Science.gov

Sample records for active site insights

  1. The Active Site of Oligogalacturonate Lyase Provides Unique Insights into Cytoplasmic Oligogalacturonate β-Elimination*

    PubMed Central

    Abbott, D. Wade; Gilbert, Harry J.; Boraston, Alisdair B.

    2010-01-01

    Oligogalacturonate lyases (OGLs; now also classified as pectate lyase family 22) are cytoplasmic enzymes found in pectinolytic members of Enterobacteriaceae, such as the enteropathogen Yersinia enterocolitica. OGLs utilize a β-elimination mechanism to preferentially catalyze the conversion of saturated and unsaturated digalacturonate into monogalacturonate and the 4,5-unsaturated monogalacturonate-like molecule, 5-keto-4-deoxyuronate. To provide mechanistic insights into the specificity of this enzyme activity, we have characterized the OGL from Y. enterocolitica, YeOGL, on oligogalacturonides and determined its three-dimensional x-ray structure to 1.65 Å. The model contains a Mn2+ atom in the active site, which is coordinated by three histidines, one glutamine, and an acetate ion. The acetate mimics the binding of the uronate group of galactourono-configured substrates. These findings, in combination with enzyme kinetics and metal supplementation assays, provide a framework for modeling the active site architecture of OGL. This enzyme appears to contain a histidine for the abstraction of the α-proton in the −1 subsite, a residue that is highly conserved throughout the OGL family and represents a unique catalytic base among pectic active lyases. In addition, we present a hypothesis for an emerging relationship observed between the cellular distribution of pectate lyase folding and the distinct metal coordination chemistries of pectate lyases. PMID:20851883

  2. Structural Insights into the Catalytic Active Site and Activity of Human Nit2/ω-Amidase

    PubMed Central

    Chien, Chin-Hsiang; Gao, Quan-Ze; Cooper, Arthur J. L.; Lyu, Jyun-Hong; Sheu, Sheh-Yi

    2012-01-01

    Human nitrilase-like protein 2 (hNit2) is a putative tumor suppressor, recently identified as ω-amidase. hNit2/ω-amidase plays a crucial metabolic role by catalyzing the hydrolysis of α-ketoglutaramate (the α-keto analog of glutamine) and α-ketosuccinamate (the α-keto analog of asparagine), yielding α-ketoglutarate and oxaloacetate, respectively. Transamination between glutamine and α-keto-γ-methiolbutyrate closes the methionine salvage pathway. Thus, hNit2/ω-amidase links sulfur metabolism to the tricarboxylic acid cycle. To elucidate the catalytic specificity of hNit2/ω-amidase, we performed molecular dynamics simulations on the wild type enzyme and its mutants to investigate enzyme-substrate interactions. Binding free energies were computed to characterize factors contributing to the substrate specificity. The predictions resulting from these computations were verified by kinetic analyses and mutational studies. The activity of hNit2/ω-amidase was determined with α-ketoglutaramate and succinamate as substrates. We constructed three catalytic triad mutants (E43A, K112A, and C153A) and a mutant with a loop 116–128 deletion to validate the role of key residues and the 116–128 loop region in substrate binding and turnover. The molecular dynamics simulations successfully verified the experimental trends in the binding specificity of hNit2/ω-amidase toward various substrates. Our findings have revealed novel structural insights into the binding of substrates to hNit2/ω-amidase. A catalytic triad and the loop residues 116–128 of hNit2 play an essential role in supporting the stability of the enzyme-substrate complex, resulting in the generation of the catalytic products. These observations are predicted to be of benefit in the design of new inhibitors or activators for research involving cancer and hyperammonemic diseases. PMID:22674578

  3. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity. PMID:27443004

  4. Widely available active sites on Ni2P for electrochemical hydrogen evolution--insights from first principles calculations.

    PubMed

    Hansen, Martin H; Stern, Lucas-Alexandre; Feng, Ligang; Rossmeisl, Jan; Hu, Xile

    2015-04-28

    We present insights into the mechanism and the active site for hydrogen evolution on nickel phosphide (Ni2P). Ni2P was recently discovered to be a very active non-precious hydrogen evolution catalyst. Current literature attributes the activity of Ni2P to a particular site on the (0001) facet. In the present study, using Density Functional Theory (DFT) calculations, we show that several widely available low index crystal facets on Ni2P have better properties for a high catalytic activity. DFT calculations were used to identify moderately bonding nickel bridge sites and nickel hollow sites for hydrogen adsorption and to calculate barriers for the Tafel pathway. The investigated surfaces in this study were the (101̅0), (1̅1̅20), (112̅0), (112̅1) and (0001) facets of the hexagonal Ni2P crystal. In addition to the DFT results, we present experiments on Ni2P nanowires growing along the 〈0001〉 direction, which are shown as efficient hydrogen evolution catalysts. The experimental results add these nanowires to a variety of different morphologies of Ni2P, which are all active for HER. PMID:25812670

  5. A new insight into the nature of seasonal variations in coordinate time series of GPS sites located near active faults

    NASA Astrophysics Data System (ADS)

    Trofimenko, Sergey V.; Bykov, Victor G.; Shestakov, Nikolay V.; Grib, Nikolay N.; Takahashi, Hiroaki

    2016-09-01

    This study provides new insights into the nature of seasonal variations in coordinate time series of GPS sites located near active faults and methods of their modeling. Monthly averaged coordinate time series were analyzed for several pairs of collocated GPS sites situated near the active fault intersection area, in close proximity to the central part of the northern boundary of the Amurian plate and the vicinity of the San Andreas Fault zone. It is concluded that the observed seasonal variations are best described by a breather function which is one of the solutions of the well-known sine-Gordon equation. The obtained results suggest that, in this case, the source of seasonal variations may be caused by the appearance of solitary strain waves in the fault intersection system, which may be qualitatively treated as standing waves of compression-extension of the geological medium. Based on statistical testing, the limits of applicability of the suggested model have been established.

  6. A new insight into the nature of seasonal variations in coordinate time series of GPS sites located near active faults

    NASA Astrophysics Data System (ADS)

    Trofimenko, Sergey V.; Bykov, Victor G.; Shestakov, Nikolay V.; Grib, Nikolay N.; Takahashi, Hiroaki

    2016-05-01

    This study provides new insights into the nature of seasonal variations in coordinate time series of GPS sites located near active faults and methods of their modeling. Monthly averaged coordinate time series were analyzed for several pairs of collocated GPS sites situated near the active fault intersection area, in close proximity to the central part of the northern boundary of the Amurian plate and the vicinity of the San Andreas Fault zone. It is concluded that the observed seasonal variations are best described by a breather function which is one of the solutions of the well-known sine-Gordon equation. The obtained results suggest that, in this case, the source of seasonal variations may be caused by the appearance of solitary strain waves in the fault intersection system, which may be qualitatively treated as standing waves of compression-extension of the geological medium. Based on statistical testing, the limits of applicability of the suggested model have been established.

  7. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues.

    PubMed

    Jia, Y; Lu, Z; Huang, K; Herzberg, O; Dunaway-Mariano, D

    1999-10-26

    PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed. PMID:10571990

  8. Crystal structure analysis of ornithine transcarbamylase from Thermus thermophilus --HB8 provides insights on the plasticity of the active site.

    PubMed

    Sundaresan, Ramya; Ebihara, Akio; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2015-09-18

    The enzymatic biosynthesis of L-arginine involves complex, sequential action of many enzymes and ornithine transcarbamylase (OTCase) is one of the essential enzymes in the pathway. In mammals OTCase is part of the urea cycle. Arginine is used in a variety of pharmaceutical and industrial applications and therefore engineering arginine biosynthesis pathway for overproduction of arginine has gained importance. On the other hand, it was found that detrimental mutations in the human OTCase gene resulted clinical hyperammonemia, with subsequent neurological damage. Therefore a better understanding of the structure-function relationship of this enzyme from various sources could be useful for modifying its enzymatic action. Here we report the structure of ornithine transcarbamylase of Thermus thermophilus HB8 (aTtOTCase) at 2.0 Å resolution. On comparison with its homologs, aTtOTCase showed maximum variation at the substrate binding loops namely 80s and SMG/240s loops. The active site geometry of aTtOTCase is unique among its homologs where the side chain of certain residues (Leu57, Arg58 and Arg288) is oriented differently. To study the structural insights of substrate binding in aTtOTCase, docking of carbamoyl phosphate (CP) and ornithine (Orn) was carried out sequentially. Both substrates were unable to bind in a proper orientation in the active site pocket and this could be due to the differently oriented side chains. This suggests that the active site geometry should also undergo fine tuning besides the large structural changes as the enzyme switches from completely open to a substrate bound closed state. PMID:26210451

  9. NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site

    PubMed Central

    Bonneau, Eric; Girard, Nicolas; Boisbouvier, Jérôme; Legault, Pascale

    2011-01-01

    The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem–loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson–Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme. PMID:21266483

  10. The Role of an Active Site Mg2+ in HDV Ribozyme Self-Cleavage: Insights from QM/MM Calculations

    PubMed Central

    Mlýnský, Vojtěch; Šponer, Jiří

    2014-01-01

    The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H+ in the active site, which acts as the general acid, and a partially hydrated Mg2+ ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with distinct position and coordination of the catalytically important active site Mg2+ ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal/mol, indicating that the specific position of the Mg2+ ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2′-OH) nucleophile and the nucleophilic attack of the resulting U-1(2′-O−) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimated the pKa of the U-1(2′-OH) group to range from 8.8 to 11.2, suggesting that the pKa is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg2+ ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg2+ ion, facilitates deprotonation and activation of the 2′-OH nucleophile. PMID:25412464

  11. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka

    2016-01-01

    The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.

  12. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  13. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis.

    PubMed

    Dreveny, Ingrid; Kratky, Christoph; Gruber, Karl

    2002-02-01

    The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R-mandelonitrile into benzaldehyde and hydrocyanic acid. Catalysis of the reverse reaction-the enantiospecific formation of alpha-hydroxynitriles--is now widely utilized in organic syntheses as one of the few industrially relevant examples of enzyme-mediated C-C bond formation. Starting from the recently determined X-ray crystal structure, systematic docking calculations with the natural substrate were used to locate the active site of the enzyme and to identify amino acid residues involved in substrate binding and catalysis. Analysis of the modeled substrate complexes supports an enzymatic mechanism that includes the flavin cofactor as a mere "spectator" of the reaction and relies on general acid/base catalysis by the conserved His-497. Stabilization of the negative charge of the cyanide ion is accomplished by a pronounced positive electrostatic potential at the binding site. PaHNL activity requires the FAD cofactor to be bound in its oxidized form, and calculations of the pKa of enzyme-bound HCN showed that the observed inactivation upon cofactor reduction is largely caused by the reversal of the electrostatic potential within the active site. The suggested mechanism closely resembles the one proposed for the FAD-independent, and structurally unrelated HNL from Hevea brasiliensis. Although the actual amino acid residues involved in the catalytic cycle are completely different in the two enzymes, a common motif for the mechanism of cyanogenesis (general acid/base catalysis plus electrostatic stabilization of the cyanide ion) becomes evident. PMID:11790839

  14. The active site of hydroxynitrile lyase from Prunus amygdalus: Modeling studies provide new insights into the mechanism of cyanogenesis

    PubMed Central

    Dreveny, Ingrid; Kratky, Christoph; Gruber, Karl

    2002-01-01

    The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R-mandelonitrile into benzaldehyde and hydrocyanic acid. Catalysis of the reverse reaction—the enantiospecific formation of α-hydroxynitriles—is now widely utilized in organic syntheses as one of the few industrially relevant examples of enzyme-mediated C–C bond formation. Starting from the recently determined X-ray crystal structure, systematic docking calculations with the natural substrate were used to locate the active site of the enzyme and to identify amino acid residues involved in substrate binding and catalysis. Analysis of the modeled substrate complexes supports an enzymatic mechanism that includes the flavin cofactor as a mere "spectator" of the reaction and relies on general acid/base catalysis by the conserved His-497. Stabilization of the negative charge of the cyanide ion is accomplished by a pronounced positive electrostatic potential at the binding site. PaHNL activity requires the FAD cofactor to be bound in its oxidized form, and calculations of the pKa of enzyme-bound HCN showed that the observed inactivation upon cofactor reduction is largely caused by the reversal of the electrostatic potential within the active site. The suggested mechanism closely resembles the one proposed for the FAD-independent, and structurally unrelated HNL from Hevea brasiliensis. Although the actual amino acid residues involved in the catalytic cycle are completely different in the two enzymes, a common motif for the mechanism of cyanogenesis (general acid/base catalysis plus electrostatic stabilization of the cyanide ion) becomes evident. PMID:11790839

  15. NMR Localization of Divalent Cations at the Active Site of the Neurospora VS Ribozyme Provides Insights into RNA–Metal-Ion Interactions

    PubMed Central

    2013-01-01

    Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa’s of two key nucleobases that contribute to the general acid–base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg2+) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg2+-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg2+-ion binding sites within SLVI. Four Mg2+ ions in SLVI are associated with known RNA structural motifs, including the G–U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg2+ ion binding to these RNA motifs. Interestingly, one Mg2+ ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg2+ ion is likely important for formation of the active site and may play an indirect role in catalysis. PMID:24364590

  16. XET Activity is Found Near Sites of Growth and Cell Elongation in Bryophytes and Some Green Algae: New Insights into the Evolution of Primary Cell Wall Elongation

    PubMed Central

    Van Sandt, Vicky S. T.; Stieperaere, Herman; Guisez, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-01-01

    Background and Aims In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. Methods Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3′ RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. Key Results XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. Conclusions XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion. PMID:17098750

  17. Cysteine-to-Serine Mutants Dramatically Reorder the Active Site of Human ABO(H) Blood Group B Glycosyltransferase without Affecting Activity: Structural Insights into Cooperative Substrate Binding

    PubMed Central

    Schuman, Brock; Persson, Mattias; Landry, Roxanne C.; Polakowski, Robert; Weadge, Joel T.; Seto, Nina O. L.; Borisova, Svetlana N.; Palcic, Monica M.; Evans, Stephen V.

    2011-01-01

    A common feature in the structures of GT-A-fold-type glycosyltransferases is a mobile polypeptide loop that has been observed to participate in substrate recognition and enclose the active site upon substrate binding. This is the case for the human ABO(H) blood group B glycosyltransferase GTB, where amino acid residues 177–195 display significantly higher levels of disorder in the unliganded state than in the fully liganded state. Structural studies of mutant enzymes GTB/C80S/C196S and GTB/C80S/C196S/C209S at resolutions ranging from 1.93 to 1.40 Å display the opposite trend, where the unliganded structures show nearly complete ordering of the mobile loop residues that is lost upon substrate binding. In the liganded states of the mutant structures, while the UDP moiety of the donor molecule is observed to bind in the expected location, the galactose moiety is observed to bind in a conformation significantly different from that observed for the wild-type chimeric structures. Although this would be expected to impede catalytic turnover, the kinetics of the transfer reaction are largely unaffected. These structures demonstrate that the enzymes bind the donor in a conformation more similar to the dominant solution rotamer and facilitate its gyration into the catalytically competent form. Further, by preventing active-site closure, these structures provide a basis for recently observed cooperativity in substrate binding. Finally, the mutation of C80S introduces a fully occupied UDP binding site at the enzyme dimer interface that is observed to be dependent on the binding of H antigen acceptor analog. PMID:20655926

  18. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

    PubMed Central

    O'Farrell, Paul A.; Joshua-Tor, Leemor

    2006-01-01

    Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes. PMID:17007609

  19. Structural insight on the control of urea synthesis: identification of the binding site for N-acetyl-L-glutamate, the essential allosteric activator of mitochondrial carbamoyl phosphate synthetase.

    PubMed

    Pekkala, Satu; Martínez, Ana I; Barcelona, Belén; Gallego, José; Bendala, Elena; Yefimenko, Igor; Rubio, Vicente; Cervera, Javier

    2009-12-01

    NAG (N-acetyl-L-glutamate), the essential allosteric activator of the first urea cycle enzyme, CPSI (carbamoyl phosphate synthetase I), is a key regulator of this crucial cycle for ammonia detoxification in animals (including humans). Automated cavity searching and flexible docking have allowed identification of the NAG site in the crystal structure of human CPSI C-terminal domain. The site, a pocket lined by invariant residues and located between the central beta-sheet and two alpha-helices, opens at the beta-sheet C-edge and is roofed by a three-residue lid. It can tightly accommodate one extended NAG molecule having the delta-COO- at the pocket entry, the alpha-COO- and acetamido groups tightly hydrogen bonded to the pocket, and the terminal methyl of the acetamido substituent surrounded by hydrophobic residues. This binding mode is supported by the observation of reduced NAG affinity upon mutation of NAG-interacting residues of CPSI (recombinantly expressed using baculovirus/insect cells); by the fine-mapping of the N-chloroacetyl-L-glutamate photoaffinity labelling site of CPSI; and by previously established structure-activity relationships for NAG analogues. The location of the NAG site is identical to that of the weak bacterial CPS activator IMP (inosine monophosphate) in Escherichia coli CPS, indicating a common origin for these sites and excluding any relatedness to the binding site of the other bacterial CPS activator, ornithine. Our findings open the way to the identification of CPSI deficiency patients carrying NAG site mutations, and to the possibility of tailoring the activator to fit a given NAG site mutation, as exemplified here with N-acetyl-L(+/-)-beta-phenylglutamate for the W1410K CPSI mutation. PMID:19754428

  20. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies

    PubMed Central

    Sharma, Amit; Leach, Robert N.; Gell, Christopher; Zhang, Nan; Burrows, Patricia C.; Shepherd, Dale A.; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G.; Tuma, Roman

    2014-01-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ70 or σ54, that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ54 version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ70 and σ54, the domain movements of the latter have evolved to require an activator ATPase. PMID:24553251

  1. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies.

    PubMed

    Sharma, Amit; Leach, Robert N; Gell, Christopher; Zhang, Nan; Burrows, Patricia C; Shepherd, Dale A; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G; Tuma, Roman

    2014-04-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ(70) or σ(54), that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ(54) version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ(70) and σ(54), the domain movements of the latter have evolved to require an activator ATPase. PMID:24553251

  2. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  3. An Insight into the Environmental Effects of the Pocket of the Active Site of the Enzyme. Ab initio ONIOM-Molecular Dynamics (MD) Study on Cytosine Deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2008-02-01

    We applied the ONIOM-molecular dynamics (MD) method to cytosine deaminase to examine the environmental effects of the amino acid residues in the pocket of the active site on the substrate taking account of their thermal motion. The ab initio ONIOM-MD simulations show that the substrate uracil is strongly perturbed by the amino acid residue Ile33, which sandwiches the uracil with His62, through the steric contact due to the thermal motion. As a result, the magnitude of the thermal oscillation of the potential energy and structure of the substrate uracil significantly increases. TM and MA were partly supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  4. Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl)pyridine: insight into inhibitor binding and rearrangement of active site side chains.

    PubMed

    Shah, Manish B; Pascual, Jaime; Zhang, Qinghai; Stout, C David; Halpert, James R

    2011-12-01

    The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape. PMID:21875942

  5. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: Insights into the path of carbamoyl phosphate to the active site of the enzyme

    SciTech Connect

    Vitali J.; Soares A.; Singh, A. K.; Colaneri, M. J.

    2012-05-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6{sub 3}22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K{sup +} ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.

  6. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: insights into the path of carbamoyl phosphate to the active site of the enzyme

    PubMed Central

    Vitali, Jacqueline; Singh, Aditya K.; Soares, Alexei S.; Colaneri, Michael J.

    2012-01-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate trans­carbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6322, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K+ ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. janna­schii will provide further insight into these points. PMID:22691781

  7. Comparative Structural Modeling of Six Old Yellow Enzymes (OYEs) from the Necrotrophic Fungus Ascochyta rabiei : Insight into Novel OYE Classes with Differences in Cofactor Binding, Organization of Active Site Residues and Stereopreferences

    PubMed Central

    Nizam, Shadab; Gazara, Rajesh Kumar; Verma, Sandhya; Singh, Kunal; Verma, Praveen Kumar

    2014-01-01

    Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes. PMID:24776850

  8. Fungal Endophytes of Alpinia officinarum Rhizomes: Insights on Diversity and Variation across Growth Years, Growth Sites, and the Inner Active Chemical Concentration

    PubMed Central

    Shubin, Li; Juan, Huang; RenChao, Zhou; ShiRu, Xu; YuanXiao, Jin

    2014-01-01

    In the present study, the terminal-restriction fragment length polymorphism (T-RFLP) technique, combined with the use of a clone library, was applied to assess the baseline diversity of fungal endophyte communities associated with rhizomes of Alpinia officinarum Hance, a medicinal plant with a long history of use. A total of 46 distinct T-RFLP fragment peaks were detected using HhaI or MspI mono-digestion-targeted, amplified fungal rDNA ITS sequences from A. officinarum rhizomes. Cloning and sequencing of representative sequences resulted in the detection of members of 10 fungal genera: Pestalotiopsis, Sebacina, Penicillium, Marasmius, Fusarium, Exserohilum, Mycoleptodiscus, Colletotrichum, Meyerozyma, and Scopulariopsis. The T-RFLP profiles revealed an influence of growth year of the host plant on fungal endophyte communities in rhizomes of this plant species; whereas, the geographic location where A. officinarum was grown contributed to only limited variation in the fungal endophyte communities of the host tissue. Furthermore, non-metric multidimensional scaling (NMDS) analysis across all of the rhizome samples showed that the fungal endophyte community assemblages in the rhizome samples could be grouped according to the presence of two types of active indicator chemicals: total volatile oils and galangin. Our present results, for the first time, address a diverse fungal endophyte community is able to internally colonize the rhizome tissue of A. officinarum. The diversity of the fungal endophytes found in the A. officinarum rhizome appeared to be closely correlated with the accumulation of active chemicals in the host plant tissue. The present study also provides the first systematic overview of the fungal endophyte communities in plant rhizome tissue using a culture-independent method. PMID:25536070

  9. BK channel activation: structural and functional insights

    PubMed Central

    Lee, Urvi S.; Cui, Jianmin

    2010-01-01

    The voltage and Ca2+ activated K+ (BK) channels are involved in the regulation of neurotransmitter release and neuronal excitability. Structurally, BK channels are homologous to voltage- and ligand-gated K+ channels, having a voltage sensor and pore as the membrane-spanning domain and a cytosolic domain containing metal binding sites. Recently published electron cryomicroscopy (cryo-EM) and X-ray crystallographic structures of the BK channel provided the first look into the assembly of these domains, corroborating the close interactions among these domains during channel gating that have been suggested by functional studies. This review discusses these latest findings and an emerging new understanding about BK channel gating and implications for diseases such as epilepsy, in which mutations in BK channel genes have been associated. PMID:20663573

  10. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  11. Neural Activity When People Solve Verbal Problems with Insight

    PubMed Central

    2004-01-01

    People sometimes solve problems with a unique process called insight, accompanied by an “Aha!” experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1) revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2) revealed a sudden burst of high-frequency (gamma-band) neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them. PMID:15094802

  12. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL. PMID:26820485

  13. New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster.

    PubMed

    Jeon, Won Bae; Singer, Steven W; Ludden, Paul W; Rubio, Luis M

    2005-12-01

    Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum catalyzes the oxidation of CO to CO2. A unique [NiFe4S4] cluster, known as the C-cluster, constitutes the active site of the enzyme. When grown in Ni-deficient medium R. rubrum accumulates a Ni-deficient apo form of CODH that is readily activated by Ni. It has been previously shown that activation of apo-CODH by Ni is a two-step process involving the rapid formation of an inactive apo-CODH*Ni complex prior to conversion to the active holo-CODH. We have generated CODH variants with substitutions in cysteine residues involved in the coordination of the [Fe3S4] portion of the C-cluster. Analysis of the variants suggests that the cysteine residues at positions 338, 451, and 481 are important for CO oxidation activity catalyzed by CODH but not for Ni binding to the C-cluster. C451S CODH is the only new variant that retains residual CO oxidation activity. Comparison of the kinetics and pH dependence of Ni activation of the apo forms of wild-type, C451S, and C531A CODH allowed us to develop a model for Ni insertion into the C-cluster of CODH in which Ni reversibly binds to the C-cluster and subsequently coordinates Cys531 in the rate-determining step. PMID:16283394

  14. Polarization insights for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    Optical spectropolarimetry and broadband polarimetry in other wavebands has been a key to understanding many diverse aspects of AGN. In some cases polarization is due to synchrotron radiation, and in other cases it's due to scattering. Recognition of relativistically beamed optical synchrotron emission by polarization was vital for understanding blazars (BL Lacs and Optically Violently Variable quasars), both physically and geometrically. Radio polarimetry of quiescent AGN is equally important, again for both purposes. Scattering polarization was central to the Unified Model for Seyferts, Radio Galaxies and (high ionization) Ultraluminous Infrared Galaxies. It provides a periscope for viewing AGN from other directions. Finally, if we could understand its message, polarization would also provide major insights regarding the nature of the AGN "Featureless Continuum" and Broad (emission) Line Region. I point out that high ionization ULIRGs have all the exact right properties to the called Quasar 2s. Mid-IR observations generally don't penetrate to the nucleus, greatly reducing their ability to diagnose the energy source. In particular, LINER ULIRGs aren't necessarily starburst-dominated, as has been claimed.

  15. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  16. Orbitofrontal activation restores insight lost after cocaine use.

    PubMed

    Lucantonio, Federica; Takahashi, Yuji K; Hoffman, Alexander F; Chang, Chun Yun; Bali-Chaudhary, Sheena; Shaham, Yavin; Lupica, Carl R; Schoenbaum, Geoffrey

    2014-08-01

    Addiction is characterized by a lack of insight into the likely outcomes of one's behavior. Insight, or the ability to imagine outcomes, is evident when outcomes have not been directly experienced. Using this concept, work in both rats and humans has recently identified neural correlates of insight in the medial and orbital prefrontal cortices. We found that these correlates were selectively abolished in rats by cocaine self-administration. Their abolition was associated with behavioral deficits and reduced synaptic efficacy in orbitofrontal cortex, the reversal of which by optogenetic activation restored normal behavior. These results provide a link between cocaine use and problems with insight. Deficits in these functions are likely to be particularly important for problems such as drug relapse, in which behavior fails to account for likely adverse outcomes. As such, our data provide a neural target for therapeutic approaches to address these defining long-term effects of drug use. PMID:25042581

  17. Structural insights into the mechanism of four-coordinate Cob(II)alamin formation in the active site of the Salmonella enterica ATP:Co(I)rrinoid adenosyltransferase enzyme: critical role of residues Phe91 and Trp93.

    PubMed

    Moore, Theodore C; Newmister, Sean A; Rayment, Ivan; Escalante-Semerena, Jorge C

    2012-12-01

    ATP:co(I)rrinoid adenosyltransferases (ACATs) are enzymes that catalyze the formation of adenosylcobalamin (AdoCbl, coenzyme B(12)) from cobalamin and ATP. There are three families of ACATs, namely, CobA, EutT, and PduO. In Salmonella enterica, CobA is the housekeeping enzyme that is required for de novo AdoCbl synthesis and for salvaging incomplete precursors and cobalamin from the environment. Here, we report the crystal structure of CobA in complex with ATP, four-coordinate cobalamin, and five-coordinate cobalamin. This provides the first crystallographic evidence of the existence of cob(II)alamin in the active site of CobA. The structure suggests a mechanism in which the enzyme adopts a closed conformation and two residues, Phe91 and Trp93, displace 5,6-dimethylbenzimidazole, the lower nucleotide ligand base of cobalamin, to generate a transient four-coordinate cobalamin, which is critical in the formation of the AdoCbl Co-C bond. In vivo and in vitro mutational analyses of Phe91 and Trp93 emphasize the important role of bulky hydrophobic side chains in the active site. The proposed manner in which CobA increases the redox potential of the cob(II)alamin/cob(I)alamin couple to facilitate formation of the Co-C bond appears to be analogous to that utilized by the PduO-type ACATs, where in both cases the polar coordination of the lower ligand to the cobalt ion is eliminated by placing that face of the corrin ring adjacent to a cluster of bulky hydrophobic side chains. PMID:23148601

  18. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights.

    PubMed

    Deshpande, Parag A; Madras, Giridhar

    2011-01-14

    A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO(2) and TiO(2) in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO(2) was comparable and was higher than Pd and Pt ion substituted ZrO(2). The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO(2) supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO(2) supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen. PMID:21060910

  19. Identification of in vitro autophosphorylation sites and effects of phosphorylation on the Arabidopsis CRINKLY4 (ACR4) receptor-like kinase intracellular domain: insights into conformation, oligomerization, and activity.

    PubMed

    Meyer, Matthew R; Lichti, Cheryl F; Townsend, R Reid; Rao, A Gururaj

    2011-03-29

    Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) that consists of an extracellular domain and an intracellular domain (ICD) with serine/threonine kinase activity. While genetic and cell biology experiments have demonstrated that ACR4 is important in cell fate specification and overall development of the plant, little is known about the biochemical properties of the kinase domain and the mechanisms that underlie the overall function of the receptor. To complement in planta studies of the function of ACR4, we have expressed the ICD in Escherichia coli as a soluble C-terminal fusion to the N-utilization substance A (NusA) protein, purified the recombinant protein, and characterized the enzymatic and conformational properties. The protein autophosphorylates via an intramolecular mechanism, prefers Mn(2+) over Mg(2+) as the divalent cation, and displays typical Michaelis-Menten kinetics with respect to ATP with an apparent K(m) of 6.67 ± 2.07 μM and a V(max) of 1.83 ± 0.18 nmol min(-1) mg(-1). Autophosphorylation is accompanied by a conformational change as demonstrated by circular dichroism, fluorescence spectroscopy, and limited proteolysis with trypsin. Analysis by nanoliquid chromatography and mass spectrometry revealed 16 confirmed sites of phosphorylation at Ser and Thr residues. Sedimentation velocity and gel filtration experiments indicate that the ICD has a propensity to oligomerize and that this property is lost upon autophosphorylation. PMID:21294549

  20. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state.

    PubMed

    Wheatley, Robert W; Huber, Reuben E

    2015-12-01

    When lactose was incubated with G794A-β-galactosidase (a variant with a "closed" active site loop that binds transition state analogs well) an allolactose was trapped with its Gal moiety in a (4)H3 conformation, similar to the oxocarbenium ion-like conformation expected of the transition state. The numerous interactions formed between the (4)H3 structure and β-galactosidase indicate that this structure is representative of the transition state. This conformation is also very similar to that of d-galactono-1,5-lactone, a good transition state analog. Evidence indicates that substrates take up the (4)H3 conformation during migration from the shallow to the deep mode. Steric forces utilizing His418 and other residues are important for positioning the O1 leaving group into a quasi-axial position. An electrostatic interaction between the O5 of the distorted Gal and Tyr503 as well as C-H-π bonds with Trp568 are also significant. Computational studies of the energy of sugar ring distortion show that the β-galactosidase reaction itinerary is driven by energetic considerations in utilization of a (4)H3 transition state with a novel (4)C1-(4)H3-(4)C1 conformation itinerary. To our knowledge, this is the first X-ray crystallographic structural demonstration that the transition state of a natural substrate of a glycosidase has a (4)H3 conformation. PMID:26291713

  1. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  2. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1990-10-01

    DOE Order 5820.2A requires that low-level waste (LLW) disposal sites active on or after September 1988 and all transuranic (TRU) waste storage sites be monitored periodically to assure that radioactive contamination does not escape from the waste sites and pose a threat to the public or to the environment. This plan describes such a monitoring program for the active LLW disposal sites in SWSA 6 and the TRU waste storage sites in SWSA 5 North. 14 refs., 8 figs.

  3. Educational Activity Sites for High School Students

    ERIC Educational Resources Information Center

    Troutner, Joanne

    2005-01-01

    Finding quality Internet resources for high school students is a continuing challenge. Several high-quality web sites are presented for educators and students. These sites offer activities to learn how an art conservator looks at paintings, create a newspaper, research and develop an end product, build geometry and physics skills, explore science…

  4. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges

    PubMed Central

    Gaestel, Matthias

    2016-01-01

    Downstream of MAPKs, such as classical/atypical ERKs and p38 MAPKs, but not of JNKs, signaling is often mediated by protein kinases which are phosphorylated and activated by MAPKs and, therefore, designated MAPK-activated protein kinases (MAPKAPKs). Recently, novel insights into the specificity of the assembly of MAPK/MAPKAPK hetero-dimeric protein kinase signaling complexes have been gained. In addition, new functional aspects of MKs have been described and established functions have been challenged. This short review will summarize recent developments including the linear motif (LM) in MKs, the ERK-independent activation of RSK, the RSK-independent effects of some RSK-inhibitors and the challenged role of MK5/PRAK in tumor suppression. PMID:26779481

  5. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges.

    PubMed

    Gaestel, Matthias

    2015-01-01

    Downstream of MAPKs, such as classical/atypical ERKs and p38 MAPKs, but not of JNKs, signaling is often mediated by protein kinases which are phosphorylated and activated by MAPKs and, therefore, designated MAPK-activated protein kinases (MAPKAPKs). Recently, novel insights into the specificity of the assembly of MAPK/MAPKAPK hetero-dimeric protein kinase signaling complexes have been gained. In addition, new functional aspects of MKs have been described and established functions have been challenged. This short review will summarize recent developments including the linear motif (LM) in MKs, the ERK-independent activation of RSK, the RSK-independent effects of some RSK-inhibitors and the challenged role of MK5/PRAK in tumor suppression. PMID:26779481

  6. Mechanisms of inflammasome activation: recent advances and novel insights

    PubMed Central

    Vanaja, Sivapriya; Rathinam, Vijay K.

    2015-01-01

    Inflammasomes are cytosolic multiprotein platforms assembled in response to invading pathogens and other danger signals. Typically inflammasome complexes contain a sensor protein, an adaptor protein and a zymogen, procaspase-1. Formation of inflammasome assembly results in processing of inactive procasase-1 into an active cysteine protease enzyme, caspase-1, which subsequently activates proinflammatory cytokines, IL-1β and IL-18, and induces pyroptosis, a highly pyrogenic inflammatory form of cell death. Studies over the last year have unveiled exciting new players and regulatory pathways that are involved in traditional inflammasome signaling, some of them even challenging the existing dogma. This review outlines these new insights in inflammasome research and discusses areas that warrant further exploration. PMID:25639489

  7. Structural and mechanistic insights into Mps1 kinase activation

    SciTech Connect

    Wang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong

    2010-11-05

    Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-{angstrom}-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the {alpha}C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices {alpha}EF and {alpha}F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.

  8. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  9. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.

    PubMed

    Narsimhan, Karthik; Michaelis, Vladimir K; Mathies, Guinevere; Gunther, William R; Griffin, Robert G; Román-Leshkov, Yuriy

    2015-02-11

    The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation. PMID:25562431

  10. What causes low magnetization at basalt-hosted hydrothermal sites? Insights from inactive site Krasnov (MAR 16°38'N)

    NASA Astrophysics Data System (ADS)

    Szitkar, Florent; Dyment, Jérôme; Choi, Yujin; Fouquet, Yves

    2014-04-01

    magnetic surveys acquired near the seafloor show that active basalt-hosted hydrothermal sites are associated with zones of lower magnetization. This observation may reflect the thermal demagnetization of a hot hydrothermal zone, the alteration of basalt affected by hydrothermal circulation, and/or the presence of thick, nonmagnetic hydrothermal deposits. In order to discriminate among these inferences, we acquired vector magnetic data 50 m above inactive hydrothermal site Krasnov using the Remotely Operated Vehicle (ROV) Victor. This deep hydrothermal site, located 7 km east of the Mid-Atlantic Ridge (MAR) axis at 16°38'N, is dissected by major normal faults and shows no evidence of recent hydrothermal activity. It is therefore a perfect target for investigating the magnetic signature of an inactive basalt-hosted hydrothermal site. Krasnov exhibits a strong negative magnetic anomaly, which implies that the lower magnetization observed at basalt-hosted hydrothermal sites is not a transient effect associated with hydrothermal activity, but remains after activity ceases. Thermal demagnetization plays only a secondary role, if any, in the observed magnetic low. Forward models suggest that both the nonmagnetic hydrothermal deposits and an altered zone of demagnetized basalt are required to account for the observed magnetic low. The permanence of this magnetic signature makes it a useful tool to explore midocean ridges and detect inactive hydrothermal sites.

  11. Insights.

    ERIC Educational Resources Information Center

    Bogner, Donna, Ed.

    1988-01-01

    Describes two methods to teach radioactive decay to secondary students with wide ranging abilities. Activities are designed to follow classroom discussions of atomic structure, transmutation, half life, and nuclear decay. Includes "The Tasmanian Empire: A Radioactive Dating Activity" and an exercise to teach concepts of half life without using…

  12. Receptor Activity-Modifying Proteins (RAMPs): New Insights and Roles.

    PubMed

    Hay, Debbie L; Pioszak, Augen A

    2016-01-01

    It is now recognized that G protein-coupled receptors (GPCRs), once considered largely independent functional units, have a far more diverse molecular architecture. Receptor activity-modifying proteins (RAMPs) provide an important example of proteins that interact with GPCRs to modify their function. RAMPs are able to act as pharmacological switches and chaperones, and they can regulate signaling and/or trafficking in a receptor-dependent manner. This review covers recent discoveries in the RAMP field and summarizes the known GPCR partners and functions of RAMPs. We also discuss the first peptide-bound structures of RAMP-GPCR complexes, which give insight into the molecular mechanisms that enable RAMPs to alter the pharmacology and signaling of GPCRs. PMID:26514202

  13. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  14. Active site specificity of plasmepsin II.

    PubMed Central

    Westling, J.; Cipullo, P.; Hung, S. H.; Saft, H.; Dame, J. B.; Dunn, B. M.

    1999-01-01

    Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues. PMID:10548045

  15. 77 FR 14832 - Plumchoice, Inc., Including On-Site Leased Workers From Balance Staffing, Insight Global Staffing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... services. The notice was published in the Federal Register on February 21, 2012 (76 FR 9971). At the... Employment and Training Administration Plumchoice, Inc., Including On-Site Leased Workers From Balance..., Inc., including on-site leased workers from Balance Staffing, Insight Global Staffing,...

  16. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  17. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  18. Insights into GATA-1 Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis

    PubMed Central

    Yu, Ming; Riva, Laura; Xie, Huafeng; Schindler, Yocheved; Moran, Tyler B.; Cheng, Yong; Yu, Duonan; Hardison, Ross; Weiss, Mitchell J; Orkin, Stuart H.; Bernstein, Bradley E.; Fraenkel, Ernest; Cantor, Alan B.

    2009-01-01

    Summary The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1 induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus non-differentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1 bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that Polycomb Repressive Complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1 repressed genes. These data provide insights into GATA-1 mediated gene regulation in vivo. PMID:19941827

  19. Atomically-thin two-dimensional sheets for understanding active sites in catalysis.

    PubMed

    Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xie, Yi

    2015-02-01

    Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. PMID:25382246

  20. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  1. Immunodetection of phosphorylation sites gives new insights into the mechanisms underlying phospholamban phosphorylation in the intact heart.

    PubMed

    Mundiña-Weilenmann, C; Vittone, L; Ortale, M; de Cingolani, G C; Mattiazzi, A

    1996-12-27

    Phosphorylation site-specific antibodies, quantification of 32P incorporation into phospholamban, and simultaneous measurements of mechanical activity were used in Langendorff-perfused rat hearts to provide further insights into the underlying mechanisms of phospholamban phosphorylation. Immunological detection of phospholamban phosphorylation sites showed that the isoproterenol concentration-dependent increase in phospholamban phosphorylation was due to increases in phosphorylation of both Ser16 and Thr17 residues. When isoproterenol concentration was increased at extremely low Ca2+ supply to the myocardium, phosphorylation of Thr17 was virtually absent. Under these conditions, 32P incorporation into phospholamban, due to Ser16, decreased by 50%. Changes in Ca2+ supply to the myocardium either at constant beta-adrenergic stimulation or in the presence of okadaic acid, a phosphatase inhibitor, exclusively modified Thr17 phosphorylation. Changes in phospholamban phosphorylation due to either Ser16 and/or Thr17 were paralleled by changes in myocardial relaxation. The results indicate that cAMP- (Ser16) and Ca2+-calmodulin (Thr17)-dependent pathways of phospholamban phosphorylation can occur independently of each other. However, in the absence of beta-adrenergic stimulation, phosphorylation of Thr17 could only be detected after simultaneous activation of Ca2+-calmodulin-dependent protein kinase and inactivation of phosphatase. It is suggested that under physiological conditions, this requisite is only filled by cAMP-dependent mechanisms. PMID:8969222

  2. Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Lorenz, Ralph D.

    2016-03-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) robotic lander is scheduled to land in Elysium Planitia on Mars in September 2016. InSight will perform the first comprehensive surface-based geophysical investigation including seismic measurements. Knowledge about encounter rates of dust devils with the InSight lander are important for two main reasons: (1) dust devils will affect the scientific measurements, i.e., wind-induced seismic noise, and (2) the power-supply of the InSight lander and instruments is provided by solar arrays and previous landers and rovers on Mars were affected by a steady decline in electrical power output due to atmospheric dust deposition on the solar panels. Long term science operations were only made possible by dust clearing events of the solar arrays caused by wind gusts and dust devils. In this study we analyzed dust devil tracks (DDTs) at the final InSight landing site region in Elysium Planitia. Formation of DDTs is caused by the removal of a layer of dust by passing dust devils, hence in principle the same process as clearing of dust from solar panels. We mapped the number, size (width and length), and orientation of DDTs in repeat observations using High Resolution Imaging Science Experiment (HiRISE) images covering the exact same surface area acquired within a relatively short time span (<90 martian days). In total, we analyzed 557 newly formed dust devil tracks in 8 study areas. DDTs are morphologically relatively straight with a low mean sinuosity of 1.03 and only reach maximum widths of 30 m. The mean DDT width is 4 m, indicating that the dust devil size population is dominated by small dust devils with a diameter <10 m. The size-frequency distribution of DDTs follows a -2 power law. The mean lengths of DDTs are 0.62 km and 1.23 km for complete (tracks which are visible from their start to end point) and incomplete DDTs (tracks running across the HiRISE footprint), respectively. The

  3. An Observational Study in Developing an Intergenerational Shared Site Program: Challenges and Insights.

    ERIC Educational Resources Information Center

    Hayes, Christopher L.

    2003-01-01

    Evaluation of an intergenerational shared-site program included observations and videos of 20 children and 27 elders. Interpersonal communication and empathy were cultivated over time. The best activities promoted interaction and relationship building. Environmental factors and teaching style affected outcomes. Making and interpreting videos…

  4. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  5. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  6. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  7. Addressing Community Concerns about Lead Contamination in Soil: Insights for Site Cleanup

    SciTech Connect

    Finster, M.E.

    2008-07-01

    Health risks associated with contaminated sites are a key driver for cleanup decisions and determinations about alternate land use of areas released to the public, particularly in heavily populated metropolitan areas. To guide risk management and future use decisions at contaminated sites, insights can be gained from community-based research. These evaluations can also help ensure that assessments and decisions developed for urban sites consider input received from community members. In order to evaluate the potential risk due to consumption of plants home-grown in lead-contaminated soil, a pilot study was conducted over a period of two summers in a Chicago, IL neighborhood. This survey included analyses of lead concentrations in a convenience sampling of edible fruits, vegetables, and herbs and also examined how the sample preparation method affected the lead concentrations detected in plant materials. A pattern of lead transfer from soil through the root to the stem and leaves of garden crops was found. This pattern is a concern particularly for plants in which the roots, stems, stalks, or leaves are consumed. Analyses of fruiting vegetables indicated that concentrations were below the limit of detection. Depending on the soil lead level and specific plant, the contamination found in some leafy vegetables and herbs may exceed the body's daily excretion rate and could contribute to the total body burden of lead, especially in children. Finally, washing edible portions did not necessarily eliminate the risk, indicating that the lead was located both on and in the plant tissue. This research was conducted in coordination with health experts from the community, and local citizens were involved in discussions on the research and implications for their health protection measures. In certain residential locations, identifying and understanding the potential source of lead contamination provides information for the community such that simple measures can be applied for

  8. Structural insights into the ferroxidase site of ferritins from higher eukaryotes.

    PubMed

    Bertini, Ivano; Lalli, Daniela; Mangani, Stefano; Pozzi, Cecilia; Rosa, Camilla; Theil, Elizabeth C; Turano, Paola

    2012-04-11

    The first step of iron biomineralization mediated by ferritin is the oxidation at the ferroxidase active site of two ferrous ions to a diferric oxo/hydroxo species. Metal-loaded ferritin crystals obtained by soaking crystals of frog ferritin in FeSO(4) and CuSO(4) solutions followed by flash freezing provided X-ray crystal structures of the tripositive iron and bipositive copper adducts at 2.7 and 2.8 Å resolution, respectively. At variance with the already available structures, the crystal form used in this study contains 24 independent subunits in the asymmetric unit permitting comparison between them. For the first time, the diferric species at the ferroxidase site is identified in ferritins from higher eukaryotes. Anomalous difference Fourier maps for crystals (iron crystal 1) obtained after long soaking times in FeSO(4) solution invariantly showed diferric species with a Fe-Fe average distance of 3.1 ± 0.1 Å, strongly indicative of the presence of a μ-oxo/hydroxo bridge between the irons; protein ligands for each iron ion (Fe1 and Fe2) were also unequivocally identified and found to be the same in all subunits. For copper bound ferritin, dicopper(II) centers are also observed. While copper at site 1 is essentially in the same position and has the same coordination environment as Fe1, copper at site 2 is displaced toward His54, now acting as a ligand; this results in an increased intermetal distance (4.3 ± 0.4 Å). His54 coordination and longer metal-metal distances might represent peculiar features of divalent cations at the ferroxidase site. This oxidation-dependent structural information may provide key features for the mechanistic pathway in ferritins from higher eukaryotes that drive uptake of bivalent cation and release of ferric products at the catalytic site. This mechanism is supported by the X-ray picture obtained after only 1 min of soaking in FeSO(4) solutions (iron crystal 2) which reasonably contain the metal at different oxidation states

  9. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA.

    PubMed

    Julien, Jean-Philippe; Lee, Peter S; Wilson, Ian A

    2012-11-01

    Human immunodeficiency virus-1 (HIV-1) envelope protein (Env) and influenza hemagglutinin (HA) are the surface glycoproteins responsible for viral entry into host cells, the first step in the virus life cycle necessary to initiate infection. These glycoproteins exhibit a high degree of sequence variability and glycosylation, which are used as strategies to escape host immune responses. Nonetheless, antibodies with broadly neutralizing activity against these viruses have been isolated that have managed to overcome these barriers. Here, we review recent advances in the structural characterization of these antibodies with their viral antigens that defines a few sites of vulnerability on these viral spikes. These broadly neutralizing antibodies tend to focus their recognition on the sites of similar function between the two viruses: the receptor-binding site and membrane fusion machinery. However, some sites of recognition are unique to the virus neutralized, such as the dense shield of oligomannose carbohydrates on HIV-1 Env. These observations are discussed in the context of structure-based design strategies to aid in vaccine design or development of antivirals. PMID:23046130

  10. Mechanistic insights into the first Lygus-active β-pore forming protein.

    PubMed

    Jerga, Agoston; Chen, Danqi; Zhang, Chunfen; Fu, Jinping; Kouadio, Jean-Louis K; Wang, Yanfei; Duff, Stephen M G; Howard, Jennifer E; Rydel, Timothy J; Evdokimov, Artem G; Ramaseshadri, Parthasarathy; Evans, Adam; Bolognesi, Renata; Park, Yoonseong; Haas, Jeffrey A

    2016-06-15

    The cotton pests Lygus hesperus and Lygus lineolaris can be controlled by expressing Cry51Aa2.834_16 in cotton. Insecticidal activity of pore-forming proteins is generally associated with damage to the midgut epithelium due to pores, and their biological specificity results from a set of key determinants including proteolytic activation and receptor binding. We conducted mechanistic studies to gain insight into how the first Lygus-active β-pore forming protein variant functions. Biophysical characterization revealed that the full-length Cry51Aa2.834_16 was a stable dimer in solution, and when exposed to Lygus saliva or to trypsin, the protein underwent proteolytic cleavage at the C-terminus of each of the subunits, resulting in dissociation of the dimer to two separate monomers. The monomer showed tight binding to a specific protein in Lygus brush border membranes, and also formed a membrane-associated oligomeric complex both in vitro and in vivo. Chemically cross-linking the β-hairpin to the Cry51Aa2.834_16 body rendered the protein inactive, but still competent to compete for binding sites with the native protein in vivo. Our study suggests that disassociation of the Cry51Aa2.834_16 dimer into monomeric units with unoccupied head-region and sterically unhindered β-hairpin is required for brush border membrane binding, oligomerization, and the subsequent steps leading to insect mortality. PMID:27001423

  11. Structural Insights into the Anti-HIV Activity of the Oscillatoria agardhii Agglutinin Homolog Lectin Family*

    PubMed Central

    Koharudin, Leonardus M. I.; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M.

    2012-01-01

    Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ∼66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties. PMID:22865886

  12. Sulfolobus solfataricus protein disulphide oxidoreductase: insight into the roles of its redox sites.

    PubMed

    Limauro, Danila; Saviano, Michele; Galdi, Ilaria; Rossi, Mosè; Bartolucci, Simonetta; Pedone, Emilia

    2009-01-01

    Sulfolobus solfataricus protein disulphide oxidoreductase (SsPDO) contains three disulphide bridges linking residues C(41)XXC(44), C(155)XXC(158), C(173)XXXXC(178). To get information on the role played by these cross-links in determining the structural and functional properties of the protein, we performed site-directed mutagenesis on Cys residues and investigated the changes in folding, stability and functional features of the mutants and analysed the results with computational analysis. The reductase activity of SsPDO and its mutants was evaluated by insulin and thioredoxin reductase assays also coupled with peroxiredoxin Bcp1 of S. solfataricus. The three-dimensional model of SsPDO was constructed and correlated with circular dichroism data and functional results. Biochemical analysis indicated a key function for the redox site constituted by Cys155 and Cys158. To discriminate between the role of the two cysteine residues, each cysteine was mutagenized and the behaviour of the single mutants was investigated elucidating the basis of the electron-shuffling mechanism for SsPDO. Finally, cysteine pK values were calculated and the accessible surface for the cysteine side chains in the reduced form was measured, showing higher reactivity and solvent exposure for Cys155. PMID:18988690

  13. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  14. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  15. Low Mitochondrial DNA Diversity in an Ancient Population from China: Insight into Social Organization at the Fujia Site.

    PubMed

    Dong, Yu; Li, Chunxiang; Luan, Fengshi; Li, Zhenguang; Li, Hongjie; Cui, Yinqiu; Zhou, Hui; Malhi, Ripan S

    2015-01-01

    To gain insight into the social organization of a population associated with the Dawenkou period, we performed ancient DNA analysis of 18 individuals from human remains from the Fujia site in Shandong Province, China. Directly radiocarbon dated to 4800-4500 cal BP, the Fujia site is assumed to be associated with a transitional phase from matrilineal clans to patrilineal monogamous families. Our results reveal a low mitochondrial DNA diversity from the site and population. Combined with Y chromosome data, the pattern observed at the Fujia site is most consistent with a matrilineal community. The patterns also suggest that the bond of marriage was de-emphasized compared with the bonds of descent at Fujia. PMID:26416323

  16. Valsalva maneuver: Insights into baroreflex modulation of human sympathetic activity

    NASA Technical Reports Server (NTRS)

    Smith, Michael L.; Eckberg, Dwain L.; Fritsch, Janice M.; Beightol, Larry A.; Ellenbogen, Kenneth A.

    1991-01-01

    Valsalva's maneuver, voluntary forced expiration against a closed glottis, is a well-characterized research tool, used to assess the integrity of human autonomic cardiovascular control. Valsalva straining provokes a stereotyped succession of alternating positive and negative arterial pressure and heart rate changes mediated in part by arterial baroreceptors. Arterial pressure changes result primarily from fluctuating levels of venous return to the heart and changes of sympathetic nerve activity. Muscle sympathetic activity was measured directly in nine volunteers to explore quantitatively the relation between arterial pressure and human sympathetic outflow during pressure transients provoked by controlled graded Valsalva maneuvers. Our results underscore several properties of sympathetic regulation during Valsalva straining. First, muscle sympathetic nerve activity changes as a mirror image of changes in arterial pressure. Second, the magnitude of sympathetic augmentation during Valsalva straining predicts phase 4 arterial pressure elevations. Third, post-Valsalva sympathetic inhibition persists beyond the return of arterial and right atrial pressures to baseline levels which reflects an alteration of the normal relation between arterial pressure and muscle sympathetic activity. Therefore, Valsalva straining may have some utility for investigating changes of reflex control of sympathetic activity after space flight; however, measurement of beat-to-beat arterial pressure is essential for this use. The utility of this technique in microgravity can not be determined from these data. Further investigations are necessary to determine whether these relations are affected by the expansion of intrathoracic blood volume associated with microgravity.

  17. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function. PMID:26515810

  18. More insights into a human adipose tissue GPAT activity assay

    PubMed Central

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra; Jensen, Michael D

    2016-01-01

    ABSTRACT Adipose tissue fatty acid storage varies according to sex, adipose tissue depot and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We recently published findings based on the glycerol 3-phosphate acyltransferase (GPAT) enzyme activity assay we optimized for use with human adipose tissue. These findings include a decrease in total GPAT and GPAT1 as a function of adipocyte size in both omental and subcutaneous adipose tissue and a strong, positive correlations between ACS, GPAT, and DGAT activities for both sexes and depots and between these storage factors and palmitate storage rates into TAG. The aim of this commentary is to expand upon the data from our recent publication. We describe here additional details on the optimization of the GPAT enzyme activity assay, a correlation between DGAT and percentage palmitate in the diacylglycerol fraction, and sex differences in fatty acid storage factors and storage rates into TAG at high palmitate concentrations. PMID:27144101

  19. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  20. Probability of solar panel clearing events at the Insight landing sites (Mars) from a dust devil track survey

    NASA Astrophysics Data System (ADS)

    Reiss, D.; Lorenz, R. D.

    2015-10-01

    The InSight robotic lander is scheduled to land on Mars in September 2016. InSight was designed to perform the first comprehensive surface-based geophysical investigation of Mars [1]. Passage of vortices may have a number of influences on the geophysical measurements to be made by InSight. Seismic data could be influenced by dust devils and vortices via several mechanisms such as loading of the elastic ground by a surface pressure field which causes a local tilt [e.g. 2]. In addition, the power supply of the InSight instruments is provided by solar arrays. Solar-powered missions on Mars like the Sojourner rover in 1997 were affected by a decline in electrical power output by 0.2-0.3 %per day caused by steadily dust deposition on its horizontal solar panel [3]. The solar-powered Mars Exploration Rovers (MERs) Spirit and Opportunity experienced similar dust deposition rates [4] which led to steady power decrease over time endangering longer rover operation times. The much longer operation times of the rovers were made possible by unanticipated 'dust clearing events' of the solar arrays by wind gust or dust devils [5]. Recent studies imply that dust devils are primarily responsible for those recurrent 'dust clearing events' [6]. In this study we investigate the potential frequency of intense dust devil occurrences at the InSight landing site regions, which are able to remove dust from its solar panels. We analyzed newly formed dust devil tracks within a given time span using multi-temporal HiRISE image data covering the same surface area. Based on these measurements we will give encounter rate predictions of intense (high tangential speed and high pressure drop) dust devils with the InSight lander.

  1. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  2. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  3. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  4. Recent insight into the biological activities of synthetic xanthone derivatives.

    PubMed

    Shagufta; Ahmad, Irshad

    2016-06-30

    Xanthones are a class of oxygen containing heterocyclic compounds with a broad range of biological activities, and they have prominent significance in the field of medicinal chemistry. Xanthone is an attractive scaffold for the design and development of new drugs due to its promising biological activities, primarily as anticancer, antimalarial, antimicrobial, anti-HIV, anticonvulsant, anticholinesterase, antioxidant, anti-inflammatory, and as inhibitors of several enzymes like α-glycosidase, topoisomerase, protein kinase, aromatase, etc. In this review, we have compiled and discussed recent developments on the pharmacological profile of synthetic xanthone derivatives for different therapeutic targets. The review highlights the therapeutic significance of xanthones and offers support in the development of new xanthone derivatives as therapeutic agents. PMID:27111599

  5. Insight in the Chemistry of Laser-Activated Dental Bleaching

    PubMed Central

    De Moor, Roeland Jozef Gentil; Meire, Maarten August; De Coster, Peter Jozef; Walsh, Laurence James

    2015-01-01

    The use of optical radiation for the activation of bleaching products has not yet been completely elucidated. Laser light is suggested to enhance the oxidizing effect of hydrogen peroxide. Different methods of enhancing hydrogen peroxide based bleaching are possible. They can be classified into six groups: alkaline pH environment, thermal enhancement and photothermal effect, photooxidation effect and direct photobleaching, photolysis effect and photodissociation, Fenton reaction and photocatalysis, and photodynamic effect. PMID:25874251

  6. Proteomics reliability for micropollutants degradation insight into activated sludge systems.

    PubMed

    Buttiglieri, Gianluigi; Collado, Neus; Casas, Nuria; Comas, Joaquim; Rodriguez-Roda, Ignasi

    2015-01-01

    Little information is available on pharmaceutical trace compounds degradation pathways in wastewater. The potential of the proteomics approach has been evaluated to extract information on activated sludge microbial metabolism in degrading a trace concentration of a pharmaceutical compound (ibuprofen). Ibuprofen is one of the most consumed pharmaceuticals, measured in wastewater at very high concentrations and, despite its high removal rates, found in different environmental compartments. Aerated and completely mixed activated sludge batch tests were spiked with ibuprofen at 10 and 1,000 μg L(-1). Ibuprofen concentrations were determined in the liquid phase: 100% removal was observed and the kinetics were estimated. The solid phase was sampled for proteomics purposes. The first objective was to apply proteomics to evaluate protein profile variations in a complex matrix such as activated sludge. The second objective was to determine, at different ibuprofen concentrations, which proteins followed pre-defined trends. No newly expressed proteins were found. Nonetheless, the obtained results suggest that proteomics itself is a promising methodology to be applied in this field. Statistical and comparative studies analyses provided, in fact, useful information on biological reproducibility and permitted us to detect 62 proteins following coherent and plausible expected trends in terms of presence and intensity change. PMID:26360747

  7. Structural insights into μ-opioid receptor activation

    PubMed Central

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.

    2015-01-01

    Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379

  8. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders.

    PubMed

    Wakabayashi, Aoi; Ulirsch, Jacob C; Ludwig, Leif S; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I; Sankaran, Vijay G

    2016-04-19

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders. PMID:27044088

  9. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders

    PubMed Central

    Wakabayashi, Aoi; Ulirsch, Jacob C.; Ludwig, Leif S.; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I.; Sankaran, Vijay G.

    2016-01-01

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptional cis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders. PMID:27044088

  10. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  11. A study on the flexibility of enzyme active sites

    PubMed Central

    2011-01-01

    Background A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted. Results Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites. Conclusions This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites. PMID:21342563

  12. New insights into the behavior of muscle during active lengthening.

    PubMed Central

    Morgan, D L

    1990-01-01

    A muscle fiber was modeled as a series-connected string of sarcomeres, using an A. V. Hill type model for each sarcomere and allowing for some random variation in the properties of the sarcomeres. Applying stretches to this model led to the prediction that lengthening of active muscle on or beyond the plateau of the length tension curve will take place very nonuniformly, essentially by rapid, uncontrolled elongation of individual sarcomeres, one at a time, in order from the weakest toward the strongest. Such a "popped" sarcomere, at least in a single fiber, will be stretched to a length where there is no overlap between thick and thin filaments, and the tension is borne by passive components. This prediction allows modeling of many results that have previously been inexplicable, notably the permanent extra tension after stretch on the descending limb of the length tension curve, and the continued rise of tension during a continued stretch. PMID:2317547

  13. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  14. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  15. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  16. Small Molecule Activation by Constrained Phosphorus Compounds: Insights from Theory.

    PubMed

    Pal, Amrita; Vanka, Kumar

    2016-01-19

    An exciting new development in main group chemistry has been the use of a constrained, "flat", phosphorus-based complex to mediate in reactions such as the dehydrogenation of ammonia borane (AB), and the activation of the N-H bond in primary amines. Its importance is based on the fact that it shows that main group compounds, when properly designed, can be as effective as transition metal complexes for doing significant chemical transformations. What the current computational study, employing density functional theory (DFT), reveals is that a common, general mechanism exists that accounts for the behavior of the flat phosphorus compound in the different reactions that have been experimentally reported to date. This mechanism, which involves the mediation by a base as a proton transfer agent, is simpler and energetically more favorable than the previous mechanisms that have been proposed for the same reactions in the literature. It is likely that the knowledge gained from the current work about the chemical behavior of this phosphorus compound can be utilized to design new constrained phosphorus-based compounds. PMID:26700074

  17. Lipid interaction sites on channels, transporters and receptors: Recent insights from molecular dynamics simulations.

    PubMed

    Hedger, George; Sansom, Mark S P

    2016-10-01

    Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterization of these sites are of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26946244

  18. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  19. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  20. Quantification of uncertain outcomes from site characterization: Insights from the ESF-AS

    SciTech Connect

    Boyle, W.J.; Parrish, D.K.

    1992-01-01

    As part of the Exploratory Studies Facility Alternatives Study (ESF-AS) the uncertain outcomes from site characterization were quantified using a probabilistic tree known as ``Nature`s Tree.`` Nature`s Tree distinguished the true characteristics of the Yucca Mountain site from the perceived characteristics deduced from testing. Bayesian probabilistic calculations converted probabilities in Nature`s Tree to the probabilistic estimates required for the comparative analysis of Exploratory Studies Facility-repository options. Experts on characterization testing explicitly addressed several site characterization issues that are considered implicitly in many site characterization programs.

  1. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism. PMID:24025780

  2. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-01-01

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32–1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis. DOI: http://dx.doi.org/10.7554/eLife.11620.001 PMID:26673079

  3. Design Insights and Inspiration from the Tate: What Museum Web Sites Can Offer Us

    ERIC Educational Resources Information Center

    Riley-Huff, Debra A.

    2009-01-01

    There are many similarities between museums and academic libraries as public service institutions. This article is an examination of museum Web site practices and concepts that might also be transferable to academic library Web sites. It explores the digital manifestations of design and information presentation, user engagement, interactivity, and…

  4. Cross-site studies "by design:" Experiments and observations that provide new insights

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cross-site comparisons presented in the previous chapters are all conducted after the individual studies are completed. The differences in experimental design in individual studies in a posteriori cross-site studies limit the scope of questions that can be addressed, and the powerfulness and co...

  5. The Site Variability Issue in Follow Through Revisited: Some New Data and Some Personal Insights.

    ERIC Educational Resources Information Center

    Gersten, Russell

    The site variability issue for Direct Instruction Follow Through sites is examined from a variety of perspectives--meta-analysis of the Abt Associates' data, norm-referenced comparisons, and a longitudinal look at stability of effects. Much of the seemingly unexplained variability found in both the Abt report and the reports by M. Kennedy and E.…

  6. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR).

    PubMed

    Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J

    2016-08-01

    Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. PMID:27285815

  7. Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity

    PubMed Central

    Rinehart, Jesse; Maksimova, Yelena D.; Tanis, Jessica E.; Stone, Kathryn L.; Hodson, Caleb A.; Zhang, Junhui; Risinger, Mary; Pan, Weijun; Wu, Dianqing; Colangelo, Christopher M.; Forbush, Biff; Joiner, Clinton H.; Gulcicek, Erol E.; Gallagher, Patrick G.; Lifton, Richard P.

    2010-01-01

    Summary Modulation of intracellular chloride concentration ([Cl−]i) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl− exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl−]I; however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl−]i and have implications for control of cell volume and neuronal function. PMID:19665974

  8. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  9. Active sites environmental monitoring Program - Program Plan: Revision 2

    SciTech Connect

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results.

  10. Landscapes, depositional environments and human occupation at Middle Paleolithic open-air sites in the southern Levant, with new insights from Nesher Ramla, Israel

    NASA Astrophysics Data System (ADS)

    Zaidner, Yossi; Frumkin, Amos; Friesem, David; Tsatskin, Alexander; Shahack-Gross, Ruth

    2016-04-01

    Middle Paleolithic human occupation in the Levant (250-50 ka ago) has been recorded in roofed (cave and rockshelter) and open-air sites. Research at these different types of sites yielded different perspectives on the Middle Paleolithic human behavior and evolution. Until recently, open-air Middle Paleolithic sites in the Levant were found in three major sedimentary environments: fluvial, lake-margin and spring. Here we describe a unique depositional environment and formation processes at the recently discovered open-air site of Nesher Ramla (Israel) and discuss their contribution to understanding site formation processes in open-air sites in the Levant. The site is 8-m-thick Middle Paleolithic sequence (OSL dated to 170-80 ka) that is located in a karst sinkhole formed by gravitational deformation and sagging into underground voids. The sedimentary sequence was shaped by gravitational collapse, cyclic colluviation of soil and gravel into the depression, waterlogging, in situ pedogenesis and human occupation. Original bedding and combustion features are well-preserved in the Lower archaeological sequence, a rare occurrence in comparison to other open-air archaeological sites. This phenomenon coincides with episodes of fast sedimentation/burial, which also allowed better preservation of microscopic remains such as ash. The Upper archaeological sequence does not exhibit bedding or preservation of ash, despite presence of heat-affected lithic artifacts, which makes it similar to other open-air sites in the Levant. We suggest that rate of burial is the major factor that caused the difference between the Upper and Lower sequences. The differences in the burial rate may be connected to environmental and vegetation changes at the end of MIS 6. We also identified an interplay between sediment in-wash and density of human activity remains, i.e. during episodes of low natural sediment input the density of artifacts is higher relative to episodes with high rate of sediment in

  11. Cationic Membrane Peptides: Atomic-Level Insight of Structure-Activity Relationships from Solid-State NMR

    PubMed Central

    Su, Yongchao; Li, Shenhui; Hong, Mei

    2012-01-01

    Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this mini-review we will summarize high-resolution structural and dynamic findings towards the understanding of the structure-activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane. PMID:23108593

  12. The active site behaviour of electrochemically synthesised gold nanomaterials.

    PubMed

    Plowman, Blake J; O'Mullane, Anthony P; Bhargava, Suresh K

    2011-01-01

    Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces. PMID:22455038

  13. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  14. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  15. Insights to repository performance through study of a nuclear test site

    SciTech Connect

    Smith, D K; Kersting, A B; Thompson, J L; Finnegan, D L

    2000-07-12

    Underground nuclear test sites offer an unprecedented opportunity to evaluate processes relevant to high-level waste repository performance in the absence of engineered barriers. Radionuclide migration programs at the Nevada Test Site represent a twenty-five year systematic investigation of the diverse radiologic source terms residual from weapons testing and the evolution of the hydrologic source term which comprises those radionuclides dissolved in or otherwise available for transport by groundwater. The Nevada Test Site shares actinide source terms, correlative geology, an identical tectonic setting, similar climate, and a thick unsaturated zone with the adjacent proposed Yucca Mountain high-level waste repository and provides a natural laboratory to assess long-term radionuclide transport in the near field. Analog studies may ultimately help validate predictions of radionuclide transport from the Yucca Mountain repository.

  16. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  17. Decision precision or holistic heuristic?: Insights on on-site selection of student nurses and midwives.

    PubMed

    Macduff, Colin; Stephen, Audrey; Taylor, Ruth

    2016-01-01

    Concerns about quality of care delivery in the UK have led to more scrutiny of criteria and methods for the selection of student nurses. However few substantive research studies of on-site selection processes exist. This study elicited and interpreted perspectives on interviewing processes and related decision making involved in on-site selection of student nurses and midwives. Individual and focus group interviews were undertaken with 36 lecturers, 5 clinical staff and 72 students from seven Scottish universities. Enquiry focused primarily on interviewing of candidates on-site. Qualitative content analysis was used as a primary strategy, followed by in-depth thematic analysis. Students had very mixed experiences of interview processes. Staff typically took into account a range of candidate attributes that they valued in order to achieve holistic assessments. These included: interpersonal skills, team working, confidence, problem-solving, aptitude for caring, motivations, and commitment. Staff had mixed views of the validity and reliability of interview processes. A holistic heuristic for overall decision making predominated over belief in the precision of, and evidence base for, particular attribute measurement processes. While the development of measurement tools for particular attributes continues apace, tension between holism and precision is likely to persist within on-site selection procedures. PMID:26213147

  18. Authigenic Carbonate Formation on the Peru Margin; New Insights from IODP Site 1230

    NASA Astrophysics Data System (ADS)

    Abdullajintakam, S.; Naehr, T. H.

    2015-12-01

    Fluid seepage of reduced organic compounds such as methane impacts the geology and biology of the seabed by inducing complex, microbially mediated biogeochemical processes. Authigenic carbonates serve as one of the few permanent records of these of dynamic biogeochemical interactions that involve methanogenesis, methanotrophy, sulfate reduction and carbonate precipitation. Meister et al. (2007) investigated deep-sea dolomite formation at Sites 1227-1229 on the Peru margin, where dolomite precipitation occurs in association with organic carbon-rich continental margin sediments. Geochemical and petrographic studies indicated episodic dolomite precipitation at a dynamic sulfate methane transition zone (SMTZ). Variations in δ13C values of these dolomites between +15‰ and -15‰ were attributed to non-steady state conditions as a result of the upward and downward migration of the SMTZ. Our study aims to better understand the biogeochemical processes associated with authigenic carbonate precipitation in this dynamic deep-sea setting. We focused our efforts on IODP Site 1230, which is a gas-hydrate-bearing site that shows sulphate consumption within the uppermost 10 m below the seafloor as well as high methane production. Using a multi proxy approach, we combined X-ray diffraction, stable isotope geochemistry, and trace metal analysis of authigenic carbonates to elucidate conditions for authigenic carbonate formation. Results from Site 1230 are compared to Sites 1227 and 1229, which lacks gas hydrates and is characterized by high pore water sulfate and low methane concentrations. This study contributes to a more comprehensive understanding of authigenic carbonate formation and associated biogeochemical processes in continental margin sediments. Meister, P., Mckenzie, J. A., Vasconcelos, C., Bernasconi, S., Frank, M., Gutjhar, M. and SCHRAG, D. P. (2007), Dolomite formation in the dynamic deep biosphere: results from the Peru Margin. Sedimentology, 54: 1007-1032.

  19. NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site

    PubMed Central

    Hoffmann, Bernd; Mitchell, G. Thomas; Gendron, Patrick; Major, François; Andersen, Angela A.; Collins, Richard A.; Legault, Pascale

    2003-01-01

    Substrate cleavage by the Neurospora Varkud satellite (VS) ribozyme involves a structural change in the stem-loop I substrate from an inactive to an active conformation. We have determined the NMR solution structure of a mutant stem-loop I that mimics the active conformation of the cleavage site internal loop. This structure shares many similarities, but also significant differences, with the previously determined structures of the inactive internal loop. The active internal loop displays different base-pairing interactions and forms a novel RNA fold composed exclusively of sheared G-A base pairs. From chemical-shift mapping we identified two Mg2+ binding sites in the active internal loop. One of the Mg2+ binding sites forms in the active but not the inactive conformation of the internal loop and is likely important for catalysis. Using the structure comparison program mc-search, we identified the active internal loop fold in other RNA structures. In Thermus thermophilus 16S rRNA, this RNA fold is directly involved in a long-range tertiary interaction. An analogous tertiary interaction may form between the active internal loop of the substrate and the catalytic domain of the VS ribozyme. The combination of NMR and bioinformatic approaches presented here has identified a novel RNA fold and provides insights into the structural basis of catalytic function in the Neurospora VS ribozyme. PMID:12782785

  20. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  1. Insights on activation enthalpy for non-Schmid slip in body-centered cubic metals

    SciTech Connect

    Hale, Lucas M.; Lim, Hojun; Zimmerman, Jonathan A.; Battaile, Corbett C.; Weinberger, Christopher R.

    2014-12-18

    We use insights gained from atomistic simulation to develop an activation enthalpy model for dislocation slip in body-centered cubic iron. Furthermore, using a classical potential that predicts dislocation core stabilities consistent with ab initio predictions, we quantify the non-Schmid stress-dependent effects of slip. The kink-pair activation enthalpy is evaluated and a model is identified as a function of the general stress state. Thus, our model enlarges the applicability of the classic Kocks activation enthalpy model to materials with non-Schmid behavior.

  2. Toward understanding the active SETI debate: Insights from risk communication and perception

    NASA Astrophysics Data System (ADS)

    Korbitz, Adam

    2014-12-01

    Insights from the robust field of risk communication and perception have to date been almost totally absent from the policy debate regarding the relative risks and merits of Active SETI or Messaging to Extraterrestrial Intelligence (METI). For many years, the practice (or proposed practice) of Active SETI has generated a vigorous and sometimes heated policy debate within the scientific community. There have also been some negative reactions in the media toward the activities of those engaged in Active SETI. Risk communication is a scientific approach to communication regarding situations involving potentially sensitive or controversial situations in which there may be high public concern and low public trust. The discipline has found wide acceptance and utility in fields such as public health, industrial regulation and environmental protection. Insights from the scientific field of risk communication (such as omission bias, loss aversion, the availability heuristic, probability neglect, and the general human preference for voluntary over involuntary risks) may help those who have participated in either side of the debate over Active SETI to better understand why the debate has taken on this posture. Principles of risk communication and risk perception may also help those engaged in Active SETI to communicate more effectively with other scientists, the public, with the media, and with policy makers regarding their activities and to better understand and respond to concerns expressed regarding the activity.

  3. Analysis of Hydrogen Tunneling in an Enzyme Active Site using von Neumann Measurements

    PubMed Central

    Sumner, Isaiah; Iyengar, Srinivasan S.

    2010-01-01

    We build on our earlier quantum wavepacket study of hydrogen transfer in the biological enzyme, soybean lipoxygenase-1, by using von Neumann quantum measurement theory to gain qualitative insights into the transfer event. We treat the enzyme active site as a measurement device which acts on the tunneling hydrogen nucleus via the potential it exerts at each configuration. A series of changing active site geometries during the tunneling process effects a sequential projection of the initial, reactant state onto the final, product state. We study this process using several different kinds of von Neumann measurements and show how a discrete sequence of such measurements not only progressively increases the projection of the hydrogen nuclear wavepacket onto the product side but also favors proton over deuteron transfer. Several qualitative features of the hydrogen tunneling problem found in wavepacket dynamics studies are also recovered here. These include the shift in the “transition state” towards the reactant as a result of nuclear quantization, greater participation of excited states in the case of deuterium, and presence of critical points along the reaction coordinate that facilitate hydrogen and deuterium transfer and coincide with surface crossings. To further “tailor” the dynamics, we construct a perturbation to the sequence of measurements, that is a perturbation to the dynamical sequence of active site geometry evolution, which leads us to insight on the existence of sensitive regions of the reaction profile where subtle changes to the dynamics of the active site can have an effect on the hydrogen and deuterium transfer process. PMID:22933858

  4. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  5. Dashboard applications to monitor experiment activities at sites

    NASA Astrophysics Data System (ADS)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  6. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2domains reveal that the (HhH)2domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  7. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  8. New insights on the wooden weapons from the Paleolithic site of Schöningen.

    PubMed

    Schoch, Werner H; Bigga, Gerlinde; Böhner, Utz; Richter, Pascale; Terberger, Thomas

    2015-12-01

    The Paleolithic site of Schöningen is famous for the earliest known, completely preserved wooden weapons. Here we present recent results of an ongoing analysis of the nine spears, one lance, a double pointed stick, and a burnt stick dating to the Holsteinian, c. 300 kyr. Macroscopic and microscopic analyses, as well as studies of thin sections, contribute to a better understanding of the manufacture of the wooden weapons. They were deposited in organic sediments at a former lakeshore among numerous bones of butchered horses. In general, the spears are extremely well-preserved and show no or little sign of taphonomic alteration, although some of the weapons are broken and parts were slightly moved, probably by water action. The excellent preservation conditions provide considerable information on the operational sequence of production. The hunters selected thin trunks of spruce or pine and initially stripped off the bark. Traces of cutting, scraping, and smoothing can be observed on the spear surfaces in detail. In the case of spear X, repeated use of the weapon is implied by re-sharpening of the tip. Analyses of wood anatomy provide information on climatic conditions and contribute to the better understanding of the development of the site. PMID:26442632

  9. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent. PMID:17673485

  10. Directional changes of the geomagnetic field in West Africa: Insights from the metallurgical site of Korsimoro

    NASA Astrophysics Data System (ADS)

    Donadini, Fabio; Serneels, Vincent; Kapper, Lisa; El Kateb, Akram

    2015-11-01

    This work shows the first archeomagnetic directions from Western Africa measured on 32 iron smelting kilns dated between 650 and 1800 AD. The archeological excavation of the vast metallurgical site of Korsimoro established the existence of four distinct iron-smelting techniques. The time-frame of each technique could be clearly determined with radiocarbon dating. Many of the kilns investigated in this study could also be dated individually with residual charcoals found in their inside. The results indicate that the inclination of the field changed gradually from shallow normal to shallow reversed during 800 to 1300 AD, and then went back to shallow normal around 1600-1700 AD. The declination was instead stable around 10°E between 800 and 1400 AD, thereafter it started changing towards North. This trend correlates well with available secular variation curves from the Balkan and from Spain, and indicates that the field variation in West Africa was similar to the one in Europe.

  11. Insights into the structure of the diiron site of RIC from Escherichia coli.

    PubMed

    Nobre, Lígia S; Lousa, Diana; Pacheco, Isabel; Soares, Cláudio M; Teixeira, Miguel; Saraiva, Lígia M

    2015-02-13

    Repair of Iron Centres (RICs) are a widely-spread family of diiron proteins involved in the protection of iron-sulphur-containing enzymes from nitrosative and oxidative stress. Here, homology-based modelling was used to predict putative ligands of the RIC diiron centre in E. coli. Site-directed mutagenesis studies showed that several conserved residues modulate the spectroscopic properties of the diiron centre, and mutations in H129, E133 and E208 abrogated RIC ability to protect aconitase. Taken together, these data led to a structural model of a diiron centre inserted in a four-helix bundle fold and coordinated by H84, H129, H160, H204, E133 and E208. Moreover, two μ-carboxylate bridges involving E133 and E208 were found to be required for assembly of a stable diiron centre. PMID:25583388

  12. Characteristics of foraging sites and protein status in wintering muskoxen: Insights from isotopes of nitrogen

    USGS Publications Warehouse

    Gustine, D.D.; Barboza, P.S.; Lawler, J.P.; Arthur, S.M.; Shults, B.S.; Persons, K.; Adams, L.G.

    2011-01-01

    Identifying links between nutritional condition of individuals and population trajectories greatly enhances our understanding of the ecology, conservation, and management of wildlife. For northern ungulates, the potential impacts of a changing climate to populations are predicted to be nutritionally mediated through an increase in the severity and variance in winter conditions. Foraging conditions and the availability of body protein as a store for reproduction in late winter may constrain productivity in northern ungulates, yet the link between characteristics of wintering habitats and protein status has not been established for a wild ungulate. We used a non-invasive proxy of protein status derived from isotopes of N in excreta to evaluate the influence of winter habitats on the protein status of muskoxen in three populations in Alaska (2005-2008). Multiple regression and an information-theoretic approach were used to compare models that evaluated the influence of population, year, and characteristics of foraging sites (components of diet and physiography) on protein status for groups of muskoxen. The observed variance in protein status among groups of muskoxen across populations and years was partially explained (45%) by local foraging conditions that affected forage availability. Protein status improved for groups of muskoxen as the amount of graminoids in the diet increased (-0.430 ?? 0.31, ???? 95% CI) and elevation of foraging sites decreased (0.824 ?? 0.67). Resources available for reproduction in muskoxen are highly dependent upon demographic, environmental, and physiographic constraints that affect forage availability in winter. Due to their very sedentary nature in winter, muskoxen are highly susceptible to localized foraging conditions; therefore, the spatial variance in resource availability may exert a strong effect on productivity. Consequently, there is a clear need to account for climate-topography effects in winter at multiple scales when

  13. Molecular Imprint of Enzyme Active Site by Camel Nanobodies

    PubMed Central

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-01-01

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach. PMID:22374998

  14. An active-site peptide from pepsin C

    PubMed Central

    Kay, J.; Ryle, A. P.

    1971-01-01

    Porcine pepsin C is inactivated rapidly and irreversibly by diazoacetyl-dl-norleucine methyl ester in the presence of cupric ions at pH values above 4.5. The inactivation is specific in that complete inactivation accompanies the incorporation of 1mol of inhibitor residue/mol of enzyme and evidence has been obtained to suggest that the reaction occurs with an active site residue. The site of reaction is the β-carboxyl group of an aspartic acid residue in the sequence Ile-Val-Asp-Thr. This sequence is identical with the active-site sequence in pepsin and the significance of this in terms of the different activities of the two enzymes is discussed. PMID:4942834

  15. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  16. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  17. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.

    PubMed

    Jasin, Maria; Haber, James E

    2016-08-01

    DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution. PMID:27261202

  18. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site.

    PubMed

    Kleinboelting, Silke; Ramos-Espiritu, Lavoisier; Buck, Hannes; Colis, Laureen; van den Heuvel, Joop; Glickman, J Fraser; Levin, Lonny R; Buck, Jochen; Steegborn, Clemens

    2016-04-29

    The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs. PMID:26961873

  19. Rat intestinal trehalase. Studies of the active site.

    PubMed

    Chen, C C; Guo, W J; Isselbacher, K J

    1987-11-01

    Rat intestinal trehalase was solubilized, purified and reconstituted into proteoliposomes. With octyl glucoside as the solubilizing detergent, the purified protein appeared as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 67 kDa. Kinetic studies indicated that the active site of this enzyme can be functionally divided into two adjacent regions, namely a binding site (with pKa 4.8) and a catalytic site (with pKa 7.2). Other findings suggested that the catalytic site contains a functional thiol group, which is sensitive to inhibition by N-ethylmaleimide, Hg2+ and iodoacetate. Substrate protection and iodoacetate labelling of the thiol group demonstrated that only a protein of 67 kDa was labelled. Furthermore, sucrose and phlorizin protected the thiol group, but Tris-like inhibitors did not. Structure-inhibition analysis of Tris-like inhibitors, the pH effect of Tris inhibition and Tris protection of 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide inactivation permitted characterization and location of a separate site containing a carboxy group for Tris binding, which may also be the binding region. On the basis of these findings, a possible structure for the active site of trehalase is proposed. PMID:3426558

  20. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    PubMed Central

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; Burgos, Emmanuel S.; Gulab, Shivali A.; Schramm, Vern L.

    2015-01-01

    5′-Methylthioadenosine/S-adenosyl-L-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5′-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. We mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation of altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. The overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences. PMID:25806409

  1. From single crystal surfaces to single atoms: investigating active sites in electrocatalysis.

    PubMed

    O'Mullane, Anthony P

    2014-04-21

    Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials. PMID:24599277

  2. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  3. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates

    PubMed Central

    Watson, Peter J.; Millard, Christopher J.; Riley, Andrew M.; Robertson, Naomi S.; Wright, Lyndsey C.; Godage, Himali Y.; Cowley, Shaun M.; Jamieson, Andrew G.; Potter, Barry V. L.; Schwabe, John W. R.

    2016-01-01

    Histone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in these complexes has been shown to be regulated by inositol phosphates, which bind in a pocket sandwiched between the HDAC and co-repressor proteins. However, the actual mechanism of activation remains poorly understood. Here we have elucidated the stereochemical requirements for binding and activation by inositol phosphates, demonstrating that activation requires three adjacent phosphate groups and that other positions on the inositol ring can tolerate bulky substituents. We also demonstrate that there is allosteric communication between the inositol-binding site and the active site. The crystal structure of the HDAC1:MTA1 complex bound to a novel peptide-based inhibitor and to inositol hexaphosphate suggests a molecular basis of substrate recognition, and an entropically driven allosteric mechanism of activation. PMID:27109927

  4. Insights into site formation at Rose Cottage Cave, South Africa, based on the analysis of sediment peels

    NASA Astrophysics Data System (ADS)

    Kloos, Peter; Miller, Christopher E.; Kritikakis, Panagiotis; Wadley, Lyn

    2016-04-01

    few artefacts and implies that there may have been more human activity at the site during this time than has previously been suggested.

  5. Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from DFT Studies

    SciTech Connect

    Das, Ujjal; Zhang, Guanghui; Hu, Bo; Hock, Adam S.; Redfern, Paul C.; Miller, Jeffrey T.; Curtiss, Larry A.

    2015-12-01

    Amorphous silica (SiO2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure and activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. The molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.

  6. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  7. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  8. Structural and Biochemical Insights into the Activation Mechanisms of Germinal Center Kinase OSR1*

    PubMed Central

    Li, Chuanchuan; Feng, Miao; Shi, Zhubing; Hao, Qian; Song, Xiaomin; Wang, Wenjia; Zhao, Yun; Jiao, Shi; Zhou, Zhaocai

    2014-01-01

    The oxidative stress-responsive 1 (OSR1) kinase belongs to the mammalian STE20-like kinase family. OSR1 is activated by with no lysine [K] (WNKs) kinases, and then it phosphorylates cation-coupled Cl-cotransporters, regulating ion homeostasis and cell volume in mammalian cells. However, the specific mechanisms of OSR1 activation remains poorly defined, largely due to its extremely low basal activity. Here, we dissect in detail the regulatory mechanisms of OSR1 activation from the aspects of autoinhibition, upstream kinase WNK, and the newly identified master regulator mouse protein-25 (MO25). Based on our structural and biochemical studies, we propose a “double lock” model, accounting for the tight autoinhibition of OSR1, an effect that has to be removed by WNK before MO25 further activates OSR1. Particularly, the conserved C-terminal (CCT) domain and αAL helix act together to strongly suppress OSR1 basal activity. WNKs bind to the CCT and trigger its conformational rearrangement to release the kinase domain of OSR1, allowing for MO25 binding and full activation. Finally, the regulatory mechanisms of OSR1 activation were further corroborated by cellular studies of OSR1-regulated cell volume control through WNK-OSR1 signaling pathway. Collectively, these results provide insights into the OSR1 kinase activation to facilitate further functional study. PMID:25389294

  9. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  10. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes. PMID:27259687

  11. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory.

    PubMed

    Sparta, Manuel; Børve, Knut J; Jensen, Vidar R

    2007-07-11

    We have performed a density functional theory investigation of hydroformylation of ethylene for monosubstituted rhodium-carbonyl catalysts, HRh(CO)3L, where the modifying ligand, L, is a phosphite (L = P(OMe)3, P(OPh)3, or P(OCH2CF3)3), a phosphine (L = PMe3, PEt3, PiPr3, or PPh3), or a N-heterocyclic carbene (NHC) based on the tetrahydropyrimidine, imidazol, or tetrazol ring, respectively. The study follows the Heck and Breslow mechanism. Excellent correspondence between our calculations and existing experimental information is found, and the present results constitute the first example of a realistic quantum chemical description of the catalytic cycle of hydroformylation using ligand-modified rhodium carbonyl catalysts. This description explains the mechanistic and kinetic basis of the contemporary understanding of this class of reaction and offers unprecedented insight into the electronic and steric factors governing catalytic activity. The insight has been turned into structure-activity relationships and used as guidelines when also subjecting to calculation phosphite and NHC complexes that have yet to be reported experimentally. The latter calculations illustrate that it is possible to increase the electron-withdrawing capacity of both phosphite and NHC ligands compared to contemporary ligands through directed substitution. Rhodium complexes of such very electron-withdrawing ligands are predicted to be more active than contemporary catalysts for hydroformylation. PMID:17555314

  12. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant. PMID:17539607

  13. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking.

    PubMed

    Islam, Barira; Sharma, Charu; Adem, Abdu; Aburawi, Elhadi; Ojha, Shreesh

    2015-01-01

    Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP(+)). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (-)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure-function relationship studies. PMID:26357462

  14. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking

    PubMed Central

    Islam, Barira; Sharma, Charu; Adem, Abdu; Aburawi, Elhadi; Ojha, Shreesh

    2015-01-01

    Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP+). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (–)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure–function relationship studies. PMID:26357462

  15. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    SciTech Connect

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I.; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M.; Crooks, Richard M.; Adzic, Radoslav R.; Liu, Ping

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.

  16. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    DOE PAGESBeta

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I.; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M.; Crooks, Richard M.; et al

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shownmore » to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.« less

  17. In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction.

    PubMed

    Liu, Haiqing; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M; Crooks, Richard M; Adzic, Radoslav R; Liu, Ping; Wong, Stanislaus S

    2015-10-01

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (∼2 nm) core-shell Pt∼Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu∼Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Hence, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general. PMID:26402364

  18. Insights into Regulated Ligand Binding Sites from the Structure of ZO-1 Src Homology 3-Guanylate Kinase Module

    SciTech Connect

    Lye, Ming F.; Fanning, Alan S.; Su, Ying; Anderson, James M.; Lavie, Arnon

    2010-11-09

    Tight junctions are dynamic components of epithelial and endothelial cells that regulate the paracellular transport of ions, solutes, and immune cells. The assembly and permeability of these junctions is dependent on the zonula occludens (ZO) proteins, members of the membrane-associated guanylate kinase homolog (MAGUK) protein family, which are characterized by a core Src homology 3 (SH3)-GUK module that coordinates multiple protein-protein interactions. The structure of the ZO-1 SH3-GUK domain confirms that the interdependent folding of the SH3 and GUK domains is a conserved feature of MAGUKs, but differences in the orientation of the GUK domains in three different MAGUKs reveal interdomain flexibility of the core unit. Using pull-down assays, we show that an effector loop, the U6 region in ZO-1, forms a novel intramolecular interaction with the core module. This interaction is divalent cation-dependent and overlaps with the binding site for the regulatory molecule calmodulin on the GUK domain. These findings provide insight into the previously observed ability of the U6 region to regulate TJ assembly in vivo and the structural basis for the complex protein interactions of the MAGUK family.

  19. Temperature decomposition of paired site observations reveals new insights in climate models' capability to simulate the impact of LUC.

    NASA Astrophysics Data System (ADS)

    Vanden Broucke, Sam; Luyssaert, Sebastiaan; Davin, Edouard; Janssens, Ivan; Van Lipzig, Nicole

    2015-04-01

    The biogeophysical impact of land use change (LUC) has been shown to be a significant contributor to climate change. In this study, we present a new methodology for evaluating the impact of LUC in climate models. For this, we use observational data from paired eddy covariance flux towers, representing a LUC from forest to open land (deforestation). Two model simulations with a regional climate model (COSMO-CLM2) are performed which differ only in prescribed land use for site pair locations. The model is evaluated by comparing the observed and simulated difference in surface temperature (Ts) between open land and forests, an evaluation which is performed separately for summer/winter and daytime/ nighttime. Next, we identify the biogeophysical mechanisms responsible for Ts differences by applying a Ts decomposition method to both observations and model simulations, allowing us us to determine which LUC related biogeophysical mechanisms were well represented in COSMO-CLM2, and which were not. Results show that the model is able to simulate the increase in albedo and associated daytime surface cooling following deforestation reasonably well. Also well simulated is the overall decrease in sensible heat flux and associated daytime surface warming and nighttime surface cooling. However, it appears the model is missing one crucial impact of deforestation on the surface energy budget: a reduction in nighttime downwelling longwave radiation. As a result, the magnitude of nighttime cooling following deforestation is underestimated by 4 K. These new insights support a wider application of the methodology (to other climate models).

  20. Insight on the interaction of an agmatinase-like protein with Mn(2+) activator ions.

    PubMed

    Quiñones, Matías; Cofre, Jaime; Benítez, José; García, David; Romero, Nicol; González, Arlette; Carvajal, Nelson; García, María; López, Vasthi; Schenk, Gerhard; Uribe, Elena

    2015-04-01

    Agmatinase is an enzyme that catalyzes the hydrolysis of agmatine, a compound that is associated with numerous functions in the brain of mammalian organisms such as neurotransmitter, anticonvulsant, antinociceptive, anxiolytic and antidepressant-like actions. To date the only characterized agmatinases with significant enzymatic activity were extracted from bacterial organisms. These agmatinases are closely related to another ureahydrolase, arginase; both have binuclear Mn(2+) centers in their active sites. An agmatinase-like protein (ALP) from rat brain was identified that bears no sequence homology to known agmatinases (E. Uribe, M. Salas, S. Enriquez, M.S. Orellana, N. Carvajal, Arch. Biochem. Biophys. 461(2007) 146-150). Since all known ureahydrolases contain histidines in their binuclear Mn(2+) site each of the five histidine residues in ALP was individually replaced by alanines to identify those that may be involved in metal ion binding. Reactivation assays and thermal stability measurements indicated that His206 is likely to interact with a Mn(2+) bound to a high affinity site. In contrast, His65 and possibly His435 are important for binding of a second Mn(2+) to a lower affinity site. Metal ion binding to that site is not only leading to an increase in reactivity but also enzyme stability. Thus, similar to bacterial agmatinases and some of the antibiotic-degrading, Zn(2+)-dependent metallo-β-lactamases ALP appears to be active in the mono and binuclear form, with binding of the second metal ion increasing both reactivity and stability. PMID:25635913

  1. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  2. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  3. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  4. Random and site-specific mutagenesis of the Helicobacter pylori ferric uptake regulator provides insight into Fur structure-function relationships.

    PubMed

    Gilbreath, Jeremy J; Pich, Oscar Q; Benoit, Stéphane L; Besold, Angelique N; Cha, Jeong-Heon; Maier, Robert J; Michel, Sarah L J; Maynard, Ernest L; Merrell, D Scott

    2013-07-01

    The ferric uptake regulator (Fur) of Helicobacter pylori is a global regulator that is important for colonization and survival within the gastric mucosa. H. pylori Fur is unique in its ability to activate and repress gene expression in both the iron-bound (Fe-Fur) and apo forms (apo-Fur). In the current study we combined random and site-specific mutagenesis to identify amino acid residues important for both Fe-Fur and apo-Fur function. We identified 25 mutations that affected Fe-Fur repression and 23 mutations that affected apo-Fur repression, as determined by transcriptional analyses of the Fe-Fur target gene amiE, and the apo-Fur target gene, pfr. In addition, eight of these mutations also significantly affected levels of Fur in the cell. Based on regulatory phenotypes, we selected several representative mutations to characterize further. Of those selected, we purified the wild-type (HpFurWT) and three mutant Fur proteins (HpFurE5A, HpFurA92T and HpFurH134Y), which represent mutations in the N-terminal extension, the regulatory metal binding site (S2) and the structural metal binding site (S3) respectively. Purified proteins were evaluated for secondary structure by circular dichroism spectroscopy, iron-binding by atomic absorption spectrophotometry, oligomerization in manganese-substituted and apo conditions by in vitro cross-linking assays, and DNA binding to Fe-Fur and apo-Fur target sequences by fluorescence anisotropy. The results showed that the N-terminal, S2 and S3 regions play distinct roles in terms of Fur structure-function relationships. Overall, these studies provide novel information regarding the role of these residues in Fur function, and provide mechanistic insight into how H. pylori Fur regulates gene expression in both the iron-bound and apo forms of the protein. PMID:23710935

  5. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan.

    PubMed

    Alkhateeb, Rabeaa S; Vorhölter, Frank-Jörg; Rückert, Christian; Mentz, Almut; Wibberg, Daniel; Hublik, Gerd; Niehaus, Karsten; Pühler, Alfred

    2016-05-10

    Xanthomonas campestris pv. campestris (Xcc) is the major producer of the exopolysaccharide xanthan, the commercially most important natural polysaccharide of microbial origin. The current work provides deeper insights into the yet uncharacterized transcriptomic features of the xanthan producing strain Xcc-B100. Towards this goal, RNA sequencing of a library based on the selective enrichment of the 5' ends of native transcripts was performed. This approach resulted in the genome wide identification of 3067 transcription start sites (TSSs) that were further classified based on their genomic positions. Among them, 1545 mapped upstream of an actively transcribed CDS and 1363 were classified as novel TSSs representing antisense, internal, and TSSs belonging to previously unidentified genomic features. Analyzing the transcriptional strength of primary and antisense TSSs revealed that in some instances antisense transcription seemed to be initiated at a higher level than its sense counterpart. Mapping the exact positions of TSSs aided in the identification of promoter consensus motifs, ribosomal binding sites, and enhanced the genome annotation of 159 in silico predicted translational start (TLS) sites. The global view on length distribution of the 5' untranslated regions (5'-UTRs) deduced from the data pointed to the occurrence of leaderless transcripts and transcripts with unusually long 5'-UTRs, in addition to identifying seven putative riboswitch elements for Xcc-B100. Concerning the biosynthesis of xanthan, we focused on the transcriptional organization of the gum gene cluster. Under the conditions tested, we present evidence for a complex transcription pattern of the gum genes with multiple TSSs and an obvious considerable role of antisense transcription. The gene gumB, encoding an outer membrane xanthan exporter, is presented here as an example for genes that possessed a strong antisense TSS. PMID:26975844

  6. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  7. Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights into Mechanisms of Activation and Therapeutics

    PubMed Central

    Tao, Ya-Xiong

    2008-01-01

    The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported in several additional receptors. More recently, loss of constitutive activity was postulated to also cause diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic diseases caused by constitutively activating mutations in GPCRs. PMID:18768149

  8. Absolute magnetization of the seafloor at a basalt-hosted hydrothermal site: Insights from a deep-sea submersible survey

    NASA Astrophysics Data System (ADS)

    Szitkar, Florent; Dyment, Jérôme; Fouquet, Yves; Choi, Yujin; Honsho, Chie

    2015-02-01

    The analysis of high-resolution vector magnetic data acquired by deep-sea submersibles (DSSs) requires the development of specific approaches adapted to their uneven tracks. We present a method that takes advantage of (1) the varying altitude of the DSS above the seafloor and (2) high-resolution multibeam bathymetric data acquired separately, at higher altitude, by an Autonomous Underwater Vehicle, to estimate the absolute magnetization intensity and the magnetic polarity of the shallow subseafloor along the DSS path. We apply this method to data collected by DSS Nautile on a small active basalt-hosted hydrothermal site. The site is associated with a lack of magnetization, in agreement with previous findings at the same kind of sites: the contrast between nonmagnetic sulfide deposits/stockwork zone and strongly magnetized basalt is sufficient to explain the magnetic signal observed at such a low altitude. Both normal and reversed polarities are observed in the lava flows surrounding the site, suggesting complex history of accumulating volcanic flows.

  9. Structural Insights into the Activation of Human Relaxin Family Peptide Receptor 1 by Small-Molecule Agonists.

    PubMed

    Hu, Xin; Myhr, Courtney; Huang, Zaohua; Xiao, Jingbo; Barnaeva, Elena; Ho, Brian A; Agoulnik, Irina U; Ferrer, Marc; Marugan, Juan J; Southall, Noel; Agoulnik, Alexander I

    2016-03-29

    The GPCR relaxin family peptide receptor 1 (RXFP1) mediates the action of relaxin peptide hormone, including its tissue remodeling and antifibrotic effects. The peptide has a short half-life in plasma, limiting its therapeutic utility. However, small-molecule agonists of human RXFP1 can overcome this limitation and may provide a useful therapeutic approach, especially for chronic diseases such as heart failure and fibrosis. The first small-molecule agonists of RXFP1 were recently identified from a high-throughput screening, using a homogeneous cell-based cAMP assay. Optimization of the hit compounds resulted in a series of highly potent and RXFP1 selective agonists with low cytotoxicity, and excellent in vitro ADME and pharmacokinetic properties. Here, we undertook extensive site-directed mutagenesis studies in combination with computational modeling analysis to probe the molecular basis of the small-molecule binding to RXFP1. The results showed that the agonists bind to an allosteric site of RXFP1 in a manner that closely interacts with the seventh transmembrane domain (TM7) and the third extracellular loop (ECL3). Several residues were determined to play an important role in the agonist binding and receptor activation, including a hydrophobic region at TM7 consisting of W664, F668, and L670. The G659/T660 motif within ECL3 is crucial to the observed species selectivity of the agonists for RXFP1. The receptor binding and activation effects by the small molecule ML290 were compared with the cognate ligand, relaxin, providing valuable insights on the structural basis and molecular mechanism of receptor activation and selectivity for RXFP1. PMID:26866459

  10. Crystal structures of α-dioxygenase from Oryza sativa: insights into substrate binding and activation by hydrogen peroxide.

    PubMed

    Zhu, Guangyu; Koszelak-Rosenblum, Mary; Malkowski, Michael G

    2013-10-01

    α-Dioxygenases (α-DOX) are heme-containing enzymes found predominantly in plants and fungi, where they generate oxylipins in response to pathogen attack. α-DOX oxygenate a variety of 14-20 carbon fatty acids containing up to three unsaturated bonds through stereoselective removal of the pro-R hydrogen from the α-carbon by a tyrosyl radical generated via the oxidation of the heme moiety by hydrogen peroxide (H2 O2 ). We determined the X-ray crystal structures of wild type α-DOX from Oryza sativa, the wild type enzyme in complex with H2 O2 , and the catalytically inactive Y379F mutant in complex with the fatty acid palmitic acid (PA). PA binds within the active site cleft of α-DOX such that the carboxylate forms ionic interactions with His-311 and Arg-559. Thr-316 aids in the positioning of carbon-2 for hydrogen abstraction. Twenty-five of the twenty eight contacts made between PA and residues lining the active site occur within the carboxylate and first eight carbons, indicating that interactions within this region of the substrate are responsible for governing selectivity. Comparison of the wild type and H2 O2 structures provides insight into enzyme activation. The binding of H2 O2 at the distal face of the heme displaces residues His-157, Asp-158, and Trp-159 ≈ 2.5 Å from their positions in the wild type structure. As a result, the Oδ2 atom of Asp-158 interacts with the Ca atom in the calcium binding loop, the side chains of Trp-159 and Trp-213 reorient, and the guanidinium group of Arg-559 is repositioned near Tyr-379, poised to interact with the carboxylate group of the substrate. PMID:23934749

  11. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex.

    PubMed

    Hagemeier, Christoph H; Krer, Markus; Thauer, Rudolf K; Warkentin, Eberhard; Ermler, Ulrich

    2006-12-12

    Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the C O bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-A crystal structure of this complex organized as a (MtaBC)(2) heterotetramer. MtaB folds as a TIM barrel and contains a novel zinc-binding motif. Zinc(II) lies at the bottom of a funnel formed at the C-terminal beta-barrel end and ligates to two cysteinyl sulfurs (Cys-220 and Cys-269) and one carboxylate oxygen (Glu-164). MtaC is structurally related to the cobalamin-binding domain of methionine synthase. Its corrinoid cofactor at the top of the Rossmann domain reaches deeply into the funnel of MtaB, defining a region between zinc(II) and the corrinoid cobalt that must be the binding site for methanol. The active site geometry supports a S(N)2 reaction mechanism, in which the C O bond in methanol is activated by the strong electrophile zinc(II) and cleaved because of an attack of the supernucleophile cob(I)amide. The environment of zinc(II) is characterized by an acidic cluster that increases the charge density on the zinc(II), polarizes methanol, and disfavors deprotonation of the methanol hydroxyl group. Implications of the MtaBC structure for the second step of the reaction, in which the methyl group is transferred to coenzyme M, are discussed. PMID:17142327

  12. Mechanism and Site Selectivity in Visible-Light Photocatalyzed C-H Functionalization: Insights from DFT Calculations.

    PubMed

    Demissie, Taye B; Hansen, Jørn H

    2016-08-19

    Visible-light photocatalyzed (VLPC) late-stage C-H functionalization is a powerful addition to the chemical synthesis toolkit. VLPC has a demonstrated potential for discovery of elusive and valuable transformations, particularly in functionalization of bioactive heterocycles. In order to fully harvest the potential of VLPC in the context of complex molecule synthesis, a thorough understanding of the elementary processes involved is crucial. This would enable more rational design of suitable reagents and catalysts, as well as prediction of activated C-H sites for functionalization. Such knowledge is essential when VLPC is to be employed in retrosynthetic analysis of complex molecules. Herein, we present a density functional theory (DFT) study of mechanistic details in the C-H functionalization of bioactive heterocycles exemplified by the methylation of the antifungal agent voriconazole. Moreover, we show that readily computed atomic charges can predict major site-selectivity in good agreement with experimental studies and thus be informative tools for the identification of active C-H functionalization sites in synthetic planning. PMID:27347684

  13. Large-scale volcaniclastic turbidites from subaerial caldera-forming eruptions at Dominica: insights from IODP site U1398 cores

    NASA Astrophysics Data System (ADS)

    Maeno, F.; Ishizuka, O.; Kataoka, K.; Le Friant, A.; Boudon, G.; Villemant, B.

    2014-12-01

    thought that subaqueous flows travelled down >200 km in Grenada Basin. New data from the site U1398 will give insights into the emplacement processes of volcaniclastic turbidity currents from the explosive events in Dominica.

  14. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993.

  15. Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila

    PubMed Central

    Pang, Yuxuan; Bai, Xiao-chen; Yan, Chuangye; Hao, Qi; Chen, Zheqin; Wang, Jia-Wei

    2015-01-01

    Apoptosis is executed by a cascade of caspase activation. The autocatalytic activation of an initiator caspase, exemplified by caspase-9 in mammals or its ortholog, Dronc, in fruit flies, is facilitated by a multimeric adaptor complex known as the apoptosome. The underlying mechanism by which caspase-9 or Dronc is activated by the apoptosome remains unknown. Here we report the electron cryomicroscopic (cryo-EM) structure of the intact apoptosome from Drosophila melanogaster at 4.0 Å resolution. Analysis of the Drosophila apoptosome, which comprises 16 molecules of the Dark protein (Apaf-1 ortholog), reveals molecular determinants that support the assembly of the 2.5-MDa complex. In the absence of dATP or ATP, Dronc zymogen potently induces formation of the Dark apoptosome, within which Dronc is efficiently activated. At 4.1 Å resolution, the cryo-EM structure of the Dark apoptosome bound to the caspase recruitment domain (CARD) of Dronc (Dronc-CARD) reveals two stacked rings of Dronc-CARD that are sandwiched between two octameric rings of the Dark protein. The specific interactions between Dronc-CARD and both the CARD and the WD40 repeats of a nearby Dark protomer are indispensable for Dronc activation. These findings reveal important mechanistic insights into the activation of initiator caspase by the apoptosome. PMID:25644603

  16. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  17. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  18. Potential sites of CFTR activation by tyrosine kinases.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2016-05-01

    The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  19. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  20. Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site

    PubMed Central

    Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel

    2013-01-01

    Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390

  1. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase

    SciTech Connect

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-07-11

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.

  2. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase*

    PubMed Central

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-01-01

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases. PMID:22356908

  3. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Manivannan, A; Balasubramanian, M; Prakash, GKS; Narayanan, SR

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  4. 77 FR 40638 - Syniverse Technologies, Inc., Including On-Site Leased Workers From Insight Global Stone Staffing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... 19, 2012 (Vol. 77, No. 76 FR 23510). At the request of State Workforce Office, the Department... Insight Global Stone Staffing, and Randstad Formerly Known as Sapphire Technologies, Watertown, MA... workers from Insight Global, Stone Staffing, Randstad formerly known as Sapphire Technologies,...

  5. Robust Patterns and Process Insight from Multi-Site, Multi-Proxy, Multi-Region Holocene Paleohydrologic Reconstructions

    NASA Astrophysics Data System (ADS)

    Shuman, B. N.; Serravezza, M.; Marsicek, J.

    2014-12-01

    Holocene moisture trends provide a useful context for historic hydrologic variations and potential future changes, and serve as key benchmarks for assessing paleoclimate dynamics. Many different approaches exist for paleohydrologic reconstruction, and comparisons offer an opportunity to validate key patterns and gain information based on differences. We consider multiple datasets from two mid-latitude regions of North America to evaluate centennial-to-millennial hydrologic variability during the Holocene. Comparisons of proxies at individual sites (i.e., pollen-inferred precipitation, reconstructed lake levels, hydrogen isotope ratios of biomarkers) and comparisons of proxies across sites in different hydrologic settings (i.e., closed vrs open lakes) provide insight into regional changes, while differences between the semi-arid (Wyoming) and humid (New England) regions reveal shifts in continental-scale moisture gradients. Pollen-inferred precipitation records were developed using the modern analog technique, which matches fossil pollen data to the climates of equivalent modern pollen assemblages. Lake moisture budgets were quantified in terms of mm/yr of precipitation minus evapotranspiration based on water-level histories systematically reconstructed from transects of sediment cores and geophysical data. Comparisons of the budgets for open and closed lakes, which have modern lake water isotopic values consistent with no or substantial evaporative losses respectively, were used to differentiate precipitation and evapotranspiration trends. Hydrogen isotopic values of aquatic versus terrestrial biomarkers, as well as comparisons with oxygen isotopic values of carbonate sediment, provide additional constrains on the magnitude of past evaporation trends that enrich the heavy isotope composition of lake water and thus aquatic substrates. In New England, pollen-inferred precipitation trends closely agree (Adj. R2 = 0.80) with replicated lake-level reconstructions, which

  6. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron

  7. Probing the Electrostatics of Active Site Microenvironments along the Catalytic Cycle for Escherichia coli Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and 13C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor–acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for

  8. Short-term meditation modulates brain activity of insight evoked with solution cue

    PubMed Central

    Tang, Yi-Yuan; Cao, Chen; Deng, Yuqin; Wang, Yan; Xin, Xiu; Posner, Michael I.

    2015-01-01

    Meditation has been shown to improve creativity in some situation. However, little is known about the brain systems underling insight into a problem when the person fails to solve the problem. Here, we examined the neural correlation using Chinese Remote Association Test, as a measure of creativity. We provide a solution following the failure of the participant to provide one. We examine how meditation in comparison with relaxation influences the reaction of the participant to a correct solution. The event-related functional magnetic resonance imaging showed greater activity, mainly distributed in the right cingulate gyrus (CG), insula, putamen, inferior frontal gyrus (IFG), and the bilateral middle frontal gyrus (MFG), the inferior parietal lobule (IPL) and the superior temporal gyrus (STG). This pattern of activation was greater following 5 h of meditation training than the same amount of relaxation. Based on prior research, we speculate on the function of this pattern of brain activity: (i) CG may be involved in detecting conflict and breaking mental set, (ii) MFG/IFG may play an important role in restructuring of the problem representation, (iii) insula, IPL and STG may be associated with error detection, problem understanding or general attentive control and (iv) putamen may be activated by ‘Aha’ feeling. PMID:24532700

  9. Short-term meditation modulates brain activity of insight evoked with solution cue.

    PubMed

    Ding, Xiaoqian; Tang, Yi-Yuan; Cao, Chen; Deng, Yuqin; Wang, Yan; Xin, Xiu; Posner, Michael I

    2015-01-01

    Meditation has been shown to improve creativity in some situation. However, little is known about the brain systems underling insight into a problem when the person fails to solve the problem. Here, we examined the neural correlation using Chinese Remote Association Test, as a measure of creativity. We provide a solution following the failure of the participant to provide one. We examine how meditation in comparison with relaxation influences the reaction of the participant to a correct solution. The event-related functional magnetic resonance imaging showed greater activity, mainly distributed in the right cingulate gyrus (CG), insula, putamen, inferior frontal gyrus (IFG), and the bilateral middle frontal gyrus (MFG), the inferior parietal lobule (IPL) and the superior temporal gyrus (STG). This pattern of activation was greater following 5 h of meditation training than the same amount of relaxation. Based on prior research, we speculate on the function of this pattern of brain activity: (i) CG may be involved in detecting conflict and breaking mental set, (ii) MFG/IFG may play an important role in restructuring of the problem representation, (iii) insula, IPL and STG may be associated with error detection, problem understanding or general attentive control and (iv) putamen may be activated by 'Aha' feeling. PMID:24532700

  10. Insights into properties of activated carbons prepared from different raw precursors by pyrophosphoric acid activation.

    PubMed

    Gao, Yuan; Yue, Qinyan; Gao, Baoyu

    2016-03-01

    Low-cost activated carbons (ACs) were prepared from four kinds of solid wastes: petroleum coke, Enteromorpha prolifera, lignin from papermaking black liquid and hair, by pyrophosphoric acid (H4P2O7) activation. Thermo-gravimetric analysis of the pyrolysis of H4P2O7-precursor mixtures implied that H4P2O7 had different influences on the pyrolysis behavior of the four raw materials. N2 adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons. AC derived from E. prolifera exhibited the highest surface area (1094m(2)/g) and maximum monolayer adsorption capacity for malachite green (1250mg/g). Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model. The adsorption isotherms were well described by the Langmuir isotherm model, indicating the adsorption of dye onto the ACs proceeded by monolayers. PMID:26969070

  11. New Insights into Butyrylcholinesterase Activity Assay: Serum Dilution Factor as a Crucial Parameter

    PubMed Central

    Jońca, Joanna; Żuk, Monika; Wasąg, Bartosz; Janaszak-Jasiecka, Anna; Lewandowski, Krzysztof; Wielgomas, Bartosz; Waleron, Krzysztof; Jasiecki, Jacek

    2015-01-01

    Butyrylcholinesterase (BChE) activity assay and inhibitor phenotyping can help to identify patients at risk of prolonged paralysis following the administration of neuromuscular blocking agents. The assay plays an important role in clinical chemistry as a good diagnostic marker for intoxication with pesticides and nerve agents. Furthermore, the assay is also commonly used for in vitro characterization of cholinesterases, their toxins and drugs. There is still lack of standardized procedure for measurement of BChE activity and many laboratories use different substrates at various concentrations. The purpose of this study was to validate the BChE activity assay to determine the best dilution of human serum and the most optimal concentration of substrates and inhibitors. Serum BChE activity was measured using modified Ellman’s method applicable for a microplate reader. We present our experience and new insights into the protocol for high-throughput routine assays of human plasma cholinesterase activities adapted to a microplate reader. During our routine assays used for the determination of BChE activity, we have observed that serum dilution factor influences the results obtained. We show that a 400-fold dilution of serum and 5mM S-butyrylthiocholine iodide can be successfully used for the accurate measurement of BChE activity in human serum. We also discuss usage of various concentrations of dibucaine and fluoride in BChE phenotyping. This study indicates that some factors of such a multicomponent clinical material like serum can influence kinetic parameters of the BChE. The observed inhibitory effect is dependent on serum dilution factor used in the assay. PMID:26444431

  12. New Insights into Butyrylcholinesterase Activity Assay: Serum Dilution Factor as a Crucial Parameter.

    PubMed

    Jońca, Joanna; Żuk, Monika; Wasąg, Bartosz; Janaszak-Jasiecka, Anna; Lewandowski, Krzysztof; Wielgomas, Bartosz; Waleron, Krzysztof; Jasiecki, Jacek

    2015-01-01

    Butyrylcholinesterase (BChE) activity assay and inhibitor phenotyping can help to identify patients at risk of prolonged paralysis following the administration of neuromuscular blocking agents. The assay plays an important role in clinical chemistry as a good diagnostic marker for intoxication with pesticides and nerve agents. Furthermore, the assay is also commonly used for in vitro characterization of cholinesterases, their toxins and drugs. There is still lack of standardized procedure for measurement of BChE activity and many laboratories use different substrates at various concentrations. The purpose of this study was to validate the BChE activity assay to determine the best dilution of human serum and the most optimal concentration of substrates and inhibitors. Serum BChE activity was measured using modified Ellman's method applicable for a microplate reader. We present our experience and new insights into the protocol for high-throughput routine assays of human plasma cholinesterase activities adapted to a microplate reader. During our routine assays used for the determination of BChE activity, we have observed that serum dilution factor influences the results obtained. We show that a 400-fold dilution of serum and 5mM S-butyrylthiocholine iodide can be successfully used for the accurate measurement of BChE activity in human serum. We also discuss usage of various concentrations of dibucaine and fluoride in BChE phenotyping. This study indicates that some factors of such a multicomponent clinical material like serum can influence kinetic parameters of the BChE. The observed inhibitory effect is dependent on serum dilution factor used in the assay. PMID:26444431

  13. Faster than their prey: new insights into the rapid movements of active carnivorous plants traps.

    PubMed

    Poppinga, Simon; Masselter, Tom; Speck, Thomas

    2013-07-01

    Plants move in very different ways and for different reasons, but some active carnivorous plants perform extraordinary motion: Their snap-, catapult- and suction traps perform very fast and spectacular motions to catch their prey after receiving mechanical stimuli. Numerous investigations have led to deeper insights into the physiology and biomechanics of these trapping devices, but they are far from being fully understood. We review concisely how plant movements are classified and how they follow principles that bring together speed, actuation and architecture of the moving organ. In particular, we describe and discuss how carnivorous plants manage to execute fast motion. We address open questions and assess the prospects for future studies investigating potential universal mechanisms that could be the basis of key characteristic features in plant movement such as stimulus transduction, post-stimulatory mechanical answers, and organ formation. PMID:23613360

  14. Structural Insights into the Anti-methicillin-resistant Staphylococcus aureus (MRSA) Activity of Ceftobiprole*

    PubMed Central

    Lovering, Andrew L.; Gretes, Michael C.; Safadi, Susan S.; Danel, Franck; de Castro, Liza; Page, Malcolm G. P.; Strynadka, Natalie C. J.

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an antibiotic-resistant strain of S. aureus afflicting hospitals and communities worldwide. Of greatest concern is its development of resistance to current last-line-of-defense antibiotics; new therapeutics are urgently needed to combat this pathogen. Ceftobiprole is a recently developed, latest generation cephalosporin and has been the first to show activity against MRSA by inhibiting essential peptidoglycan transpeptidases, including the β-lactam resistance determinant PBP2a, from MRSA. Here we present the structure of the complex of ceftobiprole bound to PBP2a. This structure provides the first look at the molecular details of an effective β-lactam-resistant PBP interaction, leading to new insights into the mechanism of ceftobiprole efficacy against MRSA. PMID:22815485

  15. Making Personalized Health Care Even More Personalized: Insights From Activities of the IOM Genomics Roundtable

    PubMed Central

    David, Sean P.; Johnson, Samuel G.; Berger, Adam C.; Feero, W. Gregory; Terry, Sharon F.; Green, Larry A.; Phillips, Robert L.; Ginsburg, Geoffrey S.

    2015-01-01

    Genomic research has generated much new knowledge into mechanisms of human disease, with the potential to catalyze novel drug discovery and development, prenatal and neonatal screening, clinical pharmacogenomics, more sensitive risk prediction, and enhanced diagnostics. Genomic medicine, however, has been limited by critical evidence gaps, especially those related to clinical utility and applicability to diverse populations. Genomic medicine may have the greatest impact on health care if it is integrated into primary care, where most health care is received and where evidence supports the value of personalized medicine grounded in continuous healing relationships. Redesigned primary care is the most relevant setting for clinically useful genomic medicine research. Taking insights gained from the activities of the Institute of Medicine (IOM) Roundtable on Translating Genomic-Based Research for Health, we apply lessons learned from the patient-centered medical home national experience to implement genomic medicine in a patient-centered, learning health care system. PMID:26195686

  16. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  17. Caught in the act: the crystal structure of cleaved cathepsin L bound to the active site of Cathepsin L.

    PubMed

    Sosnowski, Piotr; Turk, Dušan

    2016-04-01

    Cathepsin L is a ubiquitously expressed papain-like cysteine protease involved in the endosomal degradation of proteins and has numerous roles in physiological and pathological processes, such as arthritis, osteoporosis, and cancer. Insight into the specificity of cathepsin L is important for elucidating its physiological roles and drug discovery. To study interactions with synthetic ligands, we prepared a presumably inactive mutant and crystallized it. Unexpectedly, the crystal structure determined at 1.4 Å revealed that the cathepsin L molecule is cleaved, with the cleaved region trapped in the active site cleft of the neighboring molecule. Hence, the catalytic mutant demonstrated low levels of catalytic activity. PMID:26992470

  18. Structural insights into ligand-induced activation of the insulin receptor

    SciTech Connect

    Ward, C.; Lawrence, M.; Streltsov, V.; Garrett, T.; McKern, N.; Lou, M.-Z.; Lovrecz, G.; Adams, T.

    2008-04-29

    The current model for insulin binding to the insulin receptor proposes that there are two binding sites, referred to as sites 1 and 2, on each monomer in the receptor homodimer and two binding surfaces on insulin, one involving residues predominantly from the dimerization face of insulin (the classical binding surface) and the other residues from the hexamerization face. High-affinity binding involves one insulin molecule using its two surfaces to make bridging contacts with site 1 from one receptor monomer and site 2 from the other. Whilst the receptor dimer has two identical site 1-site 2 pairs, insulin molecules cannot bridge both pairs simultaneously. Our structures of the insulin receptor (IR) ectodomain dimer and the L1-CR-L2 fragments of IR and insulin-like growth factor receptor (IGF-1R) explain many of the features of ligand-receptor binding and allow the two binding sites on the receptor to be described. The IR dimer has an unexpected folded-over conformation which places the C-terminal surface of the first fibronectin-III domain in close juxtaposition to the known L1 domain ligand-binding surface suggesting that the C-terminal surface of FnIII-1 is the second binding site involved in high-affinity binding. This is very different from previous models based on three-dimensional reconstruction from scanning transmission electron micrographs. Our single-molecule images indicate that IGF-1R has a morphology similar to that of IR. In addition, the structures of the first three domains (L1-CR-L2) of the IR and IGF-1R show that there are major differences in the two regions governing ligand specificity. The implications of these findings for ligand-induced receptor activation will be discussed. This review summarizes the key findings regarding the discovery and characterization of the insulin receptor, the identification and arrangement of its structural domains in the sequence and the key features associated with ligand binding. The remainder of the review

  19. Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens.

    PubMed

    McKinney, David C; Basarab, Gregory S; Cocozaki, Alexis I; Foulk, Melinda A; Miller, Matthew D; Ruvinsky, Anatoly M; Scott, Clay W; Thakur, Kumar; Zhao, Liang; Buurman, Ed T; Narayan, Sridhar

    2015-08-13

    Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class. PMID:26288696

  20. Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens

    PubMed Central

    2015-01-01

    Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class. PMID:26288696

  1. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  2. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2)

    PubMed Central

    Li, Jinyu; Flick, Franziska; Verheugd, Patricia; Carloni, Paolo; Lüscher, Bernhard; Rossetti, Giulia

    2015-01-01

    Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications. PMID:26407304

  3. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly.

    PubMed

    Mainwaring, David E; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N; Wu, Alex H-F; Marchant, Richard; Crawford, Russell J; Ivanova, Elena P

    2016-03-28

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces. PMID:26935293

  4. Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1:Nrf2 interface.

    PubMed

    Bhakkiyalakshmi, Elango; Dineshkumar, Kesavan; Karthik, Suresh; Sireesh, Dornadula; Hopper, Waheeta; Paulmurugan, Ramasamy; Ramkumar, Kunka Mohanram

    2016-08-15

    The discovery of Keap1-Nrf2 protein-protein interaction (PPI) inhibitors has become a promising strategy to develop novel lead molecules against variety of stress. Hence, Keap1-Nrf2 system plays an important role in oxidative/electrophilic stress associated disorders. Our earlier studies identified pterostilbene (PTS), a natural analogue of resveratrol, as a potent Nrf2 activator and Keap1-Nrf2 PPI inhibitor as assessed by luciferase complementation assay. In this study, we further identified the potential of PTS in Nrf2 activation and ARE-driven downstream target genes expression by nuclear translocation experiments and ARE-luciferase reporter assay, respectively. Further, the luciferase complementation assay identified that PTS inhibits Keap1-Nrf2 PPI in both dose and time-dependent manner. Computational studies using molecular docking and dynamic simulation revealed that PTS directly interacts with the basic amino acids of kelch domain of Keap1 and perturb Keap1-Nrf2 interaction pattern. This manuscript not only shows the binding determinants of Keap1-Nrf2 proteins but also provides mechanistic insights on Nrf2 activation potential of PTS. PMID:27312421

  5. Unraveling the actions of AMP-activated protein kinase in metabolic diseases: Systemic to molecular insights.

    PubMed

    Weikel, Karen A; Ruderman, Neil B; Cacicedo, José M

    2016-05-01

    AMP-activated protein kinase (AMPK) plays a critical role both in sensing and regulating cellular energy state. In experimental animals, its activation has been shown to reduce the risk of obesity and diabetes-related co-morbidities such as insulin resistance, the metabolic syndrome and atherosclerotic cardiovascular disease. However, in humans, AMPK activation alone often does not completely resolve these conditions. Thus, an improved understanding of AMPK action and regulation in metabolic and other diseases is needed. Herein, we provide a brief description of the enzymatic regulation of AMPK and review its role in maintaining energy homeostasis. We then discuss tissue-specific actions of AMPK that become distorted during such conditions as obesity, type 2 diabetes and certain cancers. Finally, we explore recent findings regarding the interactions of AMPK with mammalian target of rapamycin complex 1 and the lysosome and discuss how changes in these relationships during overnutrition may lead to AMPK dysfunction. A more thorough understanding of AMPK's molecular interactions during diseases of overnutrition may provide key insights for the development of AMPK-based combinatorial treatments for metabolic disease. PMID:27085772

  6. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer.

    PubMed

    Dinpajooh, Mohammadhasan; Martin, Daniel R; Matyushov, Dmitry V

    2016-01-01

    Enzymes in biology's energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  7. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  8. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  9. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  10. The Copper Active Site of CBM33 Polysaccharide Oxygenases

    PubMed Central

    2013-01-01

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  11. HMGN proteins modulate chromatin regulatory sites and gene expression during activation of naïve B cells

    PubMed Central

    Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael

    2016-01-01

    The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571

  12. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  13. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox

    PubMed Central

    Elias, Mikael; Chabriere, Eric

    2013-01-01

    Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263) that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability. PMID:24086491

  14. Insights into structure-activity relationship of GABAA receptor modulating coumarins and furanocoumarins.

    PubMed

    Singhuber, Judith; Baburin, Igor; Ecker, Gerhard F; Kopp, Brigitte; Hering, Steffen

    2011-10-01

    The coumarins imperatorin and osthole are known to exert anticonvulsant activity. We have therefore analyzed the modulation of GABA-induced chloride currents (I(GABA)) by a selection of 18 coumarin derivatives on recombinant α(1)β(2)γ(2S) GABA(A) receptors expressed in Xenopus laevis oocytes by means of the two-microelectrode voltage clamp technique. Osthole (EC(50)=14 ± 1 μM) and oxypeucedanin (EC(50)=25 ± 8 μM) displayed the highest efficiency with I(GABA) potentiation of 116 ± 4 % and 547 ± 56 %, respectively. I(GABA) enhancement by osthole and oxypeucedanin was not inhibited by flumazenil (1 μM) indicating an interaction with a binding site distinct from the benzodiazepine binding site. In general, prenyl residues are essential for the positive modulatory activity, while longer side chains or bulkier residues (e.g. geranyl residues) diminish I(GABA) modulation. Generation of a binary classification tree revealed the importance of polarisability, which is sufficient to distinguish actives from inactives. A 4-point pharmacophore model based on oxypeucedanin - comprising three hydrophobic and one aromatic feature - identified 6 out of 7 actives as hits. In summary, (oxy-)prenylated coumarin derivatives from natural origin represent new GABA(A) receptor modulators. PMID:21749864

  15. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  16. The role of active site aromatic residues in substrate degradation by the human chitotriosidase.

    PubMed

    Eide, Kristine Bistrup; Stockinger, Linn Wilhelmsen; Lewin, Anna Sofia; Tøndervik, Anne; Eijsink, Vincent G H; Sørlie, Morten

    2016-02-01

    Human chitotriosidase (HCHT) is a glycoside hydrolase family 18 chitinase synthesized and secreted in human macrophages thought be an innate part of the human immune system. It consists of a catalytic domain with the (β/α)8 TIM barrel fold having a large area of solvent-exposed aromatic amino acids in the active site and an additional family 14 carbohydrate-binding module. To gain further insight into enzyme functionality, especially the effect of the active site aromatic residues, we expressed two variants with mutations in subsites on either side of the catalytic acid, subsite -3 (W31A) and +2 (W218A), and compared their catalytic properties on chitin and high molecular weight chitosans. Exchange of Trp to Ala in subsite -3 resulted in a 12-fold reduction in extent of degradation and a 20-fold reduction in kcat(app) on chitin, while the values are 5-fold and 10-fold for subsite +2. Moreover, aromatic residue mutation resulted in a decrease of the rate of chitosan degradation contrasting previous observations for bacterial family 18 chitinases. Interestingly, the presence of product polymers of 40 sugar moieties and higher starts to disappear already at 8% degradation for HCHT50-W31A. Such behavior contrast that of the wild type and HCHT-W218A and resembles the action of endo-nonprocessive chitinases. PMID:26621384

  17. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  18. Spectroscopic Studies of the Salmonella enterica Adenosyltransferase Enzyme SeCobA: Molecular-Level Insight into the Mechanism of Substrate Cob(II)alamin Activation

    PubMed Central

    2015-01-01

    CobA from Salmonella enterica (SeCobA) is a member of the family of ATP:Co(I)rrinoid adenosyltransferase (ACAT) enzymes that participate in the biosynthesis of adenosylcobalamin by catalyzing the transfer of the adenosyl group from an ATP molecule to a reactive Co(I)rrinoid species transiently generated in the enzyme active site. This reaction is thermodynamically challenging, as the reduction potential of the Co(II)rrinoid precursor in solution is far more negative than that of available reducing agents in the cell (e.g., flavodoxin), precluding nonenzymic reduction to the Co(I) oxidation state. However, in the active sites of ACATs, the Co(II)/Co(I) redox potential is increased by >250 mV via the formation of a unique four-coordinate (4c) Co(II)rrinoid species. In the case of the SeCobA ACAT, crystallographic and kinetic studies have revealed that the phenylalanine 91 (F91) and tryptophan 93 (W93) residues are critical for in vivo activity, presumably by blocking access to the lower axial ligand site of the Co(II)rrinoid substrate. To further assess the importance of the F91 and W93 residues with respect to enzymatic function, we have characterized various SeCobA active-site variants using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our data provide unprecedented insight into the mechanism by which SeCobA converts the Co(II)rrinoid substrate to 4c species, with the hydrophobicity, size, and ability to participate in offset π-stacking interactions of key active-site residues all being critical for activity. The structural changes that occur upon Co(II)rrinoid binding also appear to be crucial for properly orienting the transiently generated Co(I) “supernucleophile” for rapid reaction with cosubstrate ATP. PMID:25423616

  19. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  20. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  1. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  2. Structure of a Diguanylate Cyclase from Thermotoga maritima: Insights into Activation, Feedback Inhibition and Thermostability

    PubMed Central

    Deepthi, Angeline; Liew, Chong Wai; Liang, Zhao-Xun; Swaminathan, Kunchithapadam; Lescar, Julien

    2014-01-01

    Large-scale production of bis-3′-5′-cyclic-di-GMP (c-di-GMP) would facilitate biological studies of numerous bacterial signaling pathways and phenotypes controlled by this second messenger molecule, such as virulence and biofilm formation. C-di-GMP constitutes also a potentially interesting molecule as a vaccine adjuvant. Even though chemical synthesis of c-di-GMP can be done, the yields are incompatible with mass-production. tDGC, a stand-alone diguanylate cyclase (DGC or GGDEF domain) from Thermotoga maritima, enables the robust enzymatic production of large quantities of c-di-GMP. To understand the structural correlates of tDGC thermostability, its catalytic mechanism and feedback inhibition, we determined structures of an active-like dimeric conformation with both active (A) sites facing each other and of an inactive dimeric conformation, locked by c-di-GMP bound at the inhibitory (I) site. We also report the structure of a single mutant of tDGC, with the R158A mutation at the I-site, abolishing product inhibition and unproductive dimerization. A comparison with structurally characterized DGC homologues from mesophiles reveals the presence of a higher number of salt bridges in the hyperthermophile enzyme tDGC. Denaturation experiments of mutants disrupting in turn each of the salt bridges unique to tDGC identified three salt-bridges critical to confer thermostability. PMID:25360685

  3. Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases.

    PubMed

    Bochevarov, Arteum D; Li, Jianing; Song, Woon Ju; Friesner, Richard A; Lippard, Stephen J

    2011-05-18

    The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H(peroxo), Q, and Q* in MMOH and ToMOH(peroxo) in a subclass of TMOH, ToMOH, are substantially different. We review and compare the structural differences in the vicinity of the active sites of these enzymes and discuss which changes could give rise to the different behavior of H(peroxo) and Q. In particular, analysis of multiple crystal structures reveals that T213 in MMOH and the analogous T201 in TMOH, located in the immediate vicinity of the active site, have different rotatory configurations. We study the rotational energy profiles of these threonine residues with the use of molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) computational methods and put forward a hypothesis according to which T213 and T201 play an important role in the formation of different types of peroxodiiron(III) species in MMOH and ToMOH. The hypothesis is indirectly supported by the QM/MM calculations of the peroxodiiron(III) models of ToMOH and the theoretically computed Mössbauer spectra. It also helps explain the formation of two distinct peroxodiiron(III) species in the T201S mutant of ToMOH. Additionally, a role for the ToMOD regulatory protein, which is essential for intermediate formation and protein functioning in the ToMO system, is advanced. We find that the low quadrupole splitting parameter in the Mössbauer spectrum observed for a ToMOH(peroxo) intermediate can be explained by protonation of the peroxo moiety, possibly stabilized by the T201 residue. Finally, similarities between the oxygen activation mechanisms of the monooxygenases and cytochrome P450 are discussed. PMID:21517016

  4. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    PubMed Central

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-01-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses. PMID:26928635

  5. Structural Insights into Proteasome Activation by the 19S Regulatory Particle

    PubMed Central

    Ehlinger, Aaron; Walters, Kylie J.

    2013-01-01

    Since its discovery in the late 1970s, the ubiquitin-proteasome system (UPS) has become recognized as the major pathway for regulated cellular proteolysis. Processes ranging from cell cycle control, pathogen resistance, and protein quality control rely on selective protein degradation at the proteasome for homeostatic function. Perhaps as a consequence of the importance of this pathway, and the genesis of severe diseases upon its dysregulation, protein degradation by the UPS is highly controlled from the level of substrate recognition to proteolysis. Technological advances over the last decade have created an explosion of structural and mechanistic information that has underscored the complexity of the proteasome and its upstream regulatory factors. Significant insights have come from study of the 19S proteasome regulatory particle (RP) responsible for recognition and processing of ubiquitinated substrates destined for proteolysis. Established as a highly dynamic proteasome activator, a large number of both permanent and transient RP components with specialized functional roles are critical for proteasome function. In this review, we highlight recent mechanistic developments in the study of proteasome activation by the RP and how they provide context to our current understanding of the UPS. PMID:23672618

  6. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  7. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  8. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  9. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  10. Soil Microbial Activity Provides Insight to Carbon Cycling in Shrub Ecotones of Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    Marek, E.; Kashi, N. N.; Chen, J.; Hobbie, E. A.; Schwan, M. R.; Varner, R. K.

    2015-12-01

    Shrubs are expanding in Arctic and sub-Arctic regions due to rising atmospheric temperatures. Microbial activity increases as growing temperatures cause permafrost warming and subsequent thaw, leading to a greater resource of soil nutrients enabling shrub growth. Increased carbon inputs from shrubs is predicted to result in faster carbon turnover by microbial decomposition. Further understanding of microbial activity underneath shrubs could uncover how microbes and soil processes interact to promote shrub expansion and carbon cycling. To address how higher soil carbon input from shrubs influences decomposition, soil samples were taken across a heath, shrub, and forest ecotone gradient at two sites near Abikso, Sweden. Samples were analyzed for soluble carbon and nitrogen, microbial abundance, and microbial activity of chitinase, glucosidase, and phosphatase to reflect organic matter decomposition and availability of nitrogen, carbon, and phosphate respectively. Chitinase activity positively correlated with shrub cover, suggesting microbial demands for nitrogen increase with higher shrub cover. Glucosidase activity negatively correlated with shrub cover and soluble carbon, suggesting decreased microbial demand for carbon as shrub cover and carbon stores increase. Lower glucosidase activity in areas with high carbon input from shrubs implies that microbes are decomposing carbon less readily than carbon is being put into the soil. Increasing soil carbon stores in shrub covered areas can lead to shrubs becoming a net carbon sink and a negative feedback to changing climate.

  11. DNA topoisomerase II structures and anthracycline activity: insights into ternary complex formation.

    PubMed

    Dal Ben, D; Palumbo, M; Zagotto, G; Capranico, G; Moro, S

    2007-01-01

    DNA Topoisomerase II (Top2) is an essential nuclear enzyme that regulates the topological state of the DNA, and a target of very effective anticancer drugs including anthracycline antibiotics. Even though several aspects of drug activity against Top2 are understood, the drug receptor site is not yet known. Several Top2 mutants have altered drug sensitivity and have provided information of structural features determining drug action. Here, we have revised the published crystal structures of eukaryotic and prokaryotic Top2s and relevant biochemical investigations of enzyme activity and anthracycline action. In particular, we have considered Top2 mutations conferring resistance to anthracyclines and related agents. Following a previous study (Moro et al, Biochemistry, 2004; 43: 7503-13), we have then re-built a molecular model of the entire enzyme in complex with DNA after the cleavage reaction, and used it to define the receptor site of anthracyclines. The results suggest a model wherein the drug specifically contacts the cleaved DNA as well as amino acid residues of the enzyme CAP-like domain. The findings can explain several established structure-activity relationships of antitumour anthracyclines, and provide a framework for further developments of effective Top2 poison. PMID:17897022

  12. Insights into structural and regulatory roles of Sec16 in COPII vesicle formation at ER exit sites

    PubMed Central

    Yorimitsu, Tomohiro; Sato, Ken

    2012-01-01

    COPII-coated buds are formed at endoplasmic reticulum exit sites (ERES) to mediate ER-to-Golgi transport. Sec16 is an essential factor in ERES formation, as well as in COPII-mediated traffic in vivo. Sec16 interacts with multiple COPII proteins, although the functional significance of these interactions remains unknown. Here we present evidence that full-length Sec16 plays an important role in regulating Sar1 GTPase activity at the late steps of COPII vesicle formation. We show that Sec16 interacts with Sec23 and Sar1 through its C-terminal conserved region and hinders the ability of Sec31 to stimulate Sec23 GAP activity toward Sar1. We also find that purified Sec16 alone can self-assemble into homo-oligomeric complexes on a planar lipid membrane. These features ensure prolonged COPII coat association within a preformed Sec16 cluster, which may lead to the formation of ERES. Our results indicate a mechanistic relationship between COPII coat assembly and ERES formation. PMID:22675024

  13. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

    PubMed Central

    Aggarwal, Mayank; Kondeti, Bhargav; Tu, Chingkuang; Maupin, C. Mark; Silverman, David N.; McKenna, Robert

    2014-01-01

    Human carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3 −, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O) in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type) of a variant of CA II in which His64 is replaced with Ala (H64A CA II) can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-­methylimidazole, 2-­methylimidazole and 4-methylimidazole) have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the ‘in’ and ‘out’ rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations) the activity of H64A CA II. PMID:25075329

  14. Insights into activation and RNA binding of trp RNA-binding attenuation protein (TRAP) through all-atom simulations.

    PubMed

    Murtola, Teemu; Vattulainen, Ilpo; Falck, Emma

    2008-06-01

    Tryptophan biosynthesis in Bacillus stearothermophilus is regulated by a trp RNA binding attenuation protein (TRAP). It is a ring-shaped 11-mer of identical 74 residue subunits. Tryptophan binding pockets are located between adjacent subunits, and tryptophan binding activates TRAP to bind RNA. Here, we report results from all-atom molecular dynamics simulations of the system, complementing existing extensive experimental studies. We focus on two questions. First, we look at the activation mechanism, of which relatively little is known experimentally. We find that the absence of tryptophan allows larger motions close to the tryptophan binding site, and we see indication of a conformational change in the BC loop. However, complete deactivation seems to occur on much longer time scales than the 40 ns studied here. Second, we study the TRAP-RNA interactions. We look at the relative flexibilities of the different bases in the complex and analyze the hydrogen bonds between the protein and RNA. We also study the role of Lys37, Lys56, and Arg58, which have been experimentally identified as essential for RNA binding. Hydrophobic stacking of Lys37 with the nearby RNA base is confirmed, but we do not see direct hydrogen bonding between RNA and the other two residues, in contrast to the crystal structure. Rather, these residues seem to stabilize the RNA-binding surface, and their positive charge may also play a role in RNA binding. Simulations also indicate that TRAP is able to attract RNA nonspecifically, and the interactions are quantified in more detail using binding energy calculations. The formation of the final binding complex is a very slow process: within the simulation time scale of 40 ns, only two guanine bases become bound (and no others), indicating that the binding initiates at these positions. In general, our results are in good agreement with experimental studies, and provide atomic-scale insights into the processes. PMID:18186477

  15. Crystal Structure of the Human Ubiquitin-activating Enzyme 5 (UBA5) Bound to ATP Mechanistic Insights into a Minimalistic E1 Enzyme

    SciTech Connect

    Bacik, John-Paul; Walker, John R.; Ali, Mohsin; Schimmer, Aaron D.; Dhe-Paganon, Sirano

    2010-08-30

    E1 ubiquitin-activating enzymes (UBAs) are large multidomain proteins that catalyze formation of a thioester bond between the terminal carboxylate of a ubiquitin or ubiquitin-like modifier (UBL) and a conserved cysteine in an E2 protein, producing reactive ubiquityl units for subsequent ligation to substrate lysines. Two important E1 reaction intermediates have been identified: a ubiquityl-adenylate phosphoester and a ubiquityl-enzyme thioester. However, the mechanism of thioester bond formation and its subsequent transfer to an E2 enzyme remains poorly understood. We have determined the crystal structure of the human UFM1 (ubiquitin-fold modifier 1) E1-activating enzyme UBA5, bound to ATP, revealing a structure that shares similarities with both large canonical E1 enzymes and smaller ancestral E1-like enzymes. In contrast to other E1 active site cysteines, which are in a variably sized domain that is separate and flexible relative to the adenylation domain, the catalytic cysteine of UBA5 (Cys{sup 250}) is part of the adenylation domain in an {alpha}-helical motif. The novel position of the UBA5 catalytic cysteine and conformational changes associated with ATP binding provides insight into the possible mechanisms through which the ubiquityl-enzyme thioester is formed. These studies reveal structural features that further our understanding of the UBA5 enzyme reaction mechanism and provide insight into the evolution of ubiquitin activation.

  16. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase - Structural and modeling insight into its functions

    SciTech Connect

    Li, Hui-Guang; Huang, Philip L.; Zhang, Dawei; Sun, Yongtao; Chen, Hao-Chia; Zhang, John; Huang, Paul L.; Kong, Xiang-Peng; Lee-Huang, Sylvia

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  17. A New Activity of Anti-HIV and Anti-tumor Protein GAP31: DNA Adenosine Glycosidase – Structural and Modeling Insight into its Functions

    SciTech Connect

    Li, H.; Huang, P; Zhang, D; Sun, Y; Chen, H; Zhang, J; Huang, P; Kong, X; Lee-Huang, S

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  18. Structural Insight into Activation Mechanism of Toxoplasma gondii Nucleoside Triphosphate Diphosphohydrolases by Disulfide Reduction*

    PubMed Central

    Krug, Ulrike; Zebisch, Matthias; Krauss, Michel; Sträter, Norbert

    2012-01-01

    The intracellular parasite Toxoplasma gondii produces two nucleoside triphosphate diphosphohydrolases (NTPDase1 and -3). These tetrameric, cysteine-rich enzymes require activation by reductive cleavage of a hitherto unknown disulfide bond. Despite a 97% sequence identity, both isozymes differ largely in their ability to hydrolyze ATP and ADP. Here, we present crystal structures of inactive NTPDase3 as an apo form and in complex with the product AMP to resolutions of 2.0 and 2.2 Å, respectively. We find that the enzyme is present in an open conformation that precludes productive substrate binding and catalysis. The cysteine bridge 258–268 is identified to be responsible for locking of activity. Crystal structures of constitutively active variants of NTPDase1 and -3 generated by mutation of Cys258–Cys268 show that opening of the regulatory cysteine bridge induces a pronounced contraction of the whole tetramer. This is accompanied by a 12° domain closure motion resulting in the correct arrangement of all active site residues. A complex structure of activated NTPDase3 with a non-hydrolyzable ATP analog and the cofactor Mg2+ to a resolution of 2.85 Å indicates that catalytic differences between the NTPDases are primarily dictated by differences in positioning of the adenine base caused by substitution of Arg492 and Glu493 in NTPDase1 by glycines in NTPDase3. PMID:22130673

  19. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship

    PubMed Central

    Navarro-Retamal, Carlos

    2016-01-01

    In the last years, the interactions of flavonoids with protein kinases (PKs) have been described by using crystallographic experiments. Interestingly, different orientations have been found for one flavonoid inside different PKs and different chemical substitutions lead to different orientations of the flavonoid scaffold inside one PK. Accordingly, orientation predictions of novel analogues could help to the design of flavonoids with high PK inhibitory activities. With this in mind, we studied the binding modes of 37 flavonoids (flavones and chalcones) inside the cyclin-dependent PK CDK1 using docking experiments. We found that the compounds under study adopted two different orientations into the active site of CDK1 (orientations I and II in the manuscript). In addition, quantitative structure–activity relationship (QSAR) models using CoMFA and CoMSIA methodologies were constructed to explain the trend of the CDK1 inhibitory activities for the studied flavonoids. Template-based and docking-based alignments were used. Models developed starting from docking-based alignment were applied for describing the whole dataset and compounds with orientation I. Adequate R2 and Q2 values were obtained by each method; interestingly, only hydrophobic and hydrogen bond donor fields describe the differential potency of the flavonoids as CDK1 inhibitors for both defined alignments and subsets. Our current application of docking and QSAR together reveals important elements to be drawn for the design of novel flavonoids with increased PK inhibitory activities. PMID:27517610

  20. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  1. Calculation of Vibrational Shifts of Nitrile Probes in the Active Site of Ketosteroid Isomerase upon Ligand Binding

    PubMed Central

    Layfield, Joshua P.

    2012-01-01

    The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analog equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active site water molecule that is directly hydrogen bonded to the nitrile probe, resulting in a more linear CNH angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis. PMID:23210919

  2. Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator

    PubMed Central

    Deng, Zengqin; Wang, Qing; Liu, Zhao; Zhang, Manfeng; Machado, Ana Carolina Dantas; Chiu, Tsu-Pei; Feng, Chong; Zhang, Qi; Yu, Lin; Qi, Lei; Zheng, Jiangge; Wang, Xu; Huo, XinMei; Qi, Xiaoxuan; Li, Xiaorong; Wu, Wei; Rohs, Remo; Li, Ying; Chen, Zhongzhou

    2015-01-01

    Ferric uptake regulator (Fur) plays a key role in the iron homeostasis of prokaryotes, such as bacterial pathogens, but the molecular mechanisms and structural basis of Fur–DNA binding remain incompletely understood. Here, we report high-resolution structures of Magnetospirillum gryphiswaldense MSR-1 Fur in four different states: apo-Fur, holo-Fur, the Fur–feoAB1 operator complex and the Fur–Pseudomonas aeruginosa Fur box complex. Apo-Fur is a transition metal ion-independent dimer whose binding induces profound conformational changes and confers DNA-binding ability. Structural characterization, mutagenesis, biochemistry and in vivo data reveal that Fur recognizes DNA by using a combination of base readout through direct contacts in the major groove and shape readout through recognition of the minor-groove electrostatic potential by lysine. The resulting conformational plasticity enables Fur binding to diverse substrates. Our results provide insights into metal ion activation and substrate recognition by Fur that suggest pathways to engineer magnetotactic bacteria and antipathogenic drugs. PMID:26134419

  3. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase.

    PubMed

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J; Davies, Gareth; Holdgate, Geoffrey A; Phillips, Chris; Tucker, Julie A; Norman, Richard A; Scott, Andrew D; Higazi, Daniel R; Lowe, David; Thompson, Gary S; Breeze, Alexander L

    2015-01-01

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called 'DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a 'DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and 'molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1. PMID:26203596

  4. Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator

    NASA Astrophysics Data System (ADS)

    Deng, Zengqin; Wang, Qing; Liu, Zhao; Zhang, Manfeng; Machado, Ana Carolina Dantas; Chiu, Tsu-Pei; Feng, Chong; Zhang, Qi; Yu, Lin; Qi, Lei; Zheng, Jiangge; Wang, Xu; Huo, Xinmei; Qi, Xiaoxuan; Li, Xiaorong; Wu, Wei; Rohs, Remo; Li, Ying; Chen, Zhongzhou

    2015-07-01

    Ferric uptake regulator (Fur) plays a key role in the iron homeostasis of prokaryotes, such as bacterial pathogens, but the molecular mechanisms and structural basis of Fur-DNA binding remain incompletely understood. Here, we report high-resolution structures of Magnetospirillum gryphiswaldense MSR-1 Fur in four different states: apo-Fur, holo-Fur, the Fur-feoAB1 operator complex and the Fur-Pseudomonas aeruginosa Fur box complex. Apo-Fur is a transition metal ion-independent dimer whose binding induces profound conformational changes and confers DNA-binding ability. Structural characterization, mutagenesis, biochemistry and in vivo data reveal that Fur recognizes DNA by using a combination of base readout through direct contacts in the major groove and shape readout through recognition of the minor-groove electrostatic potential by lysine. The resulting conformational plasticity enables Fur binding to diverse substrates. Our results provide insights into metal ion activation and substrate recognition by Fur that suggest pathways to engineer magnetotactic bacteria and antipathogenic drugs.

  5. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase

    NASA Astrophysics Data System (ADS)

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J.; Davies, Gareth; Holdgate, Geoffrey A.; Phillips, Chris; Tucker, Julie A.; Norman, Richard A.; Scott, Andrew D.; Higazi, Daniel R.; Lowe, David; Thompson, Gary S.; Breeze, Alexander L.

    2015-07-01

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called `DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a `DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and `molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.

  6. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase

    PubMed Central

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J.; Davies, Gareth; Holdgate, Geoffrey A.; Phillips, Chris; Tucker, Julie A.; Norman, Richard A.; Scott, Andrew D.; Higazi, Daniel R.; Lowe, David; Thompson, Gary S.; Breeze, Alexander L.

    2015-01-01

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp–Phe–Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called ‘DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a ‘DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and ‘molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1. PMID:26203596

  7. Compensatory signals associated with the activation of human GC 5′ splice sites

    PubMed Central

    Kralovicova, Jana; Hwang, Gyulin; Asplund, A. Charlotta; Churbanov, Alexander; Smith, C. I. Edvard; Vorechovsky, Igor

    2011-01-01

    GC 5′ splice sites (5′ss) are present in ∼1% of human introns, but factors promoting their efficient selection are poorly understood. Here, we describe a case of X-linked agammaglobulinemia resulting from a GC 5′ss activated by a mutation in BTK intron 3. This GC 5′ss was intrinsically weak, yet it was selected in >90% primary transcripts in the presence of a strong and intact natural GT counterpart. We show that efficient selection of this GC 5′ss required a high density of GAA/CAA-containing splicing enhancers in the exonized segment and was promoted by SR proteins 9G8, Tra2β and SC35. The GC 5′ss was efficiently inhibited by splice-switching oligonucleotides targeting either the GC 5′ss itself or the enhancer. Comprehensive analysis of natural GC-AG introns and previously reported pathogenic GC 5′ss showed that their efficient activation was facilitated by higher densities of splicing enhancers and lower densities of silencers than their GT 5′ss equivalents. Removal of the GC-AG introns was promoted to a minor extent by the splice-site strength of adjacent exons and inhibited by flanking Alu repeats, with the first downstream Alus located on average at a longer distance from the GC 5′ss than other transposable elements. These results provide new insights into the splicing code that governs selection of noncanonical splice sites. PMID:21609956

  8. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  9. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  10. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal