the dark materials show ripples that suggest they are made up of mobile sand. It is possible that this sand originated elsewhere and simply collected where we see it today, but the fact that sand is not found elsewhere in the scene suggest to us that it is eroding out of the volcanic layers at the retreating rim of the channel. Sand sources are important because mobile sand grains have only a limited lifetime, wearing down and chipping apart each time they impact the surface. Erosion of the volcanic materials in this region may provide sands to replace those that are destroyed. Few such sand sources have so far been identified on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA18889

  1. Inland aeolian deposits of the Iberian Peninsula: Sand dunes and clay dunes of the Duero Basin and the Manchega Plain. Palaeoclimatic considerations

    NASA Astrophysics Data System (ADS)

    Bernat Rebollal, M.; Pérez-González, A.

    2008-12-01

    This paper describes the latest research on the geomorphological characteristics, formation environment and chronology of the main inland aeolian deposits from the south-eastern Duero Basin (DB) and the Manchega Plain (MP) of the Iberian Peninsula. Similarities and differences between the aeolian deposits of these two locations are summarised. Wind deflation from the Guadiana and Júcar alluvial systems created the aeolian deposits of the MP. These deposits are mainly composed of quartz sands. However, in the San Juan alluvial plain (MP) there is a large extent of clay dunes formed by exposure to prevalent winds of seasonal playa-lakes with salt and clay sediments. In the DB, wind remobilisation of the small particles from Quaternary terraces and Tertiary arkosic sediments left aeolian deposits of quartz-feldspar sands. Textural parameters of the aeolian deposits show large variations depending on the location and the original deposit. Thus, in the DB the aeolian sands derived from the deflation of fluvial sediments are better sorted and smaller in grain size than those created by the deflation of arkosic sediments. Morphologically, simple and compound parabolic dunes (U-V forms, hemicyclic, lobate and elongate), crescentic and linear dunes, climbing dunes and blowout dunes have been recognized at both sites. Barchan and dome dunes are present only in the DB while "lunette lunette-clay dunes" are found only in the MP. In both locations, the large extent of aeolian sand sheets and the predominance of simple and compound parabolic dunes indicates the active role of sparse vegetation cover in the formation of this aeolian system. In the DB, dunes were formed by southwest and west winds, while in the MP the aeolian morphologies indicate that the prevalent winds were west and northwest. The chronology of the dune deposits is being determined with luminescence (TL-OSL) dating and Mass Spectrometry Analysis ( 14C-AMS). In this way, the aeolian activity and stabilisation

  2. Central Asian sand seas climate change as inferred from OSL dating

    NASA Astrophysics Data System (ADS)

    Maman, Shimrit; Tsoar, Haim; Blumberg, Dan; Porat, Naomi

    2014-05-01

    , wetter, and less windy climate that persists until today and resulted in dune stabilization around the Mid-Holocene. This study, solidifies our results regarding the Kyzylkum and Karakum sand seas dynamics, ages, and emphasizes the importance of regional climatic control on aeolian activity.

  3. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters.

    PubMed

    Li, Zhen; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A

    2013-11-01

    This article characterizes, experimentally and theoretically, the transport and retention of engineered nanoparticles (NP) through sand filters at drinking water treatment plants (DWTPs) under realistic conditions. The transport of four commonly used NPs (ZnO, CeO2, TiO2, and Ag, with bare surfaces and coating agents) through filter beds filled with sands from either acid washed and calcined, freshly acquired filter media, and used filter media from active filter media, were investigated. The study was conducted using water obtained upstream of the sand filter at DWTP. The results have shown that capping agents have a determinant importance in the colloidal stability and transport of NPs through the different filter media. The presence of the biofilm in used filter media increased adsorption of NPs but its effects in retaining capped NPs was less significant. The data was used to build a mathematical model based on the advection-dispersion equation. The model was used to simulate the performance of a scale-up sand filter and the effects on filtration cycle of traditional sand filtration system used in DWTPs. Published by Elsevier Ltd.

  4. Probing the interactions of phenol with oxygenated functional groups on curved fullerene-like sheets in activated carbon.

    PubMed

    Yin, Chun-Yang; Ng, Man-Fai; Goh, Bee-Min; Saunders, Martin; Hill, Nick; Jiang, Zhong-Tao; Balach, Juan; El-Harbawi, Mohanad

    2016-02-07

    The mechanism(s) of interactions of phenol with oxygenated functional groups (OH, COO and COOH) in nanopores of activated carbon (AC) is a contentious issue among researchers. This mechanism is of particular interest because a better understanding of the role of such groups in nanopores would essentially translate to advances in AC production and use, especially in regard to the treatment of organic-based wastewaters. We therefore attempt to shed more light on the subject by employing density functional theory (DFT) calculations in which fullerene-like models integrating convex or concave structure, which simulate the eclectic porous structures on AC surface, are adopted. TEM analysis, EDS mapping and Boehm titration are also conducted on actual phenol-adsorbed AC. Our results suggest the widely-reported phenomenon of decreased phenol uptake on AC due to increased concentration of oxygenated functional groups is possibly attributed to the increased presence of the latter on the convex side of the curved carbon sheets. Such a system effectively inhibits phenol from getting direct contact with the carbon sheet, thus constraining any available π-π interaction, while the effect of groups acting on the concave part of the curved sheet does not impart the same detriment.

  5. Modeling surficial sand and gravel deposits

    USGS Publications Warehouse

    Bliss, J.D.; Page, N.J.

    1994-01-01

    Mineral-deposit models are an integral part of quantitative mineral-resource assessment. As the focus of mineral-deposit modeling has moved from metals to industrial minerals, procedure has been modified and may be sufficient to model surficial sand and gravel deposits. Sand and gravel models are needed to assess resource-supply analyses for planning future development and renewal of infrastructure. Successful modeling of sand and gravel deposits must address (1) deposit volumes and geometries, (2) sizes of fragments within the deposits, (3) physical characteristics of the material, and (4) chemical composition and chemical reactivity of the material. Several models of sand and gravel volumes and geometries have been prepared and suggest the following: Sand and gravel deposits in alluvial fans have a median volume of 35 million m3. Deposits in all other geologic settings have a median volume of 5.4 million m3, a median area of 120 ha, and a median thickness of 4 m. The area of a sand and gravel deposit can be predicted from volume using a regression model (log [area (ha)] =1.47+0.79 log [volume (million m3)]). In similar fashion, the volume of a sand and gravel deposit can be predicted from area using the regression (log [volume (million m3)]=-1.45+1.07 log [area (ha)]). Classifying deposits by fragment size can be done using models of the percentage of sand, gravel, and silt within deposits. A classification scheme based on fragment size is sufficiently general to be applied anywhere. ?? 1994 Oxford University Press.

  6. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing-Tianjin Sand Source Region, China.

    PubMed

    Wu, Zhitao; Wu, Jianjun; He, Bin; Liu, Jinghui; Wang, Qianfeng; Zhang, Hong; Liu, Yong

    2014-10-21

    To improve the ecological conditions, the Chinese government adopted six large-scale ecological restoration programs including 'Three-North Shelterbelt Project', "Grain for Green Project" and "Beijing-Tianjin Sand Source Control Project". Meanwhile, these ecologically vulnerable areas have experienced frequent droughts. However, little attention has been paid to the impact of drought on the effectiveness of these programs. Taking Beijing-Tianjin Sand Source Region (BTSSR) as study area, we investigated the role of droughts and ecological restoration program on trends of vegetation activities and to address the question of a possible "drought signal" in assessing effectiveness of ecological restoration program. The results demonstrate the following: (1) Vegetation activity increased in the BTSSR during 2000-2010, with 58.44% of the study area showing an increased NDVI, of which 11.80% had a significant increase at 0.95 confidential level. The decreasing NDVI trends were mainly concentrated in a southwest-to-northeast strip in the study area. (2) Drought was the main driving force for a decreasing trend of vegetation activity in the southwest-to-northeast regions of the BTSSR at the regional and spatial scales. Summer droughts in 2007 and 2009 contributed to the decreasing trend in NDVI. The severe and extreme droughts in summer reduced the NDVI by approximately 13.06% and 23.55%, respectively. (3) The residual analysis result showed that human activities, particularly the ecological restoration programs, have a positive impact on vegetation change. Hence, the decreasing trends in the southwest-to-northeast regions of the BTSSR cannot be explained by the improper ecological restoration program and is partly explained by droughts, especially summer droughts. Therefore, drought offset the ecological restoration program-induced increase in vegetation activity in the BTSSR.

  7. Magnetic configurations of the tilted current sheets in magnetotail

    NASA Astrophysics Data System (ADS)

    Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.

    2008-11-01

    In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak

  8. Ocean Sand, Bahamas

    NASA Image and Video Library

    2011-04-20

    NASA image acquired January 17, 2001 Though the above image may resemble a new age painting straight out of an art gallery in Venice Beach, California, it is in fact a satellite image of the sands and seaweed in the Bahamas. The image was taken by the Enhanced Thematic Mapper plus (ETM+) instrument aboard the Landsat 7 satellite. Tides and ocean currents in the Bahamas sculpted the sand and seaweed beds into these multicolored, fluted patterns in much the same way that winds sculpted the vast sand dunes in the Sahara Desert. Image courtesy Serge Andrefouet, University of South Florida Instrument: Landsat 7 - ETM+ Credit: NASA/GSFC/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  9. Critical State of Sand Matrix Soils

    PubMed Central

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  10. Behaviour of estrogenic endocrine-disrupting chemicals in permeable carbonate sands.

    PubMed

    Shepherd, Benjamin O; Erler, Dirk V; Tait, Douglas R; van Zwieten, Lukas; Kimber, Stephen; Eyre, Bradley D

    2015-08-01

    The remediation of four estrogenic endocrine-disrupting compounds (EDCs), estrone (E1), estradiol (E2), ethinylestradiol (EE2) and estriol (E3), was measured in saturated and unsaturated carbonate sand-filled columns dosed with wastewater from a sewage treatment plant. The estrogen equivalency (EEQ) of inlet wastewater was 1.2 ng L(-1) and was remediated to an EEQ of 0.5 ng L(-1) through the unsaturated carbonate sand-filled columns. The high surface area of carbonate sand and associated high microbial activity may have assisted the degradation of these estrogens. The fully saturated sand columns showed an increase in total estrogenic potency with an EEQ of 2.4 ng L(-1), which was double that of the inlet wastewater. There was a significant difference (P < 0.05) in total estrogenic potency between aerobic and anaerobic columns. The breakdown of conjugated estrogens to estrogenic EDCs formed under long residence time and reducing conditions may have been responsible for the increase in the fully saturated columns. This may also be explained by the desorption of previously sorbed estrogenic EDCs. The effect of additional filter materials, such as basalt sediment and coconut fibre, on estrogenic EDC reduction was also tested. None of these amendments provided improvements in estrogen remediation relative to the unamended unsaturated carbonate sand columns. Aerobic carbonate sand filters have good potential to be used as on-site wastewater treatment systems for the reduction of estrogenic EDCs. However, the use of fully saturated sand filters, which are used to promote denitrification, and the loss of nitrogen as N2 were shown to cause an increase in EEQ. The potential for the accumulation of estrogenic EDCs under anaerobic conditions needs to be considered when designing on-site sand filtration systems required to reduce nitrogen. Furthermore, the accumulation of estrogens under anaerobic conditions such as under soil absorption systems or leachate fields has the

  11. PM 2.5 Airborne Particulates Near Frac Sand Operations.

    PubMed

    Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin

    2015-11-01

    The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health.

  12. Transport processes in intertidal sand flats

    NASA Astrophysics Data System (ADS)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  13. High temperature thermal energy storage in moving sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  14. Load capacity, failure mode and design criteria investigation of sand jacks : full scale load testing of sand jacks.

    DOT National Transportation Integrated Search

    2008-12-01

    A sand-jack is a sand filled container used as a component of cast-in-place bridge false-work. The sand filler facilitates the removal of the false-work by allowing slow and controlled lowering of the bracing that has become wedged beneath the new br...

  15. Laboratory studies of dune sand for the use of construction industry in Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka

    2015-04-01

    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing

  16. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.

    PubMed

    Hyun, Seunghun; Jafvert, Chad T; Lee, Linda S; Rao, P Suresh C

    2006-06-01

    Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.

  17. Self-enhanced catalytic activities of functionalized graphene sheets in the combustion of nitromethane: molecular dynamic simulations by molecular reactive force field.

    PubMed

    Zhang, Chaoyang; Wen, Yushi; Xue, Xianggui

    2014-08-13

    Functionalized graphene sheet (FGS) is a promising additive that enhances fuel/propellant combustion, and the determination of its mechanism has attracted much interest. In the present study, a series of molecular dynamic simulations based on a reactive force field (ReaxFF) are performed to explore the catalytic activity (CA) of FGS in the thermal decay of nitromethane (NM, CH3NO2). FGSs and pristine graphene sheets (GSs) are oxidized in hot NM liquid to increase their functionalities and subsequently show self-enhanced CAs during the decay. The CAs result from the interatomic exchanges between the functional groups on the sheets and the NM liquid, i.e., mainly between H and O atoms. CA is dependent on the density of NM, functionalities of sheets, and temperature. The GSs and FGSs that originally exhibit different functionalities tend to possess similar functionalities and consequently similar CAs as temperature increases. Other carbon materials and their oxides can accelerate combustion of other fuels/propellants similar to NM, provided that they can be dispersed and their key reaction steps in combustion are similar to NM.

  18. The microbiome of glaciers and ice sheets.

    PubMed

    Anesio, Alexandre M; Lutz, Stefanie; Chrismas, Nathan A M; Benning, Liane G

    2017-01-01

    Glaciers and ice sheets, like other biomes, occupy a significant area of the planet and harbour biological communities with distinct interactions and feedbacks with their physical and chemical environment. In the case of the glacial biome, the biological processes are dominated almost exclusively by microbial communities. Habitats on glaciers and ice sheets with enough liquid water to sustain microbial activity include snow, surface ice, cryoconite holes, englacial systems and the interface between ice and overridden rock/soil. There is a remarkable similarity between the different specific glacial habitats across glaciers and ice sheets worldwide, particularly regarding their main primary producers and ecosystem engineers. At the surface, cyanobacteria dominate the carbon production in aquatic/sediment systems such as cryoconite holes, while eukaryotic Zygnematales and Chlamydomonadales dominate ice surfaces and snow dynamics, respectively. Microbially driven chemolithotrophic processes associated with sulphur and iron cycle and C transformations in subglacial ecosystems provide the basis for chemical transformations at the rock interface under the ice that underpin an important mechanism for the delivery of nutrients to downstream ecosystems. In this review, we focus on the main ecosystem engineers of glaciers and ice sheets and how they interact with their chemical and physical environment. We then discuss the implications of this microbial activity on the icy microbiome to the biogeochemistry of downstream ecosystems.

  19. Analysis of wind-blown sand movement over transverse dunes.

    PubMed

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  20. Analysis of Wind-blown Sand Movement over Transverse Dunes

    PubMed Central

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-01-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372

  1. The chronology of Late Pleistocene thermal contraction cracking derived from sand wedge OSL dating in central and southern France

    NASA Astrophysics Data System (ADS)

    Andrieux, Eric; Bateman, Mark D.; Bertran, Pascal

    2018-03-01

    Much of France remained unglaciated during the Late Quaternary and was subjected to repeated phases of periglacial activity. Numerous periglacial features have been reported but disentangling the environmental and climatic conditions they formed under, the timing and extent of permafrost and the role of seasonal frost has remained elusive. The primary sandy infillings of relict sand-wedges and composite-wedge pseudomorphs record periglacial activity. As they contain well-bleached quartz-rich aeolian material they are suitable for optically stimulated luminescence dating (OSL). This study aims to reconstruct when wedge activity took place in two regions of France; Northern Aquitaine and in the Loire valley. Results from single-grain OSL measurements identify multiple phases of activity within sand wedges which suggest that wedge activity in France occurred at least 11 times over the last 100 ka. The most widespread events of thermal contraction cracking occurred between ca. 30 and 24 ka (Last Permafrost Maximum) which are concomitant with periods of high sand availability (MIS 2). Although most phases of sand-wedge growth correlate well with known Pleistocene cold periods, the identification of wedge activity during late MIS 5 and the Younger Dryas strongly suggests that these features do not only indicate permafrost but also deep seasonal ground freezing in the context of low winter insolation. These data also suggest that the overall young ages yielded by North-European sand-wedges likely result from poor record of periglacial periods concomitant with low sand availability and/or age averaging inherent with standard luminescence methods.

  2. Influence of a Reclaimed Sand Addition to Moulding Sand with Furan Resin on Its Impact on the Environment.

    PubMed

    Holtzer, Mariusz; Dańko, Rafał; Kmita, Angelika

    Metalcasting involves having a molten metal poured in a hollow mould to produce metal objects. These moulds are generally made of sand and are chemically bonded, clay-bonded, or even unbounded. There are many binder systems used. Binders based on furfuryl resins constitute currently the highest fraction in the binders no-bake group. Moulding sand, after knocking out the cast, is partially reclaimed, and the remaining part, known as waste foundry sand is used or stored outside the foundry. In this case, the environment hazardous organic compounds and metals can be leached from the moulding sand, thus causing pollution of water and soil. Also during the casting moulds with molten metal, they emit pyrolysis gases containing many different compounds, often dangerous from the BTEX and PAH group, which has adverse impacts on the environment and workers. The article presents the results of research on the impact of the regenerate addition to the moulding sand matrix on emitted gases and the degree of threat to the environment due to leaching of hazardous components. Therefore, for the total assessment of the moulding sands harmfulness, it is necessary to perform investigations concerning the dangerous substances elution into the environment during their management and storage, as well as investigations concerning emissions of hazardous substances (especially from the BTEX and PAHs group) during moulds pouring, cooling, and casting knocking out. Both kinds of investigations indicated that reclaimed sand additions to moulding sands have significantly negative influence on the environment and working conditions.

  3. Northern Sand Sea

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 82 degrees North latitude during Northern spring. The image is completely dominated by dunes. In sand seas, it is very common for a single type of dune to occur, and for a single predominate wind to control the alignment of the dunes.

    Image information: VIS instrument. Latitude 82.2, Longitude 152.5 East (207.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.

    PubMed

    Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe

    2006-10-01

    Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.

  5. ISMIP6 - initMIP: Greenland ice sheet model initialisation experiments

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Payne, Tony; Larour, Eric; Abe Ouchi, Ayako; Gregory, Jonathan; Lipscomb, William; Seroussi, Helene; Shepherd, Andrew; Edwards, Tamsin

    2016-04-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. This intercomparison exercise (initMIP) aims at comparing, evaluating and improving the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experiments are conceived for the large-scale Greenland ice sheet and are designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The latter experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss first results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  6. Mineral resource of the month: industrial sand and gravel

    USGS Publications Warehouse

    Dolley, Thomas

    2007-01-01

    With many diverse uses, industrial sand and gravel, also known as silica sand, is one of the most important nonmetallic minerals in the world. Industrial sand and gravel is a mining industry term used for sands that have a very high percentage of silicon dioxide, or greater than 95 percent quartz. Deposits of industrial sand and gravel can be found virtually everywhere on Earth, but are less widespread than deposits of common construction sand and gravel. Industrial sand and gravel is distinctive in grain size, hardness, inertness and resistance to high temperature and chemical action. Beverage containers, fiberglass insulation, fiber-optic cables and light bulbs are just some of today’s many products produced from industrial sand and gravel.

  7. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.

    PubMed

    Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S

    2013-06-28

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.

  8. Evaluating process origins of sand-dominated fluvial stratigraphy

    NASA Astrophysics Data System (ADS)

    Chamberlin, E.; Hajek, E. A.

    2015-12-01

    Sand-dominated fluvial stratigraphy is often interpreted as indicating times of relatively slow subsidence because of the assumption that fine sediment (silt and clay) is reworked or bypassed during periods of low accommodation. However, sand-dominated successions may instead represent proximal, coarse-grained reaches of paleo-river basins and/or fluvial systems with a sandy sediment supply. Differentiating between these cases is critical for accurately interpreting mass-extraction profiles, basin-subsidence rates, and paleo-river avulsion and migration behavior from ancient fluvial deposits. We explore the degree to which sand-rich accumulations reflect supply-driven progradation or accommodation-limited reworking, by re-evaluating the Castlegate Sandstone (Utah, USA) and the upper Williams Fork Formation (Colorado, USA) - two Upper Cretaceous sandy fluvial deposits previously interpreted as having formed during periods of relatively low accommodation. Both units comprise amalgamated channel and bar deposits with minor intra-channel and overbank mudstones. To constrain relative reworking, we quantify the preservation of bar deposits in each unit using detailed facies and channel-deposit mapping, and compare bar-deposit preservation to expected preservation statistics generated with object-based models spanning a range of boundary conditions. To estimate the grain-size distribution of paleo-sediment input, we leverage results of experimental work that shows both bed-material deposits and accumulations on the downstream side of bars ("interbar fines") sample suspended and wash loads of active flows. We measure grain-size distributions of bar deposits and interbar fines to reconstruct the relative sandiness of paleo-sediment supplies for both systems. By using these novel approaches to test whether sand-rich fluvial deposits reflect river systems with accommodation-limited reworking and/or particularly sand-rich sediment loads, we can gain insight into large

  9. Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia.

    PubMed

    Khandaker, Mayeen Uddin; Asaduzzaman, Khandoker; Sulaiman, Abdullah Fadil Bin; Bradley, D A; Isinkaye, Matthew Omoniyi

    2018-02-01

    Study is made of the radioactivity in the beach sands of Langkawi island, a well-known tourist destination. Investigation is made of the relative presence of the naturally occurring radionuclide 40 K and the natural-series indicator radionuclides 226 Ra and 232 Th, the gamma radiation exposure also being estimated. Sample quantities of black and white sand were collected for gamma ray spectrometry, yielding activity concentration in black sands of 226 Ra, 232 Th and 40 K from 451±9 to 2411±65Bqkg -1 (mean of 1478Bqkg -1 ); 232±4 to 1272±35Bqkg -1 (mean of 718Bqkg -1 ) and 61±6 to 136±7Bqkg -1 (mean of 103Bqkg -1 ) respectively. Conversely, in white sands the respective values for 226 Ra and 232 Th were appreciably lower, at 8.3±0.5 to 13.7±1.4Bqkg -1 (mean of 9.8Bqkg -1 ) and 4.5±0.7 to 9.4±1.0Bqkg -1 (mean of 5.9Bqkg -1 ); 40 K activities differed insubstantially from that in black sands, at 85±4 to 133±7Bqkg -1 with a mean of 102Bqkg -1 . The mean activity concentrations of 226 Ra and 232 Th in black sands are comparable with that of high background areas elsewhere in the world. The heavy minerals content gives rise to elevated 226 Ra and 232 Th activity concentrations in all of black sand samples. Evaluation of the various radiological risk parameters points to values which in some cases could be in excess of recommendations providing for safe living and working. Statistical analysis examines correlations between the origins of the radionuclides, also identifying and classifying the radiological parameters. Present results may help to form an interest in rare-earth resources for the electronics industry, power generation and the viability of nuclear fuels cycle resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Full scale load testing of sand-jacks.

    DOT National Transportation Integrated Search

    2006-06-01

    A sand-jack is a sand filled container used as a component of cast-in-place bridge false-work. The sand filler facilitates the removal of the false-work by allowing slow and controlled lowering of the bracing that has become wedged beneath the new br...

  11. Elevated Nitrogen Deposition from Alberta Oil Sands Development Stimulates Phosphatase Activity in Dominant Sphagnum Moss Species

    NASA Astrophysics Data System (ADS)

    Kashi, N. N.; Wieder, R.; Vile, M. A.

    2013-12-01

    Emissions of NOx associated with Alberta oil sands (AOS) development are leading to locally elevated atmospheric N deposition, in a region where background N deposition has been historically quite low (< 1 kg/ha/yr). This elevated N deposition has the potential to alter the ecosystem structure and function of nutrient-poor boreal peatlands. Nitrogen enrichment may alter soil microbial activity, which could be manifested in changes in extracellular enzyme activities. Since 2011, we have been experimentally adding N as NH4NO3 in simulated precipitation at 0, 5, 10, 15, 20, and 25 kg N ha/yr/ plus no-water controls to a boreal bog and a poor fen (3 replicate plots per treatment). In 2013, acid phosphatase activities in living plant capitulum of Sphagnum angustifolium, Sphagnum fuscum, and Sphagnum magellanicum were quantified in June and July using 4-methyumbelliferylphosphate and fluorescence detection of the enzymatically released methylumbelliferone (MUF). Phosphatase activities did not differ with N treatment for S. angustifolium in the bog (p=0.3409) or the poor fen (p=0.0629), or for S. fuscum in the bog (p=0.1950), averaging 35.0 × 0.7, 61.6 × 1.2, and 41.6 × 0.9 μmol MUF/g DWT/hr, respectively. For S. fuscum in the poor fen, phosphatase activities differed between N treatments (p=0.0275), ranging 40.6 × 1.1 μmol MUF/g DWT/hr in the control plots to 73.7 × 2.0 μmol MUF/g DWT/hr in the 5 kg/ha/yr N treatment plots; increasing N deposition did not result in a gradual change in enzyme activity. On the other hand, S. magellanicum phosphatase activities differed between N treatments (p=0.0189) and showed a pattern of generally increasing activity with increasing N deposition (37.4 × 0.5 μmol MUF/g DWT/hr in control plots; 97.9 × 4.5 μmol MUF/g DWT/hr in the 25 kg/ha/yr N treatment plots). The differing phosphatase responses between these dominant Sphagnum species suggest unique differences in nutrient balance and/or microbial activity. Combining the

  12. Triggering of explosive reconnection in a thick current sheet via current sheet compression: Less current sheet thinning, more temperature anisotropy

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Shinohara, I.; Fujimoto, M.

    2016-12-01

    Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.

  13. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    NASA Astrophysics Data System (ADS)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  14. Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers.

    PubMed

    Katayama, Taiki; Yoshioka, Hideyoshi; Muramoto, Yoshiyuki; Usami, Jun; Fujiwara, Kazuhiro; Yoshida, Satoshi; Kamagata, Yoichi; Sakata, Susumu

    2015-02-01

    The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates.

  15. Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers

    PubMed Central

    Katayama, Taiki; Yoshioka, Hideyoshi; Muramoto, Yoshiyuki; Usami, Jun; Fujiwara, Kazuhiro; Yoshida, Satoshi; Kamagata, Yoichi; Sakata, Susumu

    2015-01-01

    The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates. PMID:25105906

  16. Mineralogy of Eolian Sands at Gale Crater

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Vaniman, D. T.; Blake, D. F.; Bristow, T. F.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Morris, R. V.; Morrison, S. M.; Downs, R. T.; hide

    2016-01-01

    The Mars Science Laboratory rover Curiosity has been exploring outcrop and regolith in Gale crater since August 6, 2012. During this exploration, the mission has collected 10 samples for mineralogical analysis by X-ray diffraction (XRD), using the CheMin instrument. The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode tube source to acquire both mineralogy (from the pat-tern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A detailed description of CheMin is provided in [1]. As part of the rover checkout after landing, the first sample selected for analysis was an eolian sand deposit (the Rocknest "sand shadow"). This sample was selected in part to characterize unconsolidated eolian regolith, but primarily to prove performance of the scoop collection system on the rover. The focus of the mission after Rocknest was on the consolidated sediments of Gale crater, so all of the nine subsequent samples were collected by drilling into bedrock com-posed of lithified sedimentary materials, including mudstone and sandstone. No scoop samples have been collected since Rocknest, but at the time this abstract was written the mission stands poised to use the scoop again, to collect active dune sands from the Bagnold dune field. Several abstracts at this conference outline the Bagnold dune campaign and summarize preliminary results from analyses on approach to the Namib dune sampling site. In this abstract we review the mineralogy of Rocknest, contrast that with the mineralogy of local sediments, and anticipate what will be learned by XRD analysis of Bagnold dune sands.

  17. Use of sand wave habitats by silver hake

    USGS Publications Warehouse

    Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.

    2003-01-01

    Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.

  18. Failure Mode and Effect Analysis (FMEA) Applications to Identify Iron Sand Reject and Losses in Cement Industry : A Case Study

    NASA Astrophysics Data System (ADS)

    Helia, V. N.; Wijaya, W. N.

    2017-06-01

    One of the main raw materials required in the manufacture of cement is iron sand. Data from the Procurement Department on XYZ Company shows that the number of defective iron sand (reject) fluctuates every month. Iron sand is an important raw material in the cement production process, so that the amount of iron sand reject and losses got financial and non-financial impact. This study aims to determine the most dominant activity as the cause of rejection and losses of iron sands and suggest improvements that can be made by using the approach of FMEA (Failure Mode and Effect Analysis). Data collection techniques in this study was using the method of observation, interviews, and focus group discussion (FGD) as well as the assessment of the experts to identify it. Results from this study is there are four points of the most dominant cause of the defect of iron sand (mining activities, acceptance, examination and delivery). Recommendation for overcoming these problem is presented (vendor improvement).

  19. Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Williams, D. J.; Mitchell, D. G.; Frank, L. A.; Huang, C. Y.

    1989-01-01

    The spectral characteristics of plasma-sheet ion and electron populations during periods of low geomagnetic activity were determined from the analysis of 127 one-hour average samples of central plasma sheet ions and electrons. Particle data from the ISEE-1 low-energy proton and electron differential energy analyzer and medium-energy particle instrument were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances above 12 earth radii. The relationships between the ion and electron spectral shapes and between the spectral shapes and the geomagnetic activity index were statistically investigated. It was found that the presence of interplanetary particle fluxes does not affect the plasma sheet particle spectral shape.

  20. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  1. Elevated radionuclide concentrations in heavy mineral-rich beach sands in the Cox's Bazar region, Bangladesh and related possible radiological effects.

    PubMed

    Zaman, Mashrur; Schubert, Michael; Antao, Sytle

    2012-01-01

    The study focuses on elevated levels of environmental radioactivity present in heavy mineral deposits located along a 120-km coastal section of Cox's Bazar on the eastern panhandle of Bangladesh. The deposits are situated in or at sand dunes located on the recent beach (foredune area) or in attached paleo-beach areas (backdune area). This study investigates activity concentrations in bulk beach sands (six representative samples) and in five mineral fractions separated from the beach sands in order to assess potential radio-ecological effects and the possible use of the mineral deposits as a source for uranium and thorium. The bulk beach sands and individual mineral fractions were analysed by gamma-ray spectroscopy. The activity concentrations of U-238, U-235, Th-232 and K-40 in the bulk beach sand samples were found to be considerably high and positively correlated to the concentration of heavy minerals in the sand. In the mineral fractions, the highest activity concentrations were found in the zircon fraction followed by garnet, rutile, ilmenite and magnetite. The determination of (i) the radium activity, (ii) several radiation hazard indices and (iii) adsorbed and effective gamma doses allowed to assess the related exposure of the environment and the local population to elevated radioactivity. It becomes evident from the present data that (1) if raw sands or mineral fractions mined in the study area are used for building purposes or industrial use, their activity concentrations have to be considered from a radio-ecological perspective and (2) if mining and processing of the minerals is being considered, uranium and thorium may become strategically significant by-products.

  2. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands

    USGS Publications Warehouse

    Kenyon, Neil H.; Akhmetzhanov, A.M.; Twichell, D.C.

    2002-01-01

    Extensive fields of large barchan-like sand waves and longitudinal sand ribbons have been mapped by deep-towed SeaMARC IA sidescan sonar on part of the middle and lower Mississippi Fan that lies in about 3200 m of water. The area is beneath the strongly flowing Loop Current. The bedforms have not been adequately sampled but probably consist of winnowed siliciclastic-foraminiferal sands. The size (about 200 m from wingtip to wingtip) and shape of the large barchans is consistent with a previously observed peak current speed of 30 cm/s, measured 25 m above the seabed. The types of small-scale bedforms and the scoured surfaces of chemical crusts, seen on nearby bottom photographs, indicate that near-bed currents in excess of 30 cm/s may sometimes occur. At the time of the survey the sand transport direction was to the northwest, in the opposite direction to the Loop Current but consistent with there being a deep boundary current along the foot of the Florida Escarpment. Some reworking of the underlying sandy turbidites and debris flow deposits is apparent on the sidescan sonar records. Reworking by deep-sea currents, resulting in erosion and in deposits characterised by coarsening upwards structures and cross-bedding, is a process that has been proposed for sand found in cores in shallower parts of the Gulf of Mexico. This process is more widespread than hitherto supposed. 

  3. Experimental study of optimal self compacting concrete with spent foundry sand as partial replacement for M-sand using Taguchi approach

    NASA Astrophysics Data System (ADS)

    Nirmala, D. B.; Raviraj, S.

    2016-06-01

    This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC) containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37) Orthogonal Arrays (OA) with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering "Nominal the better" situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.

  4. Chronology and geochemistry of late Holocene eolian deposits in the Brandon Sand Hills, Manitoba, Canada

    USGS Publications Warehouse

    Wolfe, S.A.; Muhs, D.R.; David, P.P.; McGeehin, J.P.

    2000-01-01

    Accelerator mass spectrometry and conventional radiocarbon age determinations of organic matter from paleosols indicate that the Brandon Sand Hills area of southern Manitoba has been subjected to recurrent intervals of eolian activity in the past 5000 years. Although precise regional correlations are precluded by dating uncertainties, periods of most notable paleosol development occurred around 2300 to 2000, 1400 to 1000, and 600 to 500 cal yr BP with eolian activity occurring before and after each of these periods. Episodes of eolian activity may correspond to periods of regional drought, whereas paleosols mark periods of increased moisture availability and stabilization by vegetation. The geochemistry of the eolian sands, paleosols and source sediments indicates that partial leaching of carbonates occurs from pedogenesis during humid climatic phases, and that this is probably the primary mechanism of carbonate depletion of eolian sands in this area. Recent trends in sand dune activity from historic aerial photography and early explorers' accounts indicate that the few active dunes that presently exist have stabilized at a rate of 10-20% per decade, despite several severe droughts in the 20th century. This may be attributed to pre-settlement droughts that were more severe than those in historic times although regional dune stabilization may also be related, in part, to the spread of forest cover in the past few hundred years. Crown copyright (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  5. Transport and retention of bacteria and viruses in biochar-amended sand.

    PubMed

    Sasidharan, Salini; Torkzaban, Saeed; Bradford, Scott A; Kookana, Rai; Page, Declan; Cook, Peter G

    2016-04-01

    The transport and retention of Escherichia coli and bacteriophages (PRD1, MS2 and ФX174), as surrogates for human pathogenic bacteria and viruses, respectively, were studied in the sand that was amended with several types of biochar produced from various feedstocks. Batch and column studies were conducted to distinguish between the role of attachment and straining in microbe retention during transport. Batch experiments conducted at various solution chemistries showed negligible attachment of viruses and bacteria to biochar before or after chemical activation. At any given solution ionic strength, the attachment of viruses to sand was significantly higher than that of biochar, whereas bacteria showed no attachment to either sand or biochar. Consistent with batch results, biochar addition (10% w/w) to sand reduced virus retention in the column experiments, suggesting a potential negative impact of biochar application to soil on virus removal. In contrast, the retention of bacteria was enhanced in biochar-amended sand columns. However, elimination of the fine fraction (<60μm) of biochar particles in biochar-amended sand columns significantly reduced bacteria retention. Results from batch and column experiments suggest that land application of biochar may only play a role in microbe retention via straining, by alteration of pore size distribution, and not via attachment. Consequently, the particle size distribution of biochar and sediments is a more important factor than type of biochar in determining whether land application of biochar enhances or diminishes microbial retention. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Murzuk Sand Sea, Sahara Desert, Libya, Africa

    NASA Image and Video Library

    1993-01-19

    STS054-152-189 (13-19 Jan. 1993) --- This near-vertical color photograph shows the very diverse landscape that is part of the great Sahara Desert of north Africa. Specifically, the vast expanse of sand dunes, located in the extreme southwestern corner of Libya, is known as the Murzuk Sand Sea. Close inspection of this photograph shows the agricultural village of Murzuk as evidenced by the numerous center pivot irrigation patterns at the edge of the Murzuk Sand Sea. The very rugged, dissected terrain to the west of this sand sea is the eastern tip of the Tassili N'ajjer Mountains and the Tadrart Plateau that are in neighboring Algeria. Several smaller areas of sand dunes are interspersed between the major areas of rock outcrops. The photograph was taken with a Linhof camera.

  7. Invasive plants on disturbed Korean sand dunes

    NASA Astrophysics Data System (ADS)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic

  8. Ice sheet altimetry

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.

    1981-01-01

    Generalized surface slopes were computed for the Antarctic and Greenland ice sheets by differencing plotted contour levels and dividing them by the distance between the contours. It was observed that more than 90% of the ice sheets have surface slopes less than 1%. Seasat test mode-1 Seasat altimeter measurements over Greenland were analyzed by comparisons with collinear and intersecting normal mode Seasat altimeter passes. Over the ice sheet, the computed surface elevations from test mode-1 measurements were consistently lower by about 45 m and the AGC levels were down by approximately 6 dB. No test mode-1 data were acquired over Antarctica. It is concluded that analysis of the existing altimeter data base over the two ice sheets is crucial in designing a future improved altimeter tracking capability. It is recommended that additional waveform retracking be performed to characterize ice sheet topography as a function of geographic area and elevation.

  9. Characteristics of SCC with Fly Ash and Manufactured Sand

    NASA Astrophysics Data System (ADS)

    Praveen Kumar, K.; Radhakrishna

    2016-09-01

    Self compacting concrete (SCC) of M40 grade was designed. The binder in SCC consists of OPC and fly ash in the ratio of 65:35. River sand was replaced by manufactured sand (M-sand) at replacement levels of 20,40,60,80 and 100%. An attempt was made to evaluate the workability and strength characteristics of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. T50 flow time, V Funnel time, V-funnel T5 time as well as compressive, split tensile and flexural strength of SCC were found at each replacement level of M-sand. They were compared to SCC with river sand. Results indicate favourable use of M-sand in preparation of Self Compacting Concrete.

  10. Heating and cooling of the earth's plasma sheet

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1990-01-01

    Magnetic-field models based on pressure equilibrium in the quiet magnetotail require nonadiabatic cooling of the plasma as it convects inward or a decrease of the flux tube content. Recent in situ observations of plasma density and temperature indicate that, during quiet convection, the flux tube content may actually increase. Thus the plasma must be cooled during quiet times. The earth plasma sheet is generally significantly hotter after the expansion phase of a substorm than before the plasma sheet thinning begins and cools during the recovery phase. Heating mechanisms such as reconnection, current sheet acceleration, plasma expansion, and resonant absorption of surface waves are discussed. It seems that all mechanisms are active, albeit in different regions of the plasma sheet. Near-earth tail signatures of substorms require local heating as well as a decrease of the flux tube content. It is shown that the resonant absorption of surface waves can provide both.

  11. Controllable curvature from planar polymer sheets in response to light.

    PubMed

    Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan

    2017-03-22

    The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, T a . We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.

  12. 5. Historic American Buildings Survey Taken from drawing sheet, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Taken from drawing sheet, SHEET #21, Showing the house as restored since Survey. (Dormer windows omitted as not authentic) - Samuel des Marest House, River Road, New Milford, Bergen County, NJ

  13. Advanced Techniques for Simulating the Behavior of Sand

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2009-12-01

    Computer graphics and visualization techniques continue to provide untapped research opportunities, particularly when working with earth science disciplines. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs we are developing new techniques for simulating sand. In addition, through collaboration with the Oregon Space Grant, we’ve been communicating with the Jet Propulsion Laboratory (JPL) to exchange ideas and gain feedback on our work. More specifically, JPL’s DARTS Laboratory specializes in planetary vehicle simulation, such as the Mars rovers. This simulation utilizes a virtual "sand box" to test how planetary rovers respond to different terrains while traversing them. Unfortunately, this simulation is unable to fully mimic the harsh, sandy environments of those found on Mars. Ideally, these simulations should allow a rover to interact with the sand beneath it, particularly for different sand granularities and densities. In particular, there may be situations where a rover may become stuck in sand due to lack of friction between the sand and wheels. In fact, in May 2009, the Spirit rover became stuck in the Martian sand and has provided additional motivation for this research. In order to develop a new sand simulation model, high performance computing will play a very important role in this work. More specifically, graphics processing units (GPUs) are useful due to their ability to run general purpose algorithms and ability to perform massively parallel computations. In prior research, simulating vast quantities of sand has been difficult to compute in real-time due to the computational complexity of many colliding particles. With the use of GPUs however, each particle collision will be parallelized, allowing for a dramatic performance increase. In addition, spatial partitioning will also provide a speed boost as this will help limit the number of particle collision calculations. However, since the goal of this

  14. Fluid Flow and Solute Transport in the Bullwinkle Field J2 Sand, Offshore Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Hanor, J. S.

    2006-12-01

    The Bullwinkle field is located in a Pliocene-Pleistocene salt withdrawal minibasin approximately 90 km southwest of New Orleans, Louisiana. Most of the production has been from the prolific "J" sand sequence, a late Pliocene age channel and sheet sand turbidite complex. Salinities of the oil-leg waters (i.e., the pre-production immobile waters located above the original oil-water contact) vary from over 300 g/L near salt to approximately 150 g/L at the original oil-water contact in the J2 sand. Aquifer waters below the original oil-water contact generally have salinities between 150 g/L and 100 g/L. We developed numerical models to simulate fluid flow and associated solute transport in a gently dipping, relatively thin but high permeability sand body such as the J2 sand in Bullwinkle field. Dissolution of salt exposed in the updip portion of a confined aquifer can generate kilometer-scale fluid circulation with velocities of 10-40 cm/yr. Aquifer dips can be less than 5 degrees. Salt dissolution can generate a dense brine throughout a minibasin scale aquifer within 10,000 to 100,000 years. The fluid circulation pattern and amount of salt dissolved depends on permeability, dip, dispersivity, salt available for dissolution, and aquifer thickness. Dissolution of salt is massive, 1 billion kg or more. Salt dissolution within aquifers may be an important process in removing the last few meters of salt to form salt welds. Stratigraphic variations in aquifer salinity may be related to differences in spatial/temporal contact with salt bodies rather than a complex pattern of fluid migration. Once salt dissolution stops, continued density driven flow in minibasin scale aquifers will largely eliminate spatial variations in salinity. Introduction of hydrocarbons must be rapid in order to preserve the observed spatial gradients in oil-leg water salinity. Model simulations indicate that vertical as well as horizontal spatial variations in preproduction oil-leg water salinities

  15. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania.

    PubMed

    Lestinova, Tereza; Rohousova, Iva; Sima, Michal; de Oliveira, Camila I; Volf, Petr

    2017-07-01

    Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.

  16. An experimental study on pile spacing effects under lateral loading in sand.

    PubMed

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.

  17. Current status of solar cell performance of unconventional silicon sheets

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Liu, J. K.

    1981-01-01

    It is pointed out that activities in recent years directed towards reduction in the cost of silicon solar cells for terrestrial photovoltaic applications have resulted in impressive advancements in the area of silicon sheet formation from melt. The techniques used in the process of sheet formation can be divided into two general categories. All approaches in one category require subsequent ingot wavering. The various procedures of the second category produce silicon in sheet form. The performance of baseline solar cells is discussed. The baseline process included identification marking, slicing to size, and surface treatment (etch-polishing) when needed. Attention is also given to the performance of cells with process variations, and the effects of sheet quality on performance and processing.

  18. Treating tar sands formations with karsted zones

    DOEpatents

    Vinegar, Harold J.; Karanikas, John Michael

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  19. "Drawing in the Sand" as a Tool for Teaching Coastal Geography

    ERIC Educational Resources Information Center

    Fagan, Joseph B.; Sturm, Sean

    2015-01-01

    Field trips are recognized as an essential component of the study of geography. They are popular with learners and teachers, but their value as learning experiences is largely assumed. What is needed are interactive and relevant learning activities like "drawing in the sand," a participatory learning activity that has been introduced…

  20. Behavior of plastic sand confinement grids

    DOT National Transportation Integrated Search

    1986-01-01

    The concept of improving the load carrying ability of unbound aggregates, particularly sand, by lateral confinement has been investigated for some time. Extensive full-scale testing of the trafficability of confined beach sand pavement layers has bee...

  1. The physics of wind-blown sand and dust

    NASA Astrophysics Data System (ADS)

    Kok, Jasper F.; Parteli, Eric J. R.; Michaels, Timothy I.; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  2. The physics of wind-blown sand and dust.

    PubMed

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  3. Sand Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  4. Leishmania, microbiota and sand fly immunity.

    PubMed

    Telleria, Erich Loza; Martins-da-Silva, Andrea; Tempone, Antonio Jorge; Traub-Csekö, Yara Maria

    2018-06-20

    In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.

  5. Microtox(TM) characterization of foundry sand residuals

    USGS Publications Warehouse

    Bastian, K.C.; Alleman, J.E.

    1998-01-01

    Although foundry residuals, consisting mostly of waste Sands, represent a potentially attractive, high-volume resource for beneficial reuse applications (e.g. highway embankment construction), prospective end users are understandably concerned about unforeseen liabilities stemming from the use of these residuals. This paper, therefore, focuses on the innovative use of a microbial bioassay as a means of developing a characterization of environmental suitability extending beyond the analytical coverage already provided by mandated chemical-specific tests (i.e., TCLP, etc.). Microtox(TM) bioassays were conducted on leachates derived from residuals obtained at a wide range of facilities, including: 11 gray and ductile iron foundries plus one each steel and aluminum foundries. In addition, virgin sand samples were used to establish a relative 'natural' benchmark against which the waste foundry sands could then be compared in terms of their apparent quality. These bioassay tests were able to effectively 'fingerprint' those residuals whose bioassay behavior was comparable to that of virgin materials. In fact, the majority of gray and ductile iron foundry residuals tested during this reported study elicited Microtox(TM) response levels which fell within or below the virgin sand response range, consequently providing another quantifiable layer of Support for this industry's claim that their sands are 'cleaner than dirt.' However, negative Microtox(TM) responses beyond that of the virgin sands were observed with a number of foundry samples (i.e. four of the 11 gray or ductile iron sands plus both non-iron sands). Therefore, the latter results would suggest that these latter residuals be excluded from beneficial reuse for the immediate future, at least until the cause and nature of this negative response has been further identified.

  6. Monitoring geo-biodiversity interactions of a restored inland drift-sand cell in Nieuw Bergen (Li)

    NASA Astrophysics Data System (ADS)

    Jungerius, Pieter Dirk; van den Ancker, Hanneke; Arts, Andries; Borkent, Ido; Ketner-Oostra, Rita; Ketner, Pieter

    2013-04-01

    In 2002, a research was carried out by Jungerius, van den Ancker, Ketner-Oostra and Evers to see if it was possible to restore active inland drift-sand areas in National Park De Maasduinen in Nieuw Bergen, Limburg. The active drift-sand had completely disappeared from the area by nitrogen-rich precipitation. It was decided to try and restore the activity depicted on the first aerial photographs in 1933, if soil profile development and Natura 2000 species allowed this. The areas stabilized since then were overgrown, dominantly by the invasive moss Campylopus introflexus, a species introduced to the Netherlands by tanks during World War II. Areas colonized by Natura 2000 lichens were spared as centres for re-colonization. The research gave insight in the elongated geomorphological cell-structure of the original drift-sands and the rate of soil development after stabilisation. In 2005, the first active drift-sand cell was restored by increasing the erodibility of the terrain, by mechanically removing the sod and up to 5 cm thick soil formed since 1933, and increasing the erosivity of the wind by removing trees, mainly in the upwind direction. In 2008 a second cell was restored, and a third one in 2011. A monitoring programme was set up for the first cell to improve our understanding of stabilization and geodiversity-biodiversity interactions in drift-sand areas. Lines of erosion pins were monitored at regular intervals for a five year period. Aerial photographs made in 2005 and 2008 showed the pattern of stabilization of the moving sand. The poster will present the results of these experiments. In 2012, five years after the restoration, the active drift-sand cell was stable again and had turned into an open dry grassland, almost completely dominated by the Natura 2000 species Corynephorus canescens. Unfortunately several of the areas that were spared as centres for re-colonization of Natura 2000 lichens lay in the sand transport zone and had acted as sandtraps, and

  7. Relationships Between Sand and Water Quality at Recreational Beaches

    PubMed Central

    Phillips, Matthew C.; Solo-Gabriele, Helena M.; Piggot, Alan M.; Klaus, James S.; Zhang, Yifan

    2011-01-01

    Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p<0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (rs= 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (rs=0.64) as well as the average water enterococci levels for the month after sand samplings (rs=0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida’s beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. PMID:22071324

  8. White Sands, Carrizozo Lava Beds, NM

    NASA Image and Video Library

    1982-03-30

    STS003-10-613 (22-30 March 1982) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Space shuttle Columbia (STS-3), this mission, landed at the White Sands alternate landing site because of bad weather at Edwards AFB, CA. Photo credit: NASA

  9. Controls on the abruptness of gravel-sand transitions

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Church, M. A.; Lamb, M. P.; Domarad, N.; Rennie, C. D.

    2014-12-01

    As gravel-bedded rivers fine downstream, they characteristically exhibit an abrupt transition from gravel- to sand-bed. This is the only abrupt transition in grain-size that occurs in the fluvial system and has attracted considerable attention. A number of competing theories have been proposed to account for the abruptness of the transition, including base-level control, attrition of ~10mm gravel to produce sand, and sediment sorting processes. The prevailing theory for the emergence of abrupt transitions is size selective sorting of bimodal sediment wherein gravel deposits due to downstream declining shear stress, fining the bedload until a sand-bed emerges. We explored this hypothesis by examining grain-size, shear stress, gravel mobility and sand suspension thresholds through the gravel-sand transition (GST) of the Fraser River, British Columbia. The Fraser GST is an arrested gravel wedge with patches of gravel downstream of the wedge forming a diffuse extension. There is an abrupt change in bed slope through the transition that leads to an abrupt change in shear stress. The GST, bed-slope change and backwater caused by the ocean are all coincident spatially, which enhances the sharpness of the GST. Interestingly, the bimodal reach of the river occurs downstream of the GST and exhibits no downstream gradients in shear stress, suspended sediment flux, gravel mobility or sand suspension thresholds. This calls into question the prevailing theory for the emergence of an abrupt GST by size selective sorting. We provide evidence, both empirical and theoretical, that suggests the emergence of an abrupt GST is caused by rapid deposition of sand when fine gravel deposits. We argue that the emergence of gravel-sand transitions is a consequence of gravel-bedded rivers adopting a steeper slope than sand-bedded rivers. The abruptness arises because the bed slope required to convey the gravel load fixes the distal location of a terminal gravel wedge, and once the river has

  10. The offshore export of sand during exceptional discharge from California rivers

    USGS Publications Warehouse

    Warrick, Jonathan A.; Barnard, Patrick L.

    2012-01-01

    Littoral cells along active tectonic margins receive large inputs of sand and gravel from coastal watersheds and commonly lose this sediment to submarine canyons. One hypothesis is that the majority of coarse (sand and gravel) river sediment discharge will be emplaced within and immediately “resupply” local littoral cells. A competing hypothesis is that the infrequent, large floods that supply the majority of littoral sediment may discharge water-sediment mixtures within negatively buoyant hyperpycnal plumes that transport sediment offshore of the littoral cell. Here we summarize pre- and post-flood surveys of two wave-dominated California (United States) river deltas during record to near-record floods to help evaluate these hypotheses: the 1982–1983 delta at the San Lorenzo River mouth and the 2005 delta at the Santa Clara River mouth. Flood sedimentation at both deltas resulted in several meters of aggradation and hundreds of meters of offshore displacement of isobaths. One substantial difference between these deltas was the thick (>2 m) aggradation of sand on the inner shelf of the Santa Clara River delta that contained substantial amounts (∼50%) of littoral-grade sediment. Once deposited on the inner shelf, only a fraction (∼20%) of this river sand was observed to migrate toward the beach over the following 5 yr. Furthermore, simple hypopycnal plume behavior could not explain deposition of this sand on the inner shelf. Thus, during an exceptional flood a substantial amount of littoral-grade sand was exported offshore of the littoral system at the Santa Clara River mouth—likely from hyperpycnal plume processes—and was deposited on the inner shelf.

  11. Environmental consequences of oil production from oil sands

    NASA Astrophysics Data System (ADS)

    Rosa, Lorenzo; Davis, Kyle F.; Rulli, Maria C.; D'Odorico, Paolo

    2017-02-01

    Crude oil from oil sands will constitute a substantial share of future global oil demand. Oil sands deposits account for a third of globally proven oil reserves, underlie large natural forested areas, and have extraction methods requiring large volumes of freshwater. Yet little work has been done to quantify some of the main environmental impacts of oil sands operations. Here we examine forest loss and water use for the world's major oil sands deposits. We calculate actual and potential rates of water use and forest loss both in Canadian deposits, where oil sands extraction is already taking place, and in other major deposits worldwide. We estimated that their exploitation, given projected production trends, could result in 1.31 km3 yr-1 of freshwater demand and 8700 km2 of forest loss. The expected escalation in oil sands extraction thus portends extensive environmental impacts.

  12. Diurnal emissivity dynamics in bare versus biocrusted sand dunes.

    PubMed

    Rozenstein, Offer; Agam, Nurit; Serio, Carmine; Masiello, Guido; Venafra, Sara; Achal, Stephen; Puckrin, Eldon; Karnieli, Arnon

    2015-02-15

    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel-Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand/biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sand and Dust on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Haberle, Robert M.

    1991-01-01

    Mars is a planet of high scientific interest. Various studies are currently being made that involve vehicles that have landed on Mars. Because Mars is known to experience frequent wind storms, mission planners and engineers require knowledge of the physical and chemical properties of Martian windblown sand and dust, and the processes involved in the origin and evolution of sand and dust storms.

  14. Supply-Limited Bedforms in a Gravel-Sand Transition

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Nittrouer, J. A.; Humphries, R. P.; Allison, M. A.

    2009-12-01

    Rivers often exhibit an abrupt transition from gravel to sand-bedded conditions as river channel slopes decrease. A distinct suite of bedforms has been observed through these reaches where sand supply to the bed is limited. The suite of bedforms includes a sequence of sand ribbons, barchans, and channel spanning dunes as sediment supply increases in the downstream direction. While these bedforms have been extensively documented in laboratory channels, there are relatively few observations of this sequence of supply-limited bedforms from large natural channels. Here we examine the sequence through the gravel-sand transition of the Fraser River in Southwestern British Columbia. We mapped the bed using multi-beam swath-bathymetry (Reson 8101 Seabat) at high flow (~9,000 m3s-1) immediately following a high peak flow of 11,800 m3s-1 in June 2007 The bed material grades from >70% gravel to entirely sand through the reach. The bedforms follow the expected sequence where sand ribbons and barchanoid forms cover the bed where it is primarily gravel. Channel spanning dunes form as the sand bed coverage increases. Bedform dimensions (height and length) increase moving downstream as the sand moving on the bed increases. Supply-unlimited bedforms typically scale with the flow depth where the height is 1/5 the flow depth. The bedforms developed over the gravel are undersized by this criterion. Downstream, where the bed is dominantly sand, bedforms do scale with flow depth. These data highlight the dominant role sediment supply can play in bedform morphology and scaling, confirming patterns observed in laboratory data.

  15. Method for filtering solvent and tar sand mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelterborn, J. C.; Stone, R. A.

    1985-09-03

    A method for filtering spent tar sands from a bitumen and organic solvent solution comprises separating the solution into two streams wherein the bulk of the coarser spent tar sand is in a first stream and has an average particle size of about 10 to about 100 mesh and the bulk of the finer spent tar sand is in a second stream; producing a filter cake by filtering the coarser spent tar sand from the first stream; and filtering the finer spent tar sand from the second stream with the filter cake. The method is particularly useful for filtering solutionsmore » of bitumen extracted from bitumen containing diatomite, spent diatomite and organic solvent.« less

  16. Modeling the transition between upper plane bed regime and sheet flow without an active layer formulation. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Hernandez Moreira, R. R.; Blom, A.

    2015-12-01

    A perusal of the literature on bedload transport revealed that, notwithstanding the large number of studies on bedform morphology performed in the past decades, the upper plane bed regime has not been thoroughly investigated and the distinction between the upper plane bed and sheet flow transport regimes is still poorly defined. Previous experimental work demonstrated that the upper plane bed regime is characterized by long wavelength and small amplitude bedforms that migrate downstream. These bedforms, however, were not observed in experiments on sheet flow transport suggesting that the upper plane bed and the sheet flow are two different regimes. We thus designed and performed experiments in a sediment feed flume in the hydraulic laboratory of the Department of Civil and Environmental Engineering at the University of South Carolina at Columbia to study the transition from upper plane bed to sheet flow regime. Periodic measurements of water surface and bed elevation, bedform geometry and thicknesses of the bedload layer were performed by eyes, and with cameras, movies and a system of six ultrasonic probes that record the variations of bed elevation at a point over time. We used the time series of bed elevations to determine the probability functions of bed elevation. These probability functions are implemented in a continuous model of river morphodynamics, i.e. a model that does not use the active layer approximation to describe the sediment fluxes between the bedload and the deposit and that should thus be able to capture the details of the vertical and streamwise variation of the deposit grain size distribution. This model is validated against the experimental results for the case of uniform material. We then use the validated model in the attempt to study if and how the spatial distribution of grain sizes in the deposit changes from upper plane bed regime to sheet flow and if these results are influenced by the imposed rates of base level rise.

  17. Supply-limited horizontal sand drift at an ephemerally crusted, unvegetated saline playa

    USGS Publications Warehouse

    Gillette, Dale A.; Niemeyer, T.C.; Helm, P.J.

    2001-01-01

    A site at Owens Dry Lake was observed for more than 4 years. The site was a vegetation-free saline playa where the surface formed "ephemeral crusts," crusts that form after rainfall. Sometimes these crusts were destroyed and often a layer of particles on the crust would engage in vigorous aeolian activity. Three "phases" of active sand drifting are defined as almost no movement (extreme supply limitation), loose particles on crust with some degree of sand drift (moderate supply limitation), and unlimited source movement corresponding to a destroyed surface crust (unlimited supply). These "phases" occurred 45, 49, and 6% of the time, respectively. The accumulation of loose particles on the crust was mostly the result of in situ formation. Crusted sediments with loose particles on top can exhibit mass flux rates about the same as for noncrusted sediments. Crusted sediments limit or eliminate sand drift in two conditions: for rough crusts that effect a sufficiently high threshold friction velocity (above the wind friction velocity) and for limited amounts of loose particles on the crust where particle supply is less than would be transported in normal saltation for a thick sandy surface. These "supply-limited" cases are similar to wind erosion of limited spilled material on a hard concrete surface. We quantified "supply limitation" by defining a "potential" or "supply unlimited" sand drift function Q = AG where A represents supply limitation that decreases as the particle source is depleted. Here Q is the mass of sand transported through a surface perpendicular to the ground and to the wind and having unit width during time period t, and G = ??? u*(u*2 - u*t2) dt for u* > u*t. G is integrated for the same time period t as for Q, u* is the friction velocity of the wind, and u*t is the threshold friction velocity of the wind. Hard crusts (usually formed in the summer) tended to show almost no change of threshold friction velocity with time and often gave total

  18. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    PubMed

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Relationships between sand and water quality at recreational beaches.

    PubMed

    Phillips, Matthew C; Solo-Gabriele, Helena M; Piggot, Alan M; Klaus, James S; Zhang, Yifan

    2011-12-15

    Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p < 0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (r(s) = 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (r(s) = 0.64) as well as the average water enterococci levels for the month after sand samplings (r(s) = 0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida's beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Mechanics and energetics of human locomotion on sand.

    PubMed

    Lejeune, T M; Willems, P A; Heglund, N C

    1998-07-01

    Moving about in nature often involves walking or running on a soft yielding substratum such as sand, which has a profound effect on the mechanics and energetics of locomotion. Force platform and cinematographic analyses were used to determine the mechanical work performed by human subjects during walking and running on sand and on a hard surface. Oxygen consumption was used to determine the energetic cost of walking and running under the same conditions. Walking on sand requires 1.6-2.5 times more mechanical work than does walking on a hard surface at the same speed. In contrast, running on sand requires only 1.15 times more mechanical work than does running on a hard surface at the same speed. Walking on sand requires 2.1-2.7 times more energy expenditure than does walking on a hard surface at the same speed; while running on sand requires 1.6 times more energy expenditure than does running on a hard surface. The increase in energy cost is due primarily to two effects: the mechanical work done on the sand, and a decrease in the efficiency of positive work done by the muscles and tendons.

  1. Transporter for Treated Sheet Materials

    NASA Technical Reports Server (NTRS)

    Pollack, M., H.

    1983-01-01

    Plastic spacers keep parts separated during transport or storage. Cart with rods and spacers holds sheets with delicate finishes for storage or transport. Sheets supported vertically by rods, or horizontally. Spacers keep sheets separated. Designed to eliminate time and expense of tapping, wrapping, and sometimes refinishing aluminum sheets with delicate anodized finished.

  2. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  3. Experimental Study of Sand Production and Mud Erosion Phenomena for Sand Mud Alternate Layer

    NASA Astrophysics Data System (ADS)

    Oyama, H.; Sato, T.

    2014-12-01

    Methane hydrates are crystalline, ice-like compounds under specific thermodynamic conditions. The existence of methane hydrates is confirmed in the Nankai Trough, an offshore area of Japan. Japan's Methane Hydrate Research and Development Program (MH21) has been under way at this area. In the early 2013, the world's first intentional gas production attempt from marine gas hydrate deposits was tried and accomplished in the Daini Atumi Knoll area of the Eastern Nankai Trough. For gas production, depressurization method has been considered as a promising gas production technique from methane hydrate reservoirs. However, considering of continuous gas production over a long period, there is still something to clarify. The methane hydrate crystals are very small and existed in the intergranular pores of sandy layer of turbidite sediments. When the intergranular methane hydrates will be dissociated, it is considered that dissociated gas and water flow will cause sand production and mud erosion phenomena of turbidite sediments. The production of framework sands into a well is one of the problems plaguing the gas because of its adverse effects on well productivity and equipment. If the eroded mud is accumulated in the pore space of sand, skin is generated and permeability becomes lower. In addition, mud erosion has a negative effect for the well stability. This research presents an experimental study to understand sand production and mud erosion phenomena for sand mud alternate layer. The aims of this study are to understand these phenomena and clarify driving forces. In our experiments, we used an artificial sedimentary core and performed experiments under various conditions. As the results, the driving forces of these phenomena are not dissociation gas flow but water flow through pore.

  4. Observations of transport of bacterial-like microspheres through beach sand

    NASA Astrophysics Data System (ADS)

    Gast, Rebecca J.; Elgar, Steve; Raubenheimer, Britt

    2015-04-01

    Often, there is an order of magnitude more fecal indicator bacteria (enterococci) in beach sand than in nearby water. Consequently, sand is considered a reservoir for these bacteria, potentially contributing to poor water quality, and raising questions regarding the human health risks associated with sand exposure. An integral aspect of the distribution and persistence of sand-associated enterococci is the transport of bacteria introduced into the beach environment. Here, plastic microspheres are used as a proxy to examine the wave-induced movement of bacterial-like particles through sand on an ocean beach. Laboratory tests suggest microspheres and bacteria move similarly through sand columns, and have qualitatively similar short-term adsorption-to-sand behavior. Microspheres buried ~0.05 m below the sand surface on an ocean beach moved rapidly [O(10-3) m/s] away from their initial location, both vertically into the ground water below the sand and horizontally seaward within the sediment matrix in response to waves running up the beach face and percolating through the sand.

  5. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  6. Principles for designing proteins with cavities formed by curved β sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.

    Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheetmore » curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.« less

  7. Geologic and paleoecologic studies of the Nebraska Sand Hills

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.; Fryberger, S.G.; Hanley, John H.; Bradbury, J. Platt

    1980-01-01

    PART A: The Nebraska Sand Hills are an inactive, late Quaternary, most probably Holocene, dune field (covering 57,000 km 2 ) that have been eroded along streams and in blowouts, resulting in excellent lateral and vertical exposures of the stratification of dune and interdune sediments. This paper presents new data on the geometry, primary sedimentary structures, modification of sedimentary structures, direction of sand movement, and petrography of these eolian deposits. Eolian deposits of the Sand Hills occur as relatively thin (9-24 m) 'blanket' sands, composed of a complex of dune and discontinuous, diachronous interdune deposits unconformably overlying fluviolacustrine sediments. The internal stratification of large dunes in the Sand Hills (as high as 100 m), is similar to the internal stratification of smaller dunes of the same type in the Sand Hills, differing only in scale. Studies of laminae orientation in the Sand Hills indicate that transverse, barchan, and blowout dunes can be differentiated in rocks of eolian origin using both the mean dip angle of laminae and the mean angular deviation of dip direction. A variety of secondary structures modify or replace primary eolian stratification in the Sand Hills, the more common of which are dissipation structures and bioturbation. Dissipation structures in the Sand Hills may develop when infiltrating water deposits clay adjacent to less permeable layers in the sand, or along the upper margins of frozen layers that form in the sands during winter. Cross-bed measurements from dunes of the Nebraska Sand Hills necessitate a new interpretation of the past sand transport directions. The data from these measurements indicate a general northwest-to-southeast drift of sand, with a more southerly drift in the southeast part of the Sand Hills. A large area of small dunes < 100 m high) described by Smith (1965) as linear or seif in the central part of the Sand Hills was interpreted by him on the basis of morphology only. We

  8. Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert

    USGS Publications Warehouse

    Whitney, John W.; Breit, George N.; Buckingham, S.E.; Reynolds, Richard L.; Bogle, Rian C.; Luo, Lifeng; Goldstein, Harland L.; Vogel, John M.

    2015-01-01

    The erosion and deposition of sediments by wind from 1901 to 2013 have created large changes in surface features of Mesquite Lake playa in the Mojave Desert. The decadal scale recurrence of sand-sheet development, migration, and merging with older dunes appears related to decadal climatic changes of drought and wetness as recorded in the precipitation history of the Mojave Desert, complemented by modeled soil-moisture index values. Historical aerial photographs, repeat land photographs, and satellite images document the presence and northward migration of a mid-20th century sand sheet that formed during a severe regional drought that coincided with a multi-decadal cool phase of the Pacific Decadal Oscillation (PDO). The sand sheet slowly eroded during the wetter conditions of the subsequent PDO warm phase (1977–1998) due to a lack of added sediment. Sand cohesion gradually increased in the sand sheet by seasonal additions of salt and clay and by re-precipitation of gypsum, which resulted in the wind-carving of yardangs in the receding sand sheet. Smaller yardangs were aerodynamically shaped from coppice dunes with salt-clay crusts, and larger yardangs were carved along the walls and floor of trough blowouts. Evidence of a 19th century cycle of sand-sheet formation and erosion is indicated by remnants of yardangs, photographed in 1901 and 1916, that were found buried in the mid-20th century sand sheet. Three years of erosion measurements on the playa, yardangs, and sand sheets document relatively rapid wind erosion. The playa has lowered 20 to 40 cm since the mid-20th century and a shallow deflation basin has developed since 1999. Annually, 5–10 cm of surface sediment was removed from yardang flanks by a combination of wind abrasion, deflation, and mass movement. The most effective erosional processes are wind stripping of thin crusts that form on the yardang surfaces after rain events and the slumping of sediment blocks from yardang flanks. These wind

  9. An ice sheet model validation framework for the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of < 1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on

  10. An ice sheet model validation framework for the Greenland ice sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few

  11. An ice sheet model validation framework for the Greenland ice sheet

    PubMed Central

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2018-01-01

    We propose a new ice sheet model validation framework – the Cryospheric Model Comparison Tool (CmCt) – that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the

  12. An ice sheet model validation framework for the Greenland ice sheet.

    PubMed

    Price, Stephen F; Hoffman, Matthew J; Bonin, Jennifer A; Howat, Ian M; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P; Evans, Katherine J; Kennedy, Joseph H; Lenaerts, Jan; Lipscomb, William H; Perego, Mauro; Salinger, Andrew G; Tuminaro, Raymond S; van den Broeke, Michiel R; Nowicki, Sophie M J

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past

  13. An ice sheet model validation framework for the Greenland ice sheet

    DOE PAGES

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; ...

    2017-01-17

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few

  14. An Ice Sheet Model Validation Framework for the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas A.; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey R.; Chambers, Don P.; Evans, Katherine J.; hide

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of less than 1 meter). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred

  15. Survival potential of Escherichia coli and Enterococci in subtropical beach sand: implications for water quality managers.

    PubMed

    Hartz, A; Cuvelier, M; Nowosielski, K; Bonilla, T D; Green, M; Esiobu, N; McCorquodale, D S; Rogerson, A

    2008-01-01

    Fecal bacteria have traditionally been used as indicator organisms to monitor the quality of recreational waters. Recent work has questioned the robustness of traditional indicators, particularly at seawater bathing beaches. For example, a study of Florida beaches found unexpectedly high abundances of Escherichia coli, fecal coliforms, and enterococci in beach sand. The aim of the present study was to explain these abundances by assessing the survival of E. coli and enterococci in beach sand relative to seawater. We used a combination of quantitative laboratory mesocosm experiments and field observations. Results suggested that E. coli and enterococci exhibited increased survivability and growth in sand relative to seawater. Because fecal bacteria are capable of replicating in sand, at least under controlled laboratory conditions, the results suggest that sand may be an important reservoir of metabolically active fecal organisms. Experiments with "natural" mesocosms (i.e., unsterilized sand or water rich in micropredators and native bacteria) failed to show the same increases in fecal indicators as was found in sterile sand. It is postulated that this was due to predation and competition with indigenous bacteria in these "natural" systems. Nonetheless, high populations of indicators were maintained and recovered from sand over the duration of the experiment as opposed to the die-off noted in water. Indicator bacteria may wash out of sand into shoreline waters during weather and tidal events, thereby decreasing the effectiveness of these indicators as predictors of health risk and complicating the interpretations for water quality managers.

  16. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  17. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  18. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  19. Sand dollar sites orogenesis

    NASA Astrophysics Data System (ADS)

    Amos, Dee

    2013-04-01

    The determinology of the humble sand dollars habitat changing from inception to the drastic evolution of the zone to that of present day. Into the cauldron along the southern Californian 'ring of fire' lithosphere are evidence of geosynclinals areas, metasedimentary rock formations and hydrothermal activity. The explanation begins with 'Theia' and the Moon's formation, battles with cometary impacts, glacial ages, epochs with evolutionary bottlenecks and plate tectonics. Fully illustrated the lecture includes localised diagrams and figures with actual subject photographic examples of plutonic, granitic, jade and peridodite. Finally, the origins of the materials used in the lecture are revealed for prosecution by future students and the enjoyment of interested parties in general.

  20. Plasma flow disturbances in the magnetospheric plasma sheet during substorm activations

    NASA Astrophysics Data System (ADS)

    Kozelova, T. V.; Kozelov, B. V.; Turyanskii, V. A.

    2017-11-01

    We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at 8.5 R E and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of 10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of 90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the B z component of the magnetic field on the satellite. Approximately 30-50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.

  1. Improved Sand-Compaction Method for Lost-Foam Metal Casting

    NASA Technical Reports Server (NTRS)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    2008-01-01

    An improved method of filling a molding flask with sand and compacting the sand around a refractory-coated foam mold pattern has been developed for incorporation into the lost-foam metal-casting process. In comparison with the conventional method of sand filling and compaction, this method affords more nearly complete filling of the space around the refractory-coated foam mold pattern and more thorough compaction of the sand. In so doing, this method enables the sand to better support the refractory coat under metallostatic pressure during filling of the mold with molten metal.

  2. Effect of substrate size on sympatric sand darter benthic habitat preferences

    USGS Publications Warehouse

    Thompson, Patricia A.; Welsh, Stuart A.; Rizzo, Austin A.; Smith, Dustin M.

    2017-01-01

    The western sand darter, Ammocrypta clara, and the eastern sand darter, A. pellucida, are sand-dwelling fishes that have undergone range-wide population declines, presumably owing to habitat loss. Habitat use studies have been conducted for the eastern sand darter, but literature on the western sand darter remains sparse. To evaluate substrate selection and preference, western and eastern sand darters were collected from the Elk River, West Virginia, one of the few remaining rivers where both species occur sympatrically. In the laboratory, individuals were given the choice to bury into five equally available and randomly positioned substrates ranging from fine sand to granule gravel (0.12–4.0 mm). The western sand darter selected for coarse and medium sand, while the eastern sand darter was more of a generalist selecting for fine, medium, and coarse sand. Substrate selection was significantly different (p = 0.02) between species in the same environment, where the western sand darter preferred coarser substrate more often compared to the eastern sand darter. Habitat degradation is often a limiting factor for many species of rare freshwater fish, and results from this study suggest that western and eastern sand darters may respond differently to variations in benthic substrate composition.

  3. Provenance and recycling of Arabian desert sand

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Vermeesch, Pieter; Andò, Sergio; Vezzoli, Giovanni; Valagussa, Manuel; Allen, Kate; Kadi, Khalid; Al-Juboury, Ali

    2013-04-01

    This study seeks to determine the ultimate origin of aeolian sand in Arabian deserts by high-resolution petrographic and heavy-mineral techniques combined with zircon U-Pb geochronology. Point-counting is used here as the sole method by which unbiased volume percentages of heavy minerals can be obtained. A comprehensive analysis of river and wadi sands from the Red Sea to the Bitlis-Zagros orogen allowed us to characterize all potential sediment sources, and thus to quantitatively constrain provenance of Arabian dune fields. Two main types of aeolian sand can be distinguished. Quartzose sands with very poor heavy-mineral suites including zircon occupy most of the region comprising the Great Nafud and Rub' al-Khali Sand Seas, and are largely recycled from thick Lower Palaeozoic quartzarenites with very minor first-cycle contributions from Precambrian basement, Mesozoic carbonate rocks, or Neogene basalts. Instead, carbonaticlastic sands with richer lithic and heavy-mineral populations characterize coastal dunes bordering the Arabian Gulf from the Jafurah Sand Sea of Saudi Arabia to the United Arab Emirates. The similarity with detritus carried by the axial Tigris-Euphrates system and by transverse rivers draining carbonate rocks of the Zagros indicates that Arabian coastal dunes largely consist of far-travelled sand, deposited on the exposed floor of the Gulf during Pleistocene lowstands and blown inland by dominant Shamal northerly winds. A dataset of detrital zircon U-Pb ages measured on twelve dune samples and two Lower Palaeozoic sandstones yielded fourteen identical age spectra. The age distributions all show a major Neoproterozoic peak corresponding to the Pan-African magmatic and tectonic events by which the Arabian Shield was assembled, with minor late Palaeoproterozoic and Neoarchean peaks. A similar U-Pb signature characterizes also Jafurah dune sands, suggesting that zircons are dominantly derived from interior Arabia, possibly deflated from the Wadi al

  4. Provenance and recycling of Arabian desert sand

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Vermeesch, Pieter; Andò, Sergio; Vezzoli, Giovanni; Valagussa, Manuel; Allen, Kate; Kadi, Khalid A.; Al-Juboury, Ali I. A.

    2013-05-01

    This study seeks to determine the ultimate origin of aeolian sand in Arabian deserts by high-resolution petrographic and heavy-mineral techniques combined with zircon U-Pb geochronology. Point-counting is used here as the sole method by which unbiased volume percentages of heavy minerals can be obtained. A comprehensive analysis of river and wadi sands from the Red Sea to the Bitlis-Zagros orogen allowed us to characterize all potential sediment sources, and thus to quantitatively constrain provenance of Arabian dune fields. Two main types of aeolian sand can be distinguished. Quartzose sands with very poor heavy-mineral suites including zircon occupy most of the region comprising the Great Nafud and Rub' al-Khali Sand Seas, and are largely recycled from thick Lower Palaeozoic quartzarenites with very minor first-cycle contributions from Precambrian basement, Mesozoic carbonate rocks, or Neogene basalts. Instead, carbonaticlastic sands with richer lithic and heavy-mineral populations characterize coastal dunes bordering the Arabian Gulf from the Jafurah Sand Sea of Saudi Arabia to the United Arab Emirates. The similarity with detritus carried by the axial Tigris-Euphrates system and by transverse rivers draining carbonate rocks of the Zagros indicates that Arabian coastal dunes largely consist of far-travelled sand, deposited on the exposed floor of the Gulf during Pleistocene lowstands and blown inland by dominant Shamal northerly winds. A dataset of detrital zircon U-Pb ages measured on twelve dune samples and two Lower Palaeozoic sandstones yielded fourteen identical age spectra. The age distributions all show a major Neoproterozoic peak corresponding to the Pan-African magmatic and tectonic events by which the Arabian Shield was assembled, with minor late Palaeoproterozoic and Neoarchean peaks. A similar U-Pb signature characterizes also Jafurah dune sands, suggesting that zircons are dominantly derived from interior Arabia, possibly deflated from the Wadi al

  5. Method for heating a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  6. Species composition, activity patterns and blood meal analysis of sand fly populations (Diptera: Psychodidae) in the metropolitan region of Thessaloniki, an endemic focus of canine leishmaniasis

    USDA-ARS?s Scientific Manuscript database

    Species composition, activity patterns and blood meal analysis of sand fly populations were investigated in the metropolitan region of Thessaloniki, North Greece from May to October 2011. Sampling was conducted weekly in 3 different environments (animal facilities, open fields, residential areas) al...

  7. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China

    NASA Astrophysics Data System (ADS)

    Long, Hao; Shen, Ji; Chen, Jianhui; Tsukamoto, Sumiko; Yang, Linhai; Cheng, Hongyi; Frechen, Manfred

    2017-10-01

    Arid central Asia (ACA) is one of the largest arid (desert) areas in the world, and its climate is dominated by the westerlies. In this study, we examined sand dune evolution from the Bayanbulak Basin in the Tian Shan (Xinjiang, NW China), aiming to infer the Holocene moisture history of the ACA. Combined with stratigraphic observation and environmental proxies analysis (grain size, magnetic susceptibility and total organic content), large numbers of luminescence ages from multiple sites (eight sections, 79 samples) were applied to reconstruct the evolution of the sand dune accumulation in the study basin. The overall results imply very dry conditions characterized by sand dune accumulation at ∼12-6.5 ka, a wet interval between ∼6.5 and 0.8 ka when soil formation occurred, and decreased moisture during the last 0.8 ka. This moisture variation pattern is generally consistent with that inferred from many lacustrine records in the core zone of ACA, suggesting a widespread dry period in the early-to-middle Holocene and relatively wet middle-to-late Holocene. Thus, the moisture history derived from the current sand dune system contrasts with that in Asian monsoon areas, which are characterized by a strong monsoon (high precipitation) in the early and mid-Holocene and a weak monsoon (low precipitation and dry climate) during the late Holocene. Our results strongly suggest that the winter solar insolation and the external boundary conditions such as atmospheric CO2 concentration, ice sheets, and meltwater fluxes, have been major influential factors triggering the Holocene moisture evolution in the core zone of ACA.

  8. Giant sand waves at the mouth of San Francisco Bay

    USGS Publications Warehouse

    Barnard, P.L.; Hanes, D.M.; Rubin, D.M.; Kvitek, R.G.

    2006-01-01

    A field of giant sand waves, among the largest in the world, recently was mapped in high resolution for the first time during a multibeam survey in 2004 and 2005 through the strait of the Golden Gate at the mouth of San Francisco Bay in California (Figure la). This massive bed form field covers an area of approximately four square kilometers in water depths ranging from 30 to 106 meters, featuring more than 40 distinct sand waves with crests aligned approximately perpendicular to the dominant tidally generated cross-shore currents, with wavelengths and heights that measure up to 220 meters and 10 meters, respectively. Sand wave crests can be traced continuously for up to two kilometers across the mouth of this energetic tidal inlet, where depth-averaged tidal currents through the strait below the Golden Gate Bridge exceed 2.5 meters per second during peak ebb flows. Repeated surveys demonstrated that the sand waves are active and dynamic features that move in response to tidally generated currents. The complex temporal and spatial variations in wave and tidal current interactions in this region result in an astoundingly diverse array of bed form morphologies, scales, and orientations. Bed forms of approximately half the scale of those reported in this article previously were mapped inside San Francisco Bay during a multibeam survey in 1997 [Chin et al., 1997].

  9. Two Sizes of Ripples on Surface of Martian Sand Dune

    NASA Image and Video Library

    2016-06-30

    Two sizes of wind-sculpted ripples are evident in this view of the top surface of a Martian sand dune. Sand dunes and the smaller type of ripples also exist on Earth. The larger ripples -- roughly 10 feet (3 meters) apart -- are a type not seen on Earth nor previously recognized as a distinct type on Mars. The Mast Camera (Mastcam) on NASA's Curiosity Mars rover took the multiple component images of this scene on Dec. 13, 2015, during the 1,192nd Martian day, or sol, of the rover's work on Mars. That month, Curiosity was conducting the first close-up investigation ever made of active sand dunes anywhere other than Earth. The larger ripples have distinctive sinuous crest lines, compared to the smaller ripples. The location is part of "Namib Dune" in the Bagnold Dune Field, which forms a dark band along the northwestern flank of Mount Sharp. The component images were taken in early morning at this site, with the camera looking in the direction of the sun. This mosaic combining the images has been processed to brighten it and make the ripples more visible. The sand is very dark, both from the morning shadows and from the intrinsic darkness of the minerals that dominate its composition. http://photojournal.jpl.nasa.gov/catalog/PIA20755

  10. The Sands of the Bagnold Dunes, Mars and Volatiles in Mars Soils

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Edgett, K. S.; Sutter, B.; Achilles, C.; Litvak, M. L.; Lapotre, M. G. A.; Sullivan, R. J., Jr.; Fraeman, A. A.; Arvidson, R. E.; Blake, D. F.; Bridges, N. T.; Conrad, P. G.; Cousin, A.; Downs, R. T.; Gabriel, T. S. J.; Gellert, R.; Hamilton, V. E.; Hardgrove, C. J.; Johnson, J. R.; Kuhn, S.; Mahaffy, P. R.; Maurice, S.; Meslin, P. Y.; McHenry, M.; Ming, D. W.; Minitti, M. E.; Morookian, J.; Morris, R. V.; O'Connell-Cooper, C.; Pinet, P. C.; Rowland, S. K.; Schröder, S.; Siebach, K. L.; Stein, N.; Thompson, L. M.; Vaniman, D.; Vasavada, A. R.; Wellington, D. F.; Wiens, R. C.; Yen, A.

    2017-12-01

    The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in an active portion of the Bagnold dune field. The composition and grain size information were reviewed in Ehlmann et al. [2017, JGR-Planets and papers referenced therein]. The Bagnold sands are rounded to subrounded, very fine to medium sized ( 45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%) [Achilles et al., 2017]. Like Rocknest, release of CO2 and NO is higher than Gale rocks, implying enrichment in the carrier phases of these volatiles [Sutter et al., 2017]. Yet Bagnold and Rocknest bulk chemistries differ. Bagnold sands are Si-enriched relative to other soils at Gale crater [Cousin et al., 2017; O'Connell-Cooper et al., 2017], and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands [Cousin et al., 2017; O'Connell-Cooper et al., 2017], corroborated by visible/near-infrared spectra that suggest enrichment of olivine [Johnson et al., 2017]. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and

  11. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.

    2018-02-01

    Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.

  12. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Clinching for sheet materials

    PubMed Central

    He, Xiaocong

    2017-01-01

    Abstract Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified. PMID:28656065

  14. Liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; White, K. Alan, III

    1987-01-01

    A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w), ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator, (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.

  15. Windblown Sand in West Candor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 December 2003

    West Candor Chasma, a part of the vast Valles Marineris trough system, is known for its layered sedimentary rock outcrops. It is less known for dark fields of windblown sand, but that is what occurs in the north-central part of the chasm. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, obtained in December 2003, shows the interplay of dark, wind-blown sand with buttes and mesas of layered rock in west Candor Chasma. Dark streamers of sand point toward the east/southeast (right/lower right), indicating that dominant winds blow from the west. This picture is located near 5.2oS, 75.7oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  16. An Experimental Study on Pile Spacing Effects under Lateral Loading in Sand

    PubMed Central

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900

  17. Method for heating a glass sheet

    DOEpatents

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  18. Criminal investigations and the Superfund program. Fact sheet (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-01

    The fact sheet, directed toward any one who witnesses fraudulent activity in EPA programs, discusses areas in which fraud and abuse can occur and provides an understanding of the criminal investigation process that results from reports of suspicious activity.

  19. Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Ramsey, Michael S.; Christensen, Philip R.

    1995-01-01

    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991.

  20. Final Programmatic Environmental Impact Statement for Defense Threat Reduction Agency (DTRA) Activities on White Sands Missile Range, New Mexico. Volume 1

    DTIC Science & Technology

    2007-03-01

    similar in structure to HMX. HMX is used to implode fissionable material in nuclear devices to achieve critical mass and as a component of plastic...extent of DTRA activities on WSMR and reduce the Department of Defense capability to control and eliminate weapons of mass destruction. The Final...safeguarding the United States and its allies from weapons of mass destruction (WMD). DTRA maintains a number of test beds and target types at White Sands

  1. Mineral Resource Assessment of Marine Sand Resources in Cape- and Ridge-Associated Marine Sand Deposits in Three Tracts, New York and New Jersey, United States Atlantic Continental Shelf

    USGS Publications Warehouse

    Bliss, James D.; Williams, S. Jeffress; Arsenault, Matthew A.

    2009-01-01

    geographic, economic, preemptive use, environmental, geologic and political factors. In addition, offshore sand resources should only be considered if the area is seaward of the active zone of significant nearshore sediment transport, about 10 to 12 m in depth, and in sufficiently shallow water so that sand can be extracted within U.S. dredging equipment limits, currently about 40 m in depth. If the material is to be used for beach nourishment, material must be of an appropriate sediment texture and character (grain size, sorting, shape, and color) to match the native beach and have mineralogical properties important to its use. Extraction of sand can disturb or alter the benthic habitat and seafloor ecology, so these factors and other site-specific effects will need to be evaluated for any intended use. These and other factors are not considered in this report but can be expected to reduce the total net volume of sand resources available for production. The purpose of this report is to describe and present results from a probabilistic mineral modeling technique previously applied to onshore mineral resources. This modeling and assessment procedure is being used for the first time to assess and estimate offshore aggregate resources; this study is part of the U.S. Geological Survey (USGS) Marine Aggregates Resources and Processes Project (http://woodshole.er.usgs.gov/project-pages/aggregates/).

  2. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    USGS Publications Warehouse

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  3. The provenance of Taklamakan desert sand

    NASA Astrophysics Data System (ADS)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  4. Sand dollar: a weight belt for the juvenile.

    PubMed

    Chia, F S

    1973-07-06

    Juvenile sand dollars (Dendraster excentricus) selectively ingest heavy sand grains from the substrate and store them in an intestinal diverticulum which may function as a weight belt, assisting the young animal to remain in the shifting sandy environment. The sand disappears from the diverticulum when the animal reaches the length of 30 millimeters.

  5. Where Do the Sand-Dust Storms Come From?: Conversations with Specialists from the Exploring Sand-Dust Storms Scientific Expedition Team

    ERIC Educational Resources Information Center

    Shixin, Liu

    2004-01-01

    This article relates the different views from specialists of the scientific expedition team for the exploration of the origin of sand-dust storms. They observed and examined on-site the ecological environment of places of origin for sand-dust storms, and tried to find out causes of sand-dust storm and what harm it can cause in the hope of…

  6. Sand deposition in shoreline eddies along five Wild and Scenic Rivers, Idaho

    USGS Publications Warehouse

    Andrews, E.D.; Vincent, K.R.

    2007-01-01

    Sand bars deposited along the lateral margin of a river channel are frequently a focus of recreational activities. Sand bars are appealing sites on which to camp, picnic, fish and relax because they are relatively flat, soft, non-cohesive sand, free of vegetation and near the water's edge. The lack of vegetation and cohesion make sand bars easily erodible. Without appreciable deposition of new material, number and size of bars through a given reach of river will decline substantially over a period of years. We studied 63 beaches and their associated eddies located throughout 10 selected reaches within the designated Wild and Scenic River sections of the Lochsa, Selway, Middle Fork Clearwater, Middle Fork Salmon and Salmon Rivers in Idaho to determine the relation of beaches to the frequency and magnitude of streamflows that deposit appreciable quantities of sand. At present, these rivers have been altered little, if at all, by flow regulation, and only the Salmon River has substantial diversion upstream of a study reach. The river reaches studied have an abundance of sand bar beaches of appreciable size, in spite of suspended sand concentrations that rarely exceeded a few hundred milligrams per litre even during the largest floods. Calculated mean annual rates of deposition in an eddy vary from 5.8 to more than 100 cm depending primarily on: (1) the duration of streamflows that inundate the eddy sand bar depositions; (2) the rate of the flow exchange between the channel and an eddy and (3) the concentrations of suspended sand in the primary channel. The annual thickness of sand deposition in an eddy varies greatly from year to year depending on the duration of relatively large streamflows. Maximum annual sand depositions in an eddy are three to nine times the estimated long-term mean values. Relatively large, sustained floods deposit an appreciable portion of total deposition over a period of years. For the period of record, 1930-2002, the seven largest annual

  7. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  8. Diversity of phlebotomine sand flies (Diptera: Psychodidae) in Ibitipoca State Park, Minas Gerais, Brazil.

    PubMed

    Carvalho, Gustavo Mayr de Lima; De Vasconcelos, Fernanda Bernardes; Da Silva, Daniela Gonçalves; Botelho, Helbert Antônio; Filho, José Dilermando Andrade

    2011-07-01

    Leishmaniasis is a complex of zoonotic diseases that are endemic to many Brazilian states. They are transmitted to the vertebrates by the bite of the hematophagous female sand fly (Diptera: Psychodidae) vectors. Despite the increasing occurrence of visceral and cutaneous leishmaniasis cases in large urban centers, their transmission continues to occur primarily in a wild environment and may be associated with professional activities, ecotourism activities, or both. This study investigates the ecological parameters of the sand flies present in Ibitipoca State Park, Minas Gerais, Brazil. During 2009, systematic collections of sand flies were made monthly using HP light traps installed at five sites, including three natural settings (a cave, riparian vegetation, and a rain forest), the tourist and researchers' accommodations, and a surrounding domestic livestock area. In total, 161 sand flies (seven species) were collected, the most abundant, particularly in the surrounding domestic livestock area, being Lutzomyia (Psychodopygus) lloydi (Antunes, 1937). Furthermore, a previously unidentified Lutzomyia (Sciopemyia) sp. was prevalent in the cave environment. There are no existing records of the occurrence of leishmaniasis in Ibitipoca State Park; however, the some species of the subgenus Psychodopygus are known vectors of Leishmania spp in Brazil. Hence, the presence of a species of this genus in areas surrounding the park may represent a risk to ecotourism and the local inhabitants. Our study shows the importance of regular monitoring of the various areas used by humans to determine the distribution and spread of sand fly vectors for preventive management to forestall potential risk to health and consequent effect on ecotourists.

  9. 37 CFR 1.76 - Application data sheet.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Application data sheet. 1.76... Application data sheet. (a) Application data sheet. An application data sheet is a sheet or sheets, that may... bibliographic data, arranged in a format specified by the Office. An application data sheet must be titled...

  10. Potential of iron sand from Betaf beach, Sarmi regency and river sand from Doyo, Jayapura regency, Papua as basic materials of mortar as nuclear radiation shielding

    NASA Astrophysics Data System (ADS)

    Haryati, E.; Dahlan, K.

    2018-03-01

    According to the SNI, the type of concrete for use as nuclear radiation shielding is concrete or mortar that contains hematite, ilmenite, magnetite, barite, or ferrophosphorus synthesis. This study is focused on the characterization of iron sand from and river sand from Papua. The purpose of this research was to determine the specific content of gravity and minerals in iron sand and river sand from Papua. The specific gravities of the sands were measured by manual experiment in a laboratory, while their mineral content were calculated using XRF and SEM - EDS method. The result showed that the specific gravities of iron sand and river sand were 2.66 and 2.50, respectively. The XRF method revealed that the iron sand contained 41.68% Silica, 33.84% Iron, and 24.48% other minerals. The river sand on the other hand contained 58.98% Silica (Si), 26.87% Iron (Fe), and 14.15% other minerals. The SEM -EDS method showed that the iron sand was composed of 39.99 % SiO2, 21.67 % FeO, and, and 38.34 % others; while the river sand contained 39.28% SiO2, 17.45 % FeO, and 43.27 % others. The result showed that both sands have the potentials to be isolated from hematite minerals or magnetite.

  11. Geochemical evidence for an Eolian sand dam across the North and South Platte rivers in Nebraska

    USGS Publications Warehouse

    Muhs, Daniel R.; Swinehart, James B.; Loope, David B.; Been, Josh; Mahan, Shannon; Bush, Charles A.

    2000-01-01

    Geochemical and geomorphic data from dune fields in southwestern Nebraska provide new evidence that the Nebraska Sand Hills once migrated across the North and South Platte rivers and dammed the largest tributary system to the Missouri River. The Lincoln County and Imperial dune fields, which lie downwind of the South Platte River, have compositions intermediate between the Nebraska Sand Hills (quartz-rich) and northeastern Colorado dunes (K-feldspar-rich). The most likely explanation for the intermediate composition is that the Lincoln County and Imperial dunes are derived in part from the Nebraska Sand Hills and in part from the South Platte River. The only mechanism by which the Nebraska Sand Hills could have migrated this far south is by complete infilling of what were probably perennially dry North Platte and South Platte river valleys. Such a series of events would have required an extended drought, both for activation of eolian sand and decreased discharges in the Platte River system. A nearby major tributary of the North Platte River is postulated to have been blocked by eolian sand about 12,000 14C yr B.P. We propose that an eolian sand dam across the Plattes was constructed at about this same time.

  12. Restoration in Sand-slugged Streams and Drought---the Granite Creeks Project.

    NASA Astrophysics Data System (ADS)

    Lake, P. S.; Bond, N.; Glaister, A.; Downes, B.

    2005-05-01

    European settlement, with accompanying land clearance and heavy grazing, of the Strathbogie Ranges in central Victoria, Australia, resulted in the massive export of sediment to lowland streams. These streams, originally configured as "chains of ponds", were filled with "sand slugs" that generated a raised flat streambed depleted in habitat heterogeneity. The invertebrate fauna of the sand slugs is similar to that of sandbed streams elsewhere, but lacks an abundant hyporheos. The fish fauna was reduced in diversity and abundance. In 2001 habitat restoration in the sand slugs commenced after pre-restoration samples were taken.Timber structures, made from railway sleepers, were installed and subsequently created scour pools. Fish responded positively to restoration measure, but no significant effect was apparent for the invertebrates. In 2001-2004 a very severe drought occurred causing the streams to cease to flow and in the sand-slugged sections faunal abundance declined greatly due to the loss of residential habitat and the lack of refugia. Thus, the large-scale effects of severe drought thwarted the effects of localized habitat restoration, stressing the point that in restoring habitat it is also imperative to generate resilience to the prevailing disturbance regime-a regime that may be exacerbated by human activities.

  13. Recent advances in phlebotomine sand fly research related to leishmaniasis control.

    PubMed

    Bates, Paul A; Depaquit, Jerôme; Galati, Eunice A B; Kamhawi, Shaden; Maroli, Michele; McDowell, Mary Ann; Picado, Albert; Ready, Paul D; Salomón, O Daniel; Shaw, Jeffrey J; Traub-Csekö, Yara M; Warburg, Alon

    2015-02-27

    Phlebotomine sand flies are the subject of much research because of the role of their females as the only proven natural vectors of Leishmania species, the parasitic protozoans that are the causative agents of the neglected tropical disease leishmaniasis. Activity in this field was highlighted by the eighth International Symposium on Phlebotomine Sand flies (ISOPS) held in September 2014, which prompted this review focusing on vector control. Topics reviewed include: Taxonomy and phylogenetics, Vector competence, Genetics, genomics and transcriptomics, Eco-epidemiology, and Vector control. Research on sand flies as leishmaniasis vectors has revealed a diverse array of zoonotic and anthroponotic transmission cycles, mostly in subtropical and tropical regions of Africa, Asia and Latin America, but also in Mediterranean Europe. The challenge is to progress beyond descriptive eco-epidemiology, in order to separate vectors of biomedical importance from the sand fly species that are competent vectors but lack the vectorial capacity to cause much human disease. Transmission modelling is required to identify the vectors that are a public health priority, the ones that must be controlled as part of the integrated control of leishmaniasis. Effective modelling of transmission will require the use of entomological indices more precise than those usually reported in the leishmaniasis literature.

  14. Communication Fact Sheet.

    ERIC Educational Resources Information Center

    American Speech-Language-Hearing Association, Rockville, MD.

    This brief fact sheet examines key aspects of communication, communication disabilities, and intervention. The fact sheet addresses the following questions: the nature of communication; communication disabilities (definitions of hearing impairments and speech and language impairments are given); effects of communication disabilities (factors…

  15. Seed bank dynamics of blowout penstemon in relation to local patterns of sand movement on the Ferris Dunes, south-central Wyoming

    Treesearch

    Kassie L. Tilini; Susan E. Meyer; Phil S. Allen

    2017-01-01

    Plants restricted to active sand dunes possess traits that enable both survival in a harsh environment and local migration in response to a shifting habitat mosaic. We examined seed bank dynamics of Penstemon haydenii S. Watson (blowout penstemon) in relation to local sand movement. We measured within-year sand movement along a 400 m transect and examined plant density...

  16. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  17. Unloading Characteristics of Sand-drift in Wind-shallow Areas along Railway and the Effect of Sand Removal by Force of Wind

    PubMed Central

    Cheng, Jian-jun; Xin, Guo-Wei; Zhi, Ling-yan; Jiang, Fu-qiang

    2017-01-01

    Wind-shield walls decrease the velocity of wind-drift sand flow in transit. This results in sand accumulating in the wind-shadow zone of both windshield wall and track line, causing severe sand sediment hazard. This study reveals the characteristics of sand accumulation and the laws of wind-blown sand removal in the wind-shadow areas of three different types of windshield walls, utilizing three-dimensional numerical simulations and wind tunnel experiments and on-site sand sediment tests. The results revealed the formation of apparent vortex and acceleration zones on the leeward side of solid windshield walls. For uniform openings, the vortex area moved back and narrowed. When bottom-opening windshield walls were adopted, the track-supporting layer at the step became a conflux acceleration zone, forming a low velocity vortex zone near the track line. At high wind speeds, windshield walls with bottom-openings achieved improved sand dredging. Considering hydrodynamic mechanisms, the flow field structure on the leeward side of different types of windshield structures is a result of convergence and diffusion of fluids caused by an obstacle. This convergence and diffusion effect of air fluid is more apparent at high wind velocities, but not obvious at low wind velocities. PMID:28120915

  18. Case history of Yakin Field: its development and sand control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawolo, N.; Krueger, R.F.; Maly, G.P.

    1982-01-01

    This study deals with the development of the Yakin Field in E. Kalimantan, Indonesia, with emphasis on the sand control methods used. Implementation of an effective sand control program insured the successful development of this field. Gravel packed wells had substantially lower production decline rates than the initial completions without gravel packs. Control of sand production also has been demonstrated by the lack of sand problems during the 4-1/2 yr since the sand control program was initiated. During this time there have been no failures of submersible pumps that were associated with sand production. The successful sand control program wasmore » achieved by a well coordinated and cooperative effort of drilling, reservoir engineering, production research, and service company personnel.« less

  19. Microbial communities involved in methane production from hydrocarbons in oil sands tailings.

    PubMed

    Siddique, Tariq; Penner, Tara; Klassen, Jonathan; Nesbø, Camilla; Foght, Julia M

    2012-09-04

    Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.

  20. The Decisional Balance Sheet to Promote Healthy Behavior Among Ethnically Diverse Older Adults

    PubMed Central

    Geller, Karly S.; Mendoza, Ilora D.; Timbobolan, Jasah; Montjoy, Holly L.; Nigg, Claudio R.

    2012-01-01

    Objective The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Design and Sample Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Measures Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Results Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Conclusions Specific suggestions for similar programs are reported. PMID:22512425

  1. Investigation of re-use options for used traction sand.

    DOT National Transportation Integrated Search

    2010-06-01

    The Colorado Department of Transportation (CDOT) uses approximately 24,000 tons of traction sand annually, : especially in mountain locations. Once traction sand is applied, street sweepers reclaim approximately 50% of the : sand, which is either sto...

  2. Sensitivities of Greenland ice sheet volume inferred from an ice sheet adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Bugnion, V.

    2009-04-01

    We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. Since its introduction by MacAyeal (1992), the adjoint method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters such as basal conditions. However, no attempt has been made to extend this method to comprehensive ice sheet models. As a first step toward the use of adjoints of comprehensive three-dimensional ice sheet models we have generated an adjoint of the ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated by means of the automatic differentiation (AD) tool TAF. The AD tool generates exact source code representing the tangent linear and adjoint model of the nonlinear parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic with respect to the controls, and can be efficiently calculated via the adjoint. By way of example, we determine the sensitivity of the total Greenland ice volume to various control variables, such as spatial fields of basal flow parameters, surface and basal forcings, and initial conditions. Reliability of the adjoint was tested through finite-difference perturbation calculations for various control variables and perturbation regions. Besides confirming qualitative aspects of ice sheet sensitivities, such as expected regional variations, we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ``real'' in the sense of actual model behavior. An example is inferred regions where sensitivities of ice sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice sheet volume. Similarly, positive ice temperature sensitivities in certain parts

  3. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  4. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  5. Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach.

    PubMed

    Whitman, Richard L; Nevers, Meredith B

    2003-09-01

    Swimming advisories due to excessive Escherichia coli concentrations are common at 63rd Street Beach, Chicago, Ill. An intensive study was undertaken to characterize the source and fate of E. coli in beach water and sand at the beach. From April through September 2000, water and sand samples were collected daily or twice daily at two depths on three consecutive days per week (water samples, n = 1,747; sand samples, n = 858); hydrometeorological conditions and bird and bather distributions were also recorded. E. coli concentrations in sand and water were significantly correlated, with the highest concentration being found in foreshore sand, followed by those in submerged sediment and water of increasing depth. Gull contributions to E. coli densities in sand and water were most apparent on the day following gull activity in a given area. E. coli recolonized newly placed foreshore sand within 2 weeks. Analysis of variance, correlation, cluster analyses, concentration gradients, temporal-spatial distribution, demographic patterns, and DNA fingerprinting suggest that E. coli may be able to sustain population density in temperate beach sand during summer months without external inputs. This research presents evidence that foreshore beach sand (i) plays a major role in bacterial lake water quality, (ii) is an important non-point source of E. coli to lake water rather than a net sink, (iii) may be environmentally, and perhaps hygienically, problematic, and (iv) is possibly capable of supporting an autochthonous, high density of indicator bacteria for sustained periods, independent of lake, human, or animal input.

  6. Mid-Holocene stabilization of the Karakum and Kyzylkum sand seas, central Asia - evidence from OSL ages

    NASA Astrophysics Data System (ADS)

    Maman, Shimrit; Tsoar, Haim; Blumberg, Dan G.; Porat, Naomi

    2013-04-01

    Sand seas (ergs) are large areas of deserts covered by wind-swept sand with varying degrees of vegetation cover. The Kyzylkum and Karakum ergs have accumulated in the Turan basin, northwest of the Hindu Kush range, and span from south Turkmenistan to the Syrdarya River in Kazakhstan. These ergs are dissected by the Amudarya River; To the north lies the Kyzylkum (red sands) and to the south the Karakum (black sands). This area is understudied, and little information has been published regarding the sands stabilization processes and deposition ages. This research focuses on identifying and mapping the ergs of Central Asia and analyzing the climate factors that set the dunes into motion and that stabilized them. A variety of spaceborne imagery with varying spectral and spatial resolutions was used. These images provide the basis for mapping sand distribution, dune forms, and vegetation cover. Wilson (1973) defined these ergs as active based on precipitation. Our results show that they are mostly stabilized, with an estimated area of ~260,000 sq. Km for Kara-Kum , and ~195,500 sq. Km for the Kyzyl-Kum . Meteorological analysis of wind and precipitation data indicate a low wind energy environment (DP<200) and sufficient rainfall (>100 mm) to which is essential for vegetation cover. We present the first optically stimulated luminescence (OSL) ages from the upper meter of 14 exposed sections from both ergs. The age of the sand samples was determined as ~Mid-Holocene by OSL, which provides an insight into past climate characteristics. These ages indicate extensive sand and dune stabilization during the Mid-Holocene. GIS analysis was performed in parallel with field work to validate and verify the results. The OSL ages, coupled with a compilation of regional palaeoclimatic data, corroborate and reinforce the previously proposed Mid-Holocene Liavliakan phase, known to reflect a warmer, wetter, less windy climate than persists today and that resulted in dune stabilization

  7. Aircraft Sheet Metal Practices; Sheet Metal Work 2: 9855.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline will serve as a guide to the 11th grade student interested in sheet metal occupations. Requiring 135 clock hours, the basic course covers orientation and techniques in aircraft sheet metal. Emphasis will be placed on the proper use of tools and machines, safety, fabrication methods, aircraft materials, basic layout, and special…

  8. Trajectories of saltating sand particles behind a porous fence

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo

    2015-01-01

    Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.

  9. Long-term sand supply to Coachella Valley Fringe-toed Lizard Habitat in the Northern Coachella Valley, California

    USGS Publications Warehouse

    Griffiths, Peter G.; Webb, Robert H.; Lancaster, Nicholas; Kaehler, Charles A.; Lundstrom, Scott C.

    2002-01-01

    The Coachella Valley fringe-toed lizard (Uma inornata) is a federally listed threatened species that inhabits active sand dunes in the vicinity of Palm Springs, California. The Whitewater Floodplain and Willow Hole Reserves provide some of the primary remaining habitat for this species. The sediment-delivery system that creates these active sand dunes consists of fluvial depositional areas fed episodically by ephemeral streams. Finer fluvial sediments (typically sand size and finer) are mobilized in a largely unidirectional wind field associated with strong westerly winds through San Gorgonio Pass. The fluvial depositional areas are primarily associated with floodplains of the Whitewater?San Gorgonio Rivers and Mission Creek?Morongo Wash; other small drainages also contribute fluvial sediment to the eolian system. The eolian dunes are transitory as a result of unidirectional sand movement from the depositional areas, which are recharged with fine-grained sediment only during episodic floods that typically occur during El Ni?o years. Eolian sand moves primarily from west to east through the study area; the period of maximum eolian activity is April through June. Wind speed varies diurnally, with maximum velocities typically occurring during the afternoon. Development of alluvial fans, alteration of stream channels by channelization, in-stream gravel mining, and construction of infiltration galleries were thought to reduce the amount of fluvial sediment reaching the depositional areas upwind of Uma habitat. Also, the presence of roadways, railroads, and housing developments was thought to disrupt or redirect eolian sand movement. Most of the sediment yield to the fluvial system is generated in higher elevation areas with little or no development, and sediment yield is affected primarily by climatic fluctuations and rural land use, particularly livestock grazing and wildfire. Channelization benefits sediment delivery to the depositional plains upwind of the reserves

  10. A statistical study of the inner edge of the electron plasma sheet and the net convection potential as a function of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Kivelson, M. G.; Walker, R. J.; Khurana, K. K.; Angelopoulos, V.; Hsu, T.

    2011-06-01

    A widely accepted explanation of the location of the inner edge of the electron plasma sheet and its dependence on electron energy is based on drift motions of individual particles. The boundary is identified as the separatrix between drift trajectories linking the tail to the dayside magnetopause (open paths) and trajectories closed around the Earth. A statistical study of the inner edge of the electron plasma sheet using THEMIS Electrostatic Analyzer plasma data from November 2007 to April 2009 enabled us to examine this model. Using a dipole magnetic field and a Volland-Stern electric field with shielding, we find that a steady state drift boundary model represents the average location of the electron plasma sheet boundary and reflects its variation with the solar wind electric field in the local time region between 21:00 and 06:00, except at high activity levels. However, the model does not reproduce the observed energy dispersion of the boundaries. We have also used the location of the inner edge of the electron plasma sheet to parameterize the potential drop of the tail convection electric field as a function of solar wind electric field (Esw) and geomagnetic activity. The range of Esw examined is small because the data were acquired near solar minimum. For the range of values tested (meaningful statistics only for Esw < 2 mV/m), reasonably good agreement is found between the potential drop of the tail convection electric field inferred from the location of the inner edge and the polar cap potential drop calculated from the model of Boyle et al. (1997).

  11. 76 FR 78168 - Importation of Chinese Sand Pears From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Inspection Service 7 CFR Part 319 [Docket No. APHIS-2011-0007] RIN 0579-AD42 Importation of Chinese Sand... Chinese sand pears (Pyrus pyrifolia) from China into the United States. As a condition of entry, sand... of fruit, safeguarding, labeling, and importation in commercial consignments. Sand pears from areas...

  12. 13. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photograph of sheet 1 (index and title sheet) of the Indiana State Highway Commission repair plans of 1969 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  13. Nonlinear distortion of thin liquid sheets

    NASA Astrophysics Data System (ADS)

    Mehring, Carsten Ralf

    Thin planar, annular and conical liquid sheets or films are analyzed, in a unified manner, by means of a reduced- dimension approach providing governing equations for the nonlinear motion of planar and swirling annular thin inviscid and incompressible liquid sheets in zero gravity and with axial disturbances only. Temporal analyses of periodically disturbed infinite sheets are considered, as well as spatial analyses of semi-infinite sheets modulated at the nozzle exit. Results on planar and swirling annular or conical sheets are presented for a zero density ambient gas. Here, conical sheets are obtained in the nearfield of the nozzle exit by considering sheets or films with swirl in excess of that needed to stabilize the discharging stream in its annular configuration. For nonswirling annular sheets a spatially and/or temporally constant gas-core pressure is assumed. A model extension considering the influence of aerodynamic effects on planar sheets is proposed. For planar and annular sheets, linear analyses of the pure initial- and pure boundary-value problem provide insight into the propagation characteristics of dilational and sinuous waves, the (linear) coupling between both wave modes, the stability limits for the annular configuration, as well as the appearance of particular waves on semi-infinite modulated sheets downstream from the nozzle exit. Nonlinear steady-state solutions for the conical configuration (without modulation) are illustrated. Comparison between nonlinear and linear numerical and linear analytical solutions for temporally or spatially developing sheets provides detailed information on the nonlinear distortion characteristics including nonlinear wave propagation and mode-coupling for all the considered geometric configurations and for a variety of parameter configurations. Sensitivity studies on the influence of Weber number, modulation frequency, annular radius, forcing amplitude and sheet divergence on breakup or collapse length and times

  14. Investigations on Local Quartz Sand for Application in Glass Industry

    NASA Astrophysics Data System (ADS)

    Dararutana, Pisutti; Chetanachan, Prukswan; Wathanakul, Pornsawat; Sirikulrat, Narin

    2009-03-01

    Silica or glass sand is a special type of quartz sand that is suitable for glass-making, because of its high silica content, and its low content of iron oxide and other compounds. In Thailand, deposits of quartz sand are found as the beach and the river sands in many areas; eastern, southern, northeastern and northern. In this work, grain-size distribution and chemical analyses were carried out on 10 sand samples taken from various localities in Thailand such as Chanthaburi, Trat, Rayong, Chumphon, Nakhon Si, Pattani, Phuket, Songkhla, Nong Khai, and Tak provinces. The geological resources show that most of them are the surface-to-near-surface glass sand deposits. The sand grains in most deposits were mainly angular-to-rounded, except in some areas of either angular or rounded grains. Chemical analysis showed that the sands contained more than 95wt% silica and low content of Fe, Al, Ca, Mg, Na, and K. The concentration levels of these components in the samples confirm with internationally acceptable standard for glass production. The quartz sand dressing plants that used the spiral classifier to improve the properties of the quartz sands to meet the standard specifications are mostly located in the eastern area. It can be concluded that most of the quartz sand deposits in Thailand investigated show well-sorted grain-size with considerable purity, i.e. high-grade quality. The advanced works resulted in that these raw quartz sands can be used as raw material for fabrication of soda-lime, lead crystal, and lead-free high refractive index glasses. The colorless and various colored glass products have been satisfactorily used in the domestic art and glass manufactures.

  15. Well completion process for formations with unconsolidated sands

    DOEpatents

    Davies, David K.; Mondragon, III, Julius J.; Hara, Philip Scott

    2003-04-29

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  16. Nonadiabatic heating of the central plasma sheet at substorm onset

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Frank, L. A.; Rostoker, G.; Fennell, J.; Mitchell, D. G.

    1992-01-01

    Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 RE, the apogee of the ISEE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 RE but may be adiabatic closer to earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of a substorm. Lobe magnetic pressures during these events are estimated. Change in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity.

  17. Southern Sand Dunes

    NASA Image and Video Library

    2003-01-15

    At first glance, this NASA Mars Odyssey image showing impact craters and linear ridges and troughs is typical of the southern highlands. However, upon closer examination migrating sand dunes are observed within the troughs.

  18. Environmental controls on microbial abundance and activity on the greenland ice sheet: a multivariate analysis approach.

    PubMed

    Stibal, Marek; Telling, Jon; Cook, Joe; Mak, Ka Man; Hodson, Andy; Anesio, Alexandre M

    2012-01-01

    Microbes in supraglacial ecosystems have been proposed to be significant contributors to regional and possibly global carbon cycling, and quantifying the biogeochemical cycling of carbon in glacial ecosystems is of great significance for global carbon flow estimations. Here we present data on microbial abundance and productivity, collected along a transect across the ablation zone of the Greenland ice sheet (GrIS) in summer 2010. We analyse the relationships between the physical, chemical and biological variables using multivariate statistical analysis. Concentrations of debris-bound nutrients increased with distance from the ice sheet margin, as did both cell numbers and activity rates before reaching a peak (photosynthesis) or a plateau (respiration, abundance) between 10 and 20 km from the margin. The results of productivity measurements suggest an overall net autotrophy on the GrIS and support the proposed role of ice sheet ecosystems in carbon cycling as regional sinks of CO(2) and places of production of organic matter that can be a potential source of nutrients for downstream ecosystems. Principal component analysis based on chemical and biological data revealed three clusters of sites, corresponding to three 'glacier ecological zones', confirmed by a redundancy analysis (RDA) using physical data as predictors. RDA using data from the largest 'bare ice zone' showed that glacier surface slope, a proxy for melt water flow, accounted for most of the variation in the data. Variation in the chemical data was fully explainable by the determined physical variables. Abundance of phototrophic microbes and their proportion in the community were identified as significant controls of the carbon cycling-related microbial processes.

  19. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  20. Massive units deposited by bedload transport in sheet flow mode

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Hernandez Moreira, R. R.; Jafarinik, S.; Sanders, S.; Huffman, B.; Parker, G.; Kendall, C.

    2017-12-01

    A sandy massive (structureless) unit overlying a basal erosional surface and underlying a parallel or cross-laminated unit often characterizes turbidity current and coastal storm deposits. The basal massive units are thought to be the result of relatively rapid deposition of suspended sediment. However, suspension-based models fail to explain how basal massive units can be emplaced for long distances, far away from the source and can contain gravel particles as floating clasts. Here we present experimental results that can significantly change the understanding of the processes forming turbidity current and coastal storm deposits. The experiments were performed in open channel flow mode in the Hydraulics Laboratory at the University of South Carolina. The sediment was a mixture of sand size particles with a geometric mean diameter of 0.95 mm and a geometric standard deviation of 1.65. Five experiments were performed with a flow rate of 30 l/s and sediment feed rates varying between 1.5 kg/min and 20 kg/min. Each experiment was characterized by two phases, 1) the equilibration phase, in which we waited for the system to reach equilibrium condition, and 2) the aggradation phase, in which we slowly raised the water surface base level to induce channel bed aggradation under the same transport conditions observed over the equilibrium bed. Our experiments show that sandy massive units can be the result of deposition from a thick bedload layer of colliding grains, the sheet flow layer. The presence of this sheet flow layer explains how a strong, sustained current can emplace extensive massive units containing gravel clasts. Although our experiments were conducted in open-channel mode, observations of bedload driven by density underflows suggest that our results are directly applicable to sheet flows driven by deep-sea turbidity currents. More specifically, we believe that this mechanism offers an explanation for massive turbidites that heretofore have been identified as

  1. New fracturing technique for Dean sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, T.D.; McDaniel, B.W.; Seglem, R.L.

    1977-01-01

    A new hydraulic fracturing technique is being applied to stimulate the Dean sand of the Spraberry trend area. Results show improvement in production, effective fracture length and lower treatment costs. Production history of several wells was reviewed, and results of this study were used to select certain design parameters. These were rate, type fluid, sand size, etc. New computer programs were used to correlate this data for selected volumes. The theory and application of the new technique is discussed, and a description of the Dean sand is presented in detail. Production results using the new method are compared with themore » wells' response to conventional treatments and considerations are presented for applications for other formations.« less

  2. New fracturing technique for Dean sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, T.D.; McDaniel, B.W.; Seglem, R.L.

    1977-01-01

    A new hydraulic fracturing technique is being applied to stimulate the Dean sand of the Spraberry trend area. Results show improvment in production, effective fracture length and lower treatment costs. Production history of several wells was reviewed, and results of this study were used to select certain design parameters. These were rate, type fluid, sand size, etc. New computer programs were used to correlate this data for selected volumes. The theory and application of the new technique is discussed, and a description of the Dean sand is presented in detail. Production results using the new method are compared with themore » wells' response to conventional treatments and considerations are presented for applications for other formations.« less

  3. Planet-wide sand motion on mars

    USGS Publications Warehouse

    Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.

    2012-01-01

    Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.

  4. A Improved Seabed Surface Sand Sampling Device

    NASA Astrophysics Data System (ADS)

    Luo, X.

    2017-12-01

    In marine geology research it is necessary to obtain a suf fcient quantity of seabed surface samples, while also en- suring that the samples are in their original state. Currently,there are a number of seabed surface sampling devices available, but we fnd it is very diffcult to obtain sand samples using these devices, particularly when dealing with fne sand. Machine-controlled seabed surface sampling devices are also available, but generally unable to dive into deeper regions of water. To obtain larger quantities of seabed surface sand samples in their original states, many researchers have tried to improve upon sampling devices,but these efforts have generally produced ambiguous results, in our opinion.To resolve this issue, we have designed an improved andhighly effective seabed surface sand sampling device that incorporates the strengths of a variety of sampling devices. It is capable of diving into deepwater to obtain fne sand samples and is also suited for use in streams, rivers, lakes and seas with varying levels of depth (up to 100 m). This device can be used for geological mapping, underwater prospecting, geological engineering and ecological, environmental studies in both marine and terrestrial waters.

  5. National Metal Casting Research Institute final report. Volume 1, Sand reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondra, L.F.; Burningham, J.S.

    1995-08-01

    A mobile thermal foundry sand reclamation unit was designed and constructed. This unit consisted of thermal and mechanical sand reclamation equipment installed on the bed of a 50 foot low-boy trailer. It was transported to a number of Midwest foundries for on-site demonstration of the sand reclamation process. This allowed participating foundries to have their own refuse sand (10-100 tons) processed and then reused in production for evaluation. The purpose for building the unit was to demonstrate to foundries through ``hands on`` experience that refuse sands can be reclaimed and successfully reused particularly in regard to product quality. Most ofmore » the participating foundries indicated a high level of satisfaction with the reclaimed sand. Laboratory testing of samples of the used sand, before and after processing by the demonstration unit, verified the usability of the reclaimed sand. One of the foundries participating was a brass foundry, the sand from this foundry contained lead and is classified as a hazardous material. After reclamation the sand was no longer hazardous and could also be reused in the foundry.« less

  6. College Experience and Volunteering. Fact Sheet

    ERIC Educational Resources Information Center

    Marcelo, Karlo Barrios

    2007-01-01

    College experience and volunteering are positively correlated. Measurable differences in civic activity exist between young people who attend college and young people who do not. This fact sheet explores volunteering as civic engagement among youth with college experience, ages 19-25, which was down for the second year in a row in 2006. The…

  7. Why do sand furrow distributions vary in the North Polar latitudes on Mars?

    NASA Astrophysics Data System (ADS)

    Bourke, Mary; McGaley-Towle, Zoe

    2014-05-01

    Sand dunes on Mars display geomorphic evidence of an active and dynamic sediment flux. Barchan dunes migrate, ripples move and the slipface morphology changes annually. Aeolian sediment transport is seasonally constrained and linked to cryogenic processes. Sand furrows are geomorphic features that are eroded into the surface of dunes. They form during sublimation of the seasonal carbon dioxide deposit which moves gas and sand through vents in the ice (cryo-venting) (Bourke, 2013). They are visible on the surface of dunes using the highest resolution images available for Mars. Previous work has noted that the distribution of furrows varies spatially both on individual dunes and at different Polar locations. Here we report on the preliminary findings of a mapping project that seeks to confirm this previous qualitative observation. In addition, we aim to explain the observed spatial and temporal variation in sand furrows on North Polar dunes. Ten polar sites that reflect a latitudinal range of 9.5º are being analysed. The HiRISE images were acquired between 16/2/2012 and 31/05/2012, over a period of 105 Earth days or 102 Sols. We have completed mapping of 1711 sand furrows in an 84 km2 area of sand dunes, i.e. at four of the ten sites. The data confirm that there is variability in the distribution of sand furrows in the Polar Region. While data from all ten sites will be required to fully test the assertion of a latitudinal control, it is worth noting that the two most northerly sites have a significantly higher density of furrows compared to the two lower latitude sites. As the seasonal ice thickness is known to increases pole-ward on Mars, our data suggest that effective furrow formation may be linked to ice deposit thickness. In particular, it suggests that a threshold in ice thickness must be crossed in order for effective cryo-venting to occur. Bourke, M.C., 2013. Sand Furrows: A new surface feature on Martian dunes, EGU, EGU2013-11859, Vienna.

  8. The contribution of Corynephorus canescens to the geodiversity of inland drift sands

    NASA Astrophysics Data System (ADS)

    Jungerius, Pieter Dirk; Riksen, Michel; van den Ancker, Hanneke; Kooistra, Maja

    2016-04-01

    Most dunes in the Netherlands are phytogenic, which means that plants are essential in their formation. This applies also to the dunes of the inland drift sand areas, which are nicknamed Atlantic deserts on account of their extreme climatic conditions. Daily temperatures on the bare sand surfaces may run up to 60° C on sunny summer days, dropping as low as below freezing point at night. Apart from blue and green algae, Corynephorus canescens, Grey hair-grass, it is the first conqueror of these active sands and plays an important role in the geomorphological development of the inland drift sands. C. canescens is a rapid colonizer and flourishes when it receives a regular supply of fresh sand, but is soon succeeded by competitor species. Like Ammophila arenaria (Marram grass), its vigour declines after some time, because its roots are affected. Therefore the plant requires a regular supply of fresh sand to outgrow the affected root zone. The growth of C. canescens is stimulated by two different geomorphological processes: aeolian and pluvial processes. Aboveground, the tussock architecture of the plant helps to trap sand and form small initial dunes. When formed by wind, these are called nabkahs; when formed by splash bush mounds. In a micro-morphological thin section both processes can often be recognized in one dune. The decline of C. canescens is caused by two soil-forming processes: reduction of permeability and accumulation of organic matter. Poor aeration and compaction restrict the growth of its roots. Increase in organic matter hampers the rate of root respiration and promotes conditions for the establishment of competitor species. In the nabkahs, thin slides show on the positive side for C. canescens there is little blown-in organic matter, but on the negative side that the grains upon aging develop a colourless organic coating formed by cyanobacteria (algae. For splashed sands on the positive side for Grey hairgrass there are few organic coatings, but on

  9. 9. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of sheet 1 (index and title sheet) of the State Highway Department of Indiana repair plans of 1957 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  10. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  11. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study.

    PubMed

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from in-stream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the in-stream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty(-1) of sand (8.764 million ty(-1) of in-stream sand and 2.763 million ty(-1) of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its

  12. Environmental Impact Assessment of Sand Mining from the Small Catchment Rivers in the Southwestern Coast of India: A Case Study

    NASA Astrophysics Data System (ADS)

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from instream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the instream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty-1 of sand (8.764 million ty-1 of instream sand and 2.763 million ty-1 of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its

  13. Aeolian sand as a tool for understanding Mars: Thermal infrared remote sensing of volcaniclastic Mars-analog sand dunes in Christmas Lake Valley, Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.

    1996-10-01

    INTRODUCTION: On Earth, aeolian sand dunes are used as tools of scientific inquiry. Holocene and Pleistocene dunes preserve clues about Quaternary climate variations and human activities ranging from Ice Age hunting practices to Twentieth Century warfare. Modern dunes contain the sedimentary textures and structures necessary for interpreting ancient sandstones, and they provide natural laboratories for investigation of aeolian physics and desertification processes. The dunes of Mars can likewise be used as scientific tools. Dunes provide relatively dust-free surfaces. From a remote sensing perspective, martian dunes have much potential for providing clues about surface mineralogy and the interaction between the surface and atmosphere. Such information can in turn provide insights regarding crust composition, volcanic evolution, present and past climate events, and perhaps weathering rates. The Mars Global Surveyor Thermal Emission Spectrometer (TES) is expected to reach the planet in September 1997. TES will provide 6 to 50 micrometer spectra of the martian surface at ground resolutions of 3 to 9 km. Sandy aeolian environments on Mars might provide key information about bedrock composition. To prepare for the TES investigation, I have been examining a thermal infrared image of a Mars-composition analog dune field in Christmas Lake Valley, Oregon. COMPOSITION AND GEOLOGIC SETTING: The "Shifting Sand Dunes" dune field is located at the eastern end of Christmas Lake Valley, in what was once the Pleistocene Fort Rock Lake [1]. Much of the sand that makes up the Shifting Sand Dunes dune field is reworked Mt. Mazama airfall from its terminal eruption 6,800 years ago, plus material deflated from the lake bed [1, 2]. The main constituents of the dunes are volcanic glass and devitrified glass fragments, plagioclase crystals, basalt lithic fragments, aggregates of silt and clay-size volcanic ash, pyroxenes, opaque oxide minerals (mostly magnetite), and trace occurrences of

  14. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  15. Sheet Flows, Avalanches, and Dune Evolution on Earth and Mars

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This investigation is a collaboration between researchers at Cornell University, the University of Florida, and the University of Rennes 1, France. Flow modeling at Cornell University focused on mechanisms for the suspension and transport of wind-blown sand that are important in both terrestrial and Martian environments. These mechanisms include the saltation (or jumping) of grains, collisions between grains, and the interaction of grains with the velocity fluctuations of the turbulent wind. Of particular interest are sheet flows; these are relatively thin, highly concentrated regions of grains flowing near the ground under the influence of a strong turbulent wind. In them, the grains are suspended by interparticle collisions. Sheet flows may be relatively rare events, but they have the capacity to move great amounts of sand. In order to describe sheet flows, a turbulent mixture theory was formulated for particles in a fluid in which fluctuations in the volume fiaction of the particles take place on the scale of the turbulent eddies. Ensemble averaged equations for particle and fluid mass, momentum, and energy and fluid rate of dissipation were expressed in terms of Farve (concentration) averaged velocities and the associated velocity fluctuations. Correlations that describe the turbulent suspension of particles and dissipation of turbulent energy of both phases due to fluid particle interactions were modeled and boundary conditions at the bed and at the upper surface of the collisional flow were formulated. The boundary conditions at the upper surface were tested in a numerical simulation developed at the University of Florida. Steady and unsteady solutions for steady and unsteady fully-developed flows were obtained over a range of wind speeds fiom the lowest for which collisional between particles occurred to at which turbulent suspension is found to dominate collisional suspension. Below the value of the wind speed at which collisions between particles were

  16. Natural radioactivity of the tar-sand deposits of Ondo State, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Fasasi, M. K.; Oyawale, A. A.; Mokobia, C. E.; Tchokossa, P.; Ajayi, T. R.; Balogun, F. A.

    2003-06-01

    A combination of gamma spectrometry and energy dispersive X-ray fluorescence was used to determine the presence and level of radioactivity of radionuclides in bituminous sand and overburden obtained from bituminous sand deposits in Ondo State Nigeria for the purpose of providing baseline data and assessing its impact on the environment. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by 238U and 232Th. The non-decay series of naturally occurring 40K was found to be below the limit of detection. The average specific activity concentration values obtained for 214 Bi, 208Tl, and 226Ra in the overburden are 165.64±2.91, 150.25±2.91 and 60.97±2.27 Bq kg -1, respectively. The measured activity in the bituminous sand layer is so low that it can be said to be non-radioactive. The result of the EDXRF supports the presence of radioelements in the overburden, which are likely to be embedded in accessory minerals like zircon and tourmaline. Thus, surface exploration technique using soil-gas radon measurement will not yield the desired result. Furthermore, the level of radioelements and associated decay daughter 222Rn is not expected to cause any health hazard.

  17. Seasonal geomorphic processes and rates of sand movement at Mount Baldy dune in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kilibarda, Zoran; Kilibarda, Vesna

    2016-12-01

    Winds are very strong, frequent, and have high energy (annual DP ∼800 VU) along the southern shores of Lake Michigan, allowing the coexistence of fixed and active dunes. Six years (2007-13) of monitoring Mount Baldy in the Indiana Dunes National Lakeshore reveals that this is the most active coastal dune in the Great Lakes region. This paper documents aeolian processes and changes in the dune's morphology that occur temporarily, following storms, or seasonally, due to weather (climate) variations. Most of the sand transport in this area takes place during strong storms with gale force (>17.5 m/s) winds, which occur in the autumn and winter months. A single storm, such as the October 28-31, 2013 event, can contribute 25% of the annual sand transport and dune movement inland. In its most active year (June 1, 2011 through May 31, 2012), Mount Baldy moved inland on average 4.34 m, with a maximum of 6.52 m along the blowout's axis (155° azimuth). During this particularly active season, there were six storms with sustained gale force winds, winter air temperatures were warmer than average, and shelf ice on Lake Michigan lasted only one day. The dune is least active during the summer season, when the winds are weakest. The late fall and winter winds are the strongest. But in a typical year, most of the dune's advance inland takes place during the spring thaw when sand is released from over-steepened and lumpy slip face, allowing it to avalanche to the toe of the slip face. However, with a warming air temperatures, a reduction in the duration of winter shelf ice, and rising Lake Michigan levels, the annual rates of sand transport and dune movement may increase. The recent Mount Baldy management strategy, which includes planting vegetation and installing wind barriers on the dune's stoss side in an effort to fix the dune and stop its further movement inland, may potentially cause the destruction of the mobile sand, open dune habitat, resulting in the extinction of rare

  18. World Population: Facts in Focus. World Population Data Sheet Workbook. Population Learning Series.

    ERIC Educational Resources Information Center

    Crews, Kimberly A.

    This workbook teaches population analysis using world population statistics. To complete the four student activity sheets, the students refer to the included "1988 World Population Data Sheet" which lists nations' statistical data that includes population totals, projected population, birth and death rates, fertility levels, and the…

  19. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows

    NASA Astrophysics Data System (ADS)

    Mansouri, Amir

    The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in

  20. The decisional balance sheet to promote healthy behavior among ethnically diverse older adults.

    PubMed

    Geller, Karly S; Mendoza, Ilora D; Timbobolan, Jasah; Montjoy, Holly L; Nigg, Claudio R

    2012-01-01

    The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Specific suggestions for similar programs are reported. © 2011 Wiley Periodicals, Inc.

  1. Spatial Distribution of Phlebotomine Sand Fly Species (Diptera: Psychodidae) in Qom Province, Central Iran.

    PubMed

    Saghafipour, Abedin; Vatandoost, Hassan; Zahraei-Ramazani, Ali Reza; Yaghoobi-Ershadi, Mohammad Reza; Rassi, Yavar; Shirzadi, Mohammad Reza; Akhavan, Amir Ahmad

    2017-01-01

    Zoonotic cutaneous leishmaniasis (ZCL) is transmitted to humans by phlebotomine sand fly bites. ZCL is a major health problem in Iran, where basic knowledge gaps about sand fly species diversity persist in some ZCL-endemic areas. This paper describes the richness and spatial distribution of sand fly species, collected with sticky traps, in Qom province, a ZCL-endemic area in central Iran, where sand fly fauna has been poorly studied. Collected species were mapped on urban and rural digital maps based on a scale of 1/50,000. All analyses were undertaken with rural- and urban-level precision, i.e., rural and urban levels were our basic units of analysis. After identifying the sand flies, high-risk foci were determined. For spatial analysis of vector species population, the entomological sampling sites were geo-referenced using GPS. Arc GIS 9.3 software was used to determine the foci with leishmaniasis vector species. Following the analyses, two genera (Phlebotomus and Sergentomyia) and 14 species were identified. Based on the mapping and sand fly dispersion analysis, the rural districts were categorized into three groups-infection reported, without infection, and no report. Based on Geographical Information System analyses, Kahak and Markazi districts were identified as high-risk foci with leishmaniasis vector species. These findings can act as a help guide to direct active control measures to the identified high-risk foci and, eventually, lead to reduction in incidence of the disease. © Crown copyright 2016.

  2. Two classes of receptor specific for sperm-activating peptide III in sand-dollar spermatozoa.

    PubMed

    Yoshino, K; Suzuki, N

    1992-06-15

    We characterized receptors specific for sperm-activating peptide III (SAP-III: DSDSAQNLIQ) in spermatozoa of the sand dollar, Clypeaster japonicus, using both binding and cross-linking techniques. Analyses of the data obtained from the equilibrium binding of a radiolabeled SAP-III analogueto C. japonicus spermatozoa, using Klotz, Scatchard and Hill plots, showed the presence of two classes of receptors specific for SAP-III in the spermatozoa. One of the receptors (high-affinity) had a Kd of 3.4 nM and 3.4 x 10(4) binding sites/spermatozoon. The other receptor (low-affinity) had a Kd of 48 nM, with 6.1 x 10(4) binding sites/spermatozoon. The Kd of the high-affinity receptor was comparable to the median effective concentration of the intracellular-pH-increasing activity of SAP-III and that of the low-affinity receptor was comparable to the median effective concentration of the cellular-cGMP-elevating activity of the peptide. In addition, Scatchard and Hill plots of the data suggested the existence of positive cooperativity between the high-affinity members. Similar results were also obtained from a binding experiment using a sperm-membrane fraction prepared from C. japonicus spermatozoa. The incubation of intact spermatozoa or sperm plasma membranes with the radioiodinated SAP-III analogue and a chemical cross-linking reagent, disuccinimidyl suberate, resulted in the radiolabeling of three proteins with molecular masses of 126, 87 and 64 kDa, estimated by SDS/PAGE under reducing conditions.

  3. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  4. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  5. Removing adsorbed heavy metal ions from sand surfaces via applying interfacial properties of rhamnolipid.

    PubMed

    Haryanto, Bode; Chang, Chien-Hsiang

    2015-01-01

    In this study, the interfacial properties of biosurfactant rhamnolipid were investigated and were applied to remove adsorbed heavy metal ions from sand surfaces with flushing operations. The surface tension-lowering activity, micelle charge characteristic, and foaming ability of rhamnolipid were identified first. For rhamnolipid in water, the negatively charged characteristic of micelles or aggregates was confirmed and the foaming ability at concentrations higher than 40 mg/L was evaluated. By using the rhamnolipid solutions in a batch washing approach, the potential of applying the interfacial properties of rhamnolipid to remove adsorbed copper ions from sand surfaces was then demonstrated. In rhamnolipid solution flushing operations for sand-packed medium, higher efficiency was found for the removal of adsorbed copper ions with residual type than with inner-sphere interaction type, implying the important role of interaction type between the copper ion and the sand surface in the removal efficiency. In addition, the channeling effect of rhamnolipid solution flow in the sand-packed medium was clearly observed in the solution flushing operations and was responsible for the low removal efficiency with low contact areas between solution and sand. By using rhamnolipid solution with foam to flush the sand-packed medium, one could find that the channeling effect of the solution flow was reduced and became less pronounced with the increase in the rhamnolipid concentration, or with the enhanced foaming ability. With the reduced channeling effect in the flushing operations, the removal efficiency for adsorbed copper ions was significantly improved. The results suggested that the foam-enhanced rhamnolipid solution flushing operation was efficient in terms of surfactant usage and operation time.

  6. Nonlinear dynamics of Aeolian sand ripples.

    PubMed

    Prigozhin, L

    1999-07-01

    We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmetric ripple shape and the evolution of a sand ripple pattern. We suggest that this evolution occurs via ripple merger preceded by several soliton-like interaction of ripples.

  7. Least tern and piping plover nesting at sand pits in Nebraska

    USGS Publications Warehouse

    Sidle, John G.; Kirsch, E.M.

    1993-01-01

    Endangered Least Terns (Sterna antillarum) and threatened Piping Plovers (Charadrius melodus) nest at commercial sand and gravel mining operations (sand pits) along the Platte River system in Nebraska. Sandbar habitat has been disappearing since the early 1900's along the Platte River system, but numbers of sand pits have increased. We hypothesized that birds would more fully utilize sand pits where suitable sandbar habitat was limited. We inventoried sand pits and censused terns and plovers on both habitats along the Loup River, part of the North Loup River, and most of the Platte River during 1988-1991. Using aircraft, we also quantified features of suitable sand pits present on the central Platte in 1988 and lower Platte in 1990, and related features to abundance and presence of birds. We found 225 sand pits of which 78 were suitable and 187 were unsuitable for nesting. Along the central Platte, where sandbar habitat is severely degraded, birds nested at 81% of the suitable sand pits (N = 32) at least once during 1988-1991, and most birds (61-94%) nested on sand pits. Along the lower Platte, where both sandbar and sand pit habitat are plentiful, birds nested at 60% of the suitable sand pits (N = 35) at least once during 1988-1991, and most birds (60-86%) nested on sandbars. Numbers of terns and plovers were more weakly correlated with features of sand pits on the central Platte than on the lower Platte. Least Terns and Piping Plovers seem to use more of the suitable sand pit habitat on the central Platte than on the lower Platte. Sand pits probably have influenced the birds' distribution by providing alternative nesting habitat along rivers where suitable sandbars are rare or absent.

  8. Complexities within distal sheet turbidite deposits: case study 160,000ka Icod Turbidite, Moroccan Turbidite System

    NASA Astrophysics Data System (ADS)

    Hunt, James; Wynn, Russell

    2010-05-01

    coarse silt or (2) removal of previously deposited silt by erosion of a post-depositional mudflow associated with mudcap remobilisation. Further to the stacked subunit facies and grain-size breaks, there are additional complexities to the deposit. An omission of a typical Bouma Ta facies is observed, replaced with a thick well-developed banded Bouma Tb, representing density sorting and flow fractionation of dense basaltic clasts and >100μm foraminifera. Above developing ripple laminations associated with Bouma Tc development is a 0.2-0.5m thick convolute laminated sand. This convoluted sand represents increasing shear stress across developing ripples. Grain-size analysis and ITRAX x-radiographs highlighted an additional process within the mudcaps of the Icod turbidite within the Agadir Basin. The mudcap thickens towards the base of incline from the Agadir Basin to the Selvage Islands. Within the cores with an over-thickened mudcap, the mudcap contained silt contortions. X-radiographs using ITRAX further displayed these contorted silts in the mudcaps. Grain-size analysis was used to confirm the presence of silt and poor sorting through the regions of contortions. These contorted muds have a debritic fabric, and could represent post-depositional remobilisation of the accumulative suspended clay fraction as a mudflow, as it was settling on a gradient and destabilising. This presentation will show the complexities present in even distal sheet turbidites, and that detailed multidisciplinary studies are required to unravel the mechanisms at work during their deposition. Pearce, T.J., & Jarvis I. 1992. Composition and provenance of turbidite sands: Late Quaternary, Madeira Abyssal Plain. Rothwell, R.G., Pearce, I., & Weaver, P.P.E. 1992. Late Quaternary evolution of the Madeira Abyssal Plain, Canary Basin, NE Atlantic. Basin Research, vol.4, no.2, p.103-131. Watts, A.B., & Masson, D.G. 1995. A giant landslide on the north flank of Tenerife, Canary Islands. Journal of

  9. Emplacement and dewatering of the world's largest exposed sand injectite complex

    NASA Astrophysics Data System (ADS)

    Sherry, Timothy J.; Rowe, Christie D.; Kirkpatrick, James D.; Brodsky, Emily E.

    2012-08-01

    Sandstone injectites form by up or down-section flow of a mobilized sand slurry through fractures in overlying rock. They act as reservoirs and high-permeability conduits through lower permeability rock in hydrocarbon systems. The Yellow Bank Creek Complex, Santa Cruz County, California is the largest known exposure of a sandstone injectite in the world. The complex contains granular textures that record processes of sand slurry flow, multiple pore fluids, and dewatering after emplacement. The injection was initially mobilized from a source containing both water and hydrocarbons. The water-sand slurry reached emplacement depth first, due to lower fluid viscosity. As the sand slurry emplaced, the transition from slurry flow to pore water percolation occurred. This transition resulted in preferred flow channels ˜6 mm wide in which sand grains were weakly aligned (laminae). The hydrocarbon-sand slurry intruded the dewatering sands and locally deformed the laminae. Compaction of the injectite deposit and pore fluid escape caused spaced compaction bands and dewatering pipes which created convolutions of the laminae. The hydrocarbon-rich sand slurry is preserved today as dolomite-cemented sand with oil inclusions. The laminae in this injectite are easily detected due to preferential iron oxide-cementation of the well-aligned sand laminae, and lack of cement in the alternating laminae. Subtle textures like these may develop during sand flow and be present but difficult to detect in other settings. They may explain permeability anisotropy in other sand deposits.

  10. Sand impaction of the small intestine in eight dogs.

    PubMed

    Moles, A D; McGhite, A; Schaaf, O R; Read, R

    2010-01-01

    To describe signalment, clinical findings, imaging and treatment of intestinal sand impaction in the dog. Medical records of dogs with radiographic evidence of small intestinal sand impaction were reviewed. Sand impaction resulting in small intestinal obstruction was diagnosed in eight dogs. All dogs presented with signs of vomiting. Other clinical signs included anorexia, lethargy and abdominal pain. Radiographs confirmed the presence of radio-opaque material consistent with sand causing distension of the terminal small intestine in all dogs. Four dogs were treated surgically for their impaction and four dogs were managed medically. Seven of the eight dogs survived. Both medical and surgical management of intestinal sand impaction in the dog can be effective and both afford a good prognosis for recovery.

  11. Submarine fans: Characteristics, models, classification, and reservoir potential

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.; Moiola, R. J.

    1988-02-01

    Submarine-fan sequences are important hydrocarbon reservoirs throughout the world. Submarine-fan sequences may be interpreted from bed-thickness trends, turbidite facies associations, log motifs, and seismic-reflection profiles. Turbidites occurring predominantly in channels and lobes (or sheet sands) constitute the major portion of submarine-fan sequences. Thinning- and thickening-upward trends are suggestive of channel and lobe deposition, respectively. Mounded seismic reflections are commonly indicative of lower-fan depositional lobes. Fan models are discussed in terms of modern and ancient fans, attached and detached lobes, highly efficient and poorly efficient systems, and transverse and longitudinal fans. In general, depositional lobes are considered to be attached to feeder channels. Submarine fans can be classified into four types based on their tectonic settings: (1) immature passive-margin fans (North Sea type); (2) mature passive-margin fans (Atlantic type); (3) active-margin fans (Pacific type); and (4) mixed-setting fans. Immature passive-margin fans (e.g., Balder, North Sea), and active-margin fans (e.g., Navy, Pacific Ocean) are usually small, sand-rich, and possess well developed lobes. Mature passive-margin fans (e.g., Amazon, Atlantic Ocean) are large, mud-rich, and do not develop typical lobes. However, sheet sands are common in the lower-fan regions of mature passive-margin fans. Mixed-setting fans display characteristics of either Atlantic type (e.g., Bengal, Bay of Bengal), or Pacific type (Orinoco, Caribbean), or both. Conventional channel-lobe models may not be applicable to fans associated with mature passive margins. Submarine fans develop primarily during periods of low sea level on both active- and passive-margin settings. Consequently, hydrocarbon-bearing fan sequences are associated generally with global lowstands of sea level. Channel-fill sandstones in most tectonic settings are potential reservoirs. Lobes exhibit the most favorable

  12. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  13. Imaging a seizure model in zebrafish with structured illumination light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.

  14. Investigation of the magnetic properties of Si-gradient steel sheet by comparison with 6.5%Si steel sheet

    NASA Astrophysics Data System (ADS)

    Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.

    2018-05-01

    In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.

  15. A Transient Initialization Routine of the Community Ice Sheet Model for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    van der Laan, Larissa; van den Broeke, Michiel; Noël, Brice; van de Wal, Roderik

    2017-04-01

    The Community Ice Sheet Model (CISM) is to be applied in future simulations of the Greenland Ice Sheet under a range of climate change scenarios, determining the sensitivity of the ice sheet to individual climatic forcings. In order to achieve reliable results regarding ice sheet stability and assess the probability of future occurrence of tipping points, a realistic initial ice sheet geometry is essential. The current work describes and evaluates the development of a transient initialization routine, using NGRIP 18O isotope data to create a temperature anomaly field. Based on the latter, surface mass balance components runoff and precipitation are perturbed for the past 125k years. The precipitation and runoff fields originate from a downscaled 1 km resolution version of the regional climate model RACMO2.3 for the period 1961-1990. The result of the initialization routine is a present-day ice sheet with a transient memory of the last glacial-interglacial cycle, which will serve as the future runs' initial condition.

  16. Method of tagging sand with ruthenium-103 and the resultant product

    DOEpatents

    Case, Forrest N.; McFarland, Clyde E.

    1976-01-01

    A procedure for tagging sand with a radioisotope for use in the study of sediment transport involves the precipitation of a metal radioisotope in the form of an iodide directly on the sand, followed by heating the sand to a temperature sufficient to effect a phase transformation of the sand and a decomposition of the metal iodide, leaving the metal firmly attached to the sand.

  17. Wave-induced drift of large floating sheets

    NASA Astrophysics Data System (ADS)

    Christensen, K. H.; Weber, J. E.

    In this article we study the wave-induced drift of large, flexible shallow floating objects, referred to as sheets. When surface waves propagate through a sheet, they provide a mean stress on the sheet, resulting in a mean drift. In response, the sheet generates an Ekman current. The drift velocity of the sheet is determined by (i) the wave-induced stress, (ii) the viscous stress due to the Ekman current, and (iii) the Coriolis force. The sheet velocity and the current beneath the sheet are determined for constant and depth-varying eddy viscosities.

  18. Provenance of aeolian sands in the Hetao Plain, northwestern China

    NASA Astrophysics Data System (ADS)

    Yang, Xingchen; Cai, Maotang; Ye, Peisheng; Ye, Mengni; Li, Chenglu; Wu, Hang; Lu, Jing; Wang, Tao; Zhao, Zhirong; Luzhou, Yangfan; Liu, Chao

    2018-06-01

    Patches of aeolian sand are distributed throughout the Hetao Plain, which pose threats to farming and agriculture. Identification of the provenance of the aeolian sands may help with efforts to alleviate ecological stress in Inner Mongolia and in the paleoenvironmental interpretation of sandy sequences. This study uses geochemical data to determine the provenance of aeolian sands from the Hetao Plain. Provenance discrimination diagrams revealed that the aeolian sands were mainly derived from mixed source felsic granites and granodiorites, which have undergone weak sedimentary recycling. The chemical index of alteration and A-CN-K data indicated that the aeolian sediments were transported over a short distance. Comparison of trace element and rare earth element (REE) ratios of the aeolian sands with rock samples from potential source areas has revealed that aeolian sand deposits in the Hetao Plain were mainly derived from Sertengshan and Yellow River sediments. The Langshan and Ordos Plateau may represent additional sand sources for the Hetao Plain.

  19. [Preliminary Study of Lonicera hypoglauca on Germination Conditions of Sand Culture Seeds and Sterilization Method of Sand Culture Seedling Sterilization].

    PubMed

    Tan, Mu-xiu; Zeng, Wen-wen; Wei, Peng-xiao; Mo, Qiao-cheng; Pu, Zu-ning; Cen, Xiu-fen; Shi, Feng-hua

    2015-05-01

    To explore the germination conditions of Lonicera hypoglauca sand culture seeds and the effects of sand culture seedlings sterilization. 0.1% HgCl2 with different sterilization time, different illumination time and temperature culture condition were adopted to study the germination conditions of sand culture seeds. Different sterilization treatments and different hardening-seedling days were used to test the sterilization effect of sand culture seedlings. The sterilization effect of the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min on Lonicera hypoglauca seeds was the optimum,with the average pollution rate of 15.56%, and the average germination rate reached 51.11%. The combination of varied temperature-room temperature under light for 12 h/d was the best, with the average germination rate peaked at 75.49%, and the average germination potential reached 68.36%. The treatment of detergent liquor scrub-tap water wash on the part above the hypocotyl, which was sand cultured under the opening condition and had no root, showed the best sterilization effect, with the average pollution rate was zero, and the average survival rate peaked at 100.00%. The sterilization effect of sand culture seedlings, which was disinfected after cleaning by detergent liquor scrub-tap water wash after hardening-seeding for 30 days, was the best, with the average pollution rate of 50.00%, and the average survival rate of 100.00%. The best sterilization effect is the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min; Lighting for 12 h/d of varied temperature-room temperature is regarded as the optimum culture condition. The treatment of detergent liquor scrub-tap water wash treatment on the part above the hypocotyl,which is sand cultured under the opening condition and had no root, shows the best sterilization effect. For the sand culture seedlings, before inoculated in subculture medium, should be hardening-seedling for some days and sterilized after detergent liquor scrub-tap water wash.

  20. Skill Sheets for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    This set of 33 skill sheets for agricultural mechanics was developed for use in high school and vocational school agricultural mechanics programs. Some sheets teach operational procedures while others are for simple projects. Each skill sheet covers a single topic and includes: (1) a diagram, (2) a step-by-step construction or operational…

  1. Gravel Mobility in a High Sand Content Riverbed

    NASA Astrophysics Data System (ADS)

    Haschenburger, J. K.

    2017-12-01

    In sand-gravel channels, sand may modify gravel transport by changing conditions of entrainment and promoting longer displacements or gravel may inhibit sand transport if concentrated into distinct deposits, which restrict sand supply with consequences for migrating bedform size or form. This study reports on gravel mobility in the lower San Antonio River, Texas, where gravel content in the bed material ranges from about 1% to more than 20%. Sediment transport observations were collected at three U.S. Geological Survey gauging stations by deploying a Helley-Smith sampler with a 0.2 mm mesh bag from which transport rates and mobile grain sizes were determined. The flow rates sampled translate into an annual exceedance expectation from 0.2% to 98%. Gravel transport rates are generally two orders of magnitude smaller than the rates of sand transport. However, the finest gravels are transported at rates on the same order of magnitude as the coarsest sands. At all sites, the 2 and 2.8 mm fractions are transported at the lowest flow rate sampled, suggesting mobility for at least 38% to as much as 98% of the year. Fractions as large as 8 mm are mobilized at flow rates that are expected between 25% and 53% of the year. The largest fractions captured in the sampling (16 to 32 mm) require flows closer to bankfull conditions that occur no more than 0.8% of the year. Results document that some gravel sizes can be frequently transported in low gradient riverbeds with high sand content.

  2. Geosynthetic Reinforcement of Sand-Mat Layer above Soft Ground

    PubMed Central

    Park, Jong-Beom; Park, Hyun-Soo; Kim, Daehyeon

    2013-01-01

    In order to improve the bearing capacity of soft ground for the purpose of getting trafficability of construction vehicles, the reinforcement of geosynthetics for sand-mat layers on soft ground has often been used. As the strength of the geosynthetics increases, and the sand-mat system becomes stronger, the bearing capacity of sand-mat systems will be increased. The depths of geosynthetics, reinforced in sand-mat layers, were varied with respect to the width of footing. The tensile strengths of geosynthetics were also varied to evaluate the effect of reinforcement on the bearing capacity of soft ground. The dispersion angles, with varying sand-mat thicknesses, were also determined in consideration of the tensile strength of geosynthetics and the depths of reinforcement installations. The bearing capacity ratios, with the variation of footing width and reinforced embedment depth, were determined for the geosynthetics-only, reinforced soft ground, 1-layer sand-mat system and 2-layer sand-mat system against the non-reinforced soft ground. From the test results of various models, a principle that better explains the concept of geosynthetic reinforcement has been found. On the basis of this principle, a new bearing capacity equation for practical use in the design of geosynthetically reinforced soft ground has been proposed by modifying Yamanouchi’s equation. PMID:28788392

  3. Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods

    USGS Publications Warehouse

    Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.

  4. Risk factors for faecal sand excretion in Icelandic horses.

    PubMed

    Husted, L; Andersen, M S; Borggaard, O K; Houe, H; Olsen, S N

    2005-07-01

    Sandy soil is often mentioned as a risk factor in the development of sand-related gastrointestinal disease (SGID) in the horse. There are other variables, but few studies confirm any of these. To investigate soil type, pasture quality, feeding practice in the paddock, age, sex and body condition score as risk factors for sand intake in the horse. Faeces were collected from 211 Icelandic horses on 19 different studs in Denmark together with soil samples and other potential risk factors. Sand content in faeces determined by a sand sedimentation test was interpreted as evidence of sand intake. Soil types were identified by soil analysis and significance of the data was tested using logistic analysis. Of horses included in the study, 56.4% showed sand in the faeces and 5.7% had more than 5 mm sand as quantified by the rectal sleeve sedimentation test. Soil type had no significant effect when tested as main effect, but there was interaction between soil type and pasture quality. Significant interactions were also found between paddock feeding practice and pasture quality. To evaluate the risk of sand intake it is important to consider 3 variables: soil type, pasture quality and feeding practice. Pasture quality was identified as a risk factor of both short and long grass in combination with sandy soil, while clay soil had the lowest risk in these combinations. Feeding practice in the paddock revealed feeding directly on the ground to be a risk factor when there was short (1-5 cm) or no grass. Also, no feeding outdoors increased the risk on pastures with short grass, while this had no effect in paddocks with no grass. More than 50% of all horses investigated in this study had sand in the faeces. The identification of risk factors is an important step towards prevention of SGID. Further research is necessary to determine why some horses exhibit more than 5 mm sand in the sedimentation test and whether this is correlated with geophagic behaviour.

  5. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellerman, Peter L.; Thronson, Gregory D.

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  6. Quantification of Reduction in Forced Vital Capacity of Sand Stone Quarry Workers

    PubMed Central

    Singh, Suresh Kumar; Chowdhary, G. R.; Chhangani, V. D.; Purohit, Gopal

    2007-01-01

    This study assessed the reduction in forced vital capacity of lungs of sand stone quarry workers exposed to high respirable suspended particulate concentration. The sand stone quarry workers are engaged in different type of activities like drilling, loading and dressing. These different working places have different concentration of RSPM and these workers are exposed to different concentration of RSPM. It is found that exposure duration and exposure concentrations are main factors responsible to damage respiratory tract of worker. It is also revealed from the study that most of the workers are suffering from silicosis if the exposure duration is more than 15 years. PMID:18180540

  7. White Sands, Carrizozo Lava Beds, NM

    NASA Image and Video Library

    1973-06-22

    SL2-04-288 (22 June 1973) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast New Mexico (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Photo credit: NASA

  8. The Moving Sands of Lobo Vallis

    NASA Image and Video Library

    2018-04-02

    NASA's Mars Reconnaissance Orbiter shows bright ripples line the topography in this region, formed within a past climate. Dark dunes and sand streaks (composed of basaltic sand) have moved and filled lower areas, pushed by more recent winds from the top towards the bottom of this image. Lobo Vallis is named for a river on the Ivory Coast. https://photojournal.jpl.nasa.gov/catalog/PIA22346

  9. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response

    NASA Astrophysics Data System (ADS)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens

    2014-04-01

    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  10. Microbiological quality assessment of sand and water from three selected beaches of South Coast, São Paulo State, Brazil.

    PubMed

    Pinto, K C; Hachich, E M; Sato, M I Z; Di Bari, M; Coelho, M C L S; Matté, M H; Lamparelli, C C; Razzolini, M T P

    2012-01-01

    This study aimed to assess the sanitary quality of water, and wet and dry sand from three beaches located in the South Coast region of São Paulo State, Brazil, selected taking into account the frequency of tourists and the water quality (good, fair and poor). Thirty-six water samples each of wet and dry sand and seawater were collected monthly over a period of one year and analyzed for fecal indicator bacteria (FIB: thermotolerant coliforms, Escherichia coli, and enterococci), presumptive Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and dermatophytes. The results revealed FIB concentrations more elevated in dry sand followed by wet sand and water. P. aeruginosa and presumptive S. aureus were detected with a similar frequency in water and sand samples, but maximum concentrations and geometric means were higher in dry sand. C. albicans was detected only in water samples whereas the dermatophyte Microsporum sp. was isolated exclusively from dry and wet sand samples. This evaluation showed also that the environment had a significant influence on P. aeruginosa but not on presumptive S. aureus concentrations. According to threshold values proposed in the literature for E. coli and enterococci dry sand densities, none of the beaches would be considered of sufficient quality for recreational activities.

  11. Someday I May Want to Know about...Leisure and Recreational Activities for Children and Adults with Mental Retardation. A MCARC Information Sheet.

    ERIC Educational Resources Information Center

    Montgomery County Association for Retarded Citizens, Rockville, MD.

    The fact sheet considers the importance of recreation and leisure time activities for people with mental retardation. A case is made for mainstreamed services, and suggestions are offered for families seeking to procure successful mainstreamed experiences in community recreational programs. Among suggestions are adapting family games to the…

  12. High temperature thermal energy storage in steel and sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1979-01-01

    The technical and economic potential for high temperature (343 C, 650 F) thermal energy storage in hollow steel ingots, pipes embedded in concrete, and for pipes buried in sand was evaluated. Because it was determined that concrete would separate from pipes due to thermal stresses, concrete was replaced by sand, which is free from thermal stresses. Variations of the steel ingot concept were not cost effective compared to the sand-pipe approach, therefore, the sand-pipe thermal storage unit (TSU) was evaluated in depth to assess the approximate tube spacing requirements consistent with different system performance characteristics and also attendant system costs. For large TSUs which do not require fast response times, the sand-pipe approach offers attractive possibilities. A pipe diameter about 9 cm (3.5 in) and pipe spacing of approximately 25 cm (10 in), with sand filling the interspaces, appears appropriate. Such a TSU system designed for 8 hours charge/discharge cycle has an energy unit storage cost (CE) of $2.63/kWhr-t and a power unit storage cost (Cp) of $42/kW-t (in 1977 dollars).

  13. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, Denis R.

    1984-01-01

    Secondarily treated domestic sewage has been disposed of on surface sand beds at the sewage treatment facility at Otis Air Force Base, Massachusetts, since 1936. Infiltration of the sewage through the sand beds into the underlying unconfined sand and gravel aquifer has resulted in a plume of sewage-contaminated ground water that is 2,500 to 3,500 feet wide, 75 feet thick, and more than 11,000 feet long. The plume extends south and southwest of the sand beds in the same direction as the regional flow of ground water, and is overlain by 20 to 50 feet of ground water derived from precipitation that recharges the aquifer. The bottom of the plume generally coincides with the contact between the permeable sand and gravel and underlying finer grained sediments. The distributions in the aquifer of specific conductance, temperature, boron, chloride, sodium, phosphorus, nitrogen (total of all species), ammonia, nitrate, dissolved oxygen, and detergents are used to delineate the plume. In ground water outside the plume, the detergent concentration is less than 0.1 milligrams per liter as MBAS (methylene blue active substances), the ammonia-nitrogen concentration is less than 0.1 milligrams per liter, the boron concentration is less than 50 micrograms per liter, and specific conductance is less than 80 mircromhos per centimeter. In the center of the plume, detergent concentrations as high as 2.6 milligrams per liter as MBAS, ammonia-nitrogen concentrations as high as 20 milligrams per liter, boron concentrations as high as 400 micrograms per liter, and specific conductance as high as 405 micromhos per centimeter were measured. Chloride, sodium, and boron are transported by the southward-flowing ground water without significant retardation, and seem to be diluted only by hydrodynamic dispersion. The movement of phosphorus is greatly restricted by sorption. Phosphorus concentrations do not exceed 0.05 milligrams per liter farther than 2,500 feet from the sand beds. Detergent

  14. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    PubMed

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Downwind Side of Namib Sand Dune on Mars, Stereo

    NASA Image and Video Library

    2016-01-04

    This stereo view from NASA's Curiosity Mars Rover shows the downwind side of "Namib Dune," which stands about 13 feet (4 meters) high. The image appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The site is part of Bagnold Dunes, a band of dark sand dunes along the northwestern flank of Mars' Mount Sharp. The component images stitched together into this scene were taken with Curiosity's Navigation Camera (Navcam) on Dec. 17, 2015, during the 1,196th Martian day, or sol, of the rover's work on Mars. In late 2015 and early 2016, Curiosity is conducting the first up-close studies ever made of active sand dunes anywhere but on Earth. Under the influence of Martian wind, the Bagnold Dunes are migrating up to about one yard or meter per Earth year. http://photojournal.jpl.nasa.gov/catalog/PIA20282

  16. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  17. Stability of Thin Liquid Sheet Flows

    NASA Technical Reports Server (NTRS)

    McConley, Marc W.; Chubb, Donald L.; McMaster, Matthew S.; Afjeh, Abdollah A.

    1997-01-01

    A two-dimensional, linear stability analysis of a thin nonplanar liquid sheet flow in vacuum is carried out. A sheet flow created by a narrow slit of W and tau attains a nonplanar cross section as a consequence of cylinders forming on the sheet edge under the influence of surface tension forces. The region where these edge cylinders join the sheet is one of high curvature, and this is found to be the location where instability is most likely to occur. The sheet flow is found to be unstable, but with low growth rates for symmetric wave disturbances and high growth rates for antisymmetric disturbances. By combining the symmetric and antisymmetric disturbance modes, a wide range of stability characteristics is obtained. The product of unstable growth rate and flow time is proportional to the width-to-thickness ratio of the sift generating the sheet Three-dimensional effects can alter these results, particularly when the sheet length-to-width ratio is not much greater than unity.

  18. Sand consolidation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.M.

    1965-10-05

    This is a new and improved sand consolidation method wherein an in-situ curing of a resinous fluid is undertaken. This method does not require that the resinous fluids be catalyzed at the surface of the well or well bore as is the case in previous methods. This method consists of, first, pumping an acid-curable consolidating fluid into the unconsolidated sand or earth formation and, secondly, pumping an oil overflush solution containing a halogenated organic or other organic acid or delayed acid-producing chemical. A small quantity of diesel oilspacer may be used between the plastic catalyst solution. The overflush functions tomore » remove permeability, and its acid or acid producing component promotes subsequent hardening of the remaining film of consolidating fluid. Trichloroacetic acid and benzotrichloride are satisfactory to add to the overflush solution for curing the resins. (17 claims)« less

  19. Sand sagebrush response to fall and spring prescribed burns

    Treesearch

    Lance T. Vermeire; Robert B. Mitchell; Samuel D. Fuhlendorf

    2001-01-01

    Sand sagebrush (Artemisia filifolia) is a dominant shrub on sandy soils throughout the Great Plains and Southwest. Sand sagebrush is reported to reduce wind erosion and provides valuable forage and cover to numerous wildlife species. However, the fire ecology of sand sagebrush is not well understood. Our objectives were to evaluate fire-induced mortality, occurrence of...

  20. Plasma Sheet Circulation Pathways

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.

    2008-01-01

    Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.

  1. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    NASA Astrophysics Data System (ADS)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified

  2. Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.

    2008-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.

  3. Scaling results for the liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.

    1989-01-01

    Surface tension forces at the edges of a thin liquid (approx 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = 23.5 cm, length = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is low temperature (300-400 K) candidate for a liquid sheet radiator (LSR), is greater than 0.8 for sheet thicknesses greater than 100 micrometers.

  4. Penetration and blown-air effect in sand

    NASA Astrophysics Data System (ADS)

    Clement, R.; Courrech du Pont, S.; Douady, S.

    2012-04-01

    Sand is known to show a variety of uncommon physical features that do not fit the behavior of liquid or solid state. A good example of the inherent difficulties encountered when trying to describe collective grains behavior is the penetration of an intruding object into a granular medium. Such problems involve large coordination numbers, and the medium response dramatically depends on the volume fraction. On the fringe of these studies, we consider here the penetration of a cylindrical shell (typically an upside down glass) into dry sand, and report what we called the "blown-air effect". The air initially trapped escapes when the shell is pushed into sand, flowing through the granular medium. This flow dilates the sand and considerably eases the penetration of the shell. This is very different from what happens in liquids: when pushing a top-closed shell into a liquid, the trapped air increases the buoyancy and opposes the penetration. We show that the air flow does not change the general dynamics of penetration, suggesting that fluidization only involves an effective smaller volume fraction. Despite its simplicity (only a glass and some sand are needed to observe the effect), this experiment nicely illustrates the sometimes counter-intuitive behavior of granular media. Penetration in sand is also a critical issue in industry, and this work may help improving burying methods. Ref: Penetration and blown air effect in granular media R. Clément, S. Courrech du Pont, M. Ould-Hamouda, D. Duveau, and S. Douady Phys. Rev. Lett. 2011 Science News: http://news.sciencemag.org/sciencenow/2011/02/convince-your-friends-youre-a-ge.html

  5. Case history of Yakin field: its development and sand control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawolo, N.; Krueger, R.F.; Maly, G.P.

    1983-01-01

    This paper deals with the development of the Yakin field in East Kalimantan, Indonesia, with emphasis on the sand control methods used. Implementation of an effective sand control program ensured the successful development of this field. Gravel-packed wells had substantially lower production decline rates than the initial completions without gravel packs. Control of sand production also has been demonstrated by the lack of sand problems during the 4 1/2 years since the sand control program was initiated. During this time there have been no submersible pump failures associated with sand production. The successful sand control program was achieved by amore » well-coordinated and cooperative effort of drilling, reservoir engineering, production research, and service company personnel. Establishment of communication among all people involved, starting early in the planning process and continuing through the rig operations to the final production phase, coupled with intensive training at all levels of responsibility, on-site supervision, and quality control were important factors in the success of the development program.« less

  6. Modeled Variations of Precipitation over the Greenland Ice Sheet.

    NASA Astrophysics Data System (ADS)

    Bromwich, David H.; Robasky, Frank M.; Keen, Richard A.; Bolzan, John F.

    1993-07-01

    A parameterization of the synoptic activity at 500 hPa and a simple orographic scheme are used to model the spatial and temporal variations of precipitation over the Greenland Ice Sheet for 1963-88 from analyzed geopotential height fields produced by the National Meteorological Center (NMC). Model coefficients are fitted to observed accumulation data, primarily from the summit area of the ice sheet. All major spatial characteristics of the observed accumulation distribution are reproduced apart from the orographic accumulation maximum over the northwestern coastal slopes. The modeled time-averaged total precipitation amount over Greenland is within the range of values determined by other investigators from surface-based observations. A realistic degree of interannual variability in precipitation is also simulated.A downward trend in simulated ice sheet precipitation over the 26 years is found. This is supported by a number of lines of evidence. It matches the accumulation trends during this period from ice cores drilled in south-central Greenland. The lower tropospheric specific humidifies at two south coastal radiosonde stations also decrease over this interval. A systematic shift away from Greenland and a decrease in activity of the dominant storm track are found for relatively low precipitation periods as compared to relatively high precipitation periods. This negative precipitation trend would mean that the Greenland Ice Sheet, depending on its 1963 mass balance state, has over the 1963-88 period either decreased its negative, or increased its positive, contribution to recently observed global sea level rise.Superimposed on the declining simulated precipitation rate for the entire ice sheet is a pronounced 3-5-yr periodicity. This is prominent in the observed and modeled precipitation time series from Summit, Greenland. This cycle shows some aspects in common with the Southern Oscillation.Some deficiencies in the NMC analysts were highlighted by this work. A

  7. Characterization and Evaluation of Incorporation the Casting Sand in Mortar

    NASA Astrophysics Data System (ADS)

    Zanelato, E. B.; Azevedo, A. R. G.; Alexandre, J.; Xavier, C. G.; Monteiro, S. N.; Mendonça, T. A. O.

    The process of casting metals and alloys occurs through the fusion of this metal and its subsequent casting into a mold with the dimensions and geometry close to the final piece. Most foundries use sand casting molds for making you. This work aims to characterize and evaluate the foundry sand to allow its use in segments of Civil Engineering, creating a viable destination for a residue is that discarded. The following characterization tests were performer: particle size, chemical analysis, X-ray Diffraction and Density Real grain. For the execution of the test specimens was used to 1:3 cement and sand, and the incorporation of 10% and 20% of the total mass replacing the sand, and the trace reference. The results show that best results in compression and bending tests were obtained by replacing 10 % of common sand for sand casting.

  8. Orientation determination of interfacial beta-sheet structures in situ.

    PubMed

    Nguyen, Khoi Tan; King, John Thomas; Chen, Zhan

    2010-07-01

    Structural information such as orientations of interfacial proteins and peptides is important for understanding properties and functions of such biological molecules, which play crucial roles in biological applications and processes such as antimicrobial selectivity, membrane protein activity, biocompatibility, and biosensing performance. The alpha-helical and beta-sheet structures are the most widely encountered secondary structures in peptides and proteins. In this paper, for the first time, a method to quantify the orientation of the interfacial beta-sheet structure using a combined attenuated total reflectance Fourier transformation infrared spectroscopic (ATR-FTIR) and sum frequency generation (SFG) vibrational spectroscopic study was developed. As an illustration of the methodology, the orientation of tachyplesin I, a 17 amino acid peptide with an antiparallel beta-sheet, adsorbed to polymer surfaces as well as associated with a lipid bilayer was determined using the regular and chiral SFG spectra, together with polarized ATR-FTIR amide I signals. Both the tilt angle (theta) and the twist angle (psi) of the beta-sheet at interfaces are determined. The developed method in this paper can be used to obtain in situ structural information of beta-sheet components in complex molecules. The combination of this method and the existing methodology that is currently used to investigate alpha-helical structures will greatly broaden the application of optical spectroscopy in physical chemistry, biochemistry, biophysics, and structural biology.

  9. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  10. Treating tar sands formations with dolomite

    DOEpatents

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  11. Bioprocess for treating coproduced oily sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munnecke, D.M.; Ireland, J.

    1996-12-31

    The production of oil from certain oil fields creates significant amounts of oily sand which in many regulatory jurisdictions is regulated as a hazardous material, thus disposal costs can be significant. Environmental BioTechnologies, Inc. (San Carlos, CA) has developed a physical/biological treatment process that is able to economically treat these coproduced sands and produce a product that contains less than 2,000 ppm total petroleum hydrocarbons.

  12. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, J.D.; Harak, A.E.

    1988-05-04

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

  13. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, James D.; Harak, Arnold E.

    1989-01-01

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

  14. 22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL AND TEST LAB FOR UNIT NO. 2 GREY IRON DISAMATIC. SAND CASTING TECHNICIAN, ROY BATES, TESTS THE WEIGHT OF THE SAND, DRYS IT, AND WEIGHT IT AGAINST STANDARDS TO CALCULATE THE CORRECT MOISTURE NEEDED FOR DIFFERENT MOLDS. THE SAND MIX VARY WITH THE SIZE AND COMPOSITION OF THE CASTING. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  15. Middle to late Holocene fluctuations of the Vindue glacier, an outlet glacier of the Greenland Ice Sheet, central East Greenland.

    NASA Astrophysics Data System (ADS)

    Levy, L.; Hammer, S. K.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Howley, J. A.; Wilcox, P.; Medford, A.

    2014-12-01

    The margins of the Greenland Ice Sheet are currently responding to present-day climate changes. Determining how the ice sheet margins have responded to past climate changes provides a means to understand how they may respond in the future. Here we present a multi-proxy record used to reconstruct the Holocene fluctuations of the Vindue glacier, an ice sheet outlet glacier in eastern Greenland. Lake sediment cores from Qiviut lake (informal name), located ~0.75 km from the present-day Vindue glacier margin contain a sharp transition from medium sand/coarse silt to laminated gyttja just prior to 6,340±130 cal yr BP. We interpret this transition to indicate a time when the Vindue glacier retreated sufficiently to cease glacial sedimentation into the lake basin. Above this contact the core contains laminated gyttja with prominent, ~0.5 cm thick, silt layers. 10Be ages of boulders on bedrock located between Qiviut lake and the present-day ice margin date to 6.81 ± 0.67 ka (n = 3), indicating the time of deglaciation. These ages also agree well with the radiocarbon age of the silt-gyttja transition in Qiviut lake cores. 10Be ages on boulders on bedrock located more proximal to the ice margin (~0.5 km) yield ages of 2.67 ± 0.18 ka (n = 2). These ages indicate either the continued recession of the ice margin during the late Holocene or an advance at this time. Boulders on the historical moraines show that ice retreated from the moraine by AD 1620 ± 20 yrs (n = 2). These results are in contrast with some areas of the western margin of the ice sheet where 10Be ages indicate that the ice sheet was behind its Historical limit from the middle Holocene (~6-7 ka) to Historical time. This may indicate that the eastern margin may have responded to late Holocene cooling more sensitively or that the advance associated with the Historical moraines overran any evidence of late Holocene fluctuations along the western margin of the ice sheet.

  16. A panel method study of vortex sheets with special emphasis on sheets of axisymmetric geometry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sugioka, I.; Widnall, S. E.

    1985-01-01

    The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.

  17. Dynamics of Radially Expanding Liquid Sheets

    NASA Astrophysics Data System (ADS)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  18. Which processes form the volcanic sands on Mars?

    NASA Astrophysics Data System (ADS)

    Grégoire, M.; Baratoux, D.; Mangold, N.; Arnalds, O.; Platvoet, B.; Bardinzeff, J.; Pinet, P.

    2007-12-01

    Volcanic sands are common at the surface of Mars. They are usually of basaltic composition. Occurrence of sands, mostly recognized as dark dune fields include numerous impact craters in the southern hemisphere [1], several volcanic provinces such as Cerberus and Syrtis Major[2], several impact craters in the northern hemisphere, the large basins (Hellas and Argyre), Valles Marineris, and the poles [3]. In most cases, the sands are of basaltic composition [2,4], at the exception of the polar dunes which are made of sulfates [3]. It is interesting to note that dunes have been found on the Hesperian volcanic plateau of Systis Major, while they are not reported on Tyrrhena Terra, a volcanic province similar in age and morphology to Syrtis. It seems thus that the formation of sand from volcanic material is not systematic and thus requires particular conditions. These different situations which will be presented raise the following questions. When did these volcanic sands form in the Martian history? Did they result from a long-standing and slow process operating in the present cold conditions or did they result from several episodes associated for instant to climate changes? We review several mechanisms which could account for the formation of volcanic sand on Mars from the volcanic material. In particular, we focus on the role of cold-climate processes from an analysis of terrestrial analogs in Iceland. In this case, the advance and retreat of glaciers over a recent erupted shield volcano associated with the strong catabatic winds have resulted in the rapid formation (less than few thousands years) of large volumes of sands. [1] Fenton, L. K. (2005), Potential sand sources for the dune fields in Noachis Terra, Mars, J. Geophys. Res. 110, E11004, doi :10.1029/2005JE002436. [2] Vaucher et. al, in revision for Icarus [3] Langevin et. al, (2005), Science, 307, 1584-1586 [4] Poulet F., Mangold N. and Erard S. (2003), Astron. & Astrophys. 412, L19-L23.

  19. Submarine sand dunes and sedimentary environments in Oceanographer Canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Cooper, R.A.; Uzmann, J.R.

    1984-01-01

    Observations from research submersibles in the northern part of Oceanographer Canyon reveal the presence of an extensive field of large sand dunes on the canyon floor. The dunes are medium to coarse sand, are oriented across the axis, and the largest of them are as high as 3 m and have wavelengths up to 15 m. Their asymmetry, grain size, and height suggest that they are formed by axial currents flowing up- and downcanyon and that the largest dunes require flows of at least 70 cm/sec. Shelf sand, low in silt and clay content, is transported by currents down and along the canyon walls onto the canyon floor. As the sand enters the canyon, it is mixed with immobile gravel deposits on the canyon rim; lower on the walls, the sand is mixed with silt and clay burrowed by organisms from the semiconsolidated sandy silt that underlies the canyon walls and floor. Upon reaching the canyon floor, the sand is sculpted into bed forms by currents, and the fines are winnowed out and transported out of the canyon. At present, the shelf and canyon walls are being eroded by bottom currents and burrowing organisms, whereas the canyon floor is covered by mobile sand that moves both up and down the axis in this part of the canyon.

  20. The Halekulani Sand Channel and Makua Shelf sediment deposits: Are they a sand resource for replenishing Waikiki's beaches?

    USGS Publications Warehouse

    Hampton, M.A.; Fletcher, C. H.; Barry, J.H.; Lemmo, S.J.; ,

    2000-01-01

    The Halekulani Sand Channel and the Makua Shelf off the south shore of Oahu contain at least 1.3 million m3 of sediment that is a possible resource for nourishing degraded sections of Waikiki Beach. A sidescan sonar survey indicates continuous sediment cover within the channel and on the shelf, and samples from the top and bottom of vibracores from the channel and shelf contain from 29% to 77% of grains between 0 to 2.5 phi (1 to 0.177 mm), the size range of four samples from Waikiki Beach. Compositional analyses indicate high variability, but the vibracore samples normally have relatively high Halimeda content compared to beach sand samples. Laboratory tests show a positive correlation of abrasion with Halimeda content, suggesting that the offshore sediment would abrade more than beach sediment under nearshore wave action. The common gray color of the offshore sediment can be aesthetically undesirable for sand on popular tourist beaches such as Waikiki; however, visual observation of native beach sand indicates that a significant component of gray color is endemic to many Hawaiian beaches. The gray color was removed in the laboratory by soaking in heated hydrogen peroxide. The geological properties of the offshore sediment indicate potential as a resource for beach nourishment, but industrial treatment might be necessary to remove excess fine and coarse grains, and possibly the gray color. Further, the abrasion potential might have to be considered in calculating beach sand losses over time.

  1. Hydrodynamic implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka

    USGS Publications Warehouse

    Morton, R.A.; Goff, J.R.; Nichol, S.L.

    2008-01-01

    Field observations and sediment samples at a coastal-plain setting in southeastern Sri Lanka were used to document the erosional and depositional impacts of the 2004 Indian Ocean tsunami and to interpret the hydrodynamic processes that produced an extensive sand-sheet deposit. Tsunami deposit thicknesses ranged from 6 to 22??cm with thickness being controlled partly by antecedent topography. The deposit was composed of coarse to medium sand organized into plane-parallel laminae and a few laminasets. Vertical textural trends showed an overall but non-systematic upward fining and upward thinning of depositional units with an upward increase in heavy-mineral laminations at some locations. Repeated patterns in the vertical textural trends (upward fining, upward coarsening, uniform) were used to subdivide and correlate the deposit into five hydro-textural stratigraphic units. The depositional units were linked to hydrodynamic processes and upcurrent conditions, such as rates of sediment supply and composition of the sediment sources. Vertical changes in grain-size distributions recorded the depositional phases associated with flow acceleration, initial unsteady pulsating flow, relatively stable and uniform flow, flow deceleration, slack water, and return flow or flow redirection. Study results suggest that vertical textural trends from multiple cross-shore sections can be used to interpret complex tsunami flow histories, but at the location examined, interpretation of the lateral textural trends did not provide a basis for identifying the correct sediment transport pathways because flow near the landward boundary was multidirectional.

  2. Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties

    NASA Astrophysics Data System (ADS)

    Ghasempour Ardakani, Abbas; Pazoki, Meysam; Mahdavi, Seyed Mohammad; Bahrampour, Ali Reza; Taghavinia, Nima

    2012-05-01

    In this work, ultraviolet photodetectors based on electrodeposited ZnO sheet thin films were fabricated on a glass substrate. Before electrodeposition, a thin buffer layer of ZnO was deposited on the glass by pulsed laser deposition method. This layer not only acted as a nucleation site for ZnO sheet growth, but also made it possible to use cheap glass substrate instead of conventional fluorine-doped tin oxide (FTO) substrate. Our results showed that photoresponse properties of the photodetectors strongly depend on the sheet sizes. The smaller sheets exhibited enhanced photosensitivity, shortened fall times and decreased gain compared to larger ones. We showed that photodetectors based on ZnO sheets have a faster response than ones based on polycrystalline films. It was also shown that even less response time could be obtained by using comb-like electrodes instead of two-electrode.

  3. Buckling and stretching of thin viscous sheets

    NASA Astrophysics Data System (ADS)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  4. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters.

    PubMed

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2013-10-15

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches.

    PubMed

    Heaney, Christopher D; Exum, Natalie G; Dufour, Alfred P; Brenner, Kristen P; Haugland, Richard A; Chern, Eunice; Schwab, Kellogg J; Love, David C; Serre, Marc L; Noble, Rachel; Wade, Timothy J

    2014-11-01

    Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches - Fairhope Beach, AL and Goddard Beach, RI - with nearby publicly-owned treatment works (POTWs) outfalls. F(+) coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand-water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors and do

  6. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings.

    PubMed

    Collins, C E Victoria; Foght, Julia M; Siddique, Tariq

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction

    PubMed Central

    Xiao, Junwu; Kuang, Qin; Yang, Shihe; Xiao, Fei; Wang, Shuai; Guo, Lin

    2013-01-01

    Catalytic activity is primarily a surface phenomenon, however, little is known about Co3O4 nanocrystals in terms of the relationship between the oxygen reduction reaction (ORR) catalytic activity and surface structure, especially when dispersed on a highly conducting support to improve the electrical conductivity and so to enhance the catalytic activity. Herein, we report a controllable synthesis of Co3O4 nanorods (NR), nanocubes (NC) and nano-octahedrons (OC) with the different exposed nanocrystalline surfaces ({110}, {100}, and {111}), uniformly anchored on graphene sheets, which has allowed us to investigate the effects of the surface structure on the ORR activity. Results show that the catalytically active sites for ORR should be the surface Co2+ ions, whereas the surface Co3+ ions catalyze CO oxidation, and the catalytic ability is closely related to the density of the catalytically active sites. These results underscore the importance of morphological control in the design of highly efficient ORR catalysts. PMID:23892418

  8. Modeling Cape- and Ridge-Associated Marine Sand Deposits; A Focus on the U.S. Atlantic Continental Shelf

    USGS Publications Warehouse

    Bliss, James D.; Williams, S. Jeffress; Bolm, Karen S.

    2009-01-01

    Cape- and ridge-associated marine sand deposits, which accumulate on storm-dominated continental shelves that are undergoing Holocene marine transgression, are particularly notable in a segment of the U.S. Atlantic Continental Shelf that extends southward from the east tip of Long Island, N.Y., and eastward from Cape May at the south end of the New Jersey shoreline. These sand deposits commonly contain sand suitable for shore protection in the form of beach nourishment. Increasing demand for marine sand raises questions about both short- and long-term potential supply and the sustainability of beach nourishment with the prospects of accelerating sea-level rise and increasing storm activity. To address these important issues, quantitative assessments of the volume of marine sand resources are needed. Currently, the U.S. Geological Survey is undertaking these assessments through its national Marine Aggregates and Resources Program (URL http://woodshole.er.usgs.gov/project-pages/aggregates/). In this chapter, we present a hypothetical example of a quantitative assessment of cape-and ridge-associated marine sand deposits in the study area, using proven tools of mineral-resource assessment. Applying these tools requires new models that summarize essential data on the quantity and quality of these deposits. Two representative types of model are descriptive models, which consist of a narrative that allows for a consistent recognition of cape-and ridge-associated marine sand deposits, and quantitative models, which consist of empirical statistical distributions that describe significant deposit characteristics, such as volume and grain-size distribution. Variables of the marine sand deposits considered for quantitative modeling in this study include area, thickness, mean grain size, grain sorting, volume, proportion of sand-dominated facies, and spatial density, of which spatial density is particularly helpful in estimating the number of undiscovered deposits within an

  9. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  10. Simulation of groundwater flow in the "1,500-foot" sand and "2,000-foot" sand and movement of saltwater in the "2,000-foot" sand of the Baton Rouge area, Louisiana

    USGS Publications Warehouse

    Heywood, Charles E.; Griffith, Jason M.

    2013-01-01

    Groundwater withdrawals have caused saltwater to encroach into freshwater-bearing aquifers beneath Baton Rouge, Louisiana. Groundwater investigations in the 1960s identified a freshwater-saltwater interface located at the Baton Rouge Fault, across which abrupt changes in water levels occur. Aquifers south of the fault generally contain saltwater, and aquifers north of the fault contain freshwater, though limited saltwater encroachment has been detected within 7 of the 10 aquifers north of the fault. The 10 aquifers beneath the Baton Rouge area, which includes East and West Baton Rouge Parishes, Pointe Coupee Parish, and East and West Feliciana Parishes, provided about 167 million gallons per day (Mgal/day) for public supply and industrial use in 2010. Groundwater withdrawals from an aquifer that is 2,000-feet (ft) deep in East Baton Rouge Parish (the “2,000-foot” sand of the Baton Rouge area) have caused water-level drawdown up to 356 ft and induced saltwater movement northward across the fault. Groundwater withdrawals from the “2,000-foot” sand averaged 23.9 Mgal/d during 2010. Saltwater encroachment threatens wells that are located about 3 miles north of the fault, where industrial withdrawals account for about 66 percent of the water withdrawn from the “2,000-foot” sand in East Baton Rouge Parish. Constant and variable-density groundwater models were developed with the MODFLOW and SEAWAT groundwater modeling codes to evaluate strategies to control saltwater migration, including changes in the distribution of groundwater withdrawals and installation of “scavenger” wells to intercept saltwater before it reaches existing production wells. Five hypothetical scenarios simulated the effects of different groundwater withdrawal options on groundwater levels within the “1,500-foot” sand and the “2,000-foot” sand and the transport of saltwater within the “2,000-foot” sand. Scenario 1 is considered a base case for comparison to the other four

  11. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loope, D.B.; Swinehart, J.B.

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less

  12. Microbes in Beach Sands: Integrating Environment, Ecology and Public Health

    PubMed Central

    Whitman, Richard; Harwood, Valerie J.; Edge, Thomas A.; Nevers, Meredith; Byappanahalli, Muruleedhara; Vijayavel, Kannappan; Brandão, João; Sadowsky, Michael J.; Alm, Elizabeth Wheeler; Crowe, Allan; Ferguson, Donna; Ge, Zhongfu; Halliday, Elizabeth; Kinzelman, Julie; Kleinheinz, Greg; Przybyla-Kelly, Kasia; Staley, Christopher; Staley, Zachery; Solo-Gabriele, Helena M.

    2014-01-01

    SUMMARY Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future

  13. Geomorphology and drift potential of major aeolian sand deposits in Egypt

    NASA Astrophysics Data System (ADS)

    Hereher, Mohamed E.

    2018-03-01

    Aeolian sand deposits cover a significant area of the Egyptian deserts. They are mostly found in the Western Desert and Northern Sinai. In order to understand the distribution, pattern and forms of sand dunes in these dune fields it is crucial to analyze the wind regimes throughout the sandy deserts of the country. Therefore, a set of wind data acquired from twelve meteorological stations were processed in order to determine the drift potential (DP), the resultant drift potential (RDP) and the resultant drift direction (RDD) of sand in each dune field. The study showed that the significant aeolian sand deposits occur in low-energy wind environments with the dominance of linear and transverse dunes. Regions of high-energy wind environments occur in the south of the country and exhibit evidence of deflation rather than accumulation with the occurrence of migratory crescentic dunes. Analysis of the sand drift potentials and their directions help us to interpret the formation of major sand seas in Egypt. The pattern of sand drift potential/direction suggests that the sands in these seas might be inherited from exogenous sources.

  14. Two-fold sustainability – Adobe with sawdust as partial sand replacement

    NASA Astrophysics Data System (ADS)

    Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen

    2018-04-01

    Adobe is a material that is economic, environment friendly, and provides better indoor air quality. The material required for the preparation of adobe include clay, sand, and sometimes straw or other organic materials. These materials do not require industrial processing or transportation, however, sand mining has been recently posing a threat to the environment. Therefore, to enhance the existing sustainability of adobe, sand can be partially or fully replaced by other waste materials. This approach will not only solve the problem of excessive sand mining, it will also address the issue of waste management. Sawdust is one such waste material that can be used to partially replace sand in Adobe. This paper presents the results of compressive and flexural test carried out on Adobe samples with partial sand replacement by sawdust. The results show that about 4% sand replacement by volume produces higher compressive strength, whereas the flexural strength reduces with the use of sawdust. However, since flexural strength is not a critical property for adobe, it is concluded that replacing sand with sawdust by about 4% of volume will be beneficial.

  15. Results of the Greenland Ice Sheet Model Initialisation Experiments ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, H.; Nowicki, S.; Edwards, T.; Beckley, M.; Abe-Ouchi, A.; Aschwanden, A.; Calov, R.; Gagliardini, O.; Gillet-chaulet, F.; Golledge, N. R.; Gregory, J. M.; Greve, R.; Humbert, A.; Huybrechts, P.; Larour, E. Y.; Lipscomb, W. H.; Le ´h, S.; Lee, V.; Kennedy, J. H.; Pattyn, F.; Payne, A. J.; Rodehacke, C. B.; Rückamp, M.; Saito, F.; Schlegel, N.; Seroussi, H. L.; Shepherd, A.; Sun, S.; Vandewal, R.; Ziemen, F. A.

    2016-12-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. The goal of this intercomparison exercise (initMIP-Greenland) is to compare, evaluate and improve the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss final results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  16. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  17. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  18. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  19. Trends in Gypsiferous Aerosol Downwind of White Sands, New Mexico

    NASA Astrophysics Data System (ADS)

    White, W. H.; Trzepla, K.; Yatkin, S.; Gill, T. E.; Jin, L.

    2013-12-01

    White Sands is a known 'hotspot' of dust emissions in southwestern North America where an active gypsum dunefield abuts erodible playa sediments. Aerosols entrained from White Sands are sometimes visible on satellite images as distinct, light-colored plumes crossing the Sacramento Mountains to the northeast. The U.S. Forest Service operates an aerosol sampler at White Mountain in the lee of the Sacramento range as part of the IMPROVE network (Interagency Monitoring of PROtected Visual Environments). In recent years a spring pulse of sulfate aerosol has appeared at White Mountain, eclipsing the regional summer peak attributed to atmospheric reactions of sulfur dioxide emissions. A significant fraction of this spring sulfate is contributed by gypsum and other salts from White Sands, with clearly increased concentrations of calcium, strontium, and chloride. The increase in these species coincides with a drought following a period of above-average precipitation. White Sands and White Mountain thus provide an unusually well-defined natural laboratory: a climatically sensitive dust source that is both well characterized and chemically distinct from its surroundings, with a signature that remains identifiably distinct at a long-term observatory ~100 km downwind. This paper examines the routine PM2.5 (fine-particle, Dp < 2.5 um) composition data available from White Mountain and other regional IMPROVE sites (e.g. Bosque del Apache), supplemented by some elemental analysis of collocated PM10 samples. The ambient data are compared with chemical analyses of surface samples from White Sands, bulk dry dustfall and soil surface composition at White Mountain, satellite observations of dust plumes, and available meteorological records. Together, the observations document significant, episodic aeolian transport of gypsum and other salts across the Sacramento Mountains. Figure 1. Left: Monthly average concentrations of every-third-day 24h samples. Top right: MODIS image, 2

  20. Sand Transport under Highly Turbulent Airflow on a Beach Surface

    NASA Astrophysics Data System (ADS)

    Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.

    2012-04-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity

  1. The importance of sand in the formation of avulsion channels within experimental fans that develop from sediment mixtures of mud and sand

    NASA Astrophysics Data System (ADS)

    Iscen, N.; Strom, K.

    2017-12-01

    Autogenic channel migration and avulsion has long been recognized as important drivers of alluvial fan dynamics. In the literature, several field studies have documented that the presence and the amount of sand transport through a channel is important for channel incision in alluvial fans and deltas. In our experiments, we present the general autogenic avulsion cycle of experimental alluvial fans with mixtures of cohesive sediment and sand with a range of boundary conditions, and we detail the importance of mobile sand fraction in the development of channels that lead to avulsion. Experimental observations demonstrate that new channels form at topographically low regions within the floodplain providing that sand is transported to these topographic lows due to overbank flow or levee breaching. In addition to the sediment transported from upstream, erosion of a previous deposit and an ongoing backfilling nearby are observed as the possible sources of sand getting into the ghost channels. We explore whether the presence of sand is important for channel development because it increases abrasion of the channel or because it changes the roughness characteristics of the flow. We also examine the affect of sediment and water supply change on the newly described channelization process and link distinctive channel morphologies to different stages of described channel development and the avulsion process.

  2. Ohm's law for a current sheet

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  3. Results of the Greenland ice sheet model initialisation experiments: ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew

    2017-04-01

    Ice sheet model initialisation has a large effect on projected future sea-level contributions and gives rise to important uncertainties. The goal of this intercomparison exercise for the continental-scale Greenland ice sheet is therefore to compare, evaluate and improve the initialisation techniques used in the ice sheet modelling community. The initMIP-Greenland project is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experimental set-up has been designed to allow comparison of the initial present-day state of the Greenland ice sheet between participating models and against observations. Furthermore, the initial states are tested with two schematic forward experiments to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss results that highlight the wide diversity of data sets, boundary conditions and initialisation techniques used in the community to generate initial states of the Greenland ice sheet.

  4. Presence of Campylobacter and Salmonella in sand from bathing beaches.

    PubMed Central

    Bolton, F. J.; Surman, S. B.; Martin, K.; Wareing, D. R.; Humphrey, T. J.

    1999-01-01

    The purpose of this study was to determine the presence of thermophilic Campylobacter spp. and Salmonella spp. in sand from non-EEC standard and EEC standard designated beaches in different locations in the UK and to assess if potentially pathogenic strains were present. Campylobacter spp. were detected in 82/182 (45%) of sand samples and Salmonella spp. in 10/182 (6%). Campylobacter spp. were isolated from 46/92 (50%) of samples from non-EEC standard beaches and 36/90 (40%) from EEC standard beaches. The prevalence of Campylobacter spp. was greater in wet sand from both types of beaches but, surprisingly, more than 30% of samples from dry sand also contained these organisms. The major pathogenic species C. jejuni and C. coli were more prevalent in sand from non-EEC standard beaches. In contrast, C. lari and urease positive thermophilic campylobacters, which are associated with seagulls and other migratory birds, were more prevalent in sand from EEC standard beaches. Campylobacter isolates were further characterized by biotyping and serotyping, which confirmed that strains known to be of types associated with human infections were frequently found in sand on bathing beaches. PMID:10098779

  5. Presence of Campylobacter and Salmonella in sand from bathing beaches.

    PubMed

    Bolton, F J; Surman, S B; Martin, K; Wareing, D R; Humphrey, T J

    1999-02-01

    The purpose of this study was to determine the presence of thermophilic Campylobacter spp. and Salmonella spp. in sand from non-EEC standard and EEC standard designated beaches in different locations in the UK and to assess if potentially pathogenic strains were present. Campylobacter spp. were detected in 82/182 (45%) of sand samples and Salmonella spp. in 10/182 (6%). Campylobacter spp. were isolated from 46/92 (50%) of samples from non-EEC standard beaches and 36/90 (40%) from EEC standard beaches. The prevalence of Campylobacter spp. was greater in wet sand from both types of beaches but, surprisingly, more than 30% of samples from dry sand also contained these organisms. The major pathogenic species C. jejuni and C. coli were more prevalent in sand from non-EEC standard beaches. In contrast, C. lari and urease positive thermophilic campylobacters, which are associated with seagulls and other migratory birds, were more prevalent in sand from EEC standard beaches. Campylobacter isolates were further characterized by biotyping and serotyping, which confirmed that strains known to be of types associated with human infections were frequently found in sand on bathing beaches.

  6. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  7. Bone regeneration with osteogenic matrix cell sheet and tricalcium phosphate: An experimental study in sheep.

    PubMed

    Kira, Tsutomu; Akahane, Manabu; Omokawa, Shohei; Shimizu, Takamasa; Kawate, Kenji; Onishi, Tadanobu; Tanaka, Yasuhito

    2017-10-18

    To determine the effects of a cell sheet created from sheep bone marrow and tricalcium phosphate (TCP) on osteogenesis. Bone marrow cells were harvested from a sheep and cultured in a minimal essential medium (MEM) containing ascorbic acid phosphate (AscP) and dexamethasone (Dex). After 2 wk, the formed osteogenic matrix cell sheet was lifted from the culture dish using a scraper. Additionally, harvested bone marrow cells were cultured in MEM only as a negative control group, and in MEM with AscP, Dex, and β-glycerophosphate as a positive control group. For in vitro evaluation, we measured the alkaline phosphatase (ALP) activity and osteocalcin (OC) content in the media of the cultured cells from each group. For in vivo analysis, a porous TCP ceramic was used as a scaffold. We prepared an experimental group comprising TCP scaffolds wrapped with the osteogenic matrix cell sheets and a control group consisting of the TCP scaffold only. The constructs were implanted subcutaneously into athymic rats and the cell donor sheep, and bone formation was confirmed by histology after 4 wk. In the in vitro part, the mean ALP activity was 0.39 ± 0.03 mg/well in the negative control group, 0.67 ± 0.04 mg/well in the sheet group, and 0.65 ± 0.07 mg/well in the positive control group. The mean OC levels were 1.46 ± 0.33 ng/well in the negative control group, 3.92 ± 0.16 ng/well in the sheet group, and 4.4 ± 0.47 ng/well in the positive control group, respectively. The ALP activity and OC levels were significantly higher in the cell sheet and positive control groups than in the negative control group ( P < 0.05). There was no significant difference in ALP activity or OC levels between the cell sheet group and the positive control group ( P > 0.05). TCP constructs wrapped with cell sheets prior to implantation showed bone formation, in contrast to TCP scaffolds alone, which exhibited poor bone formation when implanted, in the subcutaneous layer both in athymic rats and in the

  8. Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes

    USDA-ARS?s Scientific Manuscript database

    Leishmaniasis is an insect-borne disease caused by several protozoan species in the genus Leishmania, which are vectored by sand fly species in the genera Phlebotomus or Lutzomyia, depending on the sand fly species geographic range. Sand fly bites and leishmaniasis significantly impacted U.S. milita...

  9. The effects of psammophilous plants on sand dune dynamics

    NASA Astrophysics Data System (ADS)

    Bel, Golan; Ashkenazy, Yosef

    2014-07-01

    Mathematical models of sand dune dynamics have considered different types of sand dune cover. However, despite the important role of psammophilous plants (plants that flourish in moving-sand environments) in dune dynamics, the incorporation of their effects into mathematical models of sand dunes remains a challenging task. Here we propose a nonlinear physical model for the role of psammophilous plants in the stabilization and destabilization of sand dunes. There are two main mechanisms by which the wind affects these plants: (i) sand drift results in the burial and exposure of plants, a process that is known to result in an enhanced growth rate, and (ii) strong winds remove shoots and rhizomes and seed them in nearby locations, enhancing their growth rate. Our model describes the temporal evolution of the fractions of surface cover of regular vegetation, biogenic soil crust, and psammophilous plants. The latter reach their optimal growth under either (i) specific sand drift or (ii) specific wind power. The model exhibits complex bifurcation diagrams and dynamics, which explain observed phenomena, and it predicts new dune stabilization scenarios. Depending on the climatological conditions, it is possible to obtain one, two, or, predicted here for the first time, three stable dune states. Our model shows that the development of the different cover types depends on the precipitation rate and the wind power and that the psammophilous plants are not always the first to grow and stabilize the dunes.

  10. Geologic map of Great Sand Dunes National Park, Colorado

    USGS Publications Warehouse

    Madole, Richard F.; VanSistine, D. Paco; Romig, Joseph H.

    2016-10-20

    Geologic mapping was begun after a range fire swept the area of what is now the Great Sand Dunes National Park in April 2000. The park spans an area of 437 square kilometers (or about 169 square miles), of which 98 percent is blanketed by sediment of Quaternary age, the Holocene and Pleistocene Epochs; hence, this geologic map of the Great Sand Dunes National Park is essentially a surficial geologic map. These surficial deposits are diverse and include sediment of eolian (windblown), alluvial (stream and sheetwash), palustrine (wetlands and marshes), lacustrine (lake), and mass-wasting (landslides) origin. Sediment of middle and late Holocene age, from about 8,000 years ago to the present, covers about 80 percent of the park.Fluctuations in groundwater level during Holocene time caused wetlands on the nearby lowland that bounds the park on the west to alternately expand and contract. These fluctuations controlled the stability or instability of eolian sand deposits on the downwind (eastern) side of the lowland. When groundwater level rose, playas became lakes, and wet or marshy areas formed in many places. When the water table rose, spring-fed streams filled their channels and valley floors with sediment. Conversely, when groundwater level fell, spring-fed streams incised their valley floors, and lakes, ponds, and marshes dried up and became sources of windblown sand.Discharge in streams draining the west flank of the Sangre de Cristo Range is controlled primarily by snowmelt and flow is perennial until it reaches the mountain front, beyond which streams begin losing water at a high rate as the water soaks into the creek beds. Even streams originating in the larger drainage basins, such as Sand and Medano Creeks, generally do not extend much more than 4 km (about 2.5 miles) beyond where they exit the mountains.The Great Sand Dunes contain the tallest dunes (maximum height about 750 feet, or 230 m) in North America. These dunes cover an area of 72 square kilometers

  11. Regional transport of a chemically distinctive dust: Gypsum from White Sands, New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    White, Warren H.; Hyslop, Nicole P.; Trzepla, Krystyna; Yatkin, Sinan; Rarig, Randy S.; Gill, Thomas E.; Jin, Lixin

    2015-03-01

    The White Sands complex, a National Monument and adjoining Missile Range in southern New Mexico, occupies the dry bed of an ice-age lake where an active gypsum dunefield abuts erodible playa sediments. Aerosols entrained from White Sands are sometimes visible on satellite images as distinct, light-colored plumes crossing the Sacramento Mountains to the east and northeast. The IMPROVE network (Interagency Monitoring of PROtected Visual Environments) operates long-term aerosol samplers at two sites east of the Sacramento range. In recent years a spring pulse of sulfate aerosol has appeared at these sites, eclipsing the regional summer peak resulting from atmospheric reactions of sulfur dioxide emissions. A significant fraction of this spring sulfate is contributed by gypsum and other salts from White Sands, with much of the sulfur in coarse particles and concentrations of calcium and strontium above regional levels. The increase in these gypsiferous species coincides with a drought following a period of above-average precipitation. White Sands and the IMPROVE samplers together provide a natural laboratory: a climatically sensitive dust source that is both well characterized and chemically distinct from its surroundings, with a signature that remains identifiable at long-term observatories 100-200 km downwind.

  12. Testing and evaluation of recovered traction sanding material.

    DOT National Transportation Integrated Search

    2013-04-01

    The Montana Department of Transportation (MDT) is searching for a solution to the accumulation of traction sand that is applied to Montana highways every winter. An analysis of reuse and recycle options for salvaged traction sand was conducted using ...

  13. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, G.D.

    1984-02-21

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  14. Dual-circuit embossed-sheet heat-transfer panel

    DOEpatents

    Morgan, G.D.

    1982-08-23

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  15. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, Grover D.

    1984-01-01

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  16. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    NASA Astrophysics Data System (ADS)

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  17. Tidal-cycle changes in oscillation ripples on the inner part of an estuarine sand flat

    USGS Publications Warehouse

    Dingler, J.R.; Clifton, H.E.

    1984-01-01

    Oscillation ripples form on subaqueous sand beds when wave-generated, near-bottom water motions are strong enough to move sand grains. The threshold of grain motion is the lower bound of the regime of oscillation ripples and the onset of sheet flow is the upper bound. Based on the relation between ripple spacing and orbital diameter, three types of symmetrical ripples occur within the ripple regime. In the lower part of the ripple regime (orbital ripples), spacing is proportional to orbital diameter; in the upper part (anorbital ripples) spacing is independent of orbital diameter. Between these regions occurs a transitional region (suborbital ripples). Oscillation ripples develop on a sandy tidal flat in Willapa Bay, Washington, as a result of waves traversing the area when it is submerged. Because wave energy is usually low within the bay, the ripples are primarily orbital in type. This means that their spacing should respond in a systematic way to changes in wave conditions. During the high-water parts of some tidal cycles, ripples near the beach decrease in spacing during the latter stage of the ebb tide while ripples farther offshore do not change. Observations made over several tidal cycles show that the zone of active ripples shifts on- or offshore in response to different wave conditions. Detailed bed profiles and current measurements taken during the high-water part of spring tides show the manner in which the oscillation ripples change with changes in orbital diameter. Changes in ripple spacing at the study site could be correlated with changes in orbital diameter in the manner suggested by the criterion for orbital ripples. However, there appeared to be a lag time between a decrease in orbital diameter and the corresponding decrease in ripple spacing. Absence of change during a tidal cycle could be attributed to orbital velocities below the threshold for grain motion that negated the effects of changes in orbital diameter. Because changes in sand

  18. Improving Climate Literacy Using The Ice Sheet System Model (ISSM): A Prototype Virtual Ice Sheet Laboratory For Use In K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Halkides, D. J.; Larour, E. Y.; Perez, G.; Petrie, K.; Nguyen, L.

    2013-12-01

    Statistics indicate that most Americans learn what they will know about science within the confines of our public K-12 education system and the media. Next Generation Science Standards (NGSS) aim to remedy science illiteracy and provide guidelines to exceed the Common Core State Standards that most U.S. state governments have adopted, by integrating disciplinary cores with crosscutting ideas and real life practices. In this vein, we present a prototype ';Virtual Ice Sheet Laboratory' (I-Lab), geared to K-12 students, educators and interested members of the general public. I-Lab will allow users to perform experiments using a state-of-the-art dynamical ice sheet model and provide detailed downloadable lesson plans, which incorporate this model and are consistent with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12). The ultimate goal of this website is to improve public climate science literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. The model used will be the Ice Sheet System Model (ISSM), an ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine, that simulates the near-term evolution of polar ice sheets (Greenland and Antarctica) and includes high spatial resolution capabilities and data assimilation to produce realistic simulations of ice sheet dynamics at the continental scale. Open sourced since 2011, ISSM is used in cutting edge cryosphere research around the globe. Thru I-Lab, students will be able to access ISSM using a simple, online graphical interface that can be launched from a web browser on a computer, tablet or smart phone. The interface will allow users to select different climate conditions and watch how the polar ice sheets evolve in time under those conditions. Lesson contents will include links to background material and activities that teach observation recording, concept articulation, hypothesis formulation and testing, and

  19. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus. 1. Biochemical analysis.

    PubMed

    Alvarez-González, C A; Moyano-López, F J; Civera-Cerecedo, R; Carrasco-Chávez, V; Ortiz-Galindo, J L; Dumas, S

    2008-12-01

    Spotted sand bass Paralabrax maculatofasciatus is a potential aquaculture species in Northwest Mexico. In the last few years it has been possible to close its life cycle and to develop larviculture technology at on pilot scale using live food, however survival values are low (11%) and improvements in growth and survival requires the study of the morpho-physiological development during the initial ontogeny. In this research digestive activity of several enzymes were evaluated in larvae, from hatching to 30 days after hatching (dah), and in live prey (rotifers and Artemia), by use of biochemical and electrophoretic techniques. This paper, is the first of two parts, and covers only the biochemical analysis. All digestive enzyme activities were detected from mouth opening; however the, maximum activities varied among different digestive enzymes. For alkaline protease and trypsin the maximum activities were detected from 12 to 18 dah. Acid protease activity was observed from day 12 onwards. The other digestive enzymes appear between days 4 and 18 after hatching, with marked fluctuations. These activities indicate the beginning of the juvenile stage and the maturation of the digestive system, in agreement with changes that occur during morpho-physiological development and food changes from rotifers to Artemia. All enzymatic activities were detected in rotifers and Artemia, and their contribution to enhancement the digestion capacity of the larvae appears to be low, but cannot be minimised. We concluded that the enzymatic equipment of P. maculatofasciatus larvae is similar to that of other marine fish species, that it becomes complete between days 12 and 18 after hatching, and that it is totally efficient up to 25 dah.

  20. Interactive Ice Sheet Flowline Model for High School and College Students

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Rezvanbehbahani, S.; Shankar, S.

    2017-12-01

    Teaching about climate and climate change is conceptually challenging. While teaching tools and lesson plans are rapidly evolving to help teachers and students improve their understanding of climate processes, there are very few tools targeting ice sheet and glacier dynamics. We have built an interactive ice sheet model that allows students to explore how Antarctic glaciers respond to different climate perturbations. Interactive models offer advantages that are hard to obtain in traditional classroom settings; users can systematically investigate hypothetical situations, explore the effects of modifying systems, and repeatedly observe how systems interrelate. As a result, this project provides a much-needed bridge between the data and models used by the scientific community and students in high school and college. We target our instructional and assessment activities to three high school and college students with the overall aim of increasing understanding of ice sheet dynamics and the different ways that ice sheets are impacted by climate change, while also improving their fundamental math skills.

  1. K West Basin Sand Filter Backwash Sample Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, Sandra K.; Smoot, Margaret R.; Coffey, Deborah S.

    A sand filter is used to help maintain water clarity at the K West Basin where highly radioactive sludge is stored. Eventually that sand filter will require disposal. The radionuclide content of the solids trapped in the sand filter will affect the selection of the sand filter disposal pathway. The Pacific Northwest National Laboratory (PNNL) was contracted by the K Basin Operations & Plateau Remediation Project (operations contractor CH2M Hill) to analyze the radionuclide content of the solids collected from the backwash of the K West Basin sand filter. The radionuclide composition in the sand filter backwash solids will bemore » used by CH2M Hill to determine if the sand filter media and retained sludge solids will be designated as transuranic waste for disposal purposes or can be processed through less expensive means. On October 19, 2015, K Basin Operations & Plateau Remediation Project staff backwashed the sand filter into the North Load-Out Pit (NLOP) and immediately collected sample slurry from a sampling tube positioned 24 in. above the NLOP floor. The 764 g sand filter backwash slurry sample, KW-105 SFBW-001, was submitted to PNNL for analysis on October 20, 2015. Solids from the slurry sample were consolidated into two samples (i.e., a primary and a duplicate sample) by centrifuging and measured for mass (0.82 g combined – wet centrifuged solids basis) and volume (0.80 mL combined). The solids were a dark brown/orange color, consistent with iron oxide/hydroxide. The solids were dried; the combined dry solids mass was 0.1113 g, corresponding to 0.0146 weight percent (wt%) solids in the original submitted sample slurry. The solids were acid-digested using nitric and hydrochloric acids. Insoluble solids developed upon dilution with 0.5 M HNO 3, corresponding to an average 6.5 wt% of the initial dry solids content. The acid digestate and insoluble solids were analyzed separately by gamma spectrometry. Nominally, 7.7% of the 60Co was present in the

  2. The coal deposits of the Alkali Butte, the Big Sand Draw, and the Beaver Creek fields, Fremont County, Wyoming

    USGS Publications Warehouse

    Thompson, Raymond M.; White, Vincent L.

    1952-01-01

    northwestward to the Wind River. This report is based almost entirely upon geologic investigations made in 1949 as a part of the program of the Department of the Interior for development of the Missouri River basin. Some coal sections were measured in 1950 and the additional information on the Big Sand Draw coal field was obtained in 1951. A geologic map of the Beaver Creek field was not prepared for this report because most of the significant coal occurs below a depth of 1,400 ft and is not exposed on the surface. Mr. George Downey, Lander, Wyo. , supplied much helpful information on the Big Sand Draw coal field and the area in general. Topographic contours shown on figures 11, 12, 13, and 14 are from unpublished plane-table sheets made by E. D. Woodruff in 1912. Previous geologic investigations of the region have been made by E. G. Woodruff and D. E. Winchester (1912), by C. J. Hares (1916), by A. J. Collier (1920), and C. M. Bauer (1934). Except for the work of Woodruff and Winchester, which was an areal examination for the purpose of classifying the public lands, the geological investigatiohs were of a general nature and give little detail of the coal beds. Berryhill (1950) summarizes Woodruff and Winchester's work.

  3. Phase diagrams of dune shape and orientation depending on sand availability

    PubMed Central

    Gao, Xin; Narteau, Clément; Rozier, Olivier; du Pont, Sylvain Courrech

    2015-01-01

    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation. PMID:26419614

  4. Role of a large marine protected area for conserving landscape attributes of sand habitats on Georges Bank (NW Atlantic)

    USGS Publications Warehouse

    Lindholm, J.; Auster, P.; Valentine, P.

    2004-01-01

    Mobile fishing gear reduces seafloor habitat complexity through the removal of structure-building fauna, e.g. emergent organisms that create pits and burrows, as well as by smoothing of sedimentary bedforms (e.g. sand ripples). In this study, we compared the relative abundance of microhabitat features (the scale at which individual fish associate with seafloor habitat) inside and outside of a large fishery closed area (6917 km2) on Georges Bank. Starting in late 1994, the closed area excluded all bottom tending fishing gear capable of capturing demersal fishes. A total of 32 stations were selected inside and outside of the closed area in sand habitats. Video and still photographic transects were conducted at each station using the Seabed Observation and Sampling System (SEABOSS). Seven common (i.e. featureless sand, rippled sand, sand with emergent fauna, bare gravelly sand, gravelly sand with attached-erect fauna, whole shell, shell fragment) and 2 rare (sponges, biogenic depressions) microhabitat types were compared separately. Results showed significant differences in the relative abundance of the shell fragment and sponge microhabitat types between fished and unfished areas. The lack of differences for the other microhabitats may indicate that the level of fishing activity in the area is matched by the system's ability to recover.

  5. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  6. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae)

    PubMed Central

    Lawyer, Phillip; Killick-Kendrick, Mireille; Rowland, Tobin; Rowton, Edgar; Volf, Petr

    2017-01-01

    Laboratory colonies of phlebotomine sand flies are necessary for experimental study of their biology, behaviour and mutual relations with disease agents and for testing new methods of vector control. They are indispensable in genetic studies and controlled observations on the physiology and behaviour of sand flies, neglected subjects of high priority. Colonies are of particular value for screening insecticides. Colonized sand flies are used as live vector models in a diverse array of research projects, including xenodiagnosis, that are directed toward control of leishmaniasis and other sand fly-associated diseases. Historically, labour-intensive maintenance and low productivity have limited their usefulness for research, especially for species that do not adapt well to laboratory conditions. However, with growing interest in leishmaniasis research, rearing techniques have been developed and refined, and sand fly colonies have become more common, enabling many significant breakthroughs. Today, there are at least 90 colonies representing 21 distinct phlebotomine sand fly species in 35 laboratories in 18 countries worldwide. The materials and methods used by various sand fly workers differ, dictated by the availability of resources, cost or manpower constraints rather than choice. This paper is not intended as a comprehensive review but rather a discussion of methods and techniques most commonly used by researchers to initiate, establish and maintain sand fly colonies, with emphasis on the methods proven to be most effective for the species the authors have colonized. Topics discussed include collecting sand flies for colony stock, colony initiation, maintenance and mass-rearing procedures, and control of sand fly pathogens in colonies. PMID:29139377

  7. Oil spills and their impacts on sand beach invertebrate communities: A literature review.

    PubMed

    Bejarano, Adriana C; Michel, Jacqueline

    2016-11-01

    Sand beaches are highly dynamic habitats that can experience considerable impacts from oil spills. This review provides a synthesis of the scientific literature on major oil spills and their impacts on sand beaches, with emphasis on studies documenting effects and recoveries of intertidal invertebrate communities. One of the key observations arising from this review is that more attention has generally been given to studying the impacts of oil spills on invertebrates (mostly macrobenthos), and not to documenting their biological recovery. Biological recovery of sand beach invertebrates is highly dynamic, depending on several factors including site-specific physical properties and processes (e.g., sand grain size, beach exposure), the degree of oiling, depth of oil burial, and biological factors (e.g., species-specific life-history traits). Recovery of affected communities ranges from several weeks to several years, with longer recoveries generally associated with physical factors that facilitate oil persistence, or when cleanup activities are absent on heavily oiled beaches. There are considerable challenges in quantifying impacts from spills on sand beach invertebrates because of insufficient baseline information (e.g., distribution, abundance and composition), knowledge gaps in their natural variability (spatial and temporal), and inadequate sampling and replication during and after oil spills. Thus, environment assessments of impacts and recovery require a rigorous experimental design that controls for confounding sources of variability. General recommendations on sampling strategies and toxicity testing, and a preliminary framework for incorporating species-specific life history traits into future assessments are also provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fungal alteration of organic coatings on sand grains

    NASA Astrophysics Data System (ADS)

    Rothhardt, S.; Gleixner, G.; Benzerara, K.; Fischer, C.; Gaupp, R.

    2012-04-01

    We studied the fungal alteration of organically coated sand particles, sampled in Eocene sediments in the open cast mining Profen, near Leipzig (Germany). These organic coatings were formed on sand grains after their sedimentation owing to mobilization of organic matter from younger coal layers. The organic coatings formed non-continuous layers on quartz grains, measuring few micrometers up to 30 µm in thickness. It has been shown that organic coatings on sand grains retain efficiently dissolved metals by adsorption from groundwaters. They consequently might be used as adsorbent to purify low heavy metal contaminated water. However, their stability has not been assessed yet especially in the oxic environment and, more specifically, in the presence of microorganisms. This is important in order to evaluate whether coated sands could act as a reliable tool in remediation. In order to address this question we characterized the fungal alteration of organic coatings on sand grains using several techniques, including scanning electron microscopy (SEM), scanning transmission X-ray microscopy (STXM) and vertical scanning interferometry (VSI). Sand grains coated with organics were incubated on complex yeast medium with and without Schizophyllum commune to estimate changes in heavy metal retention. Formation of biominerals and etch pits is induced by fungal colonization as shown by SEM. Surface topography analysis was performed using VSI technique. Etch pit depth ranges from 0.5 to 1 µm. Pit formation is limited to the organic coating; dissolution of quartz grains was not detected. Using STXM we measured near-edge X-ray absorption fine structure (NEXAFS) spectra at the C K-edge, N-edge, and O K-edge to characterize the different organic compartments (fungi, genuine organic coatings, altered organic coatings) down to the 25-nm scale. We observed in the spectra measured at the C K-edge on the altered organic coatings a decrease in aromatic and phenolic groups as well as an

  9. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  10. Keratinocyte cytoskeletal roles in cell sheet engineering

    PubMed Central

    2013-01-01

    Background There is an increasing need to understand cell-cell interactions for cell and tissue engineering purposes, such as optimizing cell sheet constructs, as well as for examining adhesion defect diseases. For cell-sheet engineering, one major obstacle to sheet function is that cell sheets in suspension are fragile and, over time, will contract. While the role of the cytoskeleton in maintaining the structure and adhesion of cells cultured on a rigid substrate is well-characterized, a systematic examination of the role played by different components of the cytoskeleton in regulating cell sheet contraction and cohesion in the absence of a substrate has been lacking. Results In this study, keratinocytes were cultured until confluent and cell sheets were generated using dispase to remove the influence of the substrate. The effects of disrupting actin, microtubules or intermediate filaments on cell-cell interactions were assessed by measuring cell sheet cohesion and contraction. Keratin intermediate filament disruption caused comparable effects on cell sheet cohesion and contraction, when compared to actin or microtubule disruption. Interfering with actomyosin contraction demonstrated that interfering with cell contraction can also diminish cell cohesion. Conclusions All components of the cytoskeleton are involved in maintaining cell sheet cohesion and contraction, although not to the same extent. These findings demonstrate that substrate-free cell sheet biomechanical properties are dependent on the integrity of the cytoskeleton network. PMID:23442760

  11. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE PAGES

    Roth, Elliot; Bank, Tracy; Howard, Bret; ...

    2017-04-05

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  12. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Elliot; Bank, Tracy; Howard, Bret

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  13. Infused polymers for cell sheet release

    NASA Astrophysics Data System (ADS)

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-05-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  14. Infused polymers for cell sheet release

    PubMed Central

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-01-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering. PMID:27189419

  15. Infused polymers for cell sheet release.

    PubMed

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L; Lin, Jennifer J; Sutton, Amy; Aizenberg, Joanna

    2016-05-18

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  16. An investigation of waste foundry sand in asphalt concrete mixtures.

    PubMed

    Bakis, Recep; Koyuncu, Hakan; Demirbas, Ayhan

    2006-06-01

    A laboratory study regarding the reuse of waste foundry sand in asphalt concrete production by replacing a certain portion of aggregate with WFS was undertaken. The results showed that replacement of 10% aggregates with waste foundry sand was found to be the most suitable for asphalt concrete mixtures. Furthermore, the chemical and physical properties of waste foundry sand were analysed in the laboratory to determine the potential effect on the environment. The results indicated that the investigated waste foundry sand did not significantly affect the environment around the deposition

  17. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  18. Coupled ice sheet-ocean modelling to investigate ocean driven melting of marine ice sheets in Antarctica

    NASA Astrophysics Data System (ADS)

    Jong, Lenneke; Gladstone, Rupert; Galton-Fenzi, Ben

    2017-04-01

    Ocean induced melting below the ice shelves of marine ice sheets is a major source of uncertainty for predictions of ice mass loss and Antarctica's resultant contribution to future sea level rise. The floating ice shelves provide a buttressing force against the flow of ice across the grounding line into the ocean. Thinning of these ice shelves due to an increase in melting reduces this force and can lead to an increase in the discharge of grounded ice. Fully coupled modelling of ice sheet-ocean interactions is key to improving understanding the influence of the Southern ocean on the evolution of the Antarctic ice sheet, and to predicting its future behaviour under changing climate conditions. Coupling of ocean and ice sheet models is needed to provide more realistic melt rates at the base of ice shelves and hence make better predictions of the behaviour of the grounding line and the shape of the ice-shelf cavity as the ice sheet evolves. The Framework for Ice Sheet - Ocean Coupling (FISOC) has been developed to provide a flexible platform for performing coupled ice sheet - ocean modelling experiments. We present preliminary results using FISOC to couple the Regional Ocean Modelling System (ROMS) with Elmer/Ice in idealised experiments Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP). These experiments use an idealised geometry motivated by that of Pine Island glacier and the adjacent Amundsen Sea in West Antarctica, a region which has shown shown signs of thinning ice and grounding line retreat.

  19. Assessment of sand encroachment in Kuwait using GIS

    NASA Astrophysics Data System (ADS)

    Al-Helal, Anwar B.; Al-Awadhi, Jasem M.

    2006-04-01

    Assessment of sand encroachment in Kuwait using Geographical Information System (GIS) technology has been formulated as a Multi-Criteria Decision Making problem. The Delphi method and Analytical Hierarchy Process were adopted as evaluating techniques, in which experts’ judgments were analyzed for objectively estimating and weighting control factors. Seven triggering factors, depicted in the form of maps, were identified and ordered according to their priority. These factors are (1) wind energy; (2) surface sediment; (3) vegetation density; (4) land use; (5) drainage density; (6) topographic change and (7) vegetation type. The factor maps were digitized, converted to raster data and overlaid to determine their possible spatial relationships. Applying a susceptibility model, a map of sand encroachment susceptibility in Kuwait was developed. The map showed that the areas of very high and high sand encroachment susceptibility are located within the main corridor of sand pathway that coincides with the northwesterly dominant wind direction.

  20. Method for heating and forming a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1997-01-01

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration.