Sample records for active space debris

  1. Activities on space debris in Europe

    NASA Astrophysics Data System (ADS)

    Flury, W.

    2001-10-01

    Activities on space debris in Europe are carried out by ESA, by national space agencies such as ASI (Italy), BNSC (United Kingdom), CNES (France) and DLR (Germany) and by various research groups. The objectives of ESA's activities in the field of space debris have been defined by the Council of ESA in 1989, and were updated in 2000 with the adoption of the Resolution for a European policy on the protection of the space environment from debris. ESA's debris-related activities comprise research, application of debris mitigation measures and international cooperation. The research activities address the knowledge of the terrestrial particulate environment, risk assessment, hypervelocity impacts and protection, and preventative measures. In all these areas substantial progress has been achieved. Examples are the MASTER 99 model, the DISCOS database, beam-park experiments with the FGAN radar, the discovery of a small-size debris population in GEO with the Space Debris telescope at the Teide observatory, and the GORID dust detector in the geostationary orbit. The ESA Space Debris Mitigation Handbook was issued, and in a joint effort of ESA and the national agencies ASI, BNSC, CNES and DLR the European Space Debris Safety and Mitigation Standard (draft) was established. This standard will be harmonized with standards of other agencies through the deliberations in the Inter-Agency Space Debris Coordination Committee (IADC). In order to strengthen the European cooperation, the pilot network of centers - Working Group on Space Debris was created in 2000. The members are ESA, ASI, BNSC, CNES and DLR. An integrated work plan has been established for the period 2001-2003. Global cooperation among the space-faring nations is achieved through the IADC. ESA and its Member States strongly support the deliberations on space debris within the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).

  2. Activities on Space Debris in U.S.

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  3. Activities on space debris in U.S.

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices, both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant U.S. government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of U.S. government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of spacecraft and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  4. Canadian Activities in Space Debris Mitigation Technologies

    NASA Astrophysics Data System (ADS)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  5. Space Debris Environment Remediation Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  6. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  7. The INAF contribution to the ASI Space Debris program: observational activities.

    NASA Astrophysics Data System (ADS)

    Pupillo, G.; Salerno, E.; Bartolini, M.; Di Martino, M.; Mattana, A.; Montebugnoli, S.; Portelli, C.; Pluchino, S.; Schillirò, F.; Konovalenko, A.; Nabatov, A.; Nechaeva, M.

    Space debris are man made objects orbiting around Earth that pose a serious hazard for both present and future human activities in space. Since 2007 the Istituto Nazionale di Astrofisica (INAF) carried out a number of radar campaigns in the framework of the ASI ``Space Debris'' program. The observations were performed by using bi- and multi-static radars, composed of the INAF 32-m Italian radiotelescopes located at Medicina and Noto (used as receivers) and the 70-m parabolic antenna at Evpatoria (Ukraine) used as transmitter. The 32 m Ventspils antenna in Latvia also participated in the last campaign at the end of June 2010. Several kinds of objects in various orbital regions (radar calibrators, rocket upper stages, debris of different sizes) were observed and successfully detected. Some unknown objects were also discovered in LEO during the beam-park sessions. In this paper we describe some results of the INAF-ASI space debris research activity.

  8. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  9. Space Debris and Space Safety - Looking Forward

    NASA Astrophysics Data System (ADS)

    Ailor, W.; Krag, H.

    Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.

  10. Small satellites and space debris issues

    NASA Astrophysics Data System (ADS)

    Yakovlev, M.; Kulik, S.; Agapov, V.

    2001-10-01

    The objective of this report is the analysis of the tendencies in designing of small satellites (SS) and the effect of small satellites on space debris population. It is shown that SS to include nano- and pico-satellites should be considered as a particularly dangerous source of space debris when elaborating international standards and legal documents concerning the space debris problem, in particular "International Space Debris Mitigation Standard". These issues are in accordance with the IADC goals in its main activity areas and should be carefully considered within the IADC framework.

  11. Active Space Debris Charging for Contactless Electrostatic Disposal Maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, H.; Sternovsky, Z.

    2013-08-01

    We assess the feasibility of removing large space debris from geosynchronous orbit (GEO) by means of a tug spacecraft that uses electrostatic forces to pull the debris without touching. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. Further, the debris does not have to be detumbled first to engage the re-orbit maneuver. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam and an auxiliary ion bleeder. Our simple charging model takes into account the primary electron beam current, UV induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that by active charging high potentials can be both achieved and maintained. The resulting mN level electrostatic force is sufficient for the safe re-orbiting of debris objects over an acceptable period of a few months. The capability of debris removal is becoming a pressing need as the increasing population of dysfunctional satellites poses a threat to the future of satellite operations at GEO.

  12. Space Debris Senso

    NASA Image and Video Library

    2017-12-11

    Orbital debris poses a risk to all spacecraft in Earth orbit, so the International Space Station is getting a new debris impact sensor to provide information on the micrometeoroid orbital debris environment in low Earth orbit. The Space Debris Sensor, launching on the next SpaceX Dragon cargo vehicle, will monitor impacts caused by small-scale orbital debris for a period of two to three years. That data will improve station safety by generating a more accurate estimate of the amount of small-scale debris that cannot be tracked from the ground and helping define better spacecraft shielding requirements. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  13. Space debris mitigation - engineering strategies

    NASA Astrophysics Data System (ADS)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  14. Legal Consequences of the Pollution of Outer Space with Space Debris

    NASA Astrophysics Data System (ADS)

    Stubbe, Peter

    2017-07-01

    Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting

  15. ESA Technologies for Space Debris Remediation

    NASA Astrophysics Data System (ADS)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  16. Man-made space debris - Does it restrict free access to space

    NASA Technical Reports Server (NTRS)

    Wolfe, M.; Chobotov, V.; Kessler, D.; Reynolds, R.

    1981-01-01

    Consideration is given to the hazards posed by existing and future man-made space debris to spacecraft operations. The components of the hazard are identified as those fragments resulting from spacecraft explosions and spent stages which can be tracked, those fragments which are too small to be tracked at their present distances, and future debris, which, if present trends in spacecraft design and operation continue, may lead to an unacceptably high probability of collision with operational spacecraft within a decade. It is argued that a coordinated effort must be undertaken by all space users to evaluate means of space debris control in order to allow for the future unrestricted use of near-earth space. A plan for immediate action to forestall the space debris problem by activities in the areas of education, debris monitoring and collection technology, space vehicle design, space operational procedures and practices and space policies and treaties is proposed.

  17. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  18. Active space debris removal by using laser propulsion

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yu. A.

    2013-03-01

    At present, a few projects on the space debris removal by using highpower lasers are developed. One of the established projects is the ORION proposed by Claude Phipps from Photonics Associates Company and supported by NASA (USA) [1]. But the technical feasibility of the concept is limited by sizes of the debris objects (from 1 to 10 cm) because of a small thrust impulse generated at the laser ablation of the debris materials. At the same time, the removal of rocket upper stages and satellites, which have reached the end of their lives, has been carried out only in a very small number of cases and most of them remain on the Low Earth Orbits (LEO). To reduce the amount of these large-size objects, designing of space systems allowing deorbiting upper rocket stages and removing large-size satellite remnants from economically and scientifically useful orbits to disposal ones is considered. The suggested system is based on high-power laser propulsion. Laser-Orbital Transfer Vehicle (LOTV) with the developed aerospace laser propulsion engine is considered as applied to the problem of mitigation of man-made large-size space debris in LEO.

  19. RemoveDEBRIS: An in-orbit active debris removal demonstration mission

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2016-10-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  20. Space Shuttle Debris Transport

    NASA Technical Reports Server (NTRS)

    Gomez, Reynaldo J., III

    2010-01-01

    This slide presentation reviews the assessment of debris damage to the Space Shuttle, and the use of computation to assist in the space shuttle applications. The presentation reviews the sources of debris, a mechanism for determining the probability of damaging debris impacting the shuttle, tools used, eliminating potential damaging debris sources, the use of computation to assess while inflight damage, and a chart showing the applications that have been used on increasingly powerful computers simulate the shuttle and the debris transport.

  1. Space debris protection: A standard procedure in future?

    NASA Astrophysics Data System (ADS)

    Yasaka, Tetsuo

    2003-08-01

    The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris. Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left unprotected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.

  2. Space Debris Protection: A Standard Procedure in Future?

    NASA Astrophysics Data System (ADS)

    Yasaka, Tetsuo

    2002-01-01

    The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris.Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left un-protected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.

  3. Final payload test results for the RemoveDebris active debris removal mission

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Salmon, Thierry; Retat, Ingo; Roe, Mark; Burgess, Christopher; Chabot, Thomas; Pisseloup, Aurélien; Phipps, Andy; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2017-09-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated in space. Active Debris Removal (ADR) missions have been suggested as a way of limiting and controlling future growth in orbital space debris by actively deploying vehicles to remove debris. The European Commission FP7-sponsored RemoveDebris mission, which started in 2013, draws on the expertise of some of Europe's most prominent space institutions in order to demonstrate key ADR technologies in a cost effective ambitious manner: net capture, harpoon capture, vision-based navigation, dragsail de-orbiting. This paper provides an overview of some of the final payload test results before launch. A comprehensive test campaign is underway on both payloads and platform. The tests aim to demonstrate both functional success of the experiments and that the experiments can survive the space environment. Space environmental tests (EVT) include vibration, thermal, vacuum or thermal-vacuum (TVAC) and in some cases EMC and shock. The test flow differs for each payload and depends on the heritage of the constituent payload parts. The paper will also provide an update to the launch, expected in 2017 from the International Space Station (ISS), and test philosophy that has been influenced from the launch and prerequisite NASA safety review for the mission. The RemoveDebris mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  4. Active Space Debris Removal using European Modified Launch Vehicle Upper Stages Equipped with Electrodynamic Tethers

    NASA Astrophysics Data System (ADS)

    Nasseri, Ali S.; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea; Becker, Cristoph

    2013-08-01

    During the past few years, several research programs have assessed the current state and future evolution of the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. This cascade effect can be even more significant when intact objects as dismissed rocket bodies are involved in the collision. The majority of the studies until now have highlighted the urgency for active debris removal in the next years. An Active Debris Removal System (ADRS) is a system capable of approaching the debris object through a close-range rendezvous, establishing physical connection, stabilizing its attitude and finally de-orbiting the debris object using a type of propulsion system in a controlled manoeuvre. In its previous work, this group showed that a modified Fregat (Soyuz FG's 4th stage) or Breeze-M upper stage (Proton-M) launched from Plesetsk (Russian Federation) and equipped with an electro-dynamic tether (EDT) system can be used, after an opportune inclination's change, to de-orbit a Kosmos-3M second stage rocket body while also delivering an acceptable payload to orbit. In this paper, we continue our work on the aforementioned concept, presented at the 2012 Beijing Space Sustainability Conference, by comparing its performance to ADR missions using only chemical propulsion from the upper stage for the far approach and the de-orbiting phase. We will also update the EDT model used in our previous work and highlight some of the methods for creating physical contact with the object. Moreover, we will assess this concept also with European launch vehicles (Vega and Soyuz 2-1A) to remove space debris from space. In addition, the paper will cover some economic aspects, like the cost for the launches' operator in term of payload mass' loss at the launch. The entire debris removal

  5. Space Debris Mitigation CONOPS Development

    DTIC Science & Technology

    2013-06-01

    SPACE DEBRIS MITIGATION CONOPS DEVELOPMENT THESIS Earl B. Alejandro, Capt, USAF AFIT-ENV-13-J...04DL SPACE DEBRIS MITIGATION CONOPS DEVELOPMENT THESIS Presented to the Faculty Department of Systems Engineering and Management...June 2013 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENV-13-J-04DL SPACE DEBRIS

  6. Space-based detection of space debris by photometric and polarimetric characteristics

    NASA Astrophysics Data System (ADS)

    Pang, Shuxia; Wang, Hu; Lu, Xiaoyun; Shen, Yang; Pan, Yue

    2017-10-01

    The number of space debris has been increasing dramatically in the last few years, and is expected to increase as much in the future. As the orbital debris population grows, the risk of collision between debris and other orbital objects also grows. Therefore, space debris detection is a particularly important task for space environment security, and then supports for space debris modeling, protection and mitigation. This paper aims to review space debris detection systematically and completely. Firstly, the research status of space debris detection at home and abroad is presented. Then, three kinds of optical observation methods of space debris are summarized. Finally, we propose a space-based detection scheme for space debris by photometric and polarimetric characteristics.

  7. Orbiting space debris: Dangers, measurement and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-06-01

    Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.

  8. Orbiting space debris: Dangers, measurement, and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-01-01

    Space debris is a growing environmental problem. Accumulation of objects in Earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, Unites States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-Earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical, and diplomatic components. Actions need to be taken now for the following reasons: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the the loss of critical space systems such as the Space Shuttle or the Space Station.

  9. Recent Developments in Space Debris Mitigation Policy and Practices

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    In recent years, emphasis has shifted from national efforts to control the space debris population to international ones. Here, too, great progress has been made, most notably by the Inter-Agency Space Debris Coordination Committee (IADC) and the Committee on the Peaceful Uses of Outer Space (COPUOS) of the United Nations. Today, a firm international consensus is rapidly building on the principal space debris mitigation measures. The IADC is an association of the space agencies of ten countries (China, France, Germany, India, Italy, Japan, Russia, Ukraine, the United Kingdom, and the United States) and the European Space Agency, representing 17 countries of which four (France, Germany, Italy, and the United Kingdom) are also full IADC members. At the 17th meeting of the IADC in October 1999, a new Action Item (AI 17.2) was adopted to develop a set of consensus space debris mitigation guidelines. The purpose of the activity was to identify the most valuable space debris mitigation measures and to reach an international agreement on common directives. The IADC Space Debris Mitigation Guidelines (www.iadc-online.org/index.cgi?item=docs_pub) were formally adopted in October 2002 during the Second World Space Congress in Houston, Texas. Two years later a companion document, entitled Support to the IADC Space Debris Mitigation Guidelines, was completed to provide background and clarification for the guidelines.

  10. Space Debris Modeling at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOLVE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been released with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NASA Safety Standard 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the

  11. Space Debris: Its Causes and Management

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2002-01-01

    Orbital debris is internationally recognized as an environmental issue which needs to be addressed today to preserve near-Earth space for future generations. All major space agencies are committed to mitigating the growth of the debris environment. Many commercial space system operators have responded positively to orbital debris mitigation principles and recommendations. Orbital debris mitigation measures are most cost-effective if included in the design development phase.

  12. First laser measurements to space debris in Poland

    NASA Astrophysics Data System (ADS)

    Lejba, Paweł; Suchodolski, Tomasz; Michałek, Piotr; Bartoszak, Jacek; Schillak, Stanisław; Zapaśnik, Stanisław

    2018-05-01

    The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014-2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10 Hz repetition rate, a pulse width of 3-5 ns and a pulse energy of 450 mJ for green (532 nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS). Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 - January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10 s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.

  13. External tank space debris considerations

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Baillif, F.; Robinson, J.

    1992-01-01

    Orbital debris issues associated with maintaining a Space Shuttle External Tank (ET) on orbit are presented. The first issue is to ensure that the ET does not become a danger to other spacecraft by generating space debris, and the second is to protect the pressurized ET from penetration by space debris or meteoroids. Tests on shield designs for penetration resistance showed that when utilized with an adequate bumper, thermal protection system foam on the ET is effective in preventing penetration.

  14. RS-34 Phoenix In-Space Propulsion System Applied to Active Debris Removal Mission

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Burnside, Christopher G.

    2014-01-01

    In-space propulsion is a high percentage of the cost when considering Active Debris Removal mission. For this reason it is desired to research if existing designs with slight modification would meet mission requirements to aid in reducing cost of the overall mission. Such a system capable of rendezvous, close proximity operations, and de-orbit of Envisat class resident space objects has been identified in the existing RS-34 Phoenix. RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC has obtained permission from the USAF to obtain all the remaining RS-34 stages for re-use opportunities. The MSFC Advanced Concepts Office (ACO) was commissioned to lead a study for evaluation of the Rocketdyne produced RS-34 propulsion system as it applies to an active debris removal design reference mission for resident space object targets including Envisat. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy payloads at multiple orbital locations. The RS-34 Concept Study lead by sought to further understand application for a similar orbital debris design reference mission to provide propulsive capability for rendezvous, close proximity operations to support the capture phase of the mission, and deorbit of single or multiple large class resident space objects. Multiple configurations varying the degree of modification were identified to trade for dry mass optimization and

  15. Space program: Space debris a potential threat to Space Station and shuttle

    NASA Technical Reports Server (NTRS)

    Schwartz, Stephen A.; Beers, Ronald W.; Phillips, Colleen M.; Ramos, Yvette

    1990-01-01

    Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed.

  16. Orbital debris research at NASA Johnson Space Center, 1986-1988

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Potter, Andrew E., Jr.

    1989-01-01

    Research on orbital debris has intensified in recent years as the number of debris objects in orbit has grown. The population of small debris has now reached the level that orbital debris has become an important design factor for the Space Station. The most active center of research in this field has been the NASA Lyndon B. Johnson Space Center. Work is being done on the measurement of orbital debris, development of models of the debris population, and development of improved shielding against hypervelocity impacts. Significant advances have been made in these areas. The purpose of this document is to summarize these results and provide references for further study.

  17. Microchemical Analysis Of Space Operation Debris

    NASA Technical Reports Server (NTRS)

    Cummings, Virginia J.; Kim, Hae Soo

    1995-01-01

    Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.

  18. Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2014-09-01

    The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.

  19. Activities of JAXA's Innovative Technology Center on Space Debris Observation

    NASA Astrophysics Data System (ADS)

    Yanagisawa, T.; Kurosaki, H.; Nakajima, A.

    The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the

  20. An adaptive strategy for active debris removal

    NASA Astrophysics Data System (ADS)

    White, Adam E.; Lewis, Hugh G.

    2014-04-01

    Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris. One method to tackle this uncertainty is to create a strategy that can adapt and respond to the space debris population. This work explores the concept of an adaptive strategy, in terms of the number of objects required to be removed by ADR, to prevent the low Earth orbit (LEO) debris population from growing in size. This was demonstrated by utilising the University of Southampton’s Debris Analysis and Monitoring Architecture to the Geosynchronous Environment (DAMAGE) tool to investigate ADR rates (number of removals per year) that change over time in response to the current space environment, with the requirement of achieving zero growth of the LEO population. DAMAGE was used to generate multiple Monte Carlo projections of the future LEO debris environment. Within each future projection, the debris removal rate was derived at five-year intervals, by a new statistical debris evolutionary model called the Computational Adaptive Strategy to Control Accurately the Debris Environment (CASCADE) model. CASCADE predicted the long-term evolution of the current DAMAGE population with a variety of different ADR rates in order to identify a removal rate that produced a zero net

  1. Development of the Space Debris Sensor (SDS)

    NASA Technical Reports Server (NTRS)

    Hamilton, Joe; Liou, J. -C.; Anz-Meador, P.; Matney, M.; Christiansen, E.

    2017-01-01

    Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is an impact sensor designed to detect and characterize collisions with small orbital debris: from 50 microns to greater than 1millimeter debris size detection; Characterizes debris size, speed, direction, and density. The Space Debris Sensor (SDS) is a flight demonstration of DRAGONS on the International Space Station: Approximately 1 square meter of detection area facing the ISS velocity vector; Minimum two year mission on Columbus External Payloads Facility (EPF); Minimal obstruction from ISS hardware; Development is nearing final checkout and integration with the ISS; Current launch schedule is SpaceX13, about September 2017, or SpaceX14, about Jan 2018.

  2. Space Shuttle Solid Rocket Booster Debris Assessment

    NASA Technical Reports Server (NTRS)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  3. Removal of cellular debris formed in the Disse space in patients with cholestasis.

    PubMed

    Dubuisson, L; Bioulac-Sage, P; Boussarie, L; Quinton, A; Saric, J; de Mascarel, A; Balabaud, C

    1987-01-01

    Using electron microscopy, we investigated how cellular debris, formed in the Disse space during cholestasis, was cleared. Ten patients with cholestasis of varied origin and severity were studied and compared with 10 controls without liver disease. In cholestatic patients, sinusoidal cells contained variable amounts of amylase PAS-positive material. In clean perfusion-fixed sinusoids the endothelial cells often appeared swollen and active, with few fenestrations. Hepatocyte blebs and cellular debris were sometimes seen in the Disse space. Two mechanisms were apparently involved in the clearing process: phagocytosis by macrophages either infiltrated into the Disse space, or forming the barrier; and the passage of debris from the Disse space into the sinusoidal lumen through the endothelial wall. Debris was either forced through enlarged pores or through the wall, with a progressive invagination followed by an outpouching in the lumen. The force, possibly provided by endothelial massage, may not be sufficient to push out cellular debris from the Disse space; morphological data seemed to indicate that endothelial damage may be a necessary factor. Debris present in the lumen was phagocytized by numerous active macrophages. Cellular debris was not observed in the Disse space of control patients.

  4. Changes of Space Debris Orbits After LDR Operation

    NASA Astrophysics Data System (ADS)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  5. Space Debris and Observational Astronomy

    NASA Astrophysics Data System (ADS)

    Seitzer, Patrick

    2018-01-01

    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  6. The 1999 UNCOPUOS "Technical report on space debris" and the new work plan on space debris (2002 - 2005): perspectives and legal consequences

    NASA Astrophysics Data System (ADS)

    Benkö, Marietta; Schrogl, Kai-Uwe

    2001-10-01

    In February 1999, the Scientific and Technical Subcommittee (STSC) of the UN Committee on the Peaceful Uses of Outer Space (UNCOPUOS) adopted a "Technical Report on Space Debris". This was the result of intensive negotiations during a multi-year workplan on space debris, which had been the centerpiece of the technical work of the STSC during these years. The Report is the first document on space debris, presenting the status of space debris research and the problems resulting from space debris. It has the status of an analysis accepted by all governments. Following its adoption, the Report was presented to UNISPACE III and provided the basis for discussions in this Inter-governmental Conference as well as in the Technical Forum, which - at the same time - dealt with the technical as well as the legal aspects of the exploration and use of outer space. The adoption of the Conference Report finalized the workplan in the STSC, but the subject of space debris still remains on the agenda, where until now every year a special aspect is discussed in detail. The Report does not suggest the establishment of an agenda item "space debris" in the UNCOPUOS Legal Subcommittee (LSC). It is very reluctant in even mentioning legal aspects of the space debris issue. The strict and full concentration on technical aspects was a precondition made by a number of Member States for their constructive participation in the elaboration to establish an agenda item on space debris there, were completely detached from that process. Those, who had expected that the adoption of the Report would inevitably lead to formal negotiations in the LSC were deceived so far. Nevertheless, the Report provides a number of starting points for drafting regulation concerning the prevention of space debris as well as debris mitigation measures which also built on work already done by the Inter-Agency Space Debris Coordination Committee (IADC) and its member agencies. This paper describes the status of the

  7. Analyzing costs of space debris mitigation methods

    NASA Astrophysics Data System (ADS)

    Wiedemann, C.; Krag, H.; Bendisch, J.; Sdunnus, H.

    2004-01-01

    The steadily increasing number of space objects poses a considerable hazard to all kinds of spacecraft. To reduce the risks to future space missions different debris mitigation measures and spacecraft protection techniques have been investigated during the last years. However, the economic efficiency has not been considered yet in this context. Current studies have the objective to evaluate the mission costs due to space debris in a business as usual (no mitigation) scenario compared to the missions costs considering debris mitigation. The aim is an estimation of the time until the investment in debris mitigation will lead to an effective reduction of mission costs. This paper presents the results of investigations on the key issues of cost estimation for spacecraft and the influence of debris mitigation and shielding on cost. Mitigation strategies like the reduction of orbital lifetime and de- or re-orbit of non-operational satellites are methods to control the space debris environment. These methods result in an increase of costs. In a first step the overall costs of different types of unmanned satellites are analyzed. A selected cost model is simplified and generalized for an application on all operational satellites. In a next step the influence of space debris on cost is treated, if the implementation of mitigation strategies is considered.

  8. The Space Debris Environment for the ISS Orbit

    NASA Technical Reports Server (NTRS)

    Theall, Jeff; Liou, Jer-Chyi; Matney, Mark; Kessler, Don

    2001-01-01

    With thirty-five planned missions over the next five years, the International Space Station (ISS) will be the focus for manned space activity. At least 6 different vehicles will transport crew and supplies to and from the nominally 400 km, 51.6 degree orbit. When completed, the ISS will be the largest space structure ever assembled and hence the largest target for space debris. Recent work at the Johnson Space Center has focused on updating the existing space debris models. The Orbital Debris Engineering Model, has been restructured to take advantage of state of the art desktop computing capability and revised with recent measurements from Haystack and Goldstone radars, additional analysis of LDEF and STS impacts, and the most recent SSN catalog. The new model also contains the capability to extrapolate the current environment in time to the year 2030. A revised meteoroid model based on the work of Divine has also been developed, and is called the JSC Meteoroid Model. The new model defines flux on the target per unit angle per unit speed, and for Earth orbit, includes the meteor showers. This paper quantifies the space debris environment for the ISS orbit from natural and anthropogenic sources. Particle flux and velocity distributions as functions of size and angle are be given for particles 10 microns and larger for altitudes from 350 to 450 km. The environment is projected forward in time until 2030.

  9. Active Debris Removal Using Modified Launch Vehicle Upper Stages

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea

    2013-09-01

    During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).

  10. Comparison of national space debris mitigation standards

    NASA Astrophysics Data System (ADS)

    Kato, A.

    2001-01-01

    Several national organizations of the space faring nations have established Space Debris Mitigation Standards or Handbooks to promote efforts to deal with the space debris issue. This paper introduces the characteristics of each document and compares the structure, items and level of requirements. The contents of these standards may be slightly different from each other but the fundamental principles are almost the same; they are (1) prevention of on-orbit breakups, (2) removal of mission terminated spacecraft from the useful orbit regions, and (3) limiting the objects released during normal operations. The Inter-Agency Space Debris Coordination Committee has contributed considerably to this trend. The Committee also found out by its recent survey that some commercial companies have begun to adopt the debris mitigation measures for their projects. However, the number of organizations that have initiated this kind of self-control is still limited, so the next challenge of the Committee is to promote the Space Debris Mitigation Guidelines world-wide. IADC initiated this project in October 1999 and a draft is being circulated among the member agencies.

  11. Orbiting Debris: a Space Environmental Problem. Background Paper

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.

  12. Active space debris removal—A preliminary mission analysis and design

    NASA Astrophysics Data System (ADS)

    Castronuovo, Marco M.

    2011-11-01

    The active removal of five to ten large objects per year from the low Earth orbit (LEO) region is the only way to prevent the debris collisions from cascading. Among the three orbital regions near the Earth where most catastrophic collisions are predicted to occur, the one corresponding to a sun-synchronous condition is considered the most relevant. Forty-one large rocket bodies orbiting in this belt have been identified as the priority targets for removal. As part of a more comprehensive system engineering solution, a space mission dedicated to the de-orbiting of five rocket bodies per year from this orbital regime has been designed. The selected concept of operations envisages the launch of a satellite carrying a number of de-orbiting devices, such as solid propellant kits. The satellite performs a rendezvous with an identified object and mates with it by means of a robotic arm. A de-orbiting device is attached to the object by means of a second robotic arm, the object is released and the device is activated. The spacecraft travels then to the next target. The present paper shows that an active debris removal mission capable of de-orbiting 35 large objects in 7 years is technically feasible, and the resulting propellant mass budget is compatible with many existing platforms.

  13. Development of the Space Debris Sensor

    NASA Technical Reports Server (NTRS)

    Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.

    2017-01-01

    The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2017. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured by the NASA Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 micron to 500 micron in size. This paper describes the SDS features and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.

  14. Analyzing costs of space debris mitigation methods

    NASA Astrophysics Data System (ADS)

    Wiedemann, C.; Krag, H.; Bendisch, J.; Sdunnus, H.

    The steadily increasing number of space objects poses a considerable hazard to all kinds of spacecraft. To reduce the risks to future space missions different debris mitigation measures and spacecraft protection techniques have been investigated during the last years. However, the economic efficiency has not been considered yet in this context. This economical background is not always clear to satellite operators and the space industry. Current studies have the objective to evaluate the mission costs due to space debris in a business as usual (no mitigation) scenario compared to the missions costs considering debris mitigation. The aim i an estimation of thes time until the investment in debris mitigation will lead to an effective reduction of mission costs. This paper presents the results of investigations on the key problems of cost estimation for spacecraft and the influence of debris mitigation and shielding on cost. The shielding of a satellite can be an effective method to protect the spacecraft against debris impact. Mitigation strategies like the reduction of orbital lifetime and de- or re-orbit of non-operational satellites are methods to control the space debris environment. These methods result in an increase of costs. In a first step the overall costs of different types of unmanned satellites are analyzed. The key problem is, that it is not possible to provide a simple cost model that can be applied to all types of satellites. Unmanned spacecraft differ very much in mission, complexity of design, payload and operational lifetime. It is important to classify relevant cost parameters and investigate their influence on the respective mission. The theory of empirical cost estimation and existing cost models are discussed. A selected cost model is simplified and generalized for an application on all operational satellites. In a next step the influence of space debris on cost is treated, if the implementation of mitigation strategies is considered.

  15. Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris

    NASA Astrophysics Data System (ADS)

    Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.

    2016-09-01

    The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.

  16. Development of the Space Debris Sensor (SDS)

    NASA Technical Reports Server (NTRS)

    Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.

    2017-01-01

    The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2018. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured at NASA Johnson Space Center's Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 microns to 500 microns in size. This paper describes the features of SDS and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.

  17. Operability of Space Station Freedom's meteoroid/debris protection system

    NASA Technical Reports Server (NTRS)

    Kahl, Maggie S.; Stokes, Jack W.

    1992-01-01

    The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.

  18. Analysis of a space debris laser removal system

    NASA Astrophysics Data System (ADS)

    Gjesvold, Evan; Straub, Jeremy

    2017-05-01

    As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.

  19. Apparent rotation properties of space debris extracted from photometric measurements

    NASA Astrophysics Data System (ADS)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas

    2018-02-01

    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  20. Space debris tracking at San Fernando laser station

    NASA Astrophysics Data System (ADS)

    Catalán, M.; Quijano, M.; Pazos, A.; Martín Davila, J.; Cortina, L. M.

    2016-12-01

    For years to come space debris will be a major issue for society. It has a negative impact on active artificial satellites, having implications for future missions. Tracking space debris as accurately as possible is the first step towards controlling this problem, yet it presents a challenge for science. The main limitation is the relatively low accuracy of the methods used to date for tracking these objects. Clearly, improving the predicted orbit accuracy is crucial (avoiding unnecessary anti-collision maneuvers). A new field of research was recently instituted by our satellite laser ranging station: tracking decommissioned artificial satellites equipped with retroreflectors. To this end we work in conjunction with international space agencies which provide increasing attention to this problem. We thus proposed to share our time-schedule of use of the satellite laser ranging station for obtaining data that would make orbital element predictions far more accurate (meter accuracy), whilst maintaining our tracking routines for active satellites. This manuscript reports on the actions carried out so far.

  1. Space Debris Mitigation Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  2. USA Space Debris Environment, Operations, and Research Updates

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  3. Orbital Debris: the Growing Threat to Space Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2010-01-01

    For nearly 50 years the amount of man-made debris in Earth orbit steadily grew, accounting for about 95% of all cataloged space objects over the past few decades. The Chinese anti-satellite test in January 2007 and the accidental collision of two spacecraft in February 2009 created more than 4000 new cataloged debris, representing an increase of 40% of the official U.S. Satellite Catalog. The frequency of collision avoidance maneuvers for both human space flight and robotic operations is increasing along with the orbital debris population. However, the principal threat to space operations is driven by the smaller and much more numerous uncataloged debris. Although the U.S. and the international aerospace communities have made significant progress in recognizing the hazards of orbital debris and in reducing or eliminating the potential for the creation of new debris, the future environment is expected to worsen without additional corrective measures.

  4. Analysis of the effect of attachment point bias during large space debris removal using a tethered space tug

    NASA Astrophysics Data System (ADS)

    Chu, Zhongyi; Di, Jingnan; Cui, Jing

    2017-10-01

    Space debris occupies a valuable orbital resource and is an inevitable and urgent problem, especially for large space debris because of its high risk and the possible crippling effects of a collision. Space debris has attracted much attention in recent years. A tethered system used in an active debris removal scenario is a promising method to de-orbit large debris in a safe manner. In a tethered system, the flexibility of the tether used in debris removal can possibly induce tangling, which is dangerous and should be avoided. In particular, attachment point bias due to capture error can significantly affect the motion of debris relative to the tether and increase the tangling risk. Hence, in this paper, the effect of attachment point bias on the tethered system is studied based on a dynamic model established based on a Newtonian approach. Next, a safety metric of avoiding a tangle when a tether is tensioned with attachment point bias is designed to analyse the tangling risk of the tethered system. Finally, several numerical cases are established and simulated to validate the effects of attachment point bias on a space tethered system.

  5. Space Debris Removal Using Multi-Mission Modular Spacecraft

    NASA Astrophysics Data System (ADS)

    Savioli, L.; Francesconi, A.; Maggi, F.; Olivieri, L.; Lorenzini, E.; Pardini, C.

    2013-08-01

    The study and development of ADR missions in LEO have become an issue of topical interest to the attention of the space community since the future space flight activities could be threatened by collisional cascade events. This paper presents the analysis of an ADR mission scenario where modular remover kits are employed to de-orbit some selected debris in SSO, while a distinct space tug performs the orbital transfers and rendezvous manoeuvres, and installs the remover kits on the client debris. Electro-dynamic tether and electric propulsion are considered as de-orbiting alternatives, while chemical propulsion is employed for the space tug. The total remover mass and de-orbiting time are identified as key parameters to compare the performances of the two de-orbiting options, while an optimization of the ΔV required to move between five selected objects is performed for a preliminary design at system level of the space tug. Final controlled re-entry is also considered and performed by means of a hybrid engine.

  6. Space debris measurement program at Phillips Laboratory

    NASA Technical Reports Server (NTRS)

    Dao, Phan D.; Mcnutt, Ross T.

    1992-01-01

    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  7. Space Transportation System Liftoff Debris Mitigation Process Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  8. Highlights of Recent Research Activities at the NASA Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Liou, J - C.

    2017-01-01

    The NASA Orbital Debris Program Office (ODPO) was established at the NASA Johnson Space Center in 1979. The ODPO has initiated and led major orbital debris research activities over the past 38 years, including developing the first set of the NASA orbital debris mitigation requirements in 1995 and supporting the establishment of the U.S. Government Orbital Debris Mitigation Standard Practices in 2001. This paper is an overview of the recent ODPO research activities, ranging from ground-based and in-situ measurements, to laboratory tests, and to engineering and long-term orbital debris environment modeling. These activities highlight the ODPO's commitment to continuously improve the orbital debris environment definition to better protect current and future space missions from the low Earth orbit to the geosynchronous Earth orbit regions.

  9. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.

    2010-09-01

    Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity

  10. The International Space Station and the Space Debris Environment: 10 Years On

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Klinkrad, Heiner

    2009-01-01

    For just over a decade the International Space Station (ISS), the most heavily protected vehicle in Earth orbit, has weathered the space debris environment well. Numerous hypervelocity impact features on the surface of ISS caused by small orbital debris and meteoroids have been observed. In addition to typical impacts seen on the large solar arrays, craters have been discovered on windows, hand rails, thermal blankets, radiators, and even a visiting logistics module. None of these impacts have resulted in any degradation of the operation or mission of the ISS. Validating the rate of small particle impacts on the ISS as predicted by space debris environment models is extremely complex. First, the ISS has been an evolving structure, from its original 20 metric tons to nearly 300 metric tons (excluding logistics vehicles) ten years later. Hence, the anticipated space debris impact rate has grown with the increasing size of ISS. Secondly, a comprehensive visual or photographic examination of the complete exterior of ISS has never been accomplished. In fact, most impact features have been discovered serendipitously. Further complications include the estimation of the size of an impacting particle without knowing its mass, velocity, and angle of impact and the effect of shadowing by some ISS components. Inadvertently and deliberately, the ISS has also been the source of space debris. The U.S. Space Surveillance Network officially cataloged 65 debris from ISS from November 1998 to November 2008: from lost cameras, sockets, and tool bags to intentionally discarded equipment and an old space suit. Fortunately, the majority of these objects fall back to Earth quickly with an average orbital lifetime of less than two months and a maximum orbital lifetime of a little more than 15 months. The cumulative total number of debris object-years is almost exactly 10, the equivalent of one piece of debris remaining in orbit for 10 years. An unknown number of debris too small to be

  11. Characterizing the Space Debris Environment with a Variety of SSA Sensors

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.

    2010-01-01

    Damaging space debris spans a wide range of sizes and altitudes. Therefore no single method or sensor can fully characterize the space debris environment. Space debris researchers use a variety of radars and optical telescopes to characterize the space debris environment in terms of number, altitude, and inclination distributions. Some sensors, such as phased array radars, are designed to search a large volume of the sky and can be instrumental in detecting new breakups and cataloging and precise tracking of relatively large debris. For smaller debris sizes more sensitivity is needed which can be provided, in part, by large antenna gains. Larger antenna gains, however, produce smaller fields of view. Statistical measurements of the debris environment with less precise orbital parameters result. At higher altitudes, optical telescopes become the more sensitive instrument and present their own measurement difficulties. Space Situational Awareness, or SSA, is concerned with more than the number and orbits of satellites. SSA also seeks to understand such parameters as the function, shape, and composition of operational satellites. Similarly, debris researchers are seeking to characterize similar parameters for space debris to improve our knowledge of the risks debris poses to operational satellites as well as determine sources of debris for future mitigation. This paper will discuss different sensor and sensor types and the role that each plays in fully characterizing the space debris environment.

  12. Engineering and Technology Challenges for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    After more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of

  13. Cost-effective and robust mitigation of space debris in low earth orbit

    NASA Astrophysics Data System (ADS)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also

  14. An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.

  15. Utilizing Weather RADAR for Rapid Location of Meteorite Falls and Space Debris Re-Entry

    NASA Technical Reports Server (NTRS)

    Fries, Marc D.

    2016-01-01

    This activity utilizes existing NOAA weather RADAR imagery to locate meteorite falls and space debris falls. The near-real-time availability and spatial accuracy of these data allow rapid recovery of material from both meteorite falls and space debris re-entry events. To date, at least 22 meteorite fall recoveries have benefitted from RADAR detection and fall modeling, and multiple debris re-entry events over the United States have been observed in unprecedented detail.

  16. Active space debris removal by a hybrid propulsion module

    NASA Astrophysics Data System (ADS)

    DeLuca, L. T.; Bernelli, F.; Maggi, F.; Tadini, P.; Pardini, C.; Anselmo, L.; Grassi, M.; Pavarin, D.; Francesconi, A.; Branz, F.; Chiesa, S.; Viola, N.; Bonnal, C.; Trushlyakov, V.; Belokonov, I.

    2013-10-01

    During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of

  17. Mission concept and autonomy considerations for active Debris removal

    NASA Astrophysics Data System (ADS)

    Peters, Susanne; Pirzkall, Christoph; Fiedler, Hauke; Förstner, Roger

    2016-12-01

    Over the last 60 years, Space Debris has become one of the main challenges for the safe operation of satellites in low Earth orbit. To address this threat, guidelines that include a limited debris release during normal operations, minimization of the potential for on-orbit break-ups and post mission disposal have begun to be implemented. However, for the long-term, the amount of debris will still increase due to fragments created by collisions of objects in space. The active removal of space debris of at least five large objects per years is therefore recommended, but not yet included in those guidelines. Even though various technical concepts have been developed over the last years, the question on how to make them reliable and safe or how to finance such mission has not been answered. This paper addresses the first two topics. With Space Debris representing an uncooperative and possibly tumbling target, close proximity becomes absolutely critical, especially when an uninterrupted connection to the ground station is not ensured. This paper therefore defines firstly a mission to remove at least five large objects and secondly introduces a preliminary autonomy concept fitted for this mission.

  18. Launch activity and orbital debris mitigation : second quarter 2002 Quarterly Launch Report

    DOT National Transportation Integrated Search

    2002-01-01

    Since the start of human space activity, the number of orbital debris, or artificial objects orbiting Earth that are no longer functional, : has steadily increased. These debris make up 95 percent of all orbiting space objects and consist of spent sa...

  19. In-space technology development: Atomic oxygen and orbital debris effects

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Potter, Andrew E., Jr.

    1989-01-01

    Earlier Shuttle flight experiments have shown atomic oxygen within the orbital environment can interact with many materials to produce surface recession and mass loss and combine catalytically with other constituents to generate visible and infrared glows. In addition to these effects, examinations of returned satellite hardware have shown many spacecraft materials are also susceptible to damage from high velocity impacts with orbital space debris. These effects are of particular concern for large, multi-mission spacecraft, such as Space Station and SDI operational satellites, that will operate in low-Earth orbit (LEO) during the late 1990's. Not only must these spacecraft include materials and exterior coatings that are resistant to atomic oxygen surface interactions, but these materials must also provide adequate protection against erosion and pitting that could result from numerous impacts with small particles (less than 100 microns) of orbital space debris. An overview of these concerns is presented, and activities now underway to develop materials and coatings are outlined that will provide adequate atomic protection for future spacecraft. The report also discusses atomic oxygen and orbital debris flight experiments now under development to expand our limited data base, correlate ground-based measurments with flight results, and develop an orbital debris collision warning system for use by future spacecraft.

  20. Final design of a space debris removal system

    NASA Astrophysics Data System (ADS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-12-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  1. Final design of a space debris removal system

    NASA Technical Reports Server (NTRS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-01-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  2. Finite element analysis of space debris removal by high-power lasers

    NASA Astrophysics Data System (ADS)

    Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming

    2015-08-01

    With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.

  3. Conceptualizing an economically, legally, and politically viable active debris removal option

    NASA Astrophysics Data System (ADS)

    Emanuelli, M.; Federico, G.; Loughman, J.; Prasad, D.; Chow, T.; Rathnasabapathy, M.

    2014-11-01

    It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity's access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today's restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these

  4. Harnessing Orbital Debris to Sense the Space Environment

    NASA Astrophysics Data System (ADS)

    Mutschler, S.; Axelrad, P.; Matsuo, T.

    A key requirement for accurate space situational awareness (SSA) is knowledge of the non-conservative forces that act on space objects. These effects vary temporally and spatially, driven by the dynamical behavior of space weather. Existing SSA algorithms adjust space weather models based on observations of calibration satellites. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion prediction. The uncontrolled nature of debris makes it particularly sensitive to the variations in space weather. Our research takes advantage of this behavior by inverting observations of debris objects to infer the space environment parameters causing their motion. In addition, this research will produce more accurate predictions of the motion of debris objects. The hypothesis of this research is that it is possible to utilize a "cluster" of debris objects, objects within relatively close proximity of each other, to sense their local environment. We focus on deriving parameters of an atmospheric density model to more precisely predict the drag force on LEO objects. An Ensemble Kalman Filter (EnKF) is used for assimilation; the prior ensemble to the posterior ensemble is transformed during the measurement update in a manner that does not require inversion of large matrices. A prior ensemble is utilized to empirically determine the nonlinear relationship between measurements and density parameters. The filter estimates an extended state that includes position and velocity of the debris object, and atmospheric density parameters. The density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing Earth. This research focuses on LEO object motion, but it can also be extended to additional orbital regimes for observation and refinement of magnetic field and solar radiation models. An observability analysis of the proposed approach is presented in terms of the

  5. Space Shuttle crew compartment debris-contamination

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Villarreal, Leopoldo J.

    1992-01-01

    Remedial actions undertaken to reduce debris during manned flights and ground turnaround operations at Kennedy Space Center and Palmdale are addressed. They include redesign of selected ground support equipment and Orbiter hardware to reduce particularization/debris generation; development of new detachable filters for air-cooled avionics boxes; application of tape-on screens to filter debris; and implementation of new Orbiter maintenance and turnaround procedures to clean filters and the crew compartment. Most of these steps were implemented before the return-to-flight of STS-26 in September 1988 which resulted in improved crew compartment habitability and less potential for equipment malfunction.

  6. Active Debris Removal System Based on Polyurethane Foam

    NASA Astrophysics Data System (ADS)

    Rizzitelli, Federico; Valdatta, Marcelo; Bellini, Niccolo; Candini Gian, Paolo; Rastelli, Davide; Romei, Fedrico; Locarini, Alfredo; Spadanuda, Antonio; Bagassi, Sara

    2013-08-01

    Space debris is an increasing problem. The exponential increase of satellite launches in the last 50 years has determined the problem of space debris especially in LEO. The remains of past missions are dangerous for both operative satellites and human activity in space. But not only: it has been shown that uncontrolled impacts between space objects can lead to a potentially dangerous situation for civil people on Earth. It is possible to reach a situation of instability where the big amount of debris could cause a cascade of collisions, the so called Kessler syndrome, resulting in the infeasibility of new space missions for many generations. Currently new technologies for the mitigation of space debris are under study: for what concerning the removal of debris the use of laser to give a little impulse to the object and push it in a graveyard orbit or to be destroyed in the atmosphere. Another solution is the use of a satellite to rendezvous with the space junk and then use a net to capture it and destroy it in the reentry phase. In a parallel way the research is addressed to the study of deorbiting solutions to prevent the formation of new space junk. The project presented in this paper faces the problem of how to deorbit an existing debris, applying the studies about the use of polyurethane foam developed by Space Robotic Group of University of Bologna. The research is started with the Redemption experiment part of last ESA Rexus program. The foam is composed by two liquid components that, once properly mixed, trig an expansive reaction leading to an increase of volume whose entity depends on the chemical composition of the two starting components. It is possible to perform two kind of mission: 1) Not controlled removal: the two components are designed to react producing a low density, high expanded, spongy foam that incorporates the debris. The A/m ratio of the debris is increased and in this way also the ballistic parameter. As a consequence, the effect of

  7. Augmentation of UK Space Debris Observing Capabilities Using Univiersity Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Herridge, Philip; Brown, David; Crowther, Richard

    2013-08-01

    The study of space debris requires a range of different sensors. Debris population monitoring requires survey, follow-on and characterisation capable sensors. In order to fully participate in space debris measurement the range of sensors available to the UK Space Agency needs to be augmented with additional capability. One source of untapped resource resides within the UK university sector. This paper discusses investigation into extending the optical sensor diversity available to the UK for participation in study of the debris environment through a collaboration between Space Insight Limited, a commercial company providing Space Situational Awareness (SSA) services to the UK Space Agency, and the Astronomy Group at the University of St Andrews.

  8. Global tracking of space debris via CPHD and consensus

    NASA Astrophysics Data System (ADS)

    Wei, Baishen; Nener, Brett; Liu, Weifeng; Ma, Liang

    2017-05-01

    Space debris tracking is of great importance for safe operation of spacecraft. This paper presents an algorithm that achieves global tracking of space debris with a multi-sensor network. The sensor network has unknown and possibly time-varying topology. A consensus algorithm is used to effectively counteract the effects of data incest. Gaussian Mixture-Cardinalized Probability Hypothesis Density (GM-CPHD) filtering is used to estimate the state of the space debris. As an example of the method, 45 clusters of sensors are used to achieve global tracking. The performance of the proposed approach is demonstrated by simulation experiments.

  9. Space debris detection in optical image sequences.

    PubMed

    Xi, Jiangbo; Wen, Desheng; Ersoy, Okan K; Yi, Hongwei; Yao, Dalei; Song, Zongxi; Xi, Shaobo

    2016-10-01

    We present a high-accuracy, low false-alarm rate, and low computational-cost methodology for removing stars and noise and detecting space debris with low signal-to-noise ratio (SNR) in optical image sequences. First, time-index filtering and bright star intensity enhancement are implemented to remove stars and noise effectively. Then, a multistage quasi-hypothesis-testing method is proposed to detect the pieces of space debris with continuous and discontinuous trajectories. For this purpose, a time-index image is defined and generated. Experimental results show that the proposed method can detect space debris effectively without any false alarms. When the SNR is higher than or equal to 1.5, the detection probability can reach 100%, and when the SNR is as low as 1.3, 1.2, and 1, it can still achieve 99%, 97%, and 85% detection probabilities, respectively. Additionally, two large sets of image sequences are tested to show that the proposed method performs stably and effectively.

  10. An efficient algorithm for orbital evolution of space debris

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Y.; Abd El-Salam, F.

    More than four decades of space exploration have led to accumulation of significant quantities of debris around the Earth. These objects range in size from a tiny piece of junk to a large inoperable satellite, although these objects that have small size they have high are-to-mass ratios, and consequently their orbits are strongly influenced by solar radiation pressure and atmospheric drag. So the increasing population of space debris object in the LEO, MEO and GEO present growing with time, serious hazard for the survival of operating spacecrafts, particularly satellites and astronomical observatories. Since the average collision velocity between any spacecraft orbiting in the LOE and debris objects is about 10 km/s and about 3 km/s in the GEO. Space debris may significantly disturb any satellite operations or cause catastrophic damage to a spacecraft itself. Applying different shielding techniques spacecraft my be protected against impacts of space debris with diameters smaller than 1 cm. For larger debris objects, only one effective method to avoid catastrophic consequence of collision is a manoeuvre that will change the spacecraft orbit. The necessary conditions in this case is to evaluate and predict future positions of the spacecraft and space debris with sufficient accuray. Numerical integration of equations of motion are used until now. Existing analytical methods can solve this problem only with low accuracy. Difficulties are caused mainly by the lack of satisfying analytical solution of the resonance problem for geosynchronous orbit as well as from the lack of efficient analytical theory combining luni-solar perturbation and solar radiation pressure with geopotential attraction. Numerical integration is time consuming in some cases, and then for qualitative analysis of the satellite's and debris's motion it is necessary to apply analytical solution. This is the reason for searching for an accurate model to evaluate the orbital position of the operating

  11. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  12. Active debris removal: Recent progress and current trends

    NASA Astrophysics Data System (ADS)

    Bonnal, Christophe; Ruault, Jean-Marc; Desjean, Marie-Christine

    2013-04-01

    According to all available findings at international level, the Kessler syndrome, increase of the number of space debris in Low Earth Orbits due to mutual collisions, appears now to be a fact, triggered mainly by several major break-ups in orbit which occurred since 2007. The time may have come to study how to clean this fundamentally useful orbital region in an active way. CNES has studied potential solutions for more than 12 years! The paper aims at reviewing the current status of these activities. The high level requirements are fundamental, and have to be properly justified. The working basis, as confirmed through IADC studies consists in the removal of 5-10 integer objects from the overcrowded orbits, spent upper stages or old satellites, as identified by NASA. The logic of CNES activities consider a stepped approach aiming at progressively gaining the required Technological Readiness Level on the features required for Active Debris Removal which have not yet been demonstrated in orbit. The rendezvous with a non-cooperative, un-prepared, tumbling debris is essential. Following maturation gained with Research and Technology programs, a set of small orbital demonstrators could enable a confidence high enough to perform a full end to end demonstration performing the de-orbiting of a large debris and paving the way for the development of a first generation operational de-orbiter. The internal CNES studies, led together by the Toulouse Space Centre and the Paris Launcher Directorate, have started in 2008 and led to a detailed System Requirements Document used for the Industrial studies. Three industrial teams did work under CNES contract during 2011, led by Thales Alenia Space, Bertin Technologies and Astrium Space Transportation, with numerous sub-contractors. Their approaches were very rich, complementary, and innovative. The second phase of studies began mid-2012. Some key questions nevertheless have to be resolved, and correspond generally to current IADC

  13. Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Stephens, Walter

    2005-01-01

    In the wake of the Space Shuttle Columbia disaster every effort is being made to determine the susceptibility of Space Shuttle elements to debris impacts. Ice and frost debris is formed around the aft heat shield closure of the orbiter and liquid hydrogen feedlines. This debris has been observed to liberate upon lift-off of the shuttle and presents potentially dangerous conditions to the Space Shuttle Main Engine. This paper describes the testing done to determine the impact tolerance of the Space Shuttle Main Engine nozzle coolant tubes to ice strikes originating from the launch pad or other parts of the shuttle.

  14. Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser

    NASA Astrophysics Data System (ADS)

    Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu

    2018-02-01

    Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.

  15. Tracking Debris Shed by a Space-Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stuart, Phillip C.; Rogers, Stuart E.

    2009-01-01

    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  16. Need for a network of observatories for space debris dynamical and physical characterization

    NASA Astrophysics Data System (ADS)

    Piergentili, Fabrizio; Santoni, Fabio; Castronuovo, Marco; Portelli, Claudio; Cardona, Tommaso; Arena, Lorenzo; Sciré, Gioacchino; Seitzer, Patrick

    2016-01-01

    Space debris represents a major concern for space missions since the risk of impact with uncontrolled objects has increased dramatically in recent years. Passive and active mitigation countermeasures are currently under consideration but, at the base of any of such corrective actions is the space debris continuous monitoring through ground based surveillance systems.At the present, many space agencies have the capability to get optical measurements of space orbiting objects mainly relaying on single observatories. The recent research in the field of space debris, demonstrated how it is possible to increase the effectiveness of optical measurements exploitation by using joint observations of the same target from different sites.The University of Rome "La Sapienza", in collaboration with Italian Space Agency (ASI), is developing a scientific network of observatories dedicated to Space Debris deployed in Italy (S5Scope at Rome and SPADE at Matera) and in Kenya at the Broglio Space Center in Malindi (EQUO). ASI founded a program dedicated to space debris, in order to spread the Italian capability to deal with different aspects of this issue. In this framework, the University of Rome is in charge of coordinating the observatories network both in the operation scheduling and in the data analysis. This work describes the features of the observatories dedicated to space debris observation, highlighting their capabilities and detailing their instrumentation. Moreover, the main features of the scheduler under development, devoted to harmonizing the operations of the network, will be shown. This is a new system, which will autonomously coordinate the observations, aiming to optimize results in terms of number of followed targets, amount of time dedicated to survey, accuracy of orbit determination and feasibility of attitude determination through photometric data.Thus, the authors will describe the techniques developed and applied (i) to implement the multi-site orbit

  17. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  18. International Space Station: Meteoroid/Orbital Debris Survivability and Vulnerability

    NASA Technical Reports Server (NTRS)

    Graves, Russell

    2000-01-01

    This slide presentation reviews the surviability and vulnerability of the International Space Station (ISS) from the threat posed by meteoroid and orbital debris. The topics include: (1) Space station natural and induced environments (2) Meteoroid and orbital debris threat definition (3) Requirement definition (4) Assessment methods (5) Shield development and (6) Component vulnerability

  19. Recent Measurements of the Orbital Debris Environment at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stansbery, E. G.; Settecerri, T. J.; Africano, J. L.

    1999-01-01

    Space debris presents many challenges to current space operations. Although, the probability of collision between an operational spacecraft and a piece of space debris is quite small, the potential losses can be quite high. Prior to 1990, characterization of the orbital debris environment was divided into two categories. Objects larger than 10 cm are monitored by the United States Space Surveillance Network (SSN) and documented in the U.S. Space Command (USSPACECOM) catalog. Knowledge of debris smaller than 0.1 cm has come from the analyses of returned surfaces. The lack of information about the debris environment in the size range from 0.1 to 1 0 cm led to a joint NASA-DOD effort for orbital debris measurements using the Haystack radar and the unbuilt Haystack Auxiliary (HAX) radars. The data from these radars have been critical to the design of shielding for the International Space Station and have been extensively used in the creation of recent models describing the orbital debris environment. Recent debris campaigns have been conducted to verify and validate through comparative measurements, the results and conclusions drawn from the Haystack/HAX measurements. The Haystack/HAX measurements and results will be described as well as the results of the recent measurement campaigns.

  20. Micrometeoroid/space debris effects on materials

    NASA Technical Reports Server (NTRS)

    Zwiener, James M.; Finckenor, Miria M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) micrometeoroid/space debris impact data has been reduced in terms that are convenient for evaluating the overall quantitative effect on material properties. Impact crater flux has been evaluated as a function of angle from velocity vector and as a function of crater size. This data is combined with spall data from flight and ground testing to calculate effective solar absorption and emittance values versus time. Results indicate that the surface damage from micrometeoroid/space debris does not significantly affect the overall surface optical thermal physical properties. Of course the local damage around impact craters radically alter optical properties. Damage to composites and solar cells on an overall basis was minimal.

  1. Space Station: Delays in dealing with space debris may reduce safety and increase costs

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The majority of NASA's current designs for protecting the space station and crew from debris are outdated and its overall debris protection strategy is insufficient. NASA's contractors have designed the station using a 1984 model of the space environment that is obsolete, significantly underestimating the increasing amount of debris that the station will encounter during its 30-year lifetime. In February 1992, NASA directed its space centers to incorporate an updated 1991 model into their designs. However, the agency has not yet made critical decisions on how to implement this change. Preliminary evaluations show that incorporating the 1991 model using currently established safety criteria could entail a major redesign of some components, with significant cost impact and schedule delays. NASA's overall protection strategy for space debris is insufficient. While NASA has concentrated its protection on shielding the space station from small debris and plans to augment this initial shielding in orbit, it has not yet developed designs or studied the cost and operational impact of augmenting its protection with additional shielding. Further, current designs do not provide the capability of warning or protecting the crew from imminent collision with mid-size debris. Finally, although some capabilities exist for maneuvering the station away from large debris, the agency lacks collision-avoidance plans and debris-tracking equipment. In developing a comprehensive strategy to protect the station from the more severe debris environment, NASA cannot avoid some difficult decisions. These decisions involve tradeoffs between how much the agency is willing to pay to protect the station, the schedule delays it may incur, and the risk to station safety it is willing to accept. It is important that these decisions be made before NASA completes its critical design reviews in early 1993. At that time key designs will be made final and manufacturing will begin. Without a comprehensive

  2. Optical Observations of Space Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira; Rodriquez, Heather; Barker, Edwin S.; Kelecy, Thomas

    2008-01-01

    This viewgraph presentation reviews the use of optical telescopes to observe space debris. .It will present a brief review of how the survey is conducted, and what some of the significant results encompass. The goal is to characterize the population of debris objects at GEO, with emphasis on the faint object population. Because the survey observations extend over a very short arc (5 minutes), a full six parameter orbit can not be determined. Recently we have begun to use a second telescope, the 0.9-m at CTIO, as a chase telescope to do follow-up observations of potential GEO debris candidates found by MODEST. With a long enough sequence of observations, a full six-parameter orbit including eccentricity can be determined. The project has used STK since inception for planning observing sessions based on the distribution of bright cataloged objects and the anti-solar point (to avoid eclipse). Recently, AGI's Orbit Determination Tool Kit (ODTK) has been used to determine orbits, including the effects of solar radiation pressure. Since an unknown fraction of the faint debris at GEO has a high area-to-mass ratio (A/M), the orbits are perturbed significantly by solar radiation. The ODTK analysis results indicate that temporal variations in the solar perturbations, possibly due to debris orientation dynamics, can be estimated in the OD process. Additionally, the best results appear to be achieved when solar forces orthogonal to the object-Sun line are considered. Determining the A/M of individual objects and the distribution of A/M values of a large sample of debris is important to understanding the total population of debris at GEO

  3. Orbiting Space Debris: Dangers, Measurement and Mitigation

    DTIC Science & Technology

    1992-01-01

    42 2.3.3 Operational Debris 43 2.3.4 Fragmentation Debris 45 2.4 Smaller Debris Sources 62 2.4.1 Paint Chips 62 2.4.2 Exhaust Particles 63 2.4.3...4.1 Velocity of Collisions 109 4.2 Damage Mechanisms 114 4.2.1 Particle Impact 117 4.2.2 Impulsive Loading 119 4.2.3 Spalling 120 4.2.4 Shock 121 4.2.5...Inclination. Size Figure 3.8 Space Command Catalog Completeness as 85 Determined with the GEODSS Telescopes Figure 3.9 Meteoriod Flux vs Particle Diameter 88

  4. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  5. Space Debris Hazard Evaluation

    NASA Technical Reports Server (NTRS)

    Davison, Elmer H.; Winslow, Paul C., Jr.

    1961-01-01

    The hazard to space vehicles from natural space debris has been explored. A survey of the available information pertinent to this problem is presented. The hope is that this presentation gives a coherent picture of the knowledge to date in terms of the topic covered. The conclusion reached is that a definite hazard exists but that it can only be poorly assessed on the basis of present information. The need for direct measurement of this hazard is obvious, and some of the problems involved in making these direct measurements have been explored.

  6. Cost and risk assessment for spacecraft operation decisions caused by the space debris environment

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Jasper, Lee E. Z.; Anderson, Paul V.; McKnight, Darren S.

    2015-08-01

    Space debris is a topic of concern among many in the space community. Most forecasting analyses look centuries into the future to attempt to predict how severe debris densities and fluxes will become in orbit regimes of interest. Conversely, space operators currently do not treat space debris as a major mission hazard. This survey paper outlines the range of cost and risk evaluations a space operator must consider when determining a debris-related response. Beyond the typical direct costs of performing an avoidance maneuver, the total cost including indirect costs, political costs and space environmental costs are discussed. The weights on these costs can vary drastically across mission types and orbit regimes flown. The operator response options during a mission are grouped into four categories: no action, perform debris dodging, follow stricter mitigation, and employ ADR. Current space operations are only considering the no action and debris dodging options, but increasing debris risk will eventually force the stricter mitigation and ADR options. Debris response equilibria where debris-related risks and costs settle on a steady-state solution are hypothesized.

  7. User's Manual for Space Debris Surfaces (SD_SURF)

    NASA Technical Reports Server (NTRS)

    Elfer, N. C.

    1996-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design which is best suited to the predominant penetration mechanism. The analysis also indicates the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs and Microsoft EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII version 1.2a or 1.3 (Cosmic released). The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs.

  8. Approaches to dealing with meteoroid and orbital debris protection on the Space Station

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1990-01-01

    Viewgraphs and discussion on approaches to dealing with meteoroid and orbital debris protection on the space station are presented. The National Space Policy of February, 1988, included the following: 'All sectors will seek to minimize the creation of space debris. Design and operations of space tests, experiments, and systems will strive to minimize or reduce accumulation of space debris consistent with mission requirements and cost effectiveness.' The policy also tasked the National Security Council, which established an Interagency Group, which in turn produced an Interagency Report. NASA and DoD tasks to establish a joint plan to determine techniques to measure the environment, and techniques to reduce the environment are addressed. Topics covered include: orbital debris environment, meteoroids, orbital debris population, cataloged earth satellite population, USSPACECOM cataloged objects, and orbital debris radar program.

  9. Stereo–SCIDAR System for Improvement of Adaptive Optics Space Debris-tracking Activities

    NASA Astrophysics Data System (ADS)

    Thorn, E.; Korkiakoski, V.; Grosse, D.; Bennet, F.; Rigaut, F.; d'Orgeville, C.; Munro, J.; Smith, C.

    The Research School of Astronomy and Astrophysics (RSAA) in conjunction with the Space Environment Research Center (SERC) has developed a single detector stereo-SCIDAR (SCIntillation Detection And Ranging) system to characteristic atmospheric turbulence. We present the mechanical and optical design, as well as some preliminary results. SERC has a vested interest in space situational awareness (SSA), with a focus on space debris. RSAA is developing adaptive optics (AO) systems to aid in the detection of, ranging to, and orbit propagation of said debris. These AO systems will be directly improved by measurements provided by the usage of the stereo-SCIDAR system developed. SCIDAR is a triangulation technique that utilises a detector to take short exposures of the scintillation pupil patterns of a double star. There is an altitude at which light propagating from these stars passes through the same "patch" of turbulence in Earth's atmosphere: this patch induces wavefront aberrations that are projected onto different regions of the scintillation pupil patterns. An auto-correlation function is employed to extract the height at which the turbulence was introduced into the wavefronts. Unlike stereo-SCIDAR systems developed by other organisations - which utilise a dedicated detector for each of the pupil images - our system will use a pupil-separating prism and a single detector to image both pupils. Using one detector reduces cost as well as design and optical complexity. The system has been installed (in generalised SCIDAR form with a stereo- SCIDAR upgrade scheduled for nest year), tested and operated on the EOS Space Systems' 1.8m debris-ranging telescope at Mount Stromlo, Canberra. Specifically, it was designed to observe double stars separated by 5 to 25 arcseconds with a greater magnitude difference tolerance than conventional SCIDAR, that conventional difference being roughly 2.5. We anticipate taking measurements of turbulent layers up to 15km in altitude with a

  10. Particle swarm optimization based space debris surveillance network scheduling

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao

    2017-02-01

    The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.

  11. Applied Astronomy: An Optical Survey for Space Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Edwin S.; Abercromby, K.; Rodriquez, H.

    2007-01-01

    A viewgraph is presented to discuss space debris at Geosynchronous Earth Orbit (GEO). The topics include: 1) Syncom1 launched February 14, 1963 Failed on orbit insertion 1st piece of GEO debris!; 2) Example of recent GEO payload: XM-2 Rock satellite for direct broadcast radio; 3) MODEST Michigan Orbital DEbrisSurvey Telescope the telescope formerly known as the Curtis-Schmidt; 4) GEO Debris Survey; 5) Examples of Detections; 6) Brightness Variations Common; 7) Observed Angular Rates; 8) Two Populations at GEO; 9) High Area-to-Mass Ratio Material (A/M); 10) Examples of MLI; 11) Examples of MLI Release in LEO; 12) Liou & Weaver (2005) models; 13) ESA 1-m Telescope Survey; 14) Two Telescopes March 2007 Survey and Follow-up; 15) Final Eccentricity; and 16) How control Space Debris?

  12. Ice/frost/debris assessment for space shuttle mission STS-26R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1988-01-01

    An Ice/Frost/Debris Assessment was conducted for Space Shuttle Mission STS-26R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions are assessed by use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission 26R and their effect on the Space Shuttle Program is documented.

  13. A Sensitivity Study on the Effectiveness of Active Debris Removal in LEO

    NASA Technical Reports Server (NTRS)

    Liou, J. C.; Johnson, Nicholas L.

    2007-01-01

    The near-Earth orbital debris population will continue to increase in the future due to ongoing space activities, on-orbit explosions, and accidental collisions among resident space objects. Commonly adopted mitigation measures, such as limiting postmission orbital lifetimes of satellites to less than 25 years, will slow down the population growth, but may be insufficient to stabilize the environment. The nature of the growth, in the low Earth orbit (LEO) region, is further demonstrated by a recent study where no future space launches were conducted in the environment projection simulations. The results indicate that, even with no new launches, the LEO debris population would remain relatively constant for only the next 50 years. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Therefore, to better limit the growth of future debris population to protect the environment, remediation option, i.e., removing existing large and massive objects from orbit, needs to be considered. This paper does not intend to address the technical or economical issues for active debris removal. Rather, the objective is to provide a sensitivity study to quantify the effectiveness of various remediation options. A removal criterion based upon mass and collision probability is developed to rank objects at the beginning of each projection year. This study includes simulations with removal rates ranging from 2 to 20 objects per year, starting in the year 2020. The outcome of each simulation is analyzed, and compared with others. The summary of the study serves as a general guideline for future debris removal consideration.

  14. Harnessing Adaptive Optics for Space Debris Collision Mitigation

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Copeland, M.; Rigaut, F.; d'Orgeville, C.; Grosse, D.

    2016-09-01

    Human kind's continued use of space depends upon minimising the build-up of debris in low Earth-orbit (LEO). Preventing collisions between satellites and debris is essential given that a single collision can generate thousands of new debris objects. However, in-orbit manoeuvring of satellites is extremely expensive and shortens their operational life. Adjusting the orbits of debris objects instead of satellites would shift the responsibility of collision avoidance away from satellite operators altogether, thereby offering a superior solution. The Research School of Astronomy and Astrophysics at the Australian National University, partnered with Electro Optic Systems (EOS) Space Systems, Lockheed Martin Corporation and the Space Environment Research Centre (SERC) Limited, are developing the Adaptive Optics Tracking and Pushing (AOTP) system. AOTP will be used to perturb the orbits of debris objects using photon pressure from a 10 kW IR laser beam launched from the 1.8 m telescope at Mount. Stromlo Observatory, Australia. Initial simulations predict that AOTP will be able to displace debris objects 10 cm in size by up to 100 m with several overhead passes. An operational demonstrator is planned for 2019. Turbulence will distort the laser beam as it propagates through the atmosphere, resulting in a lower photon flux on the target and reduced pointing accuracy. To mitigate these effects, adaptive optics (AO) will be used to apply wavefront correction to the beam prior to launch. A unique challenge in designing the AO system arises from the high slew rate needed to track objects in LEO, which in turn requires laser guide star AO for satisfactory wavefront correction. The optical design and results from simulations of estimated performance of AOTP will be presented. In particular, design considerations associated with the high-power laser will be detailed.

  15. Operational support to collision avoidance activities by ESA's space debris office

    NASA Astrophysics Data System (ADS)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for

  16. Space Debris Surfaces - Probability of no penetration versus impact velocity and obliquity

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1992-01-01

    A collection of computer codes called Space Debris Surfaces (SD-SURF), have been developed to assist in the design and analysis of space debris protection systems. An SD-SURF analysis will show which obliquities and velocities are most likely to cause a penetration to help the analyst select a shield design best suited to the predominant penetration mechanism. Examples of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration are presented.

  17. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri

    1991-01-01

    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.

  18. ISU Team Project: An Integral View on Space Debris Mitigation and Removal

    NASA Astrophysics Data System (ADS)

    Maier, Philipp; Ricote Navarro, Carmon; Jehn, Rudiger; Gini, Andrea; Faure, Pauline; Adriaensen, Maarten; Datta, Iman; Hilbich, Daniel; Jacimovic, Aleksandar; Jacques, Lionel; Penent, Guilhem; Sinn, Thomas; Shioi, Hiroaki

    2013-08-01

    The issue of space debris poses challenges not only in technical, but also legal, political and economic dimensions. A sustainable solution needs to take into account all of them. This paper investigates such a potential solution in a multidisciplinary approach. To this end, it addresses the effectiveness of the existing debris mitigation guidelines, and identifies technical improvements for mitigation. It continues examining technical concepts for debris removal and performing proper cost-benefit trade-offs. The results of new simulations to assess the damage cost caused by space debris are presented. Based on these findings, an organizational framework and political recommendations are developed which will enable a sustainable use of space starting in 2020. The findings are compiled into a roadmap, which outlines 1) a path to the full adherence to debris mitigation guidelines and 2) the removal of ten large pieces of debris per year by a dedicated international organization, including expected expenditures necessary for its implementation.

  19. A deployable mechanism concept for the collection of small-to-medium-size space debris

    NASA Astrophysics Data System (ADS)

    St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément

    2018-03-01

    Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small

  20. Space Debris Alert System for Aviation

    NASA Astrophysics Data System (ADS)

    Sgobba, Tommaso

    2013-09-01

    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  1. Electromagnetic absorption properties of spacecraft and space debris

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Santoni, F.; Giusti, A.; Delfini, A.; Pastore, R.; Vricella, A.; Albano, M.; Arena, L.; Piergentili, F.; Marchetti, M.

    2017-04-01

    Aim of the work is to present a method to evaluate the electromagnetic absorption properties of spacecraft and space debris. For these objects, the radar detection ability depends mainly on volume, shape, materials type and other electromagnetic reflecting behaviour of spacecraft surface components, such as antennas or thermal blankets, and of metallic components in space debris. The higher the electromagnetic reflection coefficient of such parts, the greater the radar detection possibility. In this research an electromagnetic reverberation chamber is used to measure the absorption cross section (ACS) of four objects which may represent space structure operating components as well as examples of space debris: a small satellite, a composite antenna dish, a Thermal Protection System (TPS) tile and a carbon-based composite missile shell. The ACS mainly depends on geometrical characteristics like apertures, face numbers and bulk porosity, as well as on the type of the material itself. The ACS, which is an electromagnetic measurement, is expressed in squared meters and thus can be compared with the objects geometrical cross section. A small ACS means a quite electromagnetic reflective tendency, which is beneficial for radar observations; on the contrary, high values of ACS indicate a strong absorption of the electromagnetic field, which in turn can result a critical hindering of radar tracking.

  2. Image processing improvement for optical observations of space debris with the TAROT telescopes

    NASA Astrophysics Data System (ADS)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  3. Ice/frost/debris assessment for space shuttle Mission STS-32 (61-C)

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Speece, Robert F.

    1986-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-32 (61-C). This assessment begins with debris inspections of the flight elements and launch facilities before and after launch. Ice/Frost formations are calculated during cryogenic loading of the external tank followed by an on-pad assessment of the Shuttle vehicle and pad at T-3 hours in the countdown. High speed films are reviewed after launch to identify Ice/Frost/Debris sources and investigate potential vehicle damage. The Ice/Frost/Debris conditions and their effects on the Space Shuttle are documented.

  4. Impact of the New Optimal Rules for Arbitration of Disputers Relating to Space Debris Controversies

    NASA Astrophysics Data System (ADS)

    Force, Melissa K.

    2013-09-01

    The mechanisms and procedures for settlement of disputes arising from space debris collision damage, such as that suffered by the Russian Cosmos and US Iridium satellites in 2009, are highly political, nonbinding and unpredictable - all of which contributes to the uncertainty that increases the costs of financing and insuring those endeavors that take place in near-Earth space, especially in Low Earth Orbit. Dispute settlement mechanisms can be found in the 1967 Outer Space Treaty, which provides for consultations in cases involving potentially harmful interference with activities of States parties, and in the 1972 Liability Convention which permits but does not require States - not non-governmental entities - to pursue claims in a resolution process that is nonbinding (unless otherwise agreed.) There are soft- law mechanisms to control the growth of space debris, such as the voluntary 2008 United Nations Space Debris Mitigation Guidelines, and international law and the principles of equity and justice generally provide reparation to restore a person, State or organization to the condition which would have existed if damage had not occurred, but only if all agree to a specific tribunal or international court; even then, parties may be bound by the result only if agreed and enforcement of the award internationally remains uncertain. In all, the dispute resolution process for damage resulting from inevitable future damage from space debris collisions is highly unsatisfactory. However, the Administrative Council of the Permanent Court of Arbitration's recently adopted Optional Rules for the Arbitration of Disputes Relating to Outer Space Activities are, as of yet, untested, and this article will provide an overview of the process, explore the ways in which they fill in gaps in the previous patchwork of systems and analyze the benefits and shortcomings of the new Outer Space Optional Rules.

  5. Mitigation Policy Scenario of Space Debris Threat Related with National Security

    NASA Astrophysics Data System (ADS)

    Herdiansyah, Herdis; Frimawaty, Evy; Munir, Ahmad

    2016-02-01

    The development of air space recently entered a new phase, when the space issues correlated with the future of a country. In past time, the space authorization was related with advancing technology by many space mission and various satellite launchings, or it could be said that who ruled technology will rule the space. Therefore, the numerous satellites in the space could be a threat for the countries which are mainly located in the path of the satellite, especially in the equatorial region including Indonesia. This study aims to create a policy scenario in mitigating the threat of space debris. The results showed that although space debris was not threatened national security for now, but the potential and its impact on the future potentially harmful. The threats of orbit circulation for some experts considered as a threat for national security, because its danger potential which caused by space debris could significantly damage the affected areas. However, until now Indonesia has no comprehensive mitigation strategy for space matters although it has been ratified by the United Nations Convention.

  6. NASA's Space Environments and Effects (SEE) Program: Meteoroid and Orbital Debris Lesson Plan.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The study of the natural space environment and its effects on spacecraft is one of the most important and least understood aspects of spacecraft design. The Space Environments and Effects (SEE) Program prepared the Meteoroids and Orbital Debris Lesson Plan, a SEE-focused high school curriculum to engage students in creative activities that will…

  7. Projectile Shape Effects Analysis for Space Debris Impact

    NASA Astrophysics Data System (ADS)

    Shiraki, Kuniaki; Yamamoto, Tetsuya; Kamiya, Takeshi

    2002-01-01

    (JEM IST), has a manned pressurized module used as a research laboratory on orbit and planned to be attached to the International Space Station (ISS). Protection system from Micrometeoroids and orbital debris (MM/OD) is very important for crew safety aboard the ISS. We have to design a module with shields attached to the outside of the pressurized wall so that JEM can be protected when debris of diameter less than 20mm impact on the JEM wall. In this case, the ISS design requirement for space debris protection system is specified as the Probability of No Penetration (PNP). The PNP allocation for the JEM is 0.9738 for ten years, which is reallocated as 0.9814 for the Pressurized Module (PM) and 0.9922 for the Experiment Logistics Module-Pressurized Section (ELM-PS). The PNP is calculated with Bumper code provided by NASA with the following data inputs to the calculation. (1) JEM structural model (2) Ballistic Limit Curve (BLC) of shields pressure wall (3) Environmental conditions: Analysis type, debris distribution, debris model, debris density, Solar single aluminum plate bumper (1.27mm thickness). The other is a Stuffed Whipple shield with its second bumper composed of an aluminum mesh, three layers of Nextel AF62 ceramic fabric, and four layers of Kevlar 710 fabric with thermal isolation material Multilayer Insulation (MLI) in the bottom. The second bumper of Stuffed Whipple shields is located at the middle between the first bumper and the 4.8 mm-thick pressurized wall. with Two-Stage Light Gas Gun (TSLGG) tests and hydro code simulation already. The remaining subject is the verification of JEM debris protection shields for velocities ranging from 7 to 15 km/sec. We conducted Conical Shaped Charge (CSC) tests that enable hypervelocity impact tests for the debris velocity range above 10 km/sec as well as hydro code simulation. because of the jet generation mechanism. It is therefore necessary to analyze and compensate the results for a solid aluminum sphere, which

  8. Active Removal of Large Debris: Electrical Propulsion Capabilities

    NASA Astrophysics Data System (ADS)

    Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi

    2013-08-01

    The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.

  9. Upgrade of DRAMA-ESA's Space Debris Mitigation Analysis Tool Suite

    NASA Astrophysics Data System (ADS)

    Gelhaus, Johannes; Sanchez-Ortiz, Noelia; Braun, Vitali; Kebschull, Christopher; de Oliveira, Joaquim Correia; Dominguez-Gonzalez, Raul; Wiedemann, Carsten; Krag, Holger; Vorsmann, Peter

    2013-08-01

    One decade ago ESA started the dev elopment of the first version of the software tool called DRAMA (Debris Risk Assessment and Mitigation Analysis) to enable ESA space programs to assess their compliance with the recommendations in the European Code of Conduct for Space Debris Mitigation. This tool was maintained, upgraded and extended during the last year and is now a combination of five individual tools, each addressing a different aspect of debris mitigation. This paper gives an overview of the new DRAMA software in general. Both, the main tools ARES, OSCAR, MIDAS, CROC and SARA will be discussed and the environment used by DRAMA will be explained shortly.

  10. Orbital debris issues

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1985-01-01

    Man-made orbital debris, identified as a potential hazard to future space activities, is grouped into size categories. At least 79 satellites have broken up in orbit to date and, in combination with exploded rocket casings and antisatellite debris, threaten 10 km/sec collisions with other orbiting platforms. Only 5 percent of the debris is connected to payloads. The total population of orbiting objects over 4 cm in diameter could number as high as 15,000, and at 1 cm in diameter could be 32,000, based on NASA and NORAD studies. NASA has initiated the 10 yr Space Debris Assessment Program to characterize the hazards of orbiting debris, the potential damage to typical spacecraft components, and to identify means of controlling the damage.

  11. Exploiting Orbital Data and Observation Campaigns to Improve Space Debris Models

    NASA Astrophysics Data System (ADS)

    Braun, V.; Horstmann, A.; Reihs, B.; Lemmens, S.; Merz, K.; Krag, H.

    The European Space Agency (ESA) has been developing the Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) software as the European reference model for space debris for more than 25 years. It is an event-based simulation of all known individual debris-generating events since 1957, including breakups, solid rocket motor firings and nuclear reactor core ejections. In 2014, the upgraded Debris Risk Assessment and Mitigation Analysis (DRAMA) tool suite was released. In the same year an ESA instruction made the standard ISO 24113:2011 on space debris mitigation requirements, adopted via the European Cooperation for Space Standardization (ECSS), applicable to all ESA missions. In order to verify the compliance of a space mission with those requirements, the DRAMA software is used to assess collision avoidance statistics, estimate the remaining orbital lifetime and evaluate the on-ground risk for controlled and uncontrolled reentries. In this paper, the approach to validate the MASTER and DRAMA tools is outlined. For objects larger than 1 cm, thus potentially being observable from ground, the MASTER model has been validated through dedicated observation campaigns. Recent campaign results shall be discussed. Moreover, catalogue data from the Space Surveillance Network (SSN) has been used to correlate the larger objects. In DRAMA, the assessment of collision avoidance statistics is based on orbit uncertainty information derived from Conjunction Data Messages (CDM) provided by the Joint Space Operations Center (JSpOC). They were collected for more than 20 ESA spacecraft in the recent years. The way this information is going to be used in a future DRAMA version is outlined and the comparison of estimated manoeuvre rates with real manoeuvres from the operations of ESA spacecraft is shown.

  12. Charging of Space Debris and Their Dynamical Consequences

    DTIC Science & Technology

    2016-01-08

    field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the

  13. Procedures for analysis of debris relative to Space Shuttle systems

    NASA Technical Reports Server (NTRS)

    Kim, Hae Soo; Cummings, Virginia J.

    1993-01-01

    Debris samples collected from various Space Shuttle systems have been submitted to the Microchemical Analysis Branch. This investigation was initiated to develop optimal techniques for the analysis of debris. Optical microscopy provides information about the morphology and size of crystallites, particle sizes, amorphous phases, glass phases, and poorly crystallized materials. Scanning electron microscopy with energy dispersive spectrometry is utilized for information on surface morphology and qualitative elemental content of debris. Analytical electron microscopy with wavelength dispersive spectrometry provides information on the quantitative elemental content of debris.

  14. SRT as a receiver in a bistatic radar space debris configuration

    NASA Astrophysics Data System (ADS)

    Pisanu, T.; Concu, R.; Gaudiomonte, F.; Marongiu, P.; Melis, A.; Serra, G.; Urru, E.; Valente, G.; Portelli, C.; Muntoni, G.; Bianchi, G.; Comoretto, G.; Dolce, F.; Paoli, J.; Reali, M.; Villadei, W.

    2016-08-01

    Space debris is becoming a very important and urgent problem for present and future space activities. For that reason many public and private Institutions in the world are being involved in order to monitor and control the debris population increase and to understand which facilities can be used for improving the surveillance and tracking capabilities. In this framework in 2014 we performed some preliminary observations in a beam parking, CW mode and a bistatic configuration, with a transmitter of 4 kW of the Italian Air Force and the SRT (Sardinia Radio Telescope) a 64 meters radiotelescope used as a receiver. We performed the observations in P band at 410 MHz, receiving the signal diffused from some debris of different sizes and distances in LEO orbit, in order to understand the performances and capabilities of the system. In this article we will describe the results of this observations campaign, the simulation work done for preparing it, the RCS (radar cross section) observed, the level of the received signals, the Doppler measurements, and the work we are doing for developing a new and higher performing digital back end, able to process the data received.

  15. Impact of high-risk conjunctions on Active Debris Removal target selection

    NASA Astrophysics Data System (ADS)

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto

    2015-10-01

    Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested.

  16. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  17. KSC ice/frost/debris assessment for space shuttle mission STS-29R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.

  18. KSC ice/frost/debris assessment for Space Shuttle Mission STS-30R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-30R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-30R and their overall effect on the Space Shuttle Program is documented.

  19. Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    An automated Computational Fluid Dynamics process for determining the aerodynamic Characteristics of debris shedding from the Space Shuttle Launch Vehicle during ascent is presented. This process uses Cartesian fully-coupled, six-degree-of-freedom simulations of isolated debris pieces in a Monte Carlo fashion to produce models for the drag and crossrange behavior over a range of debris shapes and shedding scenarios. A validation of the Cartesian methods against ballistic range data for insulating foam debris shapes at flight conditions, as well as validation of the resulting models, are both contained. These models are integrated with the existing shuttle debris transport analysis software to provide an accurate and efficient engineering tool for analyzing debris sources and their potential for damage.

  20. Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven

    NASA Technical Reports Server (NTRS)

    West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter

    2007-01-01

    This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.

  1. UniSat-5: a space-based optical system for space debris monitoring

    NASA Astrophysics Data System (ADS)

    Di Roberto, Riccardo; Cappelletti, Chantal

    2012-07-01

    Micro-satellite missions, thanks to the miniaturization process of electronic components, now have a broader range of applications. Gauss Group at School of Aerospace Engineering has been a pioneer in educational micro-satellites, namely with UNISAT and EDUSAT missions. Moreover it has been long involved in space debris related studies, such as optical observations as well as mitigation. A new project is under development for a compact digital imaging system. The purpose will be in situ observation of space debris on board Unisat-5 micro-satellite. One of the key elements of observing on orbit is that many atmospheric phenomena would be avoided, such as diffraction and EM absorption. Hence images would gain more contrast and solar spectral irradiance would be higher for the whole visible spectrum Earlier limitations of power and instrument size prevented the inclusion of these payloads in educational satellite missions. The system is composed of an optical tube, a camera, C band and S band transceivers and two antennas. The system is independent from the rest of the spacecraft. The optical tube is a Schmidt-Cassegrain reflector, and the magnitude limit is 13. The camera is equipped with a panchromatic 5Mpix sensor, capable of direct video streaming, as well as local storage of recorded images. The transceivers operate on ISM 2.4GHz and 5 GHz Wi-Fi bands, and they provide stand-alone communication capabilities to the payload, and Unisat-5 OBDH can switch between the two. Both transceivers are connected to their respective custom-designed patch antenna. The ground segment is constituted of a high gain antenna dish, which will use the same transceiver on board the spacecraft as the feed, in order to establish a TCP/IP wireless link. Every component of this system is a consumer grade product. Therefore price reduction of cutting edge imaging technology now allows the use of professional instruments, that combined with the new wireless technology developed for

  2. Observing orbital debris using space-based telescopes. I - Mission orbit considerations

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Talent, David L.; Vilas, Faith

    1989-01-01

    In this paper, mission orbit considerations are addressed for using the Space Shuttle as a telescope platform for observing man-made orbital debris. Computer modeling of various electrooptical systems predicts that such a space-borne system will be able to detect particles as small as 1-mm diameter. The research is meant to support the development of debris- collision warning sensors through the acquisition of spatial distribution and spectral characteristics for debris and testing of detector combinations on a shuttle-borne telescopic experiment. The technique can also be applied to low-earth-orbit-debris environment monitoring systems. It is shown how the choice of mission orbit, season of launch, and time of day of launch may be employed to provide extended periods of favorable observing conditions.

  3. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    NASA Astrophysics Data System (ADS)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  4. Space Debris Measurements using the Advanced Modular Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Nicolls, M.

    The Advanced Modular Incoherent Scatter Radar (AMISR) is a modular, mobile UHF phased-array radar facility developed and used for scientific studies of the ionosphere. The radars are completely remotely operated and allow for pulse-to-pulse beam steering over the field-of-view. A satellite and debris tracking capability fully interleaved with scientific operations has been developed, and the AMISR systems are now used to routinely observe LEO space debris, with the ability to simultaneously track and detect multiple objects. The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as small as 5-10 cm in size through LEO, achieving a range resolution better than 20 meters for LEO targets. The interleaved operations allow for ionospheric effects on UHF space debris measurements, such as dispersion, to be assessed. The radar architecture, interleaved operations, and impact of space weather on the measurements will be discussed.

  5. Technology Combination Analysis Tool (TCAT) for Active Debris Removal

    NASA Astrophysics Data System (ADS)

    Chamot, B.; Richard, M.; Salmon, T.; Pisseloup, A.; Cougnet, C.; Axthelm, R.; Saunder, C.; Dupont, C.; Lequette, L.

    2013-08-01

    This paper present the work of the Swiss Space Center EPFL within the CNES-funded OTV-2 study. In order to find the most performant Active Debris Removal (ADR) mission architectures and technologies, a tool was developed in order to design and compare ADR spacecraft, and to plan ADR campaigns to remove large debris. Two types of architectures are considered to be efficient: the Chaser (single-debris spacecraft), the Mothership/ Kits (multiple-debris spacecraft). Both are able to perform controlled re-entry. The tool includes modules to optimise the launch dates and the order of capture, to design missions and spacecraft, and to select launch vehicles. The propulsion, power and structure subsystems are sized by the tool thanks to high-level parametric models whilst the other ones are defined by their mass and power consumption. Final results are still under investigation by the consortium but two concrete examples of the tool's outputs are presented in the paper.

  6. A Laser Optical System to Remove Low Earth Orbit Space Debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.

    2013-08-01

    Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.

  7. Modeling the long-term evolution of space debris

    DOEpatents

    Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.

    2017-03-07

    A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.

  8. Micro-satellite for space debris observation by optical sensors

    NASA Astrophysics Data System (ADS)

    Thillot, Marc; Brenière, Xavier; Midavaine, Thierry

    2017-11-01

    The purpose of this theoretical study carried out under CNES contract is to analyze the feasibility of small space debris detection and classification with an optical sensor on-board micro-satellite. Technical solutions based on active and passive sensors are analyzed and compared. For the most appropriated concept an optimization was made and theoretical performances in terms of number of detection versus class of diameter were calculated. Finally we give some preliminary physical sensor features to illustrate the concept (weight, volume, consumption,…).

  9. A novel data association scheme for LEO space debris surveillance based on a double fence radar system

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Hu, Weidong; Xin, Qin; Guo, Weiwei

    2012-12-01

    The increasing amount of space debris threatens to seriously deteriorate and damage space-based instruments in Low Earth Orbit (LEO) environments. Therefore, LEO space debris surveillance systems must be developed to provide situational awareness in space and issue warnings of collisions with LEO space debris. In this paper, a double fence radar system is proposed as an emerging paradigm for LEO space debris surveillance. This system exhibits several unique and promising characteristics compared with existing surveillance systems. In this paper, we also investigate the data association scheme for LEO space debris surveillance based on a double fence radar system. We also perform a theoretical analysis of the performance of our proposed scheme. The superiority and the effectiveness of our novel data association scheme is demonstrated by experimental results. The data used in our experiments is the LEO space debris catalog produced by the North American Air Defense Command (NORAD) up to 2009, especially for scenarios with high densities of LEO space debris, which were primarily produced by the collisions between Iridium 33 and Cosmos 2251. We hope that our work will stimulate and benefit future work on LEO space debris surveillance approaches and enable construction of the double fence radar system.

  10. A Numerical Approach to Estimate the Ballistic Coefficient of Space Debris from TLE Orbital Data

    NASA Technical Reports Server (NTRS)

    Narkeliunas, Jonas

    2016-01-01

    Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and fragments from explosions and collisions. As of 2009, more than 21,000 orbital debris larger than 10 cm are known to exist], and while it is hard to track anything smaller than that, the estimated population of particles between 1 and 10 cm in diameter is approximately 500,000, whereas small as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies speeds usually exceed 7 kms. The shape of their orbit varies from almost circular to highly elliptical and covers all LEO, a region in space between 160 and 2,000 km above sea level. Unfortunately, LEO is also the place where most of our active satellites are situated, as well as, International Space Station (ISS) and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.This poses a real threat as debris can collide with satellites and deal substantial damage or even destroy them.Collisions between two or more debris create clouds of smaller debris, which are harder to track and increase overall object density and collision probability. At some point, the debris density couldthen reach a critical value, which would start a chain reaction and the number of space debris would grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded that it would lead to creation of debris belt, which would vastly complicate satellite operations in LEO. The debris density is already relatively high, as seen from several necessary debris avoidance maneuvers done by Shuttle, before it was discontinued, and ISS. But not all satellites have a propulsion system to avoid collision, hence different methods need to be applied. One of the proposed collision avoidance concepts is called LightForce and it suggests using photon pressure to induce small orbital corrections to deflect debris from colliding. This method is very efficient as seen from

  11. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-01-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  12. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-02-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  13. Space Shuttle Systems Engineering Processes for Liftoff Debris Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    This slide presentation reviews the systems engineering process designed to reduce the risk from debris during Space Shuttle Launching. This process begins the day of launch from the tanking to the vehicle tower clearance. Other debris risks (i.e., Ascent, and micrometeoroid orbital debit) are mentioned) but are not the subject of this presentation. The Liftoff debris systems engineering process and an example of how it works are reviewed (i.e.,STS-119 revealed a bolt liberation trend on the Fixed Service Structure (FSS) 275 level elevator room). The process includes preparation of a Certification of Flight Readiness (CoFR) that includes (1) Lift-off debris from previous mission dispositioned, (2) Flight acceptance rationale has been provided for Lift-off debris sources/causes (3) Lift-off debris mission support documentation, processes and tools are in place for the up-coming mission. The process includes a liftoff debris data collection that occurs after each launch. This includes a post launch walkdown, that records each liftoff debris, and the entry of the debris into a database, it also includes a review of the imagery from the launch, and a review of the instrumentation data. There is also a review of the debris transport analysis process, that includes temporal and spatial framework and a computational fluid dynamics (CFD) analysis. which incorporates a debris transport analyses (DTA), debris materials and impact tests, and impact analyses.

  14. Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 underlined the potential of an ongoing collision cascade effect (the Kessler Syndrome ) in the near-Earth orbital debris environment. A 2006 NASA analysis of the instability of the debris population in the low Earth orbit (LEO, the region below 2000 km altitude) shows that the environment has reached a point where the debris population will continue to increase in the next 200 years, even without any future launches. The increase is driven by fragments generated via collisions among existing objects in LEO. In reality, the situation will be worse than this prediction because satellite launches will continue and unexpected major breakups may continue to occur. Mitigation measures commonly adopted by the international space community (such as the 25-year rule) will help, but will be insufficient to stop the population growth. To better preserve the near-Earth space environment for future generations, active debris removal (ADR) should be considered. The idea of active debris removal is not new. However, due to the monumental technical, resource, operational, legal, and political challenges associated with removing objects from orbit, it has not yet been widely considered feasible. The recent major breakup events and the environment modeling efforts have certainly reignited the interest in using active debris removal to remediate the environment. This trend is further highlighted by the National Space Policy of the United States of America, released by the White House in June 2010, where the President explicitly directs NASA and the Department of Defense to pursue research and development of technology and techniques, to mitigate and remove on-orbit debris, reduce hazards, and increase understanding of the current and future debris environment. A 2009 modeling study by the NASA Orbital Debris Program Office has shown that, in order to maintain the LEO debris population at a constant level for the next 200 years

  15. Space Debris Symposium (A6.) Measurements and Space Surveillance (1.): Measurements of the Small Particle Debris Cloud from the 11 January, 2007 Chinese Anti-satellite Test

    NASA Technical Reports Server (NTRS)

    Matney, Mark J.; Stansbery, Eugene; J.-C Liou; Stokely, Christopher; Horstman, Matthew; Whitlock, David

    2008-01-01

    On January 11, 2007, the Chinese military conducted a test of an anti-satellite (ASAT) system, destroying their own Fengyun-1C spacecraft with an interceptor missile. The resulting hypervelocity collision created an unprecedented number of tracked debris - more than 2500 objects. These objects represent only those large enough for the US Space Surveillance Network (SSN) to track - typically objects larger than about 5-10 cm in diameter. There are expected to be even more debris objects at sizes too small to be seen and tracked by the SSN. Because of the altitude of the target satellite (865 x 845 km orbit), many of the debris are expected to have long orbital lifetimes and contribute to the orbital debris environment for decades to come. In the days and weeks following the ASAT test, NASA was able to use Lincoln Laboratory s Haystack radar on several occasions to observe portions of the ASAT debris cloud. Haystack has the capability of detecting objects down to less than one centimeter in diameter, and a large number of centimeter-sized particles corresponding to the ASAT cloud were clearly seen in the data. While Haystack cannot track these objects, the statistical sampling procedures NASA uses can give an accurate statistical picture of the characteristics of the debris from a breakup event. For years computer models based on data from ground hypervelocity collision tests (e.g., the SOCIT test) and orbital collision experiments (e.g., the P-78 and Delta-180 on-orbit collisions) have been used to predict the extent and characteristics of such hypervelocity collision debris clouds, but until now there have not been good ways to verify these models in the centimeter size regime. It is believed that unplanned collisions of objects in space similar to ASAT tests will drive the long-term future evolution of the debris environment in near-Earth space. Therefore, the Chinese ASAT test provides an excellent opportunity to test the models used to predict the future debris

  16. Meteoroid/space debris impacts on MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    1992-01-01

    The many meteoroid and space debris impacts found on A0171, A0034, S1005, and other MSFC experiments are considered. In addition to those impacts found by the meteoroid and debris studies, numerous impacts less than 0.5 mm were found and photographed. The flux and size distribution of impacts is presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.

  17. Meteoroid/space debris impacts on MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    1991-01-01

    The numerous meteoroid and space debris impacts found on AO171, AO034, S0069, and other MSFC experiments are examined. Besides those impacts found by the Meteoroid and Debris Special Investigative Group at KSC, numerous impacts of less than 0.5 mm were found and photographed. The flux and size distribution of impacts are presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.

  18. Assessment Study of Small Space Debris Removal by Laser Satellites

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Papa, Richard S.

    2011-01-01

    Space debris in Earth orbit poses significant danger to satellites, humans in space, and future space exploration activities. In particular, the increasing number of unidentifiable objects, smaller than 10 cm, presents a serious hazard. Numerous technologies have been studied for removing unwanted objects in space. Our approach uses a short wavelength laser stationed in orbit to vaporize these small objects. This paper discusses the power requirements for space debris removal using lasers. A short wavelength laser pumped directly or indirectly by solar energy can scan, identify, position, and illuminate the target, which will then be vaporized or slow down the orbital speed of debris by laser detonation until it re-enters the atmosphere. The laser-induced plasma plume has a dispersive motion of approximately 105 m/sec with a Lambertian profile in the direction of the incoming beam [1-2]. The resulting fast ejecting jet plume of vaporized material should prevent matter recombination and condensation. If it allows any condensation of vaporized material, the size of condensed material will be no more than a nanoscale level [3]. Lasers for this purpose can be indirectly pumped by power from an array of solar cells or directly pumped by the solar spectrum [4]. The energy required for vaporization and ionization of a 10 cm cube ( 2700 gm) of aluminum is 87,160 kJ. To remove this amount of aluminum in 3 minutes requires a continuous laser beam power of at least 5.38 MW under the consideration of 9% laser absorption by aluminum [5] and 5% laser pumping efficiency. The power needed for pumping 5.38 MW laser is approximately 108 MW, which can be obtained from a large solar array with 40% efficiency solar cells and a minimal area of 450 meters by 450 meters. This solar array would collect approximately 108 MW. The power required for system operation and maneuvering can be obtained by increasing solar panel size. This feasibility assessment covers roughly the power requirement

  19. Catastrophe on the Horizon: A Scenario-Based Future Effect of Orbital Space Debris

    DTIC Science & Technology

    2010-04-01

    real. In fact, the preliminary results of a recent NASA risk assessment of the soon to be decommissioned Space Shuttle puts the risk of a manned...Section 1 – Introduction Orbital Space Debris Defined Orbital space debris can be defined as dead satellites, discarded rocket parts, or simply flecks...of paint or other small objects orbiting the earth. It is simply space ―junk,‖ but junk that can be extremely dangerous to space assets. Most of the

  20. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1991-01-01

    The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.

  1. Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.

  2. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  3. Deployable Debris Shields For Space Station

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Cour-Palais, Burton G.; Crews, Jeanne

    1993-01-01

    Multilayer shields made of lightweight sheet materials deployed from proposed Space Station Freedom for additional protection against orbiting debris. Deployment mechanism attached at each location on exterior where extra protection needed. Equipment withdraws layer of material from storage in manner similar to unfurling sail or extending window shade. Number of layers deployed depends on required degree of protection, and could be as large as five.

  4. Active debris removal GNC challenges over design and required ground validation

    NASA Astrophysics Data System (ADS)

    Colmenarejo, Pablo; Avilés, Marcos; di Sotto, Emanuele

    2015-06-01

    Because of the exponential growth of space debris, the access to space in the medium-term future is considered as being seriously compromised, particularly within LEO polar Sun-synchronous orbits and within geostationary orbits. The active debris removal (ADR) application poses new and challenging requirements on: first, the new required Guidance, Navigation and Control (GNC) technologies and, second, how to validate these new technologies before being applied in real missions. There is no doubt about the strong safety and collision risk aspects affecting the real operational ADR missions. But it shall be considered that even ADR demonstration missions will be affected by significant risk of collision during the demonstration, and that the ADR GNC systems/technologies to be used shall be well mature before using/demonstrating them in space. Specific and dedicated on-ground validation approaches, techniques and facilities are mandatory. The different ADR techniques can be roughly catalogued in three main groups (rigid capture, non-rigid capture and contactless). All of them have a strong impact on the GNC system of the active vehicle during the capture/proximity phase and, particularly, during the active vehicle/debris combo control phase after capture and during the de-orbiting phase. The main operational phases on an ADR scenario are: (1) ground controlled phase (ADR vehicle and debris are far), (2) fine orbit synchronization phase (ADR vehicle to reach debris ±V-bar), (3) short range phase (along track distance reduction till 10-100 s of metres), (4) terminal approach/capture phase and (5) de-orbiting. While phases 1-3 are somehow conventional and already addressed in detail during past/on-going studies related to rendezvous and/or formation flying, phases 4-5 are very specific and not mature in terms of GNC needed technologies and HW equipment. GMV is currently performing different internal activities and ESA studies/developments related to ADR mission, GNC and

  5. Space Debris Surfaces (Computer Code): Probability of No Penetration Versus Impact Velocity and Obliquity

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1995-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.

  6. Orbital Debris Quarterly News, Vol. 13, No. 2

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics include: debris clouds left by satellite collision; debris flyby near the International Space Station; and break-up of an ullage motor from a Russian Proton launch vehicle. Findings from the analysis of the STS-126 Shuttle Endeavour window impact damage are provided. Abstracts from the NASA Orbital Debris program office are presented and address a variety of topics including: Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime; Shape Distribution of Fragments From Microsatellite Impact Tests; Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter; Space Debris Environment Remediation Concepts; and, In Situ Measurement Activities at the NASA Orbital Debris Program Office. Additionally, a Meeting Report is provided for the 12 meeting of the NASA/DoD Orbital Debris Working Group.

  7. Debris mitigation measures by satellite design and operational methods - Findings from the DLR space debris End-to-End Service

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Janovsky, R.; Koppenwallner, G.; Krag, H.; Reimerdes, H.; Schäfer, F.

    Debris Mitigation has been recognised as an issue to be addressed by the space faring nations around the world. Currently, there are various activities going on, aiming at the establishment of debris mitigation guidelines on various levels, reaching from the UN down to national space agencies. Though guidelines established on the national level already provide concrete information how things should be done (rather that specifying what should be done or providing fundamental principles) potential users of the guidelines will still have the need to explore the technical, management, and financial implications of the guidelines for their projects. Those questions are addressed by the so called "Space Debris End-to-End Service" project, which has been initiated as a national initiative of the German Aerospace Centre (DLR). Based on a review of already existing mitigation guidelines or guidelines under development and following an identification of needs from a circle of industrial users the "End-to-End Service Gu idelines" have been established for designer and operators of spacecraft. The End-to-End Service Guidelines are based on requirements addressed by the mitigation guidelines and provide recommendations how and when the technical consideration of the mitigation guidelines should take place. By referencing requirements from the mitigation guidelines, the End-to-End Service Guidelines address the consideration of debris mitigation measures by spacecraft design and operational measures. This paper will give an introduction to the End-to-End Service Guidelines. It will focus on the proposals made for mitigation measures by the S/C system design, i.e. on protective design measures inside the spacecraft and on design measures, e.g. innovative protective (shielding) systems. Furthermore, approaches on the analytical optimisation of protective systems will be presented, aiming at the minimisation of shield mass under conservation of the protective effects. On the

  8. Laser space debris removal: now, not later

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  9. Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Early, J; Bibeau, C; Claude, P

    Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

  10. Autonomous Space Processor for Orbital Debris (ASPOD)

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett

    1992-01-01

    A project in the Advanced Design Program at the University of Arizona is described. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  11. International Space Station (ISS) Meteoroid/Orbital Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    1999-01-01

    Design practices to provide protection for International Space Station (ISS) crew and critical equipment from meteoroid and orbital debris (M/OD) Impacts have been developed. Damage modes and failure criteria are defined for each spacecraft system. Hypervolocity Impact -1 - and analyses are used to develop ballistic limit equations (BLEs) for each exposed spacecraft system. BLEs define Impact particle sizes that result in threshold failure of a particular spacecraft system as a function of Impact velocity, angles and particle density. The BUMPER computer code Is used to determine the probability of no penetration (PNP) that falls the spacecraft shielding based on NASA standard meteoroid/debris models, a spacecraft geometry model, and the BLEs. BUMPER results are used to verify spacecraft shielding requirements Low-weight, high-performance shielding alternatives have been developed at the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) to meet spacecraft protection requirements.

  12. Is It Time for Space Debris Reduction Capabilities?

    DTIC Science & Technology

    2009-04-01

    The original document contains color images . 14. ABSTRACT For over 50 years, space-faring nations have launched objects into space, resulting in...have seen an increased risk of collision. Most debris resides in low earth orbit (the satellite freeway where bulk of imaging satellites reside... imaging , radar, etc). The close proximity to the Earth allows for images and photographs to be captured in greater detail than higher orbits

  13. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  14. Rings of earth. [orbiting bands of space debris

    NASA Technical Reports Server (NTRS)

    Goldstein, Richard M.; Randolph, L. W.

    1992-01-01

    Small particles moving at an orbital velocity of 7.6 kilometers per second can present a considerable hazard to human activity in space. For astronauts outside of the protective shielding of their space vehicles, such particles can be lethal. The powerful radar at NASA's Goldstone Deep Communications Complex was used to monitor such orbital debris. This radar can detect metallic objects as small as 1.8 mm in diameter at 600 km altitude. The results of the preliminary survey show a flux (at 600 km altitude) of 6.4 objects per square kilometer per day of equivalent size of 1.8 mm or larger. Forty percent of the observed particles appear to be concentrated into two orbits. An orbital ring with the same inclination as the radar (35.1 degrees) is suggested. However, an orbital band with a much higher inclination (66 degrees) is also a possibility.

  15. Biobjective planning of an active debris removal mission

    NASA Astrophysics Data System (ADS)

    Madakat, Dalal; Morio, Jérôme; Vanderpooten, Daniel

    2013-03-01

    The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.

  16. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    NASA Astrophysics Data System (ADS)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  17. NASA's Marshall Space Flight Center Recent Studies and Technology Developments in the Area of SSA/Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.; Hovater, Mary; Kos, Larry

    2012-01-01

    NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple

  18. Analysis of debris from Spacelab Space Life Sciences-1

    NASA Astrophysics Data System (ADS)

    Caruso, S. V.; Rodgers, E. B.; Huff, T. L.

    1992-07-01

    Airborne microbiological and particulate contamination generated aboard Spacelab modules is a potential safety hazard. In order to shed light on the characteristics of these contaminants, microbial and chemical/particulate analyses were performed on debris vacuumed from cabin and avionics air filters in the Space Life Sciences-1 (SLS-1) module of the Space Transportation System 40 (STS-40) mission 1 month after landing. The debris was sorted into categories (e.g., metal, nonmetal, hair/fur, synthetic fibers, food particles, insect fragments, etc.). Elemental analysis of particles was done by energy dispersive analysis of x rays (metals) and Fourier transform infrared spectroscopy (nonmetals). Scanning electron micrographs were done of most particles. Microbiological samples were grown on R2A culture medium and identified. Clothing fibers dominated the debris by volume. Other particles, all attributed to the crew, resulted from abrasions and impacts during missions operations (e.g., paint chips, plastic, electronic scraps and clothing fibers). All bacterial species identified are commonly found in the atmosphere or on the human body. Bacillus sp. was the most frequently seen bacterium. One of the bacterial species, Enterobacter agglomerans, could cause illness in crew members with depressed immune systems.

  19. Analysis of debris from Spacelab Space Life Sciences-1

    NASA Technical Reports Server (NTRS)

    Caruso, S. V.; Rodgers, E. B.; Huff, T. L.

    1992-01-01

    Airborne microbiological and particulate contamination generated aboard Spacelab modules is a potential safety hazard. In order to shed light on the characteristics of these contaminants, microbial and chemical/particulate analyses were performed on debris vacuumed from cabin and avionics air filters in the Space Life Sciences-1 (SLS-1) module of the Space Transportation System 40 (STS-40) mission 1 month after landing. The debris was sorted into categories (e.g., metal, nonmetal, hair/fur, synthetic fibers, food particles, insect fragments, etc.). Elemental analysis of particles was done by energy dispersive analysis of x rays (metals) and Fourier transform infrared spectroscopy (nonmetals). Scanning electron micrographs were done of most particles. Microbiological samples were grown on R2A culture medium and identified. Clothing fibers dominated the debris by volume. Other particles, all attributed to the crew, resulted from abrasions and impacts during missions operations (e.g., paint chips, plastic, electronic scraps and clothing fibers). All bacterial species identified are commonly found in the atmosphere or on the human body. Bacillus sp. was the most frequently seen bacterium. One of the bacterial species, Enterobacter agglomerans, could cause illness in crew members with depressed immune systems.

  20. The Influence of Solid Rocket Motor Retro-Burns on the Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Stabroth, S.; Homeister, M.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.

    The ESA space debris population model MASTER Meteoroid and Space Debris Terrestrial Environment Reference considers firings of solid rocket motors SRM as a debris source with the associated generation of slag and dust particles The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit The current model version MASTER-2005 is based on the simulation of 1 076 orbital SRM firings which contributed to the long-term debris environment A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope HST solar array measurements very well However the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility LDEF surfaces This points into the direction of some past SRM firings not included in the current event database The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere Thus they produce no long-term effect on the debris environment However a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces In this paper the influence of SRM retro-burns on the short- and long-term debris environment is analysed The existing firing database is updated with gathered

  1. Mass distribution of orbiting man-made space debris

    NASA Technical Reports Server (NTRS)

    Bess, T. D.

    1975-01-01

    Three ways of producing space debris were considered, and data were analyzed to determine mass distributions for man-made space debris. Hypervelocity (3.0 to 4.5 km/sec) projectile impact with a spacecraft wall, high intensity explosions and low intensity explosions were studied. For hypervelocity projectile impact of a spacecraft wall, the number of fragments fits a power law. The number of fragments for both high intensity and low intensity explosions fits an exponential law. However, the number of fragments produced by low intensity explosions is much lower than the number of fragments produced by high intensity explosions. Fragment masses down to 10 to the -7 power gram were produced from hypervelocity impact, but the smallest fragment mass resulting from an explosion appeared to be about 10 mg. Velocities of fragments resulting from hypervelocity impact were about 10 m/sec, and those from low intensity explosions were about 100 m/sec. Velocities of fragments from high intensity explosions were about 3 km/sec.

  2. Space debris characterization in support of a satellite breakup model

    NASA Technical Reports Server (NTRS)

    Fortson, Bryan H.; Winter, James E.; Allahdadi, Firooz A.

    1992-01-01

    The Space Kinetic Impact and Debris Branch began an ambitious program to construct a fully analytical model of the breakup of a satellite under hypervelocity impact. In order to provide empirical data with which to substantiate the model, debris from hypervelocity experiments conducted in a controlled laboratory environment were characterized to provide information of its mass, velocity, and ballistic coefficient distributions. Data on the debris were collected in one master data file, and a simple FORTRAN program allows users to describe the debris from any subset of these experiments that may be of interest to them. A statistical analysis was performed, allowing users to determine the precision of the velocity measurements for the data. Attempts are being made to include and correlate other laboratory data, as well as those data obtained from the explosion or collision of spacecraft in low earth orbit.

  3. Orbital debris and near-Earth environmental management: A chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Loftus, Joseph P., Jr.

    1993-01-01

    This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.

  4. A laser-optical system to re-enter or lower low Earth orbit space debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2014-01-01

    Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1-10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.

  5. Implementation of an open-scenario, long-term space debris simulation approach

    NASA Astrophysics Data System (ADS)

    Stupl, J.; Nelson, B.; Faber, N.; Perez, A.; Carlino, R.; Yang, F.; Henze, C.; Karacalioglu, A.; O'Toole, C.; Swenson, J.

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance scheme. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps in the order of several (5-15) days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions, space object parameters and orbital parameters of the conjunctions and take place in much smaller timeframes than 5-15 days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in LEO, propagates all objects with high precision, and advances with variable-sized time-steps as small as one second. It allows the assessment of the (potential) impact of changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the

  6. Effects on the orbital debris environment due to solar activity

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.; Anz-Meador, Phillip D.

    1990-01-01

    The rate that earth-orbiting debris is removed from the environment is dependent on a number of factors which include orbital altitude and solar activity. It is generally believed that at lower altitudes and especially during periods of high solar activity, debris generated in the past will be eliminated from the environment. While some debris is eliminated, most is replaced by old debris from higher altitudes or new debris from recent launches. Some low altitude debris, which would reenter if the debris were in circular orbits, does not reenter because the debris is in higher-energy elliptical orbits.

  7. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.

    2010-03-01

    An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.

  8. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach points to some of the debris as he explains to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach points to some of the debris as he explains to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  9. Validated simulator for space debris removal with nets and other flexible tethers applications

    NASA Astrophysics Data System (ADS)

    Gołębiowski, Wojciech; Michalczyk, Rafał; Dyrek, Michał; Battista, Umberto; Wormnes, Kjetil

    2016-12-01

    In the context of active debris removal technologies and preparation activities for the e.Deorbit mission, a simulator for net-shaped elastic bodies dynamics and their interactions with rigid bodies, has been developed. Its main application is to aid net design and test scenarios for space debris deorbitation. The simulator can model all the phases of the debris capturing process: net launch, flight and wrapping around the target. It handles coupled simulation of rigid and flexible bodies dynamics. Flexible bodies were implemented using Cosserat rods model. It allows to simulate flexible threads or wires with elasticity and damping for stretching, bending and torsion. Threads may be combined into structures of any topology, so the software is able to simulate nets, pure tethers, tether bundles, cages, trusses, etc. Full contact dynamics was implemented. Programmatic interaction with simulation is possible - i.e. for control implementation. The underlying model has been experimentally validated and due to significant gravity influence, experiment had to be performed in microgravity conditions. Validation experiment for parabolic flight was a downscaled process of Envisat capturing. The prepacked net was launched towards the satellite model, it expanded, hit the model and wrapped around it. The whole process was recorded with 2 fast stereographic camera sets for full 3D trajectory reconstruction. The trajectories were used to compare net dynamics to respective simulations and then to validate the simulation tool. The experiments were performed on board of a Falcon-20 aircraft, operated by National Research Council in Ottawa, Canada. Validation results show that model reflects phenomenon physics accurately enough, so it may be used for scenario evaluation and mission design purposes. The functionalities of the simulator are described in detail in the paper, as well as its underlying model, sample cases and methodology behind validation. Results are presented and

  10. A space debris simulation facility for spacecraft materials evaluation

    NASA Technical Reports Server (NTRS)

    Taylor, Roy A.

    1987-01-01

    A facility to simulate the effects of space debris striking an orbiting spacecraft is described. This facility was purchased in 1965 to be used as a micrometeoroid simulation facility. Conversion to a Space Debris Simulation Facility began in July 1984 and it was placed in operation in February 1985. The facility consists of a light gas gun with a 12.7-mm launch tube capable of launching 2.5-12.7 mm projectiles with a mass of 4-300 mg and velocities of 2-8 km/sec, and three target tanks of 0.067 m, 0.53 a m and 28.5 a m. Projectile velocity measurements are accomplished via pulsed X-ray, laser diode detectors, and a Hall photographic station. This facility is being used to test development structural configurations and candidate materials for long duration orbital spacecraft. A summary of test results are also described.

  11. The influence of solid rocket motor retro-burns on the space debris environment

    NASA Astrophysics Data System (ADS)

    Stabroth, Sebastian; Homeister, Maren; Oswald, Michael; Wiedemann, Carsten; Klinkrad, Heiner; Vörsmann, Peter

    The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.

  12. Debris Mitigation as a Component of Space Traffic Management

    NASA Astrophysics Data System (ADS)

    Kemper Force, M.

    2012-01-01

    The necessity of a traffic management in space is a consequence of our "free use" of it over the past fifty years, during which certain orbits have accumulated a significant amount of debris that may, in the future, threaten the feasibility of their use. This paper encapsulates the primary issues involved in the concept of space traffic management through basic questions, using as a case study the recent alarm caused by two close-misses of the ISS in one week, in order to guide the reader to an understanding of the current need for a space traffic management regime. The paper will describe the fundamental elements of space traffic management, including the tracking of objects, conjunction assessment, collision avoidance and orbital mechanics to understand why Earth-bound systems cannot be extrapolated to space. The paper will then focus on the primary concern of space debris, the acceptance and use of current guidelines in light of the existing corpus juris spatialis and international law, positing that the guidelines may soon develop into a customary norm. The paper will conclude that the latest close calls with the ISS demonstrate we cannot count on the mere vastness of space to reduce the probability of collisions with space objects. Despite the significant political, technical and economic challenges recognized by the International Space University Final Report of 2007, the International Academy of Astronautics' Cosmic Study of 2006 and the IAASS An ICAO for Space?, there is a need for a system to obviate the looming peril before governments and investors will sign on to a comprehensive program which limits their "free" use of space.

  13. Microbiological analysis of debris from Space Transportation System (STS)-55 Spacelab D-2

    NASA Technical Reports Server (NTRS)

    Huff, T. L.

    1994-01-01

    Filter debris from the Spacelab module D-2 of STS-55 was analyzed for microbial contamination. Debris from cabin and avionics filters was collected by Kennedy Space Center personnel on May 8, 1993, 2 days postflight. Debris weights were similar to those of previous Spacelab missions. Approximately 5.1E+5 colony forming units per gram of debris were enumerated from the cabin and avionics filter debris, respectively. these numbers were similar in previous missions for which the entire contents were analyzed without sorting of the material. Bacterial diversity was small compared to previous missions, with no gram negative bacteria isolated. Only one bacterial species, Corynebacterium pseudodiphtheriticum, was not isolated previously by the laboratory from Spacelab debris. This organism is a normal inhabitant of the pharynx. A table listing all species of bacteria isolated by the laboratory from previous Spacelab air filters debris collection is provided.

  14. Characterization of the Space Shuttle Ascent Debris using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.

  15. Active Debris Removal and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  16. Orbital Debris and NASA's Measurement Program

    NASA Astrophysics Data System (ADS)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  17. Using PVDF to locate the debris cloud impact position

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Liu, Zhidong

    2010-03-01

    With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.

  18. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  19. Modeling the space debris environment with MASTER-2009 and ORDEM2010

    NASA Astrophysics Data System (ADS)

    Flegel, Sven Kevin; Krisko, Paula; Gelhaus, Johannes; Wiedemann, Carsten; Moeckel, Marek; Krag, Holger; Klinkrad, Heiner; Xu, Yu-Lin; Horstman, Matthew; Matney, Mark; Vörsmann, Peter

    The two software tools MASTER-2009 and ORDEM2010 are the ESA and NASA reference software tools respectively which describe the earth's debris environment. The primary goal of both programs is to allow users to estimate the object flux onto a target object for mission planning. The current paper describes the basic distinctions in the model philosophies. At the core of each model lies the method by which the object environment is established. Cen-tral to this process is the role played by the results from radar/telescope observations or impact fluxes on surfaces returned from earth orbit. The ESA Meteoroid and Space Debris Terrestrial Environment Reference Model (MASTER) is engineered to give a realistic description of the natural and the man-made particulate environment of the earth. Debris sources are simulated based on detailed lists of known historical events such as fragmentations or solid rocket motor firings or through simulation of secondary debris such as impact ejecta or the release of paint flakes from degrading spacecraft surfaces. The resulting population is then validated against historical telescope/radar campaigns using the ESA Program for Radar and Optical Observa-tion Forecasting (PROOF) and against object impact fluxes on surfaces returned from space. The NASA Orbital Debris Engineering Model (ORDEM) series is designed to provide reliable estimates of orbital debris flux on spacecraft and through telescope or radar fields-of-view. Central to the model series is the empirical nature of the input populations. These are derived from NASA orbital debris modeling but verified, where possible, with measurement data from various sources. The latest version of the series, ORDEM2010, compiles over two decades of data from NASA radar systems, telescopes, in-situ sources, and ground tests that are analyzed by statistical methods. For increased understanding of the application ranges of the two programs, the current paper provides an overview of the two

  20. Laser/space material uncooperative propulsion for orbital debris removal and asteroid, meteoroid, and comet deflection

    NASA Astrophysics Data System (ADS)

    Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas

    1999-01-01

    Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1-10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts, it is shown that it is possible to scale up the systems to prevent these catastrophic collisions given sufficient early warning.

  1. Conceptual design of an Orbital Debris Defense System

    NASA Technical Reports Server (NTRS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-01-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  2. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    NASA Technical Reports Server (NTRS)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space

  3. Bi-objective optimization of a multiple-target active debris removal mission

    NASA Astrophysics Data System (ADS)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  4. Shielding against debris

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G.; Avans, Sherman L.

    1988-01-01

    The damage to spacecraft caused by debris and design of the Space Station to minimize damage from debris are discussed. Although current estimates of the debris environment show that fragments bigger than 2 cm are not likely to hit the Space Station, orbital debris from about 0.5 mm to 2 cm will pose a hazard, especially on brittle surfaces, such as glass. Spacesuits are being designed to reduce debris caused dangers to astronauts during EVA. About 5 cm of high-strength aluminum are needed to prevent penetration by a 1 cm piece of aluminum with a mass near 1.5 g colliding at 10 km/sec. Because aluminum bumpers have the drawback of metallic debris ejected outward after a hypervelocity collision, the use of nonmetallic materials for bumpers is being studied. Methods of reducing the weight and volume of the shield for the Space Station are also being researched. A space station habitation module using bumpers has a 99.6 percent chance of avoiding penetration during its lifetime.

  5. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    NASA Technical Reports Server (NTRS)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-01-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by approx.64deg from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along PA = 130deg. It has inner and outer radii (> 50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ((Delta)r/r approx. = 0.4). The maximum visible radial extent is approx. 254 AU. With a mean surface brightnesses of V approx. = 24 mag arcsec.(sup -2), this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by approx.28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  6. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    NASA Astrophysics Data System (ADS)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-08-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by ~64° from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along P.A. = 130°. It has inner and outer radii (>50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast (Δr/r ≈ 0.4). The maximum visible radial extent is ~254 AU. With mean surface brightness of V ≈ 24 mag arcsec-2, this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by ~28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  7. Physical Simulation of a Prolonged Plasma-Plume Exposure of a Space Debris Object

    NASA Astrophysics Data System (ADS)

    Shuvalov, V. A.; Gorev, N. B.; Tokmak, N. A.; Kochubei, G. S.

    2018-05-01

    A methodology has been developed for the physical (laboratory) simulation of the prolonged exposure of a space debris object to high-energy ions of a plasma plume for removing the object into low-Earth orbit with its subsequent burning in the Earth's atmosphere. The methodology is based on the equivalence criteria of two modes of exposure (in the Earth's ionosphere and in the setup) and the procedure for accelerated resource tests in terms of the sputtering of the space debris material and its deceleration by a plasma jet in the Earth's ionosphere.

  8. Experimental verification of high energy laser-generated impulse for remote laser control of space debris.

    PubMed

    Lorbeer, Raoul-Amadeus; Zwilich, Michael; Zabic, Miroslav; Scharring, Stefan; Eisert, Lukas; Wilken, Jascha; Schumacher, Dennis; Roth, Markus; Eckel, Hans-Albert

    2018-05-31

    Walking along a beach one may notice debris being washed ashore from the vast oceans. Then, turning your head up at night you even might noticed a shooting star or a bright spot passing by. Chances are, that you witnessed space debris, endangering future space flight in lower earth orbit. If it was possible to turn cm-sized debris into shooting stars the problem might be averted. Unfortunately, these fragments counting in the 100 thousands are not controllable. To possibly regain control we demonstrate how to exert forces on a free falling debris object from a distance by ablating material with a high energy ns-laser-system. Thrust effects did scale as expected from simulations and led to speed gains above 0.3 m/s per laser pulse in an evacuated micro-gravity environment.

  9. National Standard of the Russian Federation for Space Debris Mitigation

    NASA Astrophysics Data System (ADS)

    Loginov, S.; Yakovlev, M.; Mikhailov, M.; Popkova, L.

    2009-03-01

    Normative and technical document that define requirements for the mitigation of human-produced near-earth space pollution develops in Russian Federation.NATIONAL STANDARD of the Russian Federation GOST R 52925-2008 «SPACE TECHNOLOGY ITEMS. General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Pollution» was approved in 2008 and entered into force since 1st January of 2009. Requirements of this standard harmonized with requirements of «UN SPACE DEBRIS MITIGATION GUIDELINESÈ»This standard consists of six parts:- Scope;- References to Standards;- Terms & Definitions;- Abbreviations;- General Provisions;- General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Pollution.

  10. Efficient and automatic image reduction framework for space debris detection based on GPU technology

    NASA Astrophysics Data System (ADS)

    Diprima, Francesco; Santoni, Fabio; Piergentili, Fabrizio; Fortunato, Vito; Abbattista, Cristoforo; Amoruso, Leonardo

    2018-04-01

    In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.

  11. Modeling and control of a flexible space robot to capture a tumbling debris

    NASA Astrophysics Data System (ADS)

    Dubanchet, Vincent

    After 60 years of intensive satellite launches, the number of drifting objects in Earth orbits is reaching a shifting point, where human intervention is becoming necessary to reduce the threat of collision. Indeed, a 200 year forecast, known as the "Kessler syndrome", states that space access will be greatly compromised if nothing is done to address the proliferation of these debris. Scientist J.-C. Liou from the National Aeronautics and Space Administration (NASA) has shown that the current trend could be reversed if at least five massive objects, such as dead satellites or rocket upper stages, were de-orbited each year. Among the various technical concepts considered for debris removal, robotics has emerged, over the last 30 years, as one of the most promising solutions. The International Space Station (ISS) already possesses fully operational robotic arms, and other missions have explored the potential of a manipulator embedded onto a satellite. During two of the latter, key capabilities have been demonstrated for on-orbit servicing, and prove to be equally useful for the purpose of debris removal. This thesis focuses on the close range capture of a tumbling debris by a robotic arm with light-weight flexible segments. This phase includes the motion planning and the control of a space robot, in order to smoothly catch a target point on the debris. The validation of such technologies is almost impossible on Earth and leads to prohibitive costs when performed on orbit. Therefore, the modeling and simulation of flexible multi-body systems has been investigated thoroughly, and is likewise a strong contribution of the thesis. Based on these models, an experimental validation is proposed by reproducing the on-orbit kinematics on a test bench made up of two industrial manipulators and driven by a real-time dynamic simulation. In a nutshell, the thesis is built around three main parts: the modeling of a space robot, the design of control laws, and their validation on a

  12. Active Debris Removal mission design in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  13. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.

    PubMed

    Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin

    2014-11-01

    Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project.

  14. Space Shuttle and Launch Pad Computational Fluid Dynamics Model for Lift-off Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew

    2006-01-01

    This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.

  15. Laser ranging with the MéO telescope to improve orbital accuracy of space debris

    NASA Astrophysics Data System (ADS)

    Hennegrave, L.; Pyanet, M.; Haag, H.; Blanchet, G.; Esmiller, B.; Vial, S.; Samain, E.; Paris, J.; Albanese, D.

    2013-05-01

    Improving orbital accuracy of space debris is one of the major prerequisite to performing reliable collision prediction in low earth orbit. The objective is to avoid false alarms and useless maneuvers for operational satellites. This paper shows how laser ranging on debris can improve the accuracy of orbit determination. In March 2012 a joint OCA-Astrium team had the first laser echoes from space debris using the MéO (Métrologie Optique) telescope of the Observatoire de la Côte d'Azur (OCA), upgraded with a nanosecond pulsed laser. The experiment was conducted in full compliance with the procedures dictated by the French Civil Aviation Authorities. To perform laser ranging measurement on space debris, the laser link budget needed to be improved. Related technical developments were supported by implementation of a 2J pulsed laser purchased by ASTRIUM and an adapted photo detection. To achieve acquisition of the target from low accuracy orbital data such as Two Lines Elements, a 2.3-degree field of view telescope was coupled to the original MéO telescope 3-arcmin narrow field of view. The wide field of view telescope aimed at pointing, adjusting and acquiring images of the space debris for astrometry measurement. The achieved set-up allowed performing laser ranging and angular measurements in parallel, on several rocket stages from past launches. After a brief description of the set-up, development issues and campaigns, the paper discusses added-value of laser ranging measurement when combined to angular measurement for accurate orbit determination. Comparison between different sets of experimental results as well as simulation results is given.

  16. Confronting Space Debris: Strategies and Warnings from Comparable Examples Including Deepwater Horizon

    DTIC Science & Technology

    2010-01-01

    Horizon (DH) was an ultra deepwater , semisubmers- ible offshore drilling rig contracted to BP by its owner, Transocean. The rig was capable of...Warnings from Comparable Examples Including Deepwater Horizon 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...research quality and objectivity. StrategieS and WarningS from Comparable exampleS inCluding deepWater Horizon Confronting SpaCe DebriS dave baiocchi

  17. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  18. On the connection of permafrost and debris flow activity in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Thomas; Kaitna, Roland

    2016-04-01

    Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.

  19. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    NASA Astrophysics Data System (ADS)

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as

  20. Assessment of active methods for removal of LEO debris

    NASA Astrophysics Data System (ADS)

    Hakima, Houman; Emami, M. Reza

    2018-03-01

    This paper investigates the applicability of five active methods for removal of large low Earth orbit debris. The removal methods, namely net, laser, electrodynamic tether, ion beam shepherd, and robotic arm, are selected based on a set of high-level space mission constraints. Mission level criteria are then utilized to assess the performance of each redirection method in light of the results obtained from a Monte Carlo simulation. The simulation provides an insight into the removal time, performance robustness, and propellant mass criteria for the targeted debris range. The remaining attributes are quantified based on the models provided in the literature, which take into account several important parameters pertaining to each removal method. The means of assigning attributes to each assessment criterion is discussed in detail. A systematic comparison is performed using two different assessment schemes: Analytical Hierarchy Process and utility-based approach. A third assessment technique, namely the potential-loss analysis, is utilized to highlight the effect of risks in each removal methods.

  1. Space Debris Mitigation Efforts through the Disposition of the Service Module of the Unmanned Space Experiment Recovery System (USERS)

    NASA Astrophysics Data System (ADS)

    Ijichi, Koichi; Ushikoshi, Atsuo; Nakamura, Shuji; Kanai, Hiroshi

    The Unmanned Space Experiment Recovery System (USERS) Project has been completed with full success, and the Service Module (SEM) of the USERS Spacecraft, which supported the recovery portion of the spacecraft which was left on the orbit, was properly disposed to the maximum extent as possible according to the IADC debris mitigation guideline and re-entered the atmosphere on June 15, 2007 (JST). USERS spacecraft disposition by possible means available at the mission completion showed good example of realizing debris mitigation purpose in spite of originally different design baseline, and obtained actual data and experiences to be reflected for future space programs.

  2. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (right) talks to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (right) talks to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  3. KENNEDY SPACE CENTER, FLA. - The media get a guided tour of the Columbia Debris Hangar. Shuttle Launch Director Mike Leinbach discussed activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - The media get a guided tour of the Columbia Debris Hangar. Shuttle Launch Director Mike Leinbach discussed activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  4. Space debris tracking based on fuzzy running Gaussian average adaptive particle filter track-before-detect algorithm

    NASA Astrophysics Data System (ADS)

    Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You

    2017-02-01

    Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.

  5. KENNEDY SPACE CENTER, FLA. - Flatbed trucks carrying some of the debris of Space Shuttle Columbia approach the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - Flatbed trucks carrying some of the debris of Space Shuttle Columbia approach the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  6. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.

    2011-07-01

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software

  7. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Moeckel, Marek; Wiedemann, Carsten; Flegel, Sven Kevin; Gelhaus, Johannes; Klinkrad, Heiner; Krag, Holger; Voersmann, Peter

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software

  8. Short-Arc Orbit Determination Results and Space Debris Test Observation of the OWL-Net

    NASA Astrophysics Data System (ADS)

    Choi, J.; Jo, J.; Yim, H.

    Korea Astronomy and Space Science Institute had developed the Optical Wide-field patroL-Network (OWL-Net) for maintaining the domestic Low Earth Orbit satellites’ ephemeris and monitoring Geostationary Earth Orbit region. It also can be used to observe space debris. The orbit determination process was planned with batch least square orbit estimator for every week. The optical tracking window is very narrow, several times per week. Sequentialbatch type estimation strategy was attempted for more reliable orbit prediction. We compared the test operation results with Two Line Elements and CPF files to validate the system. This results can be used to estimate the performance of the OWL-Net operations. And also we had observation of the Astro-H debris. We got the dozens of photometric data of the Astro-H debris main part for a few seconds with the chopper system.

  9. Effects of perturbations on space debris in supersynchronous storage orbits

    NASA Astrophysics Data System (ADS)

    Luu, Khanh Kim

    1998-12-01

    Accumulation of space debris in the geosynchronous region (GEO) has raised attention among spacefaring nations. The current mitigation measure supported is to boost satellites into supersynchronous orbits in the time before station-keeping fuel is expected to be exhausted. Because this solution does not remove mass from space, debris generation by fragmentation events remains a possibility. The collision hazard between inactive satellites in the supersynchronous region raises questions about the consequences of collisions in this regime and possible interaction with GEO. In considering the use of supersynchronous orbits for satellite disposal, the first concern is to determine the minimum safe distance above GEO such that objects in the disposal orbits will not interfere with the GEO population in the future. This involves defining the useful GEO area and studying the perturbation effects on objects in supersynchronous orbits. Thus far, research has focused on propagating the orbits of intact objects. However, in the aftermath of a collision, pieces of varying sizes and shapes can be found in orbits quite different from the parent objects' orbits. This document summarizes background information on debris in the GEO region, sources and management strategies, and then addresses the problem: Will orbits of fragments from a collision in a storage orbit occupy GEO altitudes at some time after the collision? If so, at what altitude should the storage orbit occupy such that collision fragments will not interfere with the GEO population? The methods and tools by which the effects of collisions in the supersynchronous region can be analyzed are discussed. A low-velocity collision model is employed to provide delta-velocities imparted to the fragments. An analytical study of perturbation effects, including solar and lunar third body gravitation, Earth oblateness through degree and order four, and solar radiation pressure, follows in order to evaluate the magnitude of these

  10. Quantifying and Improving International Space Station Survivability Following Orbital Debris Penetration

    NASA Technical Reports Server (NTRS)

    Williamsen, Joel; Evans, Hilary; Bohl, Bill; Evans, Steven; Parker, Nelson (Technical Monitor)

    2001-01-01

    The increase of the orbital debris environment in low-earth orbit has prompted NASA to develop analytical tools for quantifying and lowering the likelihood of crew loss following orbital debris penetration of the International Space Station (ISS). NASA uses the Manned Spacecraft and Crew Survivability (MSCSurv) computer program to simulate the events that may cause crew loss following orbital debris penetration of ISS manned modules, including: (1) critical cracking (explosive decompression) of the module; (2) critical external equipment penetration (such as hydrazine and high pressure tanks); (3) critical internal system penetration (guidance, control, and other vital components); (4) hazardous payload penetration (furnaces, pressure bottles, and toxic substances); (5) crew injury (from fragments, overpressure, light flash, and temperature rise); (6) hypoxia from loss of cabin pressure; and (7) thrust from module hole causing high angular velocity (occurring only when key Guidance, Navigation, and Control (GN&C) equipment is damaged) and, thus, preventing safe escape vehicle (EV) departure. MSCSurv is also capable of quantifying the 'end effects' of orbital debris penetration, such as the likelihood of crew escape, the probability of each module depressurizing, and late loss of station control. By quantifying these effects (and their associated uncertainties), NASA is able to improve the likelihood of crew survivability following orbital debris penetration due to improved crew operations and internal designs.

  11. Target selection and comparison of mission design for space debris removal by DLR's advanced study group

    NASA Astrophysics Data System (ADS)

    van der Pas, Niels; Lousada, Joao; Terhes, Claudia; Bernabeu, Marc; Bauer, Waldemar

    2014-09-01

    Space debris is a growing problem. Models show that the Kessler syndrome, the exponential growth of debris due to collisions, has become unavoidable unless an active debris removal program is initiated. The debris population in LEO with inclination between 60° and 95° is considered as the most critical zone. In order to stabilize the debris population in orbit, especially in LEO, 5 to 10 objects will need to be removed every year. The unique circumstances of such a mission could require that several objects are removed with a single launch. This will require a mission to rendezvous with a multitude of objects orbiting on different altitudes, inclinations and planes. Removal models have assumed that the top priority targets will be removed first. However this will lead to a suboptimal mission design and increase the ΔV-budget. Since there is a multitude of targets to choose from, the targets can be selected for an optimal mission design. In order to select a group of targets for a removal mission the orbital parameters and political constraints should also be taken into account. Within this paper a number of the target selection criteria are presented. The possible mission targets and their order of retrieval is dependent on the mission architecture. A comparison between several global mission architectures is given. Under consideration are 3 global missions of which a number of parameters are varied. The first mission launches multiple separate deorbit kits. The second launches a mother craft with deorbit kits. The third launches an orbital tug which pulls the debris in a lower orbit, after which a deorbit kit performs the final deorbit burn. A RoM mass and cost comparison is presented. The research described in this paper has been conducted as part of an active debris removal study by the Advanced Study Group (ASG). The ASG is an interdisciplinary student group working at the DLR, analyzing existing technologies and developing new ideas into preliminary

  12. Instrumentation development for space debris optical observation system in Indonesia: Preliminary results

    NASA Astrophysics Data System (ADS)

    Dani, Tiar; Rachman, Abdul; Priyatikanto, Rhorom; Religia, Bahar

    2015-09-01

    An increasing number of space junk in orbit has raised their chances to fall in Indonesian region. So far, three debris of rocket bodies have been found in Bengkulu, Gorontalo and Lampung. LAPAN has successfully developed software for monitoring space debris that passes over Indonesia with an altitude below 200 km. To support the software-based system, the hardware-based system has been developed based on optical instruments. The system has been under development in early 2014 which consist of two systems: the telescopic system and wide field system. The telescopic system uses CCD cameras and a reflecting telescope with relatively high sensitivity. Wide field system uses DSLR cameras, binoculars and a combination of CCD with DSLR Lens. Methods and preliminary results of the systems will be presented.

  13. Surface debris of canal walls after post space preparation in endodontically treated teeth: a scanning electron microscopic study.

    PubMed

    Serafino, Cinzia; Gallina, Giuseppe; Cumbo, Enzo; Ferrari, Marco

    2004-03-01

    To evaluate surface cleanliness of root canal walls along post space after endodontic treatment using 2 different irrigant regimens, obturation techniques, and post space preparation for adhesive bonding. Forty teeth, divided into 4 groups, were instrumented, using Ni-Ti rotary files, irrigated with NaOCl or NaOCl+EDTA and obturated with cold lateral condensation (CLC) or warm vertical condensation (WVC) of gutta-percha. After post space preparation, etching, and washing procedure, canal walls were observed using a scanning electron microscope (SEM). Amount of debris, smear layer, sealer/gutta-percha remnants, and visibility of open tubules were rated. Higher amounts of rough debris, large sealer/gutta-percha remnants, thick smear layer, and no visibility of tubule orifices were recorded in all the groups at apical level of post space. At middle and coronal levels areas of clean dentin, alternating with areas covered by thin smear layer, smaller debris, gutta-percha remnants, and orifices of tubules partially or totally occluded by plugs were frequently observed. After endodontic treatment, obturation, and post space preparation SEM analysis of canal walls along post space shows large areas (covered by smear layer, debris, and sealer/gutta-percha remnants) not available for adhesive bonding and resin cementation of fiber posts.

  14. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  15. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  16. KENNEDY SPACE CENTER, FLA. - Pieces of debris of Space Shuttle Columbia are offloaded from a flatbed truck in the transfer aisle of the Vehicle Assembly Building (VAB). The debris is being moved from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - Pieces of debris of Space Shuttle Columbia are offloaded from a flatbed truck in the transfer aisle of the Vehicle Assembly Building (VAB). The debris is being moved from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  17. Cosmic dust and space debris; Proceedings of the Topical Meetings and Workshop 6 of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M. (Editor); Hanner, M. S. (Editor); Kessler, D. J. (Editor)

    1986-01-01

    These proceedings encompass topics in the fields of extraterrestrial material samples, IRAS solar system and dust model results, and earth orbit debris. Attention is given to chemical fractionation during high velocity impact, particle deceleration and survival in multiple thin foil targets, and IRAS studies of asteroids, comets, cometary tails, the zodiacal background, and the three-dimensional modeling of interplanetary dust. Also discussed are the evolution of an earth orbit debris cloud, orbital debris due to future space activities, collision probabilities in geosynchronous orbits, and a bitelescopic survey of low altitude orbital debris.

  18. The Space Shuttle Columbia Preservation Project - The Debris Loan Process

    NASA Technical Reports Server (NTRS)

    Thurston, Scott; Comer, Jim; Marder, Arnold; Deacon, Ryan

    2005-01-01

    The purpose of this project is to provide a process for loan of Columbia debris to qualified researchers and technical educators to: (1) Aid in advanced spacecraft design and flight safety development (2) Advance the study of hypersonic re-entry to enhance ground safety. (3) Train and instruct accident investigators and (4) Establish an enduring legacy for Space Shuttle Columbia and her crew.

  19. Research and Development on In-Situ Measurement Sensors for Micro-Meteoroid and Small Space Debris at JAXA

    NASA Astrophysics Data System (ADS)

    Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Kimoto, Yugo; Hanada, Toshiya; Akahoshi, Yasuhiro; Pauline, Faure; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Testuo

    2015-04-01

    The history of Japanese R&D into in-situ sensors for micro-meteoroid and orbital debris (MMOD) measurements is neither particularly long nor short. Research into active sensors started for the meteoroid observation experiment on the HITEN (MUSES-A) satellite of ISAS/JAXA launched in 1990, which had MDC (Munich Dust Counter) on-board sensors for micro meteoroid measurement. This was a collaboration between Technische Universität München and ISAS/JAXA. The main purpose behind the start of passive sensor research was SOCCOR, a late 80's Japan-US mission that planned to capture cometary dust and return to the Earth. Although this mission was canceled, the research outcomes were employed in a JAXA micro debris sample return mission using calibrated aerogel involving the Space Shuttle and the International Space Station. There have been many other important activities apart from the above, and the knowledge generated from them has contributed to JAXA's development of a new type of active dust sensor. JAXA and its partners have been developing a simple in-situ active dust sensor of a new type to detect dust particles ranging from a hundred micrometers to several millimeters. The distribution and flux of the debris in the size range are not well understood and is difficult to measure using ground observations. However, it is important that the risk caused by such debris is assessed. In-situ measurement of debris in this size range is useful for 1) verifying meteoroid and debris environment models, 2) verifying meteoroid and debris environment evolution models, and 3) the real time detection of explosions, collisions and other unexpected orbital events. Multitudes of thin, conductive copper strips are formed at a fine pitch of 100 um on a film 12.5 um thick of nonconductive polyimide. An MMOD particle impact is detected when one or more strips are severed by being perforated by such an impact. This sensor is simple to produce and use and requires almost no calibration as

  20. Spacecraft wall design for increased protection against penetration by space debris impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Tullos, Randy J.

    1990-01-01

    All orbiting spacecraft are susceptible to impacts by meteoroids and pieces of orbital space debris. These impacts occur at extremely high speeds and can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. The design of a spacecraft for a long-duration mission into the meteoroid and space debris environment must include adequate protection against perforation of pressurized components by such impacts. This paper presents the results of an investigation into the perforation resistance of dual-wall structural systems fabricated with monolithic bumper plates and with corrugated bumper plates of equal weight. A comparative analysis of the impact damage in dual-wall systems with corrugated bumper specimens and that in dual-wall specimens with monolithic bumpers of similar weight is performed to determine the advantages and disadvantages of employing corrugated bumpers in structural wall systems for long-duration spacecraft. The analysis indicates that a significant increase in perforation protection can be achieved if a monolithic bumper is replaced by a corrugated bumper of equal weight. The parameters of the corrugations in the corrugated bumper plates are optimized in a manner that minimizes the potential for the creation of ricochet debris in the event of an oblique hypervelocity impact. Several design examples using the optimization scheme are presented and discussed.

  1. The Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2013-01-01

    Orbital debris scientists from major international space agencies, including JAXA and NASA, have worked together to predict the trend of the future environment. A summary presentation was given to the United Nations in February 2013. The orbital debris population in LEO will continue to increase. Catastrophic collisions will continue to occur every 5 to 9 years center dot To limit the growth of the future debris population and to better protect future spacecraft, active debris removal, should be considered.

  2. Pay Me Now or Pay Me More Later: Start the Development of Active Orbital Debris Removal Now

    NASA Astrophysics Data System (ADS)

    McKnight, D.

    2010-09-01

    time it takes for the actions to reap benefits. Additionally, if the growth of the lethal hazard grows faster than anticipated it may be necessary to replace some satellites, execute large object removal, and perform medium debris (i.e. lethal fragments) sweeping operations. The sooner the community starts to remove large derelict objects, the more likely satellite damage will be minimized and the less likely that medium debris sweeping will have to be implemented. While the research is focused on starting debris removal, the ensemble of observations reinforces the need to continue to push for as close to 100% compliance to debris mitigation guidelines as possible. This analysis is unique in its pragmatic application of advanced probability concepts, merging of space hazard assessments with space insurance thresholds, and the use of general risk management concepts on the orbital debris hazard control process. It is hoped that this paper provides an impetus for spacefaring organizations to start to actively pursue development and deployment of debris removal solutions and policies.

  3. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  4. The mechanics of motorised momentum exchange tethers when applied to active debris removal from LEO

    NASA Astrophysics Data System (ADS)

    Caldecott, Ralph; Kamarulzaman, Dayangku N. S.; Kirrane, James P.; Cartmell, Matthew P.; Ganilova, Olga A.

    2014-12-01

    The concept of momentum exchange when applied to space tethers for propulsion is well established, and a considerable body of literature now exists on the on-orbit modelling, the dynamics, and also the control of a large range of tether system applications. The authors consider here a new application for the Motorised Momentum Exchange Tether by highlighting three key stages of development leading to a conceptualisation that can subsequently be developed into a technology for Active Debris Removal. The paper starts with a study of the on-orbit mechanics of a full sized motorised tether in which it is shown that a laden and therefore highly massasymmetrical tether can still be forced to spin, and certainly to librate, thereby confirming its possible usefulness for active debris removal (ADR). The second part of the paper concentrates on the modelling of the centripetal deployment of a symmetrical MMET in order to get it initialized for debris removal operations, and the third and final part of the paper provides an entry into scale modelling for low cost mission design and testing. It is shown that the motorised momentum exchange tether offers a potential solution to the removal of large pieces of orbital debris, and that dynamic methodologies can be implemented to in order to optimise the emergent design.

  5. Orbital Debris Quarterly News, Volume 13, Issue 4

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi (Editor); Shoots, Debi (Editor)

    2009-01-01

    Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).

  6. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-01-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  7. Small craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1995-01-01

    Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.

  8. Location of space debris by infrasound

    NASA Astrophysics Data System (ADS)

    Asming, Vladimir; Vinogradov, Yuri

    2013-04-01

    After an exhausted stage has separated from a rocket it comes back to the dense atmosphere. It burns and divides into many pieces moving separately. Ballisticians can calculate an approximate trace of a falling stage and outline a supposed area where the debris can fall (target ellipse). Such ellipses are usually rather big in sizes (something like 60 x 100 km). For safety reasons all local inhabitants should be evacuated from a target area during rocket's launch. One of problems is that the ballistician can not compute the traces and areas exactly. There were many cases when debris had fallen outside the areas. Rescue teams must check such cases to make changes in rockets. The largest pieces can contain remains of toxic rocket fuel and therefore must be found and deactivated. That is why the problem of debris location is of significant importance for overland fall areas. It is more or less solved in Kazakhstan where large fragments of 1st stages can be seen in the Steppe but it is very difficult to find fragments of 2nd stages in Altai, Tomsk region and Komi republic (taiga, mountains, swamps). The rocket debris produces strong infrasonic shock waves during their reentry. Since 2009 the Kola Branch of Geophysical Survey of RAS participates in joint project with Khrunichev Space Center concerning with infrasound debris location. We have developed mobile infrasound arrays consisting of 3 microphones, analog-to-digit converter, GPS and notebook. The aperture is about 200 m, deployment time is less than 1 hour. Currently we have 4 such arrays, one of them is wireless and consists of 3 units comprising a microphone, GPS and radio-transmitter. We have made several field measurements by 3 or 4 such arrays placed around target ellipses of falling rocket stages in Kazakhstan ("Soyuz" rocket 1st stage), Altai and Tomsk region ("Proton" rocket 2nd stages). If was found that a typical 2nd stage divides into hundreds of pieces and each one generates a shock wave. This is a

  9. Application of multi-agent coordination methods to the design of space debris mitigation tours

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2016-04-01

    The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.

  10. Study the Space Debris Impact in the Early Stages of the Nano-Satellite Design

    NASA Astrophysics Data System (ADS)

    Mahdi, Mohammed Chessab

    2016-12-01

    The probability of KufaSat collisions with different sizes of orbital debris and with other satellites which operating in the same orbit during orbital lifetime was determined. Apogee/Perigee Altitude History was used to graph apogee and perigee altitudes over KufaSat lifetime. The required change in velocity for maneuvers necessary to reentry atmospheric within 25 years was calculated. The prediction of orbital lifetime of KufaSat using orbital parameters and engineering specifications as inputs to the Debris Assessment Software (DAS) was done, it has been verified that the orbital lifetime will not be more than 25 years after end of mission which is compatible with recommendation of Inter-Agency Space Debris Coordination Committee (IADC).

  11. Development of the KARI Space Debris Collision Risk Management System (KARISMA)

    NASA Astrophysics Data System (ADS)

    Kim, Hae-Dong; Lee, Sang-Cherl; Cho, Dong-Hyun; Seong, Jae-Dong

    2018-05-01

    Korea has been operating multi-purpose low-earth orbit (LEO) satellites such as the Korea multi-purpose satellite (KOMPSAT) since 1999 and the Communication, Ocean, and Meteorological Satellite (COMS), which was launched into geostationary orbit in 2006. The Korea Aerospace Research Institute (KARI) consequently became concerned about the deteriorating space debris environment. This led to the instigation, in 2011, of a project to develop the KARI space debris collision risk management system (KARISMA). In 2014, KARISMA was adopted as an official tool at the KARI ground station and is operated to mitigate collision risks while being continuously upgraded with input from satellite operators. The characteristics and architecture of KARISMA are described with detailed operational views. The user-friendly user interfaces including 2D and 3D displays of the results, conjunction geometries, and so on, are described in detail. The results of our analysis of the space collision risk faced by the KOMPSAT satellites as determined using KARISMA are presented, as well as optimized collision avoidance maneuver planning with maneuvering strategies for several conjunction events. Consequently, the development of KARISMA to provide detailed descriptions is expected to contribute significantly to satellite operators and owners who require tools with many useful functions to mitigate collision risk.

  12. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Marine, Micky; Saad, Mohamad; Bertles, Daniel; Nichols, Dave

    1990-01-01

    Advanced designs are being continued to develop the ultimate goal of a GETAWAY special to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subcase model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis which showed the feasibility of retrieve at least four large (greater than 1500 kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed.

  13. Computational methodology to predict satellite system-level effects from impacts of untrackable space debris

    NASA Astrophysics Data System (ADS)

    Welty, N.; Rudolph, M.; Schäfer, F.; Apeldoorn, J.; Janovsky, R.

    2013-07-01

    This paper presents a computational methodology to predict the satellite system-level effects resulting from impacts of untrackable space debris particles. This approach seeks to improve on traditional risk assessment practices by looking beyond the structural penetration of the satellite and predicting the physical damage to internal components and the associated functional impairment caused by untrackable debris impacts. The proposed method combines a debris flux model with the Schäfer-Ryan-Lambert ballistic limit equation (BLE), which accounts for the inherent shielding of components positioned behind the spacecraft structure wall. Individual debris particle impact trajectories and component shadowing effects are considered and the failure probabilities of individual satellite components as a function of mission time are calculated. These results are correlated to expected functional impairment using a Boolean logic model of the system functional architecture considering the functional dependencies and redundancies within the system.

  14. Threats to U.S. National Security Interests in Space: Orbital Debris Mitigation and Removal

    DTIC Science & Technology

    2014-01-08

    objects larger than the size of a softball and hundreds of thousands of smaller fragments. This population of space debris potentially threatens U.S...catalogues objects as small as about 10 cm ( softball size) in LEO and as small as 1 meter in Geosynchronous Orbit.12 Today, the Space Surveillance

  15. A Deterministic Approach to Active Debris Removal Target Selection

    NASA Astrophysics Data System (ADS)

    Lidtke, A.; Lewis, H.; Armellin, R.

    2014-09-01

    Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the

  16. Space Debris Detection on the HPDP, a Coarse-Grained Reconfigurable Array Architecture for Space

    NASA Astrophysics Data System (ADS)

    Suarez, Diego Andres; Bretz, Daniel; Helfers, Tim; Weidendorfer, Josef; Utzmann, Jens

    2016-08-01

    Stream processing, widely used in communications and digital signal processing applications, requires high- throughput data processing that is achieved in most cases using Application-Specific Integrated Circuit (ASIC) designs. Lack of programmability is an issue especially in space applications, which use on-board components with long life-cycles requiring applications updates. To this end, the High Performance Data Processor (HPDP) architecture integrates an array of coarse-grained reconfigurable elements to provide both flexible and efficient computational power suitable for stream-based data processing applications in space. In this work the capabilities of the HPDP architecture are demonstrated with the implementation of a real-time image processing algorithm for space debris detection in a space-based space surveillance system. The implementation challenges and alternatives are described making trade-offs to improve performance at the expense of negligible degradation of detection accuracy. The proposed implementation uses over 99% of the available computational resources. Performance estimations based on simulations show that the HPDP can amply match the application requirements.

  17. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This work continues to develop advanced designs toward the ultimate goal of a Get Away Special to demonstrate economical removal of orbital debris using local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design, and a subscale model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis that showed the feasibility of retrieving at least four large (greater than 1500-kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed here.

  18. Reduction of CO2 and orbital debris: can CO2 emission trading principles be applied to debris reduction?

    NASA Astrophysics Data System (ADS)

    Orlando, Giovanni; Kinnersley, Mark; Starke, Juergen; Hugel, Sebastian; Hartner, Gloria; Singh, Sanjay; Loubiere, Vincent; Staebler, Dominik-Markus; O'Brien-Organ, Christopher; Schwindt, Stefan; Serreau, Francois; Sharma, Mohit

    In the past years global pollution and the specific situation of global warming changes have been strongly influencing public opinion and thus obliged politicians to initiate/ negotiate in-ternational agreements to control, avoid or at least reduce the impact of CO2 emissions e.g. The Kyoto Protocol (1997) and the International Copenhagen conference on Climate Change (2009). In the orbital debris area the collision between the Iridium33 and Cosmos 2251 satel-lites in 2009 has again pushed to the forefront the discussion of the space pollution by space debris and the increasing risk of critical and catastrophic events during the nominal life time of space objects. It is shown by simulations that for Low Earth Orbits the critical debris situation is already achieved and the existing space objects will probably produce sufficient space debris elements -big enough -to support the cascade effect (Kessler Syndrome). In anal-ogy with CO2 emissions, potential recommendations / regulations to reduce the production of Space Debris or its permanence in orbit, are likely to open new markets involving Miti-gation and Removal of Space Debris. The principle approach for the CO2 emission trading model will be investigated and the applicability for the global space debris handling will be analysed. The major differences of the two markets will be derived and the consequences in-dicated. Potential alternative solutions will be proposed and discussed. For the example of the CO2 emission trading principles within EU and worldwide legal conditions for space debris (national / international laws and recommendations) will be considered as well as the commer-cial approach from the controlled situation of dedicated orders to a free / competitive market in steps. It is of interest to consider forms of potential industrial organisations and interna-tional co-operations to react on a similar architecture for the debris removal trading including incentives and penalties for the different

  19. Orbital debris removal and meteoroid deflection

    NASA Astrophysics Data System (ADS)

    Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas

    1998-11-01

    Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1 - 10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts of asteroids with the Earth, it shown that it is possible to scale up the systems to prevent these catastrophic collisions providing sufficient early warning is available from new generation space telescopes plus deep space radar tracking.

  20. The world state of orbital debris measurements and modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2004-02-01

    For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.

  1. Simulations of SSLV Ascent and Debris Transport

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil

    2006-01-01

    A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.

  2. An Overview of the Orbital Debris and Meteoroid Environments, Their Effects on Spacecraft, and What Can We Do About It?

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2017-01-01

    Because of the high speeds needed for orbital space flight, hypervelocity impacts with objects in space are a constant risk to spacecraft. This includes natural debris - meteoroids - and the debris remnants of our own activities in space. A number of space surveillance assets are used to measure and track spacecraft, used upper stages, and breakup debris. However, much of the debris and meteoroids encountered by spacecraft in Earth orbit is not easily measured or tracked. For every man-made object that we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. This means that much of the risk from both meteoroids and anthropogenic debris is statistical in nature. NASA uses and maintains a number of instruments to statistically monitor the meteoroid and orbital debris environments, and uses this information to compute statistical models for use by spacecraft designers and operators. Because orbital debris is a result of human activities, NASA has led the US government in formulating national and international strategies that space users can employ to limit the growth of debris in the future. This talk will summarize the history and current state of meteoroid and space debris measurements and modeling, how the environment influences spacecraft design and operations, how we are designing the experiments of tomorrow to improve our knowledge, and how we are working internationally to preserve the space environment for the future.

  3. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Debris analysis. 417.211 Section 417.211 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight...

  4. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Debris analysis. 417.211 Section 417.211 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight...

  5. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Debris analysis. 417.211 Section 417.211 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight...

  6. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Debris analysis. 417.211 Section 417.211 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight...

  7. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris analysis. 417.211 Section 417.211 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight...

  8. ROGER a potential orbital space debris removal system

    NASA Astrophysics Data System (ADS)

    Starke, Juergen; Bischof, Bernd; Foth, W.-O.; -J., J.; Günther

    The previous activities in the field of On Orbit Servicing studied in the 1990's included in partic-ular the capability of vehicles in GEO to capture and support satellites (mainly communication satellites) to enable repair and continuation of operations, and finally the controlled transfer the target into a permanent graveyard orbit. The specific capture tools for these applications were mostly based on robotic systems to capture and fix the target under specific dynamic constraints (e.g. slowly tumbling target) without damage, and to allow the stabilization, re-orientation and potential repair of the target and subsequent release or transport to the final disposal orbit. Due to the drastically increasing number of debris particularly in the Low Earth Orbits (SSO) the active debris removal is now necessary to counteract to the predicted debris production cascade (Kessler Syndrome), which means the pollution of the total sphere in low earth orbit and not only the SSO area. In most of the debris congresses it was recommended to start removal with the still integrated systems as soon as possible. In the case of large debris objects, the soft capture system can be replaced by a simpler and robust system able to operate from a safe distance to the target and flexible enough to capture and hold different types of targets such as deactivated and/or defective satellites, upper stages and big fragments. These nominally non -cooperative targets might be partially destroyed by the capture process, but the production of additional debris shall be avoided. A major argument for the commercial applications is a multi-target mission potential, which is possible at GEO because the transfer propellant requirement to the disposal orbit and the return to the orbit of the next potential target is relative low (orbits with similar inclination and altitude). The proposed ROGER system is designed as a spacecraft with rendezvous capabilities including inspection in the vicinity of the

  9. Debris Removal: An Opportunity for Cooperative Research?

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    Space debris mitigation practices will be insufficient to prevent the continued growth of the Earth satellite population. Removal of orbital debris can improve the reliability of present and future space systems. The challenges of developing an effective, affordable debris removal capability are considerable. The time is right for a new look at space remediation concepts. In concert with or following the current IAA study An international approach to the remediation of the near-Earth space environment will likely be required.

  10. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the

  11. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  12. A deorbiter CubeSat for active orbital debris removal

    NASA Astrophysics Data System (ADS)

    Hakima, Houman; Bazzocchi, Michael C. F.; Emami, M. Reza

    2018-05-01

    This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat's propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471 km (i.e., 100 km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.

  13. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  14. Laser Remediation of Threats Posed by Small Orbital Debris

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  15. KENNEDY SPACE CENTER, FLA. - Containers in the Columbia Debris Hangar are lined up after being emptied of the Columbia debris. The debris is being transferred to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - Containers in the Columbia Debris Hangar are lined up after being emptied of the Columbia debris. The debris is being transferred to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  16. View of Kotov working with Debris Panels during EVA18

    NASA Image and Video Library

    2007-05-30

    ISS015-E-10043 (30 May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Kotov and cosmonaut Fyodor N. Yurchikhin (out of frame), commander representing Russia's Federal Space Agency, retrieved the "Christmas tree" bundle of three packages of 17 protective debris panels for installation around the forward cone of the Zvezda Service Module of the International Space Station and to install the first set of those panels. The aluminum debris protection panels are designed to shield the module from micro-meteoroids.

  17. Orbital Debris Research in the United States

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene

    2009-01-01

    The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.

  18. KENNEDY SPACE CENTER, FLA. - At the Columbia Debris Hangar, some of the debris of Space Shuttle Columbia is secured onto a flatbed truck for transfer to the Vehicle Assembly Building for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - At the Columbia Debris Hangar, some of the debris of Space Shuttle Columbia is secured onto a flatbed truck for transfer to the Vehicle Assembly Building for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  19. KENNEDY SPACE CENTER, FLA. - At the Columbia Debris Hangar, some of the debris of Space Shuttle Columbia is moved onto a flatbed truck for transfer to the Vehicle Assembly Building for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - At the Columbia Debris Hangar, some of the debris of Space Shuttle Columbia is moved onto a flatbed truck for transfer to the Vehicle Assembly Building for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  20. Synergy of debris mitigation and removal

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; White, Adam E.; Crowther, Richard; Stokes, Hedley

    2012-12-01

    Since the end of the 20th Century there has been considerable effort made to devise mitigation measures to limit the growth of the debris population. This activity has led to the implementation of a "25-year rule" by a number of space-faring nations for the post-mission disposal of spacecraft and orbital stages intersecting the Low Earth Orbit (LEO) region. Through the use of projections made by computer models, it was anticipated that this 25-year rule, together with passivation and suppression of mission-related debris, would be sufficient to prevent the unconstrained growth of the LEO debris population. In the last decade both the LEO debris environment and the debris modelling capability have seen significant changes. In particular, recent population growth has been driven by a number of major break-ups, including the intentional destruction of the Fengyun-1C spacecraft and the collision between Iridium 33 and Cosmos 2251. State-of-the-art evolutionary models indicate that the LEO debris population will continue to grow in spite of good compliance with the commonly adopted mitigation measures and even in the absence of new launches. Consequently, this has led to considerable interest in the development of remediation measures and, especially, in debris removal. In this paper, we present a new and large study of debris mitigation and removal using the University of Southampton's evolutionary model, DAMAGE, together with the latest MASTER model population of objects ≥10 cm in LEO. Here, we have employed a concurrent approach to mitigation and remediation, whereby changes to the PMD rule and the inclusion of other mitigation measures have been considered together with multiple removal strategies. In this way, we have been able to demonstrate the synergy of these mitigation and remediation measures and to identify potential, aggregate solutions to the space debris problem. The results suggest that reducing the PMD rule offers benefits that include an increase in

  1. What's New for Laser Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Lander, Mike

    2011-11-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm is now a reality that we ignore at our peril. The least costly, and most comprehensive, solution is Laser Orbital Debris Removal (LODR). In this approach, a high power pulsed laser on the Earth creates a laser-ablation jet on the debris object's surface which provides the small impulse required to cause it to re-enter and burn up in the atmosphere. The LODR system should be located near the Equator, and includes the laser, a large, agile mirror, and systems for active detection, tracking and atmospheric path correction. In this paper, we discuss advances that have occurred since LODR was first proposed, which make this solution to the debris problem look quite realistic.

  2. 14 CFR 417.225 - Debris risk analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Debris risk analysis. 417.225 Section 417.225 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A...

  3. 14 CFR 417.225 - Debris risk analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Debris risk analysis. 417.225 Section 417.225 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A...

  4. 14 CFR 417.225 - Debris risk analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Debris risk analysis. 417.225 Section 417.225 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A...

  5. 14 CFR 417.225 - Debris risk analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Debris risk analysis. 417.225 Section 417.225 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A...

  6. 14 CFR 417.225 - Debris risk analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris risk analysis. 417.225 Section 417.225 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A...

  7. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach points to some of the tiles recovered from the orbiter as he explains to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach points to some of the tiles recovered from the orbiter as he explains to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  8. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. Behind him is a model of the left wing of the orbiter. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. Behind him is a model of the left wing of the orbiter. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  9. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (center) points to some of the tiles recovered from the orbiter as he explains to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (center) points to some of the tiles recovered from the orbiter as he explains to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  10. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach talks to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. Behind him is a model of the left wing of the orbiter. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach talks to the media about activities that have taken place since the Columbia accident on Feb. 1, 2003. Behind him is a model of the left wing of the orbiter. STS-107 debris recovery and reconstruction operations are winding down. To date, nearly 84,000 pieces of debris have been recovered and sent to KSC. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  11. NASA's Hubble Space Telescope Finds Dead Stars 'Polluted with Planet Debris'

    NASA Image and Video Library

    2017-12-08

    This is an artist’s impression of a white dwarf (burned-out) star accreting rocky debris left behind by the star’s surviving planetary system. It was observed by Hubble in the Hyades star cluster. At lower right, an asteroid can be seen falling toward a Saturn-like disk of dust that is encircling the dead star. Infalling asteroids pollute the white dwarf’s atmosphere with silicon. Credit: NASA, ESA, and G. Bacon (STScI) --- NASA's Hubble Space Telescope has found the building blocks for Earth-sized planets in an unlikely place-- the atmospheres of a pair of burned-out stars called white dwarfs. These dead stars are located 150 light-years from Earth in a relatively young star cluster, Hyades, in the constellation Taurus. The star cluster is only 625 million years old. The white dwarfs are being polluted by asteroid-like debris falling onto them. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where

  13. Electron microscope observations of impact crater debris amongst contaminating particulates on materials surfaces exposed in space in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.

    1993-01-01

    Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.

  14. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jack Nowling moves a box filled with part of the Columbia debris. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas. An area of the Vehicle Assembly Building is being prepared to store the debris.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jack Nowling moves a box filled with part of the Columbia debris. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas. An area of the Vehicle Assembly Building is being prepared to store the debris.

  15. The Space Shuttle Program Pre-Flight Meteoroid and Orbital Debris Risk/Damage Predictions and Post-Flight Damage Assessments

    NASA Technical Reports Server (NTRS)

    Levin, George M.; Christiansen, Eric L.

    1997-01-01

    The pre-flight predictions and postflight assessments carried out in relation to a series of Space Shuttle missions are reviewed, and data are presented for the meteoroid and orbital debris damage observed on the Hubble Space Telescope during the 1994 Hubble repair mission. Pre-flight collision risk analyses are carried out prior to each mission, and in the case of an unacceptable risk, the mission profile is altered until the risk is considered to be acceptable. The NASA's BUMPER code is used to compute the probability of damage from debris and meteoroid particle impacts based on the Poisson statistical model for random events. The penetration probability calculation requires information concerning the geometry of the critical systems, the penetration resistance and mission profile parameters. Following each flight, the orbiter is inspected for meteoroid and space debris damage. The emphasis is on areas such as the radiator panels, the windows and the reinforced carbon-carbon structures on the leading wing edges and on the nose cap. The contents of damage craters are analyzed using a scanning electron microscope to determine the nature and origin of the impactor. Hypervelocity impact tests are often performed to simulate the observed damage and to estimate the nature of the damaging particles. The number and type of damage observed provides information concerning the orbital debris environment.

  16. Orbital Debris Quarterly News, Volume 13, No. 3

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    This issue of the Orbital Debris Quarterly contains articles on the congressional hearing that was held on orbital debris and space traffic; the update received by the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) on the collision of the Iridium 33 and Cosmos 2251 satellites; the micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope Wide Field Planetary Camera; an analysis of the reentry survivability of the Global Precipitation Measurement (GPM) spacecraft; an update on recent major breakup fragments; and a graph showing the current debris environment in low Earth orbit.

  17. Orbital debris removal using ground-based lasers

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1996-01-01

    Orbiting the Earth are spent rocket stages, non-functioning satellites, hardware from satellite deployment and staging, fragments of exploded spacecraft, and other relics of decades of space exploration: orbital debris. The United States Space Command tracks and maintains a catalog of the largest objects. The catalog contains over 7000 objects. Recent studies have assessed the debris environment in an effort to estimate the number of smaller particles and the probability of a collision causing catastrophic damage to a functioning spacecraft. The results of the studies can be used to show, for example, that the likelihood of a collision of a particle larger than about one centimeter in diameter with the International Space Station during a 10-year period is a few percent, roughly in agreement with earlier estimates for Space Station Freedom. Particles greater than about one centimeter in diameter pose the greatest risk to shielded spacecraft. There are on the order of 105 such particles in low Earth orbit. The United States National Space Policy, begun in 1988, is to minimize debris consistent with mission requirements. Measures such as venting unused fuel to prevent explosions, retaining staging and deployment hardware, and shielding against smaller debris have been taken by the U.S. and other space faring nations. There is at present no program to remove debris from orbit. The natural tendency for upper atmospheric drag to remove objects from low Earth orbit is more than balanced by the increase in the number of debris objects from new launches and fragmentation of existing objects. In this paper I describe a concept under study by the Program Development Laboratory of Marshall Space Flight Center and others to remove debris with a ground-based laser. A longer version of this report, including figures, is available from the author.

  18. Influence of fishing activity over the marine debris composition close to coastal jetty.

    PubMed

    Farias, Eduardo G G; Preichardt, Paulo R; Dantas, David V

    2018-04-23

    Worldwide, the marine debris emissions have been provoking impacts in ecosystems, generating massive mortality of different species with commercial interest. In South America, we have a lack of studies to verify the marine debris composition in transitional environments such as adjacent regions of coastal jetties. These are hydraulic engineering constructions used to maintain the navigation channel access between the sea-estuarine interface and are also used by teleost fishes, crustaceans, and mollusks like artificial shelters (reefs), being excellent fishing grounds. Therefore, the present study was devoted to qualitatively evaluate the composition of marine debris in an internal jetty portion of a Laguna Estuarine System (LES) located in South America (Brazil). Six hundred freediving were conducted to collect marine debris in the study region. The in situ campaigns were performed in 2016 during all spring season (sand substrata) in four distinct zones with 26,400 m 2 each one covering almost all adjacent jetty extension, to evaluate possible spatial changes in the marine debris composition. All material obtained was identified, measured, weighed, and ordered in eight groups, with six groups being related to the fishing activity and two groups related to the tourism/community in the study region. So, it was possible to observe possible relations between the marine debris distribution to artisanal and recreational local fishing. After 600 freediving sampling efforts, 2142 marine debris items were obtained, totaling close to 100 kg of solid waste removed from the inner portion of the coastal jetty. Notably, 1752 units (50 kg) of fishing leads were collected being this item the main marine debris residue found in the four sampled areas, corresponding to nearly 50% of the total weight of the collected waste. Ninety-eight percent of marine debris were derived from the local fishing activities, and just 2% were derived from tourism/community. Considering the total

  19. KENNEDY SPACE CENTER, FLA. -In the Columbia Debris Hangar, Don Eitel (left) wraps pieces of Columbia debris for storage. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. -In the Columbia Debris Hangar, Don Eitel (left) wraps pieces of Columbia debris for storage. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

  20. A Parametric Study on Using Active Debris Removal to Stabilize the Future LEO Debris Environment

    NASA Technical Reports Server (NTRS)

    Liou, J.C.

    2010-01-01

    Recent analyses of the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resources, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of the effectiveness of ADR must be conducted. The goal is to demonstrate the feasibility of using ADR to preserve the future environment and to guide its implementation to maximize the benefit-cost ratio. This paper describes a comprehensive sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term, orbital debris evolutionary model, LEGEND, is used to quantify the effects of many key parameters. These parameters include (1) the starting epoch of ADR implementation, (2) various target selection criteria, (3) the benefits of collision avoidance maneuvers, (4) the consequence of targeting specific inclination or altitude regimes, (5) the consequence of targeting specific classes of vehicles, and (6) the timescale of removal. Additional analyses on the importance of postmission disposal and how future launches might affect the requirements to stabilize the environment are also included.

  1. Comparison of debris flux models

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Klinkrad, H.; Matney, M.; Nazarenko, A.; Wegener, P.

    The availability of models to estimate the impact risk from the man-made space debris and the natural meteoroid environment is essential for both, manned and unmanned satellite missions. Various independent tools based on different approaches have been developed in the past years. Due to an increased knowledge of the debris environment and its sources e.g. from improved measurement capabilities, these models could be updated regularly, providing more detailed and more reliable simulations. This paper addresses an in-depth, quantitative comparison of widely distributed debris flux models which were recently updated, namely ESA's MASTER 2001 model, NASA's ORDEM 2000 and the Russian SDPA 2000 model. The comparison was performed in the frame of the work of the 20t h Interagency Debris Coordination (IADC) meeting held in Surrey, UK. ORDEM 2000ORDEM 2000 uses careful empirical estimates of the orbit populations based onthree primary data sources - the US Space Command Catalog, the H ystackaRadar, and the Long Duration Exposure Facility spacecraft returned surfaces.Further data (e.g. HAX and Goldstone radars, impacts on Shuttle windows andradiators, and others) were used to adjust these populations for regions in time,size, and space not covered by the primary data sets. Some interpolation andextrapolation to regions with no data (such as projections into the future) wasprovided by the EVOLVE model. MASTER 2001The ESA MASTER model offers a full three dimensional description of theterrestrial debris distribution reaching from LEO up to the GEO region. Fluxresults relative to an orbiting target or to an inertial volume can be resolved intosource terms, impactor characteristics and orbit, as well as impact velocity anddirection. All relevant debris source terms are considered by the MASTERmodel. For each simulated source, a corresponding debris generation model interms of mass/diameter distribution, additional velocities, and directionalspreading has been developed. A

  2. The European space debris safety and mitigation standard

    NASA Astrophysics Data System (ADS)

    Alby, F.; Alwes, D.; Anselmo, L.; Baccini, H.; Bonnal, C.; Crowther, R.; Flury, W.; Jehn, R.; Klinkrad, H.; Portelli, C.; Tremayne-Smith, R.

    2001-10-01

    A standard has been proposed as one of the series of ECSS Standards intended to be applied together for the management, engineering and product assurance in space projects and applications. The requirements in the Standard are defined in terms of what must be accomplished, rather than in terms of how to organise and perform the necessary work. This allows existing organisational structures and methods within agencies and industry to be applied where they are effective, and for such structures and methods to evolve as necessary, without the need for rewriting the standards. The Standard comprises management requirements, design requirements and operational requirements. The standard was prepared by the European Debris Mitigation Standard Working Group (EDMSWG) involving members from ASI, BNSC, CNES, DLR and ESA.

  3. High Precision Optical Observations of Space Debris in the Geo Ring from Venezuela

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    We present preliminary results to demonstrate that our method for detection and location of Space Debris (SD) in the geostationary Earth orbit (GEO) ring, based on observations at the OAN of Venezuela is of high astrometric precision. A detailed explanation of the method, its validation and first results is available in (Lacruz et al. 2017).

  4. Laser Ranging for Effective and Accurate Tracking of Space Debris in Low Earth Orbits

    NASA Astrophysics Data System (ADS)

    Blanchet, Guillaume; Haag, Herve; Hennegrave, Laurent; Assemat, Francois; Vial, Sophie; Samain, Etienne

    2013-08-01

    The paper presents the results of preliminary design options for an operational laser ranging system adapted to the measurement of the distance of space debris. Thorough analysis of the operational parameters is provided with identification of performance drivers and assessment of enabling design options. Results from performance simulation demonstrate how the range measurement enables improvement of the orbit determination when combined with astrometry. Besides, experimental results on rocket-stage class debris in LEO were obtained by Astrium beginning of 2012, in collaboration with the Observatoire de la Côte d'Azur (OCA), by operating an experimental laser ranging system supported by the MéO (Métrologie Optique) telescope.

  5. A Simple Model for the Orbital Debris Environment in GEO

    NASA Astrophysics Data System (ADS)

    Anilkumar, A. K.; Ananthasayanam, M. R.; Subba Rao, P. V.

    The increase of space debris and its threat to commercial space activities in the Geosynchronous Earth Orbit (GEO) predictably cause concern regarding the environment over the long term. A variety of studies regarding space debris such as detection, modeling, protection and mitigation measures, is being pursued for the past couple of decades. Due to the absence of atmospheric drag to remove debris in GEO and the increasing number of utility satellites therein, the number of objects in GEO will continue to increase. The characterization of the GEO environment is critical for risk assessment and protection of future satellites and also to incorporate effective debris mitigation measures in the design and operations. The debris measurements in GEO have been limited to objects with size more than 60 cm. This paper provides an engineering model of the GEO environment by utilizing the philosophy and approach as laid out for the SIMPLE model proposed recently for LEO by the authors. The present study analyses the statistical characteristics of the GEO catalogued objects in order to arrive at a model for the GEO space debris environment. It is noted that the catalogued objects, as of now of around 800, by USSPACECOM across the years 1998 to 2004 have the same semi major axis mode (highest number density) around 35750 km above the earth. After removing the objects in the small bin around the mode, (35700, 35800) km containing around 40 percent (a value that is nearly constant across the years) of the objects, the number density of the other objects follow a single Laplace distribution with two parameters, namely location and scale. Across the years the location parameter of the above distribution does not significantly vary but the scale parameter shows a definite trend. These observations are successfully utilized in proposing a simple model for the GEO debris environment. References Ananthasayanam, M. R., Anil Kumar, A. K., and Subba Rao, P. V., ``A New Stochastic

  6. Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 has reignited interest in using active debris removal to remediate the near-Earth orbital debris environment. A recent NASA study shows that, in order to stabilize the environment in the low Earth orbit (LEO) region for the next 200 years, active debris removal of about five large and massive (1 to more than 8 metric tons) objects per year is needed. To develop the capability to remove five of those objects per year in a cost-effective manner truly represents a grand challenge in engineering and technology development.

  7. An Assessment of Potential Detectors to Monitor the Man-made Orbital Debris Environment. [space debris

    NASA Technical Reports Server (NTRS)

    Reynolds, R. C.; Ruck, G. T.

    1983-01-01

    Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.

  8. Research and Development on In-Situ Measurement Sensors for Micro-Meteoroid and Small Space Debris at JAXA

    NASA Astrophysics Data System (ADS)

    Kitazawa, Y.; Matsumoto, H.; Okudaira, O.; Kimoto, Y.; Hanada, T.; Faure, P.; Akahoshi, Y.; Hattori, M.; Karaki, A.; Sakurai, A.; Funakoshi, K.; Yasaka, T.

    2013-08-01

    The Japan Aerospace Exploration Agency (JAXA) has been conducting R&D into in-situ sensors for measuring micro-meteoroid and small-sized debris (MMSD) since the 1980s. Research into active sensors started with the meteoroid observation experiment conducted using the HITEN (MUSES-A) satellite that ISAS/JAXA launched in 1990. The main purpose behind the start of passive collector research was SOCCER, a late-80s Japan-US mission that was designed to capture cometary dust and then return to the Earth. Although this mission was cancelled, the research outcomes were employed in a JAXA mission for the return of MMSD samples using calibrated aerogel and involving the space shuttle and the International Space Station. Many other important activities have been undertaken as well, and the knowledge they have generated has contributed to JAXA's development of a new type of active dust sensor. This paper reports on the R&D conducted at JAXA into in-situ MMSD measurement sensors.

  9. Micrometeoroids and debris

    NASA Technical Reports Server (NTRS)

    Potter, Andrew

    1989-01-01

    The materials with vulnerability to micrometeoroids and space debris are discussed. It is concluded that all materials are vulnerable to hypervelocity impacts and that the importance of these impacts depends on the function of material. It is also concluded that low earth orbits are the most significant region relative to orbital debris. The consequences of aerospace environment effects are discussed.

  10. The Top 10 Questions for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J. -C.

    2010-01-01

    This slide presentation reviews the requirement and issues around removal of debris from the earth orbital environment. The 10 questions discussed are: 1. Which region (LEO/MEO/GEO) has the fastest projected growth rate and the highest collision activities? 2. Can the commonly-adopted mitigation measures stabilize the future environment? 3. What are the objectives of active debris removal (ADR)? 4. How can effective ADR target selection criteria to stabilize the future LEO environment be defined? 5. What are the keys to remediate the future LEO environment? 6. What is the timeframe for ADR implementation? 7. What is the effect of practical/operational constraints? 8. What are the collision probabilities and masses of the current objects? 9. What are the benefits of collision avoidance maneuvers? 10. What is the next step?

  11. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    NASA Technical Reports Server (NTRS)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  12. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  13. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    NASA Astrophysics Data System (ADS)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  14. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  15. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  16. Jupiter After the 2009 Impact: Hubble Space Telescope Imaging of the Impact-Generated Debris and Its Temporal Evolution

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.; Wong, M. H.; Clarke, J. T.; de Pater, I.; Fletcher, L. N.; Hueso, R.; Noll, K.; Orton, G. S.; Perez-Hoyos, S.; Sanchez-Lavega, A.; hide

    2010-01-01

    We report Hubble Space Telescope images of Jupiter during the aftermath of an impact by an unknown object in 2009 July, The 2009 impact-created debris field evolved more slowly than those created in 1994 by the collision of the tidally disrupted comet D/Shoemaker-Levy 9 (SL9). The slower evolution, in conjunction with the isolated nature of this single impact, permits a more detailed assessment of the altitudes and meridional motion of the debris than was possible with SL9. The color of the 2009 debris was markedly similar to that seen in 1994, thus this dark debris is likely to be Jovian material that is highly thermally processed. The 2009 impact site differed from the 1994 SL9 sites in UV morphology and contrast lifetime; both are suggestive of the impacting body being asteroidal rather than cometary. Transport of the 2009 Jovian debris as imaged by Hubble shared similarities with transport of volcanic aerosols in Earth's atmosphere after major eruptions.

  17. Low altitude, one centimeter, space debris search at Lincoln Laboratory's (M.I.T.) experimental test system

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Beatty, D. E.; Yakutis, A. J.; Randall, P. M. S.

    1985-01-01

    The majority of work performed by the Lincoln Laboratory's Space Surveillance Group, at the request of NASA, to define the near-earth population of man-made debris is summarized. Electrooptical devices, each with a 1.2 deg FOV, were employed at the GEODSS facility in New Mexico. Details of the equipment calibration and alignment procedures are discussed, together with implementation of a synchronized time code for computer controlled videotaping of the imagery. Parallax and angular speed data served as bases for distinguishing between man-made debris and meteoroids. The best visibility was obtained in dawn and dusk twilight conditions at elevation ranges of 300-2000 km. Tables are provided of altitudinal density distribution of debris. It is noted that the program also yielded an extensive data base on meteoroid rates.

  18. An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant

    NASA Technical Reports Server (NTRS)

    Matney, Mark J.

    2013-01-01

    There is a growing consensus among the space debris technical community that limiting the long ]term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a costeffective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid" approach that

  19. An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2013-01-01

    There is a growing consensus among the space debris technical community that limiting the long-term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a cost-effective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would enhance the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid

  20. Mission Success and Environmental Protection: Orbital Debris Considerations

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas

    2007-01-01

    The current U.S. National Space Policy specifically calls on U.S. Government entities "to follow the United States Government Orbital Debris Mitigation Standard Practices, consistent with mission requirements and cost effectiveness, in the procurement and operation of spacecraft, launch services, and the operation of tests and experiments in space. Early assessment (pre-PDR) of orbital debris mitigation compliance is essential to minimize development impacts. Orbital debris mitigation practices today are the most effective means to protect the near-Earth space environment for future missions.

  1. Meteoroid/orbital debris impact damage predictions for the Russian space station MIR

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Hyde, J. L.; Lear, D.

    1997-01-01

    Components of the Mir space station have been exposed to the meteoroid/orbital debris (M/OD) environment for up to 11 years. During this period, no M/OD impact perforation of the pressure shell of the manned modules were reported. The NASA standard M/OD analysis code BUMPER was used to predict the probability of M/OD impact damage to various components of Mir. The analysis indicates a 1 in 2.2 chance that a M/OD impact would have caused a penetration resulting in a pressure leak of the Mir modules since its launch up to the February 1997. For the next five years, the estimated odds become 1 in 3. On an annual basis, penetration risks are 60 percent higher, on the average, in the next five years due to the larger size of Mir and the growth in the orbital debris population.

  2. An optical survey for space debris on highly eccentric and inclined MEO orbits

    NASA Astrophysics Data System (ADS)

    Schildknecht, Thomas; Flohrer, Tim; Hinze, Andreas; Vananti, Alessandro; Silha, Jiri

    Optical surveys for space debris in high-altitude orbits have been conducted since more than fifteen years. Originally these efforts concentrated mainly on the geostationary ring (GEO) and its close region. Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. The observation scenarios were successively adapted to survey the geostationary transfer orbit (GTO) region; and surveys to search for debris in the medium Earth orbit (MEO) region of the global navigation satellite constellations were successfully conducted. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Several breakup events and deliberate fragmentations are known to have taken place in such orbits. Survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalogue such objects and to maintain their orbits over longer time spans were developed and, eventually, optical observations were conducted in the framework of an ESA study using ESA' Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. Thirteen nights of surveys of Molniya-type orbits was performed between January and August 2013. A basic survey consisted of observing a single geocentric field for 10 minutes. If a faint object was found, follow-up observations were performed during the same night to ensure a save rediscovery of the object during the next nights. Additional follow-up observations to maintain the orbits of these newly

  3. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  4. Yarkovsky-Schach effect on space debris motion

    NASA Astrophysics Data System (ADS)

    Murawiecka, M.; Lemaitre, A.

    2018-02-01

    The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i ≈ 20-30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200 y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.

  5. Object oriented studies into artificial space debris

    NASA Technical Reports Server (NTRS)

    Adamson, J. M.; Marshall, G.

    1988-01-01

    A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.

  6. Techniques for debris control

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.

    1990-01-01

    This paper will summarize a range of techniques which have been proposed for controlling the growth of man-made debris in earth orbit. Several techniques developed in studies at the Johnson Space Center will be described in detail. These techniques include the retrieval of inoperative satellites with an orbital maneuvering vehicle and self-disposal devices for satellites and upper stages. Self-disposal devices include propulsive deorbit motors and passive drag-augmentation devices. Concepts for sweeping small debris from the orbital environment will also be described. An evaluation of the technical feasibility and economic practicality of the various control methods will be summarized. In general, methods which prevent the accumulation of large debris objects were found to provide greater promise for control of the debris problem than methods of removing small debris particles.

  7. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Scott Thurston, NASA vehicle flow manager, addresses the media about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Scott Thurston, NASA vehicle flow manager, addresses the media about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.

  8. Interpolation/extrapolation technique with application to hypervelocity impact of space debris

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    A new technique for the interpolation/extrapolation of engineering data is described. The technique easily allows for the incorporation of additional independent variables, and the most suitable data in the data base is automatically used for each prediction. The technique provides diagnostics for assessing the reliability of the prediction. Two sets of predictions made for known 5-degree-of-freedom, 15-parameter functions using the new technique produced an average coefficient of determination of 0.949. Here, the technique is applied to the prediction of damage to the Space Station from hypervelocity impact of space debris. A new set of impact data is presented for this purpose. Reasonable predictions for bumper damage were obtained, but predictions of pressure wall and multilayer insulation damage were poor.

  9. Standardization by ISO to Ensure the Sustainability of Space Activities

    NASA Astrophysics Data System (ADS)

    Kato, A.; Lazare, B.; Oltrogge, D.; Stokes, H.

    2013-08-01

    The ISO / Technical Committee 20 / Sub-committee 14 develops debris-related standards and technical reports to mitigate debris and help ensure mission and space sustainability. While UN Guidelines and the IADC Guidelines encourage national governments and agencies to promote debris mitigation design and operation, the ISO standards will help the global space industry promote and sustain its space-related business. In this paper the scope and status of each ISO standard is discussed within an overall framework. A comparison with international guidelines is also provided to demonstrate the level of consistency. Finally, as a case study, the ISO standards are applied to a CubeSat mission, thus demonstrating their usability on a relatively recent and popular class of satellite.

  10. StreakDet data processing and analysis pipeline for space debris optical observations

    NASA Astrophysics Data System (ADS)

    Virtanen, Jenni; Flohrer, Tim; Muinonen, Karri; Granvik, Mikael; Torppa, Johanna; Poikonen, Jonne; Lehti, Jussi; Santti, Tero; Komulainen, Tuomo; Naranen, Jyri

    We describe a novel data processing and analysis pipeline for optical observations of space debris. The monitoring of space object populations requires reliable acquisition of observational data, to support the development and validation of space debris environment models, the build-up and maintenance of a catalogue of orbital elements. In addition, data is needed for the assessment of conjunction events and for the support of contingency situations or launches. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a “track before detect” problem, resulting in streaks, i.e., object trails of arbitrary lengths, in the images. The scope of the ESA-funded StreakDet (Streak detection and astrometric reduction) project is to investigate solutions for detecting and reducing streaks from optical images, particularly in the low signal-to-noise ratio (SNR) domain, where algorithms are not readily available yet. For long streaks, the challenge is to extract precise position information and related registered epochs with sufficient precision. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, there is a need to discuss and compare these approaches for space debris analysis, in order to develop and evaluate prototype implementations. In the StreakDet project, we develop algorithms applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The proposed processing pipeline starts from the

  11. A parallel algorithm for the initial screening of space debris collisions prediction using the SGP4/SDP4 models and GPU acceleration

    NASA Astrophysics Data System (ADS)

    Lin, Mingpei; Xu, Ming; Fu, Xiaoyu

    2017-05-01

    Currently, a tremendous amount of space debris in Earth's orbit imperils operational spacecraft. It is essential to undertake risk assessments of collisions and predict dangerous encounters in space. However, collision predictions for an enormous amount of space debris give rise to large-scale computations. In this paper, a parallel algorithm is established on the Compute Unified Device Architecture (CUDA) platform of NVIDIA Corporation for collision prediction. According to the parallel structure of NVIDIA graphics processors, a block decomposition strategy is adopted in the algorithm. Space debris is divided into batches, and the computation and data transfer operations of adjacent batches overlap. As a consequence, the latency to access shared memory during the entire computing process is significantly reduced, and a higher computing speed is reached. Theoretically, a simulation of collision prediction for space debris of any amount and for any time span can be executed. To verify this algorithm, a simulation example including 1382 pieces of debris, whose operational time scales vary from 1 min to 3 days, is conducted on Tesla C2075 of NVIDIA. The simulation results demonstrate that with the same computational accuracy as that of a CPU, the computing speed of the parallel algorithm on a GPU is 30 times that on a CPU. Based on this algorithm, collision prediction of over 150 Chinese spacecraft for a time span of 3 days can be completed in less than 3 h on a single computer, which meets the timeliness requirement of the initial screening task. Furthermore, the algorithm can be adapted for multiple tasks, including particle filtration, constellation design, and Monte-Carlo simulation of an orbital computation.

  12. Shields for Enhanced Protection Against High-Speed Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Kerr, Justin H.

    2003-01-01

    A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arise mainly from breakup of older spacecraft. The improved shields include exterior bumper layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cm3, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape-memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

  13. Shields for Enhanced Protection Against High-Speed Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Kerr, Justin H.

    2003-01-01

    A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arises mainly from breakup of older spacecraft. The improved shields include exterior "bumper" layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cubic cm, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

  14. Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers

    NASA Astrophysics Data System (ADS)

    Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.

    2017-08-01

    This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.

  15. KENNEDY SPACE CENTER, FLA. - Some of the Columbia debris is loaded onto a flatbed truck outside the Columbia Debris Hangar. The debris is being transferred to the Vehicle Assembly Building for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - Some of the Columbia debris is loaded onto a flatbed truck outside the Columbia Debris Hangar. The debris is being transferred to the Vehicle Assembly Building for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  16. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jack Nowling transfers bags with debris pieces into a storage box. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jack Nowling transfers bags with debris pieces into a storage box. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

  17. Evidence for enhanced debris-flow activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria)

    NASA Astrophysics Data System (ADS)

    Dietrich, A.; Krautblatter, M.

    2017-06-01

    Debris flows are among the most important natural hazards. The Northern Calcareous Alps with their susceptible lithology are especially affected by a double digit number of major hazard events per year. It is hypothesised that debris-flow intensity has increased significantly in the last decades in the Northern Calcareous Alps coincident to increased rainstorm frequencies, but yet there is only limited evidence. The Plansee catchment exposes extreme debris-flow activity due to the intensely jointed Upper Triassic Hauptdolomit lithology, being responsible for most of the debris-flow activity in the Northern Calcareous Alps. The debris flows feed into a closed sediment system, the Plansee Lake, where Holocene/Lateglacial sedimentation rates, rates since the late 1940s and recent rates can be inferred accurately. Using aerial photos and field mapping, the temporal and spatial development of eight active debris-flow fans is reconstructed in six time intervals from 1947, 1952, 1971, 1979, 1987, 2000 and 2010 and mean annual debris-flow volumes are calculated. These are compared with mean Holocene/Lateglacial debris-flow volumes derived from the most prominent cone whose contact with the underlying till is revealed by electrical resistivity tomography (ERT). Debris-flow activity there increased by a factor of 10 from 1947-1952 (0.23 ± 0.07 · 103 m3/yr) to 1987-2000 (2.41 ± 0.66 · 103 m3/yr). Mean post-1980 rates from all eight fans exceed pre-1980 rates by a factor of more than three coinciding with enhanced rainstorm activity recorded at meteorological stations in the Northern Calcareous Alps. The frequency of rain storms (def. 35 mm/d) has increased in the study area on average by 10% per decade and has nearly doubled since 1921. Recent debris-flow activity is also 2-3 times higher than mean Holocene/Lateglacial rates. The strong correlation between the non-vegetated catchment area and the annual debris-flow volume might indicate a decadal positive feedback between

  18. Impact interaction of shells and structural elements of spacecrafts with the particles of space debris and micrometeoroids

    NASA Astrophysics Data System (ADS)

    Gerasimov, A. V.; Pashkov, S. V.; Khristenko, Yu. F.

    2017-10-01

    Space debris formed during the launch and operation of spacecrafts in the circumterrestrial space, and the flows of micrometeoroids from the depths of space pose a real threat to manned and automatic vehicles. Providing the fracture resistance of aluminum, glass and ceramic spacecraft elements is an important practical task. These materials are widely used in spacecraft elements such as bodies, tanks, windows, glass in optical devices, heat shields, etc.

  19. Fleet Debris Levels

    EPA Pesticide Factsheets

    Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.

  20. Predicting debris

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1988-01-01

    The probable amount, sizes, and relative velocities of debris are discussed, giving examples of the damage caused by debris, and focusing on the use of mathematical models to forecast the debris environment and solar activity now and in the future. Most debris are within 2,000 km of the earth's surface. The average velocity of spacecraft-debris collisions varies from 9 km/sec at 30 degrees of inclination to 13 km/sec near polar orbits. Mathematical models predict a 5 percent per year increase in the large-fragment population, producing a small-fragment population increase of 10 percent per year until the year 2060, the time of critical density. A 10 percent increase in the large population would cause the critical density to be reached around 2025.

  1. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space.

    PubMed

    Schmalzried, T P; Jasty, M; Harris, W H

    1992-07-01

    Thirty-four hips in which there had been prosthetic replacement were selected for study because of the presence of linear (diffuse) or lytic (localized) areas of periprosthetic bone loss. In all hips, there was careful documentation of the anatomical location of the material that had been obtained for histological analysis, and the specific purpose of the removal of the tissue was for examination to determine the cause of the resorption of bone. Specimens from twenty-three hips were retrieved during an operation and from eleven hips, at autopsy. The area of bone loss was linear only in sixteen hips, lytic only in thirteen, and both linear and lytic in five. In all thirty-four hips, intracellular particulate debris was found in the macrophages that were present in the area of bone resorption. All thirty-four had intracellular particles of polyethylene, many of which were less than one micrometer in size. Thirty-one hips had extracellular particles of polyethylene as well. Twenty-two of the thirty-four hips had intracellular metallic debris; in ten, metallic debris was found extracellularly as well. Ten of the sixteen cemented specimens had intracellular and extracellular polymethylmethacrylate debris. In the mechanically stable prostheses--cemented and uncemented--polyethylene wear debris was identified in areas of bone resorption far from the articular surfaces. The number of macrophages in a microscopic field was directly related to the amount of particulate polyethylene debris that was visible by light microscopy. Although the gross radiographic appearances of linear bone loss and lytic bone loss were different, the histological appearance of the regions in which there was active bone resorption was similar. Regardless of the radiographic appearance and anatomical origin of the specimen, bone resorption was found to occur in association with macrophages that were laden with polyethylene debris. In general, the number of macrophages present had a direct

  2. KENNEDY SPACE CENTER, FLA. - Jim Comer, United Space Alliance project leader for Columbia reconstruction, speaks to members of the Columbia Reconstruction Team during transfer of debris from the Columbia Debris Hangar to its permanent storage site in the Vehicle Assembly Building. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - Jim Comer, United Space Alliance project leader for Columbia reconstruction, speaks to members of the Columbia Reconstruction Team during transfer of debris from the Columbia Debris Hangar to its permanent storage site in the Vehicle Assembly Building. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  3. Orbital debris and meteoroids: Results from retrieved spacecraft surfaces

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.

    1993-08-01

    Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.

  4. Wholesale debris removal from LEO

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Pearson, Jerome; Carroll, Joseph

    2012-04-01

    Recent advances in electrodynamic propulsion make it possible to seriously consider wholesale removal of large debris from LEO for the first time since the beginning of the space era. Cumulative ranking of large groups of the LEO debris population and general limitations of passive drag devices and rocket-based removal systems are analyzed. A candidate electrodynamic debris removal system is discussed that can affordably remove all debris objects over 2 kg from LEO in 7 years. That means removing more than 99% of the collision-generated debris potential in LEO. Removal is performed by a dozen 100-kg propellantless vehicles that react against the Earth's magnetic field. The debris objects are dragged down and released into short-lived orbits below ISS. As an alternative to deorbit, some of them can be collected for storage and possible in-orbit recycling. The estimated cost per kilogram of debris removed is a small fraction of typical launch costs per kilogram. These rates are low enough to open commercial opportunities and create a governing framework for wholesale removal of large debris objects from LEO.

  5. Adverse effects of space debris on astronomy

    NASA Astrophysics Data System (ADS)

    McNally, D.

    1997-05-01

    Deep sky photographic survey plates are recording an increasing number of debris trails. A single trail devalues the scientific usefulness of the affected plate to some degree. While on average, each survey plate will carry a trail and over a quarter of all survey plates will carry multiple trails about half the plates remain untrailed. Concern is also rising in respect of the prospect of satellite trails which may be recorded given proposals now being made for communications systems involving the use of up to 800 separate satellites. Debris trails and satellite tracks vitiate photometric observations and, if sufficiently bright, could seriously damage sensitive photometric detectors.

  6. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  7. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  8. LAD-C: A large area debris collector on the ISS

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Giovane, F. J.; Corsaro, R. D.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Stansbery, E. G.; Tabata, M.; Westphal, A. J.; Yano, H.

    2006-01-01

    The Large Area Debris Collector (LAD-C) is a 10 sq m aerogel and acoustic sensor system under development by the U.S. Naval Research Laboratory (NRL) with main collaboration from the NASA Orbital Debris Program Office at Johnson Space Center, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of California at Berkeley, and University of Kent at Canterbury (UK). The U.S. Department of Defense (DoD) Space Test Program (STP) has assumed the responsibility for having the system manifested and deployed on the International Space Station (ISS), and then having it retrieved and returned to Earth after one to two years. LAD-C will attempt to utilize the ISS as a scientific platform to characterize the near-Earth meteoroid and orbital debris environment in the size regime where little data exist. In addition to meteoroid and orbital debris sample return, the acoustic sensors will record impact time, location, signal strength, and acoustic waveform data of the largest collected samples. A good time-dependent meteoroid and orbital debris flux estimate can be derived. Analysis of the data will also enable potential source identification of some of the collected samples. This dynamical link can be combined with laboratory composition analysis of impact residuals extracted from aerogel to further our understanding of orbital debris population, and the sources of meteoroids, asteroids and comets.

  9. KENNEDY SPACE CENTER, FLA. - An overview of the Columbia debris hangar shows the orbiter outline on the floor with some of the 78,760 pieces identified to date. More than 82,500 pieces of shuttle debris have been rcovered.

    NASA Image and Video Library

    2003-05-22

    KENNEDY SPACE CENTER, FLA. - An overview of the Columbia debris hangar shows the orbiter outline on the floor with some of the 78,760 pieces identified to date. More than 82,500 pieces of shuttle debris have been rcovered.

  10. Observations of the orbital debris complex by the Midcourse Space Experiment (MSX) satellite

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Anz-Meador, Phillip; Talent, Dave

    1997-01-01

    The midcourse space experiment (MSX) provides the opportunity to observe debris at multiple, simultaneous wavelengths, or in conjunction with other sensors and prior data sets. The instruments onboard MSX include an infrared telescope, an infrared interferometer, a visible telescope, an ultraviolet telescope and a spectroscopic imager. The spacecraft carries calibration spheres for instrument calibration and atmospheric drag studies. The experimental program, the implementation aspects, the data reduction techniques and the preliminary results are described.

  11. KENNEDY SPACE CENTER, FLA. - James Harrison (left), Jack Nowling (center) and Amy Norris (right) pack up part of the debris stored in the Columbia Debris Hangar. An area of the Vehicle Assembly Building is being prepared to store the debris. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - James Harrison (left), Jack Nowling (center) and Amy Norris (right) pack up part of the debris stored in the Columbia Debris Hangar. An area of the Vehicle Assembly Building is being prepared to store the debris. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  12. KENNEDY SPACE CENTER, FLA. - James Harrison (left), Jack Nowling (center) and Amy Norris (right) pack up some of the debris stored in the Columbia Debris Hangar. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas. An area of the Vehicle Assembly Building is being prepared to store the debris.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - James Harrison (left), Jack Nowling (center) and Amy Norris (right) pack up some of the debris stored in the Columbia Debris Hangar. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas. An area of the Vehicle Assembly Building is being prepared to store the debris.

  13. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    1992-01-01

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  14. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  15. Streak detection and analysis pipeline for space-debris optical images

    NASA Astrophysics Data System (ADS)

    Virtanen, Jenni; Poikonen, Jonne; Säntti, Tero; Komulainen, Tuomo; Torppa, Johanna; Granvik, Mikael; Muinonen, Karri; Pentikäinen, Hanna; Martikainen, Julia; Näränen, Jyri; Lehti, Jussi; Flohrer, Tim

    2016-04-01

    We describe a novel data-processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data, to support the development and validation of population models and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. The ESA-funded StreakDet (streak detection and astrometric reduction) activity has aimed at formulating and discussing suitable approaches for the detection and astrometric reduction of object trails, or streaks, in optical observations. Our two main focuses are objects in lower altitudes and space-based observations (i.e., high angular velocities), resulting in long (potentially curved) and faint streaks in the optical images. In particular, we concentrate on single-image (as compared to consecutive frames of the same field) and low-SNR detection of objects. Particular attention has been paid to the process of extraction of all necessary information from one image (segmentation), and subsequently, to efficient reduction of the extracted data (classification). We have developed an automated streak detection and processing pipeline and demonstrated its performance with an extensive database of semisynthetic images simulating streak observations both from ground-based and space-based observing platforms. The average processing time per image is about 13 s for a typical 2k-by-2k image. For long streaks (length >100 pixels), primary targets of the pipeline, the detection sensitivity (true positives) is about 90% for

  16. Dynamics and offset control of tethered space-tug system

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Yang, Keying; Qi, Rui

    2018-01-01

    Tethered space-tug system is regarded as one of the most promising active debris removal technologies to effectively decrease the steep increasing population of space debris. In order to suppress the spin of space debris, single-tethered space-tug system is employed by regulating the tether. Unfortunately, this system is underactuated as tether length is the only input, and there are two control objectives: the spinning debris and the vibration of tether. Thus, it may suffer great oscillations and result in failure in space debris removal. This paper presents the study of attitude stabilization of the single-tethered space-tug system using not only tether length but also the offset of tether attachment point to suppress the spin of debris, so as to accomplish the space debris removal mission. Firstly, a precise 3D mathematical model in which the debris and tug are both treated as rigid bodies is developed to study the dynamical evolution of the tethered space-tug system. The relative motion equation of the system is described using Lagrange method. Secondly, the dynamic characteristic of the system is analyzed and an offset control law is designed to stabilize the spin of debris by exploiting the variation of tether offset and the regulation of tether length. Besides, an estimation formula is proposed to evaluate the capability of tether for suppressing spinning debris. Finally, the effectiveness of attitude stabilization by the utilization of the proposed scheme is demonstrated via numerical case studies.

  17. Space debris, asteroids and satellite orbits; Proceedings of the Fourth and Thirteenth Workshops, Graz, Austria, June 25-July 7, 1984

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Gruen, E.; Sehnal, L.

    1985-01-01

    The workshops covered a variety of topics relevant to the identification, characterization and monitoring of near-earth solar system debris. Attention was given to man-made and naturally occurring microparticles, their hazards to present and future spacecraft, and ground- and space-based techniques for tracking both large and small debris. The studies are extended to solid fuel particulates in circular space. Asteroid rendezvous missions are discussed, including propulsion and instrumentation options, the possibility of encountering asteroids during Hohman transfer flights to Venus and/or Mars, and the benefits of multiple encounters by one spacecraft. Finally, equipment and analytical models for generating precise satellite orbits are reviewed.

  18. Environmental Impact Assessment and Space Activities

    NASA Astrophysics Data System (ADS)

    Viikari, L.

    these developments in way or another. In addition to national EIA regulations, there are also international agreements on EIA (i.a. the Espoo Convention) which establish their own EIA systems. In international law of outer space, environmental impact assessment is, however, not a well-established tool. The UN space treaties were drafted during a time when such consideratio ns were still not among the highest ranking items on national agendas. Therefore, these instruments fail to contain provisions regarding impact assessment, and also rest of the environmental content found in them is rather modest. The nearest equivalent to any impact assessment is contained in the Outer Space Treaty Article IX, namely the requirement of prior consultations in case of planned space activity or experiment that might cause "potentially harmful interference" with space activities of other St ates Parties. There also exist some applicable provisions on national level, such as the requirement of "formal assessment" on NASA programs of "[orbital] debris generation potential and debris mitigation options" in NASA Policy for Limiting Orbital Debris Generation (Art. 1.b). Also the national legislation of some space faring countries provides at least for the supply of some kind of information assessing the possible environmental consequences of proposed space activities. For instance, the Russian Statute on Lisencing Space Operations requires that for obtaining a license for space operation in the Russian Federation, the applicant has to supply, i.a. "documents confirming the safety of space operations (including ecological, fire and explosion safety) and the reliability of space equipment'"(Art.5.h). However, such provisions are obviously not enough for ensuring effective international regulation of the issue. The goal of this paper is to consider the usefulness of international environmental impact assessment for space activities. The space environment, however, is a unique arena in many ways

  19. Orbital evolution of space debris due to aerodynamic forces

    NASA Astrophysics Data System (ADS)

    Crowther, R.

    1993-08-01

    The concepts used in the AUDIT (Assessment Using Debris Impact Theory) debris modelling suite are introduced. A sensitivity analysis is carried out to determine the dominant parameters in the modelling process. A test case simulating the explosion of a satellite suggest that at the parent altitude there is a greater probability of collision with more massive fragments.

  20. Austrian National Space Law

    NASA Astrophysics Data System (ADS)

    Steinkogler, Cordula

    2017-08-01

    The Austrian Outer Space Act, which entered into force in December 2011; and the Austrian Outer Space Regulation, which has been in force since February 2015, form the legal framework for Austrian national space activities. The elaboration of national space legislation became necessary to ensure compliance with Austria's obligations as State Party to the five United Nations Space Treaties when the first two Austrian satellites were launched in 2012 and Austria became a launching state on its own. The legislation comprehensively regulates legal aspects related to space activities, such as authorization, supervision, and termination of space activities; registration and transfer of space objects; recourse of the government against the operator; as well as implementation of the law and sanctions for its infringement. One of the main purposes of the law is to ensure the authorization of national space activities. The Outer Space Act sets forth the main conditions for authorization, which inter alia refer to the expertise of the operator; requirements for orbital positions and frequency assignments; space debris mitigation, insurance requirements, and the safeguard of public order; public health; national security as well as Austrian foreign policy interests; and international law obligations. The Austrian Outer Space Regulation complements these provisions by specifying the documents the operator must submit as evidence of the fulfillment of the authorization conditions, which include the results of safety tests, emergency plans, and information on the collection and use of Earth observation data. Particular importance is attached to the mitigation of space debris. Operators are required to take measures in accordance with international space debris mitigation guidelines for the avoidance of operational debris, the prevention of on-orbit break-ups and collisions, and the removal of space objects from Earth orbit after the end of the mission. Another specificity of the

  1. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1992-01-01

    Examination of 29.37 sq m of thick aluminum plates from the LDEF, which were exposed to the meteoroid and man-made orbital debris environments for 5.8 years, revealed 606 craters that were 0.5 mm in diameter or larger. Most were nearly hemispherical. There was a large variation in the number density of craters around the three axis gravity gradient stabilized spacecraft. A new model of the near-Earth meteoroid environment gives good agreement with the crater fluxes measured on the fourteen faces of the LDEF. The man-made orbital debris model of Kessler, which predicts that 16 pct. of the craters would be caused by man-made debris, is plausible. No chemical analyses of impactor residue that will distinguish between meteoroids and man-made debris is yet available.

  2. Active Debris Removal of Multiple Priority Targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Flegel, Sven Kevin; Vörsmann, Peter; Wiedemann, Carsten; Gelhaus, Johannes; Moeckel, Marek; Kebschull, Christopher

    2012-07-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 kilometers with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome. Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any future launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target. In this paper several systems, e.g. chemical and electrical engines are analysed with the main focus on removing multiple targets within one single mission. The service satellite has to undock from the previously de-orbited target in order to start the rendezvous and docking phase for a subsequent target. The targets are chosen from a previously defined priority list in order to enhance the mission

  3. KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a video cameraman records some of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a video cameraman records some of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

  4. KENNEDY SPACE CENTER, FLA. - Pieces of Columbia debris are offloaded from a flatbed truck in the transfer aisle of the Vehicle Assembly Building (VAB). The debris is being moved from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - Pieces of Columbia debris are offloaded from a flatbed truck in the transfer aisle of the Vehicle Assembly Building (VAB). The debris is being moved from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  5. KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers focus on a piece of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers focus on a piece of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

  6. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Don Eitel (in front) and Jim Delie carry pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Don Eitel (in front) and Jim Delie carry pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

  7. KENNEDY SPACE CENTER, FLA. - Amy Norris (left) packs some of the debris stored in the Columbia Debris Hangar. Jack Nowling works on the computer. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Amy Norris (left) packs some of the debris stored in the Columbia Debris Hangar. Jack Nowling works on the computer. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

  8. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Larry Tarver (left) and Don Eitel bag and wrap pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Larry Tarver (left) and Don Eitel bag and wrap pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

  9. KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a photographer examines some of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a photographer examines some of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

  10. KENNEDY SPACE CENTER, FLA. - A worker moves some of the Columbia debris to its storage site in the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - A worker moves some of the Columbia debris to its storage site in the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  11. KENNEDY SPACE CENTER, FLA. - Workers move some of the Columbia debris to its storage site in the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - Workers move some of the Columbia debris to its storage site in the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  12. About possibilities of clearing near-Earth space from dangerous debris by a spaceborne laser system with an autonomous cw chemical HF laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avdeev, A V; Bashkin, A S; Katorgin, Boris I

    2011-07-31

    The possibility of clearing hazardous near-Earth space debris using a spaceborne laser station with a large autonomous cw chemical HF laser is substantiated and the requirements to its characteristics (i.e., power and divergence of laser radiation, pulse duration in the repetitively pulsed regime, repetition rate and total time of laser action on space debris, necessary to remove them from the orbits of the protected spacecrafts) are determined. The possibility of launching the proposed spaceborne laser station to the orbit with the help of a 'Proton-M' carrier rocket is considered. (laser applications)

  13. Planetary Asteroid Defense Study: Assessing and Responding to the Natural Space Debris Threat

    DTIC Science & Technology

    1995-04-01

    Spectrum of Natural Space Debris Effects 82 Figure 5-1. Threat is a Product of Hazard and Risk 84 Figure 5-2. Variables Affecting Threat...are perhaps the most unique family in the extra-belt region. Unlike other families who define their own orbits, the Trojans share Jupiter’s orbit...Threat. We define threat as the relationship between hazard and risk. It can be likened to a product of the two, notionally depicted in Figure 5-1

  14. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (Editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  15. Microbial activity in debris-rich basal ice; adaption to sub-zero, saline conditions

    NASA Astrophysics Data System (ADS)

    Montross, S. N.; Skidmore, M. L.; Christner, B. C.; Griggs, R.; Tison, J.; Sowers, T. A.

    2011-12-01

    Polycrystalline ice in glaciers and ice sheets has a high preservation potential for biological material and chemical compounds that can be used to document the presence of active microbial metabolism at sub-zero temperatures. The concentration and isotopic composition of gases, in conjunction with other aqueous chemical species in debris-rich basal glacier ice from Taylor Glacier, Antarctica were used as direct evidence that cells entrained in the ice remain metabolically active at temperatures as low as -17°C, likely in thin films of liquid water along ice crystal and mineral grain boundaries. δ18O2 and δ13CO2 values measured in the ice are consistent with the hypothesis that abrupt changes measured in O2 and CO2 concentrations between debris-rich and debris-poor ice are due to in situ microbial mineralization of organic carbon. Low temperature culture-based experiments conducted using organisms isolated from the ice indicate the ability to respire organic carbon to CO2 under oxic conditions and under anoxic conditions couple carbon mineralization to dissimilatory iron reduction using Fe3+ as an electron acceptor. Microorganisms that are active in the debris-rich basal ice layers in terrestrial polar ice masses need to be adapted to surviving subzero temperatures and saline conditions on extended timescales. Thus these terrestrial glacial systems and the isotopic and geochemical biomarkers therein provide good analogues for guiding exploration and analysis of debris-rich ices in extraterrestrial settings, for example, on Mars.

  16. Roll Call Debris - Race

    EPA Pesticide Factsheets

    Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.

  17. Special Report Debris - Race

    EPA Pesticide Factsheets

    Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.

  18. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Brockman, Jeff P.; Carter, Bruce; Donelson, Leslie; John, Lawrence E.; Marine, Micky C.; Rodina, Dan D.

    1989-01-01

    This work continues to develop advanced designs toward the ultimate goal of a GETAWAY SPECIAL to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated last year through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subscale model. During this reporting period, several improvements are made in the solar cutter, such as auto track capabilities, better quality reflectors and a more versatile framework. The major advance has been in the design, fabrication and working demonstration of a ROBOTIC ARM that has several degrees of freedom. The functions were specifically tailored for the orbital debris handling. These advances are discussed here. Also a small fraction of the resources were allocated towards research in flame augmentation in SCRAMJETS for the NASP. Here, the fundamental advance was the attainment of Mach numbers up to 0.6 in the flame zone and a vastly improved injection system; the current work is expected to achieve supersonic combustion in the laboratory and an advanced monitoring system.

  19. Orbital Debris: Quarterly News, Volume 14, Issue 2

    NASA Technical Reports Server (NTRS)

    Liou, J. C. (Editor); Shoots, Debi (Editor)

    2010-01-01

    This bulletin contains articles from the Orbital Debris Program office. This issue's articles are: "Orbital Debris Success Story --A Decade in the Making", "Old and New Satellite Breakups Identified," "Update on Three Major Debris Clouds," and "MMOD Inspection of the HST Bay 5 Multi-Layer Insulation Panel" about micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope (HST) insulation panel. A project review is also included (i.e., "Small Debris Observations from the Iridium 33/Cosmos 2251 Collision.") There are also abstra cts of conference papers from the staff of the program office.

  20. Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T.

    2017-10-01

    The (TOPography EXperiment) TOPEX/Poseidon (T/P) altimetry mission operated for 13 years before the satellite was decommissioned in January 2006, becoming a large space debris object at an altitude of 1,340 km. Since the end of the mission, the interaction of T/P with the space environment has driven the satellite's spin dynamics. Satellite laser ranging (SLR) measurements collected from June 2014 to October 2016 allow for the satellite spin axis orientation to be determined with an accuracy of 1.7°. The spin axis coincides with the platform yaw axis (formerly pointing in the nadir direction) about which the body rotates in a counterclockwise direction. The combined photometric and SLR data collected over the 11 year time span indicates that T/P has continuously gained rotational energy at an average rate of 2.87 J/d and spins with a period of 10.73 s as of 19 October 2016. The satellite attitude model shows a variation of the cross-sectional area in the Sun direction between 8.2 m2 and 34 m2. The direct solar radiation pressure is the main factor responsible for the spin-up of the body, and the exerted photon force varies from 65 μN to 228 μN around the mean value of 138.6 μN. Including realistic surface force modeling in orbit propagation algorithms will improve the prediction accuracy, giving better conjunction warnings for scenarios like the recent close approach reported by the ILRS Space Debris Study Group—an approximate 400 m flyby between T/P and Jason-2 on 20 June 2017.

  1. Meteoroids and Orbital Debris: Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.

    1997-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.

  2. Loopy, Floppy and Fragmented: Debris Characteristics Matter

    NASA Astrophysics Data System (ADS)

    Parrish, J.; Burgess, H. K.

    2016-02-01

    Marine debris is a world-wide problem threatening the health and safety of marine organisms, ecosystems, and humans. Recent and ongoing research shows that risk of harm is not associated with identity, but rather with a set of specific character states, where the character state space intersection is defined by the organism of interest. For example, intersections of material, color, rigidity and size predict the likelihood of an object being ingested: plastic, clear-white, floppy objects <100cm pose higher risks to sea turtles whereas yellow-red, rigid objects <10cm pose higher risks to albatrosses. A character state space approach allows prioritization of prevention and removal of marine debris informed by risk assessments for species of interest by comparing species ranges with spatio-temporal hotspots of all debris with characteristics known to be associated with increased risk of harm, regardless of identity. With this in mind, the Coastal Observation and Seabird Survey Team (COASST) developed and tested a 20 character data collection approach to quantifying the diversity and abundance of marine debris found on beaches. Development resulted in meta-analysis of the literature and expert opinion eliciting harmful character state space. Testing included data collection on inter-rater reliability and accuracy, where the latter included 75 participants quantifying marine debris characteristics on monthly surveys of 30 beaches along the Washington and Oregon coastlines over the past year. Pilot work indicates that characters must be simply and operationally defined, states must be listed, and examples must be provided for color states. Complex characters (e.g., windage, shape) are not replicable across multiple data collectors. Although data collection takes longer than other marine debris surveys for a given amount of debris and area surveyed, volunteer rapidity and accuracy improved within 3-5 surveys. Initial feedback indicated that volunteers were willing to

  3. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    NASA Astrophysics Data System (ADS)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of

  4. KENNEDY SPACE CENTER, FLA. - Storage boxes and other containers of Columbia debris wait in the Columbia Debris Hangar for transfer to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - Storage boxes and other containers of Columbia debris wait in the Columbia Debris Hangar for transfer to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  5. Debris thickness patterns on debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  6. Measuring Small Debris - What You Can't See Can Hurt You

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    While modeling gives us a tool to better understand the Earth orbit debris environment, it is measurements that give us "ground truth" about what is happening in space. Assets that can detect orbital debris remotely from the surface of the Earth, such as radars and telescopes, give us a statistical view of how debris are distributed in space, how they are being created, and how they are evolving over time. In addition, in situ detectors in space are giving us a better picture of how the small particle environment is actually damaging spacecraft today. IN addition, simulation experiments on the ground help us to understand what we are seeing in orbit. This talk will summarize the history of space debris measurements, how it has changed our view of the Earth orbit environment, and how we are designing the experiments of tomorrow.

  7. KENNEDY SPACE CENTER, FLA. - The media listen to Scott Thurston, NASA vehicle flow manager, talk about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - The media listen to Scott Thurston, NASA vehicle flow manager, talk about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.

  8. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jim Delie (left) and Don Eitel select from the shelves wrapped pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jim Delie (left) and Don Eitel select from the shelves wrapped pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.

  9. Detection and Dynamic Analysis of Space Debris in the Geo Ring

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    There are different populations of space debris (SD) in the geostationary (GEO) region. It is of great interest to know their dynamics, in order to contribute to aspects such as alerts against possible collisions, repositioning of GEO satellites or placing those satellites that come into service. In this contribution we present a study about the detection and dynamic analysis of SD located in the GEO ring. Using the telescopes of the Venezuelan Obseratory National (VON), a large amount of astrometric observations have been acquired. A preliminary dynamic analysis of them has been carried out, which evidences the average relative motion of these orbiters with a mean absolute error for coordinates of ≍ 0.09 pix.

  10. KENNEDY SPACE CENTER, FLA. - Workers place some of the Columbia debris moved from the Columbia Debris Hangar in its permanent storage site in the Vehicle Assembly Building. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - Workers place some of the Columbia debris moved from the Columbia Debris Hangar in its permanent storage site in the Vehicle Assembly Building. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  11. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  12. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  13. Design of orbital debris shields for oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1994-01-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  14. Current and Near-Term Future Measurements of the Orbital Debris Environment at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Liou, J.-C.; Mulrooney, M.; Horstman, M

    2010-01-01

    The NASA Orbital Debris Program Office places great emphasis on obtaining and understanding direct measurements of the orbital debris environment. The Orbital Debris Program Office's environmental models are all based on these measurements. Because OD measurements must cover a very wide range of sizes and altitudes, one technique realistically cannot be used for all measurements. In general, radar measurements have been used for lower altitudes and optical measurements for higher altitude orbits. For very small debris, in situ measurements such as returned spacecraft surfaces are utilized. In addition to receiving information from large debris (> 5-10 cm diameter) from the U.S. Space Surveillance Network, NASA conducts statistical measurements of the debris population for smaller sizes. NASA collects data from the Haystack and Goldstone radars for debris in low Earth orbit as small as 2- 4 mm diameter and from the Michigan Orbital DEbris Survey Telescope for debris near geosynchronous orbit altitude for sizes as small as 30-60 cm diameter. NASA is also currently examining the radiator panel of the Hubble Space Telescope Wide Field Planetary Camera 2 which was exposed to space for 16 years and was recently returned to Earth during the STS- 125 Space Shuttle mission. This paper will give an overview of these on-going measurement programs at NASA as well as discuss progress and plans for new instruments and techniques in the near future.

  15. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  16. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  17. AN/FSY-3 Space Fence System Support of Conjunction Assessment

    NASA Astrophysics Data System (ADS)

    Koltiska, M.; Du, H.; Prochoda, D.; Kelly, K.

    2016-09-01

    The Space Fence System is a ground-based space surveillance radar system designed to detect and track all objects in Low Earth Orbit the size of a softball or larger. The system detects many objects that are not currently in the catalog of satellites and space debris that is maintained by the US Air Force. In addition, it will also be capable of tracking many of the deep space objects in the catalog. By providing daily updates of the orbits of these new objects along with updates of most of the objects in the catalog, it will enhance Space Situational Awareness and significantly improve our ability to predict close approaches, aka conjunctions, of objects in space. With this additional capacity for tracking objects in space the Space Surveillance Network has significantly more resources for monitoring orbital debris, especially for debris that could collide with active satellites and other debris.

  18. Investigations Some Impact Space Debris and Working Satellites

    NASA Astrophysics Data System (ADS)

    Vovchyk, Yeva

    Combining the coordinate with the photometric date of the artificial satellite the information of its behavior on the orbit, its orientation, form and optical characteristics of the object’s surface could be determined. The successful solution of this task could be received only on the base of complex observations. It means that one must have coordinate and photometric observations from some (at least two) stations and the observations must be done synchronous. Photometric observations enable to record the reflection of the Sunlight from the separate fragments of the object’s surface. The periodic splashes give the information of the own rotation and the precession of the object. But from the light curve of the object to the information of its rotations is a long way of mathematics analysis with the supplement of the information from the other type observations. As the example the way of received the information of the behavior of the two satellites -- “EgyptSat” in the June-August 2010 after its collision on the orbit with unknown space debris and Russian station “Fobos-grunt” in the November 2011 during the unsuccessfully launching, inoperative spacecraft Envisat is shown. In the paper the initial observations and mathematical process of the solution of this task would be given. These investigations were made by the team "Astronoms from Ukraine" -- Ja. Blagodyr, A.Bilinsky, Ye.Vovchyk,K.Martyniyuk-Lotocky from Astronomical Observatory of Ivan Franko National University, Lviv; V.Yepishev, V.Kudak, I.Motrunych,I.Najbaer from Laboratory of the Space Investigations, National University of Uzgorod; N.Koshkin,L. Shakun from Astronomical Observatory of National University of Odessa; V.Lopachenko,V.Rykhalsky from National Centre of Direction and Testing of the Space System, Yevpatoriya.

  19. Cost estimation for the active debris removal of multiple priority targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Wiedemann, Carsten; Schulz, Eugen

    The increasing number of space debris objects, especially in distinct low Earth orbit (LEO) altitudes between 600 and 1000 km, leads to an increase in the potential collision risk between the objects and threatens active satellites in that region. Several recent studies show that active debris removal (ADR) has to be performed in order to prevent a collisional cascading effect, also known as the Kessler syndrome. In order to stabilize the population growth in the critical LEO region, a removal of five prioritized objects per year has been recognized as a significant figure. Various proposals are addressing the technical issues for ADR missions, including the de-orbiting of objects by means of a service satellite using a chemical or an electric propulsion system. The servicer would rendezvous with a preselected target, perform a docking maneuver and then provide a de-orbit burn to transfer the target on a trajectory where it re-enters the Earth’s atmosphere within a given time frame. In this paper the technical aspects are complemented by a cost estimation model, focusing on multi target missions, which are based on a service satellite capable of de-orbiting more than one target within a single mission. The cost model for ADR includes initial development cost, production cost, launch cost and operation cost as well as the modelling of the propulsion system of the servicer. Therefore, different scenarios are defined for chemical and electric propulsion systems as applied to multi target missions, based on a literature review of concepts currently being under discussion. The costs of multi target missions are compared to a scenario where only one target is removed. Also, the results allow to determine an optimum number of objects to be removed per mission and provide numbers which can be used in future studies, e.g. those related to ADR cost and benefit analyses.

  20. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    NASA Astrophysics Data System (ADS)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  1. A Parametric Study on Using Active Debris Removal for LEO Environment Remediation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Recent analyses on the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resource, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of its effectiveness must be conducted. The goal is to demonstrate the need and feasibility of using ADR to better preserve the future environment and to guide its implementation to maximize the benefit-to-cost ratio. This paper describes a new sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of several key parameters, including target selection criteria/constraints and the starting epoch of ADR implementation. Additional analyses on potential ADR targets among the currently existing satellites and the benefits of collision avoidance maneuvers are also included.

  2. Spacelab J air filter debris analysis

    NASA Technical Reports Server (NTRS)

    Obenhuber, Donald C.

    1993-01-01

    Filter debris from the Spacelab module SLJ of STS-49 was analyzed for microbial contamination. Debris for cabin and avionics filters was collected by Kennedy Space Center personnel on 1 Oct. 1992, approximately 5 days postflight. The concentration of microorganisms found was similar to previous Spacelab missions averaging 7.4E+4 CFU/mL for avionics filter debris and 4.5E+6 CFU/mL for the cabin filter debris. A similar diversity of bacterial types was found in the two filters. Of the 13 different bacterial types identified from the cabin and avionics samples, 6 were common to both filters. The overall analysis of these samples as compared to those of previous missions shows no significant differences.

  3. Improving The Near-Earth Meteoroid And Orbital Debris Environment Definition With LAD-C

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Giovane, F. J.; Corsaro, R. C.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Tabata, M.; Stansbery, E. G.; Westphal, A. J.; Yano, H.

    2006-01-01

    To improve the near-Earth meteoroid and orbital debris environment definition, a large area particle sensor/collector is being developed to be placed on the International Space Station (ISS). This instrument, the Large Area Debris Collector (LAD-C), will attempt to record meteoroid and orbital debris impact flux, and capture the same particles with aerogel. After at least one year of deployment, the whole system will be brought back for additional laboratory analysis of the captured meteoroids and orbital debris. This project is led by the U.S. Naval Research Laboratory (NRL) while the U.S. Department of Defense (DoD) Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. Additional contributing team members of the consortium include the NASA Orbital Debris Program Office, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of Kent (UK), and University of California at Berkeley. The deployment of LAD-C on the ISS is planned for 2008, with the system retrieval in late 2009.

  4. The Columbia Debris Loan Program; Examples of Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Russell, Rick; Thurston, Scott; Smith, Stephen; Marder, Arnold; Steckel, Gary

    2006-01-01

    Following the tragic loss of the Space Shuttle Columbia NASA formed The Columbia Recovery Office (CRO). The CRO was initially formed at the Johnson Space Center after the conclusion of recovery operations on May 1,2003 and then transferred .to the Kennedy Space Center on October 6,2003 and renamed The Columbia Recovery Office and Preservation. An integral part of the preservation project was the development of a process to loan Columbia debris to qualified researchers and technical educators. The purposes of this program include aiding in the advancement of advanced spacecraft design and flight safety development, the advancement of the study of hypersonic re-entry to enhance ground safety, to train and instruct accident investigators and to establish an enduring legacy for Space Shuttle Columbia and her crew. Along with a summary of the debris loan process examples of microscopic analysis of Columbia debris items will be presented. The first example will be from the reconstruction following the STS- 107 accident and how the Materials and Proessteesa m used microscopic analysis to confirm the accident scenario. Additionally, three examples of microstructural results from the debris loan process from NASA internal, academia and private industry will be presented.

  5. Evidence for enhanced debris flow activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria)

    NASA Astrophysics Data System (ADS)

    Dietrich, Andreas; Krautblatter, Michael

    2016-04-01

    From 1950 to 2011 almost 80.000 people lost their lives through the occurrence of debris flow events (Dowling and Santi, 2014). Debris flows occur in all alpine regions due to intensive rainstorms and mobilisable loose debris. Due to their susceptible lithology, the Northern Calcareous Alps are affected by a double digit number of major hazard events per year. Some authors hypothesised a relation between an increasing frequency of heavy rainstorms and an increasing occurrence of landslides in general (Beniston and Douglas, 1996) and debris flows in special (Pelfini and Santilli, 2008), but yet there is only limited evidence. The Plansee catchment in the Ammergauer Alps consists of intensely jointed Upper Triassic Hauptdolomit lithology and therefore shows extreme debris flow activity. To investigate this activity in the last decades, the temporal and spatial development of eight active debris flow fans is examined with GIS and field mapping. The annual rates since the late 1940s are inferred accurately by using aerial photos from 1947, 1952, 1971, 1979, 1987, 2000 and 2010. These rates are compared to the mean Holocene/Lateglacial debris flow volume derived from the most prominent cone. The contact with the underlying till is revealed by electrical resistivity tomography (ERT). It shows that the mean annual debris flow volume has increased there by a factor of 10 from 1947-1952 (0.23 ± 0.07 10³m³/yr) to 1987-2000 (2.41 ± 0.66 10³m³/yr). A similar trend can be seen on all eight fans: mean post-1980 rates exceed pre-1980 rates by a factor of more than three. This increasing debris flow activity coincides with an enhanced rainstorm (def. 35 mm/d) frequency recorded at the nearest meteorological station. Since 1921 the frequency of heavy rainstorms has increased there on average by 10% per decade. Recent debris flow rates are also 2-3 times higher compared to mean Holocene/Lateglacial rates. Furthermore, we state a strong correlation between the non

  6. Summary of Orbital Debris Workshop

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1982-01-01

    An Orbital Debris Workshop was conducted in July 1982. The working groups established were related to measurements of large particles, modeling of large particles, measurements of small particles, spacecraft hazard and shielding requirements, and space object management. The results of the Orbital Debris Workshop reaffirm the need for research to better understand the character of orbital debris, its effects on future spacecraft, and the related requirements for policy. A clear charter is required for this research to receive the necessary support, focus, and coordination. It was recommended that NASA assume the role of lead agency. The first task is to develop an overall plan with both Department of Defense and the North American Aerospace Defense Command participation.

  7. Determination of debris albedo from visible and infrared brightnesses

    NASA Astrophysics Data System (ADS)

    Lambert, John V.; Osteen, Thomas J.; Kraszewski, Butch

    1993-09-01

    The Air Force Phillips Laboratory is conducting measurements to characterize the orbital debris environment using wide-field optical systems located at the Air Force's Maui, Hawaii, Space Surveillance Site. Conversion of the observed visible brightnesses of detected debris objects to physical sizes require knowledge of the albedo (reflectivity). A thermal model for small debris objects has been developed and is used to calculate albedos from simultaneous visible and thermal infrared observations of catalogued debris objects. The model and initial results will be discussed.

  8. KENNEDY SPACE CENTER, FLA. - A worker in the Columbia Debris Hangar sorts bagged items of Columbia debris that will be transferred to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - A worker in the Columbia Debris Hangar sorts bagged items of Columbia debris that will be transferred to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  9. KENNEDY SPACE CENTER, FLA. - Workers in the Columbia Debris Hangar move some of the STS-107 debris into boxes for transfer to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - Workers in the Columbia Debris Hangar move some of the STS-107 debris into boxes for transfer to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  10. KENNEDY SPACE CENTER, FLA. - Workers in the Columbia Debris Hangar record the first items of the STS-107 debris to be transferred to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - Workers in the Columbia Debris Hangar record the first items of the STS-107 debris to be transferred to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  11. Optical Observation of LEO Debris Caused by Feng Yun 1C

    NASA Astrophysics Data System (ADS)

    Kurosaki, Hirohisa; Yanagisawa, Toshifumi; Nakajima, Atsushi

    Many pieces of space debris are in low earth orbit (LEO), and may be a serious problem in the near future. They are very hazardous to spacecraft such as the ISS, in which humans stay for long periods. In January 2007, China performed an experimental destruction of the meteorological satellite FengYun-1C in low earth orbit using a ballistic missile. Optical instruments for space debris observation were installed on Mt. Nyukasa in Nagano Prefecture by JAXA, and the resulting low earth orbit debris was observed with the small telescope there. We have developed an image-processing technique, the line-detection method, to extract such effects as the streaks created by meteors, LEO satellites, and LEO debris. We succeeded in detecting the trajectories of specified FengYun-1C debris whose TLE were known. In this paper, the detection and observation of low earth orbit debris are discussed.

  12. Optical Studies of Space Debris at GEO: Survey and Follow-up with Two Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Abercomby, K. J.; Rodriquez, H. M.; Barker, E. S.

    2007-01-01

    For 14 nights in March 2007, we used two telescopes at the Cerro Tololo Inter-American Observatory (CTIO) in Chile to study the nature of space debris at Geosynchronous Earth Orbit (GEO). In this project one telescope was dedicated to survey operations, while a second telescope was used for follow-up observations for orbits and colors. The goal was to obtain orbital and photometric information on every faint object found with the survey telescope. Thus we concentrate on objects fainter than R = 15th magnitude.

  13. Spacecraft Robustness to Orbital Debris: Guidelines & Recommendations

    NASA Astrophysics Data System (ADS)

    Heinrich, S.; Legloire, D.; Tromba, A.; Tholot, M.; Nold, O.

    2013-09-01

    The ever increasing number of orbital debris has already led the space community to implement guidelines and requirements for "cleaner" and "safer" space operations as non-debris generating missions and end of mission disposal in order to get preserved orbits rid of space junks. It is nowadays well-known that man-made orbital debris impacts are now a higher threat than natural micro-meteoroids and that recent events intentionally or accidentally generated so many new debris that may initiate a cascade chain effect known as "the Kessler Syndrome" potentially jeopardizing the useful orbits.The main recommendations on satellite design is to demonstrate an acceptable Probability of Non-Penetration (PNP) with regard to small population (<5cm) of MMOD (Micro-Meteoroids and Orbital Debris). Compliance implies to think about spacecraft robustness as redundancies, segregations and shielding devices (as implemented in crewed missions but in a more complex mass - cost - criticality trade- off). Consequently the need is non-only to demonstrate the PNP compliance requirement but also the PNF (probability of Non-Failure) per impact location on all parts of the vehicle and investigate the probabilities for the different fatal scenarios: loss of mission, loss of spacecraft (space environment critical) and spacecraft fragmentation (space environment catastrophic).The recent THALES experience known on ESA Sentinel-3, of increasing need of robustness has led the ALTRAN company to initiate an internal innovative working group on those topics which conclusions may be attractive for their prime manufacturer customers.The intention of this paper is to present a status of this study : * Regulations, requirements and tools available * Detailed FMECA studies dedicated specifically to the MMOD risks with the introduction of new of probability and criticality classification scales. * Examples of design risks assessment with regard to the specific MMOD impact risks. * Lessons learnt on

  14. The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2012-01-01

    The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.

  15. Rocky Ring of Debris Around Vega Artist Concept

    NASA Image and Video Library

    2013-01-08

    This artist concept illustrates an asteroid belt around the bright star Vega. Evidence for this warm ring of debris was found using NASA Spitzer Space Telescope, and the European Space Agency Herschel Space Observatory.

  16. Possible Fengyun-1C debris fall

    NASA Astrophysics Data System (ADS)

    Golebiewska, J.; Nowak, M.; Muszyński, A.; Wnuk, E.

    2017-05-01

    A fall of small objects took place on 27th April 2012 in Wargowo village near Oborniki, about 25 km NW from Poznań (Poland). There was only one eye-witness of the fall, who found two separate pieces (ca. 2.7 cm and ca. 2 cm), with several small additional fragments. After microscopic observations and chemical analysis a meteoritic origin of these objects was excluded. They are identified as space debris, therefore man-made. The most probable source of the observed fall was space debris 35127 Fengyun 1C DEB, created during destruction of the Chinese weather satellite Fengyun-1C (FY-1C).

  17. The recent upgrade and future perspectives of the ESABASE/Debris tool

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Langwost, A.; Drolshagen, G.

    ESABASE is a software tool which provides more than ten applications for space- specific analyses, such as atomic oxygen recession, charging, space debris and meteoroid impacts, outgassing contamination, attitude perturbations, radiation, and others. The proposed paper focuses on the ESABASE/Debris application, which has been upgraded in the course of a recent ESA/ESTEC study. The methods used to calculate the debris and meteoroid flux on, and the related number of failures of a spacecraft surface will be presented. A brief description of the capabilities and features of the program will be given. The main extension of ESABASE/Debris is the implementation of new state-of-the- art particulate flux models. ESA's MASTER 2001 debris model includes the latest findings in the debris research, the considered particle size ranges from 1micron up to 100m. The model covers all orbital altitudes from LEO to GEO, and any target orbit within its altitude range. The user may select or deselect single debris source terms (e.g. fragments, SRM slag particles, NaK droplets). For the first time, the MASTER 2001 model provides realistic population data for historic and future (based on pre- defined debris environment evolution scenario s) epochs. Thus, the ESABASE/Debris user is able to (re-) investigate historic missions (e.g. LDEF), or to assess the risk posed to future missions (e.g. ISS). The Divine-Staubach meteoroid model still represents the best fit to the interplanetary meteoroid environment and its appearance for Earth-bound satellites. Since it is part of the MASTER model, it has been made available for meteoroid analysis within ESABASE/Debris. The most important implementation aspects as well as the general model implementation strategy will be outlined. All new features and capabilities of ESABASE/Debris have been tested and verified by means of pre-defined test cases. Some interesting results of the software verification and validation process will be presented. The

  18. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-39

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS (thermal protection system) assessment and photographic analysis was conducted for Space Shuttle Mission STS-39. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-39, and their overall effect on the Space Shuttle Program are documented.

  19. Orbital Debris and Future Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    This slide presentation is an overview of the historical and current orbital debris environment. Included is information about: Projected growth of the future debris population, The need for active debris removal (ADR), A grand challenge for the 21st century and The forward path

  20. Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    Despite of the tireless work by space surveillance assets, much of the Earth debris environment is not easily measured or tracked. For every object that is in an orbit we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. Therefore, orbital debris scientists rely on numerical modeling to understand the nature of the debris environment and its risk to space operations throughout Earth orbit and into the future. This talk will summarize the ways in which modeling complements measurements to help give us a better picture of what is occurring in Earth orbit, and helps us to better conduct current and future space operations.

  1. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in

  2. Orbital Debris Assesment Tesing in the AEDC Range G

    NASA Technical Reports Server (NTRS)

    Polk, Marshall; Woods, David; Roebuck, Brian; Opiela, John; Sheaffer, Patti; Liou, J.-C.

    2015-01-01

    The space environment presents many hazards for satellites and spacecraft. One of the major hazards is hypervelocity impacts from uncontrolled man-made space debris. Arnold Engineering Development Complex (AEDC), The National Aeronautics and Space Administration (NASA), The United States Air Force Space and Missile Systems Center (SMC), the University of Florida, and The Aerospace Corporation configured a large ballistic range to perform a series of hypervelocity destructive impact tests in order to better understand the effects of space collisions. The test utilized AEDC's Range G light gas launcher, which is capable of firing projectiles up to 7 km/s. A non-functional full-scale representation of a modern satellite called the DebriSat was destroyed in the enclosed range enviroment. Several modifications to the range facility were made to ensure quality data was obtained from the impact events. The facility modifcations were intended to provide a high impact energy to target mass ratio (>200 J/g), a non-damaging method of debris collection, and an instrumentation suite capable of providing information on the physics of the entire imapct event.

  3. Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.

    2009-01-01

    An overview of significant Micrometeoroid and Orbital Debris (MMOD) impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. The concept of "Late Inspection" of the Nose Cap and Wing leading Edge (WLE) Reinforced Carbon Carbon (RCC) regions will be introduced. An alternative mated attitude with the International Space Station (ISS) on shuttle MMOD risk will also be presented. The significant threat mitigation effect of these two techniques will be demonstrated. The wing leading edge impact detection system, on-orbit repair techniques and disabled vehicle contingency plans will also be discussed.

  4. An instrument for discrimination between orbital debris and natural particles in near-Earth space

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Simpson, J. A.; McKibben, R. B.; Voss, H. D.; Gursky, H.

    1993-08-01

    We discuss a SPAce DUSt instrument (SPADUS) under development for flight on the USA ARGOS mission to measure the flux, mass, velocity and trajectory of near-Earth dust. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. Measurements will cover the dust mass range ~5×10-12 g (2 μm diameter) to ~ 1×10-5g (200 μm diameter), with an expected mean error in particle trajectory of ~7° (isotropic flux).

  5. Failure Analysis in Space: International Space Station (ISS) Starboard Solar Alpha Rotary Joint (SARJ) Debris Analysis

    NASA Technical Reports Server (NTRS)

    Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.

    2010-01-01

    This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.

  6. Strategy for mitigation of marine debris: analysis of sources and composition of marine debris in northern Taiwan.

    PubMed

    Kuo, Fan-Jun; Huang, Hsiang-Wen

    2014-06-15

    Six sites (two sites for each of rocky shores, sandy beaches, and fishing ports) in northern Taiwan were selected to investigate the amount and density of marine debris in each of the four seasons and after spring and neap tides from 2012 to 2013. The results indicate that marine debris was higher on rocky shores than sandy beaches and fishing ports. There is no significant difference between season and tide. The dominant debris was plastic-type, followed by polystyrene. The majority of debris originated from recreational activities, followed from ocean/waterway activities. The results suggest that the following actions are needed: (1) continue and reinforce the plastic-limit policy; (2) increase the cleaning frequency at rocky shores; (3) promote marine environmental education, with a goal of debris-free coasts; (4) recycle fishing gear and to turn that gear into energy; and (5) coordinate between agencies to establish a mechanism to monitor debris. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Parametric analysis: SOC meteoroid and debris protection

    NASA Technical Reports Server (NTRS)

    Kowalski, R.

    1985-01-01

    The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.

  8. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-38

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A debris/ice/TPS assessment and photographic analysis was conducted for the Space Shuttle Mission STS-38. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-38, and their overall effect on the Space Shuttle Program are documented.

  9. Debris/ice/TPS assessment and photographic analysis of shuttle mission STS-48

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-48. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-48 are documented, along with their overall effect on the Space Shuttle Program.

  10. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-37

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-37. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-37 are documented, along with their overall effect on the Space Shuttle Program.

  11. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-36

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1990-01-01

    A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Space Shuttle Mission STS-36. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-36, and their overall effect on the Space Shuttle Program are documented.

  12. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-34

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-34. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-34, and their overall effect on the Space Shuttle Program are documented.

  13. Current orbital debris environment

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1989-01-01

    NASA has instituted a plan for the definition of activities and resources required over the coming decade for the deepening of current understanding of anthropogenic orbital debris, and its effects on future mission operations. This understanding will be the basis of policy definition and policy implementation efforts. The most immediate requirement is the definition of the debris environment, with emphasis on data for debris sizes smaller than 4 cm. Systems-damage criteria and hypervelocity-impact theory will then be used to define the hazard to specific spacecraft.

  14. A 1 cm space debris impact onto the Sentinel-1A solar array

    NASA Astrophysics Data System (ADS)

    Krag, H.; Serrano, M.; Braun, V.; Kuchynka, P.; Catania, M.; Siminski, J.; Schimmerohn, M.; Marc, X.; Kuijper, D.; Shurmer, I.; O'Connell, A.; Otten, M.; Muñoz, Isidro; Morales, J.; Wermuth, M.; McKissock, D.

    2017-08-01

    Sentinel-1A is a 2-ton spacecraft of the Copernicus Earth observation program operated by ESA's Space Operations Centre in Darmstadt, Germany. Sentinel-1A and its sister spacecraft Sentinel-1B operate in a sun-synchronous orbit at about 700 km altitude. On 2016/08/23 17:07:37 UTC, Sentinel-1A suffered from an anomaly resulting in a sudden permanent partial power loss and significant impulsive orbit and attitude changes. A deeper investigation identified that an impulsive orbit change against flight direction of 0.7 mm/s, estimated at the time of the event, gave the best results in terms of GPS residuals. At the same time, a peak attitude off-pointing of 0.7° (around the spacecraft yaw axis) and peak attitude rate increase of 0.04°/s (around the same axis) were observed. The simultaneous occurrence of these anomalies, starting from a sudden attitude change and ending with a permanent partial power loss, made an MMOD (Micro-Meteoroid and Orbital Debris) impact onto a solar array a possible explanation for this event. While the spacecraft is able to continue its mission nominally, a detailed investigation involving ESA's Space Debris and Flight Dynamics experts was conducted. An MMOD impact as an explanation gained further credibility, due to the pictures of the solar array taken by the on-board camera displaying a significant damage area. On September 7th, JSpOC (US Joint Space Operations Centre) informed SDO on 8 tracked fragments that are considered to be released by Sentinel-1A after the impact. This paper addresses the analysis that was performed on the data characterising the attitude and orbit change, the on-board camera image, and the tracked fragments. The data helped to identify the linear momentum vector while a flux analysis helped to identify the origin of the impactor and allowed to understand its mass and size characteristics.

  15. Algorithms for the Computation of Debris Risk

    NASA Technical Reports Server (NTRS)

    Matney, Mark J.

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.

  16. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre

    PubMed Central

    Bryant, Jessica A.; Clemente, Tara M.; Viviani, Donn A.; Fong, Allison A.; Thomas, Kimberley A.; Kemp, Paul; Karl, David M.; White, Angelicque E.

    2016-01-01

    ABSTRACT Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the “great Pacific garbage patch.” The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m−3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production − community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public’s attention. While the negative impacts of plastic debris on

  17. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre.

    PubMed

    Bryant, Jessica A; Clemente, Tara M; Viviani, Donn A; Fong, Allison A; Thomas, Kimberley A; Kemp, Paul; Karl, David M; White, Angelicque E; DeLong, Edward F

    2016-01-01

    Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the "great Pacific garbage patch." The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m -3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production - community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa , Cyanobacteria , Alphaproteobacteria , and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public's attention. While the negative impacts of plastic debris on oceanic macrobiota

  18. Summary of the AIAA/NASA/DOD Orbital Debris Conference - Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, A.; Kessler, D.; Nieder, R.; Reynolds, R.

    1990-01-01

    An international conference on orbital debris was held on April 16-19, 1990, in Baltimore, Maryland. Topics of the conference included the implications of orbital debris for space flight, orbital debris measurements, modeling of the orbital debris environment, and methods to reduce the growth of the orbital debris population. Significant results from this meeting are summarized.

  19. Preservation of Near-Earth Space for Future Generations

    NASA Astrophysics Data System (ADS)

    Simpson, John A.

    2007-05-01

    List of contributors; Preface; Part I. Introduction: 1. Introduction J. A. Simpson; Part II. Defining the Problem: 2. The Earth satellite population: official growth and constituents Nicholas L. Johnson; 3. The current and future environment: an overall assessment Donald J. Kessler; 4. The current and future space debris environment as assessed in Europe Dietrich Rex; 5. Human survivability issues in the low Earth orbit space debris environment Bernard Bloom; 6. Protecting the space environment for astronomy Joel R. Primack; 7. Effects of space debris on commercial spacecraft - the RADARSAT example H. Robert Warren and M. J. Yelle; 8. Potential effects of the space debris environment on military space systems Albert E. Reinhardt; Part III. Mitigation of and Adaptation to the Space Environment: Techniques and Practices: 9. Precluding post-launch fragmentation of delta stages Irvin J. Webster and T. Y. Kawamura; 10. US international and interagency cooperation in orbital debris Daniel V. Jacobs; 11. ESA concepts for space debris mitigation and risk reduction Heiner Klinkrad; 12. Space debris: how France handles mitigation and adaptation Jean-Louis Marcé; 13. Facing seriously the issue of protection of the outer space environment Qi Yong Liang; 14. Space debris - mitigation and adaptation U. R. Rao; 15. Near Earth space contamination and counteractions Vladimir F. Utkin and S. V. Chekalin; 16. The current and future space debris environment as assessed in Japan Susumu Toda; 17. Orbital debris minimization and mitigation techniques Joseph P. Loftus Jr, Philip D. Anz-Meador and Robert Reynolds; Part IV. Economic Issues: 18. In pursuit of a sustainable space environment: economic issues in regulating space debris Molly K. Macauley; 19. The economics of space operations: insurance aspects Christopher T. W. Kunstadter; Part V. Legal Issues: 20. Environmental treatymaking: lessons learned for controlling pollution of outer space Winfried Lang; 21. Regulation of orbital

  20. ISODEX: An entry point for developing countries into space activities

    NASA Astrophysics Data System (ADS)

    Skinner, Mark Andrew

    2015-08-01

    Several threads current in the community of international space actors have led to calls at UN COPUOS Scientific & Technical Sub-Committee meetings for enhancing the scientific information available on man-made space objects, whilst fostering international space object data sharing. Growing awareness of the problems of space debris proliferation and space traffic management, especially amongst developing countries and non-traditional space faring nations, have fueled their desires to become involved in the areas of space object tracking, utilizing relatively modest astronomical instrumentation. Additionally, several commercial satellite operators, members of the Satellite Data Association, have called for augmentation of the information available from existing catalogs. This confluence of factors has led to an international discussion, at the UN and elsewhere, of the possibility of creating a clearing-house for parties willing to share data on space objects, with a working title of the “International Space Object Data Exchange” (ISODEX). We discuss the ideas behind this concept, how it might be implemented, and it might enhance the public’s knowledge of space activities, as well as providing an entry point into space for developing countries.

  1. Earth's gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: Envisat case study

    NASA Astrophysics Data System (ADS)

    Gómez, Natalia Ortiz; Walker, Scott J. I.

    2015-08-01

    The space debris population has grown rapidly over the last few decades with the consequent growth of impact risk between current objects in orbit. Active Debris Removal (ADR) has been recommended to be put into practice by several National Agencies in order to remove objects that pose the biggest risk for the space community. The most immediate target that is being considered for ADR by the European Space Agency is the Earth-observing satellite Envisat. In order to safely remove such a massive object from its orbit, a capturing process followed by a controlled reentry is necessary. However, current ADR methods that require physical contact with the target have limitations on the maximum angular momentum that can be absorbed and a de-tumbling phase prior to the capturing process may be required. Therefore, it is of utmost importance for the ADR mission design to be able to predict accurately how the target will be rotating at the time of capture. This article analyses two perturbations that affect an object in Low Earth Orbit (LEO), the Earth's gravity gradient and the eddy currents induced by the Earth's magnetic field. The gravity gradient is analysed using the equation of conservation of total energy and a graphical method is presented to understand the expected behaviour of any object under the effect of this perturbation. The eddy currents are also analysed by studying the total energy of the system. The induced torque and the characteristic time of decay are presented as a function of the object's magnetic tensor. In addition, simulations were carried out for the Envisat spacecraft including the gravity gradient perturbation as well as the eddy currents effect using the International Geomagnetic Reference Field IGRF-11 to model the Earth's magnetic field. These simulations show that the combined effect of these two perturbations is a plausible explanation for the rotational speed decay observed between April 2013 and September 2013.

  2. Creating Compositionally-Driven Debris Disk Dust Models

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mara; Jang-Condell, Hannah; Schneider, Glenn; Chen, Christine; Stark, Chris

    2018-06-01

    Debris disks play a key role in exoplanet research; planetary formation and composition can be inferred from the nature of the circumstellar disk. In order to characterize the properties of the circumstellar dust, we create models of debris disks in order to find the composition. We apply Mie theory to calculate the dust absorption and emission within debris disks. We have data on nine targets from Spitzer and Hubble Space Telescope. The Spitzer data includes mid-IR spectroscopy and photometry. We have spatially-resolved optical and near-IR images of the disks from HST. Our goal is to compare this data to the model. By using a model that fits for photometric and mid-IR datasimultaneously, we gain a deeper understanding of the structure and composition of the debris disk systems.

  3. Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-35

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley

    1991-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-35. Debris inspections of the flight elements and launch pad were performed before and after the launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-35, and the overall effect of these conditions on the Space Shuttle Program.

  4. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-41

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1990-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-41. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-41, and their overall effect on the Space Shuttle Program.

  5. Satellite Vulnerability to Space Debris- An Improved 3D Risk Assessment Methodology

    NASA Astrophysics Data System (ADS)

    Grassi, Lilith; Destefanis, Roberto; Tiboldo, Francesca; Donath, Therese; Winterboer, Arne; Evand, Leanne; Janovsky, Rolf; Kempf, Scott; Rudolph, Martin; Schafer, Frank; Gelhaus, Johannes

    2013-08-01

    The work described in the present paper, performed as a part of the PÇ-ROTECT project, presents an enhanced method to evaluate satellite vulnerability to micrometeoroids and orbital debris (MMOD), using the ESABASE2/Debris tool (developed under ESA contract). Starting from the estimation of induced failures on spacecraft (S/C) components and from the computation of lethal impacts (with an energy leading to the loss of the satellite), and considering the equipment redundancies and interactions between components, the debris-induced S/C functional impairment is assessed. The developed methodology, illustrated through its application to a case study satellite, includes the capability to estimate the number of failures on internal components, overcoming the limitations of current tools which do not allow propagating the debris cloud inside the S/C. The ballistic limit of internal equipment behind a sandwich panel structure is evaluated through the implementation of the Schäfer Ryan Lambert (SRL) Ballistic Limit Equation (BLE).

  6. Orbital Debris: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  7. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  8. Algorithms for the Computation of Debris Risks

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.

  9. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David

    2012-01-01

    The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light

  10. Debris flows susceptibility mapping under tropical rain conditions in Rwanda.

    NASA Astrophysics Data System (ADS)

    Nduwayezu, Emmanuel; Nsengiyumva, Jean-Baptiste; BUgnon, Pierre-Charles; Jaboyedoff, Michel; Derron, Marc-Henri

    2017-04-01

    Rwanda is a densely populated country. It means that all the space is exploited, including sometimes areas with very steep slopes. This has as for consequences that during the rainy season slopes with human activities are affected by gravitational processes, mostly debris and mud flows and shallow landslides. The events of early May 2016 (May 8 and 9), with more than 50 deaths, are an illustration of these frequents landslides and inundations. The goal of this work is to produce a susceptibility map for debris/mud flows at regional/national scale. Main available pieces of data are a national digital terrain model at 10m resolution, bedrock and soil maps, and information collected during field visits on some specific localities. The first step is the characterization of the slope angle distribution for the different types of bedrock or soils (decomposition in Gaussian populations). Then, the combination of this information with other geomorphic and hydrologic parameters is used to define potential source areas of debris flows. Finally, propagation maps of debris flows are produced using FLOW-R (Horton et al. 2013). Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869-885, doi:10.5194/nhess-13-869-2013, 2013. The paper is in open access.

  11. NASA Orbital Debris Large-Object Baseline Population in ORDEM 3.0

    NASA Technical Reports Server (NTRS)

    Krisco, Paula H.; Vavrin, A. B.; Anz-Meador, P. D.

    2013-01-01

    The NASA Orbital Debris Program Office (ODPO) has created and validated high fidelity populations of the debris environment for the latest Orbital Debris Engineering Model (ORDEM 3.0). Though the model includes fluxes of objects 10 um and larger, this paper considers particle fluxes for 1 cm and larger debris objects from low Earth orbit (LEO) through Geosynchronous Transfer Orbit (GTO). These are validated by several reliable radar observations through the Space Surveillance Network (SSN), Haystack, and HAX radars. ORDEM 3.0 populations were designed for the purpose of assisting, debris researchers and sensor developers in planning and testing. This environment includes a background derived from the LEO-to-GEO ENvironment Debris evolutionary model (LEGEND) with a Bayesian rescaling as well as specific events such as the FY-1C anti-satellite test, the Iridium 33/Cosmos 2251 accidental collision, and the Soviet/Russian Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium droplet releases. The environment described in this paper is the most realistic orbital debris population larger than 1 cm, to date. We describe derivations of the background population and added specific populations. We present sample validation charts of our 1 cm and larger LEO population against Space Surveillance Network (SSN), Haystack, and HAX radar measurements.

  12. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  13. Collision frequency of artificial satellites - The creation of a debris belt

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.

    1978-01-01

    The probability of satellite collisions increases with the number of satellites. In the present paper, possible time scales for the growth of a debris belt from collision fragments are determined, and possible consequences of continued unrestrained launch activities are examined. Use is made of techniques formerly developed for studying the evolution (growth) of the asteroid belt. A model describing the flux from the known earth-orbiting satellites is developed, and the results from this model are extrapolated in time to predict the collision frequency between satellites. Hypervelocity impact phenomena are then examined to predict the debris flux resulting from collisions. The results are applied to design requirements for three types of future space missions.

  14. Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Zhang, L. M.

    2017-01-01

    The 2008 Wenchuan earthquake triggered the largest number of landslides among the recent strong earthquake events around the world. The loose landslide materials were retained on steep terrains and deep gullies. In the period from 2008 to 2015, numerous debris flows occurred during rainstorms along the Provincial Road 303 (PR303) near the epicentre of the earthquake, causing serious damage to the reconstructed highway. Approximately 5.24 × 106 m3 of debris-flow sediment was deposited shortly after the earthquake. This paper evaluates the evolution of the debris flows that occurred after the Wenchuan earthquake, which helps understand long-term landscape evolution and cascading effects in regions impacted by mega earthquakes. With the aid of a GIS platform combined with field investigations, we continuously tracked movements of the loose deposit materials in all the debris flow gullies along an 18 km reach of PR303 and the characteristics of the regional debris flows during several storms in the past seven years. This paper presents five important aspects of the evolution of debris flows: (1) supply of debris flow materials; (2) triggering rainfall; (3) initiation mechanisms and types of debris flows; (4) runout characteristics; and (5) elevated riverbed due to the deposited materials from the debris flows. The hillslope soil deposits gradually evolved into channel deposits and the solid materials in the channels moved towards the ravine mouth. Accordingly, channelized debris flows became dominant gradually. Due to the decreasing source material volume and changes in debris flow characteristics, the triggering rainfall tends to increase from 30 mm h- 1 in 2008 to 64 mm h- 1 in 2013, and the runout distance tends to decrease over time. The runout materials blocked the river and elevated the riverbed by at least 30 m in parts of the study area. The changes in the post-seismic debris flow activity can be categorized into three stages, i.e., active, unstable, and

  15. KENNEDY SPACE CENTER, FLA. - An overview of the Columbia debris hangar shows the orbiter outline on the floor with some of the 78,760 pieces identified to date, as well as tables on the left that hold tiles. More than 82,500 pieces of shuttle debris have been rcovered.

    NASA Image and Video Library

    2003-05-22

    KENNEDY SPACE CENTER, FLA. - An overview of the Columbia debris hangar shows the orbiter outline on the floor with some of the 78,760 pieces identified to date, as well as tables on the left that hold tiles. More than 82,500 pieces of shuttle debris have been rcovered.

  16. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  17. KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers look at pieces of tile collected during search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers look at pieces of tile collected during search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

  18. KENNEDY SPACE CENTER, FLA. - A flatbed truck carrying pieces of Columbia debris arrives in the transfer aisle of the Vehicle Assembly Building. The debris is being transferred to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - A flatbed truck carrying pieces of Columbia debris arrives in the transfer aisle of the Vehicle Assembly Building. The debris is being transferred to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  19. KENNEDY SPACE CENTER, FLA. - Astronaut Pam Melroy speaks to members of the Columbia Reconstruction Team during transfer of debris from the Columbia Debris Hangar to its permanent storage site in the Vehicle Assembly Building. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

    NASA Image and Video Library

    2003-09-15

    KENNEDY SPACE CENTER, FLA. - Astronaut Pam Melroy speaks to members of the Columbia Reconstruction Team during transfer of debris from the Columbia Debris Hangar to its permanent storage site in the Vehicle Assembly Building. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.

  20. Backwater development by woody debris

    NASA Astrophysics Data System (ADS)

    Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton

    2017-04-01

    Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.

  1. F.I.D.O. Focused Integration for Debris Observation

    NASA Astrophysics Data System (ADS)

    Ploschnitznig, J.

    2013-09-01

    The fact that satellites play a growing role in our day-to-day live, contributes to the overall assessment that these assets must be protected. As more and more objects enter space and begin to clutter this apparently endless vacuum, we begin to realize that these objects and associated debris become a potential and recurring threat. The space surveillance community routinely attempts to catalog debris through broad area search collection profiles, hoping to detect and track smaller and smaller objects. There are technical limitations to each collection system, we propose there may be new ways to increase the detection capability, effectively "Teaching an old dog (FIDO), new tricks." Far too often, we are justly criticized for never "stepping out of the box". The philosophy of "if it's not broke, don't fix it" works great if you assume that we are not broke. The assumption that in order to "Find" new space junk we need to increase our surveillance windows and try to cover as much space as possible may be appropriate for Missile Defense, but inappropriate for finding small space debris. Currently, our Phased Array Early Warning Systems support this yearly search program to try to acquire and track space small debris. A phased array can electronically scan the horizons very quickly, but the radar does have limitations. There is a closed-loop resource management equation that must be satisfied. By increasing search volume, we effectively reduce our instantaneous sensitivity which will directly impact our ability to find smaller and smaller space debris. Our proposal will be to focus on increasing sensitivity by reducing the search volume to statistically high probability of detection volumes in space. There are two phases to this proposal, a theoretical and empirical. Theoretical: The first phase will be to investigate the current space catalog and use existing ephemeris data on all satellites in the Space Surveillance Catalog to identify volumes of space with a high

  2. Orbiting Space Debris: Dangers, Measurement and Mitigation

    DTIC Science & Technology

    1992-06-01

    country1𔃻. In the State of California there Is legal precedent for this type of action In the Sindell vs Abbott Laboratories Case. In this case...interpretation of the treaty and international law. The Sindell vs Abbott case would provide a basis for someone who has lost a satellite to debris to sue the...remain fixed over Panama and Malaysia without the requirement for East-West station-keeping. Satellites could be moved to these locations at the end

  3. Debris measure subsystem of the nanosatellite IRECIN

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; di Ciolo, L.; Ortenzi, A.; Petrozzi, M.; del Re, V.

    2003-09-01

    The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes an Electronic real-time system that acquires space debris measures. It uses a piezo-electric sensor. The described device is a subsystem on board of the IRECIN nanosatellite composed mainly by a r.i.s.c. microprocessor, an electronic part that interfaces to the debris sensor in order to provide a low noise electrical and suitable range to ADC 12 bit converter, and finally a memory in order to store the data. The microprocessor handles the Debris Measure System measuring the impacts number, their intensity and storing their waves form. This subsystem is able to communicate with the other IRECIN subsystems through I2C Bus and principally with the "Main Microprocessor" subsystem allowing the data download directly to the Ground Station. Moreover this subsystem lets free the "Main Microprocessor Board" from the management and charge of debris data. All electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Development Group. The proposed system is implemented on the IRECIN, a modular nanosatellite weighting less than 1.5 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are added for eclipse operations. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin-stabilized with the spin-axis normal to the orbit. debris and micrometeoroids mass and velocity.

  4. Active debris removal of multiple priority targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Lüpken, A.; Flegel, S.; Gelhaus, J.; Möckel, M.; Kebschull, C.; Wiedemann, C.; Vörsmann, P.

    2013-05-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any further launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target.In this paper, chemical and electric propulsion systems were analysed with the main focus on removing multiple targets within one single mission. The targets were chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time, ΔV and system mass were identified as key parameters to allow for an evaluation of the different concepts. It was shown that it

  5. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-33R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-33R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and photographic analysis of Mission STS-33R, and their overall effect on the Space Shuttle Program.

  6. Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-31R

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1990-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-31R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-31R, is presented along with their overall effect on the Space Shuttle Program.

  7. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-103

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-103. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-103 and the resulting effect on the Space Shuttle Program.

  8. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-91

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-91. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-91 and the resulting effect on the Space Shuttle Program.

  9. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-93

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-93. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis findings of Space Shuttle mission STS-93 and the resulting effect on the Space Shuttle Program.

  10. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-95

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-95. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-95 and the resulting effect on the Space Shuttle Program.

  11. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-90

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-90. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system-conditions and integrated photographic analysis of Space Shuttle mission STS-90 and the resulting effect on the Space Shuttle Program.

  12. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-80

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-80. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission Space Transportation System (STS-80) and the resulting effect on the Space Shuttle Program.

  13. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-89

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-89. Debris inspections of the flight element and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection systems conditions and integrated photographic analysis of Space Shuttle mission STS-89 and the resulting effect on the Space Shuttle Program.

  14. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-102

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E.; Kelly, J. David (Technical Monitor)

    2001-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-102. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. This report documents the debris/ice /thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-102 and the resulting effect on the Space Shuttle Program.

  15. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-112

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2002-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-112. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-112 and the resulting effect of the Space Shuttle Program.

  16. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-87

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-87. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the-use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-87 and the resulting effect on the Space Shuttle Program.

  17. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-96

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-96. Debris inspections of the flight elements and launch pad were performed before and after launch. icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-96 and the resulting effect on the Space Shuttle Program.

  18. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-101

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-101. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-101 and the resulting effect on the Space Shuttle Program.

  19. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-88

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-88. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-88 and the resulting effect on the Space Shuttle Program.

  20. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-111

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-111. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-111 and the resulting effect of the Space Shuttle Program.

  1. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-99

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-99. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-99 and the resulting effect on the Space Shuttle Program.

  2. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-98

    NASA Technical Reports Server (NTRS)

    Speece, Robert F.

    2004-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-98. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-98 and the resulting effect on the Space Shuttle Program.

  3. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-97

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E.; Kelly, J. David (Technical Monitor)

    2001-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-97. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris /ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-97 and the resulting effect on the Space Shuttle Program.

  4. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-86

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-86. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-86 and the resulting affect on the Space Shuttle Program.

  5. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-100

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2004-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-100. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-100 and the resulting effect of the Space Shuttle Program.

  6. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-92

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-92. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-92 and the resulting effect, if any, on the Space Shuttle Program.

  7. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-106

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Kelley, J. David (Technical Monitor)

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-106. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-106 and the resulting effect on the Space Shuttle Program.

  8. Debris characterization diagnostic for the NIF

    NASA Astrophysics Data System (ADS)

    Miller, M. C.; Celeste, J. R.; Stoyer, M. A.; Suter, L. J.; Tobin, M. T.; Grun, J.; Davis, J. F.; Barnes, C. W.; Wilson, D. C.

    2001-01-01

    Generation of debris from targets and by x-ray ablation of surrounding materials will be a matter of concern for experimenters and National Ignition Facility (NIF) operations. Target chamber and final optics protection, for example debris shield damage, drive the interest for NIF operations. Experimenters are primarily concerned with diagnostic survivability, separation of mechanical versus radiation induced test object response in the case of effects tests, and radiation transport through the debris field when the net radiation output is used to benchmark computer codes. In addition, radiochemical analysis of activated capsule debris during ignition shots can provide a measure of the ablator <ρr>. Conceptual design of the Debris Monitor and Rad-Chem Station, one of the NIF core diagnostics, is presented. Methods of debris collection, particle size and mass analysis, impulse measurement, and radiochemical analysis are given. A description of recent experiments involving debris collection and impulse measurement on the OMEGA and Pharos lasers is also provided.

  9. KENNEDY SPACE CENTER, FLA. - On a KSC visit, Executive Director of NASDA Koji Yamamoto (kneeling, left) reaches out to a piece of Columbia debris in the Columbia Debris Hangar. At right is Shuttle Launch Director Mike Leinbach, who is explaining recovery and reconstruction efforts. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - On a KSC visit, Executive Director of NASDA Koji Yamamoto (kneeling, left) reaches out to a piece of Columbia debris in the Columbia Debris Hangar. At right is Shuttle Launch Director Mike Leinbach, who is explaining recovery and reconstruction efforts. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  10. On debris flows, river networks, and the spatial structure of channel morphology.

    Treesearch

    P.E. Bigelow; L.E. Benda; D.J. Miller; K.M. Burnett

    2007-01-01

    In this paper, we examine the influence of debris-flow deposits and fans on channels and habitat characteristics in small to intermediate-size watersheds in the Oregon Coast Range. We evaluate: (1) the proportion of stream length bordered by debris fans and the spacing between fans, (2) the recurrence interval of debris flows in unmanaged watersheds, (3) the proportion...

  11. A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s

    NASA Technical Reports Server (NTRS)

    Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.

    1989-01-01

    The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.

  12. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  13. Joint Polar Satellite System (JPSS) Micrometeoroid and Orbital Debris (MMOD) Assessment

    NASA Technical Reports Server (NTRS)

    Squire, Michael D.; Cooke, William J.; Williamsen, Joel; Kessler, Donald; Vesely, William E.; Hull, Scott H.; Schonberg, William; Peterson, Glenn E.; Jenkin, Alan B.; Cornford, Steven L.

    2015-01-01

    The Joint Polar Satellite System (JPSS) Project requested the NASA Engineering and Safety Center (NESC) conduct an independent evaluation of the Micrometeoroid and Orbital Debris (MMOD) models used in the latest JPSS MMOD risk assessment. The principal focus of the assessment was to compare Orbital Debris Engineering Model version 3 (ORDEM 3.0) with the Meteoroid and Space Debris Terrestrial Environment Reference version 2009 (MASTER-2009) and Aerospace Debris Environment Projection Tool (ADEPT) and provide recommendations to the JPSS Project regarding MMOD protection. The outcome of the NESC assessment is contained in this report.

  14. Fastener Capture Plate Technology to Contain On-Orbit Debris

    NASA Technical Reports Server (NTRS)

    Eisenhower, Kevin

    2010-01-01

    The Fastener Capture Plate technology was developed to solve the problem of capturing loose hardware and small fasteners, items that were not originally intended to be disengaged in microgravity, thus preventing them from becoming space debris. This technology was incorporated into astronaut tools designed and successfully used on NASA s Hubble Space Telescope Servicing Mission #4. The technology s ultimate benefit is that it allows a very time-efficient method for disengaging fasteners and removing hardware while minimizing the chances of losing parts or generating debris. The technology aims to simplify the manual labor required of the operator. It does so by optimizing visibility and access to the work site and minimizing the operator's need to be concerned with debris while performing the operations. It has a range of unique features that were developed to minimize task time, as well as maximize the ease and confidence of the astronaut operator. This paper describes the technology and the astronaut tools developed specifically for a complicated on-orbit repair, and it includes photographs of the hardware being used in outer space.

  15. KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers pause at the mockup of the leading edge of Columbia’s left wing. About 83,000 pieces of debris from Columbia were shipped to KSC from search and recovery efforts in East Texas. About 83,000 pieces of debris were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers pause at the mockup of the leading edge of Columbia’s left wing. About 83,000 pieces of debris from Columbia were shipped to KSC from search and recovery efforts in East Texas. About 83,000 pieces of debris were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

  16. KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a photographer gets a close-up of the mockup of the leading edge of Columbia’s left wing. About 83,000 pieces of debris were shipped to KSC from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a photographer gets a close-up of the mockup of the leading edge of Columbia’s left wing. About 83,000 pieces of debris were shipped to KSC from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.

  17. Micrometeoroids and debris on LDEF comparison with MIR data

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude; Berthoud, Lucinda

    1995-01-01

    Part of the LDEF tray allocated to French experiments (FRECOPA) has been devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Crater size distributions have made possible the evaluation of the incident microparticle flux in the near-Earth environment. Comparisons are made with measurements obtained on the other faces of LDEF (tray clamps), on the leading edge (MAP) and with results of a similar experiment flown on the MIR space station. The geometry of impact craters, depth in particular, provides useful information on the nature of impacting particles and the correlation of geometry with the chemical analysis of projectile remnants inside craters make possible a discrimination between meteoroids and orbital debris. Emphasis has been laid on the size distribution of small craters in order to assess a cut-off in the distribution of particles in LEO. Special attention has been paid to the phenomenon of secondary impacts. A comparison of flight data with current models of meteoroids and space debris shows a fair agreement for LDEF, except for the smaller particles: the possible contribution of orbital debris in GTO orbits to the LDEF trailing edge flux is discussed. For MIR, flight results show differences with current modeling: the possible enhancement of orbital debris could be due to the contaminating presence of a permanently manned space station.

  18. Space dust and debris; Proceedings of the Topical Meeting of the Interdisciplinary Scientific Commission B (Meetings B2, B3, and B5) of the COSPAR 28th Plenary Meeting, The Hague, Netherlands, June 25-July 6, 1990

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Editor); Zarnecki, J. C. (Editor); Matson, D. L. (Editor)

    1991-01-01

    The present conference on space dust and debris encompasses orbital debris, in situ measurements and laboratory analysis of space-dust particles, comparative studies of comets, asteroids, and dust, the protection and maneuvering of spacecraft in space-debris environments, and the out-of-elliptic distribution of interplanetary dust derived from near-earth flux. Specific issues addressed include asteroid taxonomy, the optical properties of dust from cometary and interplanetary grains, light scattering by rough surfaces on asteroidal/lunar regoliths, and the first results of particulate impacts and foil perforations on the Long Duration Exposure Facility. Also addressed are collision probability and spacecraft disposition in the geostationary orbit, a flash on the moon caused by orbital debris, the limits of population growth in low earth orbit due to collisional cascading, and the simulation of cosmic man-made dust effects on space-vehicle elements in rocket and laboratory experiments.

  19. Database Driven 6-DOF Trajectory Simulation for Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2008-01-01

    Debris mitigation and risk assessment have been carried out by NASA and its contractors supporting Space Shuttle Return-To-Flight (RTF). As a part of this assessment, analysis of transport potential for debris that may be liberated from the vehicle or from pad facilities prior to tower clear (Lift-Off Debris) is being performed by MSFC. This class of debris includes plume driven and wind driven sources for which lift as well as drag are critical for the determination of the debris trajectory. As a result, NASA MSFC has a need for a debris transport or trajectory simulation that supports the computation of lift effect in addition to drag without the computational expense of fully coupled CFD with 6-DOF. A database driven 6-DOF simulation that uses aerodynamic force and moment coefficients for the debris shape that are interpolated from a database has been developed to meet this need. The design, implementation, and verification of the database driven six degree of freedom (6-DOF) simulation addition to the Lift-Off Debris Transport Analysis (LODTA) software are discussed in this paper.

  20. Orbital debris measurements

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1986-01-01

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.