Sample records for active upper-limb exoskeleton

  1. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    PubMed

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons.

    PubMed

    Lauretti, Clemente; Cordella, Francesca; Ciancio, Anna Lisa; Trigili, Emilio; Catalan, Jose Maria; Badesa, Francisco Javier; Crea, Simona; Pagliara, Silvio Marcello; Sterzi, Silvia; Vitiello, Nicola; Garcia Aracil, Nicolas; Zollo, Loredana

    2018-01-01

    The reference joint position of upper-limb exoskeletons is typically obtained by means of Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian; this approach allows exploiting the available Degrees of Freedom (i.e. DoFs) of the robot kinematic chain to achieve the desired end-effector pose; however, if used to operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria are satisfied in the whole human-robot workspace. This paper proposes a motion planning system, based on Learning by Demonstration, for upper-limb exoskeletons that allow successfully assisting patients during Activities of Daily Living (ADLs) in unstructured environment, while ensuring that anthropomorphic criteria are satisfied in the whole human-robot workspace. The motion planning system combines Learning by Demonstration with the computation of Dynamic Motion Primitives and machine learning techniques to construct task- and patient-specific joint trajectories based on the learnt trajectories. System validation was carried out in simulation and in a real setting with a 4-DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb Girdle Muscular Dystrophy. Validation was addressed to (i) compare the performance of the proposed motion planning with traditional methods; (ii) assess the generalization capabilities of the proposed method with respect to the environment variability. Three ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The achieved results showed a 100% success rate in the task fulfillment, with a high level of generalization with respect to the environment variability. Moreover, an anthropomorphic configuration of the exoskeleton is always ensured.

  3. Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons

    PubMed Central

    Lauretti, Clemente; Cordella, Francesca; Ciancio, Anna Lisa; Trigili, Emilio; Catalan, Jose Maria; Badesa, Francisco Javier; Crea, Simona; Pagliara, Silvio Marcello; Sterzi, Silvia; Vitiello, Nicola; Garcia Aracil, Nicolas; Zollo, Loredana

    2018-01-01

    The reference joint position of upper-limb exoskeletons is typically obtained by means of Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian; this approach allows exploiting the available Degrees of Freedom (i.e. DoFs) of the robot kinematic chain to achieve the desired end-effector pose; however, if used to operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria are satisfied in the whole human-robot workspace. This paper proposes a motion planning system, based on Learning by Demonstration, for upper-limb exoskeletons that allow successfully assisting patients during Activities of Daily Living (ADLs) in unstructured environment, while ensuring that anthropomorphic criteria are satisfied in the whole human-robot workspace. The motion planning system combines Learning by Demonstration with the computation of Dynamic Motion Primitives and machine learning techniques to construct task- and patient-specific joint trajectories based on the learnt trajectories. System validation was carried out in simulation and in a real setting with a 4-DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb Girdle Muscular Dystrophy. Validation was addressed to (i) compare the performance of the proposed motion planning with traditional methods; (ii) assess the generalization capabilities of the proposed method with respect to the environment variability. Three ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The achieved results showed a 100% success rate in the task fulfillment, with a high level of generalization with respect to the environment variability. Moreover, an anthropomorphic configuration of the exoskeleton is always ensured. PMID:29527161

  4. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    NASA Astrophysics Data System (ADS)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  5. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.

    PubMed

    Chen, Yanyan; Li, Ge; Zhu, Yanhe; Zhao, Jie; Cai, Hegao

    2014-01-01

    In this paper, a 6-DOF wearable upper limb exoskeleton with parallel actuated joints which perfectly mimics human motions is proposed. The upper limb exoskeleton assists the movement of physically weak people. Compared with the existing upper limb exoskeletons which are mostly designed using a serial structure with large movement space but small stiffness and poor wearable ability, a prototype for motion assistance based on human anatomy structure has been developed in our design. Moreover, the design adopts balls instead of bearings to save space, which simplifies the structure and reduces the cost of the mechanism. The proposed design also employs deceleration processes to ensure that the transmission ratio of each joint is coincident.

  6. Biomimetics in the design of a robotic exoskeleton for upper limb therapy

    NASA Astrophysics Data System (ADS)

    Baniqued, Paul Dominick E.; Dungao, Jade R.; Manguerra, Michael V.; Baldovino, Renann G.; Abad, Alexander C.; Bugtai, Nilo T.

    2018-02-01

    Current methodologies in designing robotic exoskeletons for upper limb therapy simplify the complex requirements of the human anatomy. As a result, such devices tend to compromise safety and biocompatibility with the intended user. However, a new design methodology uses biological analogues as inspiration to address these technical issues. This approach follows that of biomimetics, a design principle that uses the extraction and transfer of useful information from natural morphologies and processes to solve technical design issues. In this study, a biomimetic approach in the design of a 5-degree-of-freedom robotic exoskeleton for upper limb therapy was performed. A review of biomimetics was first discussed along with its current contribution to the design of rehabilitation robots. With a proposed methodological framework, the design for an upper limb robotic exoskeleton was generated using CATIA software. The design was inspired by the morphology of the bones and the muscle force transmission of the upper limbs. Finally, a full design assembly presented had integrated features extracted from the biological analogue. The successful execution of a biomimetic design methodology made a case in providing safer and more biocompatible robots for rehabilitation.

  7. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.

    PubMed

    Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz

    2017-07-01

    This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.

  8. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.

    PubMed

    Tang, Zhichuan; Sun, Shouqian; Zhang, Sanyuan; Chen, Yumiao; Li, Chao; Chen, Shi

    2016-12-02

    To recognize the user's motion intention, brain-machine interfaces (BMI) usually decode movements from cortical activity to control exoskeletons and neuroprostheses for daily activities. The aim of this paper is to investigate whether self-induced variations of the electroencephalogram (EEG) can be useful as control signals for an upper-limb exoskeleton developed by us. A BMI based on event-related desynchronization/synchronization (ERD/ERS) is proposed. In the decoder-training phase, we investigate the offline classification performance of left versus right hand and left hand versus both feet by using motor execution (ME) or motor imagery (MI). The results indicate that the accuracies of ME sessions are higher than those of MI sessions, and left hand versus both feet paradigm achieves a better classification performance, which would be used in the online-control phase. In the online-control phase, the trained decoder is tested in two scenarios (wearing or without wearing the exoskeleton). The MI and ME sessions wearing the exoskeleton achieve mean classification accuracy of 84.29% ± 2.11% and 87.37% ± 3.06%, respectively. The present study demonstrates that the proposed BMI is effective to control the upper-limb exoskeleton, and provides a practical method by non-invasive EEG signal associated with human natural behavior for clinical applications.

  9. Analysis of elbow-joints misalignment in upper-limb exoskeleton.

    PubMed

    Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Tosatti, Lorenzo Molinari

    2011-01-01

    This paper presents advantages of introducing elbow-joints misalignments in an exoskeleton for upper limb rehabilitation. Typical exoskeletons are characterized by axes of the device as much as possible aligned to the rotational axes of human articulations. This approach leads to advantages in terms of movements and torques decoupling, but can lead to limitations nearby the elbow singular configuration. A proper elbow axes misalignment between the exoskeleton and the human can improve the quality of collaborative rehabilitation therapies, in which a correct torque transmission from human articulations to mechanical joints of the device is required to react to torques generated by the patient. © 2011 IEEE

  10. Ethical considerations in providing an upper limb exoskeleton device for stroke patients.

    PubMed

    Bulboacă, Adriana E; Bolboacă, Sorana D; Bulboacă, Angelo C

    2017-04-01

    The health care system needs to face new and advanced medical technologies that can improve the patients' quality of life by replacing lost or decreased functions. In stroke patients, the disabilities that follow cerebral lesions may impair the mandatory daily activities of an independent life. These activities are dependent mostly on the patient's upper limb function so that they can carry out most of the common activities associated with a normal life. Therefore, an upper limb exoskeleton device for stroke patients can contribute a real improvement of quality of their life. The ethical problems that need to be considered are linked to the correct adjustment of the upper limb skills in order to satisfy the patient's expectations, but within physiological limits. The debate regarding the medical devices dedicated to neurorehabilitation is focused on their ability to be beneficial to the patient's life, keeping away damages, injustice, and risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects.

    PubMed

    Lo, Ho Shing; Xie, Sheng Quan

    2012-04-01

    Current health services are struggling to provide optimal rehabilitation therapy to victims of stroke. This has motivated researchers to explore the use of robotic devices to provide rehabilitation therapy for strokepatients. This paper reviews the recent progress of upper limb exoskeleton robots for rehabilitation treatment of patients with neuromuscular disorders. Firstly, a brief introduction to rehabilitation robots will be given along with examples of existing commercial devices. The advancements in upper limb exoskeleton technology and the fundamental challenges in developing these devices are described. Potential areas for future research are discussed. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.

    PubMed

    Zeiaee, Amin; Soltani-Zarrin, Rana; Langari, Reza; Tafreshi, Reza

    2017-07-01

    This paper details the design process and features of a novel upper limb rehabilitation exoskeleton named CLEVER (Compact, Low-weight, Ergonomic, Virtual/Augmented Reality Enhanced Rehabilitation) ARM. The research effort is focused on designing a lightweight and ergonomic upper-limb rehabilitation exoskeleton capable of producing diverse and perceptually rich training scenarios. To this end, the knowledge available in the literature of rehabilitation robotics is used along with formal conceptual design techniques. This paper briefly reviews the systematic approach used for design of the exoskeleton, and elaborates on the specific details of the proposed design concept and its advantages over other design possibilities. The kinematic structure of CLEVER ARM has eight degrees of freedom supporting the motion of shoulder girdle, glenohumeral joint, elbow and wrist. Six degrees of freedom of the exoskeleton are active, and the two degrees of freedom supporting the wrist motion are passive. Kinematics of the proposed design is studied analytically and experimentally with the aid of a 3D printed prototype. The paper is concluded by some remarks on the optimization of the design, motorization of device, and the fabrication challenges.

  13. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.

    PubMed

    Proietti, Tommaso; Crocher, Vincent; Roby-Brami, Agnes; Jarrasse, Nathanael

    2016-01-01

    Since the late 1990s, there has been a burst of research on robotic devices for poststroke rehabilitation. Robot-mediated therapy produced improvements on recovery of motor capacity; however, so far, the use of robots has not shown qualitative benefit over classical therapist-led training sessions, performed on the same quantity of movements. Multidegree-of-freedom robots, like the modern upper-limb exoskeletons, enable a distributed interaction on the whole assisted limb and can exploit a large amount of sensory feedback data, potentially providing new capabilities within standard rehabilitation sessions. Surprisingly, most publications in the field of exoskeletons focused only on mechatronic design of the devices, while little details were given to the control aspects. On the contrary, we believe a paramount aspect for robots potentiality lies on the control side. Therefore, the aim of this review is to provide a taxonomy of currently available control strategies for exoskeletons for neurorehabilitation, in order to formulate appropriate questions toward the development of innovative and improved control strategies.

  14. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.

    PubMed

    Xiao, Feiyun; Gao, Yongsheng; Wang, Yong; Zhu, Yanhe; Zhao, Jie

    2017-07-20

    Many countries, including Japan, Italy, and China are experiencing demographic shifts as their populations age. Some basic activities of daily living (ADLs) are difficult for elderly people to complete independently due to declines in motor function. In this paper, a 6-DOF wearable cable-driven upper limb exoskeleton (CABexo) based on epicyclic gear trains structure is proposed. The main structure of the exoskeleton system is composed of three epicyclic gear train sections. This new exoskeleton has a parallel mechanical structure to the traditional serial structure, but is stiffer and has a stronger carrying capacity. The traditional gear transmission structure is replaced with a cable transmission system, which is quieter, and has higher accuracy and smoother transmission. The static workspace of the exoskeleton is large enough to meet the demand of assisting aged and disabled individuals in completing most of their activities of daily living (ADLs).

  15. An upper-limb power-assist exoskeleton using proportional myoelectric control.

    PubMed

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-04-10

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury.

  16. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].

    PubMed

    Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu

    2016-12-01

    In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.

  17. A hybrid joint based controller for an upper extremity exoskeleton

    NASA Astrophysics Data System (ADS)

    Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.

  18. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.

    PubMed

    Mazumder, Oishee; Kundu, Ananda Sankar; Lenka, Prasanna Kumar; Bhaumik, Subhasis

    2016-10-01

    Ambulatory activity classification is an active area of research for controlling and monitoring state initiation, termination, and transition in mobility assistive devices such as lower-limb exoskeletons. State transition of lower-limb exoskeletons reported thus far are achieved mostly through the use of manual switches or state machine-based logic. In this paper, we propose a postural activity classifier using a 'dendogram-based support vector machine' (DSVM) which can be used to control a lower-limb exoskeleton. A pressure sensor-based wearable insole and two six-axis inertial measurement units (IMU) have been used for recognising two static and seven dynamic postural activities: sit, stand, and sit-to-stand, stand-to-sit, level walk, fast walk, slope walk, stair ascent and stair descent. Most of the ambulatory activities are periodic in nature and have unique patterns of response. The proposed classification algorithm involves the recognition of activity patterns on the basis of the periodic shape of trajectories. Polynomial coefficients extracted from the hip angle trajectory and the centre-of-pressure (CoP) trajectory during an activity cycle are used as features to classify dynamic activities. The novelty of this paper lies in finding suitable instrumentation, developing post-processing techniques, and selecting shape-based features for ambulatory activity classification. The proposed activity classifier is used to identify the activity states of a lower-limb exoskeleton. The DSVM classifier algorithm achieved an overall classification accuracy of 95.2%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface

    NASA Astrophysics Data System (ADS)

    Kim, Hyunchul; Kim, Jungsuk

    2017-04-01

    This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.

  20. Running With an Elastic Lower Limb Exoskeleton.

    PubMed

    Cherry, Michael S; Kota, Sridhar; Young, Aaron; Ferris, Daniel P

    2016-06-01

    Although there have been many lower limb robotic exoskeletons that have been tested for human walking, few devices have been tested for assisting running. It is possible that a pseudo-passive elastic exoskeleton could benefit human running without the addition of electrical motors due to the spring-like behavior of the human leg. We developed an elastic lower limb exoskeleton that added stiffness in parallel with the entire lower limb. Six healthy, young subjects ran on a treadmill at 2.3 m/s with and without the exoskeleton. Although the exoskeleton was designed to provide ~50% of normal leg stiffness during running, it only provided 24% of leg stiffness during testing. The difference in added leg stiffness was primarily due to soft tissue compression and harness compliance decreasing exoskeleton displacement during stance. As a result, the exoskeleton only supported about 7% of the peak vertical ground reaction force. There was a significant increase in metabolic cost when running with the exoskeleton compared with running without the exoskeleton (ANOVA, P < .01). We conclude that 2 major roadblocks to designing successful lower limb robotic exoskeletons for human running are human-machine interface compliance and the extra lower limb inertia from the exoskeleton.

  1. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.

    PubMed

    Cortés, Camilo; de Los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.

  2. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation

    PubMed Central

    Cortés, Camilo; de los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types. PMID:27403420

  3. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.

    PubMed

    Proietti, Tommaso; Guigon, Emmanuel; Roby-Brami, Agnès; Jarrassé, Nathanaël

    2017-06-12

    The possibility to modify the usually pathological patterns of coordination of the upper-limb in stroke survivors remains a central issue and an open question for neurorehabilitation. Despite robot-led physical training could potentially improve the motor recovery of hemiparetic patients, most of the state-of-the-art studies addressing motor control learning, with artificial virtual force fields, only focused on the end-effector kinematic adaptation, by using planar devices. Clearly, an interesting aspect of studying 3D movements with a robotic exoskeleton, is the possibility to investigate the way the human central nervous system deals with the natural upper-limb redundancy for common activities like pointing or tracking tasks. We asked twenty healthy participants to perform 3D pointing or tracking tasks under the effect of inter-joint velocity dependant perturbing force fields, applied directly at the joint level by a 4-DOF robotic arm exoskeleton. These fields perturbed the human natural inter-joint coordination but did not constrain directly the end-effector movements and thus subjects capability to perform the tasks. As a consequence, while the participants focused on the achievement of the task, we unexplicitly modified their natural upper-limb coordination strategy. We studied the force fields direct effect on pointing movements towards 8 targets placed in the 3D peripersonal space, and we also considered potential generalizations on 4 distinct other targets. Post-effects were studied after the removal of the force fields (wash-out and follow up). These effects were quantified by a kinematic analysis of the pointing movements at both end-point and joint levels, and by a measure of the final postures. At the same time, we analysed the natural inter-joint coordination through PCA. During the exposition to the perturbative fields, we observed modifications of the subjects movement kinematics at every level (joints, end-effector, and inter-joint coordination

  4. Structure design of lower limb exoskeletons for gait training

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Zhang, Ziqiang; Tao, Chunjing; Ji, Run

    2015-09-01

    Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.

  5. System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation.

    PubMed

    French, James A; Rose, Chad G; O'Malley, Marcia K

    2014-10-01

    This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs.

  6. System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation

    PubMed Central

    French, James A.; Rose, Chad G.; O'Malley, Marcia K.

    2015-01-01

    This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs. PMID:25984380

  7. Modelling and control of an upper extremity exoskeleton for rehabilitation

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Majeed, Anwar P. P. Abdul; Tze, Mohd Yashim Wong Paul; Abdo Hashem, Mohammed; Mohd Khairuddin, Ismail; Azraai Mohd Razman, Mohd

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture.

  8. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.

    PubMed

    Kiguchi, K; Hayashi, Y

    2012-08-01

    Many kinds of power-assist robots have been developed in order to assist self-rehabilitation and/or daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user's motion intention. In this paper, an electromyogram (EMG)-based impedance control method for an upper-limb power-assist exoskeleton robot is proposed to control the robot in accordance with the user's motion intention. The proposed method is simple, easy to design, humanlike, and adaptable to any user. A neurofuzzy matrix modifier is applied to make the controller adaptable to any users. Not only the characteristics of EMG signals but also the characteristics of human body are taken into account in the proposed method. The effectiveness of the proposed method was evaluated by the experiments.

  9. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    PubMed Central

    Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698

  10. BRIDGE - Behavioural reaching interfaces during daily antigravity activities through upper limb exoskeleton: Preliminary results.

    PubMed

    Gandolla, Marta; Costa, Andrea; Aquilante, Lorenzo; Gfoehler, Margit; Puchinger, Markus; Braghin, Francesco; Pedrocchi, Alessandra

    2017-07-01

    People with neuromuscular diseases such as muscular dystrophy experience a distributed and evolutive weakness in the whole body. Recent technological developments have changed the daily life of disabled people strongly improving the perceived quality of life, mostly concentrating on powered wheelchairs, so to assure autonomous mobility and respiratory assistance, essential for survival. The key concept of the BRIDGE project is to contrast the everyday experience of losing functions by providing them of a system able to exploit the best their own residual capabilities in arm movements so to keep them functional and autonomous as much as possible. BRIDGE is composed by a light, wearable and powered five degrees of freedom upper limb exoskeleton under the direct control of the user through a joystick or gaze control. An inverse kinematic model allows to determine joints position so to track patient desired hand position. BRIDGE prototype has been successfully tested in simulation environment, and by a small group of healthy volunteers. Preliminary results show a good tracking performance of the implemented control scheme. The interaction procedure was easy to understand, and the interaction with the system was successful.

  11. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.

    PubMed

    Kang, Hao-Bo; Wang, Jian-Hui

    2013-11-01

    This paper studies an adaptive control strategy for a class of 5 DOF upper-limb exoskeleton robot with a special safety consideration. The safety requirement plays a critical role in the clinical treatment when assisting patients with shoulder, elbow and wrist joint movements. With the objective of assuring the tracking performance of the pre-specified operations, the proposed adaptive controller is firstly designed to be robust to the model uncertainties. To further improve the safety and fault-tolerance in the presence of unknown large parameter variances or even actuator faults, the adaptive controller is on-line updated according to the information provided by an adaptive observer without additional sensors. An output tracking performance is well achieved with a tunable error bound. The experimental example also verifies the effectiveness of the proposed control scheme. © 2013 ISA. Published by ISA. All rights reserved.

  12. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    PubMed Central

    2012-01-01

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of

  13. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.

    PubMed

    Pirondini, Elvira; Coscia, Martina; Marcheschi, Simone; Roas, Gianluca; Salsedo, Fabio; Frisoli, Antonio; Bergamasco, Massimo; Micera, Silvestro

    2016-01-23

    Exoskeletons for lower and upper extremities have been introduced in neurorehabilitation because they can guide the patient's limb following its anatomy, covering many degrees of freedom and most of its natural workspace, and allowing the control of the articular joints. The aims of this study were to evaluate the possible use of a novel exoskeleton, the Arm Light Exoskeleton (ALEx), for robot-aided neurorehabilitation and to investigate the effects of some rehabilitative strategies adopted in robot-assisted training. We studied movement execution and muscle activities of 16 upper limb muscles in six healthy subjects, focusing on end-effector and joint kinematics, muscle synergies, and spinal maps. The subjects performed three dimensional point-to-point reaching movements, without and with the exoskeleton in different assistive modalities and control strategies. The results showed that ALEx supported the upper limb in all modalities and control strategies: it reduced the muscular activity of the shoulder's abductors and it increased the activity of the elbow flexors. The different assistive modalities favored kinematics and muscle coordination similar to natural movements, but the muscle activity during the movements assisted by the exoskeleton was reduced with respect to the movements actively performed by the subjects. Moreover, natural trajectories recorded from the movements actively performed by the subjects seemed to promote an activity of muscles and spinal circuitries more similar to the natural one. The preliminary analysis on healthy subjects supported the use of ALEx for post-stroke upper limb robotic assisted rehabilitation, and it provided clues on the effects of different rehabilitative strategies on movement and muscle coordination.

  14. Robotic Lower Limb Exoskeletons Using Proportional Myoelectric Control

    PubMed Central

    Ferris, Daniel P.; Lewis, Cara L.

    2010-01-01

    Robotic lower limb exoskeletons have been built for augmenting human performance, assisting with disabilities, studying human physiology, and re-training motor deficiencies. At the University of Michigan Human Neuromechanics Laboratory, we have built pneumatically-powered lower limb exoskeletons for the last two purposes. Most of our prior research has focused on ankle joint exoskeletons because of the large contribution from plantar flexors to the mechanical work performed during gait. One way we control the exoskeletons is with proportional myoelectric control, effectively increasing the strength of the wearer with a physiological mode of control. Healthy human subjects quickly adapt to walking with the robotic ankle exoskeletons, reducing their overall energy expenditure. Individuals with incomplete spinal cord injury have demonstrated rapid modification of muscle recruitment patterns with practice walking with the ankle exoskeletons. Evidence suggests that proportional myoelectric control may have distinct advantages over other types of control for robotic exoskeletons in basic science and rehabilitation. PMID:19964579

  15. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton

    PubMed Central

    Grimm, Florian; Walter, Armin; Spüler, Martin; Naros, Georgios; Rosenstiel, Wolfgang; Gharabaghi, Alireza

    2016-01-01

    and antigravity assistance augments upper limb function and brain activity during rehabilitation exercises and may thus provide a novel restorative framework for severely affected stroke patients. PMID:27555805

  16. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton.

    PubMed

    Grimm, Florian; Walter, Armin; Spüler, Martin; Naros, Georgios; Rosenstiel, Wolfgang; Gharabaghi, Alireza

    2016-01-01

    and antigravity assistance augments upper limb function and brain activity during rehabilitation exercises and may thus provide a novel restorative framework for severely affected stroke patients.

  17. Design and evaluation of a modular lower limb exoskeleton for rehabilitation.

    PubMed

    Dos Santos, Wilian M; Nogueira, Samuel L; de Oliveira, Gustavo C; Pena, Guido G; Siqueira, Adriano A G

    2017-07-01

    This paper deals with the evaluation of an exoskeleton designed for assisting individuals to rehabilitate compromised lower limb movements resulting from stroke or incomplete spinal cord injury. The exoskeleton is composed of lightweight tubular structures and six free joints that provide a modular feature to the system. This feature allows the exoskeleton to be adapted to assist the movement of one or more patient joints. The actuation of the exoskeleton is also modular, and can be performed passively, by means of springs and dampers, or actively through actuators. In addition, its telescopic tubular links, developed to adjust the size of the links in order to align the joints of the exoskeleton with patient joints, allows the exoskeleton to be adjustable to fit different patients. Experiments considering the interaction between a healthy subject and the exoskeleton are performed to evaluate the influence of the exoskeleton structure on kinematic and muscular activity profiles during walking.

  18. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    PubMed Central

    Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian

    2016-01-01

    Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton. PMID:27690023

  19. The first results of the development and implementation of the upper extremity exoskeleton "EXAR"

    NASA Astrophysics Data System (ADS)

    Vorobiev, A. A.; Krivonozhkina, P. S.; Zasypkina, O. A.; Andrewshenko, F. A.

    2015-11-01

    This research considers the first results of the development and implementation of the upper extremity exoskeleton "EXAR". Made anatomical parameterization developed the device the testing of the apparatus have been conducted in accordance with the bioethics regulations with the girl I. Sh. at the age of 4 years suffering the artrogryposis. The parameters of the exoskeleton "EXAR" selected according to our methods allowed us to conduct its use in the period of 4 months. There have been no defects at all. By the analysis of the first results of the passive upper limb skeleton EXAR development we should consider them as positive and worthy of the widespread adoption in the remedial practice.

  20. Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation.

    PubMed

    Nycz, Christopher J; Delph, Michael A; Fischer, Gregory S

    2015-01-01

    Robotic technology has recently been explored as a means to rehabilitate and assist individuals suffering from hemiparesis of their upper limbs. Robotic approaches allow for targeted rehabilitation routines which are more personalized and adaptable while providing quantitative measurements of patient outcomes. Development of these technologies into inherently safe and portable devices has the potential to extend the therapy outside of the clinical setting and into the patient's home with benefits to the cost and accessibility of care. To this end, a soft, cable actuated robotic glove and sleeve was designed, modeled, and constructed to provide assistance of finger and elbow movements in a way that mimics the biological function of the tendons. The resulting design increases safety through greater compliance as well as greater tolerance for misalignment with the user's skeletal frame over traditional rigid exoskeletons. Overall this design provides a platform to expand and study the concepts around soft robotic rehabilitation.

  1. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.

    PubMed

    Ren, Yupeng; Kang, Sang Hoon; Park, Hyung-Soon; Wu, Yi-Ning; Zhang, Li-Qun

    2013-05-01

    Arm impairments in patients post stroke involve the shoulder, elbow and wrist simultaneously. It is not very clear how patients develop spasticity and reduced range of motion (ROM) at the multiple joints and the abnormal couplings among the multiple joints and the multiple degrees-of-freedom (DOF) during passive movement. It is also not clear how they lose independent control of individual joints/DOFs and coordination among the joints/DOFs during voluntary movement. An upper limb exoskeleton robot, the IntelliArm, which can control the shoulder, elbow, and wrist, was developed, aiming to support clinicians and patients with the following integrated capabilities: 1) quantitative, objective, and comprehensive multi-joint neuromechanical pre-evaluation capabilities aiding multi-joint/DOF diagnosis for individual patients; 2) strenuous and safe passive stretching of hypertonic/deformed arm for loosening up muscles/joints based on the robot-aided diagnosis; 3) (assistive/resistive) active reaching training after passive stretching for regaining/improving motor control ability; and 4) quantitative, objective, and comprehensive neuromechanical outcome evaluation at the level of individual joints/DOFs, multiple joints, and whole arm. Feasibility of the integrated capabilities was demonstrated through experiments with stroke survivors and healthy subjects.

  2. Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients

    PubMed Central

    Jarrassé, Nathanaël; Proietti, Tommaso; Crocher, Vincent; Robertson, Johanna; Sahbani, Anis; Morel, Guillaume; Roby-Brami, Agnès

    2014-01-01

    Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity-dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed. PMID:25520638

  3. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.

    PubMed

    Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao

    2016-10-01

    This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

  4. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation

    NASA Astrophysics Data System (ADS)

    Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao

    2016-10-01

    This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

  5. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.

    PubMed

    Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie

    2015-01-01

    Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.

  6. A brain-controlled lower-limb exoskeleton for human gait training.

    PubMed

    Liu, Dong; Chen, Weihai; Pei, Zhongcai; Wang, Jianhua

    2017-10-01

    Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.

  7. A brain-controlled lower-limb exoskeleton for human gait training

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Weihai; Pei, Zhongcai; Wang, Jianhua

    2017-10-01

    Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.

  8. TWIICE - A lightweight lower-limb exoskeleton for complete paraplegics.

    PubMed

    Vouga, Tristan; Baud, Romain; Fasola, Jemina; Bouri, Mohamed; Bleuler, Hannes

    2017-07-01

    This paper introduces TWIICE, a lower-limb exoskeleton that enables people suffering from complete paraplegia to stand up and walk again. TWIICE provides complete mobilization of the lower-limbs, which is a first step toward enabling the user to regain independence in activities of the daily living. The tasks it can perform include level and inclined walking (up to 20° slope), stairs ascent and descent, sitting on a seat, and standing up. Participation in the world's first Cybathlon (Zurich, 2016) demonstrated good performance at these demanding tasks. In this paper, we describe the implementation details of the device and comment on preliminary results from a single user case study.

  9. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.

    PubMed

    Lajeunesse, Veronique; Vincent, Claude; Routhier, François; Careau, Emmanuelle; Michaud, François

    2016-10-01

    Rehabilitation professionals have little information concerning lower limb exoskeletons for people with paraplegia. This study has four objectives: (1) Outline the characteristics of the exoskeletons' design and their usefulness evidence as assistive mobility devices in the community for the Rewalk™, Mina, Indego®, Ekso™ (previously known as the eLEGS™) and Rex®; (2) document functional mobility outcomes of using these exoskeletons; (3) document secondary skills and benefits achieved with these exoskeletons, safety, user satisfaction and applicability in the community; and (4) establish level of scientific evidence of the selected studies. A systematic review of the literature (January 2004 to April 2014) was done using the databases PubMed, CINAHL and Embase and groups of keywords associated with "exoskeleton", "lower limb" and "paraplegia". Seven articles were selected. Exoskeleton use is effective for walking in a laboratory but there are no training protocols to modify identified outcomes over the term usage (ReWalk™: 3 months, Mina: 2 months and Indego®: 1 session). Levels of evidence of selected papers are low. The applicability and effectiveness of lower limb exoskeletons as assistive devices in the community have not been demonstrated. More research is needed on walking performance with these exoskeletons compared to other mobility devices and other training contexts in the community. Implications for rehabilitation Characteristics of the exoskeletons' design and their usefulness evidence as assistive mobility devices in the community are addressed for the Rewalk™, Mina, Indego®, Ekso™ and Rex® ReWalk™, Indego® and Mina lower limb exoskeletons are effective for walking in a laboratory for individuals with complete lower-level SCI. The ReWalk™ has the best results for walking, with a maximum speed of 0.51 m/s after 45 sessions lasting 60 to 120 min; it is comparable to the average speed per day or per week in a manual wheelchair. The

  10. Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot.

    PubMed

    Kiguchi, Kazuo; Hayashi, Yoshiaki

    2013-01-01

    A tremor which is one of the involuntary motions is somewhat rhythmic motion that may occur in various body parts. Although there are several kinds of the tremor, an essential tremor is the most common tremor disorder of the arm. The essential tremor is a disorder of unknown cause, and it is common in the elderly. The essential tremor interferes with a patient's daily living activity, because it may occur during a voluntary motion. If a patient of an essential tremor uses an EMG-based controlled power-assist robot, the robot might misunderstand the user's motion intention because of the effect of the essential tremor. In that case, upper-limb power-assist robots must carry out tremor suppression as well as power-assist, since a person performs various precise tasks with certain tools by the upper-limb in daily living. Therefore, it is important to suppress the tremor at the hand and grasped tool. However, in the case of the tremor suppression control method which suppressed the vibrations of the hand and the tip of the tool, vibration of other part such as elbow might occur. In this paper, the tremor suppression control method for upper-limb power-assist robot is proposed. In the proposed method, the vibration of the elbow is suppressed in addition to the hand and the tip of the tool. The validity of the proposed method was verified by the experiments.

  11. An assistive lower limb exoskeleton for people with neurological gait disorders.

    PubMed

    Ortlieb, A; Bouri, M; Baud, R; Bleuler, H

    2017-07-01

    Lower limb exoskeletons have already proven the capability to give back mobility to people suffering from spinal cord injury (SCI). Other important populations such as people with multiple sclerosis or muscular dystrophy, frail elderly and stroke victims, suffer from severe gait impairments and could benefit from similar technology. The work presented in the current paper describes a novel design of a 6-actuated degrees of freedom (DOFs) assistive lower limb exoskeleton for people with moderate mobility impairments. The electrical actuators are all remotely located on the back of the user for a more compact design with high dynamics. Cable driven solutions are used to transmit the flexion/extension of the hip and knee joints, while a powerful ballscrew carries out the hip adduction/abduction. The design of this exoskeleton, named AUTONOMYO, follows the key specifications of being highly back-drivable and able to perform dynamic motions at low energy consumption. AUTONOMYO is capable to assist the user's balance by providing complementary torques at the hip and the knee. Results show that the projected level of assistance for sit-to-stand transition varies from 50% to 100% in function of the user's bodyweight and height while higher level of assistance are reached for walking and stairs climbing activities.

  12. An intelligent active force control algorithm to control an upper extremity exoskeleton for motor recovery

    NASA Astrophysics Data System (ADS)

    Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.

  13. An EMG-controlled neuroprosthesis for daily upper limb support: a preliminary study.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Tibiletti, Marta; Schauer, Thomas; Klauer, Christian; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2011-01-01

    MUNDUS is an assistive platform for recovering direct interaction capability of severely impaired people based on upper limb motor functions. Its main concept is to exploit any residual control of the end-user, thus being suitable for long term utilization in daily activities. MUNDUS integrates multimodal information (EMG, eye tracking, brain computer interface) to control different actuators, such as a passive exoskeleton for weight relief, a neuroprosthesis for arm motion and small motors for grasping. Within this project, the present work integreted a commercial passive exoskeleton with an EMG-controlled neuroprosthesis for supporting hand-to-mouth movements. Being the stimulated muscle the same from which the EMG was measured, first it was necessary to develop an appropriate digital filter to separate the volitional EMG and the stimulation response. Then, a control method aimed at exploiting as much as possible the residual motor control of the end-user was designed. The controller provided a stimulation intensity proportional to the volitional EMG. An experimental protocol was defined to validate the filter and the controller operation on one healthy volunteer. The subject was asked to perform a sequence of hand-to-mouth movements holding different loads. The movements were supported by both the exoskeleton and the neuroprosthesis. The filter was able to detect an increase of the volitional EMG as the weight held by the subject increased. Thus, a higher stimulation intensity was provided in order to support a more intense exercise. The study demonstrated the feasibility of an EMG-controlled neuroprosthesis for daily upper limb support on healthy subjects, providing a first step forward towards the development of the final MUNDUS platform.

  14. EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.

    PubMed

    Vouga, Tristan; Zhuang, Katie Z; Olivier, Jeremy; Lebedev, Mikhail A; Nicolelis, Miguel A L; Bouri, Mohamed; Bleuler, Hannes

    2017-02-01

    Recent advances in the field of brain-machine interfaces (BMIs) have demonstrated enormous potential to shape the future of rehabilitation and prosthetic devices. Here, a lower-limb exoskeleton controlled by the intracortical activity of an awake behaving rhesus macaque is presented as a proof-of-concept for a locomotorBMI. A detailed description of the mechanical device, including its innovative features and first experimental results, is provided. During operation, BMI-decoded position and velocity are directly mapped onto the bipedal exoskeleton's motions, which then move the monkey's legs as the monkey remains physicallypassive. To meet the unique requirements of such an application, the exoskeleton's features include: high output torque with backdrivable actuation, size adjustability, and safe user-robot interface. In addition, a novel rope transmission is introduced and implemented. To test the performance of the exoskeleton, a mechanical assessment was conducted, which yielded quantifiable results for transparency, efficiency, stiffness, and tracking performance. Usage under both brain control and automated actuation demonstrates the device's capability to fulfill the demanding needs of this application. These results lay the groundwork for further advancement in BMI-controlled devices for primates including humans.

  15. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users.

    PubMed

    Rathore, Ashish; Wilcox, Matthew; Ramirez, Dafne Zuleima Morgado; Loureiro, Rui; Carlson, Tom

    2016-08-01

    To counter the many disadvantages of prolonged wheelchair use, patients with spinal cord injuries (SCI) are beginning to turn towards robotic exoskeletons. However, we are currently unaware of the magnitude and distribution of forces acting between the user and the exoskeleton. This is a critical issue, as SCI patients have an increased susceptibility to skin lesions and pressure ulcer development. Therefore, we developed a real-time force measuring apparatus, which was placed at the physical human-robot interface (pHRI) of a lower limb robotic exoskeleton. Experiments captured the dynamics of these interaction forces whilst the participants performed a range of typical stepping actions. Our results indicate that peak forces occurred at the anterior aspect of both the left and right legs, areas that are particularly prone to pressure ulcer development. A significant difference was also found between the average force experienced at the anterior and posterior sensors of the right thigh during the swing phase for different movement primitives. These results call for the integration of instrumented straps as standard in lower limb exoskeletons. They also highlight the potential of such straps to be used as an alternative/complementary interface for the high-level control of lower limb exoskeletons in some patient groups.

  16. Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors

    PubMed Central

    Bhagat, Nikunj A.; Venkatakrishnan, Anusha; Abibullaev, Berdakh; Artz, Edward J.; Yozbatiran, Nuray; Blank, Amy A.; French, James; Karmonik, Christof; Grossman, Robert G.; O'Malley, Marcia K.; Francisco, Gerard E.; Contreras-Vidal, Jose L.

    2016-01-01

    This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected −367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. PMID:27065787

  17. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke.

    PubMed

    Murray, Spencer A; Ha, Kevin H; Hartigan, Clare; Goldfarb, Michael

    2015-05-01

    This paper presents a control approach for a lower-limb exoskeleton intended to facilitate recovery of walking in individuals with lower-extremity hemiparesis after stroke. The authors hypothesize that such recovery is facilitated by allowing the patient rather than the exoskeleton to provide movement coordination. As such, an assistive controller that provides walking assistance without dictating the spatiotemporal nature of joint movement is described here. Following a description of the control laws and finite state structure of the controller, the authors present the results of an experimental implementation and preliminary validation of the control approach, in which the control architecture was implemented on a lower limb exoskeleton, and the exoskeleton implemented in an experimental protocol on three subjects with hemiparesis following stroke. In a series of sessions in which each patient used the exoskeleton, all patients showed substantial single-session improvements in all measured gait outcomes, presumably as a result of using the assistive controller and exoskeleton.

  18. Gravity compensation of an upper extremity exoskeleton.

    PubMed

    Moubarak, S; Pham, M T; Moreau, R; Redarce, T

    2010-01-01

    This paper presents a new gravity compensation method for an upper extremity exoskeleton mounted on a wheel chair. This new device is dedicated to regular and efficient rehabilitation training for post-stroke and injured people without the continuous presence of a therapist. The exoskeleton is a wearable robotic device attached to the human arm. The user provides information signals to the controller by means of the force sensors around the wrist and the arm, and the robot controller generates the appropriate control signals for different training strategies and paradigms. This upper extremity exoskeleton covers four basic degrees of freedom of the shoulder and the elbow joints with three additional adaptability degrees of freedom in order to match the arm anatomy of different users. For comfortable and efficient rehabilitation, a new heuristic method have been studied and applied on our prototype in order to calculate the gravity compensation model without the need to identify the mass parameters. It is based on the geometric model of the robot and accurate torque measurements of the prototype's actuators in a set of specifically chosen joint positions. The weight effect has been successfully compensated so that the user can move his arm freely while wearing the exoskeleton without feeling its mass.

  19. EMG patterns during assisted walking in the exoskeleton.

    PubMed

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  20. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.

    PubMed

    Zhang, Guoan; Liu, Gangfeng; Ma, Sun; Wang, Tianshuo; Zhao, Jie; Zhu, Yanhe

    2017-07-20

    In this paper, an obstacle-surmounting-enabled lower limb exoskeleton with novel linkage joints that perfectly mimicked human motions was proposed. Currently, most lower exoskeletons that use linear actuators have a direct connection between the wearer and the controlled part. Compared to the existing joints, the novel linkage joint not only fitted better into compact chasis, but also provided greater torque when the joint was at a large bend angle. As a result, it extended the angle range of joint peak torque output. With any given power, torque was prioritized over rotational speed, because instead of rotational speed, sufficiency of torque is the premise for most joint actions. With insufficient torque, the exoskeleton will be a burden instead of enhancement to its wearer. With optimized distribution of torque among the joints, the novel linkage method may contribute to easier exoskeleton movements.

  1. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.

    PubMed

    Li, Zhijun; Wang, Baocheng; Sun, Fuchun; Yang, Chenguang; Xie, Qing; Zhang, Weidong

    2014-05-01

    This paper investigates two surface electromyogram (sEMG)-based control strategies developed for a power-assist exoskeleton arm. Different from most of the existing position control approaches, this paper develops force control methods to make the exoskeleton robot behave like humans in order to provide better assistance. The exoskeleton robot is directly attached to a user's body and activated by the sEMG signals of the user's muscles, which reflect the user's motion intention. In the first proposed control method, the forces of agonist and antagonist muscles pair are estimated, and their difference is used to produce the torque of the corresponding joints. In the second method, linear discriminant analysis-based classifiers are introduced as the indicator of the motion type of the joints. Then, the classifier's outputs together with the estimated force of corresponding active muscle determine the torque control signals. Different from the conventional approaches, one classifier is assigned to each joint, which decreases the training time and largely simplifies the recognition process. Finally, the extensive experiments are conducted to illustrate the effectiveness of the proposed approaches.

  2. Rehabilitative Soft Exoskeleton for Rodents.

    PubMed

    Florez, Juan Manuel; Shah, Manan; Moraud, Eduardo Martin; Wurth, Sophie; Baud, Laetitia; Von Zitzewitz, Joachim; van den Brand, Rubia; Micera, Silvestro; Courtine, Gregoire; Paik, Jamie

    2017-02-01

    Robotic exoskeletons provide programmable, consistent and controllable active therapeutic assistance to patients with neurological disorders. Here we introduce a prototype and preliminary experimental evaluation of a rehabilitative gait exoskeleton that enables compliant yet effective manipulation of the fragile limbs of rats. To assist the displacements of the lower limbs without impeding natural gait movements, we designed and fabricated soft pneumatic actuators (SPAs). The exoskeleton integrates two customizable SPAs that are attached to a limb. This configuration enables a 1 N force load, a range of motion exceeding 80 mm in the major axis, and speed of actuation reaching two gait cycles/s. Preliminary experiments in rats with spinal cord injury validated the basic features of the exoskeleton. We propose strategies to improve the performance of the robot and discuss the potential of SPAs for the design of other wearable interfaces.

  3. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof.

    PubMed

    Murray, Spencer A; Ha, Kevin H; Goldfarb, Michael

    2014-01-01

    This paper describes a novel controller, intended for use in a lower-limb exoskeleton, to aid gait rehabilitation in patients with hemiparesis after stroke. The controller makes use of gravity compensation, feedforward movement assistance, and reinforcement of isometric joint torques to achieve assistance without dictating the spatiotemporal nature of joint movement. The patient is allowed to self-select walking speed and is able to make trajectory adaptations to maintain balance without interference from the controller. The governing equations and the finite state machine which comprise the system are described herein. The control architecture was implemented in a lower-limb exoskeleton and a preliminary experimental assessment was conducted in which a patient with hemiparesis resulting from stroke walked with assistance from the exoskeleton. The patient exhibited improvements in fast gait speed, step length asymmetry, and stride length in each session, as measured before and after exoskeleton training, presumably as a result of using the exoskeleton.

  4. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury.

    PubMed

    Wu, Cheng-Hua; Mao, Hui-Fen; Hu, Jwu-Sheng; Wang, Ting-Yun; Tsai, Yi-Jeng; Hsu, Wei-Li

    2018-03-05

    Powered exoskeleton can improve the mobility for people with movement deficits by providing mechanical support and facilitate the gait training. This pilot study evaluated the effect of gait training using a newly developed powered lower limb exoskeleton robot for individuals with complete spinal cord injury (SCI). Two participants with a complete SCI were recruited for this clinical study. The powered exoskeleton gait training was 8 weeks, 1 h per session, and 2 sessions per week. The evaluation was performed before and after the training for (1) the time taken by the user to don and doff the powered exoskeleton independently, (2) the level of exertion perceived by participants while using the powered exoskeleton, and (3) the mobility performance included the timed up-and-go test, 10-m walk test, and 6-min walk test with the powered exoskeleton. The safety of the powered exoskeleton was evaluated on the basis of injury reports and the incidence of falls or imbalance while using the device. The results indicated that the participants were donning and doffing the powered lower limb exoskeleton robot independently with a lower level of exertion and walked faster and farther without any injury or fall incidence when using the powered exoskeleton than when using a knee-ankle-foot orthosis. Bone mineral densities was also increased after the gait training. No adverse effects, such as skin abrasions, or discomfort were reported while using the powered exoskeleton. The findings demonstrated that individuals with complete SCI used the powered lower limb exoskeleton robot independently without any assistance after 8 weeks of powered exoskeleton gait training. Trial registration: National Taiwan University Hospital. 201210051RIB . Name of registry: Hui-Fen Mao. URL of registry: Not available. Date of registration: December 12th, 2012. Date of enrolment of the first participant to the trial: January 3rd, 2013.

  5. A lower limb exoskeleton control system based on steady state visual evoked potentials.

    PubMed

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  6. A lower limb exoskeleton control system based on steady state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  7. Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments.

    PubMed

    Aguirre-Ollinger, Gabriel; Colgate, J Edward; Peshkin, Michael A; Goswami, Ambarish

    2012-01-01

    A new method of lower-limb exoskeleton control aimed at improving the agility of leg-swing motion is presented. In the absence of control, an exoskeleton's mechanism usually hinders agility by adding mechanical impedance to the legs. The uncompensated inertia of the exoskeleton will reduce the natural frequency of leg swing, probably leading to lower step frequency during walking as well as increased metabolic energy consumption. The proposed controller emulates inertia compensation by adding a feedback loop consisting of low-pass filtered angular acceleration multiplied by a negative gain. This gain simulates negative inertia in the low-frequency range. The resulting controller combines two assistive effects: increasing the natural frequency of the lower limbs and performing net work per swing cycle. The controller was tested on a statically mounted exoskeleton that assists knee flexion and extension. Subjects performed movement sequences, first unassisted and then using the exoskeleton, in the context of a computer-based task resembling a race. In the exoskeleton's baseline state, the frequency of leg swing and the mean angular velocity were consistently reduced. The addition of inertia compensation enabled subjects to recover their normal frequency and increase their selected angular velocity. The work performed by the exoskeleton was evidenced by catch trials in the protocol.

  8. EMG patterns during assisted walking in the exoskeleton

    PubMed Central

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  9. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.

    PubMed

    Wu, Kuan-Yi; Su, Yin-Yu; Yu, Ying-Lung; Lin, Kuei-You; Lan, Chao-Chieh

    2017-07-01

    Powered exoskeletons can facilitate rehabilitation of patients with upper limb disabilities. Designs using rotary motors usually result in bulky exoskeletons to reduce the problem of moving inertia. This paper presents a new linearly actuated elbow exoskeleton that consists of a slider crank mechanism and a linear motor. The linear motor is placed beside the upper arm and closer to shoulder joint. Thus better inertia properties can be achieved while lightweight and compactness are maintained. A passive joint is introduced to compensate for the exoskeleton-elbow misalignment and intersubject size variation. A linear series elastic actuator (SEA) is proposed to obtain accurate force and impedance control at the exoskeleton-elbow interface. Bidirectional actuation between exoskeleton and forearm is verified, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of robot-aided elbow rehabilitation.

  10. The effects of prism glasses and intensive upper limb exercise on hemineglect, upper limb function, and activities of daily living in stroke patients: a case series.

    PubMed

    Oh, Se-Il; Kim, Jin-Kyung; Park, So-Yeon

    2015-12-01

    [Purpose] This study aimed to examine the effects of visual field with prism glasses, and intensive upper limb functional training on reduction of hemineglect and improvement in upper limb function and activities of daily living in three stroke patients with hemineglect. [Subjects] This study included three stroke patients hospitalized in a sanatorium. [Methods] Intervention treatment involving prism glass use for 12 hours and 30 minutes and paretic side upper limb training was conducted 5 days a week for 15 weeks. Three upper limb training tasks (hitting a balloon, passing through a ring, and reading a newspaper) were performed for 10 minutes each session, for a total of 30 minutes. Line by Section, Motor-Free Visual Perception Test-3 (MVPT-3), Manual Function Test (MFT), Box & Block Test (BBT), and Assessment of Motor and Process Skills (AMPS) were conducted before and after intervention. [Results] Subjects' hemineglect decreased and upper limb function on the paretic side improved after intervention, which enhanced activities of daily living. [Conclusion] Prism glass use and paretic upper limb functional training effectively ameliorated stroke patients' hemineglect and improved upper limb function. Future research should focus on prism glasses that provide a wide visual field for use in patients with different conditions.

  11. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.

    PubMed

    Siu, Ho Chit; Arenas, Ana M; Sun, Tingxiao; Stirling, Leia A

    2018-02-05

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  12. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    PubMed Central

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

  13. Visualisation of upper limb activity using spirals: A new approach to the assessment of daily prosthesis usage.

    PubMed

    Chadwell, Alix; Kenney, Laurence; Granat, Malcolm; Thies, Sibylle; Head, John S; Galpin, Adam

    2018-02-01

    Current outcome measures used in upper limb myoelectric prosthesis studies include clinical tests of function and self-report questionnaires on real-world prosthesis use. Research in other cohorts has questioned both the validity of self-report as an activity assessment tool and the relationship between clinical functionality and real-world upper limb activity. Previously, 1 we reported the first results of monitoring upper limb prosthesis use. However, the data visualisation technique used was limited in scope. Methodology development. To introduce two new methods for the analysis and display of upper limb activity monitoring data and to demonstrate the potential value of the approach with example real-world data. Upper limb activity monitors, worn on each wrist, recorded data on two anatomically intact participants and two prosthesis users over 1 week. Participants also filled in a diary to record upper limb activity. Data visualisation was carried out using histograms, and Archimedean spirals to illustrate temporal patterns of upper limb activity. Anatomically intact participants' activity was largely bilateral in nature, interspersed with frequent bursts of unilateral activity of each arm. At times when the prosthesis was worn prosthesis users showed very little unilateral use of the prosthesis (≈20-40 min/week compared to ≈350 min/week unilateral activity on each arm for anatomically intact participants), with consistent bias towards the intact arm throughout. The Archimedean spiral plots illustrated participant-specific patterns of non-use in prosthesis users. The data visualisation techniques allow detailed and objective assessment of temporal patterns in the upper limb activity of prosthesis users. Clinical relevance Activity monitoring offers an objective method for the assessment of upper limb prosthesis users' (PUs) activity outside of the clinic. By plotting data using Archimedean spirals, it is possible to visualise, in detail, the temporal

  14. Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.

    PubMed

    Ramanujam, Arvind; Cirnigliaro, Christopher M; Garbarini, Erica; Asselin, Pierre; Pilkar, Rakesh; Forrest, Gail F

    2017-04-20

    To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. Single-session. Motion analysis laboratory. Four AB individuals and four individuals with SCI. Powered lower extremity exoskeleton. Temporal-spatial parameters, kinematics, walking velocity and electromyography data. AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P < 0.05) compared to non-EXO walking. Interestingly, when the AB individuals voluntarily assisted the exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P < 0.05). There was muscle activation in several lower limb muscles for SCI group. For AB individuals, there were similarities among EXO and non-EXO walking conditions however there were differences in several lower limb EMGs for phasing of muscle activation. The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.

  15. Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review.

    PubMed

    Chiu, Hsiu-Ching; Ada, Louise

    2016-07-01

    Does constraint-induced movement therapy improve activity and participation in children with hemiplegic cerebral palsy? Does it improve activity and participation more than the same dose of upper limb therapy without restraint? Is the effect of constraint-induced movement therapy related to the duration of intervention or the age of the children? Systematic review of randomised trials with meta-analysis. Children with hemiplegic cerebral palsy with any level of motor disability. The experimental group received constraint-induced movement therapy (defined as restraint of the less affected upper limb during supervised activity practice of the more affected upper limb). The control group received no intervention, sham intervention, or the same dose of upper limb therapy. Measures of upper limb activity and participation were used in the analysis. Constraint-induced movement therapy was more effective than no/sham intervention in terms of upper limb activity (SMD 0.63, 95% CI 0.20 to 1.06) and participation (SMD 1.21, 95% CI 0.41 to 2.02). However, constraint-induced movement therapy was no better than the same dose of upper limb therapy without restraint either in terms of upper limb activity (SMD 0.05, 95% CI -0.21 to 0.32) or participation (SMD -0.02, 95% CI -0.34 to 0.31). The effect of constraint-induced movement therapy was not related to the duration of intervention or the age of the children. This review suggests that constraint-induced movement therapy is more effective than no intervention, but no more effective than the same dose of upper limb practice without restraint. PROSPERO CRD42015024665. [Chiu H-C, Ada L (2016) Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review.Journal of Physiotherapy62: 130-137]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  16. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.

    PubMed

    Sheng, Bo; Zhang, Yanxin; Meng, Wei; Deng, Chao; Xie, Shengquan

    2016-07-01

    Robot-assisted bilateral upper-limb training grows abundantly for stroke rehabilitation in recent years and an increasing number of devices and robots have been developed. This paper aims to provide a systematic overview and evaluation of existing bilateral upper-limb rehabilitation devices and robots based on their mechanisms and clinical-outcomes. Most of the articles studied here were searched from nine online databases and the China National Knowledge Infrastructure (CNKI) from year 1993 to 2015. Devices and robots were categorized as end-effectors, exoskeletons and industrial robots. Totally ten end-effectors, one exoskeleton and one industrial robot were evaluated in terms of their mechanical characteristics, degrees of freedom (DOF), supported control modes, clinical applicability and outcomes. Preliminary clinical results of these studies showed that all participants could gain certain improvements in terms of range of motion, strength or physical function after training. Only four studies supported that bilateral training was better than unilateral training. However, most of clinical results cannot definitely verify the effectiveness of mechanisms and clinical protocols used in robotic therapies. To explore the actual value of these robots and devices, further research on ingenious mechanisms, dose-matched clinical protocols and universal evaluation criteria should be conducted in the future. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Brief biomechanical analysis on the walking of spinal cord injury patients with a lower limb exoskeleton robot.

    PubMed

    Jung, Jun-Young; Park, Hyunsub; Yang, Hyun-Dae; Chae, Mingi

    2013-06-01

    This paper presents a brief biomechanical analysis on the walking behavior of spinal cord injury (SCI) patients. It is known that SCI patients who have serious injuries to their spines cannot walk, and hence, several walking assistance lower limb exoskeleton robots have been proposed whose assistance abilities are shown to be well customized. However, these robots are not yet fully helpful to all SCI patients for several reasons. To overcome these problems, an exact analysis and evaluation of the restored walking function while the exoskeleton is worn is important. In this work, walking behavior of SCI patients wearing the rehabilitation of brain injuries (ROBIN) lower-limb walking assistant exoskeleton was analyzed in comparison to that of normal unassisted walking. The analysis method and results presented herein can be used by other researchers to improve their robots.

  18. Risk management and regulations for lower limb medical exoskeletons: a review

    PubMed Central

    He, Yongtian; Eguren, David; Luu, Trieu Phat; Contreras-Vidal, Jose L

    2017-01-01

    Gait disability is a major health care problem worldwide. Powered exoskeletons have recently emerged as devices that can enable users with gait disabilities to ambulate in an upright posture, and potentially bring other clinical benefits. In 2014, the US Food and Drug Administration approved marketing of the ReWalk™ Personal Exoskeleton as a class II medical device with special controls. Since then, Indego™ and Ekso™ have also received regulatory approval. With similar trends worldwide, this industry is likely to grow rapidly. On the other hand, the regulatory science of powered exoskeletons is still developing. The type and extent of probable risks of these devices are yet to be understood, and industry standards are yet to be developed. To address this gap, Manufacturer and User Facility Device Experience, Clinicaltrials.gov, and PubMed databases were searched for reports of adverse events and inclusion and exclusion criteria involving the use of lower limb powered exoskeletons. Current inclusion and exclusion criteria, which can determine probable risks, were found to be diverse. Reported adverse events and identified risks of current devices are also wide-ranging. In light of these findings, current regulations, standards, and regulatory procedures for medical device applications in the USA, Europe, and Japan were also compared. There is a need to raise awareness of probable risks associated with the use of powered exoskeletons and to develop adequate countermeasures, standards, and regulations for these human-machine systems. With appropriate risk mitigation strategies, adequate standards, comprehensive reporting of adverse events, and regulatory oversight, powered exoskeletons may one day allow individuals with gait disabilities to safely and independently ambulate. PMID:28533700

  19. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.

    PubMed

    He, Yongtian; Nathan, Kevin; Venkatakrishnan, Anusha; Rovekamp, Roger; Beck, Christopher; Ozdemir, Recep; Francisco, Gerard E; Contreras-Vidal, Jose L

    2014-01-01

    Stroke remains a leading cause of disability, limiting independent ambulation in survivors, and consequently affecting quality of life (QOL). Recent technological advances in neural interfacing with robotic rehabilitation devices are promising in the context of gait rehabilitation. Here, the X1, NASA's powered robotic lower limb exoskeleton, is introduced as a potential diagnostic, assistive, and therapeutic tool for stroke rehabilitation. Additionally, the feasibility of decoding lower limb joint kinematics and kinetics during walking with the X1 from scalp electroencephalographic (EEG) signals--the first step towards the development of a brain-machine interface (BMI) system to the X1 exoskeleton--is demonstrated.

  20. Prediction of stemless humeral implant micromotion during upper limb activities.

    PubMed

    Favre, Philippe; Henderson, Adam D

    2016-07-01

    Adequate primary stability is essential for the long term success of uncemented stemless shoulder implants. The goal of this study was to evaluate the micromotion of a stemless humeral implant during various upper limb activities. A finite element model was validated by reproducing experimental primary stability testing. Loading from an instrumented prosthesis representing a set of 29 upper limb activities were applied within the validated FE model. Peak micromotion and percentage area for different micromotion thresholds were considered. In all simulated activities, at least 99% of the implant surface experienced micromotion below 150μm. Micromotion depended strongly on loading with large discrepancies between upper limb activities. Carrying no external weight and keeping the arm at lower angles induced lower micromotion. Activities representative of demanding manual labor generally led to higher micromotion. Axilla crutches led to lower micromotion than forearm crutches. Micromotion increased when a wheelchair was used on slopes above 2% inclination. Micromotions below the 150μm threshold below which bone ingrowth occurs were measured over at least 99% of the implant surface for all simulated activities. Peak micromotion dependence on activity type demonstrates the need to consider physiologic in vivo loading and the full contact interface in primary stability evaluations. Focusing on activities with no hand weight and low arm motions during the rehabilitation period may enhance primary stability. For patients unable to walk without aids, axilla crutches and motorized wheelchairs might be more beneficial than forearm crutches and manual drive wheelchairs respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. New Exoskeleton Arm Concept Design And Actuation For Haptic Interaction With Virtual Objects

    NASA Astrophysics Data System (ADS)

    Chakarov, D.; Veneva, I.; Tsveov, M.; Tiankov, T.

    2014-12-01

    In the work presented in this paper the conceptual design and actuation of one new exoskeleton of the upper limb is presented. The device is designed for application where both motion tracking and force feedback are required, such as human interaction with virtual environment or rehabilitation tasks. The choice is presented of mechanical structure kinematical equivalent to the structure of the human arm. An actuation system is selected based on braided pneumatic muscle actuators. Antagonistic drive system for each joint is shown, using pulley and cable transmissions. Force/displacement diagrams are presented of two antagonistic acting muscles. Kinematics and dynamic estimations are performed of the system exoskeleton and upper limb. Selected parameters ensure in the antagonistic scheme joint torque regulation and human arm range of motion.

  2. Timed activity performance in persons with upper limb amputation: A preliminary study.

    PubMed

    Resnik, Linda; Borgia, Mathew; Acluche, Frantzy

    55 subjects with upper limb amputation were administered the T-MAP twice within one week. To develop a timed measure of activity performance for persons with upper limb amputation (T-MAP); examine the measure's internal consistency, test-retest reliability and validity; and compare scores by prosthesis use. Measures of activity performance for persons with upper limb amputation are needed The time required to perform daily activities is a meaningful metric that implication for participation in life roles. Internal consistency and test-retest reliability were evaluated. Construct validity was examined by comparing scores by amputation level. Exploratory analyses compared sub-group scores, and examined correlations with other measures. Scale alpha was 0.77, ICC was 0.93. Timed scores differed by amputation level. Subjects using a prosthesis took longer to perform all tasks. T-MAP was not correlated with other measures of dexterity or activity, but was correlated with pain for non-prosthesis users. The timed scale had adequate internal consistency and excellent test-retest reliability. Analyses support reliability and construct validity of the T-MAP. 2c "outcomes" research. Published by Elsevier Inc.

  3. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Klauer, Christian; Gaffuri, Marina; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2014-04-01

    This work aimed at designing a myocontrolled arm neuroprosthesis for both assistive and rehabilitative purposes. The performance of an adaptive linear prediction filter and a high-pass filter to estimate the volitional EMG was evaluated on healthy subjects (N=10) and neurological patients (N=8) during dynamic hybrid biceps contractions. A significant effect of filter (p=0.017 for healthy; p<0.001 for patients) was obtained. The post hoc analysis revealed that for both groups only the adaptive filter was able to reliably detect the presence of a small volitional contribution. An on/off non-linear controller integrated with an exoskeleton for weight support was developed. The controller allowed the patient to activate/deactivate the stimulation intensity based on the residual EMG estimated by the adaptive filter. Two healthy subjects and 3 people with Spinal Cord Injury were asked to flex the elbow while tracking a trapezoidal target with and without myocontrolled-NMES support. Both healthy subjects and patients easily understood how to use the controller in a single session. Two patients reduced their tracking error by more than 60% with NMES support, while the last patient obtained a tracking error always comparable to the healthy subjects performance (<4°). This study proposes a reliable and feasible solution to combine NMES with voluntary effort. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Chronic pain associated with upper-limb loss.

    PubMed

    Hanley, Marisol A; Ehde, Dawn M; Jensen, Mark; Czerniecki, Joseph; Smith, Douglas G; Robinson, Lawrence R

    2009-09-01

    To describe the prevalence, intensity, and functional impact of the following types of pain associated with upper-limb loss: phantom limb, residual limb, back, neck, and nonamputated-limb pain. Cross-sectional survey; 104 respondents with upper-limb loss at least 6 months postamputation completed measures of pain intensity, interference, disability, and health-related quality-of-life. Nearly all (90%) of the respondents reported pain, with 76% reporting more than one pain type. Phantom-limb pain and residual-limb pain were the most prevalent (79% and 71%, respectively), followed by back (52%), neck (43%), and nonamputated-limb pain (33%). Although nonamputated-limb pain was least prevalent, it was reported to cause the highest levels of interference and pain-related disability days. Self-reported quality-of-life was significantly lower for individuals with each type of pain compared with those without any pain. Age, time since amputation, and cause of amputation were not associated with pain. In addition to pain in the phantom and residual limb, back, neck, and nonamputated-limb pain are also common after upper-limb loss. All of these pain types are associated with significant disability and activity interference for some individuals, suggesting that assessment of multiple pain types in persons with upper-limb amputation may be important.

  5. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.

    PubMed

    Tanabe, Shigeo; Koyama, Soichiro; Saitoh, Eiichi; Hirano, Satoshi; Yatsuya, Kanan; Tsunoda, Tetsuya; Katoh, Masaki; Gotoh, Takeshi; Furumoto, Ayako

    2017-01-01

    Patients with tetraplegia can achieve independent gait with lateral-type powered exoskeletons; it is unclear whether medial-type powered exoskeletons allow for this. To investigate gait training with a medial-type powered exoskeleton wearable power-assist locomotor (WPAL) in an individual with incomplete cervical (C5) and complete thoracic (T12) spinal cord injury (SCI). The 60-session program was investigated retrospectively using medical records. Upon completion, gait performance was examined using three-dimensional motion analyses and surface electromyography (EMG) of the upper limbs. The subject achieved independent gait with WPAL and a walker in 12 sessions. He continuously extended his right elbow; his left elbow periodically flexed/extended. His pelvic inclination was larger than the trunk inclination during single-leg stance. EMG activity was increased in the left deltoid muscles during ipsilateral foot-contact. The right anterior and medial deltoid muscle EMG activity increased just after foot-off for each leg, as did the right biceps activity. Continuous activity was observed in the left triceps throughout the gait cycle; activity was unclear in the right triceps. These results suggest the importance of upper limb residual motor function, and may be useful in extending the range of clinical applications for robotic gait rehabilitation in patients with SCI.

  6. Linear-hall sensor based force detecting unit for lower limb exoskeleton

    NASA Astrophysics Data System (ADS)

    Li, Hongwu; Zhu, Yanhe; Zhao, Jie; Wang, Tianshuo; Zhang, Zongwei

    2018-04-01

    This paper describes a knee-joint human-machine interaction force sensor for lower-limb force-assistance exoskeleton. The structure is designed based on hall sensor and series elastic actuator (SEA) structure. The work we have done includes the structure design, the parameter determination and dynamic simulation. By converting the force signal into macro displacement and output voltage, we completed the measurement of man-machine interaction force. And it is proved by experiments that the design is simple, stable and low-cost.

  7. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  8. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton

    PubMed Central

    Long, Yi; Du, Zhi-jiang; Wang, Wei-dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353

  9. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton.

    PubMed

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems.

  10. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation.

    PubMed

    Resnik, Linda; Meucci, Marissa R; Lieberman-Klinger, Shana; Fantini, Christopher; Kelty, Debra L; Disla, Roxanne; Sasson, Nicole

    2012-04-01

    The number of catastrophic injuries caused by improvised explosive devices in the Afghanistan and Iraq Wars has increased public, legislative, and research attention to upper limb amputation. The Department of Veterans Affairs (VA) has partnered with the Defense Advanced Research Projects Agency and DEKA Integrated Solutions to optimize the function of an advanced prosthetic arm system that will enable greater independence and function. In this special communication, we examine current practices in prosthetic rehabilitation including trends in adoption and use of prosthetic devices, financial considerations, and the role of rehabilitation team members in light of our experiences with a prototype advanced upper limb prosthesis during a VA study to optimize the device. We discuss key challenges in the adoption of advanced prosthetic technology and make recommendations for service provision and use of advanced upper limb prosthetics. Rates of prosthetic rejection are high among upper limb amputees. However, these rates may be reduced with sufficient training by a highly specialized, multidisciplinary team of clinicians, and a focus on patient education and empowerment throughout the rehabilitation process. There are significant challenges emerging that are unique to implementing the use of advanced upper limb prosthetic technology, and a lack of evidence to establish clinical guidelines regarding prosthetic prescription and treatment. Finally, we make recommendations for future research to aid in the identification of best practices and development of policy decisions regarding insurance coverage of prosthetic rehabilitation. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Forward and Inverse Predictive Model for the Trajectory Tracking Control of a Lower Limb Exoskeleton for Gait Rehabilitation: Simulation modelling analysis

    NASA Astrophysics Data System (ADS)

    Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.

    2018-03-01

    The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.

  12. Active unicameral bone cysts in the upper limb are at greater risk of fracture.

    PubMed

    Tey, Inn Kuang; Mahadev, Arjandas; Lim, Kevin Boon Leong; Lee, Eng Hin; Nathan, Saminathan Suresh

    2009-08-01

    To elucidate the natural history of unicameral bone cyst (UBC) and risk factors for pathological fracture. 14 males and 8 females (mean age, 9 years) diagnosed with UBC were reviewed. Cyst location, symptoms, and whether there was any fracture or surgery were recorded. Cyst parameters were measured on radiographs, and included (1) the cyst index, (2) the ratio of the widest cyst diameter to the growth plate diameter, and (3) the adjusted distance of the cyst border from the growth plate. There were 11 upper- and 11 lower-limb cysts. 13 patients had pathological fractures and 9 did not. 20 patients were treated conservatively with limb immobilisation; 2 underwent curettage and bone grafting (one resolved and one did not). Seven cysts resolved (5 had fractures and 2 did not). The risk of fracture was higher in the upper than lower limbs (100% vs 18%, p<0.001). Fractured cysts were larger than unfractured cysts (mean cyst index, 4.5 vs. 2.2, p=0.07). Active cysts were more likely to fracture. Conservative management had a 30% resolution rate. Surgery should be considered for large active cysts in the upper limbs in order to minimise the fracture risk.

  13. Performance Evaluation of a Lower Limb Exoskeleton for Stair Ascent and Descent with Paraplegia*

    PubMed Central

    Farris, Ryan J.; Quintero, Hugo A.; Goldfarb, Michael

    2013-01-01

    This paper describes the application of a powered lower limb exoskeleton to aid paraplegic individuals in stair ascent and descent. A brief description of the exoskeleton hardware is provided along with an explanation of the control methodology implemented to allow stair ascent and descent. Tests were performed with a paraplegic individual (T10 complete injury level) and data is presented from multiple trials, including the hip and knee joint torque and power required to perform this functionality. Joint torque and power requirements are summarized, including peak hip and knee joint torque requirements of 0.75 Nm/kg and 0.87 Nm/kg, respectively, and peak hip and knee joint power requirements of approximately 0.65 W/kg and 0.85 W/kg, respectively. PMID:23366287

  14. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots

    PubMed Central

    Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub

    2015-01-01

    An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases. PMID:26528986

  15. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.

    PubMed

    Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub

    2015-10-30

    An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.

  16. The exoskeletons are here.

    PubMed

    Ferris, Daniel P

    2009-06-09

    It is a fantastic time for the field of robotic exoskeletons. Recent advances in actuators, sensors, materials, batteries, and computer processors have given new hope to creating the exoskeletons of yesteryear's science fiction. While the most common goal of an exoskeleton is to provide superhuman strength or endurance, scientists and engineers around the world are building exoskeletons with a wide range of diverse purposes. Exoskeletons can help patients with neurological disabilities improve their motor performance by providing task specific practice. Exoskeletons can help physiologists better understand how the human body works by providing a novel experimental perturbation. Exoskeletons can even help power mobile phones, music players, and other portable electronic devices by siphoning mechanical work performed during human locomotion. This special thematic series on robotic lower limb exoskeletons and orthoses includes eight papers presenting novel contributions to the field. The collective message of the papers is that robotic exoskeletons will contribute in many ways to the future benefit of humankind, and that future is not that distant.

  17. Quantifying anti-gravity torques for the design of a powered exoskeleton.

    PubMed

    Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq

    2013-03-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.

  18. Effect of Upper Limb Deformities on Gross Motor and Upper Limb Functions in Children with Spastic Cerebral Palsy

    ERIC Educational Resources Information Center

    Park, Eun Sook; Sim, Eun Geol; Rha, Dong-wook

    2011-01-01

    The aims of this study were to investigate the nature and extent of upper limb deformities via the use of various classifications, and to analyze the relationship between upper limb deformities and gross motor or upper limb functionality levels. Upper extremity data were collected from 234 children with spastic cerebral palsy (CP) who were…

  19. Robotic exoskeleton assessment of transient ischemic attack.

    PubMed

    Simmatis, Leif; Krett, Jonathan; Scott, Stephen H; Jin, Albert Y

    2017-01-01

    We used a robotic exoskeleton to quantify specific patterns of abnormal upper limb motor behaviour in people who have had transient ischemic attack (TIA). A cohort of people with TIA was recruited within two weeks of symptom onset. All individuals completed a robotic-based assessment of 8 behavioural tasks related to upper limb motor and proprioceptive function, as well as cognitive function. Robotic task performance was compared to a large cohort of controls without neurological impairments corrected for the influence of age. Impairment in people with TIA was defined as performance below the 5th percentile of controls. Participants with TIA were also assessed with the National Institutes of Health Stroke Scale (NIHSS) score, Chedoke-McMaster Stroke Assessment (CMSA) of the arm, the Behavioural Inattention Test (BIT), the Purdue pegboard test (PPB), and the Montreal Cognitive Assessment (MoCA). Age-related white matter change (ARWMC), prior infarction and cella-media index (CMI) were assessed from baseline CT scan that was performed within 24 hours of TIA. Acute infarction was assessed from diffusion-weighted imaging in a subset of people with TIA. Twenty-two people with TIA were assessed. Robotic assessment showed impaired upper limb motor function in 7/22 people with TIA patients and upper limb sensory impairment in 4/22 individuals. Cognitive tasks involving robotic assessment of the upper limb were completed in 13 participants, of whom 8 (61.5%) showed significant impairment. Abnormal performance in the CMSA arm inventory was present in 12/22 (54.5%) participants. ARWMC was 11.8 ± 6.4 and CMI was 5.4 ± 1.5. DWI was positive in 0 participants. Quantitative robotic assessment showed that people who have had a TIA display a spectrum of upper limb motor and sensory performance deficits as well as cognitive function deficits despite resolution of symptoms and no evidence of tissue infarction.

  20. Shoulder-elbow exoskeleton as rehabilitation exerciser

    NASA Astrophysics Data System (ADS)

    Ianoşi, A.; Dimitrova, A.; Noveanu, S.; Tătar, O. M.; Mândru, D. S.

    2016-08-01

    This paper presents a 2 degree of freedom exoskeleton designed for the rehabilitation of the shoulder and elbow movement in the sagittal plane; a semi-portable design strategy was chosen, which enables an easy attachment to a standard medical chair as well as the patient upper limb. A dedicated driver enables the control from a graphical user interface, which also provides the option of customized rehabilitation exercises. The potential of future improvements is assessed, and recommendations of research direction are made in order to broaden the usability of the proposed device.

  1. Driving ability following upper limb amputation.

    PubMed

    Burger, Helena; Marincek, Crt

    2013-10-01

    In the existing literature, there is scarce information about subjects with upper limb amputation and driving. The aim of this study was to find out how frequently subjects following upper limb amputation have problems when driving; most frequently proposed adaptations and, when possible, factors that influence driving ability. Retrospective clinical study. Medical records were reviewed of all subjects following upper limb amputation who had been amputated in the last 5 years and those with congenital upper limb deficiency who in the last 5 years turned 17. Out of 37 subjects, 7 did not attend the clinic for assessment of driving abilities. They were significantly older at the time of the amputation (p < 0.001). To the remaining 30 who attended driving assessment, zero to four car adaptations (two on average) were proposed. There were no correlations between the number of suggested car adaptations and the age at the time of the amputation, amputation level, education and severity of phantom limb pain. Type of prosthesis also did not influence the number of car adaptations. Most people following upper limb amputation need at least one car adaptation for safe driving.

  2. Work-Related Upper Limb Disorders: A Case Report

    PubMed Central

    Stoyneva, Zlatka Borisova; Dermendjiev, Svetlan; Dermendjiev, Tihomir; Dobrev, Hristo

    2015-01-01

    In this study the complex interrelationship between physical factors, job stress, lifestyle and genetic factors on symptoms of work-related musculoskeletal disorders of the upper limbs is demonstrated by a case report and discussion of the literature. A 58 year old woman with long lasting complaints of the upper limbs with increasing intensity and duration, generalisation, combined with skin thickness, Raynaud’s phenomenon, joint disorders, arterial and pulmonary hypertension, metabolic lipid dysfunctions is presented. Occupational history proves continuous duration of service at a job with occupational physical static load with numerous repetitive monotonous systematic motions of fingers and hands as a weaver of Persian rugs followed by work at an automated loom and variable labour activities. Though the complaints dated since the time she was a manual weaver, the manifestations of generalized joint degenerative changes, system sclerosis with Raynaud’s phenomenon with similar upper extremities signs and symptoms discount upper limbs musculoskeletal disorder as caused only or mainly by occupational risk factors. The main principles and criteria for occupational diagnosis of musculoskeletal upper limb disorders and legislative requirements for their reglamentation are discussed. PMID:27275213

  3. A short overview of upper limb rehabilitation devices

    NASA Astrophysics Data System (ADS)

    Macovei, S.; Doroftei, I.

    2016-08-01

    As some studies show, the number of people over 65 years old increases constantly, leading to the need of solution to provide services regarding patient mobility. Diseases, accidents and neurologic problems affect hundreds of people every day, causing pain and lost of motor functions. The ability of using the upper limb is indispensable for a human being in everyday activities, making easy tasks like drinking a glass of water a real challenge. We can agree that physiotherapy promotes recovery, but not at an optimal level, due to limited financial and human resources. Hence, the need of robot-assisted rehabilitation emerges. A robot for upper-limb exercises should have a design that can accurately control interaction forces and progressively adapt assistance to the patients’ abilities and also to record the patient's motion and evolution. In this paper a short overview of upper limb rehabilitation devices is presented. Our goal is to find the shortcomings of the current developed devices in terms of utility, ease of use and costs, for future development of a mechatronic system for upper limb rehabilitation.

  4. Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface

    PubMed Central

    De Rossi, Stefano Marco Maria; Vitiello, Nicola; Lenzi, Tommaso; Ronsse, Renaud; Koopman, Bram; Persichetti, Alessandro; Vecchi, Fabrizio; Ijspeert, Auke Jan; van der Kooij, Herman; Carrozza, Maria Chiara

    2011-01-01

    A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer’s skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented. PMID:22346574

  5. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.

    PubMed

    Schrade, Stefan O; Nager, Yannik; Wu, Amy R; Gassert, Roger; Ijspeert, Auke

    2017-07-01

    Robotic lower limb exoskeletons are becoming increasingly popular in therapy and recreational use. However, most exoskeletons are still rather limited in their locomotion speed and the activities of daily live they can perform. Furthermore, they typically do not allow for a dynamic adaptation to the environment, as they are often controlled with predefined reference trajectories. Inspired by human leg stiffness modulation during walking, variable stiffness actuators increase flexibility without the need for more complex controllers. Actuation with adaptable stiffness is inspired by the human leg stiffness modulation during walking. However, this actuation principle also introduces the stiffness setpoint as an additional degree of freedom that needs to be coordinated with the joint trajectories. As a potential solution to this issue a bio-inspired controller based on a central pattern generator (CPG) is presented in this work. It generates coordinated joint torques and knee stiffness modulations to produce flexible and dynamic gait patterns for an exoskeleton with variable knee stiffness actuation. The CPG controller is evaluated and optimized in simulation using a model of the exoskeleton. The CPG controller produced stable and smooth gait for walking speeds from 0.4 m/s up to 1.57 m/s with a torso stabilizing force that simulated the use of crutches, which are commonly needed by exoskeleton users. Through the CPG, the knee stiffness intrinsically adapted to the frequency and phase of the gait, when the speed was changed. Additionally, it adjusted to changes in the environment in the form of uneven terrain by reacting to ground contact forces. This could allow future exoskeletons to be more adaptive to various environments, thus making ambulation more robust.

  6. Progressive upper limb prosthetics.

    PubMed

    Lake, Chris; Dodson, Robert

    2006-02-01

    The field of upper extremity prosthetics is a constantly changing arena as researchers and prosthetists strive to bridge the gap between prosthetic reality and upper limb physiology. With the further development of implantable neurologic sensing devices and targeted muscle innervation (discussed elsewhere in this issue), the challenge of limited input to control vast outputs promises to become a historical footnote in the future annals of upper limb prosthetics. Soon multidextrous terminal devices, such as that found in the iLimb system(Touch EMAS, Inc., Edinburgh, UK), will be a clinical reality (Fig. 22). Successful prosthetic care depends on good communication and cooperation among the surgeon, the amputee, the rehabilitation team, and the scientists harnessing the power of technology to solve real-life challenges. If the progress to date is any indication, amputees of the future will find their dreams limited only by their imagination.

  7. Ubiquitous human upper-limb motion estimation using wearable sensors.

    PubMed

    Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang

    2011-07-01

    Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.

  8. Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.

    PubMed

    Roman-Liu, Danuta

    2005-01-01

    The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.

  9. A one-degree-of-freedom assistive exoskeleton with inertia compensation: the effects on the agility of leg swing motion.

    PubMed

    Aguirre-Ollinger, G; Colgate, J E; Peshkin, M A; Goswami, A

    2011-03-01

    Many of the current implementations of exoskeletons for the lower extremities are conceived to either augment the user's load-carrying capabilities or reduce muscle activation during walking. Comparatively little research has been conducted on enabling an exoskeleton to increase the agility of lower-limb movements. One obstacle in this regard is the inertia of the exoskeleton's mechanism, which tends to reduce the natural frequency of the human limbs. A control method is presented that produces an approximate compensation of the inertia of an exoskeleton's mechanism. The controller was tested on a statically mounted, single-degree-of-freedom (DOF) exoskeleton that assists knee flexion and extension. Test subjects performed multiple series of leg-swing movements in the context of a computer-based, sprint-like task. A large initial acceleration of the leg was needed for the subjects to track a virtual target on a computer screen. The uncompensated inertia of the exoskeleton mechanism slowed down the transient response of the subjects' limb, in comparison with trials performed without the exoskeleton. The subsequent use of emulated inertia compensation on the exoskeleton allowed the subjects to improve their transient response for the same task.

  10. Cortical motor activity and reorganization following upper-limb amputation and subsequent targeted reinnervation.

    PubMed

    Chen, Albert; Yao, Jun; Kuiken, Todd; Dewald, Julius P A

    2013-01-01

    Previous studies have postulated that the amount of brain reorganization following peripheral injuries may be correlated with negative symptoms or consequences. However, it is unknown whether restoring effective limb function may then be associated with further changes in the expression of this reorganization. Recently, targeted reinnervation (TR), a surgical technique that restores a direct neural connection from amputated sensorimotor nerves to new peripheral targets such as muscle, has been successfully applied to upper-limb amputees. It has been shown to be effective in restoring both peripheral motor and sensory functions via the reinnervated nerves as soon as a few months after the surgery. However, it was unclear whether TR could also restore normal cortical motor representations for control of the missing limb. To answer this question, we used high-density electroencephalography (EEG) to localize cortical activity related to cued motor tasks generated by the intact and missing limb. Using a case study of 3 upper-limb amputees, 2 of whom went through pre and post-TR experiments, we present unique quantitative evidence for the re-mapping of motor representations for the missing limb closer to their original locations following TR. This provides evidence that an effective restoration of peripheral function from TR can be linked to the return of more normal cortical expression for the missing limb. Therefore, cortical mapping may be used as a potential guide for monitoring rehabilitation following peripheral injuries.

  11. Activity of upper limb muscles during human walking.

    PubMed

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    PubMed

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a

  13. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review.

    PubMed

    Meyer, Sarah; Karttunen, Auli H; Thijs, Vincent; Feys, Hilde; Verheyden, Geert

    2014-09-01

    The association between somatosensory impairments and outcome after stroke remains unclear. The aim of this study was to systematically review the available literature on the relationship between somatosensory impairments in the upper limb and outcome after stroke. The electronic databases PubMed, CINAHL, EMBASE, Cochrane Library, PsycINFO, and Web of Science were systematically searched from inception until July 2013. Studies were included if adult patients with stroke (minimum n=10) were examined with reliable and valid measures of somatosensation in the upper limb to investigate the relationship with upper limb impairment, activity, and participation measures. Exclusion criteria included measures of somatosensation involving an overall score for upper and lower limb outcome and articles including only lower limb outcomes. Eligibility assessment, data extraction, and quality evaluation were completed by 2 independent reviewers. A cutoff score of ≥65% of the maximal quality score was used for further inclusion in this review. Six articles met all inclusion criteria. Two-point discrimination was shown to be predictive for upper limb dexterity, and somatosensory evoked potentials were shown to have predictive value in upper limb motor recovery. Proprioception was significantly correlated with perceived level of physical activity and social isolation and had some predictive value in functional movements of the upper limb. Finally, the combination of light touch and proprioception impairment was shown to be significantly related to upper limb motor recovery as well as handicap situations during activities of daily living. Heterogeneity of the included studies warrants caution when interpreting results. Large variation in results was found due to heterogeneity of the studies. However, somatosensory deficits were shown to have an important role in upper limb motor and functional performance after stroke. © 2014 American Physical Therapy Association.

  14. Quantifying anti-gravity torques in the design of a powered exoskeleton.

    PubMed

    Ragonesi, Daniel; Agrawal, Sunil; Sample, Whitney; Rahman, Tariq

    2011-01-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the passive and active residual force capabilities of users. This paper experimentally measures the passive gravitational torques of 3 groups of subjects: able-bodied adults, able bodied children, and children with neurological disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the gravitational force at the wrist. This force is then converted to static gravitational torques at the elbow and shoulder. Data are compared between look-up table data based on anthropometry and empirical data. Results show that the look-up torques deviate from experimentally measured torques as the arm reaches up and down. This experiment informs designers of Upper Limb orthoses on the contribution of passive human joint torques.

  15. Design and Development of a Novel Upper-Limb Cycling Prosthesis

    PubMed Central

    Soni-Sadar, Shivam; Rowbottom, Jack; Patel, Shilen; Mathewson, Edward; Pearson, Samuel; Hutchins, David; Head, John; Hutchins, Stephen

    2017-01-01

    The rise in popularity of the Paralympics in recent years has created a need for effective, low-cost sports-prosthetic devices for upper-limb amputees. There are various opportunities for lower-limb amputees to participate in cycling; however, there are only few options for those with upper-limb amputations. If the individual previously participated in cycling, a cycling-specific prosthesis could allow these activities to be integrated into rehabilitation methods. This article describes the processes involved with designing, developing and manufacturing such a prosthesis. The fundamental needs of people with upper-limb amputation were assessed and realised in the prototype of a transradial terminal device with two release mechanisms, including a sliding mechanism (for falls and minor collisions) and clamping mechanism (for head-on collisions). The sliding mechanism requires the rider to exert approximately 200 N, while the clamping mechanism requires about 700 N. The force ranges can be customised to match rider requirements. Experiments were conducted in a controlled environment to demonstrate stability of the device during normal cycling. Moreover, a volunteer test-rider was able to successfully activate the release mechanism during a simulated emergency scenario. The development of this prosthesis has the potential to enable traumatic upper-limb amputees to participate in cycling for rehabilitation or recreation. PMID:29144392

  16. Design and Development of a Novel Upper-Limb Cycling Prosthesis.

    PubMed

    Tiele, Akira; Soni-Sadar, Shivam; Rowbottom, Jack; Patel, Shilen; Mathewson, Edward; Pearson, Samuel; Hutchins, David; Head, John; Hutchins, Stephen

    2017-11-16

    The rise in popularity of the Paralympics in recent years has created a need for effective, low-cost sports-prosthetic devices for upper-limb amputees. There are various opportunities for lower-limb amputees to participate in cycling; however, there are only few options for those with upper-limb amputations. If the individual previously participated in cycling, a cycling-specific prosthesis could allow these activities to be integrated into rehabilitation methods. This article describes the processes involved with designing, developing and manufacturing such a prosthesis. The fundamental needs of people with upper-limb amputation were assessed and realised in the prototype of a transradial terminal device with two release mechanisms, including a sliding mechanism (for falls and minor collisions) and clamping mechanism (for head-on collisions). The sliding mechanism requires the rider to exert approximately 200 N, while the clamping mechanism requires about 700 N. The force ranges can be customised to match rider requirements. Experiments were conducted in a controlled environment to demonstrate stability of the device during normal cycling. Moreover, a volunteer test-rider was able to successfully activate the release mechanism during a simulated emergency scenario. The development of this prosthesis has the potential to enable traumatic upper-limb amputees to participate in cycling for rehabilitation or recreation.

  17. Outcomes of the Bobath concept on upper limb recovery following stroke.

    PubMed

    Luke, Carolyn; Dodd, Karen J; Brock, Kim

    2004-12-01

    To determine the effectiveness of the Bobath concept at reducing upper limb impairments, activity limitations and participation restrictions after stroke. Electronic databases were searched to identify relevant trials published between 1966 and 2003. Two reviewers independently assessed articles for the following inclusion criteria: population of adults with upper limb disability after stroke; stated use of the Bobath concept aimed at improving upper limb disability in isolation from other approaches; outcomes reflecting changes in upper limb impairment, activity limitation or participation restriction. Of the 688 articles initially identified, eight met the inclusion criteria. Five were randomized controlled trials, one used a single-group crossover design and two were single-case design studies. Five studies measured impairments including shoulder pain, tone, muscle strength and motor control. The Bobath concept was found to reduce shoulder pain better than cryotherapy, and to reduce tone compared to no intervention and compared to proprioceptive neuromuscular facilitation (PNF). However, no difference was detected for changes in tone between the Bobath concept and a functional approach. Differences did not reach significance for measures of muscle strength and motor control. Six studies measured activity limitations, none of these found the Bobath concept was superior to other therapy approaches. Two studies measured changes in participation restriction and both found equivocal results. Comparisons of the Bobath concept with other approaches do not demonstrate superiority of one approach over the other at improving upper limb impairment, activity or participation. However, study limitations relating to methodological quality, the outcome measures used and contextual factors investigated limit the ability to draw conclusions. Future research should use sensitive upper limb measures, trained Bobath therapists and homogeneous samples to identify the influence of

  18. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients.

    PubMed

    Ma, Qingchuan; Ji, Linhong; Wang, Rencheng

    2018-02-01

    Upright walking has both physical and social meanings for paraplegic patients. The main purpose of this paper is to reduce the automatic functioning of the powered exoskeleton and enable the user to fully control the walking procedure in real-time, aiming to further improve the engagement of the patient during rehabilitation training. For this prototype, a custom-made hub motor was placed at the bottom of the exoskeleton's foot, and a pair of crutches with the embedded wireless controller were utilized as the auxiliary device. The user could alternatively press the button of the crutch to control the movement of the leg and by repeating this procedure, the user could complete a continuous walking motion. For safety, an automatic brake and mechanical limitation for maximum step length were implemented. A gait analysis was performed to evaluate the exoskeleton's motion capability and corresponding response of user's major muscles. The kinematic results of this paper showed that this exoskeleton could assist the user to walk in a motion trend close to the normally walk, especially for ankle joint. The electromyography results indicated that this exoskeleton could decrease the loading burden of the user's lower limb while requiring more involvements of upper-limb muscles to maintain balance while walking.

  19. Exoskeletons for industrial application and their potential effects on physical work load.

    PubMed

    de Looze, Michiel P; Bosch, Tim; Krause, Frank; Stadler, Konrad S; O'Sullivan, Leonard W

    2016-05-01

    The aim of this review was to provide an overview of assistive exoskeletons that have specifically been developed for industrial purposes and to assess the potential effect of these exoskeletons on reduction of physical loading on the body. The search resulted in 40 papers describing 26 different industrial exoskeletons, of which 19 were active (actuated) and 7 were passive (non-actuated). For 13 exoskeletons, the effect on physical loading has been evaluated, mainly in terms of muscle activity. All passive exoskeletons retrieved were aimed to support the low back. Ten-forty per cent reductions in back muscle activity during dynamic lifting and static holding have been reported. Both lower body, trunk and upper body regions could benefit from active exoskeletons. Muscle activity reductions up to 80% have been reported as an effect of active exoskeletons. Exoskeletons have the potential to considerably reduce the underlying factors associated with work-related musculoskeletal injury. Practitioner Summary: Worldwide, a significant interest in industrial exoskeletons does exist, but a lack of specific safety standards and several technical issues hinder mainstay practical use of exoskeletons in industry. Specific issues include discomfort (for passive and active exoskeletons), weight of device, alignment with human anatomy and kinematics, and detection of human intention to enable smooth movement (for active exoskeletons).

  20. Influence of fatigue on upper limb muscle activity and performance in tennis.

    PubMed

    Rota, Samuel; Morel, Baptiste; Saboul, Damien; Rogowski, Isabelle; Hautier, Christophe

    2014-02-01

    The study examined the fatigue effect on tennis performance and upper limb muscle activity. Ten players were tested before and after a strenuous tennis exercise. Velocity and accuracy of serve and forehand drives, as well as corresponding surface electromyographic (EMG) activity of eight upper limb muscles were measured. EMG and force were also evaluated during isometric maximal voluntary contractions (IMVC). Significant decreases were observed after exercise in serve accuracy (-11.7%) and velocity (-4.5%), forehand accuracy (-25.6%) and consistency (-15.6%), as well as pectoralis major (PM) and flexor carpi radialis (FCR) IMVC strength (-13.0% and -8.2%, respectively). EMG amplitude decreased for PM and FCR in serve, forehand and IMVC, and for extensor carpi radialis in forehand. No modification was observed in EMG activation timing during strokes or in EMG frequency content during IMVC. Several hypotheses can be put forward to explain these results. First, muscle fatigue may induce a reduction in activation level of PM and forearm muscles, which could decrease performance. Second, conscious or subconscious strategies could lead to a redistribution of muscle activity to non-fatigued muscles in order to protect the organism and/or limit performance losses. Otherwise, the modifications of EMG activity could also illustrate the strategies adopted to manage the speed-accuracy trade-off in such a complex task. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A review of supernumerary and absent limbs and digits of the upper limb.

    PubMed

    Klaassen, Zachary; Choi, Monica; Musselman, Ruth; Eapen, Deborah; Tubbs, R Shane; Loukas, Marios

    2012-03-01

    For years people have been enamored by anomalies of the human limbs, particularly supernumerary and absent limbs and digits. Historically, there are a number of examples of such anomalies, including royal families of ancient Chaldea, tribes from Arabia, and examples from across nineteenth century Europe. The development of the upper limbs in a growing embryo is still being elucidated with the recent advent of homeobox genes, but researchers agree that upper limbs develop between stages 12-23 through a complex embryological process. Maternal thalidomide intake during limb development is known to cause limb reduction and subsequent amelia or phocomelia. Additionally, a number of clinical reports have illustrated different limb anomaly cases, with each situation unique in phenotype and developmental abnormality. Supernumerary and absent limbs and digits are not unique to humans, and a number of animal cases have also been reported. This review of the literature illustrates the historical, anatomical, and clinical aspects of supernumerary and absent limbs and digits for the upper limb.

  2. Reflections on the present and future of upper limb prostheses.

    PubMed

    Farina, Dario; Amsüss, Sebastian

    2016-01-01

    Despite progress in research and media attention on active upper limb prostheses, presently the most common commercial upper limb prosthetic devices are not fundamentally different from solutions offered almost one century ago. Limited information transfer for both control and sensory-motor integration and challenges in socket technology have been major obstacles. By analysing the present state-of-the-art and academic achievements, we provide our opinion on the future of upper limb prostheses. We believe that surgical procedures for muscle reinnervation and osseointegration will become increasingly clinically relevant; muscle electrical signals will remain the main clinical means for prosthetic control; and chronic electrode implants, first in muscles (control), then in nerves (sensory feedback), will become viable clinical solutions. After decades of suspended clinically relevant progress, it is foreseeable that a new generation of upper limb prostheses will enter the market in the near future based on such advances, thereby offering substantial clinical benefit for patients.

  3. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.

    PubMed

    Zhu, Yanhe; Zhang, Guoan; Zhang, Chao; Liu, Gangfeng; Zhao, Jie

    2015-01-01

    This paper introduces novel modern equipment-a lower extremity exoskeleton, which can implement the mutual complement and the interaction between human intelligence and the robot's mechanical strength. In order to provide a reference for the exoskeleton structure and the drive unit, the human biomechanics were modeled and analyzed by LifeModeler and Adams software to derive each joint kinematic parameter. The control was designed to implement the zero-force interaction between human and exoskeleton. Furthermore, simulations were performed to verify the control and assist effect. In conclusion, the system scheme of lower extremity exoskeleton is demonstrated to be feasible.

  4. Voluntary ambulation using voluntary upper limb muscle activity and Hybrid Assistive Limb® (HAL®) in a patient with complete paraplegia due to chronic spinal cord injury: A case report.

    PubMed

    Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Saotome, Kousaku; Ueno, Tomoyuki; Abe, Tetsuya; Marushima, Aiki; Watanabe, Hiroki; Endo, Ayumu; Tsurumi, Kazue; Ishimoto, Ryu; Matsushita, Akira; Koda, Masao; Matsumura, Akira; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi

    2018-01-19

    We sought to describe our experience with the Hybrid Assistive Limb® (HAL®) for active knee extension and voluntary ambulation with remaining muscle activity in a patient with complete paraplegia after spinal cord injury. A 30-year-old man with complete paraplegia used the HAL® for 1 month (10 sessions) using his remaining muscle activity, including hip flexor and upper limb activity. Electromyography was used to evaluate muscle activity of the gluteus maximus, tensor fascia lata, quadriceps femoris, and hamstring muscles in synchronization with the Vicon motion capture system. A HAL® session included a knee extension session with the hip flexor and voluntary gait with upper limb activity. After using the HAL® for one month, the patient's manual muscle hip flexor scores improved from 1/5 to 2/5 for the right and from 2/5 to 3/5 for the left knee, and from 0/5 to 1/5 for the extension of both knees. Knee extension sessions with HAL®, and hip flexor and upper-limb-triggered HAL® ambulation seem a safe and feasible option in a patient with complete paraplegia due to spinal cord injury.

  5. Isolated primary lymphedema tarda of the upper limb.

    PubMed

    Shariati, Farzaneh; Ravari, Hasan; Kazemzadeh, Gholamhossein; Sadeghi, Ramin

    2013-03-01

    Primary lymphedema tarda is considered as a congenital disease with late presentation. Primary lymphedema tarda usually affects lower limbs, and primary lymphedema tarda of the upper limbs usually accompanies lower limb lymphedema. In the current case report, we present an 80-year-old male patient with isolated left upper limb swelling that lymphoscintigraphy imaging proved to be lymphedema.

  6. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation-Vision-Based Control for Precise Reaching Motion of Upper Limb.

    PubMed

    Oguntosin, Victoria W; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments.

  7. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation—Vision-Based Control for Precise Reaching Motion of Upper Limb

    PubMed Central

    Oguntosin, Victoria W.; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J.; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments. PMID:28736514

  8. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    PubMed

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

  9. Daily physical activity assessment: what is the importance of upper limb movements vs whole body movements?

    PubMed

    Kumahara, H; Tanaka, H; Schutz, Y

    2004-09-01

    The movement of the upper limbs (eg fidgeting-like activities) is a meaningful component of nonexercise activity thermogenesis (NEAT). This study examined the relationship between upper limb movements and whole body trunk movements, by simultaneously measuring energy expenditure during the course of the day. A cross-sectional study consisting of 88 subjects with a wide range in body mass index (17.3-32.5 kg/m(2)). The energy expenditure over a 24-h period was measured in a large respiratory chamber. The body movements were assessed by two uniaxial-accelerometers during daytime, one on the waist and the other on the dominant arm. The accelerometry scores from level 0 (=immobile) up to level 9 (=maximal intensity) were recorded. The activities of subjects were classified into eight categories: walking at two speeds on a horizontal treadmill (A & B), ambling (C), self-care tasks (D), desk work (E), meals (F), reading (G), watching TV (H). There was a significant relationship between the accelerometry scores from the waist (ACwaist) and that from the wrist (ACwrist) over the daytime period (R(2)=0.64; P<0.001). The ACwrist was systematically higher than the ACwaist during sedentary activities, whereas it was the reverse for walking activities. ACwrist to ACwaist ratio of activities E-H were above 1.0 and for walking activities (A-C) were below 1.0. A multiple regression analysis for predicting daytime energy expenditure revealed that the explained variance improved by 2% only when the ACwrist was added as a second predictor in addition to the ACwaist. This indicates that the effect of the ACwrist for predicting energy expenditure was of limited importance in our conditions of measurement. The acceleration of the upper limbs which includes fidgeting is more elevated than that of the whole body for sitting/lying down activities. However, their contribution to energy expenditure is lower than whole body trunk movements, thus indicating that the weight-bearing locomotion

  10. Comparison of laterality index of upper and lower limb movement using brain activated fMRI

    NASA Astrophysics Data System (ADS)

    Harirchian, Mohammad Hossein; Oghabian, Mohammad Ali; Rezvanizadeh, Alireza; Bolandzadeh, Niousha

    2008-03-01

    Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions such as motor functions. This asymmetry maybe altered in some clinical conditions such as Multiple Sclerosis (MS). The aim of this study was to delineate the laterality differences for upper and lower limbs in healthy subjects to compare this pattern with subjects suffering from MS in advance. Hence 9 Male healthy subjects underwent fMRI assessment, while they were asked to move their limbs in a predetermined pattern. The results showed that hands movement activates the brain with a significant lateralization in pre-motor cortex in comparison with lower limb. Also, dominant hands activate brain more lateralized than the non-dominant hand. In addition, Left basal ganglia were observed to be activated regardless of the hand used, While, These patterns of Brain activation was not detected in lower limbs. We hypothesize that this difference might be attributed to this point that hand is usually responsible for precise and fine voluntary movements, whereas lower limb joints are mainly responsible for locomotion, a function integrating voluntary and automatic bilateral movements.

  11. Predictive classification of self-paced upper-limb analytical movements with EEG.

    PubMed

    Ibáñez, Jaime; Serrano, J I; del Castillo, M D; Minguez, J; Pons, J L

    2015-11-01

    The extent to which the electroencephalographic activity allows the characterization of movements with the upper limb is an open question. This paper describes the design and validation of a classifier of upper-limb analytical movements based on electroencephalographic activity extracted from intervals preceding self-initiated movement tasks. Features selected for the classification are subject specific and associated with the movement tasks. Further tests are performed to reject the hypothesis that other information different from the task-related cortical activity is being used by the classifiers. Six healthy subjects were measured performing self-initiated upper-limb analytical movements. A Bayesian classifier was used to classify among seven different kinds of movements. Features considered covered the alpha and beta bands. A genetic algorithm was used to optimally select a subset of features for the classification. An average accuracy of 62.9 ± 7.5% was reached, which was above the baseline level observed with the proposed methodology (30.2 ± 4.3%). The study shows how the electroencephalography carries information about the type of analytical movement performed with the upper limb and how it can be decoded before the movement begins. In neurorehabilitation environments, this information could be used for monitoring and assisting purposes.

  12. Responsiveness of outcome measures for upper limb prosthetic rehabilitation.

    PubMed

    Resnik, Linda; Borgia, Matthew

    2016-02-01

    There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.

  13. Quantification of upper limb position sense using an exoskeleton and a virtual reality display.

    PubMed

    Deblock-Bellamy, Anne; Batcho, Charles Sebiyo; Mercier, Catherine; Blanchette, Andreanne K

    2018-03-16

    Proprioceptive sense plays a significant role in the generation and correction of skilled movements and, consequently, in most activities of daily living. We developed a new proprioception assessment protocol that enables the quantification of elbow position sense without using the opposite arm, involving active movement of the evaluated limb or relying on working memory. The aims of this descriptive study were to validate this assessment protocol by quantifying the elbow position sense of healthy adults, before using it in individuals who sustained a stroke, and to investigate its test-retest reliability. Elbow joint position sense was quantified using a robotic device and a virtual reality system. Two assessments were performed, by the same evaluator, with a one-week interval. While the participant's arms and hands were occluded from vision, the exoskeleton passively moved the dominant arm from an initial to a target position. Then, a virtual arm representation was projected on a screen placed over the participant's arm. This virtual representation and the real arm were not perfectly superimposed, however. Participants had to indicate verbally the relative position of their arm (more flexed or more extended; two-alternative forced choice paradigm) compared to the virtual representation. Each participant completed a total of 136 trials, distributed in three phases. The angular differences between the participant's arm and the virtual representation ranged from 1° to 27° and changed pseudo-randomly across trials. No feedback about results was provided to the participants during the task. A discrimination threshold was statistically extracted from a sigmoid curve fit representing the relationship between the angular difference and the percentage of successful trials. Test-retest reliability was evaluated with 3 different complementary approaches, i.e. a Bland-Altman analysis, an intraclass correlation coefficient (ICC) and a standard error of measurement (SEm

  14. Prevalence of upper limb disorders among female librarians.

    PubMed

    Pandy, R

    2013-09-01

    Work as a librarian involves exposure to potential risk factors for developing upper limb disorders. The prevalence of upper limb symptoms has, however, not previously been assessed in this occupational group. To estimate the 7-day and annual prevalence of self-reported neck and upper limb symptoms in librarians and to examine associations with specific tasks and ergonomic risk factors. A cross-sectional study using components of the standardized Nordic questionnaire. The study population consisted of librarians employed by a large local authority, and data collection was by means of a self-administered questionnaire. from studies on keyboard workers and on the general population were used as comparators. The 7-day prevalence of self-reported neck and upper limb pain in female librarians was 42% (95% confidence interval (CI) 33.7-50.5) and the annual prevalence was 65% (95% CI 56.6-72.8). The prevalence of reported wrist and hand pain increased with increased working involving a wide thumb-index span (P < 0.05) with a significant linear trend in prevalence with increasing exposure (P < 0.01). There was a strong association between reporting hand and/or wrist pain and awareness of work-related upper limb disorder (P < 0.05). The annual prevalence of self-reported upper limb symptoms among female librarians was high, but there was insufficient evidence to confirm whether the prevalence was higher than in the general population or among keyboard workers. Working with a wide thumb-index span was associated with reporting upper limb symptoms.

  15. Facts about Upper and Lower Limb Reduction Defects

    MedlinePlus

    ... its normal size or is missing. What We Know About Upper and Lower Limb Reduction Defects How ... and productive lives. What We Still Do Not Know About Upper and Lower Limb Reduction Defects What ...

  16. Stump sensibility in children with upper limb reduction deficiency.

    PubMed

    Reinkingh, Marianne; Reinders-Messelink, Heleen A; Dijkstra, Pieter U; Maathuis, Karel G B; van der Sluis, Corry K

    2014-01-01

    To compare stump sensibility in children with upper limb reduction deficiency with sensibility of the unaffected arm and hand. In addition, to evaluate the associations between stump sensibility, stump length and activity level. Cross-sectional study. Children and young adults aged 6-25 years with upper limb reduction deficiency. Threshold of touch was measured with Semmes-Weinstein monofilaments, stereognosis was measured with the Shape-Texture Identification test and kinaesthesia and activity level was measured with the Child Amputee Prosthetics Project - Functional Status Inventory and the Prosthetic Upper Extremity Functional Index. A total of 31 children with upper limb reduction deficiency (mean age 15 years, 3 prosthesis wearers) were investigated. The threshold of touch of the stump circumference was lower (indicating higher sensibility) than of the unaffected arm (p = 0.006), hand (p = 0.004) and stump end-point (p = < 0.001). Long stumps had higher threshold of touch (indicating lower sensibility) than short stumps (p = 0.046). Twenty-nine children recognized 1 or more shapes or textures with the stump. Kinaesthesia in the affected and unaffected sides was comparable. Sensibility was not correlated with activity level. Threshold of touch, stereognosis and kinaesthesia of the affected sides were excellent. Threshold of touch of the stump circumference was lower (indicating higher sensibility) than of the unaffected arm and hand. High stump sensibility may clarify good functioning in the children without prostheses and contribute to prosthesis rejection.

  17. Upper-limb motor and sensory function in patients with hip fracture: Comparison with community-dwelling older adults.

    PubMed

    Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki

    2017-11-06

    Upper-limb function is important in patients with hip fracture so they can perform activities of daily living and participate in leisure activities. Upper-limb function of these patients, however, has not been thoroughly investigated. The aim of this study was to evaluate the upper-limb motor and sensory functions in patients with hip fracture by comparing these functions with those of community-dwelling older adults (control group). We compared the results of motor and sensory function tests of upper-limb function - range of motion, strength, sensibility, finger dexterity, comprehensive hand function - between patients with hip fracture (n= 32) and the control group (n= 32). Patients with hip fracture had significantly reduced grip strength, pinch strength, finger dexterity, and comprehensive hand function compared with the control group. Most upper-limb functions are impaired in the patients with hip fracture. Thus, upper-limb function of patients with hip fracture should be considered during treatment.

  18. Upper limb injury in rugby union football: results of a cohort study.

    PubMed

    Usman, Juliana; McIntosh, Andrew Stuart

    2013-04-01

    There have been few in-depth studies of upper limb injury epidemiology in rugby union football, despite reports that they accounted for between 14% and 28% of all rugby injuries. To report on upper limb injury incidence, injury severity and to identify the risk factors associated with upper limb injuries, for example, level of play, season (years) and playing position. Prospective cohort study across five rugby seasons from 2004 to 2008. Formal rugby competitions-suburban, provincial and international. 1475 adult male rugby players in Colts, Grade and Elite competitions. An upper limb injury resulting in a missed game and its characteristics. A total of 61 598 athletic exposures (AE) and 606 upper limb injuries were recorded. About 66% of the injuries were to the shoulder. The overall upper limb injury incidence rate (IIR) was 9.84 injuries/1000 AE (95% CI 9.06 to 10.62). Statistically significant associations were found between upper limb injuries and level of play; and between shoulder injuries and playing position (p<0.05). No association was found between upper limb and shoulder injuries and study year. The overall upper limb IIR decreased as the level of play increased; 10.74 upper limb injuries/1000 AE (95% CI 9.93 to 11.56) in Colts to 6.07 upper limb injuries/1000 AE (95% CI 5.46 to 6.69) in Elite. The upper limb IIR decreased as the level of play increased indicating that age, level of skill and playing experience may be risk factors for upper limb injury.

  19. 3D-printed upper limb prostheses: a review.

    PubMed

    Ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul

    2017-04-01

    This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. A review was performed using Scopus, Web of Science and websites related to 3D-printing. Quantitative information on the mechanical and kinematic specifications and 3D-printing technology used was extracted from the papers and websites. The overview (58 devices) provides the general specifications, the mechanical and kinematic specifications of the devices and information regarding the 3D-printing technology used for hands. The overview shows prostheses for all different upper limb amputation levels with different types of control and a maximum material cost of $500. A large range of various prostheses have been 3D-printed, of which the majority are used by children. Evidence with respect to the user acceptance, functionality and durability of the 3D-printed hands is lacking. Contrary to what is often claimed, 3D-printing is not necessarily cheap, e.g., injection moulding can be cheaper. Conversely, 3D-printing provides a promising possibility for individualization, e.g., personalized socket, colour, shape and size, without the need for adjusting the production machine. Implications for rehabilitation Upper limb deficiency is a condition in which a part of the upper limb is missing as a result of a congenital limb deficiency of as a result of an amputation. A prosthetic hand can restore some of the functions of a missing limb and help the user in performing activities of daily living. Using 3D-printing technology is one of the solutions to manufacture hand prostheses. This overview provides information about the general, mechanical and kinematic specifications of all the devices and it provides the information about the 3D-printing technology used to print the hands.

  20. A comparison of upper limb amputees and patients with upper limb injuries using the Disability of the Arm, Shoulder and Hand (DASH).

    PubMed

    Davidson, Judith

    To use the Disability of the Arm Shoulder and Hand (DASH) scale to measure the disability of patients with upper limb amputation(s) and to compare these to other upper limb injuries. All 274 patients over the age of 18 years presenting to Prince Henry Hospital in Sydney over a 4-year time frame were given the DASH assessment tool and asked to complete it under supervision of the Occupational Therapist. Patients with brachial plexus injuries, Complex Regional Pain Syndrome and bilateral upper limb amputations demonstrated significantly higher levels of disability to patients with unilateral upper limb amputations. Partial hand amputees reported a higher level of disability than major unilateral upper limb amputees. For the 48 patients who completed pre- and post-treatment assessments, there was a significant improvement in their health status. Further research is required to understand the factors that affect a patient's perceptions of their disability. Perhaps the definitive nature of an amputation and the immediate involvement of highly skilled health professionals serve to assist patients to accept their injury and therefore minimizes the level of disability.

  1. Golf and upper limb injuries: a summary and review of the literature

    PubMed Central

    McHardy, Andrew J; Pollard, Henry P

    2005-01-01

    Background Golf is a popular past time that provides exercise with social interaction. However, as with all sports and activities, injury may occur. Many golf-related injuries occur in the upper limb, yet little research on the potential mechanisms of these injuries has been conducted. Objective To review the current literature on golf-related upper limb injuries and report on potential causes of injury as it relates to the golf swing. Discussion An overview of the golf swing is described in terms of its potential to cause the frequently noted injuries. Most injuries occur at impact when the golf club hits the ball. This paper concludes that more research into golf-related upper limb injuries is required to develop a thorough understanding of how injuries occur. Types of research include epidemiology studies, kinematic swing analysis and electromyographic studies of the upper limb during golf. By conducting such research, preventative measures maybe developed to reduce golf related injury. PMID:15967021

  2. Design and preliminary assessment of Vanderbilt hand exoskeleton.

    PubMed

    Gasser, Benjamin W; Bennett, Daniel A; Durrough, Christina M; Goldfarb, Michael

    2017-07-01

    This paper presents the design of a hand exoskeleton intended to enable or facilitate bimanual activities of daily living (ADLs) for individuals with chronic upper extremity hemiparesis resulting from stroke. The paper describes design of the battery-powered, self-contained exoskeleton and presents the results of initial testing with a single subject with hemiparesis from stroke. Specifically, an experiment was conducted requiring the subject to repeatedly remove the lid from a water bottle both with and without the hand exoskeleton. The relative times required to remove the lid from the bottles was considerably lower when using the exoskeleton. Specifically, the average amount of time required to grasp the bottle with the paretic hand without the exoskeleton was 25.9 s, with a standard deviation of 33.5 s, while the corresponding average amount of time required to grasp the bottle with the exoskeleton was 5.1 s, with a standard deviation of 1.9 s. Thus, the task time involving the paretic hand was reduced by a factor of five, while the standard deviation was reduced by a factor of 16.

  3. [Study on an Exoskeleton Hand Function Training Device].

    PubMed

    Hu, Xin; Zhang, Ying; Li, Jicai; Yi, Jinhua; Yu, Hongliu; He, Rongrong

    2016-02-01

    Based on the structure and motion bionic principle of the normal adult fingers, biological characteristics of human hands were analyzed, and a wearable exoskeleton hand function training device for the rehabilitation of stroke patients or patients with hand trauma was designed. This device includes the exoskeleton mechanical structure and the electromyography (EMG) control system. With adjustable mechanism, the device was capable to fit different finger lengths, and by capturing the EMG of the users' contralateral limb, the motion state of the exoskeleton hand was controlled. Then driven by the device, the user's fingers conducting adduction/abduction rehabilitation training was carried out. Finally, the mechanical properties and training effect of the exoskeleton hand were verified through mechanism simulation and the experiments on the experimental prototype of the wearable exoskeleton hand function training device.

  4. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.

    PubMed

    Takahashi, Kota Z; Lewek, Michael D; Sawicki, Gregory S

    2015-02-25

    In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user's paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p < .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke.

  5. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.

    PubMed

    Aguirre-Ollinger, Gabriel

    2015-01-01

    In this article, we analyze a novel strategy for assisting the lower extremities based on adaptive frequency oscillators. Our aim is to use the control algorithm presented here as a building block for the control of powered lower-limb exoskeletons. The algorithm assists cyclic movements of the human extremities by synchronizing actuator torques with the estimated net torque exerted by the muscles. Synchronization is produced by a nonlinear dynamical system combining an adaptive frequency oscillator with a form of adaptive Fourier analysis. The system extracts, in real time, the fundamental frequency component of the net muscle torque acting on a specific joint. Said component, nearly sinusoidal in shape, is the basis for the assistive torque waveform delivered by the exoskeleton. The action of the exoskeleton can be interpreted as a virtual reduction in the mechanical impedance of the leg. We studied the ability of human subjects to adapt their muscle activation to the assistive torque. Ten subjects swung their extended leg while coupled to a stationary hip joint exoskeleton. The experiment yielded a significant decrease, with respect to unassisted movement, of the activation levels of an agonist/antagonist pair of muscles controlling the hip joint's motion, which suggests the exoskeleton control has potential for assisting human gait. A moderate increase in swing frequency was observed as well. We theorize that the increase in frequency can be explained by the impedance model of the assisted leg. Per this model, subjects adjust their swing frequency in order to control the amount of reduction in net muscle torque. © IMechE 2015.

  6. Gastrocnemius myoelectric control of a robotic hip exoskeleton.

    PubMed

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Yan, Tingfang; Cortese, Mario; Giovacchini, Francesco; Cempini, Marco; Pasquini, Guido; Micera, Silvestro; Vitiello, Nicola

    2015-01-01

    In this paper we present a novel EMG-based assistive control strategy for lower-limb exoskeletons. An active pelvis orthosis (APO) generates torque profiles for the hip flexion motion assistance, according to the Gastrocnemius Medialis EMG signal. The strategy has been tested on one healthy subject: experimental results show that the user is able to reduce his muscular activation when the assistance is switched on with respect to the free walking condition.

  7. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review.

    PubMed

    Thomson, Katie; Pollock, Alex; Bugge, Carol; Brady, Marian

    2014-06-01

    Rehabilitation using commercial gaming devices is a new concept for stroke care. Commercial gaming devices such as Nintendo Wii or Sony PlayStation encourage high repetition of arm movements and are being introduced into some clinical settings. The evidence base for gaming use in rehabilitation is growing rapidly and there is a need to systematically synthesise research. Our review aims to integrate evidence on how gaming is being used, explore patient/therapist experience and synthesise evidence of effectiveness. An integrative systematic review was undertaken searching Cochrane Central Register of Controlled Trials (2013), Medline (2013), Embase (2013) and twelve additional databases. Two review authors independently selected studies based on pre-defined inclusion criteria, extracted data and assessed risk of bias. Nineteen studies including 215 patients met inclusion criteria. Studies were typically small scale feasibility studies using a range of research designs, limiting the ability to reach generalised conclusions. Results have been tabulated (activities of daily living, upper limb function/ movement) and qualitative themes identified. Findings suggest that most patients enjoy using commercial gaming and can tolerate 180 mins per week without significant adverse effects. A trend towards improvement was noted for upper limb function/ movement. Few studies recorded outcomes related to activities of daily living or focused on understanding patients' experiences of this intervention. Commercial gaming can provide high intensity upper limb practice however there is insufficient high quality evidence to reach generalisable conclusions about risks or benefits on activities of daily living or upper limb function/movement. © 2014 The Authors. International Journal of Stroke © 2014 World Stroke Organization.

  8. The effect of arm weight support on upper limb muscle synergies during reaching movements

    PubMed Central

    2014-01-01

    Background Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. Methods In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. Results The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. Conclusions The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke

  9. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  10. Combined treatment of botulinumtoxin and robot-assisted rehabilitation therapy on poststroke, upper limb spasticity

    PubMed Central

    Lee, So Young; Jeon, Young Tae; Kim, Bo Ryun; Han, Eun Young

    2017-01-01

    Abstract Rationale: Spasticity is a major complication after stroke, and botulinumtoxin A (BoNT-A) injection is commonly used to manage focal spasticity. However, it is uncertain whether BoNT-A can improve voluntary motor control or activities of daily living function of paretic upper limbs. This study investigated whether BoNT-A injection combined with robot-assisted upper limb therapy improves voluntary motor control or functions of upper limbs after stroke. Patient concerns: Two subacute stroke patients were transferred to the Department of Rehabilitation. Diagnoses: Patients demonstrated spasticity in the upper extremity on the affected side. Interventions: BoNT-A was injected into the paretic muscles of the shoulder, arm, and forearm of the 2 patients at the subacute stage. Conventional rehabilitation therapy and robot-assisted upper limb training were performed during the rehabilitation period. Outcomes: Manual dexterity, grip strength, muscle tone, and activities of daily living function were improved after multidisciplinary rehabilitation treatment. Lessons: BoNT-A injection in combination with multidisciplinary rehabilitation treatment, including robot-assisted arm training, should be recommended for subacute spastic stroke patients to enhance appropriate motor recovery. PMID:29390585

  11. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton.

    PubMed

    Frisoli, Antonio; Sotgiu, Edoardo; Procopio, Caterina; Bergamasco, Massimo; Rossi, Bruno; Chisari, Carmelo

    2011-01-01

    The distinguishing features of active exoskeletons are the capability of guiding arm movement at the level of the full kinematic chain of the human arm, and training full 3D spatial movements. We have specifically developed a PD sliding mode control for upper limb rehabilitation with gain scheduling for providing "assistance as needed", according to the force capability of the patient, and an automatic measurement of the impaired arm joint torques, to evaluate the hypertonia associated to the movement during the execution of the training exercise. Two different training tasks in Virtual Reality were devised, that make use of the above control, and allow to make a performance based evaluation of patient's motor status. The PERCRO L-Exos (Light-Exoskeleton) was used to evaluate the proposed algorithms and training exercises in two clinical case studies of patients with chronic stroke, that performed 6 weeks of robotic assisted training. Clinical evaluation (Fugl-Meyer Scale, Modified Ashworth Scale, Bimanual Activity Test) was conducted before and after treatment and compared to the scores and the quantitative indices, such as task time, position/joint error and resistance torques, associated to the training exercises. © 2011 IEEE

  12. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.

    PubMed

    Chang, Sarah R; Nandor, Mark J; Li, Lu; Kobetic, Rudi; Foglyano, Kevin M; Schnellenberger, John R; Audu, Musa L; Pinault, Gilles; Quinn, Roger D; Triolo, Ronald J

    2017-05-30

    Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI. The self-contained HNP combined neural stimulation to activate the paralyzed muscles and generate joint torques for limb movements with a controllable lower limb exoskeleton to stabilize and support the user. An onboard controller processed exoskeleton sensor signals, determined appropriate exoskeletal constraints and stimulation commands for a finite state machine (FSM), and transmitted data over Bluetooth to an off-board computer for real-time monitoring and data recording. The FSM coordinated stimulation and exoskeletal constraints to enable functions, selected with a wireless finger switch user interface, for standing up, standing, stepping, or sitting down. In the stepping function, the FSM used a sensor-based gait event detector to determine transitions between gait phases of double stance, early swing, late swing, and weight acceptance. The HNP restored stepping in three individuals with motor complete paralysis due to SCI. The controller appropriately coordinated stimulation and exoskeletal constraints using the sensor-based FSM for subjects with different stimulation systems. The average range of motion at hip and knee joints during walking were 8.5°-20.8° and 14.0°-43.6°, respectively. Walking speeds varied from 0.03 to 0.06 m/s, and cadences from 10 to 20 steps/min. A self-contained muscle

  13. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.

    PubMed

    Bacek, Tomislav; Moltedo, Marta; Langlois, Kevin; Prieto, Guillermo Asin; Sanchez-Villamanan, Maria Carmen; Gonzalez-Vargas, Jose; Vanderborght, Bram; Lefeber, Dirk; Moreno, Juan C

    2017-07-01

    This paper presents design of a novel modular lower-limb gait exoskeleton built within the FP7 BioMot project. Exoskeleton employs a variable stiffness actuator in all 6 joints, a directional-flexibility structure and a novel physical humanrobot interfacing, which allows it to deliver the required output while minimally constraining user's gait by providing passive degrees of freedom. Due to modularity, the exoskeleton can be used as a full lower-limb orthosis, a single-joint orthosis in any of the three joints, and a two-joint orthosis in a combination of any of the two joints. By employing a simple torque control strategy, the exoskeleton can be used to deliver user-specific assistance, both in gait rehabilitation and in assisting people suffering musculoskeletal impairments. The result of the presented BioMot efforts is a low-footprint exoskeleton with powerful compliant actuators, simple, yet effective torque controller and easily adjustable flexible structure.

  14. Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking.

    PubMed

    Attias, M; Bonnefoy-Mazure, A; De Coulon, G; Cheze, L; Armand, S

    2016-10-01

    Contracture is a permanent shortening of the muscle-tendon-ligament complex that limits joint mobility. Contracture is involved in many diseases (cerebral palsy, stroke, etc.) and can impair walking and other activities of daily living. The purpose of this study was to quantify the reliability of an exoskeleton designed to emulate lower limb muscle contractures unilaterally and bilaterally during walking. An exoskeleton was built according to the following design criteria: adjustable to different morphologies; respect of the principal lines of muscular actions; placement of reflective markers on anatomical landmarks; and the ability to replicate the contractures of eight muscles of the lower limb unilaterally and bilaterally (psoas, rectus femoris, hamstring, hip adductors, gastrocnemius, soleus, tibialis posterior, and peroneus). Sixteen combinations of contractures were emulated on the unilateral and bilateral muscles of nine healthy participants. Two sessions of gait analysis were performed at weekly intervals to assess the reliability of the emulated contractures. Discrete variables were extracted from the kinematics to analyse the reliability. The exoskeleton did not affect normal walking when contractures were not emulated. Kinematic reliability varied from poor to excellent depending on the targeted muscle. Reliability was good for the bilateral and unilateral gastrocnemius, soleus, and tibialis posterior as well as the bilateral hamstring and unilateral hip adductors. The exoskeleton can be used to replicate contracture on healthy participants. The exoskeleton will allow us to differentiate primary and compensatory effects of muscle contractures on gait kinematics. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Design and control of a hand exoskeleton for use in extravehicular activities

    NASA Technical Reports Server (NTRS)

    Shields, B.; Peterson, S.; Strauss, A.; Main, J.

    1993-01-01

    To counter problems inherent in extravehicular activities (EVA) and complex space operations, an exoskeleton, a unique adaptive structure, has been designed. The exoskeleton fits on the hand and powers the proximal and middle phalanges of the index finger, the middle finger, and the combined ring and little finger. A kinematic analysis of the exoskeleton joints was performed using the loop-closure method. This analysis determined the angular displacement and velocity relationships of the exoskeleton joints. This information was used to determine the output power of the exoskeleton. Three small DC motors (one for each finger) are used to power the exoskeleton. The motors are mounted on the forearm. Power is transferred to the exoskeleton using lead screws. The control system for the exoskeleton measures the contact force between the operator and the exoskeleton. This information is used as the input to drive the actuation system. The control system allows the motor to rotate in both directions so that the operator may close or open the exoskeleton.

  16. Epidemiology of traumatic upper limb amputations.

    PubMed

    Pomares, G; Coudane, H; Dap, F; Dautel, G

    2018-04-01

    While published data on functional outcomes after upper limb amputations are plentiful, epidemiology data are relatively rare. This led us to performing an epidemiology study of traumatic upper limb amputations at our facility. This retrospective study spanned a 10-year period of cases seen at the SOS Main (Hand emergency center) of the Nancy University Hospital in France. Patients who suffered traumatic amputation of the upper limb were identified and divided into two groups: replantation and surgical amputation. All anatomical amputation levels were retained. Non-traumatic amputations were excluded. Epidemiology data (sex, age, dominant side, injured side) was collected along with the specific anatomical level of the injury, the injury mechanism and whether it was work-related. We also looked at the success rate of microsurgery and whether multi-finger amputations were partial or complete. In parallel, the annual incidence of amputations seen at the SOS Main over this period was calculated. Over the 10-year period, 1715 traumatic upper-limb amputations were identified, which was 3% of all cases seen at the SOS Main. Most of the cases involved middle-aged men. Revascularization was attempted in one-third of cases and microsurgery was successful in 70% of cases. The surgical amputation group consisted of 1132 patients with a mean age of 59 years, while the replantation group consisted of 583 patients with a mean age of 48 years. The primary mechanism of injury was a table saw. This injury, which must be addressed urgently, is not very common in everyday practice. This is contrary to lower limb amputations, which are more common and occur in the context of micro- and macroangiopathy in older patients. The success rate of microsurgery in this cohort must be placed in the context of age, amputation level and mechanism. The functional outcomes are not always as good as the vascular outcomes. This data is invaluable as it fills a gap in our knowledge about amputations

  17. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients.

    PubMed

    Jansen, Oliver; Grasmuecke, Dennis; Meindl, Renate C; Tegenthoff, Martin; Schwenkreis, Peter; Sczesny-Kaiser, Matthias; Wessling, Martin; Schildhauer, Thomas A; Fisahn, Christian; Aach, Mirko

    2018-02-01

    The use of mobile exoskeletons is becoming more and more common in the field of spinal cord injury (SCI) rehabilitation. The hybrid assistive limb (HAL) exoskeleton provides a tailored support depending on the patient's voluntary drive. After a pilot study in 2014 that included 8 patients with chronic SCI, this study of 21 patients with chronic SCI serves as a proof of concept. It was conducted to provide further evidence regarding the efficacy of exoskeletal-based rehabilitation. Functional assessment included walking speed, distance, and time on a treadmill, with additional analysis of functional mobility using the following tests: 10-meter walk test (10MWT), timed up and go (TUG) test, 6-minute walk test (6MWT), and the walking index for SCI II (WISCI-II) score. After a training period of 90 days, all 21 patients significantly improved their functional and ambulatory mobility without the exoskeleton. Patients were assessed by the 6MWT, the TUG test, and the 10MWT, which also indicated an increase in the WISCI-II score along with significant improvements in HAL-associated walking speed, distance, and time. Although, exoskeletons are not yet an established treatment in the rehabilitation of spinal cord injuries, the devices will play a more important role in the future. The HAL exoskeleton training enables effective, body weight-supported treadmill training and is capable of improving ambulatory mobility. Future controlled studies are required to enable a comparison of the new advances in the field of SCI rehabilitation with traditional over-ground training. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Functional impacts of exoskeleton-based rehabilitation in chronic stroke: multi-joint versus single-joint robotic training

    PubMed Central

    2013-01-01

    Stroke is a major cause of disability in the world. The activities of upper limb segments are often compromised following a stroke, impairing most daily tasks. Robotic training is now considered amongst the rehabilitation methods applied to promote functional recovery. However, the implementation of robotic devices remains a major challenge for the bioengineering and clinical community. Latest exoskeletons with multiple degrees of freedom (DOF) may become particularly attractive, because of their low apparent inertia, the multiple actuators generating large torques, and the fact that patients can move the arm in the normal wide workspace. A recent study published in JNER by Milot and colleagues underlines that training with a 6-DOF exoskeleton impacts positively on motor function in patients being in stable phase of recovery after a stroke. Also, multi-joint robotic training was not found to be superior to single-joint robotic training. Although it is often considered that rehabilitation should start from simple movements to complex functional movements as the recovery evolves, this study challenges this widespread notion whose scientific basis has remained uncertain. PMID:24354518

  19. [The importance of upper limb diseases in occupational medicine].

    PubMed

    Riva, Matteo Marco; Santini, Marisa; Mosconi, Giovanni

    2013-01-01

    In this work the authors analyse the results of the clinical evaluation of patients affected by suspected work related musculo-skeletal disorders (WMSDs), observed throughout 2008-2009 in the specific ambulatory of Occupational Medicine Division of Ospedali Riuaniti di Bergamo. The aim is to illustrate the epidemiological relevance of upper limb (UL) WMSDs. We observed 430 patients (mean age 46,9 years, DS 9,3; mean working seniority 29 years, DS 10,4), investigating 600 disorders in diferent musculoskeletal segments. Most of the patients (66%) got to the division for a clinical consultation requested by general practitioners, 29,8% by occupational physicians, 4,2% by national insurance for occupational injuries and diseases (INAIL). Most of the patients (38,4%) were employed in construction industry. Among the 600 disorders investigated, 34,5% was at lumbar spine, 74,5% was at upper limb. The clinical diagnosis was already clear at the first consultation for 81,6% of subjects with low back pain and for 56,5% of patients with upper limb disorders; for the others was necessary to prescribe some instrumental exams or specialistic (neurologic, physiatric, orthopaedic) medical examination. We concluded for a diagnosis of WMSDs in 48,3% of the 600 cases: the percentage is 50,2% if we consider only disorders at lumbar spine and 52,5% among disorders at upper limb. The most frequent reason of refusing occupational aetiology, in the cases of low back pain, was the concomitant presence of other diseases at the segment; on the contrary, for the cases of upper limb disorders, was the lack of correlation between type of disease and professional exposure. All physicians demonstrate a high attention about upper limb disorders, topical subject of great epidemiological interest. General practitioners and occupational physicians have to take more advantage of diagnostic support and clinical evaluations offered by Occupational Medicine Divisions an Universities about WMSDs. In

  20. Treadmill Training with HAL Exoskeleton-A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy-Preliminary Study.

    PubMed

    Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin

    2017-01-01

    Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies.

  1. Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients.

    PubMed

    Ackerley, Suzanne J; Byblow, Winston D; Barber, P Alan; MacDonald, Hayley; McIntyre-Robinson, Andrew; Stinear, Cathy M

    2016-05-01

    Recovery of upper limb function is important for regaining independence after stroke. To test the effects of priming upper limb physical therapy with intermittent theta burst stimulation (iTBS), a form of noninvasive brain stimulation. Eighteen adults with first-ever chronic monohemispheric subcortical stroke participated in this randomized, controlled, triple-blinded trial. Intervention consisted of priming with real or sham iTBS to the ipsilesional primary motor cortex immediately before 45 minutes of upper limb physical therapy, daily for 10 days. Changes in upper limb function (Action Research Arm Test [ARAT]), upper limb impairment (Fugl-Meyer Scale), and corticomotor excitability, were assessed before, during, and immediately, 1 month and 3 months after the intervention. Functional magnetic resonance images were acquired before and at one month after the intervention. Improvements in ARAT were observed after the intervention period when therapy was primed with real iTBS, but not sham, and were maintained at 1 month. These improvements were not apparent halfway through the intervention, indicating a dose effect. Improvements in ARAT at 1 month were related to balancing of corticomotor excitability and an increase in ipsilesional premotor cortex activation during paretic hand grip. Two weeks of iTBS-primed therapy improves upper limb function at the chronic stage of stroke, for at least 1 month postintervention, whereas therapy alone may not be sufficient to alter function. This indicates a potential role for iTBS as an adjuvant to therapy delivered at the chronic stage. © The Author(s) 2015.

  2. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.

    PubMed

    Mooney, Luke M; Herr, Hugh M

    2016-01-28

    Ankle exoskeletons can now reduce the metabolic cost of walking in humans without leg disability, but the biomechanical mechanisms that underlie this augmentation are not fully understood. In this study, we analyze the energetics and lower limb mechanics of human study participants walking with and without an active autonomous ankle exoskeleton previously shown to reduce the metabolic cost of walking. We measured the metabolic, kinetic and kinematic effects of wearing a battery powered bilateral ankle exoskeleton. Six participants walked on a level treadmill at 1.4 m/s under three conditions: exoskeleton not worn, exoskeleton worn in a powered-on state, and exoskeleton worn in a powered-off state. Metabolic rates were measured with a portable pulmonary gas exchange unit, body marker positions with a motion capture system, and ground reaction forces with a force-plate instrumented treadmill. Inverse dynamics were then used to estimate ankle, knee and hip torques and mechanical powers. The active ankle exoskeleton provided a mean positive power of 0.105 ± 0.008 W/kg per leg during the push-off region of stance phase. The net metabolic cost of walking with the active exoskeleton (3.28 ± 0.10 W/kg) was an 11 ± 4 % (p = 0.019) reduction compared to the cost of walking without the exoskeleton (3.71 ± 0.14 W/kg). Wearing the ankle exoskeleton significantly reduced the mean positive power of the ankle joint by 0.033 ± 0.006 W/kg (p = 0.007), the knee joint by 0.042 ± 0.015 W/kg (p = 0.020), and the hip joint by 0.034 ± 0.009 W/kg (p = 0.006). This study shows that the ankle exoskeleton does not exclusively reduce positive mechanical power at the ankle joint, but also mitigates positive power at the knee and hip. Furthermore, the active ankle exoskeleton did not simply replace biological ankle function in walking, but rather augmented the total (biological + exoskeletal) ankle moment and power. This study

  3. Music Upper Limb Therapy—Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation

    PubMed Central

    Raghavan, Preeti; Geller, Daniel; Guerrero, Nina; Aluru, Viswanath; Eimicke, Joseph P.; Teresi, Jeanne A.; Ogedegbe, Gbenga; Palumbo, Anna; Turry, Alan

    2016-01-01

    Stroke is a leading cause of disability worldwide. It leads to a sudden and overwhelming disruption in one’s physical body, and alters the stroke survivors’ sense of self. Long-term recovery requires that bodily perception, social participation and sense of self are restored; this is challenging to achieve, particularly with a single intervention. However, rhythmic synchronization of movement to external stimuli facilitates sensorimotor coupling for movement recovery, enhances emotional engagement and has positive effects on interpersonal relationships. In this proof-of-concept study, we designed a group music-making intervention, Music Upper Limb Therapy-Integrated (MULT-I), to address the physical, psychological and social domains of rehabilitation simultaneously, and investigated its effects on long-term post-stroke upper limb recovery. The study used a mixed-method pre-post design with 1-year follow up. Thirteen subjects completed the 45-min intervention twice a week for 6 weeks. The primary outcome was reduced upper limb motor impairment on the Fugl-Meyer Scale (FMS). Secondary outcomes included sensory impairment (two-point discrimination test), activity limitation (Modified Rankin Scale, MRS), well-being (WHO well-being index), and participation (Stroke Impact Scale, SIS). Repeated measures analysis of variance (ANOVA) was used to test for differences between pre- and post-intervention, and 1-year follow up scores. Significant improvement was found in upper limb motor impairment, sensory impairment, activity limitation and well-being immediately post-intervention that persisted at 1 year. Activities of daily living and social participation improved only from post-intervention to 1-year follow up. The improvement in upper limb motor impairment was more pronounced in a subset of lower functioning individuals as determined by their pre-intervention wrist range of motion. Qualitatively, subjects reported new feelings of ownership of their impaired limb, more

  4. Upper and lower limb functionality: are these compromised in obese children?

    PubMed

    Riddiford-Harland, Diane L; Steele, Julie R; Baur, Louise A

    2006-01-01

    The aim of this study was to investigate the effects of obesity on upper and lower limb functional strength and power in children, and to determine whether the ability to perform the daily activity of rising from a chair was compromised in obese children. It was hypothesised that obese children would display less upper and lower limb functionality compared to their non-obese counterparts. Upper and lower limb strength and power of 43 obese children (aged 8.4 +/- 0.5 y, BMI 24.1 +/- 2.3 kg/m(-2)) and 43 non-obese controls (aged 8.4 +/- 0.5 y, BMI 16.9 +/- 0.4 kg/m(-2)) were assessed using age-appropriate field-based tests: arm push/pull ability; basketball throw; vertical jump (VJ), and standing long jump (SLJ) performance. Functional lower limb strength was assessed for 13 obese and 13 non-obese children by quantifying their chair rising ability. Although obese children displayed significantly greater upper limb push (9.3 +/- 2.3 kg) and pull strength (9.6 +/- 3.0 kg) than their non-obese peers (push: 8.8 +/- 2.2 kg; pull: 8.8 +/- 2.3 kg; p < or = 0.05), their VJ (22.1 +/- 4.3 cm) and SLJ (94.6 +/- 12.8 cm) performance was significantly impaired relative to the non-obese children (VJ: 24.7 +/- 4.0 cm; SLJ: 101.7 +/- 14.0 cm; p < or = 0.05). Obese children spent significantly more time during all transfer phases of the chair rising task, compared to the non-obese children. Lower limb functionality in young obese children is impeded when they move their greater body mass against gravity.

  5. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  6. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    PubMed Central

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  7. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    ERIC Educational Resources Information Center

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  8. Predictive Value of Upper Limb Muscles and Grasp Patterns on Functional Outcome in Cervical Spinal Cord Injury.

    PubMed

    Velstra, Inge-Marie; Bolliger, Marc; Krebs, Jörg; Rietman, Johan S; Curt, Armin

    2016-05-01

    To determine which single or combined upper limb muscles as defined by the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI); upper extremity motor score (UEMS) and the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), best predict upper limb function and independence in activities of daily living (ADLs) and to assess the predictive value of qualitative grasp movements (QlG) on upper limb function in individuals with acute tetraplegia. As part of a Europe-wide, prospective, longitudinal, multicenter study ISNCSCI, GRASSP, and Spinal Cord Independence Measure (SCIM III) scores were recorded at 1 and 6 months after SCI. For prediction of upper limb function and ADLs, a logistic regression model and unbiased recursive partitioning conditional inference tree (URP-CTREE) were used. Results: Logistic regression and URP-CTREE revealed that a combination of ISNCSCI and GRASSP muscles (to a maximum of 4) demonstrated the best prediction (specificity and sensitivity ranged from 81.8% to 96.0%) of upper limb function and identified homogenous outcome cohorts at 6 months. The URP-CTREE model with the QlG predictors for upper limb function showed similar results. Prediction of upper limb function can be achieved through a combination of defined, specific upper limb muscles assessed in the ISNCSCI and GRASSP. A combination of a limited number of proximal and distal muscles along with an assessment of grasping movements can be applied for clinical decision making for rehabilitation interventions and clinical trials. © The Author(s) 2015.

  9. Upper limb dysfunction following selective neck dissection: a retrospective questionnaire study.

    PubMed

    Carr, Simon D; Bowyer, Duncan; Cox, Graham

    2009-06-01

    To determine total upper limb function following selective neck dissection over a mean follow-up of 1.6 years. A retrospective questionnaire study in a tertiary head and neck surgical unit. One hundred forty-eight patients who underwent selective neck dissection for head and neck cancer from January 2000 to December 2005 were invited to participate. The main outcome measure was ipsilateral upper limb dysfunction as measured by the Disability of Arm, Shoulder and Hand (DASH) questionnaire. Sixty-five patients responded to the invitation to join the study from 148 invited. Despite accessory nerve conserving surgery for all the selective neck dissections studied, 23% reported no upper limb dysfunction, 54% reported mild upper limb dysfunction, 15% reported moderate, and 8% reported a severe dysfunction. Long-term upper limb dysfunction is common following nerve preserving surgery. The DASH questionnaire is a useful preoperative and postoperative clinical tool for those patients undergoing selective neck dissections. (c) 2009 Wiley Periodicals, Inc.

  10. The influence of scapular depression on upper limb neurodynamic test responses

    PubMed Central

    Legakis, Allison; Boyd, Benjamin S

    2012-01-01

    Objectives Upper limb neurodynamic testing (ULNT) can be used clinically to assist in identifying neural tissue involvement in patients with upper quarter pain and dysfunction. Consideration for scapular positioning is a crucial component of ULNT standardization, as variations in positioning may dramatically impact sensory and motor responses. This study aimed to determine if there was a meaningful difference in test outcomes when the ULNT was performed in alternative scapular positions. Methods This cross-sectional study included 40 asymptomatic individuals. Repeated ULNT testing was performed on the dominant limb with the scapula blocked in neutral (ULNTb) and in scapular depression (ULNTd). Sensory responses, muscle activity, and range of motion outcomes were compared between the two test variations. Results Pre-positioning in scapular depression (ULNTd) led to reduced elbow extension range of motion, provoked greater upper trapezius muscle activity and an earlier onset and broader area of sensory responses compared to ULNTb. Discussion During ULNTb, the limbs were taken further into range and elicited reduced muscle activation and more localized sensory response providing a less vigorous version of the test. This study demonstrates that scapular positioning has a meaningful impact on ULNT test outcomes in healthy, asymptomatic individuals. The ULNTd can be considered a more vigorous version that may be appropriate when the cervical motions commonly utilized for structural differentiation are limited or contraindicated. PMID:23633886

  11. Powered exoskeletons for bipedal locomotion after spinal cord injury

    NASA Astrophysics Data System (ADS)

    Contreras-Vidal, Jose L.; Bhagat, Nikunj A.; Brantley, Justin; Cruz-Garza, Jesus G.; He, Yongtian; Manley, Quinn; Nakagome, Sho; Nathan, Kevin; Tan, Su H.; Zhu, Fangshi; Pons, Jose L.

    2016-06-01

    Objective. Powered exoskeletons promise to increase the quality of life of people with lower-body paralysis or weakened legs by assisting or restoring legged mobility while providing health benefits across multiple physiological systems. Here, a systematic review of the literature on powered exoskeletons addressed critical questions: What is the current evidence of clinical efficacy for lower-limb powered exoskeletons? What are the benefits and risks for individuals with spinal cord injury (SCI)? What are the levels of injury considered in such studies? What are their outcome measures? What are the opportunities for the next generation exoskeletons? Approach. A systematic search of online databases was performed to identify clinical trials and safety or efficacy studies with lower-limb powered exoskeletons for individuals with SCI. Twenty-two studies with eight powered exoskeletons thus selected, were analyzed based on the protocol design, subject demographics, study duration, and primary/secondary outcome measures for assessing exoskeleton's performance in SCI subjects. Main results. Findings show that the level of injury varies across studies, with T10 injuries being represented in 45.4% of the studies. A categorical breakdown of outcome measures revealed 63% of these measures were gait and ambulation related, followed by energy expenditure (16%), physiological improvements (13%), and usability and comfort (8%). Moreover, outcome measures varied across studies, and none had measures spanning every category, making comparisons difficult. Significance. This review of the literature shows that a majority of current studies focus on thoracic level injury as well as there is an emphasis on ambulatory-related primary outcome measures. Future research should: 1) develop criteria for optimal selection and training of patients most likely to benefit from this technology, 2) design multimodal gait intention detection systems that engage and empower the user, 3) develop

  12. Upper-limb sensory impairments after stroke: Self-reported experiences of daily life and rehabilitation.

    PubMed

    Carlsson, Håkan; Gard, Gunvor; Brogårdh, Christina

    2018-01-10

    To describe stroke survivors' experiences of sensory impairment in the upper limb, the influence of such impairment on daily life, coping strategies used, and sensory training for the affected hand. A qualitative study with a content analysis approach. Fifteen post-stroke patients interviewed individually. Five categories emerged from the data: "Changed and varied perception of the sensation"; "Affected movement control"; "Problems using the hand in daily life"; "Various strategies to cope with upper limb disability"; and "Lack of sensory training". Numbness and tingling, changes in temperature sensitivity, and increased sensitivity to touch and pain were reported. Many subjects had difficulty adjusting their grip force and performing movements with precision. It was problematic and mentally fatiguing managing personal care and carrying out household and leisure activities. Practical adaptations, compensation with vision, increased concentration, and use of the less affected hand were strategies used to overcome difficulties. Despite their problems very few subjects had received any specific sensory training for the hand. Stroke survivors perceive that sensory impairment of the upper limb has a highly negative impact on daily life, but specific rehabilitation for the upper limb is lacking. These findings imply that the clinical management of upper limb sensory impairment after stroke requires more attention.

  13. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off

    PubMed Central

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Molino Lova, Raffaele; Micera, Silvestro; Vitiello, Nicola

    2018-01-01

    We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human–robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons. PMID:29491830

  14. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.

    PubMed

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Molino Lova, Raffaele; Micera, Silvestro; Vitiello, Nicola

    2018-01-01

    We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human-robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons.

  15. The effect of muscle weakness on the capability gap during gross motor function: a simulation study supporting design criteria for exoskeletons of the lower limb.

    PubMed

    Afschrift, Maarten; De Groote, Friedl; De Schutter, Joris; Jonkers, Ilse

    2014-08-04

    Enabling persons with functional weaknesses to perform activities of daily living (ADL) is one of the main challenges for the aging society. Powered orthoses, or exoskeletons, have the potential to support ADL while promoting active participation of the user. For this purpose, assistive devices should be designed and controlled to deliver assistance as needed (AAN). This means that the level of assistance should bridge the capability gap, i.e. the gap between the capabilities of the subjects and the task requirements. However, currently the actuators of exoskeletons are mainly designed using inverse dynamics (ID) based calculations of joint moments. The goal of the present study is to calculate the capability gap for the lower limb during ADL when muscle weakness is present, which is needed for appropriate selection of actuators to be integrated in exoskeletons. A musculoskeletal model (MM) is used to calculate the joint kinematics, joint kinetics and muscle forces of eight healthy subjects during ADL (gait, sit-to-stand, stand-to-sit, stair ascent, stair descent). Muscle weakness was imposed to the MM by a stepwise decrease in maximal isometric force imposed to all muscles. Muscle forces were calculated using static optimization. In order to compensate for muscle weakness, ideal moment actuators that represent the motors of an exoskeleton in the simulation were added to deliver AAN required to perform the task. The ID approach overestimates the required assistance since it relies solely on the demands of the task, whereas the AAN approach incorporates the capabilities of the subject. Furthermore, the ID approach delivers continuous support whereas the AAN approach targets the period where a capability gap occurs. The level of muscle weakness for which the external demands imposed by ADL can no longer be met by active muscle force production, is respectively 40%, 70%, 80% and 30%. The present workflow allows estimating the AAN during ADL for different levels of

  16. [Tests of hand functionality in upper limb amputation with prosthesis].

    PubMed

    Bazzini, G; Orlandini, D; Moscato, T A; Nicita, D; Panigazzi, M

    2007-01-01

    The need for standardized instruments for clinical measurements has become pressing in the fields of occupational rehabilitation and ergonomics. This is particularly the case for instruments that allow a quantitative evaluation of upper limb function, and especially hand function in patients who have undergone an amputation and then application of an upper limb prosthesis. This study presents a review of the main tests used to evaluate hand function, with a critical analysis of their use in subjects with an upper limb prosthesis. The tests are divided into: tests to evaluate strength, tests to evaluate co-ordination and dexterity, tests of global or overall function, and tests proposed specifically for subjects with an upper limb prosthesis. Of the various tests presented, the authors give their preference to the Bimanual Functional Assessment, Abilhand and/or the ADL Questionnaire, because of the practical usefulness, clinimetric features, simplicity and ease of administration of these tests.

  17. Upper limb motor function in young adults with spina bifida and hydrocephalus

    PubMed Central

    Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.

    2011-01-01

    Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605

  18. Development of a parent‐reported questionnaire evaluating upper limb activity limitation in children with cerebral palsy

    PubMed Central

    Preston, N.; Levesley, M.; Mon‐Williams, M.; O'Connor, R.J.

    2017-01-01

    Abstract Background and purpose Upper limb activity measures for children with cerebral palsy have a number of limitations, for example, lack of validity and poor responsiveness. To overcome these limitations, we developed the Children's Arm Rehabilitation Measure (ChARM), a parent‐reported questionnaire validated for children with cerebral palsy aged 5–16 years. This paper describes both the development of the ChARM items and response categories and its psychometric testing and further refinement using the Rasch measurement model. Methods To generate valid items for the ChARM, we collected goals of therapy specifically developed by therapists, children with cerebral palsy, and their parents for improving activity limitation of the upper limb. The activities, which were the focus of these goals, formed the basis for the items. Therapists typically break an activity into natural stages for the purpose of improving activity performance, and these natural orders of achievement formed each item's response options. Items underwent face validity testing with health care professionals, parents of children with cerebral palsy, academics, and lay persons. A Rasch analysis was performed on ChARM questionnaires completed by the parents of 170 children with cerebral palsy from 12 hospital paediatric services. The ChARM was amended, and the procedure repeated on 148 ChARMs (from children's mean age: 10 years and 1 month; range: 4 years and 8 months to 16 years and 11 months; 85 males; Manual Ability Classification System Levels I = 9, II = 26, III = 48, IV = 45, and V = 18). Results The final 19‐item unidimensional questionnaire displayed fit to the Rasch model (chi‐square p = .18), excellent reliability (person separation index = 0.95, α = 0.95), and no floor or ceiling effects. Items showed no response bias for gender, distribution of impairment, age, or learning disability. Discussion The ChARM is a psychometrically sound measure of upper limb

  19. The (cost-)effectiveness of a lifestyle physical activity intervention in addition to a work style intervention on the recovery from neck and upper limb symptoms in computer workers

    PubMed Central

    Bernaards, Claire M; Ariëns, Geertje AM; Hildebrandt, Vincent H

    2006-01-01

    Background Neck and upper limb symptoms are frequently reported by computer workers. Work style interventions are most commonly used to reduce work-related neck and upper limb symptoms but lifestyle physical activity interventions are becoming more popular to enhance workers health and reduce work-related symptoms. A combined approach targeting work style and lifestyle physical activity seems promising, but little is known on the effectiveness of such combined interventions. Methods/design The RSI@Work study is a randomised controlled trial that aims to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention to reduce neck and upper limb symptoms in computer workers. Computer workers from seven Dutch companies with frequent or long-term neck and upper limb symptoms in the preceding six months and/or the last two weeks are randomised into three groups: (1) work style group, (2) work style and physical activity group, or (3) control group. The work style intervention consists of six group meetings in a six month period that take place at the workplace, during work time, and under the supervision of a specially trained counsellor. The goal of this intervention is to stimulate workplace adjustment and to improve body posture, the number and quality of breaks and coping behaviour with regard to high work demands. In the combined (work style and physical activity) intervention the additional goal is to increase moderate to heavy physical activity. The control group receives usual care. Primary outcome measures are degree of recovery, pain intensity, disability, number of days with neck and upper limb symptoms, and number of months without neck and upper limb symptoms. Outcome measures will be assessed at baseline and six and 12 months after randomisation. Cost-effectiveness of the group meetings will be assessed using an employer's perspective. Discussion This study will be one of the first to assess the added value

  20. Disorders of Upper Limb Movements in Ataxia-Telangiectasia.

    PubMed

    Shaikh, Aasef G; Zee, David S; Mandir, Allen S; Lederman, Howard M; Crawford, Thomas O

    2013-01-01

    Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.

  1. Disorders of Upper Limb Movements in Ataxia-Telangiectasia

    PubMed Central

    Shaikh, Aasef G.; Zee, David S.; Mandir, Allen S.; Lederman, Howard M.; Crawford, Thomas O.

    2013-01-01

    Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia. PMID:23826191

  2. Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients.

    PubMed

    Cacchio, Angelo; De Blasis, Elisabetta; De Blasis, Vincenzo; Santilli, Valter; Spacca, Giorgio

    2009-10-01

    Complex regional pain syndrome type 1 (CRPSt1) of the upper limb is a painful and debilitating condition, frequent after stroke, and interferes with the rehabilitative process and outcome. However, treatments used for CRPSt1 of the upper limb are limited. . This randomized controlled study was conducted to compare the effectiveness on pain and upper limb function of mirror therapy on CRPSt1 of upper limb in patients with acute stroke. . Of 208 patients with first episode of unilateral stroke admitted to the authors' rehabilitation center, 48 patients with CRPSt1 of the affected upper limb were enrolled in a randomized controlled study, with a 6-month follow-up, and assigned to either a mirror therapy group or placebo control group. The primary end points were a reduction in the visual analogue scale score of pain at rest, on movement, and brush-induced tactile allodynia. The secondary end points were improvement in motor function as assessed by the Wolf Motor Function Test and Motor Activity Log. . The mean scores of both the primary and secondary end points significantly improved in the mirror group (P < .001). No statistically significant improvement was observed in any of the control group values (P > .001). Moreover, statistically significant differences after treatment (P < .001) and at the 6-month follow-up were found between the 2 groups. . The results indicate that mirror therapy effectively reduces pain and enhances upper limb motor function in stroke patients with upper limb CRPSt1.

  3. Bilateral priming accelerates recovery of upper limb function after stroke: a randomized controlled trial.

    PubMed

    Stinear, Cathy M; Petoe, Matthew A; Anwar, Samir; Barber, Peter Alan; Byblow, Winston D

    2014-01-01

    The ability to live independently after stroke depends on the recovery of upper limb function. We hypothesized that bilateral priming with active-passive movements before upper limb physiotherapy would promote rebalancing of corticomotor excitability and would accelerate upper limb recovery at the subacute stage. A single-center randomized controlled trial of bilateral priming was conducted with 57 patients randomized at the subacute stage after first-ever ischemic stroke. The PRIMED group made device-assisted mirror symmetrical bimanual movements before upper limb physiotherapy, every weekday for 4 weeks. The CONTROL group was given intermittent cutaneous electric stimulation of the paretic forearm before physiotherapy. Assessments were made at baseline, 6, 12, and 26 weeks. The primary end point was the proportion of patients who reached their plateau for upper limb function at 12 weeks, measured with the Action Research Arm Test. Odds ratios indicated that PRIMED participants were 3× more likely than controls to reach their recovery plateau by 12 weeks. Intention-to-treat and per-protocol analyses showed a greater proportion of PRIMED participants achieved their plateau by 12 weeks (intention to treat, χ2=4.25; P=0.039 and per protocol, χ2=3.99; P=0.046). ANOVA of per-protocol data showed PRIMED participants had greater rebalancing of corticomotor excitability than controls at 12 and 26 weeks and interhemispheric inhibition at 26 weeks (all P<0.05). Bilateral priming accelerated recovery of upper limb function in the initial weeks after stroke. URL: http://www.anzctr.org.au. Unique identifier: ANZCTR1260900046822.

  4. Upper limb function in persons with long term paraplegia and implications for independence: Part II.

    PubMed

    Pentland, W E; Twomey, L T

    1994-04-01

    Research has shown that wheelchair use in long term paraplegia is associated with upper limb pain and degeneration that interferes with the independent performance of activities of daily living. This paper proposes a model to explain the development of upper limb problems in persons with long term paraplegia, and one that will guide in the prevention and management of this type of long term complication.

  5. Identification and classification of upper limb motions using PCA.

    PubMed

    Veer, Karan; Vig, Renu

    2018-03-28

    This paper describes the utility of principal component analysis (PCA) in classifying upper limb signals. PCA is a powerful tool for analyzing data of high dimension. Here, two different input strategies were explored. The first method uses upper arm dual-position-based myoelectric signal acquisition and the other solely uses PCA for classifying surface electromyogram (SEMG) signals. SEMG data from the biceps and the triceps brachii muscles and four independent muscle activities of the upper arm were measured in seven subjects (total dataset=56). The datasets used for the analysis are rotated by class-specific principal component matrices to decorrelate the measured data prior to feature extraction.

  6. Partial weight support differentially affects corticomotor excitability across muscles of the upper limb

    PubMed Central

    Runnalls, Keith D.; Anson, Greg; Wolf, Steven L.; Byblow, Winston D.

    2014-01-01

    Abstract Partial weight support may hold promise as a therapeutic adjuvant during rehabilitation after stroke by providing a permissive environment for reducing the expression of abnormal muscle synergies that cause upper limb impairment. We explored the neurophysiological effects of upper limb weight support in 13 healthy young adults by measuring motor‐evoked potentials (MEPs) from transcranial magnetic stimulation (TMS) of primary motor cortex and electromyography from anterior deltoid (AD), biceps brachii (BB), extensor carpi radialis (ECR), and first dorsal interosseous (FDI). Five levels of weight support, varying from none to full, were provided to the arm using a commercial device (Saebo Mobile Arm Support). For each level of support, stimulus–response (SR) curves were derived from MEPs across a range of TMS intensities. Weight support affected background EMG activity in each of the four muscles examined (P <0.0001 for each muscle). Tonic background activity was primarily reduced in the AD. Weight support had a differential effect on the size of MEPs across muscles. After curve fitting, the SR plateau for ECR increased at the lowest support level (P =0.004). For FDI, the SR plateau increased at the highest support level (P =0.0003). These results indicate that weight support of the proximal upper limb modulates corticomotor excitability across the forearm and hand. The findings support a model of integrated control of the upper limb and may inform the use of weight support in clinical settings. PMID:25501435

  7. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population.

    PubMed

    Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra

    2018-01-01

    Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial-it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be

  8. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population

    PubMed Central

    Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra

    2018-01-01

    Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial—it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be

  9. Update on embryology of the upper limb.

    PubMed

    Al-Qattan, Mohammad M; Kozin, Scott H

    2013-09-01

    Current concepts in the steps of upper limb development and the way the limb is patterned along its 3 spatial axes are reviewed. Finally, the embryogenesis of various congenital hand anomalies is delineated with an emphasis on the pathogenetic basis for each anomaly. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Can new technologies improve upper limb performance in grown-up diplegic children?

    PubMed

    Turconi, Anna C; Biffi, Emilia; Maghini, Cristina; Peri, Elisabetta; Servodio Iammarone, Fernanda; Gagliardi, Chiara

    2016-10-01

    Few systematic studies describe rehabilitation trainings for upper limb in diplegic children with cerebral palsy (CP), who - especially once grown up - are often not considered as a target for rehabilitation interventions. In this pilot study, we describe the details and the effectiveness of an intensive, technology assisted intervention for upper limb. The treatment combines the utilization of Armeo® Spring with a training focused on hand/finger fluency and dexterity in a pre-post treatment experimental design. Participants were ten school-aged children (mean age 11.2) with bilateral CP and diplegia, attending mainstream schools. Participants underwent 40 therapy sessions in four weeks. Armeo® Spring measures, standardized motor and perceptual outcome indexes, as well as everyday life indicators were utilized to assess the effect of the intervention. Upper limb coordination, fluency and quality of movements mainly of hands and fingers significantly improved, with a good transferability to everyday life also in areas not specifically trained, such as self-care abilities and mobility. Probably due to the visual feedback provided by the virtual reality setting (which was all in one the context, the incentive and the product of activities), perceptual abilities significantly improved, too. Our study suggests the importance of intervention on upper limb even in milder CP diplegic forms and in relatively grown-up children. The possibility of modification at least partially relies on learning processes that are active all along development and benefit from stimulation. Though further studies with control groups and follow-up perspective are needed to confirm, new technologies offer interesting possibilities to be integrated into new evidence-based rehabilitation models.

  11. The clinical aspects of the upper extremity exoskeleton "EXAR" use

    NASA Astrophysics Data System (ADS)

    Vorobiev, A. A.; Krivonozhkina, P. S.; Andryushchenko, F. A.; Zasypkina, O. A.

    2015-11-01

    The article considers some of indications and contraindications for the use of the exoskeleton "EXAR". Our experience with the present construction use shows that the exoskeleton "EXAR" is able to make up the following lost or disturbed muscle functions:- an arm raise; a drawing of the arm aside from the trunk;- a bending of the arm in shoulder or elbow joints.

  12. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.

    PubMed

    Veerbeek, Janne M; Langbroek-Amersfoort, Anneli C; van Wegen, Erwin E H; Meskers, Carel G M; Kwakkel, Gert

    2017-02-01

    Robot technology for poststroke rehabilitation is developing rapidly. A number of new randomized controlled trials (RCTs) have investigated the effects of robot-assisted therapy for the paretic upper limb (RT-UL). To systematically review the effects of poststroke RT-UL on measures of motor control of the paretic arm, muscle strength and tone, upper limb capacity, and basic activities of daily living (ADL) in comparison with nonrobotic treatment. Relevant RCTs were identified in electronic searches. Meta-analyses were performed for measures of motor control (eg, Fugl-Meyer Assessment of the arm; FMA arm), muscle strength and tone, upper limb capacity, and basic ADL. Subgroup analyses were applied for the number of joints involved, robot type, timing poststroke, and treatment contrast. Forty-four RCTs (N = 1362) were included. No serious adverse events were reported. Meta-analyses of 38 trials (N = 1206) showed significant but small improvements in motor control (~2 points FMA arm) and muscle strength of the paretic arm and a negative effect on muscle tone. No effects were found for upper limb capacity and basic ADL. Shoulder/elbow robotics showed small but significant effects on motor control and muscle strength, while elbow/wrist robotics had small but significant effects on motor control. RT-UL allows patients to increase the number of repetitions and hence intensity of practice poststroke, and appears to be a safe therapy. Effects on motor control are small and specific to the joints targeted by RT-UL, whereas no generalization is found to improvements in upper limb capacity. The impact of RT-UL started in the first weeks poststroke remains unclear. These limited findings could mainly be related to poor understanding of robot-induced motor learning as well as inadequate designing of RT-UL trials, by not applying an appropriate selection of stroke patients with a potential to recovery at baseline as well as the lack of fixed timing of baseline assessments and

  13. Decoding Lower Limb Muscle Activity and Kinematics from Cortical Neural Spike Trains during Monkey Performing Stand and Squat Movements

    PubMed Central

    Ma, Xuan; Ma, Chaolin; Huang, Jian; Zhang, Peng; Xu, Jiang; He, Jiping

    2017-01-01

    Extensive literatures have shown approaches for decoding upper limb kinematics or muscle activity using multichannel cortical spike recordings toward brain machine interface (BMI) applications. However, similar topics regarding lower limb remain relatively scarce. We previously reported a system for training monkeys to perform visually guided stand and squat tasks. The current study, as a follow-up extension, investigates whether lower limb kinematics and muscle activity characterized by electromyography (EMG) signals during monkey performing stand/squat movements can be accurately decoded from neural spike trains in primary motor cortex (M1). Two monkeys were used in this study. Subdermal intramuscular EMG electrodes were implanted to 8 right leg/thigh muscles. With ample data collected from neurons from a large brain area, we performed a spike triggered average (SpTA) analysis and got a series of density contours which revealed the spatial distributions of different muscle-innervating neurons corresponding to each given muscle. Based on the guidance of these results, we identified the locations optimal for chronic electrode implantation and subsequently carried on chronic neural data recordings. A recursive Bayesian estimation framework was proposed for decoding EMG signals together with kinematics from M1 spike trains. Two specific algorithms were implemented: a standard Kalman filter and an unscented Kalman filter. For the latter one, an artificial neural network was incorporated to deal with the nonlinearity in neural tuning. High correlation coefficient and signal to noise ratio between the predicted and the actual data were achieved for both EMG signals and kinematics on both monkeys. Higher decoding accuracy and faster convergence rate could be achieved with the unscented Kalman filter. These results demonstrate that lower limb EMG signals and kinematics during monkey stand/squat can be accurately decoded from a group of M1 neurons with the proposed

  14. Recovery of upper limb muscle function in chronic fatigue syndrome with and without fibromyalgia.

    PubMed

    Ickmans, Kelly; Meeus, Mira; De Kooning, Margot; Lambrecht, Luc; Nijs, Jo

    2014-02-01

    Chronic fatigue syndrome (CFS) patients frequently complain of muscle fatigue and abnormally slow recovery, especially of the upper limb muscles during and after activities of daily living. Furthermore, disease heterogeneity has not yet been studied in relation to recovery of muscle function in CFS. Here, we examine recovery of upper limb muscle function from a fatiguing exercise in CFS patients with (CFS+FM) and without (CFS-only) comorbid fibromyalgia and compare their results with a matched inactive control group. In this case-control study, 18 CFS-only patients, 30 CFS+FM patients and 30 healthy inactive controls performed a fatiguing upper limb exercise test with subsequent recovery measures. There was no significant difference among the three groups for maximal handgrip strength of the non-dominant hand. A significant worse recovery of upper limb muscle function was found in the CFS+FM, but not in de CFS-only group compared with the controls (P < 0·05). This study reveals, for the first time, delayed recovery of upper limb muscle function in CFS+FM, but not in CFS-only patients. The results underline that CFS is a heterogeneous disorder suggesting that reducing the heterogeneity of the disorder in future research is important to make progress towards a better understanding and uncovering of mechanisms regarding the nature of divers impairments in these patients. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  15. The impact of workplace risk factors on the occurrence of neck and upper limb pain: a general population study.

    PubMed

    Sim, Julius; Lacey, Rosie J; Lewis, Martyn

    2006-09-19

    Work-related neck and upper limb pain has mainly been studied in specific occupational groups, and little is known about its impact in the general population. The objectives of this study were to estimate the prevalence and population impact of work-related neck and upper limb pain. A cross-sectional survey was conducted of 10,000 adults in North Staffordshire, UK, in which there is a common local manual industry. The primary outcome measure was presence or absence of neck and upper limb pain. Participants were asked to give details of up to five recent jobs, and to report exposure to six work activities involving the neck or upper limbs. Psychosocial measures included job control, demand and support. Odds ratios (ORs) and population attributable fractions were calculated for these risk factors. The age-standardized one-month period prevalence of neck and upper limb pain was 44%. There were significant independent associations between neck and upper limb pain and: repeated lifting of heavy objects (OR = 1.4); prolonged bending of neck (OR = 2.0); working with arms at/above shoulder height (OR = 1.3); little job control (OR = 1.6); and little supervisor support (OR = 1.3). The population attributable fractions were 0.24 (24%) for exposure to work activities and 0.12 (12%) for exposure to psychosocial factors. Neck and upper limb pain is associated with both physical and psychosocial factors in the work environment. Inferences of cause-and-effect from cross-sectional studies must be made with caution; nonetheless, our findings suggest that modification of the work environment might prevent up to one in three of cases of neck and upper limb pain in the general population, depending on current exposures to occupational risk.

  16. Revised upper limb module for spinal muscular atrophy: Development of a new module.

    PubMed

    Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio

    2017-06-01

    There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.

  17. The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies

    PubMed Central

    Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni

    2012-01-01

    To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504

  18. Multibody system of the upper limb including a reverse shoulder prosthesis.

    PubMed

    Quental, C; Folgado, J; Ambrósio, J; Monteiro, J

    2013-11-01

    The reverse shoulder replacement, recommended for the treatment of several shoulder pathologies such as cuff tear arthropathy and fractures in elderly people, changes the biomechanics of the shoulder when compared to the normal anatomy. Although several musculoskeletal models of the upper limb have been presented to study the shoulder joint, only a few of them focus on the biomechanics of the reverse shoulder. This work presents a biomechanical model of the upper limb, including a reverse shoulder prosthesis, to evaluate the impact of the variation of the joint geometry and position on the biomechanical function of the shoulder. The biomechanical model of the reverse shoulder is based on a musculoskeletal model of the upper limb, which is modified to account for the properties of the DELTA® reverse prosthesis. Considering two biomechanical models, which simulate the anatomical and reverse shoulder joints, the changes in muscle lengths, muscle moment arms, and muscle and joint reaction forces are evaluated. The muscle force sharing problem is solved for motions of unloaded abduction in the coronal plane and unloaded anterior flexion in the sagittal plane, acquired using video-imaging, through the minimization of an objective function related to muscle metabolic energy consumption. After the replacement of the shoulder joint, significant changes in the length of the pectoralis major, latissimus dorsi, deltoid, teres major, teres minor, coracobrachialis, and biceps brachii muscles are observed for a reference position considered for the upper limb. The shortening of the teres major and teres minor is the most critical since they become unable to produce active force in this position. Substantial changes of muscle moment arms are also observed, which are consistent with the literature. As expected, there is a significant increase of the deltoid moment arms and more fibers are able to elevate the arm. The solutions to the muscle force sharing problem support the

  19. Advances in upper limb stroke rehabilitation: a technology push.

    PubMed

    Loureiro, Rui C V; Harwin, William S; Nagai, Kiyoshi; Johnson, Michelle

    2011-10-01

    Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.

  20. Upper limb contributions to frontal plane balance control in rollator-assisted walking.

    PubMed

    Tung, James Y; Gage, William H; Poupart, Pascal; McIlroy, William E

    2014-01-01

    While assisting with balance is a primary reason for rollator use, few studies have examined how the upper limbs are used for balance. This study examines upper limb contributions to balance control during rollator-assisted walking. We hypothesized that there would be an increased upper limb contribution, measured by mean vertical loading (Fz) and variation in frontal plane center-of-pressure (COPhigh), when walking balance is challenged/impaired. Experiment 1 compared straight-line and beam-walking in young adults (n = 11). As hypothesized, Fz and COPhighincreased in beam-walking compared to baseline (mean Fz: 13.7 vs. 9.1% body weight (BW), p < 0.001, RMS COPhigh: 1.35 vs. 1.07 cm, p < 0.001). Experiment 2 compared older adults who regularly use rollators (RU, n = 10) to older adult controls (CTL, n = 10). The predicted higher upper limb contribution in the RU group was not supported. However, when individuals were grouped by balance impairment, those with the lowest Berg Balance scores (< 45) demonstrated greater speed-adjusted COPhigh than those with higher scores (p = 0.013). Furthermore, greater COPhigh and Fz were correlated to greater reduction in step width, supporting the role of upper limb contributions to frontal plane balance. This work will guide studies assessing reliance on rollators by providing a basis for measurement of upper limb balance contributions.

  1. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.

    PubMed

    Yin, Yue H; Fan, Yuan J; Xu, Li D

    2012-07-01

    Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.

  2. Adaptive behaviour and motor skills in children with upper limb deficiency.

    PubMed

    Mano, Hiroshi; Fujiwara, Sayaka; Haga, Nobuhiko

    2018-04-01

    The dysfunction of individuals with upper limb deficiencies affects their daily lives and social participation. To clarify the adaptive behaviours and motor skills of children with upper limb deficiencies. Cross-sectional survey. The subjects were 10 children ranging from 1 to 6 years of age with unilateral upper limb deficiencies at the level distal to the elbow who were using only cosmetic or passive prostheses or none at all. To measure their adaptive behaviour and motor skills, the Vineland Adaptive Behavior Scales, Second Edition was used. They were evaluated on the domains of communication, daily living skills, socialization and motor skills. We also examined the relationship of the scores with age. There were no statistically significant scores for domains or subdomains. The domain standard score of motor skills was significantly lower than the median scores of the domains and was negatively correlated with age. Children with upper limb deficiencies have individual weaknesses in motor skill behaviours, and these weaknesses increase with age. It may be helpful in considering approaches to rehabilitation and the prescription of prostheses to consider the characteristics and course of children's motor skill behaviours. Clinical relevance Even if children with unilateral upper limb deficiencies seem to compensate well for their affected limb function, they have or will experience individual weaknesses in motor skills. We should take this into consideration to develop better strategies for rehabilitation and prostheses prescriptions.

  3. Exoskeleton plantarflexion assistance for elderly.

    PubMed

    Galle, S; Derave, W; Bossuyt, F; Calders, P; Malcolm, P; De Clercq, D

    2017-02-01

    Elderly are confronted with reduced physical capabilities and increased metabolic energy cost of walking. Exoskeletons that assist walking have the potential to restore walking capacity by reducing the metabolic cost of walking. However, it is unclear if current exoskeletons can reduce energy cost in elderly. Our goal was to study the effect of an exoskeleton that assists plantarflexion during push-off on the metabolic energy cost of walking in physically active and healthy elderly. Seven elderly (age 69.3±3.5y) walked on treadmill (1.11ms 2 ) with normal shoes and with the exoskeleton both powered (with assistance) and powered-off (without assistance). After 20min of habituation on a prior day and 5min on the test day, subjects were able to walk with the exoskeleton and assistance of the exoskeleton resulted in a reduction in metabolic cost of 12% versus walking with the exoskeleton powered-off. Walking with the exoskeleton was perceived less fatiguing for the muscles compared to normal walking. Assistance resulted in a statistically nonsignificant reduction in metabolic cost of 4% versus walking with normal shoes, likely due to the penalty of wearing the exoskeleton powered-off. Also, exoskeleton mechanical power was relatively low compared to previously identified optimal assistance magnitude in young adults. Future exoskeleton research should focus on further optimizing exoskeleton assistance for specific populations and on considerate integration of exoskeletons in rehabilitation or in daily life. As such, exoskeletons should allow people to walk longer or faster than without assistance and could result in an increase in physical activity and resulting health benefits. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Design of a pneumatically powered wearable exoskeleton with biomimetic support and actuation

    NASA Astrophysics Data System (ADS)

    Sergeyev, A.; Alaraje, N.; Seidel, C.; Carlson, Z.; Breda, B.

    Powered exoskeletons are designed to assist and protect the wearer. Depending on the situation they may be used to protect soldiers and construction workers, aid the survival of people in dangerous environments, or assist patients in rehabilitation. Regardless of the application there are strict requirements for designing and producing exoskeleton suites. They must be durable but light weight and flexible, have reliable power control and modulation, capable of detecting unsafe and invalid motions, and may require significant weight lifting capabilities. In this article we present an on-going research on robotic exoskeleton replicating of human muscle functions. A single wearable knee-joint prototype described in this article combines the use of soft pneumatic muscle-like actuators and a control system based off the users own natural muscle signals. The Pneumatic Exoskeleton uses bioelectrical signals to detect movement intention from the pilot. This paper details the technical design aspects of a lower-limb robotic exoskeleton with possibility of further expansion to fully functioning robotic exoskeleton suit.

  5. Importance of upper-limb inertia in calculating concentric bench press force.

    PubMed

    Rambaud, Olivier; Rahmani, Abderrahmane; Moyen, Bernard; Bourdin, Muriel

    2008-03-01

    The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P < 0.0001), whereas no significant difference was found between Fpeakp and Fpeakt. The values of maximal force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.

  6. The Floating Upper Limb: Multiple Injuries Involving Ipsilateral, Proximal, Humeral, Supracondylar, and Distal Radial Limb

    PubMed Central

    Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A.

    2016-01-01

    Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation. PMID:27583121

  7. The Floating Upper Limb: Multiple Injuries Involving Ipsilateral, Proximal, Humeral, Supracondylar, and Distal Radial Limb.

    PubMed

    Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A; Danish, Qazi

    2016-09-01

    Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.

  8. Novel In-Shoe Exoskeleton for Offloading of Forefoot Pressure for Individuals With Diabetic Foot Pathology.

    PubMed

    Roser, Mark C; Canavan, Paul K; Najafi, Bijan; Cooper Watchman, Marcy; Vaishnav, Kairavi; Armstrong, David G

    2017-09-01

    Infected diabetic foot ulcers are the leading cause of lower limb amputation. This study evaluated the ability of in-shoe exoskeletons to redirect forces outside of body and through an exoskeleton as an effective means of offloading plantar pressure, the major contributing factor of ulceration. We compared pressure in the forefoot and hind-foot of participants (n = 5) shod with novel exoskeleton footwear. Plantar pressure readings were taken during a 6-m walk at participant's self-selected speed, and five strides were averaged. Results were taken with Achilles exotendon springs disengaged as a baseline, followed by measurements taken with the springs engaged. When springs were engaged, all participants demonstrated a decrease in forefoot pressure, averaging a 22% reduction ( P < .050). Patient feedback was universally positive, preferring the exotendon springs to be engaged and active. Offloading is standard of care for reducing harmful plantar pressure, which may lead to foot ulcers. However, current offloading modalities are limited and have issues. This proof-of-concept study proposed a novel offloading approach based on an exoskeleton solution. Results suggest that when the novel exoskeletons were deployed in footwear and exotendon springs engaged, force was successfully transferred from the lower leg through the exoskeleton-enabled shoe to ground, reducing load on the forefoot. The results need to be confirmed in a larger sample. Another study is warranted to examine the effectiveness of this offloading to prevent diabetic foot ulcer, while minimizing gait alteration in daily physical activities.

  9. Upper limb malformations in DiGeorge syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormier-Daire, V.; Iserin, L.; Sidi, D.

    1995-03-13

    We report on upper limb anomalies in two children with a complete DiGeorge sequence: conotruncal defects, hypocalcemia, thymic aplasia, and facial anomalies. One child had preaxial polydactyly, and the other had club hands with hypoplastic first metacarpal. In both patients, molecular analysis documented a 22q11 deletion. To our knowledge, limb anomalies have rarely been reported in DiGeorge syndrome, and they illustrate the variable clinical expression of chromosome 22q11 deletions. 13 refs., 2 figs.

  10. Classification of different reaching movements from the same limb using EEG

    NASA Astrophysics Data System (ADS)

    Shiman, Farid; López-Larraz, Eduardo; Sarasola-Sanz, Andrea; Irastorza-Landa, Nerea; Spüler, Martin; Birbaumer, Niels; Ramos-Murguialday, Ander

    2017-08-01

    Objective. Brain-computer-interfaces (BCIs) have been proposed not only as assistive technologies but also as rehabilitation tools for lost functions. However, due to the stochastic nature, poor spatial resolution and signal to noise ratio from electroencephalography (EEG), multidimensional decoding has been the main obstacle to implement non-invasive BCIs in real-live rehabilitation scenarios. This study explores the classification of several functional reaching movements from the same limb using EEG oscillations in order to create a more versatile BCI for rehabilitation. Approach. Nine healthy participants performed four 3D center-out reaching tasks in four different sessions while wearing a passive robotic exoskeleton at their right upper limb. Kinematics data were acquired from the robotic exoskeleton. Multiclass extensions of Filter Bank Common Spatial Patterns (FBCSP) and a linear discriminant analysis (LDA) classifier were used to classify the EEG activity into four forward reaching movements (from a starting position towards four target positions), a backward movement (from any of the targets to the starting position and rest). Recalibrating the classifier using data from previous or the same session was also investigated and compared. Main results. Average EEG decoding accuracy were significantly above chance with 67%, 62.75%, and 50.3% when decoding three, four and six tasks from the same limb, respectively. Furthermore, classification accuracy could be increased when using data from the beginning of each session as training data to recalibrate the classifier. Significance. Our results demonstrate that classification from several functional movements performed by the same limb is possible with acceptable accuracy using EEG oscillations, especially if data from the same session are used to recalibrate the classifier. Therefore, an ecologically valid decoding could be used to control assistive or rehabilitation mutli-degrees of freedom (DoF) robotic devices

  11. Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis.

    PubMed

    Lanhers, Charlotte; Pereira, Bruno; Naughton, Geraldine; Trousselard, Marion; Lesage, François-Xavier; Dutheil, Frédéric

    2017-01-01

    Creatine is the most widely used supplementation to increase performance in strength; however, the most recent meta-analysis focused specifically on supplementation responses in muscles of the lower limbs without regard to upper limbs. We aimed to systematically review the effect of creatine supplementation on upper limb strength performance. We conducted a systematic review and meta-analyses of all randomized controlled trials comparing creatine supplementation with a placebo, with strength performance measured in exercises shorter than 3 min in duration. The search strategy used the keywords 'creatine', 'supplementation', and 'performance'. Independent variables were age, sex and level of physical activity at baseline, while dependent variables were creatine loading, total dose, duration, time interval between baseline (T0) and the end of the supplementation (T1), and any training during supplementation. We conducted three meta-analyses: at T0 and T1, and on changes between T0 and T1. Each meta-analysis was stratified within upper limb muscle groups. We included 53 studies (563 individuals in the creatine supplementation group and 575 controls). Results did not differ at T0, while, at T1, the effect size (ES) for bench press and chest press were 0.265 (95 % CI 0.132-0.398; p < 0.001) and 0.677 (95 % CI 0.149-1.206; p = 0.012), respectively. Overall, pectoral ES was 0.289 (95 % CI 0.160-0.419; p = 0.000), and global upper limb ES was 0.317 (95 % CI 0.185-0.449; p < 0.001). Meta-analysis of changes between T0 and T1 gave similar results. The meta-regression showed no link with characteristics of population or supplementation, demonstrating the efficacy of creatine independently of all listed conditions. Creatine supplementation is effective in upper limb strength performance for exercise with a duration of less than 3  min, independent of population characteristics, training protocols, and supplementary doses or duration.

  12. Analyzing at-home prosthesis use in unilateral upper-limb amputees to inform treatment & device design.

    PubMed

    Spiers, Adam J; Resnik, Linda; Dollar, Aaron M

    2017-07-01

    New upper limb prosthetic devices are continuously being developed by a variety of industrial, academic, and hobbyist groups. Yet, little research has evaluated the long term use of currently available prostheses in daily life activities, beyond laboratory or survey studies. We seek to objectively measure how experienced unilateral upper limb prosthesis-users employ their prosthetic devices and unaffected limb for manipulation during everyday activities. In particular, our goal is to create a method for evaluating all types of amputee manipulation, including non-prehensile actions beyond conventional grasp functions, as well as to examine the relative use of both limbs in unilateral and bilateral cases. This study employs a head-mounted video camera to record participant's hands and arms as they complete unstructured domestic tasks within their own homes. A new 'Unilateral Prosthesis-User Manipulation Taxonomy' is presented based observations from 10 hours of recorded videos. The taxonomy addresses manipulation actions of the intact hand, prostheses, bilateral activities, and environmental feature-use (aiïordances). Our preliminary results involved tagging 23 minute segments of the full videos from 3 amputee participants using the taxonomy. This resulted in over 2,300 tag instances. Observations included that non-prehensile interactions outnumbered prehensile interactions in the affected limb for users with more distal amputation that allowed arm mobility.

  13. Upper limb function in Duchenne muscular dystrophy: 24 month longitudinal data.

    PubMed

    Pane, Marika; Coratti, Giorgia; Brogna, Claudia; Mazzone, Elena Stacy; Mayhew, Anna; Fanelli, Lavinia; Messina, Sonia; D'Amico, Adele; Catteruccia, Michela; Scutifero, Marianna; Frosini, Silvia; Lanzillotta, Valentina; Colia, Giulia; Cavallaro, Filippo; Rolle, Enrica; De Sanctis, Roberto; Forcina, Nicola; Petillo, Roberta; Barp, Andrea; Gardani, Alice; Pini, Antonella; Monaco, Giulia; D'Angelo, Maria Grazia; Zanin, Riccardo; Vita, Gian Luca; Bruno, Claudio; Mongini, Tiziana; Ricci, Federica; Pegoraro, Elena; Bello, Luca; Berardinelli, Angela; Battini, Roberta; Sansone, Valeria; Albamonte, Emilio; Baranello, Giovanni; Bertini, Enrico; Politano, Luisa; Sormani, Maria Pia; Mercuri, Eugenio

    2018-01-01

    The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7-15.8 years), and 90 non-ambulant (age range: 9.08-24.78). The total scores changed significantly over time (p<0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials.

  14. Effects of upper-limb immobilisation on driving safety.

    PubMed

    Gregory, J J; Stephens, A N; Steele, N A; Groeger, J A

    2009-03-01

    Doctors are frequently asked by patients whether it is safe to drive with an upper limb immobilised in a cast. In the literature there are no objective measurements of the effects of upper-limb immobilisation upon driving performance. Eight healthy volunteers performed four 20-min driving circuits in a driving simulator (STISIM 400W), circuits 1 and 4 without immobilisation and circuits 2 and 3 with immobilisation. Immobilisation involved a lightweight below-elbow cast with the thumb left free. Volunteers were randomised to right or left immobilisation for circuit 2, and the contralateral wrist was immobilised for circuit 3. Circuits included urban and rural environments and specific hazards (pedestrians crossing, vehicles emerging from a concealed entrance, traffic lights changing suddenly, avoidance of an oncoming vehicle in the driver's carriageway). Limb immobilisation led to more cautious rural and urban driving, with less adjustment of speed and lateral road position than when unrestricted. However when responding to hazards immobilisation caused less safe driving, with higher speeds, a greater proximity to the hazard before action was taken and less steering adjustment. The effects of restriction upon performance were more prevalent and severe with right-arm immobilisation. Upper-limb immobilisation appears to have little effect on the ability to drive a car unchallenged, but to adversely affect responses to routine hazards. Advice on ability to drive safely should be cautious, as the impact of immobilisation appears to be more subtle and wide ranging than previously thought.

  15. Hysteresis compensation technique applied to polymer optical fiber curvature sensor for lower limb exoskeletons

    NASA Astrophysics Data System (ADS)

    Gomes Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; José Pontes, Maria; Rodrigues Botelho, Thomaz

    2017-12-01

    Polymer optical fiber (POF) curvature sensors present some advantages over conventional techniques for angle measurements, such as their light weight, compactness and immunity to electromagnetic fields. However, high hysteresis can occur in POF curvature sensors due to the polymer viscoelastic response. In order to overcome this limitation, this paper shows how the hysteresis sensor can be compensated by a calibration equation relating the measured output signal to the sensor’s angular velocity. The proposed method is validated using an exoskeleton with an active joint on the knee for flexion and extension rehabilitation exercises. The results show a decrease in sensor hysteresis and a decrease by more than two times in the error between the POF sensor and the potentiometer, which is employed for the angle measurement of the exoskeleton knee joint.

  16. Voluntary Ambulation by Upper Limb-Triggered HAL® in Patients with Complete Quadri/Paraplegia Due to Chronic Spinal Cord Injury.

    PubMed

    Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Abe, Tetsuya; Ueno, Tomoyuki; Soma, Yuichiro; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi

    2017-01-01

    Patients with complete paraplegia after spinal cord injury (SCI) are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL) in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman) were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20-67) years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS) grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60-90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG) was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad) in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs) score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention. These findings

  17. Voluntary Ambulation by Upper Limb-Triggered HAL® in Patients with Complete Quadri/Paraplegia Due to Chronic Spinal Cord Injury

    PubMed Central

    Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Abe, Tetsuya; Ueno, Tomoyuki; Soma, Yuichiro; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi

    2017-01-01

    Patients with complete paraplegia after spinal cord injury (SCI) are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL) in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman) were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20–67) years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS) grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60–90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG) was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad) in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs) score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention. These

  18. Literature Review on Needs of Upper Limb Prosthesis Users.

    PubMed

    Cordella, Francesca; Ciancio, Anna Lisa; Sacchetti, Rinaldo; Davalli, Angelo; Cutti, Andrea Giovanni; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses.

  19. Literature Review on Needs of Upper Limb Prosthesis Users

    PubMed Central

    Cordella, Francesca; Ciancio, Anna Lisa; Sacchetti, Rinaldo; Davalli, Angelo; Cutti, Andrea Giovanni; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses. PMID:27242413

  20. Mental health and satisfaction with life among upper limb amputees: a Norwegian population-based survey comparing adult acquired major upper limb amputees with a control group.

    PubMed

    Østlie, Kristin; Magnus, Per; Skjeldal, Ola H; Garfelt, Beate; Tambs, Kristian

    2011-01-01

    To assess how upper limb amputation affects mental health and life satisfaction. Cross-sectional study comparing the mental health and perceived satisfaction with life among adult acquired major upper limb amputees in Norway with a control group drawn from the Norwegian general population. The scales used were the Satisfaction With Life Scale (SWLS) and the Hopkins Symptom Check List 25-item (SCL-25). The groups were compared using multiple linear regression analyses. The amputees scored significantly lower on life satisfaction than the control group. A tendency to poorer mental health in the amputee group was observed, but there was no clear evidence of such a difference. The amputation effect on life satisfaction seemed to be mediated mainly by changes in occupational status and by the occurrence of short- or long-term complications related to the amputation. Our findings imply that rehabilitation of upper limb amputees should emphasise facilitating return to work as well as the prevention of short- and long-term complications, and that this will be of importance not only for the amputees' physical function, but for the maintenance of acceptable life satisfaction. Further studies on the effect of upper limb amputation on mental health are recommended.

  1. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study.

    PubMed

    Ma, Deqiong; Jones, Graeme

    2003-11-01

    The effect of physical activity on upper limb fractures was examined in this population-based case control study with 321 age- and gender-matched pairs. Sports participation increased fracture risk in boys and decreased risk in girls. Television viewing had a deleterious dose response association with wrist and forearm fractures while light physical activity was protective. The aim of this population-based case control study was to examine the association between television, computer, and video viewing; types and levels of physical activity; and upper limb fractures in children 9-16 years of age. A total of 321 fracture cases and 321 randomly selected individually matched controls were studied. Television, computer, and video viewing and types and levels of physical activity were determined by interview-administered questionnaire. Bone strength was assessed by DXA and metacarpal morphometry. In general, sports participation increased total upper limb fracture risk in boys and decreased risk in girls. Gender-specific risk estimates were significantly different for total, contact, noncontact, and high-risk sports participation as well as four individual sports (soccer, cricket, surfing, and swimming). In multivariate analysis, time spent television, computer, and video viewing in both sexes was positively associated with wrist and forearm fracture risk (OR 1.6/category, 95% CI: 1.1-2.2), whereas days involved in light physical activity participation decreased fracture risk (OR 0.8/category, 95% CI: 0.7-1.0). Sports participation increased hand (OR 1.5/sport, 95% CI: 1.1-2.0) and upper arm (OR 29.8/sport, 95% CI: 1.7-535) fracture risk in boys only and decreased wrist and forearm fracture risk in girls only (OR 0.5/sport, 95% CI: 0.3-0.9). Adjustment for bone density and metacarpal morphometry did not alter these associations. There is gender discordance with regard to sports participation and fracture risk in children, which may reflect different approaches to sport

  2. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  3. Does assist-as-needed upper limb robotic therapy promote participation in repetitive activity-based motor training in sub-acute stroke patients with severe paresis?

    PubMed

    Grosmaire, Anne-Gaëlle; Duret, Christophe

    2017-01-01

    Repetitive, active movement-based training promotes brain plasticity and motor recovery after stroke. Robotic therapy provides highly repetitive therapy that reduces motor impairment. However, the effect of assist-as-needed algorithms on patient participation and movement quality is not known. To analyze patient participation and motor performance during highly repetitive assist-as-needed upper limb robotic therapy in a retrospective study. Sixteen patients with sub-acute stroke carried out a 16-session upper limb robotic training program combined with usual care. The Fugl-Meyer Assessment (FMA) score was evaluated pre and post training. Robotic assistance parameters and Performance measures were compared within and across sessions. Robotic assistance did not change within-session and decreased between sessions during the training program. Motor performance did not decrease within-session and improved between sessions. Velocity-related assistance parameters improved more quickly than accuracy-related parameters. An assist-as-needed-based upper limb robotic training provided intense and repetitive rehabilitation and promoted patient participation and motor performance, facilitating motor recovery.

  4. Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review

    PubMed Central

    Santisteban, Leire; Térémetz, Maxime; Bleton, Jean-Pierre; Baron, Jean-Claude; Maier, Marc A.; Lindberg, Påvel G.

    2016-01-01

    Background Establishing which upper limb outcome measures are most commonly used in stroke studies may help in improving consensus among scientists and clinicians. Objective In this study we aimed to identify the most commonly used upper limb outcome measures in intervention studies after stroke and to describe domains covered according to ICF, how measures are combined, and how their use varies geographically and over time. Methods Pubmed, CinHAL, and PeDRO databases were searched for upper limb intervention studies in stroke according to PRISMA guidelines and477 studies were included. Results In studies 48different outcome measures were found. Only 15 of these outcome measures were used in more than 5% of the studies. The Fugl-Meyer Test (FMT)was the most commonly used measure (in 36% of studies). Commonly used measures covered ICF domains of body function and activity to varying extents. Most studies (72%) combined multiple outcome measures: the FMT was often combined with the Motor Activity Log (MAL), the Wolf Motor Function Test and the Action Research Arm Test, but infrequently combined with the Motor Assessment Scale or the Nine Hole Peg Test. Key components of manual dexterity such as selective finger movements were rarely measured. Frequency of use increased over a twelve-year period for the FMT and for assessments of kinematics, whereas other measures, such as the MAL and the Jebsen Taylor Hand Test showed decreased use over time. Use varied largely between countries showing low international consensus. Conclusions The results showed a large diversity of outcome measures used across studies. However, a growing number of studies used the FMT, a neurological test with good psychometric properties. For thorough assessment the FMT needs to be combined with functional measures. These findings illustrate the need for strategies to build international consensus on appropriate outcome measures for upper limb function after stroke. PMID:27152853

  5. [The movement computerized analysis as instrumental support for occupational doctors in evaluation of upper limb pathologies in engineering workers].

    PubMed

    D'Orso, M I; Centemeri, R; Oggionni, P; Latocca, R; Crippa, M; Vercellino, R; Riva, M; Cesana, G

    2011-01-01

    The movement computerized analysis of upper limb is a valid support in the definition of residual functional capability and of specific work suitability in complex cases. This methodology of evaluation is able to correctly and objectively define the tridimensional ranges of motion of every patient's upper limb. This fact can be particularly useful for workers coming back to work after a work-related or a not work-related accident of for handicapped workers at the beginning of a new work activity. We report a research carried out using computerized analysis of motion of upper limbs in 20 engineering workers.

  6. Active upper limb prosthesis based on natural movement trajectories.

    PubMed

    Ramírez-García, Alfredo; Leija, Lorenzo; Muñoz, Roberto

    2010-03-01

    The motion of the current prostheses is sequential and does not allow natural movements. In this work, complex natural motion patterns from a healthy upper limb were characterized in order to be emulated for a trans-humeral prosthesis with three degrees of freedom at the elbow. Firstly, it was necessary to define the prosthesis workspace, which means to establish a relationship using an artificial neural network (ANN), between the arm-forearm (3-D) angles allowed by the prosthesis, and its actuators length. The 3-D angles were measured between the forearm and each axis of the reference system attached at the elbow. Secondly, five activities of daily living (ADLs) were analyzed by means of the elbow flexion (EF), the forearm prono-supination (FPS) and the 3-D angles, from healthy subjects, by using a video-based motion analysis system. The 3-D angles were fed to the prosthesis model (ANN) in order to analyze which ADLs could be emulated by the prosthesis. As a result, a prosthesis kinematics approximation was obtained. In conclusion, in spite of the innovative mechanical configuration of the actuators, it was possible to carry out only three of the five ADLs considered. Future work will include improvement of the mechanical configuration of the prosthesis to have greater range of motion.

  7. Muscle recruitment and coordination with an ankle exoskeleton.

    PubMed

    Steele, Katherine M; Jackson, Rachel W; Shuman, Benjamin R; Collins, Steven H

    2017-07-05

    Exoskeletons have the potential to assist and augment human performance. Understanding how users adapt their movement and neuromuscular control in response to external assistance is important to inform the design of these devices. The aim of this research was to evaluate changes in muscle recruitment and coordination for ten unimpaired individuals walking with an ankle exoskeleton. We evaluated changes in the activity of individual muscles, cocontraction levels, and synergistic patterns of muscle coordination with increasing exoskeleton work and torque. Participants were able to selectively reduce activity of the ankle plantarflexors with increasing exoskeleton assistance. Increasing exoskeleton net work resulted in greater reductions in muscle activity than increasing exoskeleton torque. Patterns of muscle coordination were not restricted or constrained to synergistic patterns observed during unassisted walking. While three synergies could describe nearly 95% of the variance in electromyography data during unassisted walking, these same synergies could describe only 85-90% of the variance in muscle activity while walking with the exoskeleton. Synergies calculated with the exoskeleton demonstrated greater changes in synergy weights with increasing exoskeleton work versus greater changes in synergy activations with increasing exoskeleton torque. These results support the theory that unimpaired individuals do not exclusively use central pattern generators or other low-level building blocks to coordinate muscle activity, especially when learning a new task or adapting to external assistance, and demonstrate the potential for using exoskeletons to modulate muscle recruitment and coordination patterns for rehabilitation or performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Upper limb module in non-ambulant patients with spinal muscular atrophy: 12 month changes.

    PubMed

    Sivo, Serena; Mazzone, Elena; Antonaci, Laura; De Sanctis, Roberto; Fanelli, Lavinia; Palermo, Concetta; Montes, Jacqueline; Pane, Marika; Mercuri, Eugenio

    2015-03-01

    Recent studies have suggested that in non-ambulant patients affected by spinal muscular atrophy the Upper Limb Module can increase the range of activities assessed by the Hammersmith Functional Motor Scale Expanded. The aim of this study was to establish 12-month changes in the Upper Limb Module in a cohort of non-ambulant spinal muscular atrophy patients and their correlation with changes on the Hammersmith Functional Motor Scale Expanded. The Upper Limb Module scores ranged between 0 and 17 (mean 10.23, SD 4.81) at baseline and between 1 and 17 at 12 months (mean 10.27, SD 4.74). The Hammersmith Functional Motor Scale Expanded scores ranged between 0 and 34 (mean 12.43, SD 9.13) at baseline and between 0 and 34 at 12 months (mean 12.08, SD 9.21). The correlation betweeen the two scales was 0.65 at baseline and 0.72 on the 12 month changes. Our results confirm that the Upper Limb Module can capture functional changes in non-ambulant spinal muscular atrophy patients not otherwise captured by the other scale and that the combination of the two measures allows to capture changes in different subgroups of patients in whom baseline scores and functional changes may be influenced by several variables such as age. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss

    PubMed Central

    Whelan, Lynsay R.; Wagner, Nathan

    2011-01-01

    While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touch Bionics, a manufacturer of advanced upper limb prosthetic devices, employ Voice over the Internet Protocol (VoIP) videoconferencing software telehealth technologies to engage in remote consultation with users of prosthetic devices and/or their local practitioners. The Touch Bionics staff provide follow-up expertise to local prosthetists, occupational therapists, and other health professionals. Contrasted with prior telephone-based consultations, the video-enabled approach provides enhanced capabilities to benefit persons with upper limb loss. Currently, the opportunities for Touch Bionics occupational therapists to fully engage in patient-based services delivered through telehealth technologies are significantly reduced by their need to obtain and maintain professional licenses in multiple states. PMID:25945186

  10. Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor

    ERIC Educational Resources Information Center

    Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang

    2012-01-01

    There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation…

  11. The influence of Task-Related Training combined with Transcutaneous Electrical Nerve Stimulation on paretic upper limb muscle activation in patients with chronic stroke.

    PubMed

    Jung, Kyoungsim; Jung, Jinhwa; In, Taesung; Kim, Taehoon; Cho, Hwi-Young

    2017-01-01

    This study investigated the efficacy of Task-Related Training (TRT) Combined with Transcutaneous Electrical Nerve Stimulation (TENS) on the improvement of upper limb muscle activation in chronic stroke survivors with mild or moderate paresis. A single-blind, randomized clinical trial was conducted with 46stroke survivors with chronic paresis. They were randomly allocated two groups: the TRT+TENS group (n = 23) and the TRT+ placebo TENS (TRT+PLBO) group (n = 23). The TRT+TENS group received 30 minutes of high-frequency TENS on wrist and elbow extensors, while the TRT+PLBO group received placebo TENS that was not real ES. Both groups did 30 minutes of TRT after TENS application. Intervention was given five days a week for four weeks. The primary outcomes of upper limb muscle activation were measured by integrated EMG (IEMG), a digital manual muscle tester for muscle strength, active range of motion (AROM) and Fugl-Meyer Assessment of the upper extremity (FMA-UE). The measurements were performed before and after the 4 weeks intervention period. Both groups demonstrated significant improvements of outcomes in IEMG, AROM, muscle strength and FMA-UE during intervention period. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvement in muscle activation (wrist extensors, P = 0.045; elbow extensors, P = 0.004), muscle strength (wrist extensors, P = 0.044; elbow extensors, P = 0.012), AROM (wrist extension, P = 0.042; elbow extensors, P = 0.040) and FMA-UE (total, P < 0.001; shoulder/elbow/forearm, P = 0.001; wrist, P = 0.002; coordination, P = 0.008) at the end of intervention. Our findings indicate that TRT Combined with TENS can improve paretic muscle activity in upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS.

  12. H-GRASP: the feasibility of an upper limb home exercise program monitored by phone for individuals post stroke

    PubMed Central

    Simpson, Lisa A.; Eng, Janice J.; Chan, May

    2017-01-01

    Abstract Purpose: To investigate the feasibility of a phone-monitored home exercise program for the upper limb following stroke. Methods: A pre-post double baseline repeated measures design was used. Participants completed an 8-week home exercise program that included behavioural strategies to promote greater use of the affected upper limb. Participants were monitored weekly by therapists over the phone. The following feasibility outcomes were collected: Process (e.g. recruitment rate); Resources (e.g. exercise adherence rate); Management (e.g. therapist monitoring) and Scientific (e.g. safety, effect sizes). Clinical outcomes included: The Chedoke Arm and Hand Inventory, Motor Activity Log, grip strength and the Canadian Occupational Performance Measure. Results: Eight individuals with stroke were recruited and six participants completed the exercise program. All but one of the six participants met the exercise target of 60 minutes/day, 6 days/week. Participants were stable across the baseline period. The following post-treatment effect sizes were observed: CAHAI (0.944, p = 0.046); MALQ (0.789, p = 0.03) grip strength (0.947, p = 0.046); COPM (0.789, p = 0.03). Improvements were maintained at three and six month follow ups. Conclusions: Community dwelling individuals with stroke may benefit from a phone-monitored upper limb home exercise program that includes behavioural strategies that promote transfer of exercise gains into daily upper limb use.Implications for RehabilitationA repetitive, task-oriented home exercise program that utilizes telephone supervision may be an effective method for the treatment of the upper limb following strokeThis program is best suited for individuals with mild to moderate level impairment and experience a sufficient level of challenge from the exercisesAn exercise program that includes behavioural strategies may promote transfer of exercise gains into greater use of the affected upper limb during daily activities PMID:27017890

  13. The accuracy and precision of radiostereometric analysis in upper limb arthroplasty.

    PubMed

    Ten Brinke, Bart; Beumer, Annechien; Koenraadt, Koen L M; Eygendaal, Denise; Kraan, Gerald A; Mathijssen, Nina M C

    2017-06-01

    Background and purpose - Radiostereometric analysis (RSA) is an accurate method for measurement of early migration of implants. Since a relation has been shown between early migration and future loosening of total knee and hip prostheses, RSA plays an important role in the development and evaluation of prostheses. However, there have been few RSA studies of the upper limb, and the value of RSA of the upper limb is not yet clear. We therefore performed a systematic review to investigate the accuracy and precision of RSA of the upper limb. Patients and methods - PRISMA guidelines were followed and the protocol for this review was published online at PROSPERO under registration number CRD42016042014. A systematic search of the literature was performed in the databases Embase, Medline, Cochrane, Web of Science, Scopus, Cinahl, and Google Scholar on April 25, 2015 based on the keywords radiostereometric analysis, shoulder prosthesis, elbow prosthesis, wrist prosthesis, trapeziometacarpal joint prosthesis, humerus, ulna, radius, carpus. Articles concerning RSA for the analysis of early migration of prostheses of the upper limb were included. Quality assessment was performed using the MINORS score, Downs and Black checklist, and the ISO RSA Results - 23 studies were included. Precision values were in the 0.06-0.88 mm and 0.05-10.7° range for the shoulder, the 0.05-0.34 mm and 0.16-0.76° range for the elbow, and the 0.16-1.83 mm and 11-124° range for the TMC joint. Accuracy data from marker- and model-based RSA were not reported in the studies included. Interpretation - RSA is a highly precise method for measurement of early migration of orthopedic implants in the upper limb. However, the precision of rotation measurement is poor in some components. Challenges with RSA in the upper limb include the symmetrical shape of prostheses and the limited size of surrounding bone, leading to over-projection of the markers by the prosthesis. We recommend higher adherence to

  14. Longitudinal wearable tremor measurement system with activity recognition algorithms for upper limb tremor.

    PubMed

    Jeonghee Kim; Parnell, Claire; Wichmann, Thomas; DeWeerth, Stephen P

    2016-08-01

    Assessments of tremor characteristics by movement disorder physicians are usually done at single time points in clinic settings, so that the description of the tremor does not take into account the dependence of the tremor on specific behavioral situations. Moreover, treatment-induced changes in tremor or behavior cannot be quantitatively tracked for extended periods of time. We developed a wearable tremor measurement system with tremor and activity recognition algorithms for long-term upper limb behavior tracking, to characterize tremor characteristics and treatment effects in their daily lives. In this pilot study, we collected sensor data of arm movement from three healthy participants using a wrist device that included a 3-axis accelerometer and a 3-axis gyroscope, and classified tremor and activities within scenario tasks which resembled real life situations. Our results show that the system was able to classify the tremor and activities with 89.71% and 74.48% accuracies during the scenario tasks. From this results, we expect to expand our tremor and activity measurement in longer time period.

  15. Effects of postural changes of the upper limb on reflex transmission in the lower limb. Cervicolumbar reflex interactions in man.

    PubMed

    Delwaide, P J; Figiel, C; Richelle, C

    1977-06-01

    The influence of passive changes in upper limb position on the excitability of three myotatic arc reflexes (soleus, quadriceps, and biceps femoris) of the lower limb has been explored on 42 volunteers. The results indicate that the excitability of the three myotatic arcs can be influenced at a distance by postural modifications of the upper limb. When the ipsilateral upper limb is forwards or the contralateral backwards, a facilitation of both soleus and quadriceps tendon reflexes is observed while the biceps femoris reflexes are reduced. This pattern of facilitation and inhibition is reversed when the ipsilateral upper limb is backwards or the contralateral forwards. The facilitations as well as inhibitions of proximal myotatic arc reflexes are quantitatively more marked than that of the soleus reflex. Facilitation and inhibition are not linearly related to the angle of the arm with the trunk. Effects begin at a considerable angle, become maximal at 45 degrees, and progressively disappear for greater values. It is suggested that the distinct pattern of facilitation and inhibition which is exerted in reciprocal fashion on extensor and flexor motor nuclei might depend on the long propriospinal neurones connecting cervical and lumbar enlargements.

  16. Supplemental Stimulation Improves Swing Phase Kinematics During Exoskeleton Assisted Gait of SCI Subjects With Severe Muscle Spasticity.

    PubMed

    Ekelem, Andrew; Goldfarb, Michael

    2018-01-01

    Spasticity is a common comorbidity associated with spinal cord injury (SCI). Robotic exoskeletons have recently emerged to facilitate legged mobility in people with motor complete SCI. Involuntary muscle activity attributed to spasticity, however, can prevent such individuals from using an exoskeleton. Specifically, although most exoskeleton technologies can accommodate low to moderate spasticity, the presence of moderate to severe spasticity can significantly impair gait kinematics when using an exoskeleton. In an effort to potentially enable individuals with moderate to severe spasticity to use exoskeletons more effectively, this study investigates the use of common peroneal stimulation in conjunction with exoskeleton gait assistance. The electrical stimulation is timed with the exoskeleton swing phase, and is intended to acutely suppress extensor spasticity through recruitment of the flexion withdrawal reflex (i.e., while the stimulation is activated) to enable improved exoskeletal walking. In order to examine the potential efficacy of this approach, two SCI subjects with severe extensor spasticity (i.e., modified Ashworth ratings of three to four) walked in an exoskeleton with and without supplemental stimulation while knee and hip motion was measured during swing phase. Stimulation was alternated on and off every ten steps to eliminate transient therapeutic effects, enabling the acute effects of stimulation to be isolated. These experiments indicated that common peroneal stimulation on average increased peak hip flexion during the swing phase of walking by 21.1° (236%) and peak knee flexion by 14.4° (56%). Additionally, use of the stimulation decreased the swing phase RMS motor current by 228 mA (15%) at the hip motors and 734 mA (38%) at the knee motors, indicating improved kinematics were achieved with reduced effort from the exoskeleton. Walking with the exoskeleton did not have a significant effect on modified Ashworth scores, indicating the common

  17. Supplemental Stimulation Improves Swing Phase Kinematics During Exoskeleton Assisted Gait of SCI Subjects With Severe Muscle Spasticity

    PubMed Central

    Ekelem, Andrew; Goldfarb, Michael

    2018-01-01

    Spasticity is a common comorbidity associated with spinal cord injury (SCI). Robotic exoskeletons have recently emerged to facilitate legged mobility in people with motor complete SCI. Involuntary muscle activity attributed to spasticity, however, can prevent such individuals from using an exoskeleton. Specifically, although most exoskeleton technologies can accommodate low to moderate spasticity, the presence of moderate to severe spasticity can significantly impair gait kinematics when using an exoskeleton. In an effort to potentially enable individuals with moderate to severe spasticity to use exoskeletons more effectively, this study investigates the use of common peroneal stimulation in conjunction with exoskeleton gait assistance. The electrical stimulation is timed with the exoskeleton swing phase, and is intended to acutely suppress extensor spasticity through recruitment of the flexion withdrawal reflex (i.e., while the stimulation is activated) to enable improved exoskeletal walking. In order to examine the potential efficacy of this approach, two SCI subjects with severe extensor spasticity (i.e., modified Ashworth ratings of three to four) walked in an exoskeleton with and without supplemental stimulation while knee and hip motion was measured during swing phase. Stimulation was alternated on and off every ten steps to eliminate transient therapeutic effects, enabling the acute effects of stimulation to be isolated. These experiments indicated that common peroneal stimulation on average increased peak hip flexion during the swing phase of walking by 21.1° (236%) and peak knee flexion by 14.4° (56%). Additionally, use of the stimulation decreased the swing phase RMS motor current by 228 mA (15%) at the hip motors and 734 mA (38%) at the knee motors, indicating improved kinematics were achieved with reduced effort from the exoskeleton. Walking with the exoskeleton did not have a significant effect on modified Ashworth scores, indicating the common

  18. Balneotherapy in treatment of spastic upper limb after stroke.

    PubMed

    Erceg-Rukavina, Tatjana; Stefanovski, Mihajlo

    2015-02-01

    After stroke, spasticity is often the main problem that prevents functional recovery. Pain occurs in up to 70% of patients during the first year post-stroke. A total of 70 patients (30 female and 45 male) mean age (65.67) participated in prospective, controlled study. ischaemic stroke, developed spasticity of upper limb, post-stroke interval <6 months. contraindications for balneotherapy and inability to follow commands. Experimental group (Ex) (n=35) was treated with sulphurous baths (31°-33°C) and controlled group (Co) with taped water baths, during 21 days. All patients were additionally treated with kinesitherapy and cryotherapy. The outcome was evaluated using Modified Ashworth scale for spasticity and VAS scale for pain. The significance value was sat at p<0.05. To find out the effects of balneotherapy with sulphurous bath on spasticity and pain in affected upper limb. Reduction in tone of affected upper limb muscles was significant in Ex group (p<0.05). Pain decreased significantly in Ex-group (p<0.01). Our results show that balneotherapy with sulphurous water reduces spasticity and pain significantly and can help in treatment of post-stroke patients.

  19. An upper limb robot model of children limb for cerebral palsy neurorehabilitation.

    PubMed

    Pathak, Yagna; Johnson, Michelle

    2012-01-01

    Robot therapy has emerged in the last few decades as a tool to help patients with neurological injuries relearn motor tasks and improve their quality of life. The main goal of this study was to develop a simple model of the human arm for children affected with cerebral palsy (CP). The Simulink based model presented here shows a comparison for children with and without disabilities (ages 6-15) with normal and reduced range of motion in the upper limb. The model incorporates kinematic and dynamic considerations required for activities of daily living. The simulation was conducted using Matlab/Simulink and will eventually be integrated with a robotic counterpart to develop a physical robot that will provide assistance in activities of daily life (ADLs) to children with CP while also aiming to improve motor recovery.

  20. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial

    PubMed Central

    Kwakkel, G; Kollen, B; Wagenaar, R

    2002-01-01

    Objective: To assess long term effects at 1 year after stroke in patients who participated in an upper and lower limb intensity training programme in the acute and subacute rehabilitation phases. Design: A three group randomised controlled trial with repeated measures was used. Method: One hundred and one patients with a primary middle cerebral artery stroke were randomly allocated to one of three groups for a 20 week rehabilitation programme with an emphasis on (1) upper limb function, (2) lower limb function or (3) immobilisation with an inflatable pressure splint (control group). Follow up assessments within and between groups were compared at 6, 9, and 12 months after stroke. Results: No statistically significant effects were found for treatment assignment from 6 months onwards. At a group level, the significant differences in efficacy demonstrated at 20 weeks after stroke in favour of the lower limb remained. However, no significant differences in functional recovery between groups were found for Barthel index (BI), functional ambulation categories (FAC),action research arm test (ARAT), comfortable and maximal walking speed, Nottingham health profile part 1(NHP-part 1), sickness impact profile-68 (SIP-68), and Frenchay activities index (FAI) from 6 months onwards. At an individual subject level a substantial number of patients showed improvement or deterioration in upper limb function (n=8 and 5, respectively) and lower limb function (n=19 and 9, respectively). Activities of daily living (ADL) scores showed that five patients deteriorated and four improved beyond the error threshold from 6 months onwards. In particular, patients with some but incomplete functional recovery at 6 months are likely to continue to improve or regress from 6 months onwards. Conclusions: On average patients maintained their functional gains for up to 1 year after stroke after receiving a 20 week upper or lower limb function training programme. However, a significant number of

  1. Upper limb movement analysis during gait in multiple sclerosis patients.

    PubMed

    Elsworth-Edelsten, Charlotte; Bonnefoy-Mazure, Alice; Laidet, Magali; Armand, Stephane; Assal, Frederic; Lalive, Patrice; Allali, Gilles

    2017-08-01

    Gait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group. In this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7±9.6years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2±1) and 25 healthy age-matched controls using a 3-dimension gait analysis. MS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability. Upper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System.

    PubMed

    Ling Liu; Xiang Chen; Zhiyuan Lu; Shuai Cao; De Wu; Xu Zhang

    2017-03-01

    This paper focuses on the development of an upper limb rehabilitation training system designed for use by children with cerebral palsy (CP). It attempts to meet the requirements of in-home training by taking advantage of the combination of portable accelerometers (ACC) and surface electromyography (SEMG) sensors worn on the upper limb to capture functional movements. In the proposed system, the EMG-ACC acquisition device works essentially as wireless game controller, and three rehabilitation games were designed for improving upper limb motor function under a clinician's guidance. The games were developed on the Android platform based on a physical engine called Box2D. The results of a system performance test demonstrated that the developed games can respond to the upper limb actions within 210 ms. Positive questionnaire feedbacks from twenty CP subjects who participated in the game test verified both the feasibility and usability of the system. Results of a long-term game training conducted with three CP subjects demonstrated that CP patients could improve in their game performance through repetitive training, and persistent training was needed to improve and enhance the rehabilitation effect. According to our experimental results, the novel multi-feedback SEMG-ACC-based user interface improved the users' initiative and performance in rehabilitation training.

  3. Age Effects on Upper Limb Kinematics Assessed by the REAplan Robot in Healthy School-Aged Children.

    PubMed

    Gilliaux, Maxime; Dierckx, Floriane; Vanden Berghe, Lola; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine

    2015-05-01

    The use of kinematics is recommended to quantitatively evaluate upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish norms in healthy children. Ninety-three healthy children, aged 3-12 years, participated in this study. Twenty-eight kinematic indices were computed from four tasks. Each task was performed with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-four of the 28 indices showed an improvement during childhood. Indeed, older children showed better upper limb movements. This study was the first to use a robotic device to show the age effects on upper limb kinematics and establish norms in healthy children.

  4. The occurrence of dystonia in upper-limb multiple sclerosis tremor.

    PubMed

    Van der Walt, A; Buzzard, K; Sung, S; Spelman, T; Kolbe, S C; Marriott, M; Butzkueven, H; Evans, A

    2015-12-01

    The pathophysiology of multiple sclerosis (MS) tremor is uncertain with limited phenotypical studies available. To investigate whether dystonia contributes to MS tremor and its severity. MS patients (n = 54) with and without disabling uni- or bilateral upper limb tremor were recruited (39 limbs per group). We rated tremor severity, writing and Archimedes spiral drawing; cerebellar dysfunction (SARA score); the Global Dystonia Scale (GDS) for proximal and distal upper limbs, dystonic posturing, mirror movements, geste antagoniste, and writer's cramp. Geste antagoniste, mirror dystonia, and dystonic posturing were more frequent and severe (p < 0.001) and dystonia scores were correlated with tremor severity in tremor compared to non-tremor patients. A 1-unit increase in distal dystonia predicted a 0.52-Bain unit (95% confidence interval (CI) 0.08-0.97), p = 0.022) increase in tremor severity and a 1-unit (95% CI 0.48-1.6, p = 0.001) increase in drawing scores. A 1-unit increase in proximal dystonia predicted 0.93-Bain unit increase (95% CI 0.45-1.41, p < 0.001) in tremor severity and 1.5-units (95% CI 0.62-2.41, p = 0.002) increase in the drawing score. Cerebellar function in the tremor limb and tremor severity was correlated (p < 0.001). Upper limb dystonia is common in MS tremor suggesting that MS tremor pathophysiology involves cerebello-pallido-thalamo-cortical network dysfunction. © The Author(s), 2015.

  5. Development of upper limb prostheses: current progress and areas for growth.

    PubMed

    González-Fernández, Marlís

    2014-06-01

    Upper extremity prosthetic technology has significantly changed in recent years. The devices available and those under development are more and more able to approximate the function of the lost limb; however, other challenges remain. This article provides a brief perspective on the most advanced upper limb prostheses available and the challenges present for continued development of the technology. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Weight Bearing Over-ground Stepping in an Exoskeleton with Non-invasive Spinal Cord Neuromodulation after Motor Complete Paraplegia.

    PubMed

    Gad, Parag; Gerasimenko, Yury; Zdunowski, Sharon; Turner, Amanda; Sayenko, Dimitry; Lu, Daniel C; Edgerton, V Reggie

    2017-01-01

    We asked whether coordinated voluntary movement of the lower limbs could be regained in an individual having been completely paralyzed (>4 year) and completely absent of vision (>15 year) using two novel strategies-transcutaneous electrical spinal cord stimulation at selected sites over the spine as well as pharmacological neuromodulation by buspirone. We also asked whether these neuromodulatory strategies could facilitate stepping assisted by an exoskeleton (EKSO, EKSO Bionics, CA) that is designed so that the subject can voluntarily complement the work being performed by the exoskeleton. We found that spinal cord stimulation and drug enhanced the level of effort that the subject could generate while stepping in the exoskeleton. In addition, stimulation improved the coordination patterns of the lower limb muscles resulting in a more continuous, smooth stepping motion in the exoskeleton along with changes in autonomic functions including cardiovascular and thermoregulation. Based on these data from this case study it appears that there is considerable potential for positive synergistic effects after complete paralysis by combining the over-ground step training in an exoskeleton, combined with transcutaneous electrical spinal cord stimulation either without or with pharmacological modulation.

  7. Assessing upper limb function in nonambulant SMA patients: development of a new module.

    PubMed

    Mazzone, Elena; Bianco, Flaviana; Martinelli, Diego; Glanzman, Allan M; Messina, Sonia; De Sanctis, Roberto; Main, Marion; Eagle, Michelle; Florence, Julaine; Krosschell, Kristin; Vasco, Gessica; Pelliccioni, Marco; Lombardo, Marilena; Pane, Marika; Finkel, Richard; Muntoni, Francesco; Bertini, Enrico; Mercuri, Eugenio

    2011-06-01

    We report the development of a module specifically designed for assessing upper limb function in nonambulant SMA patients, including young children and those with severe contractures. The application of the module to a preschool cohort of 40 children (age 30-48 months) showed that all the items could be completed by 30 months. The module was also used in 45 nonambulant SMA patients (age 30 months to 27 years). Their scores were more variable than in the preschool cohort, ranging from 0 to 18. The magnitude of scores was not related to age (r=-0.19). The upper limb scores had a good correlation with the Hammersmith Functional Motor Scale, r=0.75, but the upper limb function did not always strictly follow the overall gross motor function. These findings suggest that even some of the very weak nonambulant children possess upper limb skills that can be measured. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki

    2005-12-01

    In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.

  9. Kinematic analysis of the finger exoskeleton using MATLAB/Simulink.

    PubMed

    Nasiłowski, Krzysztof; Awrejcewicz, Jan; Lewandowski, Donat

    2014-01-01

    A paralyzed and not fully functional part of human body can be supported by the properly designed exoskeleton system with motoric abilities. It can help in rehabilitation, or movement of a disabled/paralyzed limb. Both suitably selected geometry and specialized software are studied applying the MATLAB environment. A finger exoskeleton was the base for MATLAB/Simulink model. Specialized software, such as MATLAB/Simulink give us an opportunity to optimize calculation reaching precise results, which help in next steps of design process. The calculations carried out yield information regarding movement relation between three functionally connected actuators and showed distance and velocity changes during the whole simulation time.

  10. Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion From EMG and Force-Position EPP.

    PubMed

    Fan, Yuanjie; Yin, Yuehong

    2013-12-01

    Although exoskeletons have received enormous attention and have been widely used in gait training and walking assistance in recent years, few reports addressed their application during early poststroke rehabilitation. This paper presents a healthcare technology for active and progressive early rehabilitation using multisource information fusion from surface electromyography and force-position extended physiological proprioception. The active-compliance control based on interaction force between patient and exoskeleton is applied to accelerate the recovery of the neuromuscular function, whereby progressive treatment through timely evaluation contributes to an effective and appropriate physical rehabilitation. Moreover, a clinic-oriented rehabilitation system, wherein a lower extremity exoskeleton with active compliance is mounted on a standing bed, is designed to ensure comfortable and secure rehabilitation according to the structure and control requirements. Preliminary experiments and clinical trial demonstrate valuable information on the feasibility, safety, and effectiveness of the progressive exoskeleton-assisted training.

  11. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.

    PubMed

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-01-19

    To guide development of robotic lower limb exoskeletons, it is necessary to understand how humans adapt to powered assistance. The purposes of this study were to quantify joint moments while healthy subjects adapted to a robotic ankle exoskeleton and to determine if the period of motor adaptation is dependent on the magnitude of robotic assistance. The pneumatically powered ankle exoskeleton provided plantar flexor torque controlled by the wearer's soleus electromyography (EMG). Eleven naïve individuals completed two 30-min sessions walking on a split-belt instrumented treadmill at 1.25m/s while wearing the ankle exoskeleton. After two sessions of practice, subjects reduced their soleus EMG activation by approximately 36% and walked with total ankle moment patterns similar to their unassisted gait (r(2)=0.98+/-0.02, THSD, p>0.05). They had substantially different ankle kinematic patterns compared to their unassisted gait (r(2)=0.79+/-0.12, THSD, p<0.05). Not all of the subjects reached a steady-state gait pattern within the two sessions, in contrast to a previous study using a weaker robotic ankle exoskeleton (Gordon and Ferris, 2007). Our results strongly suggest that humans aim for similar joint moment patterns when walking with robotic assistance rather than similar kinematic patterns. In addition, greater robotic assistance provided during initial use results in a longer adaptation process than lesser robotic assistance. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. How Therapists Use Visualizations of Upper Limb Movement Information From Stroke Patients: A Qualitative Study With Simulated Information

    PubMed Central

    Fong, Justin; Klaic, Marlena; Nair, Siddharth; Vetere, Frank; Cofré Lizama, L. Eduardo; Galea, Mary Pauline

    2016-01-01

    Background Stroke is a leading cause of disability worldwide, with upper limb deficits affecting an estimated 30% to 60% of survivors. The effectiveness of upper limb rehabilitation relies on numerous factors, particularly patient compliance to home programs and exercises set by therapists. However, therapists lack objective information about their patients’ adherence to rehabilitation exercises as well as other uses of the affected arm and hand in everyday life outside the clinic. We developed a system that consists of wearable sensor technology to monitor a patient’s arm movement and a Web-based dashboard to visualize this information for therapists. Objective The aim of our study was to evaluate how therapists use upper limb movement information visualized on a dashboard to support the rehabilitation process. Methods An interactive dashboard prototype with simulated movement information was created and evaluated through a user-centered design process with therapists (N=8) at a rehabilitation clinic. Data were collected through observations of therapists interacting with an interactive dashboard prototype, think-aloud data, and interviews. Data were analyzed qualitatively through thematic analysis. Results Therapists use visualizations of upper limb information in the following ways: (1) to obtain objective data of patients’ activity levels, exercise, and neglect outside the clinic, (2) to engage patients in the rehabilitation process through education, motivation, and discussion of experiences with activities of daily living, and (3) to engage with other clinicians and researchers based on objective data. A major limitation is the lack of contextual data, which is needed by therapists to discern how movement data visualized on the dashboard relate to activities of daily living. Conclusions Upper limb information captured through wearable devices provides novel insights for therapists and helps to engage patients and other clinicians in therapy

  13. Fundamental Principles of Tremor Propagation in the Upper Limb.

    PubMed

    Davidson, Andrew D; Charles, Steven K

    2017-04-01

    Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices.

  14. Fundamental Principles of Tremor Propagation in the Upper Limb

    PubMed Central

    Davidson, Andrew D.; Charles, Steven K.

    2017-01-01

    Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices. PMID:27957608

  15. Balneotherapy in Treatment of Spastic Upper Limb after Stroke

    PubMed Central

    Erceg-Rukavina, Tatjana; Stefanovski, Mihajlo

    2015-01-01

    Introduction: After stroke, spasticity is often the main problem that prevents functional recovery. Pain occurs in up to 70% of patients during the first year post-stroke. Materials and methods: A total of 70 patients (30 female and 45 male) mean age (65.67) participated in prospective, controlled study. Inclusion criteria: ischaemic stroke, developed spasticity of upper limb, post-stroke interval <6 months. Exclusion criteria: contraindications for balneotherapy and inability to follow commands. Experimental group (Ex) (n=35) was treated with sulphurous baths (31°-33°C) and controlled group (Co) with taped water baths, during 21 days. All patients were additionally treated with kinesitherapy and cryotherapy. The outcome was evaluated using Modified Ashworth scale for spasticity and VAS scale for pain. The significance value was sat at p<0.05. Goal: To find out the effects of balneotherapy with sulphurous bath on spasticity and pain in affected upper limb. Results: Reduction in tone of affected upper limb muscles was significant in Ex group (p<0.05). Pain decreased significantly in Ex-group (p<0.01). Conclusion: Our results show that balneotherapy with sulphurous water reduces spasticity and pain significantly and can help in treatment of post-stroke patients. PMID:25870474

  16. Normative Data for an Instrumental Assessment of the Upper-Limb Functionality.

    PubMed

    Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco

    2015-01-01

    Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment.

  17. Normative Data for an Instrumental Assessment of the Upper-Limb Functionality

    PubMed Central

    Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco

    2015-01-01

    Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment. PMID:26539500

  18. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.

    PubMed

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-07-26

    To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by approximately 35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the

  19. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    PubMed Central

    2010-01-01

    Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies

  20. Lymphoedema of the upper limb: a rare complication of thyroid surgery?

    PubMed Central

    Stephen, Christopher; Munnoch, David Alexander

    2016-01-01

    A 40-year-old woman underwent an elective thyroidectomy for a non-toxic, multinodular goitre. In the early postoperative period, the patient developed a significant unilateral swelling of the right upper limb, which was subsequently confirmed to be lymphoedema. This was eventually treated successfully using liposuction and compression garment therapies. We report the case due to its rarity and present a possible explanation for such an unexpected complication based on known anatomical variations of lymphatic drainage of the upper limb. PMID:27090542

  1. Individual muscle control using an exoskeleton robot for muscle function testing.

    PubMed

    Ueda, Jun; Ming, Ding; Krishnamoorthy, Vijaya; Shinohara, Minoru; Ogasawara, Tsukasa

    2010-08-01

    Healthy individuals modulate muscle activation patterns according to their intended movement and external environment. Persons with neurological disorders (e.g., stroke and spinal cord injury), however, have problems in movement control due primarily to their inability to modulate their muscle activation pattern in an appropriate manner. A functionality test at the level of individual muscles that investigates the activity of a muscle of interest on various motor tasks may enable muscle-level force grading. To date there is no extant work that focuses on the application of exoskeleton robots to induce specific muscle activation in a systematic manner. This paper proposes a new method, named "individual muscle-force control" using a wearable robot (an exoskeleton robot, or a power-assisting device) to obtain a wider variety of muscle activity data than standard motor tasks, e.g., pushing a handle by hand. A computational algorithm systematically computes control commands to a wearable robot so that a desired muscle activation pattern for target muscle forces is induced. It also computes an adequate amount and direction of a force that a subject needs to exert against a handle by his/her hand. This individual muscle control method enables users (e.g., therapists) to efficiently conduct neuromuscular function tests on target muscles by arbitrarily inducing muscle activation patterns. This paper presents a basic concept, mathematical formulation, and solution of the individual muscle-force control and its implementation to a muscle control system with an exoskeleton-type robot for upper extremity. Simulation and experimental results in healthy individuals justify the use of an exoskeleton robot for future muscle function testing in terms of the variety of muscle activity data.

  2. Visual Feedback of the Non-Moving Limb Improves Active Joint-Position Sense of the Impaired Limb in Spastic Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2011-01-01

    This study examined the active joint-position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual feedback, of the non-moving limb, on the joint-position sense. Participants were asked to match the position of one upper limb with that of the contralateral limb. The task…

  3. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work.

    PubMed

    Bosch, Tim; van Eck, Jennifer; Knitel, Karlijn; de Looze, Michiel

    2016-05-01

    Exoskeletons may form a new strategy to reduce the risk of developing low back pain in stressful jobs. In the present study we examined the potential of a so-called passive exoskeleton on muscle activity, discomfort and endurance time in prolonged forward-bended working postures. Eighteen subjects performed two tasks: a simulated assembly task with the trunk in a forward-bended position and static holding of the same trunk position without further activity. We measured the electromyography for muscles in the back, abdomen and legs. We also measured the perceived local discomfort. In the static holding task we determined the endurance, defined as the time that people could continue without passing a specified discomfort threshold. In the assembly task we found lower muscle activity (by 35-38%) and lower discomfort in the low back when wearing the exoskeleton. Additionally, the hip extensor activity was reduced. The exoskeleton led to more discomfort in the chest region. In the task of static holding, we observed that exoskeleton use led to an increase in endurance time from 3.2 to 9.7 min, on average. The results illustrate the good potential of this passive exoskeleton to reduce the internal muscle forces and (reactive) spinal forces in the lumbar region. However, the adoption of an over-extended knee position might be, among others, one of the concerns when using the exoskeleton. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage.

    PubMed

    Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

    2014-05-09

    Many soldiers are expected to carry heavy loads over extended distances, often resulting in physical and mental fatigue. In this study, the design and testing of an autonomous leg exoskeleton is presented. The aim of the device is to reduce the energetic cost of loaded walking. In addition, we present the Augmentation Factor, a general framework of exoskeletal performance that unifies our results with the varying abilities of previously developed exoskeletons. We developed an autonomous battery powered exoskeleton that is capable of providing substantial levels of positive mechanical power to the ankle during the push-off region of stance phase. We measured the metabolic energy consumption of seven subjects walking on a level treadmill at 1.5 m/s, while wearing a 23 kg vest. During the push-off portion of the stance phase, the exoskeleton applied positive mechanical power with an average across the gait cycle equal to 23 ± 2 W (11.5 W per ankle). Use of the autonomous leg exoskeleton significantly reduced the metabolic cost of walking by 36 ± 12 W, which was an improvement of 8 ± 3% (p = 0.025) relative to the control condition of not wearing the exoskeleton. In the design of leg exoskeletons, the results of this study highlight the importance of minimizing exoskeletal power dissipation and added limb mass, while providing substantial positive power during the walking gait cycle.

  5. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.

    PubMed

    Kinnaird, Catherine R; Ferris, Daniel P

    2009-02-01

    A previous study from our laboratory showed that when soleus electromyography was used to control the amount of plantar flexion assistance from a robotic ankle exoskeleton, subjects significantly reduced their soleus activity to quickly return to normal gait kinematics. We speculated that subjects were primarily responding to the local mechanical assistance of the exoskeleton rather than directly attempting to reduce exoskeleton mechanical power via decreases in soleus activity. To test this observation we studied ten healthy subjects walking on a treadmill at 1.25 m/s while wearing a robotic exoskeleton proportionally controlled by medial gastrocnemius activation. We hypothesized that subjects would primarily decrease soleus activity due to its synergistic mechanics with the exoskeleton. Subjects decreased medial gastrocnemius recruitment by 12% ( p < 0.05 ) but decreased soleus recruitment by 27% ( p < 0.05). In agreement with our hypothesis, the primary reduction in muscle activity was not for the control muscle (medial gastrocnemius) but for the anatomical synergist to the exoskeleton (soleus). These findings indicate that anatomical morphology needs to be considered carefully when designing software and hardware for robotic exoskeletons.

  6. Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial.

    PubMed

    Rodgers, Helen; Shaw, Lisa; Bosomworth, Helen; Aird, Lydia; Alvarado, Natasha; Andole, Sreeman; Cohen, David L; Dawson, Jesse; Eyre, Janet; Finch, Tracy; Ford, Gary A; Hislop, Jennifer; Hogg, Steven; Howel, Denise; Hughes, Niall; Krebs, Hermano Igo; Price, Christopher; Rochester, Lynn; Stamp, Elaine; Ternent, Laura; Turner, Duncan; Vale, Luke; Warburton, Elizabeth; van Wijck, Frederike; Wilkes, Scott

    2017-07-20

    Loss of arm function is a common and distressing consequence of stroke. We describe the protocol for a pragmatic, multicentre randomised controlled trial to determine whether robot-assisted training improves upper limb function following stroke. Study design: a pragmatic, three-arm, multicentre randomised controlled trial, economic analysis and process evaluation. NHS stroke services. adults with acute or chronic first-ever stroke (1 week to 5 years post stroke) causing moderate to severe upper limb functional limitation. Randomisation groups: 1. Robot-assisted training using the InMotion robotic gym system for 45 min, three times/week for 12 weeks 2. Enhanced upper limb therapy for 45 min, three times/week for 12 weeks 3. Usual NHS care in accordance with local clinical practice Randomisation: individual participant randomisation stratified by centre, time since stroke, and severity of upper limb impairment. upper limb function measured by the Action Research Arm Test (ARAT) at 3 months post randomisation. upper limb impairment (Fugl-Meyer Test), activities of daily living (Barthel ADL Index), quality of life (Stroke Impact Scale, EQ-5D-5L), resource use, cost per quality-adjusted life year and adverse events, at 3 and 6 months. Blinding: outcomes are undertaken by blinded assessors. Economic analysis: micro-costing and economic evaluation of interventions compared to usual NHS care. A within-trial analysis, with an economic model will be used to extrapolate longer-term costs and outcomes. Process evaluation: semi-structured interviews with participants and professionals to seek their views and experiences of the rehabilitation that they have received or provided, and factors affecting the implementation of the trial. allowing for 10% attrition, 720 participants provide 80% power to detect a 15% difference in successful outcome between each of the treatment pairs. Successful outcome definition: baseline ARAT 0-7 must improve by 3 or more points; baseline

  7. Quantification of upper limb kinetic asymmetries in front crawl swimming.

    PubMed

    Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C

    2015-04-01

    This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy.

    PubMed

    Lerner, Zachary F; Damiano, Diane L; Bulea, Thomas C

    2017-08-23

    The ability to walk contributes considerably to physical health and overall well-being, particularly in children with motor disability, and is therefore prioritized as a rehabilitation goal. However, half of ambulatory children with cerebral palsy (CP), the most prevalent childhood movement disorder, cease to walk in adulthood. Robotic gait trainers have shown positive outcomes in initial studies, but these clinic-based systems are limited to short-term programs of insufficient length to maintain improved function in a lifelong disability such as CP. Sophisticated wearable exoskeletons are now available, but their utility in treating childhood movement disorders remains unknown. We evaluated an exoskeleton for the treatment of crouch (or flexed-knee) gait, one of the most debilitating pathologies in CP. We show that the exoskeleton reduced crouch in a cohort of ambulatory children with CP during overground walking. The exoskeleton was safe and well tolerated, and all children were able to walk independently with the device. Rather than guiding the lower limbs, the exoskeleton dynamically changed the posture by introducing bursts of knee extension assistance during discrete portions of the walking cycle, a perturbation that resulted in maintained or increased knee extensor muscle activity during exoskeleton use. Six of seven participants exhibited postural improvements equivalent to outcomes reported from invasive orthopedic surgery. We also demonstrate that improvements in crouch increased over the course of our multiweek exploratory trial. Together, these results provide evidence supporting the use of wearable exoskeletons as a treatment strategy to improve walking in children with CP. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements

    NASA Astrophysics Data System (ADS)

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of

  10. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.

    PubMed

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.

  11. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.

    PubMed

    Frolov, Alexander A; Mokienko, Olesya; Lyukmanov, Roman; Biryukova, Elena; Kotov, Sergey; Turbina, Lydia; Nadareyshvily, Georgy; Bushkova, Yulia

    2017-01-01

    Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group ( n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group ( n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points ( p < 0.01) and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points ( p < 0.01). Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT) and 15.8% (FMMA). These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than

  12. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    PubMed

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  13. Hang Them High: A Hands-Free Technique for Upper Extremity Limb Holding During Surgical Preparation.

    PubMed

    Aneja, Arun; Leung, Patrick; Marquez-Lara, Alejandro

    Lifting and holding upper and lower limbs during the "prep and drape" portion of certain orthopaedic procedures exert strong forces on the holder and may lead to musculoskeletal disorders. To address these challenges during upper extremity procedures, this article describes a hand-free elevation and traction technique of the upper limbs during preoperative skin preparation with the use of items readily available within the operating room (OR). This technique is particularly useful for heavy or fractured limbs that may impose a physical challenge to lift and maintain in a stable position. Implementation of this technique reduces the risk to nurses, OR personnel, and caregivers of developing work-related musculoskeletal injuries while lifting and holding limbs in the orthopaedic OR.

  14. Risk factors of the upper limb disorders among cashiers in grocery retail industries: A review

    NASA Astrophysics Data System (ADS)

    Zuhaidi, Muhammad Fareez Ahmad; Nasrull Abdol Rahman, Mohd

    2017-08-01

    Cashiers have been appointed as one of top ten occupations in developing musculoskeletal disorders (MSDs) particularly on the upper limb. Many of the workers are still in high risk injury due to incorrect workstations and lack of employee education in basic biomechanical principles. Normally, cashiers are exposed in several risk factors such as awkward and static postures, repetition motion and forceful exertions. Thus, cashiers in supermarket are considered at risk from developing upper limb disorders (ULDs). This review evaluates selected papers that have studied risk factors of the upper limb disorders among cashiers in grocery retail industries. In addition, other studies from related industry were reviewed as applicable. In order to understand risk factors of the upper limb disorders among cashiers, it is recommended that future studies are needed in evaluating these risk factors among cashiers.

  15. The influence of axle position and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion.

    PubMed

    Bertolaccini, Guilherme da Silva; Carvalho Filho, Idinei Francisco Pires de; Christofoletti, Gustavo; Paschoarelli, Luis Carlos; Medola, Fausto Orsi

    2018-06-01

    Wheelchair configuration is an important factor influencing the ergonomics of the user-device interface and, from a biomechanical point of view, small changes in chair setup may have a positive influence on the demand on the upper limbs during manual propulsion. This study aimed to investigate the influence of the position of the rear wheels' axle and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion. Electromyography signals of the biceps, triceps, anterior deltoids and pectoralis major were collected for 11 able-bodied subjects in a wheelchair propulsion protocol with four different wheelchair configurations (differing in axle position and the use of accessories) on a straightforward sprint and a slalom course. With accessories, moving the axle forward led to a decrease in the activity of all muscles in both the straightforward sprint (significant differences in triceps, anterior deltoids and biceps) and the slalom course (significant difference in anterior deltoids and biceps). However, when propelling the chair without accessories, no difference was found related to axle position. Changes in wheelchair configuration can influence the ergonomics of manual wheelchair propulsion. Reducing the biomechanical loads may benefit users' mobility, independence and social participation.

  16. Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT.

    PubMed

    Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael

    2017-01-01

    Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases.

  17. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.

    PubMed

    Gagnon, Dany H; Vermette, Martin; Duclos, Cyril; Aubertin-Leheudre, Mylène; Ahmed, Sara; Kairy, Dahlia

    2017-12-19

    study are unanimously satisfied upon completion of a 6-8-week locomotor training program with the robotic exoskeleton and would recommend the program to their peers. All long-term manual wheelchair users with a spinal cord injury who participated in the study offered positive feedback about the robotic exoskeleton itself and feel it is easy to learn to perform sit-stand transfers and walk with the robotic exoskeleton. All long-term manual wheelchair users with a spinal cord injury who participated in the study predominantly perceived improvements in their overall health status, upper limb strength and endurance as well as in their sleep and psychological well-being upon completion of a 6-8-week locomotor training program with the robotic exoskeleton. All long-term manual wheelchair users with a spinal cord injury who participated in the study unanimously felt motivated to engage in a regular physical activity program adapted to their condition and most of them do plan to continue to participate in moderate-to-strenuous physical exercise. Additional research on clients' perspectives, especially satisfaction with the overground exoskeleton and locomotor training program attributes, is needed.

  18. A Special Golden Curve in Human Upper Limbs' Length Proportion: A Functional Partition Which Is Different from Anatomy.

    PubMed

    Wang, Nan; Ma, Jie; Jin, Dan; Yu, Bin

    2017-01-01

    Aim . The purpose of this study was to investigate the relationship between upper limbs' three functional partitions and the golden curve. Materials and Methods . We measured 30 subjects' right or left upper limb data and investigate the relationship between them and the golden curve by use of SPSS version 20.0 statistical software (SPSS, Inc., Chicago, Illinois), one-sample t -test. Results . There are four points on human's upper limbs which have no difference with the four points on the golden curve. And there is one point of which the difference is obvious. But we still could draw the conclusion that human upper limbs are accordant with the golden curve. Conclusion . Human upper limbs are accordant with the golden curve.

  19. Electromyography-based analysis of human upper limbs during 45-day head-down bed-rest

    NASA Astrophysics Data System (ADS)

    Fu, Anshuang; Wang, Chunhui; Qi, Hongzhi; Li, Fan; Wang, Zheng; He, Feng; Zhou, Peng; Chen, Shanguang; Ming, Dong

    2016-03-01

    Muscle deconditioning occurs in response to simulated or actual microgravity. In spaceflight, astronauts become monkey-like for mainly using their upper limbs to control the operating system and to complete corresponding tasks. The changes of upper limbs' athletic ability will directly affect astronauts' working performance. This study investigated the variation trend of surface electromyography (sEMG) during prolonged simulated microgravity. Eight healthy males participating in this study performed strict 45-day head-down bed-rest (HDBR). On the 5th day of pre-HDBR, and the 15th, the 30th and the 45th days of HDBR, the subjects performed maximum pushing task and maximum pulling task, and sEMG was collected from upper limbs synchronously. Each subject's maximum volunteer contractions of both the tasks during these days were compared, showing no significant change. However, changes were detected by sEMG-based analysis. It was found that integrated EMG, root mean square, mean frequency, fuzzy entropy of deltoid, and fuzzy entropy of triceps brachii changed significantly when comparing pre-HDBR with HDBR. The variation trend showed a recovery tendency after significant decline, which is inconsistent with the monotonic variation of lower limbs that was proved by previous research. These findings suggest that EMG changes in upper limbs during prolonged simulated microgravity, but has different variation trend from lower limbs.

  20. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.

    PubMed

    Milot, Marie-Hélène; Spencer, Steven J; Chan, Vicky; Allington, James P; Klein, Julius; Chou, Cathy; Bobrow, James E; Cramer, Steven C; Reinkensmeyer, David J

    2013-12-19

    To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton ("BONES") that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of the affected upper limb, and to assess whether multijoint functional robotic training would translate into greater gains in arm function than single joint robotic training also conducted with BONES. Twenty subjects with mild to moderate chronic stroke participated in this crossover study. Each subject experienced multijoint functional training and single joint training three sessions per week, for four weeks, with the order of presentation randomized. The primary outcome measure was the change in Box and Block Test (BBT). The secondary outcome measures were the changes in Fugl-Meyer Arm Motor Scale (FMA), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and quantitative measures of strength and speed of reaching. These measures were assessed at baseline, after each training period, and at a 3-month follow-up evaluation session. Training with the robotic exoskeleton resulted in significant improvements in the BBT, FMA, WMFT, MAL, shoulder and elbow strength, and reaching speed (p < 0.05); these improvements were sustained at the 3 month follow-up. When comparing the effect of type of training on the gains obtained, no significant difference was noted between multijoint functional and single joint robotic training programs. However, for the BBT, WMFT and MAL, inequality of carryover effects were noted; subsequent analysis on the change in score between the baseline and first period of training again revealed no difference in the gains obtained between the types of training. Training with the 6 DOF arm exoskeleton improved motor function after chronic stroke, challenging the idea that robotic therapy is only

  1. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    PubMed

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Invariant hip moment pattern while walking with a robotic hip exoskeleton

    PubMed Central

    Lewis, Cara L.; Ferris, Daniel P.

    2011-01-01

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995

  3. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage

    PubMed Central

    2014-01-01

    Background Many soldiers are expected to carry heavy loads over extended distances, often resulting in physical and mental fatigue. In this study, the design and testing of an autonomous leg exoskeleton is presented. The aim of the device is to reduce the energetic cost of loaded walking. In addition, we present the Augmentation Factor, a general framework of exoskeletal performance that unifies our results with the varying abilities of previously developed exoskeletons. Methods We developed an autonomous battery powered exoskeleton that is capable of providing substantial levels of positive mechanical power to the ankle during the push-off region of stance phase. We measured the metabolic energy consumption of seven subjects walking on a level treadmill at 1.5 m/s, while wearing a 23 kg vest. Results During the push-off portion of the stance phase, the exoskeleton applied positive mechanical power with an average across the gait cycle equal to 23 ± 2 W (11.5 W per ankle). Use of the autonomous leg exoskeleton significantly reduced the metabolic cost of walking by 36 ± 12 W, which was an improvement of 8 ± 3% (p = 0.025) relative to the control condition of not wearing the exoskeleton. Conclusions In the design of leg exoskeletons, the results of this study highlight the importance of minimizing exoskeletal power dissipation and added limb mass, while providing substantial positive power during the walking gait cycle. PMID:24885527

  4. Design of a lightweight, tethered, torque-controlled knee exoskeleton.

    PubMed

    Witte, Kirby Ann; Fatschel, Andreas M; Collins, Steven H

    2017-07-01

    Lower-limb exoskeletons show promise for improving gait rehabilitation for those with chronic gait abnormalities due to injury, stroke or other illness. We designed and built a tethered knee exoskeleton with a strong lightweight frame and comfortable, four-point contact with the leg. The device is structurally compliant in select directions, instrumented to measure joint angle and applied torque, and is lightweight (0.76 kg). The exoskeleton is actuated by two off-board motors. Closed loop torque control is achieved using classical proportional feedback control with damping injection in conjunction with iterative learning. We tested torque measurement accuracy and found root mean squared (RMS) error of 0.8 Nm with a max load of 62.2 Nm. Bandwidth was measured to be phase limited at 45 Hz when tested on a rigid test stand and 23 Hz when tested on a person's leg. During bandwidth tests peak extension torques were measured up to 50 Nm. Torque tracking was tested during walking on a treadmill at 1.25 m/s with peak flexion torques of 30 Nm. RMS torque tracking error averaged over a hundred steps was 0.91 Nm. We intend to use this knee exoskeleton to investigate robotic assistance strategies to improve gait rehabilitation and enhance human athletic ability.

  5. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait.

    PubMed

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E; Del-Ama, Antonio J; Dimbwadyo, Iris; Moreno, Juan C; Florez, Julian; Pons, Jose L

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton.

  6. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait

    PubMed Central

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E.; del-Ama, Antonio J.; Dimbwadyo, Iris; Moreno, Juan C.; Florez, Julian; Pons, Jose L.

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton. PMID:29755336

  7. Do Activity Level Outcome Measures Commonly Used in Neurological Practice Assess Upper-Limb Movement Quality?

    PubMed

    Demers, Marika; Levin, Mindy F

    2017-07-01

    Movement is described in terms of task-related end point characteristics in external space and movement quality (joint rotations in body space). Assessment of upper-limb (UL) movement quality can assist therapists in designing effective treatment approaches for retraining lost motor elements and provide more detailed measurements of UL motor improvements over time. To determine the extent to which current activity level outcome measures used in neurological practice assess UL movement quality. Outcome measures assessing arm/hand function at the International Classification of Function activity level recommended by neurological clinical practice guidelines were reviewed. Measures assessing the UL as part of a general mobility assessment, those strictly evaluating body function/structure or participation, and paediatric measures were excluded. In all, 15 activity level outcome measures were identified; 9 measures assess how movement is performed by measuring either end point characteristics or movement quality. However, except for the Reaching Performance Scale for Stroke and the Motor Evaluation Scale for Upper Extremity in Stroke Patients, these measures only account for deficits indirectly by giving a partial score if movements are slower or if the person experiences difficulties. Six outcome measures neither assess any parameters related to movement quality, nor distinguish between improvements resulting from motor compensation or recovery of desired movement strategies. Current activity measures may not distinguish recovery from compensation and adequately track changes in movement quality over time. Movement quality may be incorporated into clinical assessment using observational kinematics with or without low-cost motion tracking technology.

  8. A survey of overuse problems in patients with acquired or congenital upper limb deficiency.

    PubMed

    Burger, Helena; Vidmar, Gaj

    2016-08-01

    Little is known about secondary impairments and overuse problems in patient with acquired or congenital upper limb deficiency. Our aim was to estimate the frequency of overuse problems in persons after unilateral upper limb deficiency and identify the factors relevant for development of these problems. Cross-sectional study conducted at the University Rehabilitation Institute in Ljubljana. In total, 65 persons after unilateral upper limb deficiency who had visited our subspecialist outpatient clinic during the 2011-2013 period (excluding those with other possible medical causes of overuse-type problems) were interviewed about the frequency, duration and severity of neck, elbow and shoulder pain and the presence of carpal tunnel syndrome and filled in the Orthotics and Prosthetics User Survey-Upper Extremity Functional Status questionnaire. The most frequent problem was carpal tunnel syndrome, followed by shoulder pain, neck pain and elbow pain. No statistically significant association of deficiency level, cause of deficiency, time since deficiency, extent of daily prosthesis use or type of prosthesis with frequency or severity of pain or number of problems was found. The presence of carpal tunnel syndrome decreased from wearing no prosthesis through aesthetic and body-powered to myoelectric prosthesis (p = 0.014). Factors contributing to overuse problems after upper limb deficiency are not straightforward, so a large multicentric study is warranted. Persons with acquired or congenital upper limb deficiency are under a heightened risk of developing overuse problems but the contributing factors are not clear, so regular individual follow-up is required. © The International Society for Prosthetics and Orthotics 2015.

  9. Workplace management of upper limb disorders: a systematic review.

    PubMed

    Dick, F D; Graveling, R A; Munro, W; Walker-Bone, K

    2011-01-01

    Upper limb pain is common among working-aged adults and a frequent cause of absenteeism. To systematically review the evidence for workplace interventions in four common upper limb disorders. Systematic review of English articles using Medline, Embase, Cinahl, AMED, Physiotherapy Evidence Database PEDro (carpal tunnel syndrome and non-specific arm pain only) and Cochrane Library. Study inclusion criteria were randomized controlled trials, cohort studies or systematic reviews employing any workplace intervention for workers with carpal tunnel syndrome, non-specific arm pain, extensor tenosynovitis or lateral epicondylitis. Papers were selected by a single reviewer and appraised by two reviewers independently using methods based on Scottish Intercollegiate Guidelines Network (SIGN) methodology. 1532 abstracts were identified, 28 papers critically appraised and four papers met the minimum quality standard (SIGN grading + or ++) for inclusion. There was limited evidence that computer keyboards with altered force displacement characteristics or altered geometry were effective in reducing carpal tunnel syndrome symptoms. There was limited, but high quality, evidence that multi-disciplinary rehabilitation for non-specific musculoskeletal arm pain was beneficial for those workers absent from work for at least four weeks. In adults with tenosynovitis there was limited evidence that modified computer keyboards were effective in reducing symptoms. There was a lack of high quality evidence to inform workplace management of lateral epicondylitis. Further research is needed focusing on occupational management of upper limb disorders. Where evidence exists, workplace outcomes (e.g. successful return to pre-morbid employment; lost working days) are rarely addressed.

  10. Multivariate prediction of upper limb prosthesis acceptance or rejection.

    PubMed

    Biddiss, Elaine A; Chau, Tom T

    2008-07-01

    To develop a model for prediction of upper limb prosthesis use or rejection. A questionnaire exploring factors in prosthesis acceptance was distributed internationally to individuals with upper limb absence through community-based support groups and rehabilitation hospitals. A total of 191 participants (59 prosthesis rejecters and 132 prosthesis wearers) were included in this study. A logistic regression model, a C5.0 decision tree, and a radial basis function neural network were developed and compared in terms of sensitivity (prediction of prosthesis rejecters), specificity (prediction of prosthesis wearers), and overall cross-validation accuracy. The logistic regression and neural network provided comparable overall accuracies of approximately 84 +/- 3%, specificity of 93%, and sensitivity of 61%. Fitting time-frame emerged as the predominant predictor. Individuals fitted within two years of birth (congenital) or six months of amputation (acquired) were 16 times more likely to continue prosthesis use. To increase rates of prosthesis acceptance, clinical directives should focus on timely, client-centred fitting strategies and the development of improved prostheses and healthcare for individuals with high-level or bilateral limb absence. Multivariate analyses are useful in determining the relative importance of the many factors involved in prosthesis acceptance and rejection.

  11. An objective assessment of safety to drive in an upper limb cast.

    PubMed

    Stevenson, H L; Peterson, N; Talbot, C; Dalal, S; Watts, A C; Trail, I A

    2013-03-01

    Patients managed with upper limb cast immobilization often seek advice about driving. There is very little published data to assist in decision making, and advice given varies between healthcare professionals. There are no specific guidelines available from the UK Drivers and Vehicles Licensing Agency, police, or insurance companies. Evidence-based guidelines would enable clinicians to standardize the advice given to patients. Six individuals (three male, three female; mean age 36 years, range 27-43 years) were assessed by a mobility occupational therapist and driving standards agency examiner while completing a formal driving test in six different types of upper limb casts (above-elbow, below-elbow neutral, and below-elbow cast incorporating the thumb [Bennett's cast]) on both left and right sides. Of the 36 tests, participants passed 31 tests, suggesting that most people were able to safely drive with upper limb cast immobilization. However, driving in a left above-elbow cast was considered unsafe.

  12. Simultaneous estimation of human and exoskeleton motion: A simplified protocol.

    PubMed

    Alvarez, M T; Torricelli, D; Del-Ama, A J; Pinto, D; Gonzalez-Vargas, J; Moreno, J C; Gil-Agudo, A; Pons, J L

    2017-07-01

    Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot. This work answers the question of how to reliably assess the subject's body motion by placing markers over the exoskeleton. Focusing on the ankle joint, the proposed methodology showed that it is possible to reconstruct the trajectory of the subject's joint by placing markers on the exoskeleton, although foot flexibility during walking can impact the reconstruction accuracy. More experiments are needed to confirm this hypothesis, and more subjects and walking conditions are needed to better characterize the errors of the proposed methodology, although our results are promising, indicating small errors.

  13. Upper And Lower Limbs Disability And Personality Traits.

    PubMed

    Jabeen, Tahira; Kazmi, Syeda Farhana; Rehman, Atiq Ur; Ahmed, Sajjad

    2016-01-01

    It is believed that the study of personality has the potentials to enhance our prognostic abilities and can better to expose the etiology of mental illness through the relationship of revealed mechanisms. The focus of this study was to investigate and compare the habitual patterns of behavior, thought and emotions of upper and lower limb physically disabled students in terms of personality traits. This cross sectional study consisted of 100 upper limbs and lower limbs disabled students taken from Kingston school Inclusive Education System Abottabad, Mashal special education system Haripur, Syed Ahmed Shaheed special education center Abottabad, Al-Munir Foundation Mansehra and Hera Special Education System Haripur and 100 normal students taken from Islamic International School Abottabad, Falcon Public School Haripur, Iqra Academy Mansehra and Alhamd International School Haripur of Hazara Division by purposive sampling technique. This study was conducted during the month of June 2013 to May 2014. Goldberg five big personality scale was used for measuring personality traits of physically disabled and normal students. The significant difference of personality traits scores between physically disabled students (M = 139.2, SD=12.0) and normal students (M=184.5, SD=13.2), t (198) =25.3, p<.05 was observed. Normal students have high scores as compared to physically disabled students on big five traits, i.e., Extraversion, Agreeableness, Conscientiousness, Emotional Stability and Openness to Experience.

  14. Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT

    PubMed Central

    Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael

    2017-01-01

    Summary Introduction Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Methods Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Results Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. Discussion CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases. PMID:28740526

  15. bioLights: light emitting wear for visualizing lower-limb muscle activity.

    PubMed

    Igarashi, Naoto; Suzuki, Kenji; Kawamoto, Hiroaki; Sankai, Yoshiyuki

    2010-01-01

    Analysis of muscle activity by electrophysiological techniques is commonly used to analyze biomechanics. Although the simultaneous and intuitive understanding of both muscle activity and body motion is important in various fields, it is difficult to realize. This paper proposes a novel technique for visualizing physiological signals related to muscle activity by means of surface electromyography. We developed a wearable light-emitting interface that indicates lower-limb muscle activity or muscular tension on the surface of the body in real time by displaying the shape of the activated muscle. The developed interface allows users to perceive muscle activity in an intuitive manner by relating the level of the muscle activity to the brightness level of the glowing interface placed on the corresponding muscle. In order to verify the advantage of the proposed method, a cognitive experiment was conducted to evaluate the system performance. We also conducted an evaluation experiment using the developed interface in conjunction with an exoskeleton robot, in order to investigate the possible applications of the developed interface in the field of neurorehabilitation.

  16. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    PubMed Central

    Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette

    2016-01-01

    Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well. PMID:26843992

  17. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  18. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles.

    PubMed

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.

  19. Differences in childhood adiposity influence upper limb fracture site

    PubMed Central

    Moon, Rebecca J; Lim, Adelynn; Farmer, Megan; Segaran, Avinash; Clarke, Nicholas MP; Dennison, Elaine M; Harvey, Nicholas C; Cooper, Cyrus; Davies, Justin H

    2015-01-01

    Introduction Although it has been suggested that overweight and obese children have an increased risk of fracture, recent studies in post-menopausal women have shown that the relationship between obesity and fracture risk varies by fracture site. We therefore assessed whether adiposity and overweight/obesity prevalence differed by upper limb fracture site in children. Methods Height, weight, BMI, triceps and subscapular skinfold thickness (SFT) were measured in children aged 3-18 years with an acute upper limb fracture. Data was compared across three fracture sites (hand, forearm and upper arm/shoulder [UA]), and to published reference data. Results 401 children (67.1% male, median age 11.71 years (range 3.54-17.27 years) participated. 34.2%, 50.6% and 15.2% had fractures of the hand, forearm and UA, respectively. Children with forearm fractures had higher weight, BMI and SFT z-scores than those with UA fractures (p<0.05 for all). SFT z-scores were also higher in children with forearm fractures compared to hand fractures, but children withor hand and UA fractures did not differ. Overweight and obesity prevalence was higher in children with forearm fractures (37.6%) than those with UA fractures (19.0%, p=0.009). This prevalence was also higher than the published United Kingdom population prevalence (27.9%, p=0.003), whereas that of children with either UA (p=0.13) or hand fractures (29.1%, p=0.76) did not differ. The differences in anthropometry and overweight/obesity were similar for boys, but not present in girls. Conclusion Measurements of adiposity and the prevalence of overweight/obesity differ by fracture site in children, and in particular boys, with upper limb fractures. PMID:26027507

  20. PARTICIPATORY DESIGN OF PEDIATRIC UPPER LIMB PROSTHESES: QUALITATIVE METHODS AND PROTOTYPING.

    PubMed

    Sims, Tara; Cranny, Andy; Metcalf, Cheryl; Chappell, Paul; Donovan-Hall, Maggie

    2017-01-01

    The study aims to develop an understanding of the views of children and adolescents, parents, and professionals on upper limb prosthetic devices to develop and improve device design. Previous research has found that children are dissatisfied with prostheses but has relied heavily on parent proxy reports and quantitative measures (such as questionnaires) to explore their views. Thirty-four participants (eight children aged 8-15 years with upper limb difference, nine parents, eight prosthetists, and nine occupational therapists) contributed to the development of new devices through the BRIDGE methodology of participatory design, using focus groups and interviews. The study identified areas for improving prostheses from the perspective of children and adolescents, developed prototypes based on these and gained feedback on the prototypes from the children and other stakeholders (parents and professionals) of paediatric upper limb prostheses. Future device development needs to focus on ease of use, versatility, appearance, and safety. This study has demonstrated that children and adolescents can and should be involved as equal partners in the development of daily living equipment and that rapid prototyping (three-dimensional printing or additive manufacturing), used within a participatory design framework, can be a useful tool for facilitating this.

  1. Musculoskeletal Complaints in Transverse Upper Limb Reduction Deficiency and Amputation in The Netherlands: Prevalence, Predictors, and Effect on Health.

    PubMed

    Postema, Sietke G; Bongers, Raoul M; Brouwers, Michael A; Burger, Helena; Norling-Hermansson, Liselotte M; Reneman, Michiel F; Dijkstra, Pieter U; van der Sluis, Corry K

    2016-07-01

    (1) To determine the prevalence of musculoskeletal complaints (MSCs) in individuals with upper limb absence in The Netherlands, (2) to assess the health status of individuals with upper limb absence in general and in relation to the presence of MSCs, and (3) to explore the predictors of development of MSCs and MSC-related disability in this population. Cross-sectional study: national survey. Twelve rehabilitation centers and orthopedic workshops. Individuals (n=263; mean age, 50.7±16.7y; 60% men) ≥18 years old, with transverse upper limb reduction deficiency (42%) or amputation (58%) at or proximal to the carpal level (response, 45%) and 108 individuals without upper limb reduction deficiency or amputation (n=108; mean age, 50.6±15.7y; 65% men) (N=371). Not applicable. Point and year prevalence of MSCs, MSC-related disability (Pain Disability Index), and general health perception and mental health (RAND-36 subscales). Point and year prevalence of MSCs were almost twice as high in individuals with upper limb absence (57% and 65%, respectively) compared with individuals without upper limb absence (27% and 34%, respectively) and were most often located in the nonaffected limb and upper back/neck. MSCs were associated with decreased general health perception and mental health and higher perceived upper extremity work demands. Prosthesis use was not related to presence of MSCs. Clinically relevant predictors of MSCs were middle age, being divorced/widowed, and lower mental health. Individuals with upper limb absence experienced more MSC-related disability than individuals without upper limb absence. Higher age, more pain, lower general and mental health, and not using a prosthesis were related to higher disability. Presence of MSCs is a frequent problem in individuals with upper limb absence and is associated with decreased general and mental health. Mental health and physical work demands should be taken into account when assessing such a patient. Clinicians should

  2. Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver

    PubMed Central

    Infantolino, Benjamin

    2016-01-01

    Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age. PMID:28033339

  3. Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.

    PubMed

    Ruggiero, Marissa; Cless, Daniel; Infantolino, Benjamin

    2016-01-01

    Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age.

  4. Planar covariance of upper and lower limb elevation angles during hand-foot crawling in healthy young adults.

    PubMed

    MacLellan, M J; Catavitello, G; Ivanenko, Y P; Lacquaniti, F

    2017-11-01

    Habitual quadrupeds have been shown to display a planar covariance of segment elevation angle waveforms in the fore and hind limbs during many forms of locomotion. The purpose of the current study was to determine if humans generate similar patterns in the upper and lower limbs during hand-foot crawling. Nine healthy young adults performed hand-foot crawling on a treadmill at speeds of 1, 2, and 3 km/h. A principal component analysis (PCA) was applied to the segment elevation angle waveforms for the upper (upper arm, lower arm, and hand) and lower (thigh, shank, and foot) limbs separately. The planarity of the elevation angle waveforms was determined using the sum of the variance explained by the first two PCs and the orientation of the covariance plane was quantified using the direction cosines of the eigenvector orthogonal to the plane, projected upon each of the segmental semi-axes. Results showed that planarity of segment elevation angles was maintained in the upper and lower limbs (explained variance >97%), although a slight decrease was present in the upper limb when crawling at 3 km/h. The orientation of the covariance plane was highly limb-specific, consistent with animal studies and possibly related to the functional neural control differences between the upper and lower limbs. These results may suggest that the motor patterns stored in the central nervous system for quadrupedal locomotion may be retained through evolution and may still be exploited when humans perform such tasks.

  5. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    PubMed Central

    2010-01-01

    Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32

  6. Ambulatory and Non-Ambulatory Benefits of Lower Limb Exoskeleton Use, with and without FES, in Clinical and Community Settings

    DTIC Science & Technology

    2017-10-01

    research investigates the extent to which regular walking in an exoskeleton will provide mobility, health , and recovery benefits to individuals with spinal...15. SUBJECT TERMS spinal cord injury, paraplegia, exoskeleton, physical medicine and rehabilitation, rehabilitation research, legged mobility...regular walking in an exoskeleton will provide mobility, health , and recovery benefits to individuals with spinal cord injury. The research is comprised

  7. Upper limb joint forces and moments during underwater cyclical movements.

    PubMed

    Lauer, Jessy; Rouard, Annie Hélène; Vilas-Boas, João Paulo

    2016-10-03

    Sound inverse dynamics modeling is lacking in aquatic locomotion research because of the difficulty in measuring hydrodynamic forces in dynamic conditions. Here we report the successful implementation and validation of an innovative methodology crossing new computational fluid dynamics and inverse dynamics techniques to quantify upper limb joint forces and moments while moving in water. Upper limb kinematics of seven male swimmers sculling while ballasted with 4kg was recorded through underwater motion capture. Together with body scans, segment inertial properties, and hydrodynamic resistances computed from a unique dynamic mesh algorithm capable to handle large body deformations, these data were fed into an inverse dynamics model to solve for joint kinetics. Simulation validity was assessed by comparing the impulse produced by the arms, calculated by integrating vertical forces over a stroke period, to the net theoretical impulse of buoyancy and ballast forces. A resulting gap of 1.2±3.5% provided confidence in the results. Upper limb joint load was within 5% of swimmer׳s body weight, which tends to supports the use of low-load aquatic exercises to reduce joint stress. We expect this significant methodological improvement to pave the way towards deeper insights into the mechanics of aquatic movement and the establishment of practice guidelines in rehabilitation, fitness or swimming performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reliability of the Melbourne assessment of unilateral upper limb function.

    PubMed

    Randall, M; Carlin, J B; Chondros, P; Reddihough, D

    2001-11-01

    This study examines the reliability of the Melbourne Assessment of Unilateral Upper Limb Function: a quantitative test of quality of movement in children with neurological impairment. The assessment was administered to 20 children aged from 5 to 16 years (mean age 9 years 10 months, SD 2 years 10 months) who had various types and degrees of cerebral palsy (CP). The performances of the 20 children during assessment were videotaped for subsequent scoring by 15 occupational therapists. Scores were analyzed for internal consistency of test items, inter- and intrarater reliability of scorings of the same videotapes, and test-retest reliability using repeat videotaping. Results revealed very high internal consistency of test items (alpha=0.96), moderate to high agreement both within and between raters for all test items (intraclass correlations of at least 0.7) apart from item 16 (hand to mouth and down), and high interrater reliability (0.95) and intrarater reliability (0.97) for total test scores. Test-retest results revealed moderate to high intrarater reliability for item totals (mean of 0.83 and 0.79) for each rater and high reliability for test totals (0.98 and 0.97). These findings indicate that the Melbourne Assessment of Unilateral Upper Limb Function is a reliable tool for measuring the quality of unilateral upper-limb movement in children with CP.

  9. [Study on the center-driven multiple degrees of freedom upper limb rehabilitation training robot].

    PubMed

    Huang, Xiaohai; Yu, Hongliu; Wang, Jinchao; Dong, Qi; Zhang, Linling; Meng, Qiaoling; Li, Sujiao; Wang, Duojin

    2018-03-01

    With the aging of the society, the number of stroke patients has been increasing year by year. Compared with the traditional rehabilitation therapy, the application of upper limb rehabilitation robot has higher efficiency and better rehabilitation effect, and has become an important development direction in the field of rehabilitation. In view of the current development status and the deficiency of upper limb rehabilitation robot system, combined with the development trend of all kinds of products of the upper limb rehabilitation robot, this paper designed a center-driven upper limb rehabilitation training robot for cable transmission which can help the patients complete 6 degrees of freedom (3 are driven, 3 are underactuated) training. Combined the structure of robot with more joints rehabilitation training, the paper choosed a cubic polynomial trajectory planning method in the joint space planning to design two trajectories of eating and lifting arm. According to the trajectory equation, the movement trajectory of each joint of the robot was drawn in MATLAB. It laid a foundation for scientific and effective rehabilitation training. Finally, the experimental prototype is built, and the mechanical structure and design trajectories are verified.

  10. A tailored workplace exercise program for women at risk for neck and upper limb musculoskeletal disorders: a randomized controlled trial.

    PubMed

    Rasotto, Chiara; Bergamin, Marco; Sieverdes, John C; Gobbo, Stefano; Alberton, Cristine L; Neunhaeuserer, Daniel; Maso, Stefano; Zaccaria, Marco; Ermolao, Andrea

    2015-02-01

    The aim of this study was to evaluate a tailored physical activity protocol performed in a work environment with a group of female workers employed in manual precision tasks to reduce upper limb pain. Sixty female subjects were randomly assigned to an intervention group or a control group. The IG was administered of a 6-month, twice-a-week, tailored exercise program, whereas the CG received no intervention. The IG showed a reduction on shoulder pain accompanied by increases on the range of motion measures. In addition, reductions in upper limb pain and neck disability were detected with concomitant increases in grip strength. This study indicated positive effects of a tailored workplace exercise protocol in female workers exposed to moderate risk for work-related musculoskeletal disorders, showing clinically meaningful reductions of pain symptoms and disability on upper limb and neck regions.

  11. Consumer design priorities for upper limb prosthetics.

    PubMed

    Biddiss, Elaine; Beaton, Dorcas; Chau, Tom

    2007-11-01

    To measure consumer satisfaction with upper limb prosthetics and provide an enumerated list of design priorities for future developments. A self-administered, anonymous survey collected information on participant demographics, history of and goals for prosthesis use, satisfaction, and design priorities. The questionnaire was available online and in paper format and was distributed through healthcare providers, community support groups, and one prosthesis manufacturer; 242 participants of all ages and levels of upper limb absence completed the survey. Rates of rejection for myoelectric hands, passive hands, and body-powered hooks were 39%, 53%, and 50%, respectively. Prosthesis wearers were generally satisfied with their devices while prosthesis rejecters were dissatisfied. Reduced prosthesis weight emerged as the highest priority design concern of consumers. Lower cost ranked within the top five design priorities for adult wearers of all device types. Life-like appearance is a priority for passive/cosmetic prostheses, while improved harness comfort, wrist movement, grip control and strength are required for body-powered devices. Glove durability, lack of sensory feedback, and poor dexterity were also identified as design priorities for electric devices. Design priorities reflect consumer goals for prosthesis use and vary depending on the type of prosthesis used and age. Future design efforts should focus on the development of more light-weight, comfortable prostheses.

  12. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System

    PubMed Central

    Choi, Hyundo; Seo, Keehong; Hyung, Seungyong; Shim, Youngbo; Lim, Soo-Chul

    2018-01-01

    In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system. PMID:29438300

  13. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.

    PubMed

    Choi, Hyundo; Seo, Keehong; Hyung, Seungyong; Shim, Youngbo; Lim, Soo-Chul

    2018-02-13

    In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  14. Upper limb joint muscle/tendon injury and anthropometric adaptations in French competitive tennis players.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Genevois, Cyril; Klouche, Shahnaz; Rahme, Michel; Hardy, Philippe

    2016-01-01

    The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P < 0.01; -3.6 ± 3.0% vs. -0.9 ± 2.9%, P < 0.05; and -2.2 ± 2.2% vs. 0.1 ± 3.4%, P < 0.05, respectively). The elbow group displayed asymmetrical bilateral proportions between forearm and arm compared to the healthy group (-0.4 ± 4.3% vs. 1.5 ± 4.0%, P < 0.01). The shoulder group showed significant bilateral difference in elbow circumference, and asymmetrical bilateral proportions between forearm and elbow when compared to the healthy group (5.8 ± 4.7% vs. 3.1 ± 4.8%, P < 0.05 and -1.7 ± 4.5% vs. 1.4 ± 4.3%, P < 0.01, respectively). These findings suggest that players with a history of injury at the upper limb joint present altered dominant upper limb proportions in comparison with the non-dominant side, and such asymmetrical proportions would appear to be specific to the location of injury. Further studies are needed to confirm the link between location of tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players.

  15. The effects of virtual reality-based bilateral arm training on hemiplegic children's upper limb motor skills.

    PubMed

    Do, Ji-Hye; Yoo, Eun-Young; Jung, Min-Ye; Park, Hae Yean

    2016-01-01

    Hemiplegic cerebral palsy is a neurological symptom appearing on the unilateral arm and leg of the body that causes affected upper/lower limb muscle weakening and dysesthesia and accompanies tetany and difficulties in postural control due to abnormal muscle tone, and difficulties in body coordination. The purpose of this study was to examine the impact of virtual reality-based bilateral arm training on the motor skills of children with hemiplegic cerebral palsy, in terms of their upper limb motor skills on the affected side, as well as their bilateral coordination ability. The research subjects were three children who were diagnosed with hemiplegic cerebral palsy. The research followed an ABA design, which was a single-subject experimental design. The procedure consisted of a total of 20 sessions, including four during the baseline period (A1), 12 during the intervention period (B), and four during the baseline regression period (A2), For the independent variable bilateral arm training based on virtual reality, Nintendo Wii game was played for 30 minutes in each of the 12 sessions. For the dependent variables of upper limb motor skills on the affected side and bilateral coordination ability, a Wolf Motor Function Test (WMFT) was carried out for each session and the Pediatric Motor Activity Log (PMAL) was measured before and after the intervention, as well as after the baseline regression period. To test bilateral coordination ability, shooting baskets in basketball with both hands and moving large light boxes were carried out under operational definitions, with the number of shots and time needed to move boxes measured. The results were presented using visual graphs and bar graphs. The study's results indicated that after virtual reality-based bilateral arm training, improvement occurred in upper limb motor skills on the affected sides, and in bilateral coordination ability, for all of the research subjects. Measurements of the effects of sustained therapy after

  16. A novel upper limb rehabilitation system with self-driven virtual arm illusion.

    PubMed

    Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul

    2014-01-01

    This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.

  17. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    NASA Technical Reports Server (NTRS)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  18. Principles of Tendon Reconstruction Following Complex Trauma of the Upper Limb

    PubMed Central

    Chattopadhyay, Arhana; McGoldrick, Rory; Umansky, Elise; Chang, James

    2015-01-01

    Reconstruction of tendons following complex trauma to the upper limb presents unique clinical and research challenges. In this article, the authors review the principles guiding preoperative assessment, surgical reconstruction, and postoperative rehabilitation and management of the upper extremity. Tissue engineering approaches to address tissue shortages for tendon reconstruction are also discussed. PMID:25685101

  19. Measuring upper limb function in children with hemiparesis with 3D inertial sensors.

    PubMed

    Newman, Christopher J; Bruchez, Roselyn; Roches, Sylvie; Jequier Gygax, Marine; Duc, Cyntia; Dadashi, Farzin; Massé, Fabien; Aminian, Kamiar

    2017-12-01

    Upper limb assessments in children with hemiparesis rely on clinical measurements, which despite standardization are prone to error. Recently, 3D movement analysis using optoelectronic setups has been used to measure upper limb movement, but generalization is hindered by time and cost. Body worn inertial sensors may provide a simple, cost-effective alternative. We instrumented a subset of 30 participants in a mirror therapy clinical trial at baseline, post-treatment, and follow-up clinical assessments, with wireless inertial sensors positioned on the arms and trunk to monitor motion during reaching tasks. Inertial sensor measurements distinguished paretic and non-paretic limbs with significant differences (P < 0.01) in movement duration, power, range of angular velocity, elevation, and smoothness (normalized jerk index and spectral arc length). Inertial sensor measurements correlated with functional clinical tests (Melbourne Assessment 2); movement duration and complexity (Higuchi fractal dimension) showed moderate to strong negative correlations with clinical measures of amplitude, accuracy, and fluency. Inertial sensor measurements reliably identify paresis and correlate with clinical measurements; they can therefore provide a complementary dimension of assessment in clinical practice and during clinical trials aimed at improving upper limb function.

  20. Neck and Upper Limb Dysfunction in Patients following Neck Dissection: Looking beyond the Shoulder.

    PubMed

    Gane, Elise M; O'Leary, Shaun P; Hatton, Anna L; Panizza, Benedict J; McPhail, Steven M

    2017-10-01

    Objective To measure patient-perceived upper limb and neck function following neck dissection and to investigate potential associations between clinical factors, symptoms, and function. Study Design Cross-sectional. Setting Two tertiary hospitals in Brisbane, Australia. Subjects and Methods Inclusion criteria: patients treated with neck dissection (2009-2014). aged <18 years, accessory nerve or sternocleidomastoid sacrifice, previous neck dissection, preexisting shoulder/neck injury, and inability to provide informed consent (cognition, insufficient English). Primary outcomes were self-reported function of the upper limb (Quick Disabilities of the Arm, Shoulder, and Hand) and neck (Neck Disability Index). Secondary outcomes included demographics, oncological management, self-efficacy, and pain. Generalized linear models were prepared to examine relationships between explanatory variables and self-reported function. Results Eighty-nine participants (male n = 63, 71%; median age, 62 years; median 3 years since surgery) reported mild upper limb and neck dysfunction (median [quartile 1, quartile 3] scores of 11 [3, 32] and 12 [4, 28], respectively). Significant associations were found between worse upper limb function and longer time since surgery (coefficient, 1.76; 95% confidence interval [CI], 0.01-3.51), having disease within the thyroid (17.40; 2.37-32.44), postoperative radiation therapy (vs surgery only) (13.90; 6.67-21.14), and shoulder pain (0.65; 0.44-0.85). Worse neck function was associated with metastatic cervical lymph nodes (coefficient, 6.61; 95% CI, 1.14-12.08), shoulder pain (0.19; 0.04-0.34), neck pain (0.34; 0.21-0.47), and symptoms of neuropathic pain (0.61; 0.25-0.98). Conclusion Patients can experience upper limb and neck dysfunction following nerve-preserving neck dissection. The upper quadrant as a whole should be considered when assessing rehabilitation priorities after neck dissection.

  1. Ergonomic design and training for preventing work-related musculoskeletal disorders of the upper limb and neck in adults.

    PubMed

    Hoe, Victor C W; Urquhart, Donna M; Kelsall, Helen L; Sim, Malcolm R

    2012-08-15

    Work-related upper limb and neck musculoskeletal disorders (MSDs) are one of the most common occupational disorders around the world. Although ergonomic design and training are likely to reduce the risk of workers developing work-related upper limb and neck MSDs, the evidence is unclear. To assess the effects of workplace ergonomic design or training interventions, or both, for the prevention of work-related upper limb and neck MSDs in adults. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, AMED, Web of Science (Science Citation Index), SPORTDiscus, Cochrane Occupational Safety and Health Review Group Database and Cochrane Bone, Joint and Muscle Trauma Group Specialised Register to July 2010, and Physiotherapy Evidence Database, US Centers for Disease Control and Prevention, the National Institute for Occupational Safety and Health database, and International Occupational Safety and Health Information Centre database to November 2010. We included randomised controlled trials (RCTs) of ergonomic workplace interventions for preventing work-related upper limb and neck MSDs. We included only studies with a baseline prevalence of MSDs of the upper limb or neck, or both, of less than 25%. Two review authors independently extracted data and assessed risk of bias. We included studies with relevant data that we judged to be sufficiently homogeneous regarding the intervention and outcome in the meta-analysis. We assessed the overall quality of the evidence for each comparison using the GRADE approach. We included 13 RCTs (2397 workers). Eleven studies were conducted in an office environment and two in a healthcare setting. We judged one study to have a low risk of bias. The 13 studies evaluated effectiveness of ergonomic equipment, supplementary breaks or reduced work hours, ergonomic training, a combination of ergonomic training and equipment, and patient lifting interventions for preventing work-related MSDs of the upper

  2. Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.

    PubMed

    Bawa, P; Hamm, J D; Dhillon, P; Gross, P A

    2004-10-01

    Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.

  3. Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice.

    PubMed

    Thomson, Katie; Pollock, Alex; Bugge, Carol; Brady, Marian C

    2016-08-01

    Stroke upper limb impairment is associated with disability in activities of daily living. Gaming (Nintendo Wii) is being introduced to rehabilitation despite limited evidence regarding effectiveness. Little data exists on how gaming is implemented resulting in a lack of clinical information. We aimed to gather therapists' opinions on gaming. A survey was posted to therapists, identified from stroke services across Scotland. A second survey was posted to non-responders. Survey data were analysed using descriptive statistics and thematic coding. Surveys were sent to 127 therapists (70 stroke services) and returned by 88% (112/127). Gaming was used by 18% of therapists, 61% (68/112) stated they would use this intervention should equipment be available. The most commonly used device was Nintendo Wii (83% of therapists using gaming) for 30 min or less once or twice per week. Half of therapists (51%) reported observing at least one adverse event, such as fatigue, stiffness or pain. Gaming was reported to be enjoyable but therapists described barriers, which relate to time, space and cost. Gaming is used by almost a fifth of therapists. Adverse events were reported by 51% of therapists; this should be considered when recommending use and dosage. Implications for Rehabilitation Commercial gaming devices are reported to be used by 1/5th of therapists for stroke upper limb rehabilitation, 3/5ths would use gaming if available. Adverse events were reported by 51% of therapists; this should be considered when recommending use and dosage. Current use of gaming in practice may not be achieving intense and repetitive upper limb task-specific practice.

  4. Interventions for improving upper limb function after stroke.

    PubMed

    Pollock, Alex; Farmer, Sybil E; Brady, Marian C; Langhorne, Peter; Mead, Gillian E; Mehrholz, Jan; van Wijck, Frederike

    2014-11-12

    Improving upper limb function is a core element of stroke rehabilitation needed to maximise patient outcomes and reduce disability. Evidence about effects of individual treatment techniques and modalities is synthesised within many reviews. For selection of effective rehabilitation treatment, the relative effectiveness of interventions must be known. However, a comprehensive overview of systematic reviews in this area is currently lacking. To carry out a Cochrane overview by synthesising systematic reviews of interventions provided to improve upper limb function after stroke. We comprehensively searched the Cochrane Database of Systematic Reviews; the Database of Reviews of Effects; and PROSPERO (an international prospective register of systematic reviews) (June 2013). We also contacted review authors in an effort to identify further relevant reviews. We included Cochrane and non-Cochrane reviews of randomised controlled trials (RCTs) of patients with stroke comparing upper limb interventions with no treatment, usual care or alternative treatments. Our primary outcome of interest was upper limb function; secondary outcomes included motor impairment and performance of activities of daily living. When we identified overlapping reviews, we systematically identified the most up-to-date and comprehensive review and excluded reviews that overlapped with this. Two overview authors independently applied the selection criteria, excluding reviews that were superseded by more up-to-date reviews including the same (or similar) studies. Two overview authors independently assessed the methodological quality of reviews (using a modified version of the AMSTAR tool) and extracted data. Quality of evidence within each comparison in each review was determined using objective criteria (based on numbers of participants, risk of bias, heterogeneity and review quality) to apply GRADE (Grades of Recommendation, Assessment, Development and Evaluation) levels of evidence. We resolved

  5. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.

    PubMed

    Li, Jiting; Zheng, Ruoyin; Zhang, Yuru; Yao, Jianchu

    2011-01-01

    This paper presents an interactive exoskeleton device for hand rehabilitation, iHandRehab, which aims to satisfy the essential requirements for both active and passive rehabilitation motions. iHandRehab is comprised of exoskeletons for the thumb and index finger. These exoskeletons are driven by distant actuation modules through a cable/sheath transmission mechanism. The exoskeleton for each finger has 4 degrees of freedom (DOF), providing independent control for all finger joints. The joint motion is accomplished by a parallelogram mechanism so that the joints of the device and their corresponding finger joints have the same angular displacement when they rotate. Thanks to this design, the joint angles can be measured by sensors real time and high level motion control is therefore made very simple without the need of complicated kinematics. The paper also discusses important issues when the device is used by different patients, including its adjustable joint range of motion (ROM) and adjustable range of phalanx length (ROPL). Experimentally collected data show that the achieved ROM is close to that of a healthy hand and the ROPL covers the size of a typical hand, satisfying the size need of regular hand rehabilitation. In order to evaluate the performance when it works as a haptic device in active mode, the equivalent moment of inertia (MOI) of the device is calculated. The results prove that the device has low inertia which is critical in order to obtain good backdrivability. Experimental analysis shows that the influence of friction accounts for a large portion of the driving torque and warrants future investigation. © 2011 IEEE

  6. Upper limb robotics applied to neurorehabilitation: An overview of clinical practice.

    PubMed

    Duret, Christophe; Mazzoleni, Stefano

    2017-01-01

    During the last two decades, extensive interaction between clinicians and engineers has led to the development of systems that stimulate neural plasticity to optimize motor recovery after neurological lesions. This has resulted in the expansion of the field of robotics for rehabilitation. Studies in patients with stroke-related upper-limb paresis have shown that robotic rehabilitation can improve motor capacity. However, few other applications have been evaluated (e.g. tremor, peripheral nerve injuries or other neurological diseases). This paper presents an overview of the current use of upper limb robotic systems for neurorehabilitation, and highlights the rationale behind their use for the assessment and treatment of common neurological disorders. Rehabilitation robots are little integrated in clinical practice, except after stroke. Although few studies have been carried out to evaluate their effectiveness, evidence from the neurosciences and indications from pilot studies suggests that upper limb robotic rehabilitation can be applied safely in various other neurological conditions. Rehabilitation robots provide an intensity, quality and dose of treatment that exceeds therapist-mediated rehabilitation. Moreover, the use of force fields, multi-sensory environments, feedback etc. renders such rehabilitation engaging and motivating. Future studies should evaluate the effectiveness of rehabilitation robots in neurological pathologies other than stroke.

  7. Physical exercises for breast cancer survivors: effects of 10 weeks of training on upper limb circumferences

    PubMed Central

    Di Blasio, Andrea; Morano, Teresa; Bucci, Ines; Di Santo, Serena; D’Arielli, Alberto; Castro, Cristina Gonzalez; Cugusi, Lucia; Cianchetti, Ettore; Napolitano, Giorgio

    2016-01-01

    [Purpose] The aims of this study were to verify the effects on upper limb circumferences and total body extracellular water of 10 weeks of Nordic Walking (NW) and Walking (W), both alone and combined with a series of exercises created for breast cancer survivors, the ISA method. [Subjects and Methods] Twenty breast cancer survivors were randomly assigned to 4 different training groups and evaluated for upper limb circumferences, total body and extracellular water. [Results] The breast cancer survivors who performed NW, alone and combined with the ISA method, and Walking combined with the ISA method (but not alone) showed significantly reduced arm and forearm circumferences homolateral to the surgical intervention. [Conclusion] For breast cancer survivors, NW, alone and combined with the ISA method, and Walking combined with the ISA method should be prescribed to prevent the onset and to treat light forms of upper limb lymphedema because Walking training practiced alone had no significant effect on upper limb circumference reduction. PMID:27821934

  8. Furniture dimensions and postural overload for schoolchildren's head, upper back and upper limbs.

    PubMed

    Batistão, Mariana Vieira; Sentanin, Anna Cláudia; Moriguchi, Cristiane Shinohara; Hansson, Gert-Åke; Coury, Helenice Jane Cote Gil; de Oliveira Sato, Tatiana

    2012-01-01

    The aim of this study was to evaluate how the fixed furniture dimensions match with students' anthropometry and to describe head, upper back and upper limbs postures and movements. Evaluation was performed in 48 students from a Brazilian state school. Furniture dimensions were measured with metric tape, movements and postures by inclinometers (Logger Tecknologi, Åkarp, Sweden). Seat height was high for 21% and low for 36% of the students; seat length was short for 45% and long for 9% and table height was high for 53% and low for 28%. Regression analysis showed that seat/popliteal height quotient is explained by 90th percentile of upper back inclination (β=0.410) and 90th percentile of right upper arm elevation (β=-0.293). For seat/thigh length quotient the significant variables were 90th percentile of upper back velocity (β=-0.282) and 90th percentile of right upper arm elevation (β=0.410). This study showed a relationship between furniture mismatch and postural overload. When the seat height is low students increase upper back left inclination and right upper arm elevation; when the seat is short students decrease the upper back flexion velocity and increase right upper arm elevation.

  9. Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks.

    PubMed

    Ebina, Teppei; Masamizu, Yoshito; Tanaka, Yasuhiro R; Watakabe, Akiya; Hirakawa, Reiko; Hirayama, Yuka; Hira, Riichiro; Terada, Shin-Ichiro; Koketsu, Daisuke; Hikosaka, Kazuo; Mizukami, Hiroaki; Nambu, Atsushi; Sasaki, Erika; Yamamori, Tetsuo; Matsuzaki, Masanori

    2018-05-14

    Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.

  10. Upper limb post-stroke sensory impairments: the survivor's experience.

    PubMed

    Doyle, Susan D; Bennett, Sally; Dudgeon, Brian

    2014-01-01

    This study described stroke survivors' experiences of upper limb post-stroke sensory impairment (ULPSSI) and its rehabilitation. A qualitative descriptive study of 15 stroke survivors with ULPSSI using semi-structured interviews. A focus group of eight survivors reviewed thematic outcomes. Analysis was completed by three authors. Three themes emerged: (1) What happened to my hand?: A description of the significant impact of sensory impairments on survivors roles and participation; (2) I was only just getting started: Survivors felt sensory impairments and the upper limb were ignored in rehabilitation and described being left on their own to devise their own rehabilitation; and (3) If I work hard then maybe someday: Survivors felt sensory impairments recovered slowly and was aided by working towards recovery and maintaining hope. Sensory impairments are significant for survivors and are deserving of greater clinical and research attention. In particular, assessments and interventions need further development and testing. This study's findings revealed the need to ascertain individual survivors' preference for involvement in decision making related to their rehabilitation planning. It also found survivors view recovery as extending well beyond current rehabilitation frameworks, necessitating further description of recovery and re-evaluation of service delivery to address survivors' needs. Sensory impairments significantly impact stroke survivors' roles and participation. Remediation of sensory impairments is important to survivors, but seems to be ignored in the rehabilitation process. Individual survivors' preference for involvement in decision making related to their rehabilitation planning should be ascertained. Stroke survivors feel left on their own to address their upper limb impairments long after rehabilitation services have ended. The development of services beyond the normal rehabilitation timeframes is warranted.

  11. Less common upper limb mononeuropathies.

    PubMed

    Williams, Faren H; Kumiga, Bryan

    2013-05-01

    This article will focus on the less commonly injured nerves of the upper extremity. These nerves may be involved when trauma results in fractures, dislocations, or swelling with resultant nerve compression. Tumors and ganglions can also compress nerves, causing pain and, over time, demyelination or axon degeneration with weakness. Other mechanisms for upper limb nerve injury include participation in high-level sports, that is, those that generate torque about the arm and shoulder, abnormal stresses about the joints and muscles, or muscle hypertrophy, which may result in nerve injury. The goals of this review are to discuss the clinical presentation and possible causes of upper extremity nerve entrapments and to formulate an electrodiagnostic plan for evaluation. Descriptions of the appropriate nerve conduction studies or needle electromyographic protocols are included for specific nerves. The purpose of the electrodiagnostic examination is to evaluate the degree of nerve injury, axon loss over time, and later, evidence for reinnervation to assist with prognostication. The latter has implications for management of the neuropathy, including the type of exercises and therapy that may be indicated to help maintain the stability and motion of the involved joint(s) and promote strengthening over time as the nerve regenerates. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  12. Durability of implanted electrodes and leads in an upper-limb neuroprosthesis.

    PubMed

    Kilgore, Kevin L; Peckham, P Hunter; Keith, Michael W; Montague, Fred W; Hart, Ronald L; Gazdik, Martha M; Bryden, Anne M; Snyder, Scott A; Stage, Thomas G

    2003-01-01

    Implanted neuroprosthetic systems have been successfully used to provide upper-limb function for over 16 years. A critical aspect of these implanted systems is the safety, stability, and-reliability of the stimulating electrodes and leads. These components are (1) the stimulating electrode itself, (2) the electrode lead, and (3) the lead-to-device connector. A failure in any of these components causes the direct loss of the capability to activate a muscle consistently, usually resulting in a decrement in the function provided by the neuroprosthesis. Our results indicate that the electrode, lead, and connector system are extremely durable. We analyzed 238 electrodes that have been implanted as part of an upper-limb neuroprosthesis. Each electrode had been implanted at least 3 years, with a maximum implantation time of over 16 years. Only three electrode-lead failures and one electrode infection occurred, for a survival rate of almost 99 percent. Electrode threshold measurements indicate that the electrode response is stable over time, with no evidence of electrode migration or continual encapsulation in any of the electrodes studied. These results have an impact on the design of implantable neuroprosthetic systems. The electrode-lead component of these systems should no longer be considered a weak technological link.

  13. Reliability, Validity, and Responsiveness of the QuickDASH in Patients With Upper Limb Amputation.

    PubMed

    Resnik, Linda; Borgia, Matthew

    2015-09-01

    To examine the internal consistency, test-retest reliability, validity, and responsiveness of the shortened version of the Disabilities of the Arm, Shoulder and Hand (QuickDASH) questionnaire in persons with upper limb amputation. Cross-sectional and longitudinal. Three sites participating in the U.S. Department of Veterans Affairs Home Study of the DEKA Arm. A convenience sample of upper limb amputees (N=44). Training with a multifunction upper limb prosthesis. Multiple outcome measures including the QuickDASH were administered twice within 1 week, and for a subset of 20 persons, after completion of in-laboratory training with the DEKA Arm. Scale alphas and intraclass correlation coefficient type 3,1 (ICC3,1) were used to examine reliability. Minimum detectable change (MDC) scores were calculated. Analyses of variance, comparing QuickDASH scores by the amount of prosthetic use and amputation level, were used for known-group validity analyses with alpha set at .05. Pairwise correlations between QuickDASH and other measures were used to examine concurrent validity. Responsiveness was measured by effect size (ES) and standardized response mean (SRM). QuickDASH alpha was .83, and ICC was .87 (95% confidence interval, .77-.93). MDC at the 95% confidence level (MDC95%) was 17.4. Full- or part-time prosthesis users had better QuickDASH scores compared with nonprosthesis users (P=.021), as did those with more distal amputations at both baseline (P=.042) and with the DEKA Arm (P=.024). The QuickDASH was correlated with concurrent measures of activity limitation as expected. The ES and SRM after training with the DEKA Arm were 0.6. This study provides evidence of reliability and validity of the QuickDASH in persons with upper limb amputation. Results provide preliminary evidence of responsiveness to prosthetic device type/training. Further research with a larger sample is needed to confirm results. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by

  14. Considerations for designing robotic upper limb rehabilitation devices

    NASA Astrophysics Data System (ADS)

    Nadas, I.; Vaida, C.; Gherman, B.; Pisla, D.; Carbone, G.

    2017-12-01

    The present study highlights the advantages of robotic systems for post-stroke rehabilitation of the upper limb. The latest demographic studies illustrate a continuous increase of the average life span, which leads to a continuous increase of stroke incidents and patients requiring rehabilitation. Some studies estimate that by 2030 the number of physical therapists will be insufficient for the patients requiring physical rehabilitation, imposing a shift in the current methodologies. A viable option is the implementation of robotic systems that assist the patient in performing rehabilitation exercises, the physical therapist role being to establish the therapeutic program for each patient and monitor their individual progress. Using a set of clinical measurements for the upper limb motions, the analysis of rehabilitation robotic systems provides a comparative study between the motions required by clinicians and the ones that robotic systems perform for different therapeutic exercises. A critical analysis of existing robots is performed using several classifications: mechanical design, assistance type, actuation and power transmission, control systems and human robot interaction (HRI) strategies. This classification will determine a set of pre-requirements for the definition of new concepts and efficient solutions for robotic assisted rehabilitation therapy.

  15. Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees

    DTIC Science & Technology

    2016-10-01

    upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the

  16. Impact of early applied upper limb stimulation: the EXPLICIT-stroke programme design.

    PubMed

    Kwakkel, Gert; Meskers, Carel G M; van Wegen, Erwin E; Lankhorst, Guus J; Geurts, Alexander C H; van Kuijk, Annet A; Lindeman, Eline; Visser-Meily, Anne; de Vlugt, Erwin; Arendzen, J Hans

    2008-12-17

    Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke) aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT) and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS) in patients with respectively a favourable or poor probability for recovery of dexterity. 180 participants suffering from an acute, first-ever ischemic stroke will be recruited. Functional prognosis at the end of the first week post stroke is used to stratify patient into a poor prognosis group for upper limb recovery (N = 120, A2 project) and a group with a favourable prognosis (N = 60, A1 project). Both groups will be randomized to an experimental arm receiving respectively modified CIMT (favourable prognosis) or EMG-NMS (poor prognosis) for 3 weeks or to a control arm receiving usual care. Primary outcome variable will be the Action Research Arm Test (ARAT), assessed at 1,2,3,4,5, 8, 12 and 26 weeks post stroke. To study the impact of modified CIMT or EMG-NMS on stroke recovery mechanisms i.e. neuroplasticity, compensatory movements and upper limb neuromechanics, 60 patients randomly selected from projects A1 and A2 will undergo TMS, kinematical and haptic robotic measurements within a repeated measurement design. Additionally, 30 patients from the A1 project will undergo fMRI at baseline, 5 and 26 weeks post stroke. EXPLICIT stroke is a 5 year translational research programme which main aim is to investigate the effects of early applied intensive intervention for regaining dexterity and to explore the underlying mechanisms that are

  17. Global Kalman filter approaches to estimate absolute angles of lower limb segments.

    PubMed

    Nogueira, Samuel L; Lambrecht, Stefan; Inoue, Roberto S; Bortole, Magdo; Montagnoli, Arlindo N; Moreno, Juan C; Rocon, Eduardo; Terra, Marco H; Siqueira, Adriano A G; Pons, Jose L

    2017-05-16

    In this paper we propose the use of global Kalman filters (KFs) to estimate absolute angles of lower limb segments. Standard approaches adopt KFs to improve the performance of inertial sensors based on individual link configurations. In consequence, for a multi-body system like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank) are not taken into account in other link angle estimations (e.g., foot). Global KF approaches, on the other hand, correlate the collective contribution of all signals from lower limb segments observed in the state-space model through the filtering process. We present a novel global KF (matricial global KF) relying only on inertial sensor data, and validate both this KF and a previously presented global KF (Markov Jump Linear Systems, MJLS-based KF), which fuses data from inertial sensors and encoders from an exoskeleton. We furthermore compare both methods to the commonly used local KF. The results indicate that the global KFs performed significantly better than the local KF, with an average root mean square error (RMSE) of respectively 0.942° for the MJLS-based KF, 1.167° for the matrical global KF, and 1.202° for the local KFs. Including the data from the exoskeleton encoders also resulted in a significant increase in performance. The results indicate that the current practice of using KFs based on local models is suboptimal. Both the presented KF based on inertial sensor data, as well our previously presented global approach fusing inertial sensor data with data from exoskeleton encoders, were superior to local KFs. We therefore recommend to use global KFs for gait analysis and exoskeleton control.

  18. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.

    PubMed

    Lerner, Zachary F; Damiano, Diane L; Park, Hyung-Soon; Gravunder, Andrew J; Bulea, Thomas C

    2017-06-01

    Crouch gait, a pathological pattern of walking characterized by excessive knee flexion, is one of the most common gait disorders observed in children with cerebral palsy (CP). Effective treatment of crouch during childhood is critical to maintain mobility into adulthood, yet current interventions do not adequately alleviate crouch in most individuals. Powered exoskeletons provide an untapped opportunity for intervention. The multiple contributors to crouch, including spasticity, contracture, muscle weakness, and poor motor control make design and control of such devices challenging in this population. To our knowledge, no evidence exists regarding the feasibility or efficacy of utilizing motorized assistance to alleviate knee flexion in crouch gait. Here, we present the design of and first results from a powered exoskeleton for extension assistance as a treatment for crouch gait in children with CP. Our exoskeleton, based on the architecture of a knee-ankle-foot orthosis, is lightweight (3.2 kg) and modular. On board sensors enable knee extension assistance to be provided during distinct phases of the gait cycle. We tested our device on one six-year-old male participant with spastic diplegia from CP. Our results show that the powered exoskeleton improved knee extension during stance by 18.1° while total knee range of motion improved 21.0°. Importantly, we observed no significant decrease in knee extensor muscle activity, indicating the user did not rely solely on the exoskeleton to extend the limb. These results establish the initial feasibility of robotic exoskeletons for treatment of crouch and provide impetus for continued investigation of these devices with the aim of deployment for long term gait training in this population.

  19. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training

    PubMed Central

    Li, Chong; Bi, Sheng; Zhang, Xuemin; Huo, Jianfei

    2017-01-01

    Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient's functional ability by training the normal movement pattern. PMID:29065614

  20. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training.

    PubMed

    Liu, Yali; Li, Chong; Ji, Linhong; Bi, Sheng; Zhang, Xuemin; Huo, Jianfei; Ji, Run

    2017-01-01

    Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient's functional ability by training the normal movement pattern.

  1. Development of a 3-D Rehabilitation System for Upper Limbs Using ER Actuators in a Nedo Project

    NASA Astrophysics Data System (ADS)

    Furusho, Junji; Koyanagi, Ken'ichi; Nakanishi, Kazuhiko; Ryu, Ushio; Takenaka, Shigekazu; Inoue, Akio; Domen, Kazuhisa; Miyakoshi, Koichi

    New training methods and exercises for upper limbs rehabilitation are made possible by application of robotics and virtual reality technology. The technologies can also make quantitative evaluations and enhance the qualitative effect of training. We have joined a project managed by NEDO (New Energy and Industrial Technology Development Organization as a semi-governmental organization under the Ministry of Economy, Trade and Industry of Japan) 5-year Project, "Rehabilitation System for the Upper Limbs and Lower Limbs", and developed a 3-DOF exercise machine for upper limbs (EMUL) using ER actuators. In this paper, we also present the development of software for motion exercise trainings and some results of clinical evaluation. Moreover, it is discussed how ER actuators ensure the mechanical safety.

  2. Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.

    PubMed

    Resnik, Linda; Klinger, Shana Lieberman; Etter, Katherine; Fantini, Christopher

    2014-07-01

    The DEKA Arm, a pre-commercial upper limb prosthesis, funded by the DARPA Revolutionizing Prosthetics Program, offers increased degrees of freedom while requiring a large number of user control inputs to operate. To address this challenge, DEKA developed prototype foot controls. Although the concept of utilizing foot controls to operate an upper limb prosthesis has been discussed for decades, only small-sized studies have been performed and no commercial product exists. The purpose of this paper is to report amputee user perspectives on using three different iterations of foot controls to operate the DEKA Arm. Qualitative data was collected from 36 subjects as part of the Department of Veterans Affairs (VA) Study to Optimize the DEKA Arm through surveys, interviews, audio memos, and videotaped sessions. Three major, interrelated themes were identified using the constant comparative method: attitudes towards foot controls, psychomotor learning and physical experience of using foot controls. Feedback about foot controls was generally positive for all iterations. The final version of foot controls was viewed most favorably. Our findings indicate that foot controls are a viable control option that can enable control of a multifunction upper limb prosthesis (the DEKA Arm). Multifunction upper limb prostheses require many user control inputs to operate. Foot controls offer additional control input options for such advanced devices, yet have had minimal study. This study found that foot controls were a viable option for controlling multifunction upper limb prostheses. Most of the 36 subjects in this study were willing to adopt foot controls to control the multiple degrees of freedom of the DEKA Arm. With training and practice, all users were able to develop the psychomotor skills needed to successfully operate food controls. Some had initial difficulty, but acclimated over time.

  3. Rehabilitation of Upper Limb in Children with Acquired Brain Injury: A Preliminary Comparative Study.

    PubMed

    Beretta, Elena; Cesareo, Ambra; Biffi, Emilia; Schafer, Carolyn; Galbiati, Sara; Strazzer, Sandra

    2018-01-01

    Acquired brain injuries (ABIs) can lead to a wide range of impairments, including weakness or paralysis on one side of the body known as hemiplegia. In hemiplegic patients, the rehabilitation of the upper limb skills is crucial, because the recovery has an immediate impact on patient quality of life. For this reason, several treatments were developed to flank physical therapy (PT) and improve functional recovery of the upper limbs. Among them, Constraint-Induced Movement Therapy (CIMT) and robot-aided therapy have shown interesting potentialities in the rehabilitation of the hemiplegic upper limb. Nevertheless, there is a lack of quantitative evaluations of effectiveness in a standard clinical setting, especially in children, as well as a lack of direct comparative studies between these therapeutic techniques. In this study, a group of 18 children and adolescents with hemiplegia was enrolled and underwent intensive rehabilitation treatment including PT and CIMT or Armeo®Spring therapy. The effects of the treatments were assessed using clinical functional scales and upper limb kinematic analysis during horizontal and vertical motor tasks. Results showed CIMT to be the most effective in terms of improved functional scales, while PT seemed to be the most significant in terms of kinematic variations. Specifically, PT resulted to have positive influence on distal movements while CIMT conveyed more changes in the proximal kinematics. Armeo treatment delivered improvements mainly in the vertical motor task, showing trends of progresses of the movement efficiency and reduction of compensatory movements of the shoulder with respect to other treatments. Therefore, every treatment gave advantages in a specific and different upper limb district. Therefore, results of this preliminary study may be of help to define the best rehabilitation treatment for each patient, depending on the goal, and may thus support clinical decision.

  4. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.

    PubMed

    Sale, Patrizio; Infarinato, Francesco; Del Percio, Claudio; Lizio, Roberta; Babiloni, Claudio; Foti, Calogero; Franceschini, Marco

    2015-12-01

    Stroke is the leading cause of permanent disability in developed countries; its effects may include sensory, motor, and cognitive impairment as well as a reduced ability to perform self-care and participate in social and community activities. A number of studies have shown that the use of robotic systems in upper limb motor rehabilitation programs provides safe and intensive treatment to patients with motor impairments because of a neurological injury. Furthermore, robot-aided therapy was shown to be well accepted and tolerated by all patients; however, it is not known whether a specific robot-aided rehabilitation can induce beneficial cortical plasticity in stroke patients. Here, we present a procedure to study neural underpinning of robot-aided upper limb rehabilitation in stroke patients. Neurophysiological recordings use the following: (a) 10-20 system electroencephalographic (EEG) electrode montage; (b) bipolar vertical and horizontal electrooculographies; and (c) bipolar electromyography from the operating upper limb. Behavior monitoring includes the following: (a) clinical data and (b) kinematic and dynamic of the operant upper limb movements. Experimental conditions include the following: (a) resting state eyes closed and eyes open, and (b) robotic rehabilitation task (maximum 80 s each block to reach 4-min EEG data; interblock pause of 1 min). The data collection is performed before and after a program of 30 daily rehabilitation sessions. EEG markers include the following: (a) EEG power density in the eyes-closed condition; (b) reactivity of EEG power density to eyes opening; and (c) reactivity of EEG power density to robotic rehabilitation task. The above procedure was tested on a subacute patient (29 poststroke days) and on a chronic patient (21 poststroke months). After the rehabilitation program, we observed (a) improved clinical condition; (b) improved performance during the robotic task; (c) reduced delta rhythms (1-4 Hz) and increased alpha

  5. Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial.

    PubMed

    Colomer, Carolina; NOé, Enrique; Llorens, Roberto

    2016-06-01

    Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function. The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization. A randomized controlled trial. Rehabilitative outpatient unit. A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16). Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment. Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches. In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement. MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.

  6. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients.

    PubMed

    Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho

    2012-08-01

    The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P < 0.05). In upper-limb motor function, the Manual Function Test score (by shoulder item, 5.00 vs. 2.23; hand item, 5.07 vs. 0.46, respectively) was significantly increased in the experimental group compared with the control group (P < 0.01). No significant differences were found between the groups for the coordination items in Fugl-Meyer Assessment. This study confirms that mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.

  7. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study.

    PubMed

    Taveggia, Giovanni; Borboni, Alberto; Salvi, Lorena; Mulé, Chiara; Fogliaresi, Stefania; Villafañe, Jorge H; Casale, Roberto

    2016-12-01

    A prompt and effective physical and rehabilitation medicine approach is essential to obtain recovery of an impaired limb to prevent tendon shortening, spasticity and pain. Robot-assisted virtual reality intervention has been shown to be more effective than conventional interventions and achieved greater improvement in upper limb function. The aim of this study was to evaluate the effectiveness of robotic-assisted motion and activity in addition to PRM for the rehabilitation of the upper limb in post-stroke inpatients. Randomized controlled trial. Departments of Physical and Rehabilitation Medicine from three different hospitals (Sarnico, Brescia; Bergamo; Milan). A total of 54 patients and enrolled 23 men and 31 women with post-stroke hemiparesis, aged 18 to 80 years old, enrolled from July 2014 to February 2015. Of the 54 enrolled patients, 57% were female (mean age 71±12 years), and all had upper limb function deficit post-stroke. The experimental group received a passive mobilization of the upper limb through the robotic device ARMEO Spring and the control group received PRM for 6 consecutive weeks (5 days/week) in addition to traditional PRM. We assessed the impact on functional recovery (Functional Independence Measure [FIM] scale), strength (Motricity Index [MI]), spasticity (Modified Ashworth Scale [MAS]) and pain (Numeric Rating Pain Scale [NRPS]). All patients were evaluated by a blinded observer using the outcomes tests at enrollment (T0), after the treatment (T1) and at follow up 6 weeks later (T2). Both control and experimental groups evidenced an improvement of the outcomes after the treatment (MI, Ashworth and NRPS with P<0.05). The experimental group showed further improvements after the follow up (all outcomes with P<0.01). In the treatment of pain, disability and spasticity in upper limb after stroke, robot-assisted mobilization associated to PRM is as effective as traditional rehabilitation. Robot-assisted treatment has an impact on upper limb

  8. A survey of stakeholder perspectives on exoskeleton technology.

    PubMed

    Wolff, Jamie; Parker, Claire; Borisoff, Jaimie; Mortenson, W Ben; Mattie, Johanne

    2014-12-19

    Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. To further understand potential exoskeleton use, and facilitate the development of new technologies, a study was undertaken to explore perspectives of wheelchair users and healthcare professionals on reasons for use of exoskeleton technology, and the importance of a variety of device characteristics. An online survey with quantitative and qualitative components was conducted with wheelchair users and healthcare professionals working directly with individuals with mobility impairments. Respondents rated whether they would use or recommend an exoskeleton for four potential reasons. Seventeen design features were rated and compared in terms of their importance. An exploratory factor analysis was conducted to categorize the 17 design features into meaningful groupings. Content analysis was used to identify themes for the open ended questions regarding reasons for use of an exoskeleton. 481 survey responses were analyzed, 354 from wheelchair users and 127 from healthcare professionals. The most highly rated reason for potential use or recommendation of an exoskeleton was health benefits. Of the design features, 4 had a median rating of very important: minimization of falls risk, comfort, putting on/taking off the device, and purchase cost. Factor analysis identified two main categories of design features: Functional Activities and Technology Characteristics. Qualitative findings indicated that health and physical benefits, use for activity and access reasons, and psychosocial benefits were important considerations in whether to use or recommend an exoskeleton. This study emphasizes the importance of developing future exoskeletons that are comfortable, affordable, minimize fall risk, and enable functional activities. Findings from this study can be utilized to inform the priorities for future

  9. Using commercial video games for upper limb stroke rehabilitation: is this the way of the future?

    PubMed

    Pietrzak, Eva; Cotea, Cristina; Pullman, Stephen

    2014-01-01

    The increasing number of people living with poststroke sequelae has stimulated the search for novel ways of providing poststroke rehabilitation without putting additional stress on overburdened health care systems. One of them is the use of commercially available technology and off-the-shelf video games for hemiparetic upper limb rehabilitation. The MEDLINE, EMBASE, and Cochrane Library databases were searched using key word synonyms for stroke, upper limb, and video games. Included studies investigated upper limb stroke rehabilitation using commercially available consoles and video games, reported outcomes that included measures of upper limb functionality, and were published in a peer-reviewed journal written in English. Thirteen studies were identified - 6 published as full articles and 7 as abstracts. Studies were generally small and only 3 were randomized. The gaming systems investigated were the Nintendo Wii (n = 10), EyeToy PlayStation (n = 2), and CyWee Z (n = 1). The Nintendo Wii appears to provide the greatest benefits to patients, with improvements seen in upper extremity function measures such as joint range of motion, hand motor function, grip strength, and dexterity. Three studies indicate that video therapy appears to be safe and that long-term improvements continue at follow-up. At present, the evidence that the use of commercial video games in rehabilitation improves upper limb functionality after stroke is very limited. However, this approach has the potential to provide easily available and affordable stroke rehabilitation therapy in settings where access to therapy is limited by geographical or financial constraints.

  10. The Passive Series Stiffness That Optimizes Torque Tracking for a Lower-Limb Exoskeleton in Human Walking

    PubMed Central

    Zhang, Juanjuan; Collins, Steven H.

    2017-01-01

    This study uses theory and experiments to investigate the relationship between the passive stiffness of series elastic actuators and torque tracking performance in lower-limb exoskeletons during human walking. Through theoretical analysis with our simplified system model, we found that the optimal passive stiffness matches the slope of the desired torque-angle relationship. We also conjectured that a bandwidth limit resulted in a maximum rate of change in torque error that can be commanded through control input, which is fixed across desired and passive stiffness conditions. This led to hypotheses about the interactions among optimal control gains, passive stiffness and desired quasi-stiffness. Walking experiments were conducted with multiple angle-based desired torque curves. The observed lowest torque tracking errors identified for each combination of desired and passive stiffnesses were shown to be linearly proportional to the magnitude of the difference between the two stiffnesses. The proportional gains corresponding to the lowest observed errors were seen inversely proportional to passive stiffness values and to desired stiffness. These findings supported our hypotheses, and provide guidance to application-specific hardware customization as well as controller design for torque-controlled robotic legged locomotion. PMID:29326580

  11. Short-Term Upper Limb Immobilization Affects Action-Word Understanding

    ERIC Educational Resources Information Center

    Bidet-Ildei, Christel; Meugnot, Aurore; Beauprez, Sophie-Anne; Gimenes, Manuel; Toussaint, Lucette

    2017-01-01

    The present study aimed to investigate whether well-established associations between action and language can be altered by short-term upper limb immobilization. The dominant arm of right-handed participants was immobilized for 24 hours with a rigid splint fixed on the hand and an immobilization vest restraining the shoulder, arm, and forearm. The…

  12. Quantification of Upper Limb Motor Recovery and EEG Power Changes after Robot-Assisted Bilateral Arm Training in Chronic Stroke Patients: A Prospective Pilot Study

    PubMed Central

    Geroin, Christian; Bortolami, Marta; Saltuari, Leopold; Manganotti, Paolo

    2018-01-01

    Background Bilateral arm training (BAT) has shown promise in expediting progress toward upper limb recovery in chronic stroke patients, but its neural correlates are poorly understood. Objective To evaluate changes in upper limb function and EEG power after a robot-assisted BAT in chronic stroke patients. Methods In a within-subject design, seven right-handed chronic stroke patients with upper limb paresis received 21 sessions (3 days/week) of the robot-assisted BAT. The outcomes were changes in score on the upper limb section of the Fugl-Meyer assessment (FM), Motricity Index (MI), and Modified Ashworth Scale (MAS) evaluated at the baseline (T0), posttraining (T1), and 1-month follow-up (T2). Event-related desynchronization/synchronization were calculated in the upper alpha and the beta frequency ranges. Results Significant improvement in all outcomes was measured over the course of the study. Changes in FM were significant at T2, and in MAS at T1 and T2. After training, desynchronization on the ipsilesional sensorimotor areas increased during passive and active movement, as compared with T0. Conclusions A repetitive robotic-assisted BAT program may improve upper limb motor function and reduce spasticity in the chronically impaired paretic arm. Effects on spasticity were associated with EEG changes over the ipsilesional sensorimotor network. PMID:29780410

  13. Assistive-as-Needed Strategy for Upper-Limb Robotic Systems: An Initial Survey

    NASA Astrophysics Data System (ADS)

    Khairuddin, I. M.; Sidek, S. N.; Yusof, H. Md; Baarath, K.; Majeed, A. P. P. A.

    2017-11-01

    Stroke is amongst the leading causes of deprivation of one’s ability in carrying out activities of daily living. It has been reported from literature that, the functional recovery of stroke patients are rather poor, unless frequent rehabilitative therapy is assumed on the affected limb. Recent trends of rehabilitation therapy have also shifted towards allowing more participation of the patient in the therapy session rather than simple passive treatments as it has been demonstrated to be non-trivial in promoting neural plasticity to expedite motor recovery process. Therefore, the employment of rehabilitation robotics is seen as a means of mitigating the limitations of conventional rehabilitation therapy. It enables unique methods for promoting patient engagement by providing patients assistance only as needed basis. This paper attempts on reviewing assist-as-needed control strategy applied on upper-limb robotic rehabilitation devices.

  14. Measures of upper limb function for people with neck pain: a systematic review of measurement and practical properties (protocol).

    PubMed

    Alreni, Ahmad Salah Eldin; Harrop, Deborah; Gumber, Anil; McLean, Sionnadh

    2015-04-07

    Upper limb disability is a common musculoskeletal condition frequently associated with neck pain. Recent literature has reported the need to utilise validated upper limb outcome measures in the assessment and management of patients with neck pain. However, there is a lack of clear guidance about the suitability of available measures, which may impede utilisation. This review will identify all available measures of upper limb function developed for use in neck pain patients and evaluate their measurement and practical properties in order to identify those measures that are most appropriate for use in clinical practice and research. This review will be performed in two phases. Phase one will identify all measures used to assess upper limb function for patients with neck pain. Phase two will identify all available studies of the measurement and practical properties of identified instrument. The COnsensus-based Standards for selection of health Measurement INstrument (COSMIN) will be used to evaluate the methodological quality of the included studies. To ensure methodological rigour, the findings of this review will be reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guideline. Optimal management of patients with neck pain should incorporate upper limb rehabilitation. The findings of this study will assist clinicians who seek to utilise suitable and accurate measures to assess upper limb function for a patient with neck pain. In addition, the findings of this study may suggest new research directions to support the development of upper limb outcome measures for patients with neck pain. PROSPERO CRD42015016624.

  15. Classification of upper limb disability levels of children with spastic unilateral cerebral palsy using K-means algorithm.

    PubMed

    Raouafi, Sana; Achiche, Sofiane; Begon, Mickael; Sarcher, Aurélie; Raison, Maxime

    2018-01-01

    Treatment for cerebral palsy depends upon the severity of the child's condition and requires knowledge about upper limb disability. The aim of this study was to develop a systematic quantitative classification method of the upper limb disability levels for children with spastic unilateral cerebral palsy based on upper limb movements and muscle activation. Thirteen children with spastic unilateral cerebral palsy and six typically developing children participated in this study. Patients were matched on age and manual ability classification system levels I to III. Twenty-three kinematic and electromyographic variables were collected from two tasks. Discriminative analysis and K-means clustering algorithm were applied using 23 kinematic and EMG variables of each participant. Among the 23 kinematic and electromyographic variables, only two variables containing the most relevant information for the prediction of the four levels of severity of spastic unilateral cerebral palsy, which are fixed by manual ability classification system, were identified by discriminant analysis: (1) the Falconer index (CAI E ) which represents the ratio of biceps to triceps brachii activity during extension and (2) the maximal angle extension (θ Extension,max ). A good correlation (Kendall Rank correlation coefficient = -0.53, p = 0.01) was found between levels fixed by manual ability classification system and the obtained classes. These findings suggest that the cost and effort needed to assess and characterize the disability level of a child can be further reduced.

  16. Liminality and decision making for upper limb surgery in tetraplegia: a grounded theory.

    PubMed

    Dunn, Jennifer A; Hay-Smith, E Jean C; Whitehead, Lisa C; Keeling, Sally

    2013-07-01

    To explore, from the perspective of the person with tetraplegia, the issues that influenced decision making about upper limb surgery and develop a conceptual framework describing the decision making process. Purposive and theoretical sampling of 22 people with tetraplegia, followed by interviews. Ten people had upper limb surgery and 12 had not. Verbatim transcripts were analyzed with constructivist grounded theory. Participants responded to the offer of surgery in one of three ways: yes, let me have it; no thanks; or possibly. Many influences on the decision about surgery had a temporal element, such as hope for the cure or recovery from SCI, inadequate physical or social supports while rehabilitating, life roles and goals, and the avoidance of re-hospitalization. The conceptual framework illustrated that many participants entered a liminal state within which they required a stimulus to review their decision about upper limb surgery. Decision making is a temporal process, and for some the process was a prolonged and liminal one. Therefore, multiple offers for surgery are required to allow for changing thoughts and circumstances throughout an individual's lifetime. Flexibility with regard to timing for surgery and type of rehabilitation may increase the uptake, especially for women. • Multiple offers for upper limb surgery are required throughout an individual's lifetime to account for changing thoughts and priorities. • Identification of the type of support required (informational, emotional) may assist in decreasing the time taken to make the decision about surgery. • Flexibility in surgical and rehabilitation options, especially for women, may increase the uptake of surgery.

  17. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges

    PubMed Central

    Grosmaire, Anne Gaëlle; Battini, Elena

    2017-01-01

    A better understanding of the neural substrates that underlie motor recovery after stroke has led to the development of innovative rehabilitation strategies and tools that incorporate key elements of motor skill relearning, that is, intensive motor training involving goal-oriented repeated movements. Robotic devices for the upper limb are increasingly used in rehabilitation. Studies have demonstrated the effectiveness of these devices in reducing motor impairments, but less so for the improvement of upper limb function. Other studies have begun to investigate the benefits of combined approaches that target muscle function (functional electrical stimulation and botulinum toxin injections), modulate neural activity (noninvasive brain stimulation), and enhance motivation (virtual reality) in an attempt to potentialize the benefits of robot-mediated training. The aim of this paper is to overview the current status of such combined treatments and to analyze the rationale behind them. PMID:29057269

  18. Combining Manual Lymph Drainage with Physical Exercise after Modified Radical Mastectomy Effectively Prevents Upper Limb Lymphedema.

    PubMed

    Zhang, Lijuan; Fan, Aiqun; Yan, Jun; He, Yan; Zhang, Huiting; Zhang, Huizhen; Zhong, Qiaoling; Liu, Feng; Luo, Qinghua; Zhang, Liping; Tang, Hailin; Xin, Mingzhu

    2016-06-01

    Upper limb lymphedema is a common complication after radical mastectomy in patients with breast cancer. In this study, we examined the efficacy of self-manual lymph drainage (MLD) after modified radical mastectomy for the prevention of upper limb lymphedema, scar formation, or shoulder joint dysfunction in breast cancer patients. Breast cancer patients scheduled for modified radical mastectomy were randomly apportioned to undergo physical exercise only (PE group, the control; n = 500) or self-MLD as well as exercise (MLD group; n = 500) after surgery. In the PE group, patients started to undertake remedial exercises and progressive weight training after recovery from anesthesia. In the MLD group, in addition to receiving the same treatments as in the PE group, the patients were trained to perform self-MLD on the surgical incision for 10 min/session, 3 sessions/day, beginning after suture removal and incision closure (10 to 30 days after the surgery). Scar formation was evaluated at one week, and 1, 3, 6, and 12 months after the surgery, respectively. Upper limb circumference and shoulder abduction were measured 24 h before surgery, and at one week, and 1, 3, 6 and 12 months after the surgery. Compared to those in the PE group, patients in MLD group experienced significant improvements in scar contracture, shoulder abduction, and upper limb circumference. Self-MLD, in combination with physical exercise, is beneficial for breast cancer patients in preventing postmastectomy scar formation, upper limb lymphedema, and shoulder joint dysfunction.

  19. Use of botulinum toxin in stroke patients with severe upper limb spasticity.

    PubMed

    Bhakta, B B; Cozens, J A; Bamford, J M; Chamberlain, M A

    1996-07-01

    Spasticity can contribute to poor recovery of upper limb function after stroke. This is a preliminary evaluation of the impact of botulinum toxin treatment on disability caused by upper limb spasticity after stroke. Seventeen patients with severe spasticity and a non-functioning arm were treated with intramuscular botulinum A neurotoxin (median age at treatment 54.5 years; median time between onset of stroke and treatment 1.5 years). Baseline and assessments two weeks after treatment were compared to assess efficacy. The duration of improvement in disability was documented. Outcome measures used were; passive range of movement at the shoulder, elbow, wrist, and fingers; modified Ashworth scale to assess spasticity of biceps and forearm finger flexors; an eight point scale to assess the degree of difficulty experienced by the patient or carer for each functional problem defined before treatment; the presence of upper limb pain. The biceps, forearm finger flexors, and flexor carpiulnaris were treated with intramuscular botulinum toxin. Up to a total dose of 400-1000 mouse units (MU) of Dysport (Speywood) or 100-200 MU of BOTOX (Allergan) was used in each patient. Functional problems reported by the patients before treatment were difficulty with cleaning the palm, cutting fingernails, putting the arm through a sleeve, standing and walking balance, putting on gloves, and rolling over in bed. Hand hygiene improved in 14 of 17 patients; difficulty with sleeves improved in four of 16; standing and walking balance improved in one of four; shoulder pain improved in six of nine; wrist pain improved in five of six. Passive range of movement at shoulder, elbow, and wrist improved after treatment. Benefit was noted within two weeks and lasted one to 11 months. No adverse effects occurred. This preliminary study suggests that intramuscular botulinum toxin is a safe and effective treatment for reducing disability in patients with severe upper limb spasticity.

  20. Disability following combat-sustained nerve injury of the upper limb.

    PubMed

    Rivera, J C; Glebus, G P; Cho, M S

    2014-02-01

    Injuries to the limb are the most frequent cause of permanent disability following combat wounds. We reviewed the medical records of 450 soldiers to determine the type of upper limb nerve injuries sustained, the rate of remaining motor and sensory deficits at final follow-up, and the type of Army disability ratings granted. Of 189 soldiers with an injury of the upper limb, 70 had nerve-related trauma. There were 62 men and eight women with a mean age of 25 years (18 to 49). Disabilities due to nerve injuries were associated with loss of function, neuropathic pain or both. The mean nerve-related disability was 26% (0% to 70%), accounting for over one-half of this cohort's cumulative disability. Patients injured in an explosion had higher disability ratings than those injured by gunshot. The ulnar nerve was most commonly injured, but most disability was associated with radial nerve trauma. In terms of the final outcome, at military discharge 59 subjects (84%) experienced persistent weakness, 48 (69%) had a persistent sensory deficit and 17 (24%) experienced chronic pain from scar-related or neuropathic pain. Nerve injury was the cause of frequent and substantial disability in our cohort of wounded soldiers.

  1. Feasibility of Using Microsoft Kinect to Assess Upper Limb Movement in Type III Spinal Muscular Atrophy Patients

    PubMed Central

    Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin

    2017-01-01

    Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials. PMID:28122039

  2. Feasibility of Using Microsoft Kinect to Assess Upper Limb Movement in Type III Spinal Muscular Atrophy Patients.

    PubMed

    Chen, Xing; Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin

    2017-01-01

    Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials.

  3. Development of subliminal persuasion system to improve the upper limb posture in laparoscopic training: a preliminary study.

    PubMed

    Zhang, Di; Sessa, Salvatore; Kong, Weisheng; Cosentino, Sarah; Magistro, Daniele; Ishii, Hiroyuki; Zecca, Massimiliano; Takanishi, Atsuo

    2015-11-01

    Current training for laparoscopy focuses only on the enhancement of manual skill and does not give advice on improving trainees' posture. However, a poor posture can result in increased static muscle loading, faster fatigue, and impaired psychomotor task performance. In this paper, the authors propose a method, named subliminal persuasion, which gives the trainee real-time advice for correcting the upper limb posture during laparoscopic training like the expert but leads to a lower increment in the workload. A 9-axis inertial measurement unit was used to compute the upper limb posture, and a Detection Reaction Time device was developed and used to measure the workload. A monitor displayed not only images from laparoscope, but also a visual stimulus, a transparent red cross superimposed to the laparoscopic images, when the trainee had incorrect upper limb posture. One group was exposed, when their posture was not correct during training, to a short (about 33 ms) subliminal visual stimulus. The control group instead was exposed to longer (about 660 ms) supraliminal visual stimuli. We found that subliminal visual stimulation is a valid method to improve trainees' upper limb posture during laparoscopic training. Moreover, the additional workload required for subconscious processing of subliminal visual stimuli is less than the one required for supraliminal visual stimuli, which is processed instead at the conscious level. We propose subliminal persuasion as a method to give subconscious real-time stimuli to improve upper limb posture during laparoscopic training. Its effectiveness and efficiency were confirmed against supraliminal stimuli transmitted at the conscious level: Subliminal persuasion improved upper limb posture of trainees, with a smaller increase on the overall workload.

  4. The feasibility, acceptability and preliminary efficacy of a low-cost, virtual-reality based, upper-limb stroke rehabilitation device: a mixed methods study.

    PubMed

    Warland, Alyson; Paraskevopoulos, Ioannis; Tsekleves, Emmanuel; Ryan, Jennifer; Nowicky, Alexander; Griscti, Josephine; Levings, Hannah; Kilbride, Cherry

    2018-04-12

    To establish feasibility, acceptability, and preliminary efficacy of an adapted version of a commercially available, virtual-reality gaming system (the Personalised Stroke Therapy system) for upper-limb rehabilitation with community dwelling stroke-survivors. Twelve stroke-survivors (nine females, mean age 58 years, [standard deviation 7.1], median stroke chronicity 42 months [interquartile range 34.7], Motricity index 14-25 for shoulder and elbow) were asked to complete nine, 40-min intervention sessions using two activities on the system over 3 weeks. Feasibility and acceptability were assessed through a semi-structured interview, recording of adverse effects, adherence, enjoyment (using an 11-point Likert scale), and perceived exertion (using the BORG scale). Assessments of impairment (Fugl-Meyer Assessment Upper extremity), activity (ABILHAND, Action Research Arm Test, Motor Activity Log-28), and participation (Subjective Index of Physical and Social Outcome) were completed at baseline, following intervention, and at 4-week follow-up. Data were analysed using Thematic Analysis of interview and intervention field-notes and Wilcoxon Signed Ranks. Side-by-side displays were used to integrate findings. Participants received between 175 and 336 min of intervention. Thirteen non-serious adverse effects were reported by five participants. Participants reported a high level of enjoyment (8.1 and 6.8 out of 10) and rated exertion between 11.6 and 12.9 out of 20. Themes of improvements in impairments and increased spontaneous use in functional activities were identified and supported by improvements in all outcome measures between baseline and post-intervention (p < 0.05 for all measures). Integrated findings suggested that the system is feasible and acceptable for use with a group of community-dwelling stroke-survivors including those with moderately-severe disability. Implications for rehabilitation To ensure feasibility of use and maintenance of an appropriate

  5. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.

    PubMed

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues

  6. [Upper-limb work-related musculoskeletal disorders (UL-WMSDs) and latency of effect].

    PubMed

    Nicoletti, S; Battevi, N

    2008-01-01

    Trends in work-related upper limb musculoskeletal disorders appear to be in constant increase in industrialized countries. In Europe claims and compensation for these disorders have significantly increased. The aim of this study was to investigate the temporal relationship between the beginning of occupational exposure to repetitive movements and exertions of upper limbs, assessed through the OCRA index, and the manifestation of the disorders. Clinical and questionnaire information about 557 cases of UL-WMSDs in the upholstered furniture industry were analyzed in order to investigate the mean latency period of the disorders and to verify to what extent different levels of exposure influence the latency time. The latency of UL-WMSDs is influenced by the level of exposure to risk, measured by means of the OCRA index. Shorter latency times were found for wrist/hand tendonitis, with a mean latency time of 5.4 years and with a greater sensitivity to the level of exposure assessed with the OCRA index value. This might support a sort of predictive value with reference to other UL-WMSDs with longer latency. Probably a latency period of 12 years may be suggested as the cut-off limit to assess a causal relationship between tendon or canalicular WMISDs and occupational exposure to repetitive movements and exertions of upper limbs.

  7. Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis.

    PubMed

    Fuentes, María Antonia; Borrego, Adrián; Latorre, Jorge; Colomer, Carolina; Alcañiz, Mariano; Sánchez-Ledesma, María José; Noé, Enrique; Llorens, Roberto

    2018-04-02

    Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of the available therapeutic options are based on active exercises and on motor and attentional inclusion of the affected arm in task oriented movements. However, active movements may not be possible after severe impairment of the upper limbs. Different techniques, such as mirror therapy, motor imagery, and non-invasive brain stimulation have been shown to elicit cortical activity in absence of movements, which could be used to preserve the available neural circuits and promote motor learning. We present a virtual reality-based paradigm for upper limb rehabilitation that allows for interaction of individuals with restricted movements from active responses triggered when they attempt to perform a movement. The experimental system also provides multisensory stimulation in the visual, auditory, and tactile channels, and transcranial direct current stimulation coherent to the observed movements. A feasibility study with a chronic stroke survivor with severe hemiparesis who seemed to reach a rehabilitation plateau after two years of its inclusion in a physical therapy program showed clinically meaningful improvement of the upper limb function after the experimental intervention and maintenance of gains in both the body function and activity. The experimental intervention also was reported to be usable and motivating. Although very preliminary, these results could highlight the potential of this intervention to promote functional recovery in severe impairments of the upper limb.

  8. [Exoskeleton robot system based on real-time gait analysis for walking assist].

    PubMed

    Xie, Zheng; Wang, Mingjiang; Huang, Wulong; Yong, Shanshan; Wang, Xin'an

    2017-04-01

    This paper presents a wearable exoskeleton robot system to realize walking assist function, which oriented toward the patients or the elderly with the mild impairment of leg movement function, due to illness or natural aging. It reduces the loads of hip, knee, ankle and leg muscles during walking by way of weight support. In consideration of the characteristics of the psychological demands and the disease, unlike the weight loss system in the fixed or followed rehabilitation robot, the structure of the proposed exoskeleton robot is artistic, lightweight and portable. The exoskeleton system analyzes the user's gait real-timely by the plantar pressure sensors to divide gait phases, and present different control strategies for each gait phase. The pressure sensors in the seat of the exoskeleton system provide real-time monitoring of the support efforts. And the drive control uses proportion-integral-derivative (PID) control technology for torque control. The total weight of the robot system is about 12.5 kg. The average of the auxiliary support is about 10 kg during standing, and it is about 3 kg during walking. The system showed, in the experiments, a certain effect of weight support, and reduction of the pressure on the lower limbs to walk and stand.

  9. [The effect of neurorehabilitation on the functional state and muscle tone of upper limb in patients after ischaemic stroke].

    PubMed

    Klimkiewicz, Paulina; Kubsik, Anna; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2014-03-01

    Rehabilitation of upper limb in patients after ischemic stroke is a major challenge for modern neurorehabilitation. Function of upper limb of patients after ischemic stroke returns on the end of the rehabilitation comparing with another parts of the body. Below presents two groups of patients after ischemic stroke who were rehabilitated with use of the following methods: kinesiotherapy combined with NDT- Bobath method and kinesiotherapy only. The aim of this study was to assess the impact of kinesiotherapy only and NDT- Bobath method combined with kinesiotherapy on the functional state and muscle tone of upper limb in patients after ischemic stroke. The study involved a group of 40 patients after ischemic stroke with motor control and muscle tone problems of upper limb. Patients were divided into two groups, each of them included 20 people. Upper limb in group I was rehabilitated with the use of kinesiotherapy exercise however group II with the use of kinesiotherapy exercise combined with NDT- Bobath method (Neurodevelopmental Treatment Bobath). To evaluate the patients before and after rehabilitation muscle tone Asworth scale was used and to assess functional status Rivermead Motor Assessment (RMAIII) scale was used. After 5 weeks of rehabilitation in group II in majority patients were observed decrease of muscle tone and improvement in upper limb functional status. In group I the muscle tone were also decreased and functional status were better but in smaller impact than in II group. Classical kinesiotherapy combined with the NDT-Bobath method gives better results in neurorehabilitation of upper limb than the use of kinesiotherapy exercises only in patients after ischemic stroke.

  10. Upper Limb Absence: Predictors of Work Participation and Work Productivity.

    PubMed

    Postema, Sietke G; Bongers, Raoul M; Brouwers, Michael A; Burger, Helena; Norling-Hermansson, Liselotte M; Reneman, Michiel F; Dijkstra, Pieter U; van der Sluis, Corry K

    2016-06-01

    To analyze work participation, work productivity, contributing factors, and physical work demands of individuals with upper limb absence (ULA). Cross-sectional study: postal survey (response rate, 45%). Twelve rehabilitation centers and orthopedic workshops. Individuals (n=207) with unilateral transverse upper limb reduction deficiency (RD) or acquired amputation (AA), at or proximal to the carpal level, between the ages of 18 and 65 years, and a convenience sample of control subjects (n=90) matched on age and sex. Not applicable. Employment status, self-reported work productivity measured with the Quality-Quantity method, and self-reported upper extremity work demands measured with the Upper Extremity Work Demands scale. Seventy-four percent of the individuals with RD and 57% of the individuals with AA were employed (vs 82% of the control group and 66% of the general population). Male sex, younger age, a medium or higher level of education, prosthesis use, and good general health were predictors of work participation. Work productivity was similar to that of the control group. Higher work productivity was inversely related to musculoskeletal complaint-related pain. When having predominantly mentally demanding work, individuals with ULA perceived higher upper extremity work demands compared with controls. Work participation of individuals with RD was slightly higher compared with that of the general population, whereas employment rates of individuals with AA were slightly lower. Furthermore, work productivity did not differ between individuals with RD, AA, and controls. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke.

    PubMed

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng

    2013-11-05

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.

  12. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke

    PubMed Central

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng

    2013-01-01

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611

  13. The development of the NZ-based international upper limb surgery registry.

    PubMed

    Sinnott, K A; Dunn, J A; Rothwell, A G; Hall, A S; Post, M W M

    2014-08-01

    Implementation study. To describe the development and potential value of the New Zealand (NZ) upper limb surgery registry and report the demographic and spinal cord injury characteristics of individuals with tetraplegia collated to date. Multi Center-coordinated from Burwood Spinal Unit, NZ. Following discussions with eight international units, clinical information and outcomes measures were agreed upon for use in this specific population. To implement this consensus, a web-based upper limb surgery registry was developed in NZ. Inclusion criteria included referral to a hand clinic for clinical assessment for suitability for tendon transfer surgery. Clinical data were collected regardless of acceptance of surgery thereby creating a self-selected control group. Twenty-eight years of retrospective NZ data was entered into the registry, as well as 3 years of prospective data collected in NZ. From 1982 to 2013, a total of 357 persons with tetraplegia were assessed as suitable for surgery. Of those, 223 individuals underwent surgery and 134 declined the intervention(s). The prospective group currently comprises 55 assessments with 23 surgery individuals and 32 who have declined surgery to date. Clinical information is now available within a web-based registry for all individuals reviewed in hand clinics from when upper limb surgery was first introduced. A broad range of outcomes of interest can easily be reported directly from the registry. The self-selected control group will allow comparative studies to be explicitly linked to the specific interventions of interest.

  14. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    PubMed

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  15. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    PubMed

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device.

  16. Three-dimensional printed upper-limb prostheses lack randomised controlled trials: A systematic review

    PubMed Central

    Diment, Laura E; Thompson, Mark S; Bergmann, Jeroen HM

    2017-01-01

    Background: Three-dimensional printing provides an exciting opportunity to customise upper-limb prostheses. Objective: This review summarises the research that assesses the efficacy and effectiveness of three-dimensional printed upper-limb prostheses. Study design: Systematic review. Methods: PubMed, Web of Science and OVID were systematically searched for studies that reported human trials of three-dimensional printed upper-limb prostheses. The studies matching the language, peer-review and relevance criteria were ranked by level of evidence and critically appraised using the Downs and Black Quality Index. Results: After removing duplicates, 321 records were identified. Eight papers met the inclusion criteria. No studies used controls; five were case studies and three were small case-series studies. All studies showed promising results, but none demonstrated external validity, avoidance of bias or statistically significant improvements over conventional prostheses. The studies demonstrated proof-of-concept rather than assessing efficacy, and the devices were designed to prioritise reduction of manufacturing costs, not customisability for comfort and function. Conclusion: The potential of three-dimensional printing for individual customisation has yet to be fully realised, and the efficacy and effectiveness to be rigorously assessed. Until randomised controlled trials with follow-up are performed, the comfort, functionality, durability and long-term effects on quality of life remain unknown. Clinical relevance Initial studies suggest that three-dimensional printing shows promise for customising low-cost upper-limb prosthetics. However, the efficacy and effectiveness of these devices have yet to be rigorously assessed. Until randomised controlled trials with follow-up are performed, the comfort, functionality, durability and long-term effects on patient quality of life remain unknown. PMID:28649911

  17. Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS.

    PubMed

    Feys, Peter; Coninx, Karin; Kerkhofs, Lore; De Weyer, Tom; Truyens, Veronik; Maris, Anneleen; Lamers, Ilse

    2015-07-23

    Despite the functional impact of upper limb dysfunction in multiple sclerosis (MS), effects of intensive exercise programs and specifically robot-supported training have been rarely investigated in persons with advanced MS. To investigate the effects of additional robot-supported upper limb training in persons with MS compared to conventional treatment only. Seventeen persons with MS (pwMS) (median Expanded Disability Status Scale of 8, range 3.5-8.5) were included in a pilot RCT comparing the effects of additional robot-supported training to conventional treatment only. Additional training consisted of 3 weekly sessions of 30 min interacting with the HapticMaster robot within an individualised virtual learning environment (I-TRAVLE). Clinical measures at body function (Hand grip strength, Motricity Index, Fugl-Meyer) and activity (Action Research Arm test, Motor Activity Log) level were administered before and after an intervention period of 8 weeks. The intervention group were also evaluated on robot-mediated movement tasks in three dimensions, providing active range of motion, movement duration and speed and hand-path ratio as indication of movement efficiency in the spatial domain. Non-parametric statistics were applied. PwMS commented favourably on the robot-supported virtual learning environment and reported functional training effects in daily life. Movement tasks in three dimensions, measured with the robot, were performed in less time and for the transporting and reaching movement tasks more efficiently. There were however no significant changes for any clinical measure in neither intervention nor control group although observational analyses of the included cases indicated large improvements on the Fugl-Meyer in persons with more marked upper limb dysfunction. Robot-supported training lead to more efficient movement execution which was however, on group level, not reflected by significant changes on standard clinical tests. Persons with more marked upper

  18. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  19. Appropriateness of advanced upper limb prosthesis prescription for a patient with cognitive impairment: a case report.

    PubMed

    Barredo, Jennifer; Acluche, Frantzy; Disla, Roxanne; Fantini, Christopher; Fishelis, Leah; Sasson, Nicole; Resnik, Linda

    2017-08-01

    To describe a participant with scapulo-thoracic amputation and cognitive impairment trained to use the DEKA Arm and discuss factors relevant to the determination that he was not an appropriate candidate for independent home use of the device. The participant underwent 40 h of in-laboratory training with the DEKA Arm Advanced Upper Limb Prosthesis. Pre-training neuropsychological measures of cognition were collected. Qualitative and quantitative data related to functional performance, quality of life and pain were collected after 10 h of training, and at the conclusion of training. Using a constant comparative approach, data were binned into major themes; elements within each theme were identified. Six themes were relevant to the determination that the participant was inappropriate for home use of the DEKA Arm: physical and mental health; learning, memory and cognition; adult role function; functional performance; user safety and judgement and capacity for independent device use. Issues contraindicating unsupervised device use included: uncontrolled health symptoms, poor knowledge application, safety concerns, absenteeism and performance degradation under stress. The findings have implications for training with and prescription of the DEKA Arm and other complex upper limb prostheses. Further research is needed to develop a model to guide prescription of technologically complex upper limb prostheses. Implications for Rehabilitation Advanced upper limb prostheses, like the DEKA Arm, promise greater functionality, but also may be cognitively demanding, raising questions of when, and if, prescription is appropriate for patients with cognitive impairment. At this time, no formal criteria exist to guide prescription of advanced upper limb prostheses. Each clinical team applies their own informal standards in decision-making. In this case report, we described six factors that were considered in determining whether or not a research participant, with scapulo

  20. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.

    PubMed

    Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico

    2012-07-24

    The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual

  1. The efficacy of SMART Arm training early after stroke for stroke survivors with severe upper limb disability: a protocol for a randomised controlled trial.

    PubMed

    Brauer, Sandra G; Hayward, Kathryn S; Carson, Richard G; Cresswell, Andrew G; Barker, Ruth N

    2013-07-02

    in those with severe motor disability. The immediate and long-term effects of SMART Arm training on upper limb impairment, activity and participation will be explored, in addition to the benefit of training with or without OT-stim to augment movement when compared to usual therapy alone. ACTRN12608000457347.

  2. Review of applicability of existing functional status measures to the study of workers with musculoskeletal disorders of the neck and upper limb.

    PubMed

    Stock, S R; Cole, D C; Tugwell, P; Streiner, D

    1996-06-01

    Both epidemiologic studies of the factors that contribute to the development of work-related musculoskeletal disorders of the neck and upper limb and intervention studies that test the effectiveness of workplace ergonomic and organizational changes are needed to provide empiric evidence for preventive strategies. This study reviews the relevance and comprehensiveness of existing functional status instruments for epidemiologic studies of work-related neck and upper limb disorders. Twelve domains were identified as the major areas of life affected by workers' neck and upper extremity disorder(s): work, household and family responsibilities, self-care, transportation/driving, sexual activity, sleep, social activities, recreational activities, mood, self-esteem, financial effects, and iatrogenic effects of assessments and treatment. Fifty-two functional status instruments were identified. Of these, 21 met the specified criteria as potentially relevant and were rated on the 3-point scale for relevance and comprehensiveness for each domain. None of the instruments covered all 12 domains adequately.

  3. Measurement of upper extremity orientation by video stereometry system.

    PubMed

    Peterson, B; Palmerud, G

    1996-03-01

    In the attempt to gain a broader understanding of the causal relationships behind work-related symptoms of pain in the human shoulder, monitoring of arm position is crucial. Different methods have been used with varying accuracy. A video-based stereometry system, using infra-red light and reflecting markers for motion analysis, has been introduced for measurements in the fields of ergonomics, biomechanics and sports medicine. The purpose of this study is to investigate the sources of error in using this system for posture registration of the upper limb. Measurements are performed on a calibration fixture, on a mechanical model of the upper limb and on a subject with an exoskeleton. Particular, attention is given to inconsistencies and relative errors due to the finite geometrical precision with which the markers are positioned in the calibration fixture and on the studied objects, the limited capability to align the objects relative to the coordinate system of the calibration fixture and the errors connected to angular measurements using protractors etc. It is concluded that the system makes a valuable addition to existing instruments for non-contact posture measurement, and produces position data with an adequate accuracy in normal handling.

  4. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.

    PubMed

    Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna

    2017-08-01

    One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Clinical study of post-stroke upper limb spasmodic hemiplegia treated with jingou diaoyu needling technique and Bobath therapy].

    PubMed

    Sun, Runjie; Tian, Liang; Fang, Xiaoli; Du, Xiaozheng; Zhu, Bowen; Song, Zhongyang; Xu, Xuan; Qin, Xiaoguang

    2017-04-12

    To compare the difference in the clinical efficacy on post-stroke upper limb spasmodic hemiplegia between the combined therapy of jingou diaoyu needling technique and Bobath technology and simple Bobath technology. Sixty patients were randomized into an observation group and a control group, 30 cases in each one. The usual medication of neurological internal medicine was used in the two groups. In the control group, Bobath facilitation technology was applied to the rehabilitation training. In the observation group, on the basis of the treatment as the control group, jingou diaoyu needling technique was used to stimulate Zhongfu (LU 1), Tianfu (LU 3), Chize (LU 5), Quchi (LI 11), Jianshi (PC 5) and Daling (PC 7). The treatment was given once a day; 5 treatments made one session and totally 4-week treatment was required in the two groups. The modified Ashworth scale, the modified Fugle-Meyer assessment (FMA) and the Barthel index (BI) were adopted to evaluate the muscular tension, the upper limb motor function and the activities of daily living (ADL) before and after treatment in the two groups. The clinical efficacy was compared between the two groups. Compared with those before treatment, the modified Ashworth scale, Fugl-Meyer score and BI score were all improved after treatment in the two groups (all P <0.01). The results in the observation group were better than those in the control group (all P <0.01). The total clinical effective rate was 93.3% (28/30) in the observation group and was 80.0% (24/30) in the control group. The efficacy in the observation group was better than that in the control group ( P <0.05). The jingou diaoyu needling technique combined with Bobath therapy achieve the superior efficacy on post-stroke upper limb spasmodic hemiplegia as compared with the simple application Bobath therapy. This combined treatment effectively relieve spasmodic state and improve the upper limb motor function and the activities of daily living.

  6. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    PubMed Central

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C.; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual’s survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts—their topological patterns relative to each other—using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial

  7. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke.

    PubMed

    Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.

  8. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques.

    PubMed

    Engdahl, Susannah M; Christie, Breanne P; Kelly, Brian; Davis, Alicia; Chestek, Cynthia A; Gates, Deanna H

    2015-06-13

    Novel techniques for the control of upper limb prostheses may allow users to operate more complex prostheses than those that are currently available. Because many of these techniques are surgically invasive, it is important to understand whether individuals with upper limb loss would accept the associated risks in order to use a prosthesis. An online survey of individuals with upper limb loss was conducted. Participants read descriptions of four prosthetic control techniques. One technique was noninvasive (myoelectric) and three were invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces). Participants rated how likely they were to try each technique if it offered each of six different functional features. They also rated their general interest in each of the six features. A two-way repeated measures analysis of variance with Greenhouse-Geisser corrections was used to examine the effect of the technique type and feature on participants' interest in each technique. Responses from 104 individuals were analyzed. Many participants were interested in trying the techniques - 83 % responded positively toward myoelectric control, 63 % toward targeted muscle reinnervation, 68 % toward peripheral nerve interfaces, and 39 % toward cortical interfaces. Common concerns about myoelectric control were weight, cost, durability, and difficulty of use, while the most common concern about the invasive techniques was surgical risk. Participants expressed greatest interest in basic prosthesis features (e.g., opening and closing the hand slowly), as opposed to advanced features like fine motor control and touch sensation. The results of these investigations may be used to inform the development of future prosthetic technologies that are appealing to individuals with upper limb loss.

  9. Clinical applications of perforator-based propeller flaps in upper limb soft tissue reconstruction.

    PubMed

    Ono, Shimpei; Sebastin, Sandeep J; Yazaki, Naoya; Hyakusoku, Hiko; Chung, Kevin C

    2011-05-01

    A propeller flap is an island flap that moves from one orientation to another by rotating around its vascular axis. The vascular axis is stationary, and flap movement is achieved by revolving on this axis. Early propeller flaps relied on a thick, subcutaneous pedicle to maintain vascularity, and this limited the flap rotation to 90°. With increasing awareness of the location and the vascular territory perfused by cutaneous perforators, it is now possible to design propeller flaps based on a single perforator, so-called "perforator-based propeller flaps." These flaps permit flap rotation up to 180°. We present the results of upper limb soft tissue reconstruction using perforator-based propeller flaps. We constructed a treatment strategy based on the location of the soft tissue defect and the perforator anatomy for expedient wound coverage in 1 stage. All perforator-based propeller flaps derived from 3 institutions that were used for upper limb soft tissue reconstruction were retrospectively analyzed. The parameters studied included the size and location of the defect, the perforator that was used, the size and shape of the flap, the direction (ie, clockwise or counter-clockwise) of flap rotation, the degree of twisting of the perforator, the management of the donor site (ie, linear closure or skin grafting), and flap survival (recorded as the percentage of the flap area that survived). Twelve perforator-based propeller flaps were used to reconstruct upper limb soft tissue defects in 12 patients. Six different perforators were used as vascular pedicles. The donor defects of 11 flaps could be closed primarily. One flap was partially lost in a patient with electrical burns. Perforator-based propeller flaps provide a reliable option for covering small- to medium-size upper limb soft tissue defects. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Using upper limb kinematics to assess cognitive deficits in people living with both HIV and stroke.

    PubMed

    Bui, Kevin D; Rai, Roshan; Johnson, Michelle J

    2017-07-01

    In this study, we aim to explore ways to objectively assess cognitive deficits in the stroke and HIV/stroke populations, where cognitive and motor impairments can be hard to separate. Using an upper limb rehabilitation robot called the Haptic TheraDrive, we collect performance error scores and motor learning data on the impaired and unimpaired limb during a trajectory tracking task. We compare these data to clinical cognitive scores. The preliminary results suggest a possible relationship between unimpaired upper limb performance error and visuospatial/executive function cognitive domains, but more work needs to be done to further investigate this. The potential of using robot-assisted technologies to measure unimpaired limb kinematics as a tool to assess cognitive deficits would be useful to inform more effective rehabilitation strategies for HIV, stroke, and HIV/stroke populations.

  11. Assessing the impact of upper limb disability following stroke: a qualitative enquiry using internet-based personal accounts of stroke survivors.

    PubMed

    Poltawski, Leon; Allison, Rhoda; Briscoe, Simon; Freeman, Jennifer; Kilbride, Cherry; Neal, Debbie; Turton, Ailie J; Dean, Sarah

    2016-01-01

    Upper limb disability following stroke may have multiple effects on the individual. Existing assessment instruments tend to focus on impairment and function and may miss other changes that are personally important. This study aimed to identify personally significant impacts of upper limb disability following stroke. Accounts by stroke survivors, in the form of web-based diaries (blogs) and stories, were sought using a blog search engine and in stroke-related web-sites. Thematic analysis using the World Health Organisation's International Classification of Functioning Disability and Health (ICF) was used to identify personal impacts of upper limb disability following stroke. Ninety-nine sources from at least four countries were analysed. Many impacts were classifiable using the ICF, but a number of additional themes emerged, including emotional, cognitive and behavioural changes. Blogs and other web-based accounts were easily accessible and rich sources of data, although using them raised several methodological issues, including potential sample bias. A range of impacts was identified, some of which (such as use of information technology and alienation from the upper limb) are not addressed in current assessment instruments. They should be considered in post-stroke assessments. Blogs may help in the development of more comprehensive assessments. A comprehensive assessment of the upper limb following stroke should include the impact of upper limb problems on social participation, as well as associated emotional, cognitive and behavioural changes. Using personalised assessment instruments alongside standardised measures may help ensure that these broader domains are considered in discussions between clinicians and patients. Rehabilitation researchers should investigate whether and how these domains could be addressed and operationalised in standard upper limb assessment instruments.

  12. Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and Kinematic Validation

    PubMed Central

    Degelaen, Marc; Lefeber, Nina; Swinnen, Eva; Vanderborght, Bram; Lefeber, Dirk

    2017-01-01

    A shared design goal for most robotic lower limb exoskeletons is to reduce the metabolic cost of locomotion for the user. Despite this, only a limited amount of devices was able to actually reduce user metabolic consumption. Preservation of the natural motion kinematics was defined as an important requirement for a device to be metabolically beneficial. This requires the inclusion of all human degrees of freedom (DOF) in a design, as well as perfect alignment of the rotation axes. As perfect alignment is impossible, compensation for misalignment effects should be provided. A misalignment compensation mechanism for a 3-DOF system is presented in this paper. It is validated by the implementation in a bilateral hip exoskeleton, resulting in a compact and lightweight device that can be donned fast and autonomously, with a minimum of required adaptations. Extensive testing of the prototype has shown that hip range of motion of the user is maintained while wearing the device and this for all three hip DOFs. This allowed the users to maintain their natural motion patterns when they are walking with the novel hip exoskeleton. PMID:28790799

  13. Concomitant upper limb fractures and short-term functional recovery in hip fracture patients: does the site of upper limb injury matter?

    PubMed

    Di Monaco, Marco; Castiglioni, Carlotta; Vallero, Fulvia; Di Monaco, Roberto; Tappero, Rosa

    2015-05-01

    The aim of this study was to evaluate functional recovery in a subgroup of hip fracture patients who sustained a simultaneous fracture at the upper limb, taking into account the site of upper limb injury. Of 760 patients admitted consecutively to the authors' rehabilitation hospital because of a fall-related hip fracture, 700 were retrospectively investigated. Functional outcome was assessed using Barthel Index scores. In 49 of the 700 patients, a single fall resulted in both a hip fracture and a fracture of either wrist (n = 34) or proximal humerus (n = 15). The patients with concomitant shoulder fractures had lower median Barthel Index scores after rehabilitation (70 vs. 90, P = 0.003), lower median Barthel Index effectiveness (57.1 vs. 76.9, P = 0.018), and prolonged median length of stay (42 vs. 36 days, P = 0.011) than did the patients with isolated hip fractures. Significant differences persisted after adjustment for six potential confounders. The adjusted odds ratio for achieving a Barthel Index score lower than 85 was 6.71 (95% confidence interval, 1.68-26.81; P = 0.007) for the patients with concomitant shoulder fractures. Conversely, no prognostic disadvantages were associated with concomitant wrist fractures. Data show a worse functional recovery and a prolonged length of stay in the subgroup of hip fracture patients who sustained a concomitant fracture at the proximal humerus, but not at the wrist.

  14. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    PubMed

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions.

  15. Classical test theory and Rasch analysis validation of the Upper Limb Functional Index in subjects with upper limb musculoskeletal disorders.

    PubMed

    Bravini, Elisabetta; Franchignoni, Franco; Giordano, Andrea; Sartorio, Francesco; Ferriero, Giorgio; Vercelli, Stefano; Foti, Calogero

    2015-01-01

    To perform a comprehensive analysis of the psychometric properties and dimensionality of the Upper Limb Functional Index (ULFI) using both classical test theory and Rasch analysis (RA). Prospective, single-group observational design. Freestanding rehabilitation center. Convenience sample of Italian-speaking subjects with upper limb musculoskeletal disorders (N=174). Not applicable. The Italian version of the ULFI. Data were analyzed using parallel analysis, exploratory factor analysis, and RA for evaluating dimensionality, functioning of rating scale categories, item fit, hierarchy of item difficulties, and reliability indices. Parallel analysis revealed 2 factors explaining 32.5% and 10.7% of the response variance. RA confirmed the failure of the unidimensionality assumption, and 6 items out of the 25 misfitted the Rasch model. When the analysis was rerun excluding the misfitting items, the scale showed acceptable fit values, loading meaningfully to a single factor. Item separation reliability and person separation reliability were .98 and .89, respectively. Cronbach alpha was .92. RA revealed weakness of the scale concerning dimensionality and internal construct validity. However, a set of 19 ULFI items defined through the statistical process demonstrated a unidimensional structure, good psychometric properties, and clinical meaningfulness. These findings represent a useful starting point for further analyses of the tool (based on modern psychometric approaches and confirmatory factor analysis) in larger samples, including different patient populations and nationalities. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: First results of the RETRAINER project.

    PubMed

    Ambrosini, E; Ferrante, S; Zajc, J; Bulgheroni, M; Baccinelli, W; d'Amico, E; Schauer, T; Wiesener, C; Russold, M; Gfoehler, M; Puchinger, M; Weber, M; Becker, S; Krakow, K; Rossini, M; Proserpio, D; Gasperini, G; Molteni, F; Ferrigno, G; Pedrocchi, A

    2017-07-01

    The combined use of Functional Electrical Stimulation (FES) and robotic technologies is advocated to improve rehabilitation outcomes after stroke. This work describes an arm rehabilitation system developed within the European project RETRAINER. The system consists of a passive 4-degrees-of-freedom exoskeleton equipped with springs to provide gravity compensation and electromagnetic brakes to hold target positions. FES is integrated in the system to provide additional support to the most impaired muscles. FES is triggered based on the volitional EMG signal of the same stimulated muscle; in order to encourage the active involvement of the patient the volitional EMG is also monitored throughout the task execution and based on it a happy or sad emoji is visualized at the end of each task. The control interface control of the system provides a GUI and multiple software tools to organize rehabilitation exercises and monitor rehabilitation progress. The functionality and the usability of the system was evaluated on four stroke patients. All patients were able to use the system and judged positively its wearability and the provided support. They were able to trigger the stimulation based on their residual muscle activity and provided different levels of active involvement in the exercise, in agreement with their level of impairment. A randomized controlled trial aimed at evaluating the effectiveness of the RETRAINER system to improve arm function after stroke is currently ongoing.

  17. Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?

    PubMed Central

    Merad, Manelle; de Montalivet, Étienne; Touillet, Amélie; Martinet, Noël; Roby-Brami, Agnès; Jarrassé, Nathanaël

    2018-01-01

    Most transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted prior to the motion, is not involved in the overall upper limb movements, causing the rest of the body to compensate for the lack of mobility of the prosthesis. A promising solution to improve upper limb prosthesis control exploits the residual limb mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled using inter-joint coordination models. The present study aims to test this approach. A transhumeral amputated individual used a prosthesis with a residual limb motion-driven elbow to point at targets. The prosthetic elbow motion was derived from IMU-based shoulder measurements and a generic model of inter-joint coordinations built from healthy individuals data. For comparison, the participant also performed the task while the prosthetic elbow was implemented with his own myoelectric control strategy. The results show that although the transhumeral amputated participant achieved the pointing task with a better precision when the elbow was myoelectrically-controlled, he had to develop large compensatory trunk movements. Automatic elbow control reduced trunk displacements, and enabled a more natural body behavior with synchronous shoulder and elbow motions. However, due to socket impairments, the residual limb amplitudes were not as large as those of healthy shoulder movements. Therefore, this work also investigates if a control strategy whereby prosthetic joints are automatized according to healthy individuals' coordination models can

  18. Effects of a Home-Based Upper Limb Training Program in Patients With Multiple Sclerosis: A Randomized Controlled Trial.

    PubMed

    Ortiz-Rubio, Araceli; Cabrera-Martos, Irene; Rodríguez-Torres, Janet; Fajardo-Contreras, Waldo; Díaz-Pelegrina, Ana; Valenza, Marie Carmen

    2016-12-01

    To evaluate the effects of a home-based upper limb training program on arm function in patients with multiple sclerosis (MS). Additionally, the effects of this program on manual dexterity, handgrip strength, and finger prehension force were analyzed. Randomized, single-blind controlled trial. Home based. Patients with a clinical diagnosis of MS acknowledging impaired manual ability (N=37) were randomized into 2 groups. Patients in the experimental group were included in a supervised home-based upper limb training program for 8 weeks twice a week. Patients in the control group received information in the form of a leaflet with a schedule of upper limb exercise training. The primary outcome measure was arm function (motor functioning assessed using the finger tapping test and a functional measure, the Action Research Arm Test). The secondary outcome measures were manual dexterity assessed with the Purdue Pegboard Test and handgrip strength and finger prehension force evaluated with a handgrip and a pinch dynamometer, respectively. After 8 weeks, a significant between-group improvement (P<.05) was found on the Action Research Arm Test bilaterally and the finger tapping test in the most affected upper limb. The secondary outcomes also improved in the most affected limb in the experimental group. An 8-week home-based intervention program focused on upper limbs twice a week improved arm function and physiologic variables with a primary focus on the more affected extremity in patients with MS compared with the control group. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Directional asymmetry of upper limbs in a medieval population from Poland: A combination of linear and geometric morphometrics.

    PubMed

    Kubicka, Anna Maria; Lubiatowski, Przemysław; Długosz, Jan Dawid; Romanowski, Leszek; Piontek, Janusz

    2016-11-01

    Degrees of upper-limb bilateral asymmetry reflect habitual behavior and activity levels throughout life in human populations. The shoulder joint facilitates a wide range of combined motions due to the simultaneous motion of all three bones: clavicle, scapula, and humerus. Accordingly, we used three-dimensional geometric morphometrics to analyze shape differences in the glenoid cavity and linear morphometrics to obtain the degree of directional asymmetry in a medieval population. To calculate directional asymmetry, clavicles, humeri, and scapulae from 100 individuals (50 females, 50 males) were measured. Landmarks and semilandmarks were placed within a three-dimensional reconstruction of the glenoid cavity for analysis of shape differences between sides of the body within sexes. Linear morphometrics showed significant directional asymmetry in both sexes in all bones. Geometric morphometrics revealed significant shape differences of the glenoid cavity between sides of the body in females but not in males. Both indicators of directional asymmetry (%DA and %AA) did not show significant differences between sexes. PLS analysis revealed a significant correlation between glenoid shape and two humeral head diameters only in females on the left side of the body. The studied population, perhaps due to a high level of activity, exhibited slightly greater upper-limb bone bilateral asymmetry than other agricultural populations. Results suggest that the upper limbs were involved in similar activity patterns in both sexes but were characterized by different habitual behaviors. To obtain comprehensive results, studies should be based on sophisticated methods such as geometric morphometrics as well as standard measurements. Am. J. Hum. Biol. 28:817-824, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals.

    PubMed

    Gudiño-Mendoza, Berenice; Sanchez-Ante, Gildardo; Antelis, Javier M

    2016-01-01

    Early decoding of motor states directly from the brain activity is essential to develop brain-machine interfaces (BMI) for natural motor control of neuroprosthetic devices. Hence, this study aimed to investigate the detection of movement information before the actual movement occurs. This information piece could be useful to provide early control signals to drive BMI-based rehabilitation and motor assisted devices, thus providing a natural and active rehabilitation therapy. In this work, electroencephalographic (EEG) brain signals from six healthy right-handed participants were recorded during self-initiated reaching movements of the upper limbs. The analysis of these EEG traces showed that significant event-related desynchronization is present before and during the execution of the movements, predominantly in the motor-related α and β frequency bands and in electrodes placed above the motor cortex. This oscillatory brain activity was used to continuously detect the intention to move the limbs, that is, to identify the motor phase prior to the actual execution of the reaching movement. The results showed, first, significant classification between relax and movement intention and, second, significant detection of movement intention prior to the onset of the executed movement. On the basis of these results, detection of movement intention could be used in BMI settings to reduce the gap between mental motor processes and the actual movement performed by an assisted or rehabilitation robotic device.

  1. Incidence of upper limb venous thrombosis associated with peripherally inserted central catheters (PICC).

    PubMed

    Abdullah, B J J; Mohammad, N; Sangkar, J V; Abd Aziz, Y F; Gan, G G; Goh, K Y; Benedict, I

    2005-07-01

    The objective of this study was to prospectively determine the incidence of venous thrombosis (VT) in the upper limbs in patients with peripherally inserted central catheters (PICC). We prospectively investigated the incidence of VT in the upper limbs of 26 patients who had PICC inserted. The inclusion criteria were all patients who had a PICC inserted, whilst the exclusion criterion was the inability to perform a venogram (allergies, previous contrast medium reaction and inability of gaining venous access). Both valved and non-valved catheters were evaluated. Prior to removal of the PICC, an upper limb venogram was performed. The number of segments involved with VT were determined. The duration of central venous catheterization was classified as; less than 6 days, between 6 days and 14 days and more than 14 days. VT was confirmed in 38.5% (10/26) of the patients. The majority 85.7% (12/14) were complete occlusive thrombi and the majority of VT only involved one segment. There was no statistical correlation between the site of insertion of the PICC and the location of VT. Neither was there any observed correlation between the occurrence of VT with the patient's history of hypertension, hypercholesterolaemia, coronary artery disease, diabetes mellitus, cardiac insufficiency, smoking or cancer. There was also no statistical correlation with the size of the catheter. In conclusion, PICCs are associated with a significant risk of upper extremity deep vein thrombosis (UEVT).

  2. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL).

    PubMed

    Meadmore, Katie L; Cai, Zhonglun; Tong, Daisy; Hughes, Ann-Marie; Freeman, Chris T; Rogers, Eric; Burridge, Jane H

    2011-01-01

    A novel system has been developed which combines robotic therapy with electrical stimulation (ES) for upper limb stroke rehabilitation. This technology, termed SAIL: Stimulation Assistance through Iterative Learning, employs advanced model-based iterative learning control (ILC) algorithms to precisely assist participant's completion of 3D tracking tasks with their impaired arm. Data is reported from a preliminary study with unimpaired participants, and also from a single hemiparetic stroke participant with reduced upper limb function who has used the system in a clinical trial. All participants completed tasks which involved moving their (impaired) arm to follow an image of a slowing moving sphere along a trajectory. The participants' arm was supported by a robot and ES was applied to the triceps brachii and anterior deltoid muscles. During each task, the same tracking trajectory was repeated 6 times and ILC was used to compute the stimulation signals to be applied on the next iteration. Unimpaired participants took part in a single, one hour training session and the stroke participant undertook 18, 1 hour treatment sessions composed of tracking tasks varying in length, orientation and speed. The results reported describe changes in tracking ability and demonstrate feasibility of the SAIL system for upper limb rehabilitation. © 2011 IEEE

  3. Adaptation to walking with an exoskeleton that assists ankle extension.

    PubMed

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Incidence rate of mild traumatic brain injury among patients who have suffered from an isolated limb fracture: Upper limb fracture patients are more at risk.

    PubMed

    Jodoin, Marianne; Rouleau, Dominique M; Charlebois-Plante, Camille; Benoit, Benoit; Leduc, Stéphane; Laflamme, G-Yves; Gosselin, Nadia; Larson-Dupuis, Camille; De Beaumont, Louis

    2016-08-01

    This study compares the incidence rate of mild traumatic brain injury (mild TBI) detected at follow-up visits (retrospective diagnosis) in patients suffering from an isolated limb trauma, with the incidence rate held by the hospital records (prospective diagnosis) of the sampled cohort. This study also seeks to determine which types of fractures present with the highest incidence of mild TBI. Retrospective assessment of mild TBI among orthopaedic monotrauma patients, randomly selected for participation in an Orthopaedic clinic of a Level I Trauma Hospital. Patients in the remission phase of a limb fracture were recruited between August 2014 and May 2015. No intervention was done (observational study). Standardized semi-structured interviews were conducted with all patients to retrospectively assess for mild TBI at the time of the fracture. Emergency room related medical records of all patients were carefully analyzed to determine whether a prospective mild TBI diagnosis was made following the accident. A total of 251 patients were recruited (54% females, Mean age=49). Study interview revealed a 23.5% incidence rate of mild TBI compared to an incidence rate of 8.8% for prospective diagnosis (χ(2)=78.47; p<0.0001). Patients suffering from an upper limb monotrauma (29.6%; n=42/142) are significantly more at risk of sustaining a mild TBI compared to lower limb fractures (15.6%; n=17/109) (χ(2)=6.70; p=0.010). More specifically, patients with a proximal upper limb injury were significantly more at risk of sustaining concomitant mild TBI (40.6%; 26/64) compared to distal upper limb fractures (20.25%; 16/79) (χ(2)=7.07; p=0.008). Results suggest an important concomitance of mild TBI among orthopaedic trauma patients, the majority of which go undetected during acute care. Patients treated for an upper limb fracture are particularly at risk of sustaining concomitant mild TBI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Factors associated with interest in novel interfaces for upper limb prosthesis control

    PubMed Central

    Engdahl, Susannah M.; Chestek, Cynthia A.; Kelly, Brian; Davis, Alicia

    2017-01-01

    Background Surgically invasive interfaces for upper limb prosthesis control may allow users to operate advanced, multi-articulated devices. Given the potential medical risks of these invasive interfaces, it is important to understand what factors influence an individual’s decision to try one. Methods We conducted an anonymous online survey of individuals with upper limb loss. A total of 232 participants provided personal information (such as age, amputation level, etc.) and rated how likely they would be to try noninvasive (myoelectric) and invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces) interfaces for prosthesis control. Bivariate relationships between interest in each interface and 16 personal descriptors were examined. Significant variables from the bivariate analyses were then entered into multiple logistic regression models to predict interest in each interface. Results While many of the bivariate relationships were significant, only a few variables remained significant in the regression models. The regression models showed that participants were more likely to be interested in all interfaces if they had unilateral limb loss (p ≤ 0.001, odds ratio ≥ 2.799). Participants were more likely to be interested in the three invasive interfaces if they were younger (p < 0.001, odds ratio ≤ 0.959) and had acquired limb loss (p ≤ 0.012, odds ratio ≥ 3.287). Participants who used a myoelectric device were more likely to be interested in myoelectric control than those who did not (p = 0.003, odds ratio = 24.958). Conclusions Novel prosthesis control interfaces may be accepted most readily by individuals who are young, have unilateral limb loss, and/or have acquired limb loss However, this analysis did not include all possible factors that may have influenced participant’s opinions on the interfaces, so additional exploration is warranted. PMID:28767716

  6. Factors associated with interest in novel interfaces for upper limb prosthesis control.

    PubMed

    Engdahl, Susannah M; Chestek, Cynthia A; Kelly, Brian; Davis, Alicia; Gates, Deanna H

    2017-01-01

    Surgically invasive interfaces for upper limb prosthesis control may allow users to operate advanced, multi-articulated devices. Given the potential medical risks of these invasive interfaces, it is important to understand what factors influence an individual's decision to try one. We conducted an anonymous online survey of individuals with upper limb loss. A total of 232 participants provided personal information (such as age, amputation level, etc.) and rated how likely they would be to try noninvasive (myoelectric) and invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces) interfaces for prosthesis control. Bivariate relationships between interest in each interface and 16 personal descriptors were examined. Significant variables from the bivariate analyses were then entered into multiple logistic regression models to predict interest in each interface. While many of the bivariate relationships were significant, only a few variables remained significant in the regression models. The regression models showed that participants were more likely to be interested in all interfaces if they had unilateral limb loss (p ≤ 0.001, odds ratio ≥ 2.799). Participants were more likely to be interested in the three invasive interfaces if they were younger (p < 0.001, odds ratio ≤ 0.959) and had acquired limb loss (p ≤ 0.012, odds ratio ≥ 3.287). Participants who used a myoelectric device were more likely to be interested in myoelectric control than those who did not (p = 0.003, odds ratio = 24.958). Novel prosthesis control interfaces may be accepted most readily by individuals who are young, have unilateral limb loss, and/or have acquired limb loss However, this analysis did not include all possible factors that may have influenced participant's opinions on the interfaces, so additional exploration is warranted.

  7. Effect of adding upper limb rehabilitation to botulinum toxin-A on upper limb activity after stroke: Protocol for the InTENSE trial.

    PubMed

    Lannin, Natasha A; Ada, Louise; English, Coralie; Ratcliffe, Julie; Crotty, Maria

    2018-01-01

    Rationale Although clinical practice guidelines recommend that management of moderate to severe spasticity include the use of botulinum toxin-A in conjunction with therapy, there is currently no evidence to support the addition of therapy. Aims To determine the effect and cost-benefit of adding evidence-based movement training to botulinum toxin-A. Sample size estimate A total of 136 participants will be recruited in order to be able to detect a between-group difference of seven points on the Goal Attainment Scale T-score with 80% power at a two-tailed significance level of 0.05. Methods and design The InTENSE trial is a national, multicenter, Phase III randomized trial with concealed allocation, blinded assessment and intention-to-treat analysis. Stroke survivors who are scheduled to receive botulinum toxin-A in any muscle(s) that cross the wrist because of moderate to severe spasticity after a stroke greater than three months ago, who have completed formal rehabilitation and have no significant cognitive impairment will be randomly allocated to receive botulinum toxin-A plus evidence-based movement training or botulinum toxin-A alone. Study outcomes The primary outcomes are goal attainment (Goal Attainment Scaling) and upper limb activity (Box and Block Test) at three months (end of intervention) and at 12 months (beyond the intervention). Secondary outcomes are spasticity, range of motion, strength, pain, burden of care and health-related quality of life. Direct costs, personal costs and health system costs will be collected at 12 months. Discussion The results of the InTENSE trial are anticipated to directly influence intervention for moderate to severe spasticity after stroke. Trial Registration ANZCTR12615000616572.

  8. Improved motor performance in chronic spinal cord injury following upper-limb robotic training.

    PubMed

    Cortes, Mar; Elder, Jessica; Rykman, Avrielle; Murray, Lynda; Avedissian, Manuel; Stampas, Argyrios; Thickbroom, Gary W; Pascual-Leone, Alvaro; Krebs, Hermano Igo; Valls-Sole, Josep; Edwards, Dylan J

    2013-01-01

    Recovering upper-limb motor function has important implications for improving independence of patients with tetraplegia after traumatic spinal cord injury (SCI). To evaluate the feasibility, safety and effectiveness of robotic-assisted training of upper limb in a chronic SCI population. A total of 10 chronic tetraplegic SCI patients (C4 to C6 level of injury, American Spinal Injury Association Impairment Scale, A to D) participated in a 6-week wrist-robot training protocol (1 hour/day 3 times/week). The following outcome measures were recorded at baseline and after the robotic training: a) motor performance, assessed by robot-measured kinematics, b) corticospinal excitability measured by transcranial magnetic stimulation (TMS), and c) changes in clinical scales: motor strength (Upper extremity motor score), pain level (Visual Analog Scale) and spasticity (Modified Ashworth scale). No adverse effects were observed during or after the robotic training. Statistically significant improvements were found in motor performance kinematics: aim (pre 1.17 ± 0.11 raduans, post 1.03 ± 0.08 raduans, p = 0.03) and smoothness of movement (pre 0.26 ± 0.03, post 0.31 ± 0.02, p = 0.03). These changes were not accompanied by changes in upper-extremity muscle strength or corticospinal excitability. No changes in pain or spasticity were found. Robotic-assisted training of the upper limb over six weeks is a feasible and safe intervention that can enhance movement kinematics without negatively affecting pain or spasticity in chronic SCI. In addition, robot-assisted devices are an excellent tool to quantify motor performance (kinematics) and can be used to sensitively measure changes after a given rehabilitative intervention.

  9. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    PubMed

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. [Remote intelligent Brunnstrom assessment system for upper limb rehabilitation for post-stroke based on extreme learning machine].

    PubMed

    Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang

    2014-04-01

    In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.

  11. Ambulatory and Non-Ambulatory Benefits of Lower Limb Exoskeleton Use, with and without FES, in Clinical and Community Settings

    DTIC Science & Technology

    2016-10-01

    15. SUBJECT TERMS spinal cord injury, paraplegia, exoskeleton, physical medicine and rehabilitation, rehabilitation research, legged mobility...2. KEYWORDS • spinal cord injury • paraplegia • exoskeleton • physical medicine and rehabilitation • rehabilitation research • legged mobility...study protocol notebooks and record books have been assembled with session-by-session instructions and data entry. o Electronic data entry forms have

  12. Clinician-Focused Overview of Bionic Exoskeleton Use After Spinal Cord Injury.

    PubMed

    Palermo, Anne E; Maher, Jennifer L; Baunsgaard, Carsten Bach; Nash, Mark S

    2017-01-01

    Spinal cord injury (SCI) resulting in paralysis of lower limbs and trunk restricts daily upright activity, work capacity, and ambulation ability, putting persons with an injury at greater risk of developing a myriad of secondary medical issues. Time spent in the upright posture has been shown to decrease the risk of these complications in SCI. Unfortunately, the majority of ambulation assistive technologies are limited by inefficiencies such as high energy demand, lengthy donning and doffing time, and poor gait pattern precluding widespread use. These limitations spurred the development of bionic exoskeletons. These devices are currently being used in rehabilitation settings for gait retraining, and some have been approved for home use. This overview will address the current state of available devices and their utility.

  13. A Real-Time Lift Detection Strategy for a Hip Exoskeleton.

    PubMed

    Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona

    2018-01-01

    Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was <160 ms across different lifting speeds. Surface electromyography was also measured to assess the efficacy of the exoskeleton in assisting subjects in performing load lifting tasks. These

  14. A Real-Time Lift Detection Strategy for a Hip Exoskeleton

    PubMed Central

    Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona

    2018-01-01

    Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was <160 ms across different lifting speeds. Surface electromyography was also measured to assess the efficacy of the exoskeleton in assisting subjects in performing load lifting tasks. These

  15. Anthropometric correlations between parts of the upper and lower limb: models for personal identification in a Sudanese population.

    PubMed

    Ahmed, Altayeb Abdalla

    2016-09-01

    Identification of a deceased individual is an essential component of medicolegal practice. However, personal identification based on commingled limbs or parts of limbs, necessary in investigations of mass disasters or some crimes, is a difficult task. Limb measurements have been utilized in the development of biological parameters for personal identification, but the possibility to estimate the dimensions of parts of limbs other than hands and feet has not been assessed. The present study proposes an approach to estimate the dimensions of various parts of limbs based on other limb measurements. The study included 320 Sudanese adults, with equal representation of men and women. Nine limb dimensions were measured (five based on the upper limb, four based on the lower limb), and extensive statistical analysis of the distribution of values was performed. The results showed that all of the measured dimensions were sexually dimorphic and that there was a significant positive correlation between the dimensions of various parts of limbs. Regression models (direct and stepwise) were developed to estimate the dimensions of parts of limbs based on measurements pertaining to one or more other parts of limbs. The study revealed that the dimensions of parts of the upper and lower limb can be estimated from one another. These findings can be used in medicolegal practice and extended to constructive surgery, orthopedics, and prosthesis design for lost limbs.

  16. Studying Upper-Limb Kinematics Using Inertial Sensors Embedded in Mobile Phones

    PubMed Central

    Bennett, Paul

    2015-01-01

    Background In recent years, there has been a great interest in analyzing upper-limb kinematics. Inertial measurement with mobile phones is a convenient and portable analysis method for studying humerus kinematics in terms of angular mobility and linear acceleration. Objective The aim of this analysis was to study upper-limb kinematics via mobile phones through six physical properties that correspond to angular mobility and acceleration in the three axes of space. Methods This cross-sectional study recruited healthy young adult subjects. Humerus kinematics was studied in 10 young adults with the iPhone4. They performed flexion and abduction analytical tasks. Mobility angle and lineal acceleration in each of its axes (yaw, pitch, and roll) were obtained with the iPhone4. This device was placed on the right half of the body of each subject, in the middle third of the humerus, slightly posterior. Descriptive statistics were calculated. Results Descriptive graphics of analytical tasks performed were obtained. The biggest range of motion was found in pitch angle, and the biggest acceleration was found in the y-axis in both analytical tasks. Focusing on tridimensional kinematics, bigger range of motion and acceleration was found in abduction (209.69 degrees and 23.31 degrees per second respectively). Also, very strong correlation was found between angular mobility and linear acceleration in abduction (r=.845) and flexion (r=.860). Conclusions The use of an iPhone for humerus tridimensional kinematics is feasible. This supports use of the mobile phone as a device to analyze upper-limb kinematics and to facilitate the evaluation of the patient. PMID:28582241

  17. A passive exoskeleton with artificial tendons: design and experimental evaluation.

    PubMed

    van Dijk, Wietse; van der Kooij, Herman; Hekman, Edsko

    2011-01-01

    We developed a passive exoskeleton that was designed to minimize joint work during walking. The exoskeleton makes use of passive structures, called artificial tendons, acting in parallel with the leg. Artificial tendons are elastic elements that are able to store and redistribute energy over the human leg joints. The elastic characteristics of the tendons have been optimized to minimize the mechanical work of the human leg joints. In simulation the maximal reduction was 40 percent. The performance of the exoskeleton was evaluated in an experiment in which nine subjects participated. Energy expenditure and muscle activation were measured during three conditions: Normal walking, walking with the exoskeleton without artificial tendons, and walking with the exoskeleton with the artificial tendons. Normal walking was the most energy efficient. While walking with the exoskeleton, the artificial tendons only resulted in a negligibly small decrease in energy expenditure. © 2011 IEEE

  18. Impact of virtual reality games on psychological well-being and upper limb performance in adults with physical disabilities: A pilot study.

    PubMed

    Singh, D K A; Rahman, N N A; Seffiyah, R; Chang, S Y; Zainura, A K; Aida, S R; Rajwinder, K H S

    2017-04-01

    There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test. Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention. There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.

  19. [Characteristics of pain syndrome in patients with upper limbs occupational polyneuropathies].

    PubMed

    Kochetova, O A; Mal'kova, N Yu

    2015-01-01

    Pain syndrome accompanies various diseases of central and peripheral nervous system--that is one of the most important problems in contemporary neurology. Many scientists are in search for effective diagnostic and therapeutic tools. The article covers characteristics of the pain syndrome and its mechanisms in patients with upper limbs occupational polyneuropathies.

  20. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.

    1996-01-01

    The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.

  1. [Women boxing athletes' EMG of upper limbs and lumbar muscles in the training of air striking of straight punch].

    PubMed

    Zhang, Ri-Hui; Kang, Zhi-Xin

    2011-05-01

    To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.

  2. Using Data From the Microsoft Kinect 2 to Quantify Upper Limb Behavior: A Feasibility Study.

    PubMed

    Dehbandi, Behdad; Barachant, Alexandre; Harary, David; Long, John Davis; Tsagaris, K Zoe; Bumanlag, Silverio Joseph; He, Victor; Putrino, David

    2017-09-01

    The objective of this study was to assess whether the novel application of a machine learning approach to data collected from the Microsoft Kinect 2 (MK2) could be used to classify differing levels of upper limb impairment. Twenty-four healthy subjects completed items of the Wolf Motor Function Test (WMFT), which is a clinically validated metric of upper limb function for stroke survivors. Subjects completed the WMFT three times: 1) as a healthy individual; 2) emulating mild impairment; and 3) emulating moderate impairment. A MK2 was positioned in front of participants, and collected kinematic data as they completed the WMFT. A classification framework, based on Riemannian geometry and the use of covariance matrices as feature representation of the MK2 data, was developed for these data, and its ability to successfully classify subjects as either "healthy," "mildly impaired," or "moderately impaired" was assessed. Mean accuracy for our classifier was 91.7%, with a specific accuracy breakdown of 100%, 83.3%, and 91.7% for the "healthy," "mildly impaired," and "moderately impaired" conditions, respectively. We conclude that data from the MK2 is of sufficient quality to perform objective motor behavior classification in individuals with upper limb impairment. The data collection and analysis framework that we have developed has the potential to disrupt the field of clinical assessment. Future studies will focus on validating this protocol on large populations of individuals with actual upper limb impairments in order to create a toolkit that is clinically validated and available to the clinical community.

  3. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial

    PubMed Central

    2013-01-01

    Background Recent evidence has demonstrated the efficacy of Virtual Reality (VR) for stroke rehabilitation nonetheless its benefits and limitations in large population of patients have not yet been studied. Objectives To evaluate the effectiveness of non-immersive VR treatment for the restoration of the upper limb motor function and its impact on the activities of daily living capacities in post-stroke patients. Methods A pragmatic clinical trial was conducted among post-stroke patients admitted to our rehabilitation hospital. We enrolled 376 subjects who had a motor arm subscore on the Italian version of the National Institutes of Health Stroke Scale (It-NIHSS) between 1 and 3 and without severe neuropsychological impairments interfering with recovery. Patients were allocated to two treatments groups, receiving combined VR and upper limb conventional (ULC) therapy or ULC therapy alone. The treatment programs consisted of 2 hours of daily therapy, delivered 5 days per week, for 4 weeks. The outcome measures were the Fugl-Meyer Upper Extremity (F-M UE) and Functional Independence Measure (FIM) scales. Results Both treatments significantly improved F-M UE and FIM scores, but the improvement obtained with VR rehabilitation was significantly greater than that achieved with ULC therapy alone. The estimated effect size of the minimal difference between groups in F-M UE and FIM scores was 2.5 ± 0.5 (P < 0.001) pts and 3.2 ± 1.2 (P = 0.007) pts, respectively. Conclusions VR rehabilitation in post-stroke patients seems more effective than conventional interventions in restoring upper limb motor impairments and motor related functional abilities. Trial registration Italian Ministry of Health IRCCS Research Programme 2590412 PMID:23914733

  4. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Astrophysics Data System (ADS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-06-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  5. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  6. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.

    PubMed

    Aach, Mirko; Cruciger, Oliver; Sczesny-Kaiser, Matthias; Höffken, Oliver; Meindl, Renate Ch; Tegenthoff, Martin; Schwenkreis, Peter; Sankai, Yoshiyuki; Schildhauer, Thomas A

    2014-12-01

    Treadmill training after traumatic spinal cord injury (SCI) has become an established therapy to improve walking capabilities. The hybrid assistive limb (HAL) exoskeleton has been developed to support motor function and is tailored to the patients' voluntary drive. To determine whether locomotor training with the exoskeleton HAL is safe and can increase functional mobility in chronic paraplegic patients after SCI. A single case experimental A-B (pre-post) design study by repeated assessments of the same patients. The subjects performed 90 days (five times per week) of HAL exoskeleton body weight supported treadmill training with variable gait speed and body weight support. Eight patients with chronic SCI classified by the American Spinal Injury Association (ASIA) Impairment Scale (AIS) consisting of ASIA A (zones of partial preservation [ZPP] L3-S1), n=4; ASIA B (with motor ZPP L3-S1), n=1; and ASIA C/D, n=3, who received full rehabilitation in the acute and subacute phases of SCI. Functional measures included treadmill-associated walking distance, speed, and time, with additional analysis of functional improvements using the 10-m walk test (10MWT), timed-up and go test (TUG test), 6-minute walk test (6MWT), and the walking index for SCI II (WISCI II) score. Secondary physiologic measures including the AIS with the lower extremity motor score (LEMS), the spinal spasticity (Ashworth scale), and the lower extremity circumferences. Subjects performed standardized functional testing before and after the 90 days of intervention. Highly significant improvements of HAL-associated walking time, distance, and speed were noticed. Furthermore, significant improvements have been especially shown in the functional abilities without the exoskeleton for over-ground walking obtained in the 6MWT, TUG test, and the 10MWT, including an increase in the WISCI II score of three patients. Muscle strength (LEMS) increased in all patients accompanied by a gain of the lower limb

  7. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton

    PubMed Central

    Young, Aaron J.; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P.

    2017-01-01

    A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait. PMID:28337434

  8. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton.

    PubMed

    Young, Aaron J; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait.

  9. Diagnostic Value of Isolated Mentalis Versus Mentalis Plus Upper Limb Electromyography in Idiopathic REM Sleep Behavior Disorder Patients Eventually Developing a Neurodegenerative Syndrome.

    PubMed

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Guaita, Marc; Salamero, Manel; Santamaria, Joan

    2017-04-01

    To compare two electromyographic (EMG) montages, isolated mentalis muscle versus mentalis in combination with upper limb muscles in the baseline diagnostic video-polysomnography (V-PSG) of patients with idiopathic REM sleep behaviors disorder (IRBD) who eventually were diagnosed with a clinically defined neurodegenerative syndrome. Forty-nine patients were included. At baseline, diagnosis of RBD was based on a typical history of dream enactment behaviors plus V-PSG showing REM sleep with qualitative increased EMG activity and/or abnormal behaviors. Quantification of EMG activity (tonic, phasic and "any") in the mentalis and upper limb muscles (biceps brachii-BB, n = 36 or flexor digitorum superficialis-FDS, n = 13) was performed manually and compared with published cut-offs. Nine (18.4%) patients had either tonic or phasic EMG below the cut-offs for the isolated mentalis and four of them (11.1 %) also had values below the cut-off for the mentalis combined with BB. All 13 patients recorded with the FDS were above the mentalis combined with FDS cut-off. For the diagnosis of IRBD, sensitivity of isolated mentalis was 81.6% and of the combination of mentalis plus upper limb muscles was 91.8% (p = .03). Audiovisual analysis showed abnormal REM sleep behaviors in all nine patients with values below the cut-offs. Quantification of EMG activity in the upper limbs combined with the mentalis increases the ability to diagnose IRBD when compared with the isolated measurement of the mentalis. Detection of typical abnormal behaviors during REM sleep with audiovisual analysis is essential for the diagnosis of IRBD in patients with EMG values below the published cut-offs. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. The influence of active vision on the exoskeleton of intelligent agents

    NASA Astrophysics Data System (ADS)

    Smith, Patrice; Terry, Theodore B.

    2016-04-01

    Chameleonization occurs when a self-learning autonomous mobile system's (SLAMR) active vision scans the surface of which it is perched causing the exoskeleton to changes colors exhibiting a chameleon effect. Intelligent agents having the ability to adapt to their environment and exhibit key survivability characteristics of its environments would largely be due in part to the use of active vision. Active vision would allow the intelligent agent to scan its environment and adapt as needed in order to avoid detection. The SLAMR system would have an exoskeleton, which would change, based on the surface it was perched on; this is known as the "chameleon effect." Not in the common sense of the term, but from the techno-bio inspired meaning as addressed in our previous paper. Active vision, utilizing stereoscopic color sensing functionality would enable the intelligent agent to scan an object within its close proximity, determine the color scheme, and match it; allowing the agent to blend with its environment. Through the use of its' optical capabilities, the SLAMR system would be able to further determine its position, taking into account spatial and temporal correlation and spatial frequency content of neighboring structures further ensuring successful background blending. The complex visual tasks of identifying objects, using edge detection, image filtering, and feature extraction are essential for an intelligent agent to gain additional knowledge about its environmental surroundings.

  11. Quantification of upper limb skills in elderly rehabilitative inpatients: a controlled study.

    PubMed

    Bejor, M; Mandrini, S; Caspani, P; Comelli, M; Chiappedi, M

    2015-08-01

    Aging has a recognized degenerative effect on the functionality of the hand in terms of strength and dexterity. Despite this, there are few studies in literature that quantify the upper limb skills in the elderly. The aim was to present quantitative data regarding upper limb functionality in the elderly and to quantify the effect of aging on them, considering the influence of the comorbidities, of the global level of autonomy, of the cognitive status and of the mood, which are typically compromised in the elderly. It was a controlled study. It was settled in the Rehabilitation Unit of the "Santa Maria alle Fonti" Medical Center, part of the Don Carlo Gnocchi ONLUS Foundation. Thirty-five elderly inpatients (aged 78.6±7.5 years) compared to 30 healthy young adults (aged 30±3.9 years). A task consisting in 12 trials of grasping of rulers was administered to each subject and studied with a video analysis software. To assess the comorbidities, the global level of autonomy, the cognitive status and the mood, we respectively used the Cumulative Illness Rating Scale (CIRS), the Functional Independence Measure (FIM™), the Mini Mental State Examination (MMSE) and the Geriatric Depression Scale in the 15-items version (GDS-15). The scores obtained in these scales were correlated to the mean times of trials execution. The motor performance was significantly worse in the inpatients group compared to the control group in terms of time to complete single tasks (which was on average three times higher in the inpatients group) and of respect of the starting sound stimulus, with more subjects from the inpatients group anticipating the starting signal. This worsening of the motor performance was significantly correlated to the severity of comorbidities and to the global level of autonomy. No significant differences emerged for the correctness of the performance and significant differences were not correlated with depression or cognitive impairment. This study provides

  12. Three-dimensional kinematic analysis of upper and lower limb motion during gait of post-stroke patients

    PubMed Central

    Carmo, A.A.; Kleiner, A.F.R.; Lobo da Costa, P.H.; Barros, R.M.L.

    2012-01-01

    The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 ± 10 years) and control group (CG, 7 able-bodied men, 50 ± 4 years). The statistical analysis was based on the following comparisons (P ≤ 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 ± 4.5, CG: 20.1 ± 8.2) and elbow joints (AF: 8.4 ± 4.4, UF: 15.6 ± 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 ± 0.4, CG: 46.8 ± 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 ± 1.6, CG: 11.5 ± 4.0) and a lower external rotation throughout the cycle (AF: 4.6 ± 1.2, CG: 22.0 ± 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis. PMID:22473324

  13. Upper limb musculoskeletal complaints among technicians working in a diagnostic tuberculosis laboratory: two case reports.

    PubMed

    Wong, Joyce Y P; Chin, David; Fung, Henry; Li, Ann; Wong, Marcus M S; Kwok, Henry K H

    2014-01-01

    Upper limb musculoskeletal complaints are common among certain health professionals. We report two cases, both involving technicians working in a diagnostic tuberculosis laboratory in Hong Kong. A work process evaluation suggest that the need to repeatedly open and close small bottles, as well as to work for prolonged periods of time in confined areas, could be related to the workers' clinical presentation. The cases are also compatible with the diagnosis of repetitive strain injury (RSI) of the upper limb, but this term is not commonly used nowadays because of various definitional issues. A review of the various diagnostic issues in RSI is presented.

  14. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.

    PubMed

    Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi

    2010-10-01

    It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P < 0.05). These results imply that oscillatory coupling between the sensorimotor cortex and spinal motoneurons during steady contraction differs among muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P < 0.05). These results indicate that oscillatory interaction between the sensorimotor cortex and spinal motoneurons can be changed by long-term specialized use of the muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.

  15. Influence of Input Hardware and Work Surface Angle on Upper Limb Posture in a Hybrid Computer Workstation.

    PubMed

    Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P

    2016-02-01

    We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.

  16. Proprioceptive Rehabilitation of Upper Limb Dysfunction in Movement Disorders: A Clinical Perspective

    PubMed Central

    Abbruzzese, Giovanni; Trompetto, Carlo; Mori, Laura; Pelosin, Elisa

    2014-01-01

    Movement disorders (MDs) are frequently associated with sensory abnormalities. In particular, proprioceptive deficits have been largely documented in both hypokinetic (Parkinson’s disease) and hyperkinetic conditions (dystonia), suggesting a possible role in their pathophysiology. Proprioceptive feedback is a fundamental component of sensorimotor integration allowing effective planning and execution of voluntary movements. Rehabilitation has become an essential element in the management of patients with MDs, and there is a strong rationale to include proprioceptive training in rehabilitation protocols focused on mobility problems of the upper limbs. Proprioceptive training is aimed at improving the integration of proprioceptive signals using “task-intrinsic” or “augmented feedback.” This perspective article reviews the available evidence on the effects of proprioceptive stimulation in improving upper limb mobility in patients with MDs and highlights the emerging innovative approaches targeted to maximizing the benefits of exercise by means of enhanced proprioception. PMID:25505402

  17. Mental practice and mirror therapy associated with conventional physical therapy training on the hemiparetic upper limb in poststroke rehabilitation: a preliminary study.

    PubMed

    de Almeida Oliveira, Rafael; Cintia Dos Santos Vieira, Paula; Rodrigues Martinho Fernandes, Luciane Fernanda; Patrizzi, Lislei Jorge; Ferreira de Oliveira, Sabrina; Pascucci Sande de Souza, Luciane Aparecida

    2014-01-01

    The presence of sensory and motor deficits is common in patients post stroke. Mental practice (MP) and mirror therapy (MT) can be used as therapeutic techniques for poststroke rehabilitation. Important results have been demonstrated, although they have not established the patients' functional gain or related results of muscle electromyographic (EMG) data to functionality. The aim was to investigate EMG activity and sensory, motor, and functional performance in hemiparetic limbs of patients with stroke after intervention with MP and MT associated with conventional physical therapy training (CPTT). Seven patients were treated twice weekly during 8 weeks with MP and MT associated with CPTT of the affected upper limb. The Fugl-Meyer scale and the Barthel Index (BI) were applied to assess sensorimotor ability and independence of patients. Activation of the upper trapezius, biceps brachii, triceps brachii, flexor carpi ulnaris, and extensor carpi radialis was evaluated by means of EMG symmetry index and muscle co-activation measurements. There were statistically significant differences between pre- and postassessment findings for the motor, sensory, and mobility domains of the Fugl-Meyer scale, as well as for BI evaluation. No statistically significant differences were observed when the pre- and posttest symmetry and co-activation data were compared, although there were qualitative changes. The protocol was effective for improving motor, sensory, and mobility aspects, as well as function involved in activities of daily living. Qualitative changes in symmetry and muscle co-contraction were found, indicating a possible improvement in upper limb rehabilitation of patients with stroke.

  18. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    PubMed Central

    2011-01-01

    Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees. PMID:21272334

  19. Efficacy of a Virtual Reality Commercial Gaming Device in Upper Limb Recovery after Stroke: A Randomized, Controlled Study.

    PubMed

    Kong, Keng-He; Loh, Yong-Joo; Thia, Ernest; Chai, Audrey; Ng, Chwee-Yin; Soh, Yan-Ming; Toh, Shirlene; Tjan, Soon-Yin

    2016-10-01

    To compare the efficacy of a virtual reality commercial gaming device, Nintendo wii (NW) with conventional therapy and customary care in facilitating upper limb recovery after stroke. Randomized, controlled, single-blinded study. Tertiary rehabilitation center. 105 subjects admitted to in inpatient rehabilitation program within 6 weeks of stroke onset. Subjects were randomly assigned to one of three groups of upper limb exercises: (1) NW gaming; (2) conventional therapy; (3) control. NW gaming and conventional therapy were provided fourtimes a week for 3 weeks. The main outcome measure was Fugl-Meyer assessment (FMA) of upper limb function. Secondary outcome measures included Action Research Arm Test, Functional Independence Measure, and Stroke Impact Scale. These measures were assessed at baseline, completion of intervention (week 3) and at 4 weeks and 8 weeks after completion of intervention. The primary outcome measure was the change in FMA scores at completion of intervention. The mean age was 57.5±9.8 years, and subjects were enrolled at a mean of 13.7±8.9 days after stroke. The mean baseline FMA score was 16.4±14.2. There was no difference in FMA scores between all 3 groups at the end of intervention, and at 4 and 8 weeks after completion of intervention. Similar findings were also noted for the secondary outcome measures. Twelve sessions of augmented upper limb exercises via NW gaming or conventional therapy over a 3-week period was not effective in enhancing upper limb motor recovery compared to control.

  20. Ontogeny and function of the fifth limb in Cypridocopain ostracods.

    PubMed

    Kaji, Tomonari

    2010-08-01

    The exoskeleton of arthropods undergoes reformation at every molting. Accordingly, external morphology can metamorphose through molting. In some crustaceans, the function of appendages is modified through ontogeny. These morphological modifications require accordant modification of the correlation between different body parts because the morphological function depends on the combined correlation between different parts. In the case of crustacean morphology, exoskeleton and muscles are correlated to each other. The functional morphology of the fifth limb of cypridoid ostracods transforms from "walking leg + mouthparts (+ possibly respiratory parts)" to "mouthparts + respiratory parts + grasping hook (in males only)" through ontogeny. In this study, the three-dimensional structures of the exoskeleton and muscular systems were observed by confocal laser-scanning microscopy in some species of suborder Cypridocopina. The muscular system is reportedly not changed by the ontogeny of appendages in females, but it does change in males. Furthermore, regional cell proliferation, which was detected previously, represented the causal factor of exoskeletal modification. I therefore conclude that the enlarged endite in the female fifth limb is produced by exoskeletal modification based on regional cell proliferation, rather than by a change in the muscular system. In contrast, modification in the male requires a change in the muscular system in addition to exoskeletal modification.

  1. The 6 minute walk test and performance of upper limb in ambulant duchenne muscular dystrophy boys.

    PubMed

    Pane, Marika; Mazzone, Elena Stacy; Sivo, Serena; Fanelli, Lavinia; De Sanctis, Roberto; D'Amico, Adele; Messina, Sonia; Battini, Roberta; Bianco, Flaviana; Scutifero, Marianna; Petillo, Roberta; Frosini, Silvia; Scalise, Roberta; Vita, Gian Luca; Bruno, Claudio; Pedemonte, Marina; Mongini, Tiziana; Pegoraro, Elena; Brustia, Francesca; Gardani, Alice; Berardinelli, Angela; Lanzillotta, Valentina; Viggiano, Emanuela; Cavallaro, Filippo; Sframeli, Maria; Bello, Luca; Barp, Andrea; Busato, Fabio; Bonfiglio, Serena; Rolle, Enrica; Colia, Giulia; Bonetti, Annamaria; Palermo, Concetta; Graziano, Alessandra; D'Angelo, Grazia; Pini, Antonella; Corlatti, Alice; Gorni, Ksenija; Baranello, Giovanni; Antonaci, Laura; Bertini, Enrico; Politano, Luisa; Mercuri, Eugenio

    2014-10-07

    The Performance of Upper Limb (PUL) test was specifically developed for the assessment of upper limbs in Duchenne muscular dystrophy (DMD). The first published data have shown that early signs of involvement can also be found in ambulant DMD boys. The aim of this longitudinal Italian multicentric study was to evaluate the correlation between the 6 Minute Walk Test (6MWT) and the PUL in ambulant DMD boys. Both 6MWT and PUL were administered to 164 ambulant DMD boys of age between 5.0 and 16.17 years (mean 8.82). The 6 minute walk distance (6MWD) ranged between 118 and 557 (mean: 376.38, SD: 90.59). The PUL total scores ranged between 52 and 74 (mean: 70.74, SD: 4.66). The correlation between the two measures was 0.499. The scores on the PUL largely reflect the overall impairment observed on the 6MWT but the correlation was not linear. The use of the PUL appeared to be less relevant in the very strong patients with 6MWD above 400 meters, who, with few exceptions had near full scores. In patients with lower 6MWD the severity of upper limb involvement was more variable and could not always be predicted by the 6MWD value or by the use of steroids. Our results confirm that upper limb involvement can already be found in DMD boys even in the ambulant phase.

  2. Evaluation of the Achilles Ankle Exoskeleton.

    PubMed

    van Dijk, Wietse; Meijneke, Cory; van der Kooij, Herman

    2017-02-01

    This paper evaluates the Achilles exoskeleton. The exoskeleton is intended to provide push-off assistance for healthy subjects during walking. The assistance is provided by a series elastic actuator that has been optimized to provide maximal push-off power. The paper presents the control method of the exoskeleton and the evaluation of the exoskeleton.

  3. Decision-Making About Upper Limb Tendon Transfer Surgery by People With Tetraplegia for More Than 10 Years.

    PubMed

    Dunn, Jennifer A; Hay-Smith, E Jean; Keeling, Sally; Sinnott, K Anne

    2016-06-01

    To quantify time from spinal cord injury to upper limb reconstructive surgery for individuals with tetraplegia; to explore influences on decision-making about surgery for persons with long-standing (>10y) tetraplegia; and to determine the applicability of our previously developed conceptual framework that described the decision-making processes for people with tetraplegia of <5 years. Quantitative-qualitative mixed-methods study. Community based in New Zealand. People (N=9) living with tetraplegia for >10 years. Not applicable. An audit of time frames between injury, assessment, and surgery for people with tetraplegia was undertaken. Interviews of people with tetraplegia were analyzed using constructivist grounded theory. Sixty-two percent of people with tetraplegia assessed for surgery had upper limb reconstructive surgery. Most were assessed within the first 3 years of spinal cord injury. Over half had surgery within 4 years after injury; however, 20% waited >10 years. Changes in prioritized activities, and the identification of tasks possible with surgery, were influential in the decision-making process. Participants were aware of surgery, but required a reoffer from health professionals before proceeding. The influence of peers was prominent in reinforcing the improvement in prioritized activities possible after surgery. Findings confirmed that the previously developed conceptual framework for decision-making about upper limb reconstructive surgery was applicable for people with tetraplegia of >10 years. Similarities were seen in the influence of goals and priorities (although the nature of these might change) and information from peers (although this influence was greater for those injured longer). Repeat offers for surgery were required to allow for changes in circumstances over time. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Studying Upper-Limb Kinematics Using Inertial Sensors Embedded in Mobile Phones.

    PubMed

    Roldan-Jimenez, Cristina; Cuesta-Vargas, Antonio; Bennett, Paul

    2015-05-20

    In recent years, there has been a great interest in analyzing upper-limb kinematics. Inertial measurement with mobile phones is a convenient and portable analysis method for studying humerus kinematics in terms of angular mobility and linear acceleration. The aim of this analysis was to study upper-limb kinematics via mobile phones through six physical properties that correspond to angular mobility and acceleration in the three axes of space. This cross-sectional study recruited healthy young adult subjects. Humerus kinematics was studied in 10 young adults with the iPhone4. They performed flexion and abduction analytical tasks. Mobility angle and lineal acceleration in each of its axes (yaw, pitch, and roll) were obtained with the iPhone4. This device was placed on the right half of the body of each subject, in the middle third of the humerus, slightly posterior. Descriptive statistics were calculated. Descriptive graphics of analytical tasks performed were obtained. The biggest range of motion was found in pitch angle, and the biggest acceleration was found in the y-axis in both analytical tasks. Focusing on tridimensional kinematics, bigger range of motion and acceleration was found in abduction (209.69 degrees and 23.31 degrees per second respectively). Also, very strong correlation was found between angular mobility and linear acceleration in abduction (r=.845) and flexion (r=.860). The use of an iPhone for humerus tridimensional kinematics is feasible. This supports use of the mobile phone as a device to analyze upper-limb kinematics and to facilitate the evaluation of the patient. ©Cristina Roldan-Jimenez, Antonio Cuesta-Vargas, Paul Bennett. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 20.05.2015.

  5. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury

    PubMed Central

    Wu, Amy R.; Dzeladini, Florin; Brug, Tycho J. H.; Tamburella, Federica; Tagliamonte, Nevio L.; van Asseldonk, Edwin H. F.; van der Kooij, Herman; Ijspeert, Auke J.

    2017-01-01

    Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limb muscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection), can be decomposed into relevant control modules (e.g., only knee or hip control), and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects (N = 7, four with complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects—from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged for most of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined settings for

  6. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury.

    PubMed

    Wu, Amy R; Dzeladini, Florin; Brug, Tycho J H; Tamburella, Federica; Tagliamonte, Nevio L; van Asseldonk, Edwin H F; van der Kooij, Herman; Ijspeert, Auke J

    2017-01-01

    Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limb muscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection), can be decomposed into relevant control modules (e.g., only knee or hip control), and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects ( N = 7, four with complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects-from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged for most of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined settings for

  7. Serious games for upper limb rehabilitation: a systematic review.

    PubMed

    Proença, João Pedro; Quaresma, Cláudia; Vieira, Pedro

    2018-01-01

    The aim of this research is to carry out a systematic review of the use of technological gaming platforms with serious games in the upper limb rehabilitation of patients with neuromotor disorders. Through a systematic review, the first two authors defined the inclusion criteria and extracted the data, resulting in 38 studies collected from B-On, PubMed and Medline. Ninety-two per cent of the selected articles were published since 2010. This review documents 35 different gaming platforms types. Twenty-one of the 38 articles included in this review conducted a clinical trial and of those only eight report improvements in the target population following the use of the games and platforms. This review concludes that a new paradigm is emerging in the rehabilitation field, characterized by the systematic use of technological gaming platforms with serious games in/for rehabilitation. The use of this approach seems to be beneficial. However, to facilitate the full integration of these platforms, it is necessary to conduct more research in this area, explore new approaches and carry out in-depth clinical studies into the benefits of these platforms. Implications for rehabilitation This review states that the use serious games and gaming platforms for upper limb rehabilitation are starting a new paradigm in the rehabilitation. For a full integration of this technologies in the rehabilitation field more studies are needed.

  8. The principles of management of congenital anomalies of the upper limb.

    PubMed

    Watson, S

    2000-07-01

    Management of congenital anomalies of the upper limb is reviewed with reference to classification and aetiology, incidence, diagnosis before birth, broad principles of treatment, timing of x rays and scans, functional aims, cosmetic appearance, counselling of parents, therapists, scars, skin grafts, growth, and timing of surgery. Notes on 11 congenital hand conditions are given.

  9. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  10. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    PubMed Central

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  11. Novel swing-assist un-motorized exoskeletons for gait training.

    PubMed

    Mankala, Kalyan K; Banala, Sai K; Agrawal, Sunil K

    2009-07-03

    Robotics is emerging as a promising tool for functional training of human movement. Much of the research in this area over the last decade has focused on upper extremity orthotic devices. Some recent commercial designs proposed for the lower extremity are powered and expensive - hence, these could have limited affordability by most clinics. In this paper, we present a novel un-motorized bilateral exoskeleton that can be used to assist in treadmill training of motor-impaired patients, such as with motor-incomplete spinal cord injury. The exoskeleton is designed such that the human leg will have a desirable swing motion, once it is strapped to the exoskeleton. Since this exoskeleton is un-motorized, it can potentially be produced cheaply and could reduce the physical demand on therapists during treadmill training. A swing-assist bilateral exoskeleton was designed and fabricated at the University of Delaware having the following salient features: (i) The design uses torsional springs at the hip and the knee joints to assist the swing motion. The springs get charged by the treadmill during stance phase of the leg and provide propulsion forces to the leg during swing. (ii) The design of the exoskeleton uses simple dynamic models of sagittal plane walking, which are used to optimize the parameters of the springs so that the foot can clear the ground and have a desirable forward motion during walking. The bilateral exoskeleton was tested on a healthy subject during treadmill walking for a range of walking speeds between 1.0 mph and 4.0 mph. Joint encoders and interface force-torque sensors mounted on the exoskeleton were used to evaluate the effectiveness of the exoskeleton in terms of the hip and knee joint torques applied by the human during treadmill walking. We compared two different cases. In case 1, we estimated the torque applied by the human joints when walking with the device using the joint kinematic data and interface force-torque sensors. In case 2, we

  12. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.

    PubMed

    Carey, Stephanie L; Lura, Derek J; Highsmith, M Jason

    2015-01-01

    The choice of a myoelectric or body-powered upper-limb prosthesis can be determined using factors including control, function, feedback, cosmesis, and rejection. Although body-powered and myoelectric control strategies offer unique functions, many prosthesis users must choose one. A systematic review was conducted to determine differences between myoelectric and body-powered prostheses to inform evidence-based clinical practice regarding prescription of these devices and training of users. A search of 9 databases identified 462 unique publications. Ultimately, 31 of them were included and 11 empirical evidence statements were developed. Conflicting evidence has been found in terms of the relative functional performance of body-powered and myoelectric prostheses. Body-powered prostheses have been shown to have advantages in durability, training time, frequency of adjustment, maintenance, and feedback; however, they could still benefit from improvements of control. Myoelectric prostheses have been shown to improve cosmesis and phantom-limb pain and are more accepted for light=intensity work. Currently, evidence is insufficient to conclude that either system provides a significant general advantage. Prosthetic selection should be based on a patient's individual needs and include personal preferences, prosthetic experience, and functional needs. This work demonstrates that there is a lack of empirical evidence regarding functional differences in upper-limb prostheses.

  13. Effects of Adjuvant Mental Practice on Affected Upper Limb Function Following a Stroke: Results of Three-Dimensional Motion Analysis, Fugl-Meyer Assessment of the Upper Extremity and Motor Activity Logs.

    PubMed

    Oh, Hyun Seung; Kim, Eun Joo; Kim, Doo Young; Kim, Soo Jeong

    2016-06-01

    To investigate the effects of adjuvant mental practice (MP) on affected upper limb function following a stroke using three-dimensional (3D) motion analysis. In this AB/BA crossover study, we studied 10 hemiplegic patients who had a stroke within the past 6 months. The patients were randomly allocated to two groups: one group received MP combined with conventional rehabilitation therapy for the first 3 weeks followed by conventional rehabilitation therapy alone for the final 3 weeks; the other group received the same therapy but in reverse order. The MP tasks included drinking from a cup and opening a door. MP was individually administered for 20 minutes, 3 days a week for 3 weeks. To assess the tasks, we used 3D motion analysis and three additional tests: the Fugl-Meyer Assessment of the upper extremity (FMA-UE) and the motor activity logs for amount of use (MAL-AOU) and quality of movement (MAL-QOM). Assessments were performed immediately before treatment (T0), 3 weeks into treatment (T1), and 6 weeks into treatment (T2). Based on the results of the 3D motion analysis and the FMA-UE index (p=0.106), the MAL-AOU scale (p=0.092), and MAL-QOM scale (p=0.273), adjuvant MP did not result in significant improvements. Adjuvant MP had no significant effect on upper limb function following a stroke, according to 3D motion analysis and three clinical assessment tools (the FMA-UE index and the two MAL scales). The importance of this study is its use of objective 3D motion analysis to evaluate the effects of MP. Further studies will be needed to validate these findings.

  14. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.

    PubMed

    Bonzano, Laura; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Dessypris, Adriano; Feraco, Paola; Lopes De Carvalho, Maria L; Battaglia, Mario A; Mancardi, Giovanni L; Bove, Marco

    2014-04-15

    Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 ± 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0

  15. Neuromimetic Event-Based Detection for Closed-Loop Tactile Feedback Control of Upper Limb Prostheses

    PubMed Central

    Osborn, Luke; Kaliki, Rahul; Soares, Alcimar; Thakor, Nitish

    2016-01-01

    Upper limb amputees lack the valuable tactile sensing that helps provide context about the surrounding environment. Here we utilize tactile information to provide active touch feedback to a prosthetic hand. First, we developed fingertip tactile sensors for producing biomimetic spiking responses for monitoring contact, release, and slip of an object grasped by a prosthetic hand. We convert the sensor output into pulses, mimicking the rapid and slowly adapting spiking responses of receptor afferents found in the human body. Second, we designed and implemented two neuromimetic event-based algorithms, Compliant Grasping and Slip Prevention, on a prosthesis to create a local closed-loop tactile feedback control system (i.e. tactile information is sent to the prosthesis). Grasping experiments were designed to assess the benefit of this biologically inspired neuromimetic tactile feedback to a prosthesis. Results from able-bodied and amputee subjects show the average number of objects that broke or slipped during grasping decreased by over 50% and the average time to complete a grasping task decreased by at least 10% for most trials when comparing neuromimetic tactile feedback with no feedback on a prosthesis. Our neuromimetic method of closed-loop tactile sensing is a novel approach to improving the function of upper limb prostheses. PMID:27777640

  16. The principles of management of congenital anomalies of the upper limb

    PubMed Central

    Watson, S.

    2000-01-01

    Management of congenital anomalies of the upper limb is reviewed with reference to classification and aetiology, incidence, diagnosis before birth, broad principles of treatment, timing of x rays and scans, functional aims, cosmetic appearance, counselling of parents, therapists, scars, skin grafts, growth, and timing of surgery. Notes on 11 congenital hand conditions are given.

 PMID:10868991

  17. Influence of aging on isometric muscle strength, fat-free mass and electromyographic signal power of the upper and lower limbs in women

    PubMed Central

    Amaral, Josária F.; Alvim, Felipe C.; Castro, Eliane A.; Doimo, Leonice A.; Silva, Marcus V.; Novo, José M.

    2014-01-01

    Background Aging is a multifactorial process that leads to changes in the quantity and quality of skeletal muscle and contributes to decreased levels of muscle strength. Objective This study sought to investigate whether the isometric muscle strength, fat-free mass (FFM) and power of the electromyographic (EMG) signal of the upper and lower limbs of women are similarly affected by aging. Method The sample consisted of 63 women, who were subdivided into three groups (young (YO) n=33, 24.7±3.5 years; middle age (MA) n=15, 58.6±4.2 years; and older adults (OA). n=15, 72.0±4.2 years). Isometric strength was recorded simultaneously with the capture of the electrical activity of the flexor muscles of the fingers and the vastus lateralis during handgrip and knee extension tests, respectively. FFM was assessed using dual-energy X-ray absorptiometry. Results The handgrip strength measurements were similar among groups (p=0.523), whereas the FFM of the upper limbs was lower in group OA compared to group YO (p=0.108). The RMSn values of the hand flexors were similar among groups (p=0.754). However, the strength of the knee extensors, the FFM of the lower limbs and the RMSn values of the vastus lateralis were lower in groups MA (p=0.014, p=0.006 and p=0.013, respectively) and OA (p=0.000, p=0.000 and p<0.000, respectively) compared to group YO. Conclusions The results of this study demonstrate that changes in isometric muscle strength in MLG and electromyographic activity of the lower limbs are more pronounced with the aging process of the upper limb. PMID:24676705

  18. The functional anatomy of suggested limb paralysis.

    PubMed

    Deeley, Quinton; Oakley, David A; Toone, Brian; Bell, Vaughan; Walsh, Eamonn; Marquand, Andre F; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Mehta, Mitul A; Halligan, Peter W

    2013-02-01

    Suggestions of limb paralysis in highly hypnotically suggestible subjects have been employed to successfully model conversion disorders, revealing similar patterns of brain activation associated with attempted movement of the affected limb. However, previous studies differ with regard to the executive regions involved during involuntary inhibition of the affected limb. This difference may have arisen as previous studies did not control for differences in hypnosis depth between conditions and/or include subjective measures to explore the experience of suggested paralysis. In the current study we employed functional magnetic resonance imaging (fMRI) to examine the functional anatomy of left and right upper limb movements in eight healthy subjects selected for high hypnotic suggestibility during (i) hypnosis (NORMAL) and (ii) attempted movement following additional left upper limb paralysis suggestions (PARALYSIS). Contrast of left upper limb motor function during NORMAL relative to PARALYSIS conditions revealed greater activation of contralateral M1/S1 and ipsilateral cerebellum, consistent with the engagement of these regions in the completion of movements. By contrast, two significant observations were noted in PARALYSIS relative to NORMAL conditions. In conjunction with reports of attempts to move the paralysed limb, greater supplementary motor area (SMA) activation was observed, a finding consistent with the role of SMA in motor intention and planning. The anterior cingulate cortex (ACC, BA 24) was also significantly more active in PARALYSIS relative to NORMAL conditions - suggesting that ACC (BA 24) may be implicated in involuntary, as well as voluntary inhibition of prepotent motor responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Biomimetic NMES controller for arm movements supported by a passive exoskeleton.

    PubMed

    Ferrante, S; Ambrosini, E; Ferrigno, G; Pedrocchi, A

    2012-01-01

    The European Project MUltimodal Neuroprosthesis for Daily Upper limb Support (MUNDUS) aims at the development of an assistive platform for recovering direct interaction capability during daily life activities based on arm reaching and hand functions. Within this project the present study is focused on the design of a biomimetic controller able to modulate the neuromuscular electrical stimulation needed to perform reaching movements supported by a commercial passive exoskeleton for weight relief. Once defined the activities of daily life to be supported by the MUNDUS system, an experimental campaign on healthy subjects was carried out to identify the repeatable kinematics and muscular solution adopted during the target movements. The kinematics resulted to be highly stereotyped, a root mean squared error lower than 5° was found between all the trajectories obtained by healthy subjects in the same movement. A principal component analysis was performed on the EMG signals: less than 5 components explained more than the 85% of the signal variance. This result suggested that the muscular strategy adopted by healthy subjects was stereotyped and can be replicated by a biomimetic NMES controller. The controller was based on a time-delay artificial neural network which mapped the dynamic and non-linear relationship between kinematics and EMG activations to determine the stimulation timing. The stimulation levels reproduced the same scaling factors found between muscles in the stereotyped strategy. The controller was tested on 2 healthy subjects and though it was a feedforward controller, it showed good accuracy in reaching the desired target positions. The integration of a feedback controller is foreseen to ensure the complete accomplishment of the task and to compensate for unpredictable conditions such as muscular fatigue.

  20. Studying Upper-Limb Amputee Prosthesis Use to Inform Device Design

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0277 TITLE: Studying Upper-Limb Amputee Prosthesis Use to Inform Device Design PRINCIPAL INVESTIGATOR: Aaron...Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704...Amputee Prosthesis Use to Inform Device Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Aaron Dollar, Adam Spiers

  1. Evaluation of Interhandle Distance During Pushing and Pulling of a Four-Caster Cart for Upper Limb Exertion.

    PubMed

    Ohnishi, Akihiro; Takanokura, Masato; Sugama, Atsushi

    2016-09-01

    This study examined the relationship between interhandle distances and upper limb exertion during simply pushing and pulling of a cart with four swivel wheels, defined by a roll box pallet (RBP) in a Japanese industrial standard. Six healthy young male participants were asked to push and pull an RBP at a distance of 5.2 m under six conditions corresponding to different interhandle distances (40 cm, 60 cm, and 80 cm) and weights (130 kg and 250 kg). The upper limb exertion was studied by shoulder abduction and flexion, and elbow flexion, as well as surface electromyogram (EMG) in shoulder extensor, and elbow flexor and extensor. Participants were required to provide subjective evaluations on operability after each trial. Subjective operability indicated that a narrower interhandle distance had a better operability for pushing. Interhandle distance was also related to upper limb exertion especially for pushing. A narrow interhandle distance caused smaller shoulder adduction but larger elbow flexion. The normalized EMG data revealed that muscular activity became smaller with a narrow interhandle distance in shoulder extensor. During the pulling task, elbow flexion was smaller at a narrow interhandle distance, although subjective operability and normalized EMG were not significantly varied. A wider interhandle distance, such as 80 cm, was not suitable in the forwardbackward movement of the RBP. Therefore, this study concluded that an interhandle distance of 40 cm would be suitable for pushing and pulling an RBP to protect the workers' hands against the risk of injury by installing inner handles.

  2. Understanding decision-making towards housework among women with upper limb repetitive strain injury.

    PubMed

    Cheung, Therma W C; Clemson, Lindy; O'Loughlin, Kate; Shuttleworth, Russell

    2016-02-01

    Among women with upper limb repetitive strain injury (RSI), occupational therapy interventions include education to facilitate ergonomic practices in housework. From a client-centred perspective, an understanding of women's decision-making about housework is needed to design effective occupational therapy programmes. This study addresses a gap in research in this area by exploring women's views about changing housework habits. The aim was to construct a conceptual representation to explain decision-making in housework by drawing on experiences of a sample of Singapore Chinese women with upper limb RSI from one hand therapy clinic. Based on a constructivist grounded theory methodology, data were collected through in-depth interviewing with 15 women. Interviews were audiotaped and transcribed. Data were analysed with line by line coding, focussed coding and axial coding with constant comparison throughout data collection. Decision-making in housework among these women involved three main themes: (i) emotional attachment to housework; (ii) cognitively informed decision; and (iii) emotionally influenced decision. Women with upper limb RSI had to make cognitive decisions for or against a change in housework to manage their condition. However, the women's cognitively informed decisions were shaped by their emotional attachment to housework. As such, they experienced strong emotional barriers to changing their housework practices even when they had cognitively accepted the necessity and possibility of making a change. Therapists need to be aware that counselling to address the emotional barriers experienced by women is important during ergonomic education. © 2016 Occupational Therapy Australia.

  3. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.

    PubMed

    Rajasekaran, Vijaykumar; López-Larraz, Eduardo; Trincado-Alonso, Fernando; Aranda, Joan; Montesano, Luis; Del-Ama, Antonio J; Pons, Jose L

    2018-01-03

    Gait training for individuals with neurological disorders is challenging in providing the suitable assistance and more adaptive behaviour towards user needs. The user specific adaptation can be defined based on the user interaction with the orthosis and by monitoring the user intentions. In this paper, an adaptive control model, commanded by the user intention, is evaluated using a lower limb exoskeleton with incomplete spinal cord injury individuals (SCI). A user intention based adaptive control model has been developed and evaluated with 4 incomplete SCI individuals across 3 sessions of training per individual. The adaptive control model modifies the joint impedance properties of the exoskeleton as a function of the human-orthosis interaction torques and the joint trajectory evolution along the gait sequence, in real time. The volitional input of the user is identified by monitoring the neural signals, pertaining to the user's motor activity. These volitional inputs are used as a trigger to initiate the gait movement, allowing the user to control the initialization of the exoskeleton movement, independently. A Finite-state machine based control model is used in this set-up which helps in combining the volitional orders with the gait adaptation. The exoskeleton demonstrated an adaptive assistance depending on the patients' performance without guiding them to follow an imposed trajectory. The exoskeleton initiated the trajectory based on the user intention command received from the brain machine interface, demonstrating it as a reliable trigger. The exoskeleton maintained the equilibrium by providing suitable assistance throughout the experiments. A progressive change in the maximum flexion of the knee joint was observed at the end of each session which shows improvement in the patient performance. Results of the adaptive impedance were evaluated by comparing with the application of a constant impedance value. Participants reported that the movement of the

  4. The effect of combined somatosensory stimulation and task-specific training on upper limb function in chronic stroke: a double-blind randomized controlled trial.

    PubMed

    Fleming, Melanie K; Sorinola, Isaac O; Roberts-Lewis, Sarah F; Wolfe, Charles D; Wellwood, Ian; Newham, Di J

    2015-02-01

    Somatosensory stimulation (SS) is a potential adjuvant to stroke rehabilitation, but the effect on function needs further investigation. To explore the effect of combining SS with task-specific training (TST) on upper limb function and arm use in chronic stroke survivors and determine underlying mechanisms. In this double-blinded randomized controlled trial (ISRCTN 05542931), 33 patients (mean 37.7 months poststroke) were block randomized to 2 groups: active or sham SS. They received 12 sessions of 2 hours of SS (active or sham) to all 3 upper limb nerves immediately before 30 minutes of TST. The primary outcome was the Action Research Arm Test (ARAT) score. Secondary outcomes were time to perform the ARAT, Fugl-Meyer Assessment score (FM), Motor Activity Log (MAL), and Goal Attainment Scale (GAS). Underlying mechanisms were explored using transcranial magnetic stimulation stimulus-response curves and intracortical inhibition. Outcomes were assessed at baseline, immediately following the intervention (mean 2 days), and 3 and 6 months (mean 96 and 190 days) after the intervention. The active group (n = 16) demonstrated greater improvement in ARAT score and time immediately postintervention (between-group difference; P < .05), but not at 3- or 6-month follow-ups (P > .2). Within-group improvements were seen for both groups for ARAT and GAS, but for the active group only for FM and MAL (P < .05). Corticospinal excitability did not change. Long-lasting improvements in upper limb function were observed following TST. Additional benefit of SS was seen immediately post treatment, but did not persist and the underlying mechanisms remain unclear. © The Author(s) 2014.

  5. Feasibility study of a wearable exoskeleton for children: is the gait altered by adding masses on lower limbs?

    PubMed

    Rossi, Stefano; Colazza, Alessandra; Petrarca, Maurizio; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo

    2013-01-01

    We are designing a pediatric exoskeletal ankle robot (pediatric Anklebot) to promote gait habilitation in children with Cerebral Palsy (CP). Few studies have evaluated how much or whether the unilateral loading of a wearable exoskeleton may have the unwanted effect of altering significantly the gait. The purpose of this study was to evaluate whether adding masses up to 2.5 kg, the estimated overall added mass of the mentioned device, at the knee level alters the gait kinematics. Ten healthy children and eight children with CP, with light or mild gait impairment, walked wearing a knee brace with several masses. Gait parameters and lower-limb joint kinematics were analyzed with an optoelectronic system under six conditions: without brace (natural gait) and with masses placed at the knee level (0.5, 1.0, 1.5, 2.0, 2.5 kg). T-tests and repeated measures ANOVA tests were conducted in order to find noteworthy differences among the trial conditions and between loaded and unloaded legs. No statistically significant differences in gait parameters for both healthy children and children with CP were observed in the five "with added mass" conditions. We found significant differences among "natural gait" and "with added masses" conditions in knee flexion and hip extension angles for healthy children and in knee flexion angle for children with CP. This result can be interpreted as an effect of the mechanical constraint induced by the knee brace rather than the effect associated with load increase. The study demonstrates that the mechanical constraint induced by the brace has a measurable effect on the gait of healthy children and children with CP and that the added mass up to 2.5 kg does not alter the lower limb kinematics. This suggests that wearable devices weighing 25 N or less will not noticeably modify the gait patterns of the population examined here.

  6. Remote Effect of Lower Limb Acupuncture on Latent Myofascial Trigger Point of Upper Trapezius Muscle: A Pilot Study

    PubMed Central

    Chen, Kai-Hua; Hsiao, Kuang-Yu; Lin, Chu-Hsu; Chang, Wen-Ming; Hsu, Hung-Chih; Hsieh, Wei-Chi

    2013-01-01

    Objectives. To demonstrate the use of acupuncture in the lower limbs to treat myofascial pain of the upper trapezius muscles via a remote effect. Methods. Five adults with latent myofascial trigger points (MTrPs) of bilateral upper trapezius muscles received acupuncture at Weizhong (UB40) and Yanglingquan (GB34) points in the lower limbs. Modified acupuncture was applied at these points on a randomly selected ipsilateral lower limb (experimental side) versus sham needling on the contralateral lower limb (control side) in each subject. Each subject received two treatments within a one-week interval. To evaluate the remote effect of acupuncture, the range of motion (ROM) upon bending the contralateral side of the cervical spine was assessed before and after each treatment. Results. There was significant improvement in cervical ROM after the second treatment (P = 0.03) in the experimental group, and the increased ROM on the modified acupuncture side was greater compared to the sham needling side (P = 0.036). Conclusions. A remote effect of acupuncture was demonstrated in this pilot study. Using modified acupuncture needling at remote acupuncture points in the ipsilateral lower limb, our treatments released tightness due to latent MTrPs of the upper trapezius muscle. PMID:23710218

  7. Age Effects on Upper Limb Kinematics Assessed by the REAplan Robot in Healthy Subjects Aged 3 to 93 Years.

    PubMed

    Gilliaux, Maxime; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine

    2016-04-01

    Kinematics is recommended for the quantitative assessment of upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish normative values in healthy subjects. Three hundred and seventy healthy subjects, aged 3-93 years, participated in the study. They performed two unidirectional and two geometrical tasks ten consecutive times with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-six kinematic indices were computed for the four tasks. For the four tasks, nineteen of the computed kinematic indices showed an age effect. Seventeen indices (the accuracy, speed and smoothness indices and the reproducibility of the accuracy, speed and smoothness) improved in young subjects aged 3-30 years, showed stabilization in adults aged 30-60 years and declined in elderly subjects aged 60-93 years. Additionally, for both geometrical tasks, the speed index exhibited a decrease throughout life. Finally, a principal component analysis provided the relations between the kinematic indices, tasks and subjects' age. This study is the first to assess age effects on upper limb kinematics and establish normative values in subjects aged 3-93 years.

  8. Upper-limb biomechanical analysis of wheelchair transfer techniques in two toilet configurations.

    PubMed

    Tsai, Chung-Ying; Boninger, Michael L; Bass, Sarah R; Koontz, Alicia M

    2018-06-01

    Using proper technique is important for minimizing upper limb kinetics during wheelchair transfers. The objective of the study was to 1) evaluate the transfer techniques used during toilet transfers and 2) determine the impact of technique on upper limb joint loading for two different toilet configurations. Twenty-six manual wheelchair users (23 men and 3 women) performed transfers in a side and front wheelchair-toilet orientation while their habitual transfer techniques were evaluated using the Transfer Assessment Instrument. A motion analysis system and force sensors were used to record biomechanical data during the transfers. More than 20% of the participants failed to complete five transfer skills in the side setup compared to three skills in the front setup. Higher quality skills overall were associated with lower peak forces and moments in both toilet configurations (-0.68 < r < -0.40, p < 0.05). In the side setup, participants who properly placed their hands in a stable position and used proper leading handgrips had lower shoulder resultant joint forces and moments than participants who did not perform these skills correctly (p ≤ 0.04). In the front setup, positioning the wheelchair within three inches of the transfer target was associated with reduced peak trailing forces and moments across all three upper limb joints (p = 0.02). Transfer skills training, making toilet seats level with the wheelchair seat, positioning the wheelchair closer to the toilet and mounting grab bars in a more ideal location for persons who do sitting pivot transfers may facilitate better quality toilet transfers. Published by Elsevier Ltd.

  9. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial.

    PubMed

    Gilliaux, Maxime; Renders, Anne; Dispa, Delphine; Holvoet, Dominique; Sapin, Julien; Dehez, Bruno; Detrembleur, Christine; Lejeune, Thierry M; Stoquart, Gaëtan

    2015-02-01

    Several pilot studies have evoked interest in robot-assisted therapy (RAT) in children with cerebral palsy (CP). To assess the effectiveness of RAT in children with CP through a single-blind randomized controlled trial. Sixteen children with CP were randomized into 2 groups. Eight children performed 5 conventional therapy sessions per week over 8 weeks (control group). Eight children completed 3 conventional therapy sessions and 2 robot-assisted sessions per week over 8 weeks (robotic group). For both groups, each therapy session lasted 45 minutes. Throughout each RAT session, the patient attempted to reach several targets consecutively with the REAPlan. The REAPlan is a distal effector robot that allows for displacements of the upper limb in the horizontal plane. A blinded assessment was performed before and after the intervention with respect to the International Classification of Functioning framework: body structure and function (upper limb kinematics, Box and Block test, Quality of Upper Extremity Skills Test, strength, and spasticity), activities (Abilhand-Kids, Pediatric Evaluation of Disability Inventory), and participation (Life Habits). During each RAT session, patients performed 744 movements on average with the REAPlan. Among the variables assessed, the smoothness of movement (P < .01) and manual dexterity assessed by the Box and Block test (P = .04) improved significantly more in the robotic group than in the control group. This single-blind randomized controlled trial provides the first evidence that RAT is effective in children with CP. Future studies should investigate the long-term effects of this therapy. © The Author(s) 2014.

  10. Transcutaneous Auricular Vagus Nerve Stimulation with Concurrent Upper Limb Repetitive Task Practice for Poststroke Motor Recovery: A Pilot Study.

    PubMed

    Redgrave, Jessica N; Moore, Lucy; Oyekunle, Tosin; Ebrahim, Maryam; Falidas, Konstantinos; Snowdon, Nicola; Ali, Ali; Majid, Arshad

    2018-03-23

    Invasive vagus nerve stimulation (VNS) has the potential to enhance the effects of physiotherapy for upper limb motor recovery after stroke. Noninvasive, transcutaneous auricular branch VNS (taVNS) may have similar benefits, but this has not been evaluated in stroke recovery. We sought to determine the feasibility of taVNS delivered alongside upper limb repetitive task-specific practice after stroke and its effects on a range of outcome measures evaluating limb function. Thirteen participants at more than 3 months postischemic stroke with residual upper limb dysfunction were recruited from the community of Sheffield, United Kingdom (October-December 2016). Participants underwent 18 × 1-hour sessions over 6 weeks in which they made 30-50 repetitions of 8-10 arm movements concurrently with taVNS (NEMOS; Cerbomed, Erlangen, Germany, 25 Hz, .1-millisecond pulse width) at maximum tolerated intensity (mA). An electrocardiogram and rehabilitation outcome scores were obtained at each visit. Qualitative interviews determined the acceptability of taVNS to participants. Median time after stroke was 1.16 years, and baseline median/interquartile range upper limb Fugl-Meyer (UFM) score was 63 (54.5-99.5). Participants attended 92% of the planned treatment sessions. Three participants reported side effects, mainly fatigue, but all performed mean of more than 300 arm repetitions per session with no serious adverse events. There was a significant change in the UFM score with a mean increase per participant of 17.1 points (standard deviation 7.8). taVNS is feasible and well-tolerated alongside upper limb repetitive movements in poststroke rehabilitation. The motor improvements observed justify a phase 2 trial in patients with residual arm weakness. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Comparison of two techniques of robot-aided upper limb exercise training after stroke.

    PubMed

    Stein, Joel; Krebs, Hermano Igo; Frontera, Walter R; Fasoli, Susan E; Hughes, Richard; Hogan, Neville

    2004-09-01

    This study examined whether incorporating progressive resistive training into robot-aided exercise training provides incremental benefits over active-assisted robot-aided exercise for the upper limb after stroke. A total of 47 individuals at least 1 yr poststroke were enrolled in this 6-wk training protocol. Paretic upper limb motor abilities were evaluated using clinical measures and a robot-based assessment to determine eligibility for robot-aided progressive resistive training at study entry. Subjects capable of participating in resistance training were randomized to receive either active-assisted robot-aided exercises or robot-aided progressive resistance training. Subjects who were incapable of participating in resistance training underwent active-assisted robotic therapy and were again screened for eligibility after 3 wks of robotic therapy. Those subjects capable of participating in resistance training at 3 wks were then randomized to receive either robot-aided resistance training or to continue with robot-aided active-assisted training. One subject withdrew due to unrelated medical issues, and data for the remaining 46 subjects were analyzed. Subjects in all groups showed improvement in measures of motor control (mean increase in Fugl-Meyer of 3.3; 95% confidence interval, 2.2-4.4) and maximal force (mean increase in maximal force of 3.5 N, P = 0.027) over the course of robot-aided exercise training. No differences in outcome measures were observed between the resistance training groups and the matched active-assisted training groups. Subjects' ability to perform the robotic task at the time of group assignment predicted the magnitude of the gain in motor control. The incorporation of robot-aided progressive resistance exercises into a program of robot-aided exercise did not favorably or negatively affect the gains in motor control or strength associated with this training, though interpretation of these results is limited by sample size. Individuals with

  12. Upper limb muscular activity and perceived workload during laryngoscopy: comparison of Glidescope(R) and Macintosh laryngoscopy in manikin: an observational study.

    PubMed

    Caldiroli, D; Molteni, F; Sommariva, A; Frittoli, S; Guanziroli, E; Cortellazzi, P; Orena, E F

    2014-03-01

    The interaction between operators and their working environment during laryngoscopy is poorly understood. Numerous studies have focused on the forces applied to the patient's airway during laryngoscopy, but only a few authors have addressed operator muscle activity and workload. We tested whether different devices (Glidescope(®) and Macintosh) use different muscles and how these differences affect the perceived workload. Ten staff anaesthetists performed three intubations with each device on a manikin. Surface electromyography was recorded for eight single muscles of the left upper limb. The NASA Task Load Index (TLX) was administered after each experimental session to evaluate perceived workload. A consistent reduction in muscular activation occurred with Glidescope(®) compared with Macintosh for all muscles tested (mean effect size d=3.28), and significant differences for the upper trapezius (P=0.002), anterior deltoid (P=0.001), posterior deltoid (P=0.000), and brachioradialis (P=0.001) were observed. The overall NASA-TLX workload score was significantly lower for Glidescope(®) than for Macintosh (P=0.006), and the factors of physical demand (P=0.008) and effort (P=0.006) decreased significantly. Greater muscular activity and workload were observed with the Macintosh laryngoscope. Augmented vision and related postural adjustments related to using the Glidescope(®) may reduce activation of the operator's muscles and task workload.

  13. Robotic and clinical evaluation of upper limb motor performance in patients with Friedreich's Ataxia: an observational study.

    PubMed

    Germanotta, Marco; Vasco, Gessica; Petrarca, Maurizio; Rossi, Stefano; Carniel, Sacha; Bertini, Enrico; Cappa, Paolo; Castelli, Enrico

    2015-04-23

    Friedreich's ataxia (FRDA) is the most common hereditary autosomal recessive form of ataxia. In this disease there is early manifestation of gait ataxia, and dysmetria of the arms and legs which causes impairment in daily activities that require fine manual dexterity. To date there is no cure for this disease. Some novel therapeutic approaches are ongoing in different steps of clinical trial. Development of sensitive outcome measures is crucial to prove therapeutic effectiveness. The aim of the study was to assess the reliability and sensitivity of quantitative and objective assessment of upper limb performance computed by means of the robotic device and to evaluate the correlation with clinical and functional markers of the disease severity. Here we assess upper limb performances by means of the InMotion Arm Robot, a robot designed for clinical neurological applications, in a cohort of 14 children and young adults affected by FRDA, matched for age and gender with 18 healthy subjects. We focused on the analysis of kinematics, accuracy, smoothness, and submovements of the upper limb while reaching movements were performed. The robotic evaluation of upper limb performance consisted of planar reaching movements performed with the robotic system. The motors of the robot were turned off, so that the device worked as a measurement tool. The status of the disease was scored using the Scale for the Assessment and Rating of Ataxia (SARA). Relationships between robotic indices and a range of clinical and disease characteristics were examined. All our robotic indices were significantly different between the two cohorts except for two, and were highly and reliably discriminative between healthy and subjects with FRDA. In particular, subjects with FRDA exhibited slower movements as well as loss of accuracy and smoothness, which are typical of the disease. Duration of Movement, Normalized Jerk, and Number of Submovements were the best discriminative indices, as they were

  14. Development and reliability of the rating of compensatory movements in upper limb prosthesis wearers during work-related tasks.

    PubMed

    van der Laan, Tallie M J; Postema, Sietke G; Reneman, Michiel F; Bongers, Raoul M; van der Sluis, Corry K

    2018-02-10

    Reliability study. Quantifying compensatory movements during work-related tasks may help to prevent musculoskeletal complaints in individuals with upper limb absence. (1) To develop a qualitative scoring system for rating compensatory shoulder and trunk movements in upper limb prosthesis wearers during the performance of functional capacity evaluation tests adjusted for use by 1-handed individuals (functional capacity evaluation-one handed [FCE-OH]); (2) to examine the interrater and intrarater reliability of the scoring system; and (3) to assess its feasibility. Movement patterns of 12 videotaped upper limb prosthesis wearers and 20 controls were analyzed. Compensatory movements were defined for each FCE-OH test, and a scoring system was developed, pilot tested, and adjusted. During reliability testing, 18 raters (12 FCE experts and 6 physiotherapists/gait analysts) scored videotapes of upper limb prosthesis wearers performing 4 FCE-OH tests 2 times (2 weeks apart). Agreement was expressed in % and kappa value. Feasibility (focus area's "acceptability", "demand," and "implementation") was determined by using a questionnaire. After 2 rounds of pilot testing and adjusting, reliability of a third version was tested. The interrater reliability for the first and second rating sessions were к = 0.54 (confidence interval [CI]: 0.52-0.57) and к = 0.64 (CI: 0.61-0.66), respectively. The intrarater reliability was к = 0.77 (CI: 0.72-0.82). The feasibility was good but could be improved by a training program. It seems possible to identify compensatory movements in upper limb prosthesis wearers during the performance of FCE-OH tests reliably by observation using the developed observational scoring system. Interrater reliability was satisfactory in most instances; intrarater reliability was good. Feasibility was established. Copyright © 2018 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  15. Work-related posttraumatic upper limb disorder. A case report.

    PubMed

    Capodaglio, P; Nigrelli, M P; Malaguti, S; Panigazzi, M; Pierobon, A

    1999-01-01

    In this paper we describe a patient with mor-sensory loss in the right forearm and hand, which persisted more than 2 years after work-related crush trauma of the left hand. Radiographic and electromyographic investigations, somatosensory evoked potentials, CT scans of the encephalus as well as the Minnesota Multiphasic Personality Inventory and the Roarschach test have been performed. On the basis of these investigations, we think this represents a case of conversion disorder with somatic features. Included is a brief overview of other psychological illness with physical findings involving the upper limb.

  16. Development of rehabilitation training support system for occupational therapy of upper limb motor function

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki

    2007-12-01

    In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.

  17. Relationship between self-reported upper limb disability and quantitative tests in hand-arm vibration syndrome.

    PubMed

    Poole, Kerry; Mason, Howard

    2007-03-15

    To establish the relationship between quantitative tests of hand function and upper limb disability, as measured by the Disability of the Arm, Shoulder and Hand (DASH) questionnaire, in hand-arm vibration syndrome (HAVS). A total of 228 individuals with HAVS were included in this study. Each had undergone a full HAVS assessment by an experienced physician, including quantitative tests of vibrotactile and thermal perception thresholds, maximal hand-grip strength (HG) and the Purdue pegboard (PP) test. Individuals were also asked to complete a DASH questionnaire. PP and HG of the quantitative tests gave the best and statistically significant individual correlations with the DASH disability score (r2 = 0.168 and 0.096). Stepwise linear regression analysis revealed that only PP and HG measurements were statistically significant predictors of upper limb disability (r2 = 0.178). Overall a combination of the PP and HG measurements, rather than each alone, gave slightly better discrimination, although not statistically significant, between normal and abnormal DASH scores with a sensitivity of 73.1% and specificity of 64.3%. Measurements of manual dexterity and hand-grip strength using PP and HG may be useful in helping to confirm lack of upper limb function and 'perceived' disability in HAVS.

  18. AccessScope project: Accessible light microscope for users with upper limb mobility or visual impairments.

    PubMed

    Mansoor, Awais; Ahmed, Wamiq M; Samarapungavan, Ala; Cirillo, John; Schwarte, David; Robinson, J Paul; Duerstock, Bradley S

    2010-01-01

    A web-based application was developed to remotely view slide specimens and control all functions of a research-level light microscopy workstation, called AccessScope. Students and scientists with upper limb mobility and visual impairments are often unable to use a light microscope by themselves and must depend on others in its operation. Users with upper limb mobility impairments and low vision were recruited to assist in the design process of the AccessScope personal computer (PC) user interface. Participants with these disabilities were evaluated in their ability to use AccessScope to perform microscopical tasks. AccessScope usage was compared with inspecting prescanned slide images by grading participants' identification and understanding of histological features and knowledge of microscope operation. With AccessScope subjects were able to independently perform common light microscopy functions through an Internet browser by employing different PC pointing devices or accessibility software according to individual abilities. Subjects answered more histology and microscope usage questions correctly after first participating in an AccessScope test session. AccessScope allowed users with upper limb or visual impairments to successfully perform light microscopy without assistance. This unprecedented capability is crucial for students and scientists with disabilities to perform laboratory coursework or microscope-based research and pursue science, technology, engineering, and mathematics fields.

  19. Coactivation index of children with congenital upper limb reduction deficiencies before and after using a wrist-driven 3D printed partial hand prosthesis.

    PubMed

    Zuniga, Jorge M; Dimitrios, Katsavelis; Peck, Jean L; Srivastava, Rakesh; Pierce, James E; Dudley, Drew R; Salazar, David A; Young, Keaton J; Knarr, Brian A

    2018-06-08

    Co-contraction is the simultaneous activation of agonist and antagonist muscles that produces forces around a joint. It is unknown if the use of a wrist-driven 3D printed transitional prostheses has any influence on the neuromuscular motor control strategies of the affected hand of children with unilateral upper-limb reduction deficiencies. Thus, the purpose of the current investigation was to examine the coactivation index (CI) of children with congenital upper-limb reduction deficiencies before and after 6 months of using a wrist-driven 3D printed partial hand prosthesis. Electromyographic activity of wrist flexors and extensors (flexor carpi ulnaris and extensor digitorum) was recorded during maximal voluntary contraction of the affected and non-affected wrists. Co-contraction was calculated using the coactivation index and was expressed as percent activation of antagonist over agonist. Nine children (two girls and seven boys, 6 to 16 years of age) with congenital upper-limb deficiencies participated in this study and were fitted with a wrist-driven 3D printed prosthetic hand. From the nine children, five (two girls and three boys, 7 to 10 years of age) completed a second visit after using the wrist-driven 3D printed partial hand prosthesis for 6 months. Separate two-way repeated measures ANOVAs were performed to analyze the coactivation index and strength data. There was a significant main effect for hand with the affected hand resulting in a higher coactivation index for flexion and extension than the non-affected hand. For wrist flexion there was a significant main effect for time indicating that the affected and non-affected hand had a significantly lower coactivation index after a period of 6 months. The use of a wrist-driven 3D printed hand prosthesis lowered the coactivation index by 70% in children with congenital upper limb reduction deficiencies. This reduction in coactivation and possible improvement in motor control strategies can potentially

  20. Transcranial direct current stimulation combined with upper limb functional training in children with spastic, hemiparetic cerebral palsy: study protocol for a randomized controlled trial.

    PubMed

    Moura, Renata Calhes Franco; Santos, Cibele Almeida; Grecco, Luanda André Collange; Lazzari, Roberta Delasta; Dumont, Arislander Jonathan Lopes; Duarte, Natalia Carvalho de Almeida; Braun, Luiz Alfredo; Lopes, Jamile Benite Palma; Santos, Ligia Abram Dos; Rodrigues, Eliane Lopes Souza; Albertini, Giorgio; Cimolin, Veronica; Galli, Manuela; Oliveira, Claudia Santos

    2016-08-17

    The aim of the proposed study is to perform a comparative analysis of functional training effects for the paretic upper limb with and without transcranial direct current stimulation over the primary motor cortex in children with spastic hemiparetic cerebral palsy. The sample will comprise 34 individuals with spastic hemiparetic cerebral palsy, 6 to 16 years old, classified at level I, II, or III of the Manual Ability Classification System. Participants will be randomly allocated to two groups: (1) functional training of the paretic upper limb combined with anodic transcranial stimulation; (2) functional training of the paretic upper limb combined with sham transcranial stimulation. Evaluation will involve three-dimensional movement analysis and electromyography using the SMART-D 140® system (BTS Engineering) and the FREEEMG® system (BTS Engineering), the Quality of Upper Extremity Skills Test, to assess functional mobility, the Portable Device and Ashworth Scale, to measure movement resistance and spasticity, and the Pediatric Evaluation of Disability Inventory, to evaluate performance. Functional reach training of the paretic upper limb will include a range of manual activities using educational toys associated with an induced constraint of the non-paretic limb during the training. Training will be performed in five weekly 20-minute sessions for two weeks. Transcranial stimulation over the primary motor cortex will be performed during the training sessions at an intensity of 1 mA. Findings will be analyzed statistically considering a 5 % significance level (P ≤ 0.05). This paper presents a detailed description of a prospective, randomized, controlled, double-blind, clinical trial designed to demonstrate the effects of combining transcranial direct current stimulation over the primary motor cortex and functional training of the paretic limb in children with cerebral palsy classified at level I, II, or III of the Manual Ability Classification System. The

  1. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.

    PubMed

    Bortole, Magdo; Venkatakrishnan, Anusha; Zhu, Fangshi; Moreno, Juan C; Francisco, Gerard E; Pons, Jose L; Contreras-Vidal, Jose L

    2015-06-17

    Stroke significantly affects thousands of individuals annually, leading to considerable physical impairment and functional disability. Gait is one of the most important activities of daily living affected in stroke survivors. Recent technological developments in powered robotics exoskeletons can create powerful adjunctive tools for rehabilitation and potentially accelerate functional recovery. Here, we present the development and evaluation of a novel lower limb robotic exoskeleton, namely H2 (Technaid S.L., Spain), for gait rehabilitation in stroke survivors. H2 has six actuated joints and is designed to allow intensive overground gait training. An assistive gait control algorithm was developed to create a force field along a desired trajectory, only applying torque when patients deviate from the prescribed movement pattern. The device was evaluated in 3 hemiparetic stroke patients across 4 weeks of training per individual (approximately 12 sessions). The study was approved by the Institutional Review Board at the University of Houston. The main objective of this initial pre-clinical study was to evaluate the safety and usability of the exoskeleton. A Likert scale was used to measure patient's perception about the easy of use of the device. Three stroke patients completed the study. The training was well tolerated and no adverse events occurred. Early findings demonstrate that H2 appears to be safe and easy to use in the participants of this study. The overground training environment employed as a means to enhance active patient engagement proved to be challenging and exciting for patients. These results are promising and encourage future rehabilitation training with a larger cohort of patients. The developed exoskeleton enables longitudinal overground training of walking in hemiparetic patients after stroke. The system is robust and safe when applied to assist a stroke patient performing an overground walking task. Such device opens the opportunity to study means

  2. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks.

    PubMed

    Huysamen, Kirsten; de Looze, Michiel; Bosch, Tim; Ortiz, Jesus; Toxiri, Stefano; O'Sullivan, Leonard W

    2018-04-01

    The aim of this study was to evaluate the effect of an industrial exoskeleton on muscle activity, perceived musculoskeletal effort, measured and perceived contact pressure at the trunk, thighs and shoulders, and subjective usability for simple sagittal plane lifting and lowering conditions. Twelve male participants lifted and lowered a box of 7.5 kg and 15 kg, respectively, from mid-shin height to waist height, five times, both with and without the exoskeleton. The device significantly reduced muscle activity of the Erector Spinae (12%-15%) and Biceps Femoris (5%). Ratings of perceived musculoskeletal effort in the trunk region were significantly less with the device (9.5%-11.4%). The measured contact pressure was highest on the trunk (91.7 kPa-93.8 kPa) and least on shoulders (47.6 kPa-51.7 kPa), whereas pressure was perceived highest on the thighs (35-44% of Max LPP). Six of the users rated the device usability as acceptable. The exoskeleton reduced musculoskeletal loading on the lower back and assisted with hip extensor torque during lifting and lowering. Contact pressures fell below the Pain Pressure Threshold. Perceived pressure was not exceptionally high, but sufficiently high to cause discomfort if used for long durations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.

    PubMed

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-10-01

    Loss of hand function and finger dexterity are main disabilities in the upper limb after stroke. An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Significant motor improvements were observed in the Fugl-Meyer hand/wrist and shoulder/elbow scores (p<0.05), and also in the Action Research Arm Test and Wolf Motor Function Test (p<0.05). Significant reduction in spasticity of the fingers as was measured by the Modified Ashworth Score (p<0.05). The training improved the muscle co-ordination between the antagonist muscle pair (flexor digitorum (FD) and extensor digitorum (ED)), associated with a significant reduction in the ED EMG level (p<0.05) and a significant decrease of ED and FD co-contraction during the training (p<0.05); the excessive muscle activities in the biceps brachii were also reduced significantly after the training (p<0.05). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Inertial Sensor Measurements of Upper-Limb Kinematics in Stroke Patients in Clinic and Home Environment.

    PubMed

    Held, Jeremia P O; Klaassen, Bart; Eenhoorn, Albert; van Beijnum, Bert-Jan F; Buurke, Jaap H; Veltink, Peter H; Luft, Andreas R

    2018-01-01

    Upper-limb impairments in stroke patients are usually measured in clinical setting using standard clinical assessment. In addition, kinematic analysis using opto-electronic systems has been used in the laboratory setting to map arm recovery. Such kinematic measurements cannot capture the actual function of the upper extremity in daily life. The aim of this study is to longitudinally explore the complementarity of post-stroke upper-limb recovery measured by standard clinical assessments and daily-life recorded kinematics. The study was designed as an observational, single-group study to evaluate rehabilitation progress in a clinical and home environment, with a full-body sensor system in stroke patients. Kinematic data were recorded with a full-body motion capture suit during clinical assessment and self-directed activities of daily living. The measurements were performed at three time points for 3 h: (1) 2 weeks before discharge of the rehabilitation clinic, (2) right after discharge, and (3) 4 weeks after discharge. The kinematic analysis of reaching movements uses the position and orientation of each body segment to derive the joint angles. Newly developed metrics for classifying activity and quality of upper extremity movement were applied. The data of four stroke patients (three mildly impaired, one sever impaired) were included in this study. The arm motor function assessment improved during the inpatient rehabilitation, but declined in the first 4 weeks after discharge. A change in the data (kinematics and new metrics) from the daily-life recording was seen in in all patients. Despite this worsening patients increased the number of reaches they performed during daily life in their home environment. It is feasible to measure arm kinematics using Inertial Measurement Unit sensors during daily life in stroke patients at the different stages of rehabilitation. Our results from the daily-life recordings complemented the data from the clinical assessments and

  5. Enhanced left-finger deftness following dominant upper- and lower-limb amputation.

    PubMed

    Swanberg, Kelley M; Clark, Abigail M; Kline, Julia E; Yurkiewicz, Ilana R; Chan, Brenda L; Pasquina, Paul F; Heilman, Kenneth M; Tsao, Jack W

    2011-09-01

    After amputation, the sensorimotor cortex reorganizes, and these alterations might influence motor functions of the remaining extremities. The authors examined how amputation of the dominant or nondominant upper or lower extremity alters deftness in the intact limbs. The participants were 32 unilateral upper- or lower-extremity amputees and 6 controls. Upper-extremity deftness was tested by coin rotation (finger deftness) and pegboard (arm, hand, and finger deftness) tasks. Following right-upper- or right-lower-extremity amputation, the left hand's finger movements were defter than the left-hand fingers of controls. In contrast, with left-upper- or left-lower-extremity amputation, the right hand's finger performance was the same as that of the controls. Although this improvement might be related to increased use (practice), the finding that right-lower-extremity amputation also improved the left hand's finger deftness suggests an alternative mechanism. Perhaps in right-handed persons the left motor cortex inhibits the right side of the body more than the right motor cortex inhibits the left side, and the physiological changes induced by right-sided amputation reduced this inhibition.

  6. Kinematic design to improve ergonomics in human machine interaction.

    PubMed

    Schiele, André; van der Helm, Frans C T

    2006-12-01

    This paper introduces a novel kinematic design paradigm for ergonomic human machine interaction. Goals for optimal design are formulated generically and applied to the mechanical design of an upper-arm exoskeleton. A nine degree-of-freedom (DOF) model of the human arm kinematics is presented and used to develop, test, and optimize the kinematic structure of an human arm interfacing exoskeleton. The resulting device can interact with an unprecedented portion of the natural limb workspace, including motions in the shoulder-girdle, shoulder, elbow, and the wrist. The exoskeleton does not require alignment to the human joint axes, yet is able to actuate each DOF of our redundant limb unambiguously and without reaching into singularities. The device is comfortable to wear and does not create residual forces if misalignments exist. Implemented in a rehabilitation robot, the design features of the exoskeleton could enable longer lasting training sessions, training of fully natural tasks such as activities of daily living and shorter dress-on and dress-off times. Results from inter-subject experiments with a prototype are presented, that verify usability over the entire workspace of the human arm, including shoulder and shoulder girdle.

  7. Robot-Mediated Upper Limb Physiotherapy: Review and Recommendations for Future Clinical Trials

    ERIC Educational Resources Information Center

    Peter, Orsolya; Fazekas, Gabor; Zsiga, Katalin; Denes, Zoltan

    2011-01-01

    Robot-mediated physiotherapy provides a new possibility for improving the outcome of rehabilitation of patients who are recovering from stroke. This study is a review of robot-supported upper limb physiotherapy focusing on the shoulder, elbow, and wrist. A literature search was carried out in PubMed, OVID, and EBSCO for clinical trials with robots…

  8. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles

    PubMed Central

    Weiss, Patrice L.; Keshner, Emily A.

    2015-01-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  9. The cross education of strength and skill following unilateral strength training in the upper and lower limbs.

    PubMed

    Green, Lara A; Gabriel, David A

    2018-04-18

    Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-week unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pre-training, post-training, and following 6-weeks of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or non-dominant). There were no sex differences in the training response. Cross education of strength at post-training was 6% (p<0.01) in the untrained arm and 13% (p<0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm (p<0.01) and 14% in the leg (p<0.01). There was no difference in strength gains between upper and lower limbs (p>0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared to the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude (p=0.02) and central activation (p<0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs (p>0.05). The neuromuscular mechanisms mirrored the force increases at post-training and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability.

  10. Automated FES for Upper Limb Rehabilitation Following Stroke and Spinal Cord Injury.

    PubMed

    Hodkin, Edmund F; Lei, Yuming; Humby, Jonathan; Glover, Isabel S; Choudhury, Supriyo; Kumar, Hrishikesh; Perez, Monica A; Rodgers, Helen; Jackson, Andrew

    2018-05-01

    Neurorehabilitation aims to induce beneficial neural plasticity in order to restore function following injury to the nervous system. There is an increasing evidence that appropriately timed functional electrical stimulation (FES) can promote associative plasticity, but the dosage is critical for lasting functional benefits. Here, we present a novel approach to closed-loop control of muscle stimulation for the rehabilitation of reach-to-grasp movements following stroke and spinal cord injury (SCI). We developed a simple, low-cost device to deliver assistive stimulation contingent on users' self-initiated movements. The device allows repeated practice with minimal input by a therapist, and is potentially suitable for home use. Pilot data demonstrate usability by people with upper limb weakness following SCI and stroke, and participant feedback was positive. Moreover, repeated training with the device over 1-2 weeks led to functional benefits on a general object manipulation assessment. Thus, automated FES delivered by this novel device may provide a promising and readily translatable therapy for upper limb rehabilitation for people with stroke and SCI.

  11. Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired With Upper-Limb Rehabilitation After Ischemic Stroke.

    PubMed

    Dawson, Jesse; Pierce, David; Dixit, Anand; Kimberley, Teresa J; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P; Rennaker, Robert L; Cramer, Steven C; Walters, Matthew; Engineer, Navzer

    2016-01-01

    Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl-Meyer Assessment-Upper Extremity). Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl-Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, -0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl-Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. © 2015 The Authors.

  12. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial.

    PubMed

    Wolf, Steven L; Winstein, Carolee J; Miller, J Phillip; Thompson, Paul A; Taub, Edward; Uswatte, Gitendra; Morris, David; Blanton, Sarah; Nichols-Larsen, Deborah; Clark, Patricia C

    2008-01-01

    The aim of constraint-induced movement therapy (CIMT) is to promote use of a limb that is functionally impaired after a stroke. In one form of CIMT to treat upper limb impairment, use of the less severely affected arm is restricted for many hours each weekday over 2 consecutive weeks. The EXCITE trial has previously shown the efficacy of this intervention for patients 3-9 months poststroke who were followed-up for the next 12 months. We assessed the retention of improvements 24 months after the intervention. In the EXCITE trial, 106 of 222 participants who had mild to moderate poststroke impairments were randomly assigned to receive CIMT rather than usual and customary care. We assessed this group of patients every 4 months for the primary outcome measure of impaired upper limb function, as measured with the Wolf motor function test (WMFT) and the motor activity log (MAL). Health-related quality of life, measured with the stroke impact scale (SIS), was a secondary outcome measure. Analysis was per protocol. This trial is registered with ClinicalTrials.gov, number NCT00057018. The effects at 24 months after treatment did not decline from those at 12 months for time taken to complete the WMFT (-0.32 s, 95% CI -3.70 to 3.06), for weight lifted in the WMFT (-1.39 kg, -2.74 to -0.04), for WMFT grip strength (-4.39 kg, -6.91 to -1.86), for amount of use in the MAL (-0.17, -0.38 to 0.04), or for how well the limb was used in the MAL (-0.14, -0.34 to 0.06). The additional changes were in the direction of increased therapeutic effect. For the strength components of the WMFT, p<0.0001. Patients who have mild to moderate impairments 3-9 months poststroke have substantial improvement in functional use of the paretic upper limb and quality of life 2 years after a 2-week CIMT intervention. Thus, this intervention has persistent benefits.

  13. [Anatomo-functional aspects and diagnostic algorithm (of the upper limb pathologies secondary to repeated trauma)].

    PubMed

    Bazzini, G

    2001-01-01

    The epidemiology of work-related musculo-skeletal pathologies of the upper limbs has become significantly relevant in the last years, and a sharp increasing trend can be observed. This paper mainly focuses on the chronic inflammatory and degenerative conditions, which are more complex and difficult to accurately diagnose and treat. A synthesis of the diagnostic picture of the different types, involving the joints, muscles and tendons, and peripheral nerves is provided, with mention of the sensitivity and specificity of the main diagnostic tests. The possible entrapments of the radial, median and ulnar nerves are described in detail. Finally, a brief critical review on the principal movements of the upper limbs which are responsible of the onset of such conditions is presented.

  14. Transcranial direct current stimulation for motor recovery of upper limb function after stroke.

    PubMed

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Rothhardt, Sandra; Verheyden, Geert; Nowak, Dennis Alexander

    2014-11-01

    Changes in neural processing after stroke have been postulated to impede recovery from stroke. Transcranial direct current stimulation has the potential to alter cortico-spinal excitability and thereby might be beneficial in stroke recovery. We review the pertinent literature prior to 30/09/2013 on transcranial direct current stimulation in promoting motor recovery of the affected upper limb after stroke. We found overall 23 trials (they included 523 participants). All stimulation protocols pride on interhemispheric imbalance model. In a comparative approach, methodology and effectiveness of (a) facilitation of the affected hemisphere, (b) inhibition of the unaffected hemisphere and (c) combined application of transcranial direct current stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Transcranial direct current stimulation is associated with improvement of the affected upper limb after stroke, but current evidence does not support its routine use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Asymmetric training using virtual reality reflection equipment and the enhancement of upper limb function in stroke patients: a randomized controlled trial.

    PubMed

    Lee, DongJin; Lee, MyungMo; Lee, KyoungJin; Song, ChangHo

    2014-07-01

    Asymmetric movements with both hands contributed to the improvement of spatially coupled motion. Thus, the aim of this study was to investigate the effects of an asymmetric training program using virtual reality reflection equipment on upper limb function in stroke patients. Twenty-four stroke patients were randomly allocated to an experimental group (n=12) or a control group (n=12). Both groups participated in conventional physical therapy for 2×30 min/d, 5 d/wk, for 4 weeks. The experimental group also participated in an asymmetric training program using virtual reality reflection equipment, and the control group participated in a symmetric training program. Both asymmetric and symmetric programs were conducted for 30 min/d, 5 d/wk, for 4 weeks. To compare upper limb function before and after intervention, the Fugl-Meyer Assessment (FMA), the Box and Block Test (BBT), grip strength, range of motion (ROM), and spasticity were assessed. Both groups showed significant increases in upper limb function, excepting spasticity, after intervention (P<.05, 1-way repeated-measures analysis of variance [ANOVA]). A significant group-time interaction was demonstrated only for shoulder/elbow/wrist items of FMA, BBT, grip strength, and ROM of wrist flexion, extension, and ulnar deviation (P<.05, 2-way repeated-measures ANOVA). This study confirms that the asymmetric training program using virtual reality reflection equipment is an effective intervention method for improving upper limb function in stroke patients. We consider that an additional study based on a program using virtual reflection, which is more functional than performing simple tasks, and consisting of tasks relevant to the activities of daily living be conducted. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial.

    PubMed

    Samuelkamaleshkumar, Selvaraj; Reethajanetsureka, Stephen; Pauljebaraj, Paul; Benshamir, Bright; Padankatti, Sanjeev Manasseh; David, Judy Ann

    2014-11-01

    To investigate the effectiveness of mirror therapy (MT) combined with bilateral arm training and graded activities to improve motor performance in the paretic upper limb after stroke. Randomized, controlled, assessor-blinded study. Inpatient stroke rehabilitation center of a tertiary care teaching hospital. Patients with first-time ischemic or hemorrhagic stroke (N=20), confined to the territory of the middle cerebral artery, occurring <6 months before the commencement of the study. The MT and control group participants underwent a patient-specific multidisciplinary rehabilitation program including conventional occupational therapy, physical therapy, and speech therapy for 5 d/wk, 6 h/d, over 3 weeks. The participants in the MT group received 1 hour of MT in addition to the conventional stroke rehabilitation. The Upper Extremity Fugl-Meyer Assessment for motor recovery, Brunnstrom stages of motor recovery for the arm and hand, Box and Block Test for gross manual hand dexterity, and modified Ashworth scale to assess the spasticity. After 3 weeks of MT, mean change scores were significantly greater in the MT group than in the control group for the Fugl-Meyer Assessment (P=.008), Brunnstrom stages of motor recovery for the arm (P=.003) and hand (P=.003), and the Box and Block Test (P=.022). No significant difference was found between the groups for modified Ashworth scale (P=.647). MT when combined with bilateral arm training and graded activities was effective in improving motor performance of the paretic upper limb after stroke compared with conventional therapy without MT. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Functional outcomes of intramuscular botulinum toxin type a and occupational therapy in the upper limbs of children with cerebral palsy: a randomized controlled trial.

    PubMed

    Wallen, Margaret; O'Flaherty, Stephen J; Waugh, Mary-Clare A

    2007-01-01

    To investigate the functional outcomes of botulinum toxin type A (BTX-A) injections to the upper limb in combination with occupational therapy (OT) in children with cerebral palsy (CP). Randomized controlled trial with follow-up at 2 weeks, 3 months, and 6 months. Specialist outpatient physical disabilities clinic within a public pediatric teaching hospital. Eighty children with spastic quadriplegic, triplegic, or hemiplegic CP from these clinics were randomly assigned to BTX-A plus OT, BTX-A alone, OT alone, or a no-treatment control group. Single set of BTX-A (Botox) injections and 12 weeks of OT. Canadian Occupational Performance Measure (COPM) and Goal Attainment Scale (GAS). The combination of BTX-A and OT resulted in accelerated attainment of functional goals measured by the COPM and GAS. There were no differences between groups on the Melbourne Assessment of Unilateral Upper Limb Function, Quality of Upper Extremity Skills Test, Pediatric Evaluation of Disability Inventory, Child Health Questionnaire, or active and passive range of motion. As expected, there was a significant reduction in muscle tone at follow-up 2 weeks after injection, which returned to baseline level by 6 months. OT enhanced individualized functional outcomes following BTX-A injections in the upper limbs of children with CP.

  18. Management of work-relevant upper limb disorders: a review.

    PubMed

    Burton, A Kim; Kendall, Nicholas A S; Pearce, Brian G; Birrell, Lisa N; Bainbridge, L Christopher

    2009-01-01

    Upper limb disorders (ULDs) are clinically challenging and responsible for considerable work loss. There is a need to determine effective approaches for their management. To determine evidence-based management strategies for work-relevant ULDs and explore whether a biopsychosocial approach is appropriate. Literature review using a best evidence synthesis. Data from articles identified through systematic searching of electronic databases and citation tracking were extracted into evidence tables. The information was synthesized into high-level evidence statements, which were ordered into themes covering classification/diagnosis, epidemiology, associations/risks and management/treatment, focusing on return to work or work retention and taking account of distinctions between non-specific complaints and specific diagnoses. Neither biomedical treatment nor ergonomic workplace interventions alone offer an optimal solution; rather, multimodal interventions show considerable promise, particularly for occupational outcomes. Early return to work, or work retention, is an important goal for most cases and may be facilitated, where necessary, by transitional work arrangements. The emergent evidence indicates that successful management strategies require all the players to be on side and acting in a coordinated fashion; this requires engaging employers and workers to participate. The biopsychosocial model applies: biological considerations should not be ignored, but psychosocial factors are more influential for occupational outcomes. Implementation of interventions that address the full range of psychosocial issues will require a cultural shift in the way the relationship between upper limb complaints and work is conceived and handled. Dissemination of evidence-based messages can contribute to the needed cultural shift.

  19. Upper limb prosthesis use and abandonment: a survey of the last 25 years.

    PubMed

    Biddiss, Elaine A; Chau, Tom T

    2007-09-01

    This review presents an analytical and comparative survey of upper limb prosthesis acceptance and abandonment as documented over the past 25 years, detailing areas of consumer dissatisfaction and ongoing technological advancements. English-language articles were identified in a search of Ovid, PubMed, and ISI Web of Science (1980 until February 2006) for key words upper limb and prosthesis. Articles focused on upper limb prostheses and addressing: (i) Factors associated with abandonment; (ii) Rejection rates; (iii) Functional analyses and patterns of wear; and (iv) Consumer satisfaction, were extracted with the exclusion of those detailing tools for outcome measurement, case studies, and medical procedures. Approximately 200 articles were included in the review process with 40 providing rates of prosthesis rejection. Quantitative measures of population characteristics, study methodology, and prostheses in use were extracted from each article. Mean rejection rates of 45% and 35% were observed in the literature for body-powered and electric prostheses respectively in pediatric populations. Significantly lower rates of rejection for both body-powered (26%) and electric (23%) devices were observed in adult populations while the average incidence of non-wear was similar for pediatric (16%) and adult (20%) populations. Documented rates of rejection exhibit a wide range of variance, possibly due to the heterogeneous samples involved and methodological differences between studies. Future research should comprise of controlled, multifactor studies adopting standardized outcome measures in order to promote comprehensive understanding of the factors affecting prosthesis use and abandonment. An enhanced understanding of these factors is needed to optimize prescription practices, guide design efforts, and satiate demand for evidence-based measures of intervention.

  20. Assessment of upper limb musculoskeletal pain and posture in workers of packaging units of pharmaceutical industries.

    PubMed

    Labbafinejad, Yasser; Danesh, Hossein; Imanizade, Zahra

    2017-01-01

    Work-related musculoskeletal disorders are defined as the disabling or painful injury to the muscles, nerves or tendons that are caused by work or aggravated by it. Some studies confirm the association between working in packaging units in various industries and the pain in the upper limb, but also there are controversies about the possible risk factors among different working populations. The present study aims to define the potential ergonomic risk factors for musculoskeletal pain in the upper limb. The Nordic Musculoskeletal Questionnaire was used for assessment of the musculoskeletal pain. Some other questions about the possible risk factors were included in the questionnaire. In order to assess posture, rapid upper limb assessment (RULA) test was performed by trained ergonomists. The findings of the study reveals that shoulder pain is associated with work history (P-value = 0.01), smoking (P-value = 0.02), the level of education (P-value = 0.04) and age more than 40 years old (P-value = 0.01). Wrist pain was associated with shiftwork (P-value = 0.04) and especially fixed shiftwork (P-value = 0.04) and also age more than 40(P-value = 0.03) and missed days from work with a cut point of 7 days (P-value = 0.03). After regression, only the work history (OR = 14.4 for 10 to 20 years and OR = 32.2 for more than 20 years) and shiftwork (OR = 2.35) remained statistically significant. In this study, RULA was not associated with symptoms in the upper limb in non-heavy working industries so we do not recommend it for screening purposes. The use of decades of working history and shiftwork can be considered for this purpose in the shoulder and wrist pain respectively.