Sample records for active vehicle suspension

  1. Using the lead vehicle as preview sensor in convoy vehicle active suspension control

    NASA Astrophysics Data System (ADS)

    Rahman, Mustafizur; Rideout, Geoff

    2012-12-01

    Both ride quality and roadholding of actively suspended vehicles can be improved by sensing the road ahead of the vehicle and using this information in a preview controller. Previous applications have used look-ahead sensors mounted on the front bumper to measure terrain beneath. Such sensors are vulnerable, potentially confused by water, snow, or other soft obstacles and offer a fixed preview time. For convoy vehicle applications, this paper proposes using the overall response of the preceding vehicle(s) to generate preview controller information for follower vehicles. A robust observer is used to estimate the states of a quarter-car vehicle model, from which road profile is estimated and passed on to the follower vehicle(s) to generate a preview function. The preview-active suspension, implemented in discrete time using a shift register approach to improve simulation time, reduces sprung mass acceleration and dynamic tyre deflection peaks by more than 50% and 40%, respectively. Terrain can change from one vehicle to the next if a loose obstacle is dislodged, or if the vehicle paths are sufficiently different so that one vehicle misses a discrete road event. The resulting spurious preview information can give suspension performance worse than that of a passive or conventional active system. In this paper, each vehicle can effectively estimate the road profile based on its own state trajectory. By comparing its own road estimate with the preview information, preview errors can be detected and suspension control quickly switched from preview to conventional active control to preserve performance improvements compared to passive suspensions.

  2. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2015-01-01

    The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.

  3. Semi-active control of tracked vehicle suspension incorporating magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Ata, W. G.; Salem, A. M.

    2017-05-01

    In past years, the application of magnetorheological (MR) and electrorheological dampers in vehicle suspension has been widely studied, mainly for the purpose of vibration control. This paper presents theoretical study to identify an appropriate semi-active control method for MR-tracked vehicle suspension. Three representative control algorithms are simulated including the skyhook, hybrid and fuzzy-hybrid controllers. A seven degrees-of-freedom tracked vehicle suspension model incorporating MR dampers has been adopted for comparison between the performance of the three controllers. The model differential equations are derived based on Newton's second law of motion and the proposed control methods are developed. The performance of each control method under bump and sinusoidal road profiles for different vehicle speeds is simulated and compared with the performance of the conventional suspension system in time and frequency domains. The results show that the performance of tracked vehicle suspension with MR dampers is substantially improved. Moreover, the fuzzy-hybrid controller offers an excellent integrated performance in reducing the body accelerations as well as wheel bounce responses compared with the classical skyhook and hybrid controllers.

  4. Simulation Research on Vehicle Active Suspension Controller Based on G1 Method

    NASA Astrophysics Data System (ADS)

    Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui

    2017-09-01

    Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.

  5. A hybrid electromagnetic shock absorber for active vehicle suspension systems

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid

    2011-02-01

    The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.

  6. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers

    NASA Astrophysics Data System (ADS)

    Wei, Xiukun; Zhu, Ming; Jia, Limin

    2016-07-01

    The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.

  7. Optimisation of active suspension control inputs for improved vehicle handling performance

    NASA Astrophysics Data System (ADS)

    Čorić, Mirko; Deur, Joško; Kasać, Josip; Tseng, H. Eric; Hrovat, Davor

    2016-11-01

    Active suspension is commonly considered under the framework of vertical vehicle dynamics control aimed at improvements in ride comfort. This paper uses a collocation-type control variable optimisation tool to investigate to which extent the fully active suspension (FAS) application can be broaden to the task of vehicle handling/cornering control. The optimisation approach is firstly applied to solely FAS actuator configurations and three types of double lane-change manoeuvres. The obtained optimisation results are used to gain insights into different control mechanisms that are used by FAS to improve the handling performance in terms of path following error reduction. For the same manoeuvres the FAS performance is compared with the performance of different active steering and active differential actuators. The optimisation study is finally extended to combined FAS and active front- and/or rear-steering configurations to investigate if they can use their complementary control authorities (over the vertical and lateral vehicle dynamics, respectively) to further improve the handling performance.

  8. A comparison of optimal semi-active suspension systems regarding vehicle ride comfort

    NASA Astrophysics Data System (ADS)

    Koulocheris, Dimitrios; Papaioannou, Georgios; Chrysos, Emmanouil

    2017-10-01

    The aim of this work is to present a comparison of the main semi active suspension systems used in a passenger car, after having optimized the suspension systems of the vehicle model in respect with ride comfort and road holding. Thus, a half car model, equipped with controllable dampers, along with a seat and a driver was implemented. Semi-active suspensions have received a lot of attention since they seem to provide the best compromise between cost (energy consumption, actuators/sensors hardware) and performance in comparison with active and passive suspensions. In this work, the semi active suspension systems studied are comfort oriented and consist of (a) the two version of Skyhook control (two states skyhook and skyhook linear approximation damper), (b) the acceleration driven damper (ADD), (c) the power driven damper (PDD), (d) the combination of Skyhook and ADD (Mixed Skyhook-ADD) and (e) the combination of the two with the use of a sensor. The half car model equipped with the above suspension systems was excited by a road bump, and was optimized using genetic algorithms (GA) in respect with ride comfort and road holding. This study aims to highlight how the optimization of the vehicle model could lead to the best compromise between ride comfort and road holding, overcoming their well-known trade-off. The optimum results were compared with important performance metrics regarding the vehicle’s dynamic behaviour in general.

  9. Non-dimensionalised closed-form parametric analysis of semi-active vehicle suspensions using a quarter-car model

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi; Blanchard, Emmanuel

    2011-02-01

    This article provides a non-dimensionalised closed-form analysis of semi-active vehicle suspensions, using a quarter-car model. The derivation of the closed-form solutions for three indices that can be used for ride comfort, vehicle handling, and stability are presented based on non-dimensionalised suspension parameters. The behaviour of semi-active vehicle suspensions is evaluated using skyhook, groundhook, and hybrid control policies, and compared with passive suspensions. The relationship between vibration isolation, suspension deflection, and road holding is studied, using three performance indices based on the mean square of the sprung mass acceleration, rattle space, and tyre deflection, respectively. The results of the study indicate that the hybrid control policy yields significantly better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars. The results also indicate that for typical passenger cars, the hybrid control policy results in a better compromise between comfort, road holding and suspension travel requirements than both the skyhook and groundhook control methods.

  10. Ride performance of a high speed rail vehicle using controlled semi active suspension system

    NASA Astrophysics Data System (ADS)

    Sharma, Sunil Kumar; Kumar, Anil

    2017-05-01

    The rail-wheel interaction in a rail vehicle running at high speed results in large amplitude vibration of carbody that deteriorates the ride comfort of travellers. The role of suspension system is crucial to provide an acceptable level of ride performance. In this context, an existing rail vehicle is modelled in vertical, pitch and roll motions of carbody and bogies. Additionally, nonlinear stiffness and damping parameters of passive suspension system are defined based on experimental data. In the secondary vertical suspension system, a magneto-rheological (MR) damper is included to improve the ride quality and comfort. The parameters of MR damper depend on the current, amplitude and frequency of excitations. At different running speeds, three semi-active suspension strategies with MR damper are analysed for periodic track irregularity and the resulting performance indices are juxtaposed with the nonlinear passive suspension system. The disturbance rejection and force tracking damper controller algorithms are applied to control the desired force of MR damper. This study reveals that the vertical vibrations of a vehicle can be reduced significantly by using the proposed semi-active suspension strategies. Moreover, it naturally results in improved ride quality and passenger’s comfort in comparison to the existing passive system.

  11. Robust H∞ control of active vehicle suspension under non-stationary running

    NASA Astrophysics Data System (ADS)

    Guo, Li-Xin; Zhang, Li-Ping

    2012-12-01

    Due to complexity of the controlled objects, the selection of control strategies and algorithms in vehicle control system designs is an important task. Moreover, the control problem of automobile active suspensions has been become one of the important relevant investigations due to the constrained peculiarity and parameter uncertainty of mathematical models. In this study, after establishing the non-stationary road surface excitation model, a study on the active suspension control for non-stationary running condition was conducted using robust H∞ control and linear matrix inequality optimization. The dynamic equation of a two-degree-of-freedom quarter car model with parameter uncertainty was derived. The H∞ state feedback control strategy with time-domain hard constraints was proposed, and then was used to design the active suspension control system of the quarter car model. Time-domain analysis and parameter robustness analysis were carried out to evaluate the proposed controller stability. Simulation results show that the proposed control strategy has high systemic stability on the condition of non-stationary running and parameter uncertainty (including suspension mass, suspension stiffness and tire stiffness). The proposed control strategy can achieve a promising improvement on ride comfort and satisfy the requirements of dynamic suspension deflection, dynamic tire loads and required control forces within given constraints, as well as non-stationary running condition.

  12. Stochastic optimal preview control of a vehicle suspension

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Javad; Ahmadi, Goodarz; Zohoor, Hassan; Hojjat, Yousef

    2004-08-01

    Stochastic optimal control of a vehicle suspension on a random road is studied. The road roughness height is modelled as a filtered white noise stochastic process and a four-degree-of-freedom half-car model is used in the analysis. It is assumed that a sensor is mounted in the front bumper that measures the road irregularity at some distances in the front of the vehicle. Two other sensors also measure relative velocities of the vehicle body with respect to the unsprung masses in the vehicle suspension spaces. All measurements are assumed to be conducted in a noisy environment. The state variables of the vehicle system are estimated using a method similar to the Kalman filter. The suspension system is optimized by minimizing the performance index containing the mean-square values of body accelerations (including effects of heave and pitch), tire deflections and front and rear suspension rattle spaces. The effect of delay between front and rear wheels is included in the analysis. For stochastic active control with and without preview, the suspension performance and the power demand are evaluated and compared with those of the passive system. The results show that the inclusion of time delay between the front and rear axles and the preview information measured by the sensor mounted on the vehicle improves all aspects of the suspension performance, while reducing the energy consumption.

  13. Novel mechatronic solutions incorporating inerters for railway vehicle vertical secondary suspensions

    NASA Astrophysics Data System (ADS)

    Matamoros-Sanchez, Alejandra Z.; Goodall, Roger M.

    2015-02-01

    This paper discusses the effects of inerter-based passive networks in the design of novel mechatronic solutions for improving the vertical performance of a bogied railway vehicle. Combinations of inerter-based structures and active suspensions comprise distinct novel mechatronic solutions for the vertical secondary suspension of the vehicle. The parameters of the active and passive parts of the overall configuration are optimised so that a synergy arises to enhance the vehicle vertical performance and simplify common mechatronic suspension design conflicts. The study is performed by combining inerter-based suspensions with well-established active control (output-based and model-based) strategies for ride quality enhancement. Also, a novel nonlinear control strategy, here called 'Adaptive Stiffness', is incorporated for suspension deflection regulation to complement the well-known local implementation of skyhook damping. This would complete a significant set of control strategies to produce general conclusions. The vehicle performance is assessed through the vertical accelerations of the vehicle body as an initial investigation. Attained results show the potential of the inerter concept for innovating mechatronic technologies to achieve substantial improvements in railway vehicle vertical ride quality with reduced actuator force.

  14. A semi-active suspension control algorithm for vehicle comprehensive vertical dynamics performance

    NASA Astrophysics Data System (ADS)

    Nie, Shida; Zhuang, Ye; Liu, Weiping; Chen, Fan

    2017-08-01

    Comprehensive performance of the vehicle, including ride qualities and road-holding, is essentially of great value in practice. Many up-to-date semi-active control algorithms improve vehicle dynamics performance effectively. However, it is hard to improve comprehensive performance for the conflict between ride qualities and road-holding around the second-order resonance. Hence, a new control algorithm is proposed to achieve a good trade-off between ride qualities and road-holding. In this paper, the properties of the invariant points are analysed, which gives an insight into the performance conflicting around the second-order resonance. Based on it, a new control algorithm is proposed. The algorithm employs a novel frequency selector to balance suspension ride and handling performance by adopting a medium damping around the second-order resonance. The results of this study show that the proposed control algorithm could improve the performance of ride qualities and suspension working space up to 18.3% and 8.2%, respectively, with little loss of road-holding compared to the passive suspension. Consequently, the comprehensive performance can be improved by 6.6%. Hence, the proposed algorithm is of great potential to be implemented in practice.

  15. An analytical design approach for self-powered active lateral secondary suspensions for railway vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Hong; Zhang, Jiye; Mei, TX

    2015-10-01

    In this paper, an analytical design approach for the development of self-powered active suspensions is investigated and is applied to optimise the control system design for an active lateral secondary suspension for railway vehicles. The conditions for energy balance are analysed and the relationship between the ride quality improvement and energy consumption is discussed in detail. The modal skyhook control is applied to analyse the energy consumption of this suspension by separating its dynamics into the lateral and yaw modes, and based on a simplified model, the average power consumption of actuators is computed in frequency domain by using the power spectral density of lateral alignment of track irregularities. Then the impact of control gains and actuators' key parameters on the performance for both vibration suppressing and energy recovery/storage is analysed. Computer simulation is used to verify the obtained energy balance condition and to demonstrate that the improved ride comfort is achieved by this self-powered active suspension without any external power supply.

  16. Four-Wheel Vehicle Suspension System

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  17. Suspension Parameter Measurements of Wheeled Military Vehicles

    DTIC Science & Technology

    2012-08-01

    suspension through the wheel pads. The SPIdER was designed so that in the future, with a modest amount of modification , it can be upgraded to include the...AND MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 14-16, MICHIGAN SUSPENSION PARAMETER MEASUREMENTS OF WHEELED MILITARY VEHICLES Dale Andreatta Gary...was built to measure the suspension parameters of any military wheeled vehicle. This is part of an ongoing effort to model and predict vehicle

  18. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping

    NASA Astrophysics Data System (ADS)

    Shao, Xinxin; Naghdy, Fazel; Du, Haiping

    2017-03-01

    A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.

  19. New level of vehicle comfort and vehicle stability via utilisation of the suspensions anti-dive and anti-squat geometry

    NASA Astrophysics Data System (ADS)

    Lindvai-Soos, Daniel; Horn, Martin

    2018-07-01

    In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.

  20. Fuzzy chaos control for vehicle lateral dynamics based on active suspension system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Jiang, Haobin; Yuan, Chaochun; Xia, Tian

    2014-07-01

    The existing research of the active suspension system (ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.

  1. Self-powered suspension criterion and energy regeneration implementation scheme of motor-driven active suspension

    NASA Astrophysics Data System (ADS)

    Yan, Shuai; Sun, Weichao

    2017-09-01

    Active suspension systems have advantages on mitigating the effects of vehicle vibration caused by road roughness, which are one of the most important component parts in influencing the performances of vehicles. However, high amount of energy consumption restricts the application of active suspension systems. From the point of energy saving, this paper presents a self-powered criterion of the active suspension system to judge whether a motor-driven suspension can be self-powered or not, and then a motor parameter condition is developed as a reference to design a self-powered suspension. An energy regeneration implementation scheme is subsequently proposed to make the active suspension which has the potential to be self-powered achieve energy-saving target in the real application. In this implementation scheme, operating electric circuits are designed based on different working status of the actuator and power source and it is realizable to accumulate energy from road vibration and supply energy to the actuator by switching corresponding electric circuits. To apply the self-powered suspension criterion and energy regeneration implementation scheme, an active suspension system is designed with a constrained H∞ controller and calculation results indicate that it has the capability to be self-powered. Simulation results show that the performances of the self-powered active suspension are nearly the same as those of the active suspension with an external energy source and can achieve energy regeneration at the same time.

  2. Development of A New Automotive Active Suspension System

    NASA Astrophysics Data System (ADS)

    Yousef Abdulhammed, Eng.; Eng. Hisham Elsherif, Dr, Prof.

    2017-12-01

    The main objective was to develop a smart new vehicle suspension system that minimizes the road irregularities impact on the driver, also to increase performance and stability of the vehicle at high speeds. The central idea is based on modifying the normal passive suspension system into a computer controller hydraulic actuated active suspension system simply by adding a new component such as a hydraulic cylinder on a normal passive system. The new suspension system is economical to be wildly used in consumer’s cars with low prices. The new added components was analytically tested and modeled according to different parameters. A new test rig was implemented to simulate a real quarter suspension system. The new suspension model was controlled by feedback controller according to the road conditions; the controller output controls the cylinder actuator to compensate the road oscillations and increases the vehicle stability for the passenger. Finally, to maximize the aerodynamics coefficients of the vehicle during high speeds by controlling the vehicle clearance level from the ground to achieve full stability, steering and fuel economy.

  3. Investigating high-concentration monoclonal antibody powder suspension in nonaqueous suspension vehicles for subcutaneous injection.

    PubMed

    Bowen, Mayumi; Armstrong, Nick; Maa, Yuh-Fun

    2012-12-01

    Developing high-concentration monoclonal antibody (mAb) liquid formulations for subcutaneous (s.c.) administration is challenging because increased viscosity makes injection difficult. To overcome this obstacle, we investigated a nonaqueous powder suspension approach. Three IgG1 mAbs were spray dried and suspended at different concentrations in Miglyol® 840, benzyl benzoate, or ethyl lactate. Suspensions were characterized for viscosity, particle size, and syringeability; physical stability was visually inspected. Suspensions generally outperformed liquid solutions for injectability despite higher viscosity at the same mAb concentrations. Powder formulations and properties had little effect on viscosity or injectability. Ethyl lactate suspensions had lowest viscosity (<20 cP) and lowest syringe injection glide force (<15 N) at mAb concentrations as high as 333 mg/mL (500 mg powder/mL). Inverse gas chromatography analysis indicated that the vehicle was the most important factor impacting suspension performance. Ethyl lactate rendered greater heat of sorption (suggesting strong particle-suspension vehicle interaction may reduce particle-particle self-association, leading to low suspension viscosity and glide force) but lacked the physical suspension stability exhibited by the other vehicles. Specific mixtures of ethyl lactate and Miglyol® 840 improved overall performance in high mAb concentration suspensions. This study demonstrated the viability of high mAb concentration (>300 mg/mL) in suspension formulations for s.c. administration. Copyright © 2012 Wiley Periodicals, Inc.

  4. Effect of suspension kinematic on 14 DOF vehicle model

    NASA Astrophysics Data System (ADS)

    Wongpattananukul, T.; Chantharasenawong, C.

    2017-12-01

    Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.

  5. Comfort-oriented vehicle suspension design with skyhook inerter configuration

    NASA Astrophysics Data System (ADS)

    Hu, Yinlong; Chen, Michael Z. Q.; Sun, Yonghui

    2017-09-01

    This paper is concerned with the comfort-oriented vehicle suspension design problem by using a skyhook inerter configuration. The rationale of the skyhook inerter is to use a grounded inerter to virtually increase the sprung mass of a vehicle, as it is analytically demonstrated that increasing the sprung mass can always improve the ride comfort performance. Semi-active means to realize the skyhook inerter configuration are investigated by using semi-active inerters. Three control laws, that is the on-off control, the anti-chatter on-off control, and the continuous control, are proposed for the semi-active inerter to approximate the skyhook inerter. Numerical simulations are performed to demonstrate the effectiveness and performances of these control laws. It is shown that the semi-active realizations of the skyhook inerter by using the proposed control laws can achieve over 10% improvement compared with the traditional strut, and similar performances are obtained for these control laws, with slight differences with respect to different static stiffnesses of the suspension system.

  6. Magneto-rheological suspensions for improving ground vehicle's ride comfort, stability, and handling

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi

    2017-10-01

    A state-of-the-art discussion on the applications of magneto-rheological (MR) suspensions for improving ride comfort, handling, and stability in ground vehicles is discussed for both road and rail applications. A historical perspective on the discovery and engineering development of MR fluids is presented, followed by some of the common methods for modelling their non-Newtonian behaviour. The common modes of the MR fluids are discussed, along with the application of the fluid in valve mode for ground vehicles' dampers (or shock absorbers). The applications span across nearly all road vehicles, including automobiles, trains, semi-trucks, motorcycles, and even bicycles. For each type of vehicle, the results of some of the past studies is presented briefly, with reference to the originating study. It is discussed that Past experimental and modelling studies have indicated that MR suspensions provide clear advantages for ground vehicles that far surpasses the performance of passive suspension. For rail vehicles, the primary advantage is in terms of increasing the speed at which the onset of hunting occurs, whereas for road vehicles - mainly automobiles - the performance improvements are in terms of a better balance between vehicle ride, handling, and stability. To further elaborate on this point, a single-suspension model is used to develop an index-based approach for studying the compromise that is offered by vehicle suspensions, using the H2 optimisation approach. Evaluating three indices based on the sprung-mass acceleration, suspension rattlespace, and tyre deflection, it is clearly demonstrated that MR suspensions significantly improve road vehicle's ride comfort, stability, and handling in comparison with passive suspensions. For rail vehicles, the simulation results indicate that using MR suspensions with an on-off switching control can increase the speed at which the on-set of hunting occurs by as much as 50% to more than 300%.

  7. Kineto-dynamic design optimisation for vehicle-specific seat-suspension systems

    NASA Astrophysics Data System (ADS)

    Shangguan, Wen-Bin; Shui, Yijie; Rakheja, Subhash

    2017-11-01

    Designs and analyses of seat-suspension systems are invariably performed considering effective vertical spring rate and damping properties, while neglecting important contributions due to kinematics of the widely used cross-linkage mechanism. In this study, a kineto-dynamic model of a seat-suspension is formulated to obtain relations for effective vertical suspension stiffness and damping characteristics as functions of those of the air spring and the hydraulic damper, respectively. The proposed relations are verified through simulations of the multi-body dynamic model of the cross-linkage seat-suspension in the ADAMS platform. The validity of the kineto-dynamic model is also demonstrated through comparisons of its vibration transmission response with the experimental data. The model is used to identify optimal air spring coordinates to attain nearly constant natural frequency of the suspension, irrespective of the seated body mass and seated height. A methodology is further proposed to identify optimal damping requirements for vehicle-specific suspension designs to achieve minimal seat effective amplitude transmissibility (SEAT) and vibration dose value (VDV) considering vibration spectra of different classes of earthmoving vehicles. The shock and vibration isolation performance potentials of the optimal designs are evaluated under selected vehicle vibration superimposed with shock motions. Results show that the vehicle-specific optimal designs could provide substantial reductions in the SEAT and VDV values for the vehicle classes considered.

  8. Design and analysis of an intelligent controller for active geometry suspension systems

    NASA Astrophysics Data System (ADS)

    Goodarzi, Avesta; Oloomi, Ehsan; Esmailzadeh, Ebrahim

    2011-02-01

    An active geometry suspension (AGS) system is a device to optimise suspension-related factors such as toe angle and roll centre height by controlling vehicle's suspension geometry. The suspension geometry could be changed through control of suspension mounting point's position. In this paper, analysis and control of an AGS system is addressed. First, the effects of suspension geometry change on roll centre height and toe angle are studied. Then, based on an analytical approach, the improvement of the vehicle's stability and handling due to the control of suspension geometry is investigated. In the next section, an eight-degree-of-freedom handling model of a sport utility vehicle equipped with an AGS system is introduced. Finally, a self-tuning proportional-integral controller has been designed, using the fuzzy control theory, to control the actuator that changes the geometry of the suspension system. The simulation results show that an AGS system can improve the handling and stability of the vehicle.

  9. A LQR-Based Controller with Estimation of Road Bank for Improving Vehicle Lateral and Rollover Stability via Active Suspension

    PubMed Central

    Sanz, Susana

    2017-01-01

    In this article, a Linear Quadratic Regulator (LQR) lateral stability and rollover controller has been developed including as the main novelty taking into account the road bank angle and using exclusively active suspension for both lateral stability and rollover control. The main problem regarding the road bank is that it cannot be measured by means of on-board sensors. The solution proposed in this article is performing an estimation of this variable using a Kalman filter. In this way, it is possible to distinguish between the road disturbance component and the vehicle’s roll angle. The controller’s effectiveness has been tested by means of simulations carried out in TruckSim, using an experimentally-validated vehicle model. Lateral load transfer, roll angle, yaw rate and sideslip angle have been analyzed in order to quantify the improvements achieved on the behavior of the vehicle. For that purpose, these variables have been compared with the results obtained from both a vehicle that uses passive suspension and a vehicle using a fuzzy logic controller. PMID:29027910

  10. State observer-based sliding mode control for semi-active hydro-pneumatic suspension

    NASA Astrophysics Data System (ADS)

    Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin

    2016-02-01

    This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.

  11. Optimisation of active suspension control inputs for improved vehicle ride performance

    NASA Astrophysics Data System (ADS)

    Čorić, Mirko; Deur, Joško; Xu, Li; Tseng, H. Eric; Hrovat, Davor

    2016-07-01

    A collocation-type control variable optimisation method is used in the paper to analyse to which extent the fully active suspension (FAS) can improve the vehicle ride comfort while preserving the wheel holding ability. The method is first applied for a cosine-shaped bump road disturbance of different heights, and for both quarter-car and full 10 degree-of-freedom vehicle models. A nonlinear anti-wheel hop constraint is considered, and the influence of bump preview time period is analysed. The analysis is then extended to the case of square- or cosine-shaped pothole with different lengths, and the quarter-car model. In this case, the cost function is extended with FAS energy consumption and wheel damage resilience costs. The FAS action is found to be such to provide a wheel hop over the pothole, in order to avoid or minimise the damage at the pothole trailing edge. In the case of long pothole, when the FAS cannot provide the wheel hop, the wheel is travelling over the pothole bottom and then hops over the pothole trailing edge. The numerical optimisation results are accompanied by a simplified algebraic analysis.

  12. Adaptive tracking control for active suspension systems with non-ideal actuators

    NASA Astrophysics Data System (ADS)

    Pan, Huihui; Sun, Weichao; Jing, Xingjian; Gao, Huijun; Yao, Jianyong

    2017-07-01

    As a critical component of transportation vehicles, active suspension systems are instrumental in the improvement of ride comfort and maneuverability. However, practical active suspensions commonly suffer from parameter uncertainties (e.g., the variations of payload mass and suspension component parameters), external disturbances and especially the unknown non-ideal actuators (i.e., dead-zone and hysteresis nonlinearities), which always significantly deteriorate the control performance in practice. To overcome these issues, this paper synthesizes an adaptive tracking control strategy for vehicle suspension systems to achieve suspension performance improvements. The proposed control algorithm is formulated by developing a unified framework of non-ideal actuators rather than a separate way, which is a simple yet effective approach to remove the unexpected nonlinear effects. From the perspective of practical implementation, the advantages of the presented controller for active suspensions include that the assumptions on the measurable actuator outputs, the prior knowledge of nonlinear actuator parameters and the uncertain parameters within a known compact set are not required. Furthermore, the stability of the closed-loop suspension system is theoretically guaranteed by rigorous mathematical analysis. Finally, the effectiveness of the presented adaptive control scheme is confirmed using comparative numerical simulation validations.

  13. Active control of an innovative seat suspension system with acceleration measurement based friction estimation

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Li, Hongyi; Du, Haiping; Li, Weihua

    2016-12-01

    In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with two low cost actuators each of which has one rotary motor and one gear reducer. A H∞ controller with friction compensation is designed for the seat suspension control system where the friction is estimated and compensated based on the measurement of seat acceleration. This principal aim of this research was to control the low frequency vibration transferred or amplified by the vehicle (chassis) suspension, and to maintain the passivity of the seat suspension at high frequency (isolation vibration) while taking into consideration the trade-off between the active seat suspension cost and its high frequency performance. Sinusoidal excitations of 1-4.5 Hz were applied to test the active seat suspension both when controlled and when uncontrolled and this is compared with a well-tuned passive heavy duty vehicle seat suspension. The results indicate the effectiveness of the proposed control algorithm within the tested frequencies. Further tests were conducted using the excitations generated from a quarter-car model under bump and random road profiles. The bump road tests indicate the controlled active seat suspension has good transient response performance. The Power Spectral Density (PSD) method and ISO 2631-1 standards were applied to analyse the seat suspension's acceleration under random road conditions. Although some low magnitude and high frequency noise will inevitably be introduced by the active system, the weighted-frequency Root Mean Square (RMS) acceleration shows that this may not have a large effect on ride comfort. In fact, the ride comfort is improved from being an 'a little uncomfortable' to a 'not uncomfortable' level when compared with the well-tuned passive seat suspension. This low cost active seat suspension design and the proposed controller with the easily measured feedback signals are very practical for real

  14. US Marine Corps assault amphibious vehicle suspension system analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammonds, C.J.; Jones, J.K.; Mayhall, J.A.

    1988-11-01

    In response to a request from the US Marine Corps (USMC), the Oak Ridge National Laboratory investigated a problem with the suspension system of the assault amphibious vehicle (AAV), Personnel Model 7A1. In the course of the investigation, drawings of the AAV and field survey data on bearing failures provided by VSE Corporation were used. The analysis approach taken was to model the suspension system and the vehicle hull and support structure using finite element techniques. This provided stress and deflection information for the system. To determine the loads imparted to the system as the AAV traversed terrain features, amore » dynamics model was developed to provide loads to the finite element analysis (FEA). Because the primary indication of a problem was frequent suspension-system bearing failure, an analysis of the suspension-system bearings was conducted. Finally, to check the accuracy of the models and to provide actual load data for bearing analysis, an instrumented AAV was tested over a surveyed course at Camp Pendleton, California. Initially the dynamics model assumed the interface between the hull and the suspension system to be fixed. Later improvements incorporating the flexibility of the vehicle hull into the analysis by linking the two models resulted in improved accuracy. Actual measurements of the front road-arm displacement and vertical acceleration of the chassis are compared with predictions from the model. The correlation is quite good and indicates that the model can accurately predict the dynamic load on each road wheel for input into finite element analyses. The dynamics model can be expanded to study the effects of adding weight to the vehicle, traversing other terrains, or evaluating inputs such as weapons firing or drop tests. 7 refs., 75 figs., 10 tabs.« less

  15. A Constraint Embedding Approach for Complex Vehicle Suspension Dynamics

    DTIC Science & Technology

    2015-04-24

    Complex Vehicle Suspension Dynamics ECCOMAS Thematic Conference on Multibody Dynamics 2015 Abhinandan Jain∗, Calvin Kuo#, Paramsothy Jayakumar †, Jonathan...Suspension Dynamics ECCOMAS Thematic Conference on Multibody Dynamics 2015 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...13. SUPPLEMENTARY NOTES ECCOMAS Thematic Conference on Multibody Dynamics 2015, June 29-July 2, 2015, Barcelona, Catalonia, Spain 14. ABSTRACT See

  16. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension

    NASA Astrophysics Data System (ADS)

    Shen, Yujie; Chen, Long; Yang, Xiaofeng; Shi, Dehua; Yang, Jun

    2016-01-01

    Inerter is a recently proposed mechanical element with two terminals. The novelty of this paper is to present the improved design which aims to add traditional dynamic vibration absorber to the vehicle body by using the inerter. Based on this background, a new vehicle suspension structure called ISD suspension, including the inerter, spring and damper has been created. A dual-mass vibration model including the ISD suspension is considered in this study. Parameters are obtained by using the genetic optimizing algorithm. The frequency-domain simulation confirms that the ISD suspension can effectively improve the damping performance of the suspension system, especially at the offset frequency of the vehicle body, which is consistent with the feature of the dynamic vibration absorber added to the vehicle body mass. At last, a prototype ball screw inerter has been designed and the bench test of a quarter-car model has been undertaken. Under the conditions of the random road input, the vehicle ride comfort evaluation of body acceleration RMS value decreases by 4% at most, the suspension deflection RMS value decreases by 16% at most, the tire dynamic load RMS value decreases by 6% at most. Power spectral density results also indicate that the ISD suspension has superior damping performance than passive suspension which proves that the proposed ISD suspension is deemed effective.

  17. Annoyance rate evaluation method on ride comfort of vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Tang, Chuanyin; Zhang, Yimin; Zhao, Guangyao; Ma, Yan

    2014-03-01

    The existing researches of the evaluation method of ride comfort of vehicle mainly focus on the level of human feelings to vibration. The level of human feelings to vibration is influenced by many factors, however, the ride comfort according to the common principle of probability and statistics and simple binary logic is unable to reflect these uncertainties. The random fuzzy evaluation model from people subjective response to vibration is adopted in the paper, these uncertainties are analyzed from the angle of psychological physics. Discussing the traditional evaluation of ride comfort during vehicle vibration, a fuzzily random evaluation model on the basis of annoyance rate is proposed for the human body's subjective response to vibration, with relevant fuzzy membership function and probability distribution given. A half-car four degrees of freedom suspension vibration model is described, subject to irregular excitations from the road surface, with the aid of software Matlab/Simulink. A new kind of evaluation method for ride comfort of vehicles is proposed in the paper, i.e., the annoyance rate evaluation method. The genetic algorithm and neural network control theory are used to control the system. Simulation results are obtained, such as the comparison of comfort reaction to vibration environments between before and after control, relationship of annoyance rate to vibration frequency and weighted acceleration, based on ISO 2631/1(1982), ISO 2631-1(1997) and annoyance rate evaluation method, respectively. Simulated assessment results indicate that the proposed active suspension systems prove to be effective in the vibration isolation of the suspension system, and the subjective response of human being can be promoted from very uncomfortable to a little uncomfortable. Furthermore, the novel evaluation method based on annoyance rate can further estimate quantitatively the number of passengers who feel discomfort due to vibration. A new analysis method of vehicle

  18. Analysis of Rail Vehicle Suspension Spring with Special Emphasis on Curving, Tracking and Tractive Efforts

    NASA Astrophysics Data System (ADS)

    Kumbhalkar, M. A.; Bhope, D. V.; Vanalkar, A. V.

    2016-09-01

    The dynamics of the rail vehicle represents a balance between the forces acting between wheel and rail, the inertia forces and the forces exerted by suspension and articulation. Axial loading on helical spring causes vertical deflection at straight track but failures calls to investigate for lateral and longitudinal loading at horizontal and vertical curves respectively. Goods carrying vehicle has the frequent failures of middle axle inner suspension spring calls for investigation. The springs are analyzed for effect of stress concentration due to centripetal force and due to tractive and breaking effort. This paper also discusses shear failure analysis of spring at curvature and at uphill at various speeds for different loading condition analytically and by finite element analysis. Two mass rail vehicle suspension systems have been analyzed for vibration responses analytically using mathematical tool Matlab Simulink and the same will be evaluated using FFT vibration analyzer to find peak resonance in vertical, lateral and longitudinal direction. The results prove that the suspension acquires high repeated load in vertical and lateral direction due to tracking and curving causes maximum stress concentration on middle axle suspension spring as height of this spring is larger than end axle spring in primary suspension system and responsible for failure of middle axle suspension spring due to high stress acquisition.

  19. A multiobjective ? control strategy for energy harvesting in regenerative vehicle suspension systems

    NASA Astrophysics Data System (ADS)

    Casavola, Alessandro; Di Iorio, Fabio; Tedesco, Francesco

    2018-04-01

    A significant amount of energy induced by road unevenness and vehicle roll and pitch motions is usually dissipated by conventional shock-absorbers. In this paper, a novel active multiobjective ? control design methodology is proposed which explicitly includes, besides the usual control objectives on ride comfort, road handling and suspension stroke, the amount of energy to be harvested as an additional, though conflicting, control objective and allows the designer to directly trade-off among them depending on the application. An electromechanical regenerative suspension system is considered where the viscous damper is replaced by a linear electrical motor which is actively governed. It is shown that the proposed control law is able to achieve remarkable improvements on the amount of the harvested energy with respect to passive or semi-active control strategies while maintaining the other objectives at acceptable levels. Simulative studies undertaken via CarSim are also reported that confirm the potentiality and flexibility of the proposed control design strategy.

  20. Hydraulic actuation technology for full- and semi-active railway suspensions

    NASA Astrophysics Data System (ADS)

    Goodall, Roger; Freudenthaler, Gerhard; Dixon, Roger

    2014-12-01

    The paper describes a simulation study that provides a comprehensive comparison between full-active and semi-active suspensions for improving the vertical ride quality of railway vehicles. It includes an assessment of the ride quality benefits that can theoretically be achieved with idealised devices, and also examines the impact of real devices based upon hydraulic actuation technology.

  1. Identification of vehicle suspension parameters by design optimization

    NASA Astrophysics Data System (ADS)

    Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.

    2014-05-01

    The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.

  2. Analysis of Dynamic Stiffness Effect of Primary Suspension Helical Springs on Railway Vehicle Vibration

    NASA Astrophysics Data System (ADS)

    Sun, W.; Thompson, D. J.; Zhou, J.; Gong, D.

    2016-09-01

    Helical springs within the primary suspension are critical components for isolating the whole vehicle system from vibration generated at the wheel/rail contact. As train speeds increase, the frequency region of excitation becomes larger, and a simplified static stiffness can no longer represent the real stiffness property in a vehicle dynamic model. Coil springs in particular exhibit strong internal resonances, which lead to high vibration amplitudes within the spring itself as well as degradation of the vibration isolation. In this paper, the dynamic stiffness matrix method is used to determine the dynamic stiffness of a helical spring from a vehicle primary suspension. Results are confirmed with a finite element analysis. Then the spring dynamic stiffness is included within a vehicle-track coupled dynamic model of a high speed train and the effect of the dynamic stiffening of the spring on the vehicle vibration is investigated. It is shown that, for frequencies above about 50 Hz, the dynamic stiffness of the helical spring changes sharply. Due to this effect, the vibration transmissibility increases considerably which results in poor vibration isolation of the primary suspension. Introducing a rubber layer in series with the coil spring can attenuate this effect.

  3. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.

    PubMed

    Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu

    2015-01-01

    This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  5. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  6. Improved All-Terrain Suspension System

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1994-01-01

    Redesigned suspension system for all-terrain vehicle exhibits enhanced ability to negotiate sand and rocks. Improved six-wheel suspension system includes only two links on each side. Bogie tends to pull rear wheels with it as it climbs. Designed for rover vehicle for exploration of Mars, also has potential application in off-road vehicles, military scout vehicles, robotic emergency vehicles, and toys. Predecessors of suspension system described in "Articulated Suspension Without Springs" (NPO-17354), "Four-Wheel Vehicle Suspension System" (NPO-17407), and "High-Clearance Six-Wheel Suspension" (NPO-17821).

  7. Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi

    2017-09-01

    An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.

  8. Off-road motorbike performance analysis using a rear semi-active suspension

    NASA Astrophysics Data System (ADS)

    Lozoya-Santos, Jorge de J.; Cervantes-Muñoz, Damián.; Ramírez Mendoza, Ricardo

    2015-04-01

    The topic of this paper is the analysis of a control system for a semi active rear suspension in an off-road 2-wheel vehicle. Several control methods are studied, as well as the recently proposed Frequency Estimation Based (FEB) algorithm. The test motorcycle dynamics, as well as the passive, semi active, and the algorithm controlled shock absorber models are loaded into BikeSim, a professional two-wheeled vehicle simulation software, and tested in several road conditions. The results show a detailed comparison of the theoretical performance of the different control approaches in a novel environment for semi active dampers.

  9. Vibration study of a vehicle suspension assembly with the finite element method

    NASA Astrophysics Data System (ADS)

    Cătălin Marinescu, Gabriel; Castravete, Ştefan-Cristian; Dumitru, Nicolae

    2017-10-01

    The main steps of the present work represent a methodology of analysing various vibration effects over suspension mechanical parts of a vehicle. A McPherson type suspension from an existing vehicle was created using CAD software. Using the CAD model as input, a finite element model of the suspension assembly was developed. Abaqus finite element analysis software was used to pre-process, solve, and post-process the results. Geometric nonlinearities are included in the model. Severe sources of nonlinearities such us friction and contact are also included in the model. The McPherson spring is modelled as linear spring. The analysis include several steps: preload, modal analysis, the reduction of the model to 200 generalized coordinates, a deterministic external excitation, a random excitation that comes from different types of roads. The vibration data used as an input for the simulation were previously obtained by experimental means. Mathematical expressions used for the simulation were also presented in the paper.

  10. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  11. Magnetic suspension and pointing system. [on a carrier vehicle

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1979-01-01

    Apparatus for providing accurate pointing of instruments on a carrier vehicle and for providing isolation of the instruments from the vehicle's motion disturbances is presented. The apparatus includes two assemblies, with connecting interfaces, each assembly having a separate function. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing of the instruments by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plate around which a continuous annular rim is attached which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides six degree-of-freedom isolation from carrier motion disturbances.

  12. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  13. Evaluation of commercially available seat suspensions to reduce whole body vibration exposures in mining heavy equipment vehicle operators.

    PubMed

    Kim, Jeong Ho; Marin, Luz S; Dennerlein, Jack T

    2018-09-01

    As mining vehicle operators are exposed to high level of Whole body vibration (WBV) for prolonged periods of time, approaches to reduce this exposure are needed for the specific types of exposures in mining. Although various engineering controls (i.e. seat suspension systems) have been developed to address WBV, there has been lack of research to systematically evaluate these systems in reducing WBV exposures in mining heavy equipment vehicle settings. Therefore, this laboratory-based study evaluated the efficacy of different combinations of fore-aft (x-axis), lateral (y-axis), and vertical (z-axis) suspensions in reducing WBV exposures. The results showed that the active vertical suspension more effectively reduced the vertical vibration (∼50%; p's < 0.0001) as compared to the passive vertical suspension (10%; p's < 0.11). The passive fore-aft (x-axis) and lateral (y-axis) suspension systems did not attenuate the corresponding axis vibration (p's > 0.06) and sometimes amplified the floor vibration, especially when the non-vertical vibration was predominant (p's < 0.02). These results indicate that there is a critical need to develop more effective engineering controls including better seat suspensions to address non-vertical WBV exposures, especially because these non-vertical WBV exposures can increase risks for adverse health effects including musculoskeletal loading, discomfort, and impaired visual acuity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Design and analysis of a magnetorheological damper for train suspension

    NASA Astrophysics Data System (ADS)

    Lau, Yiu-Kee; Liao, Wei-Hsin

    2004-07-01

    The development of high-speed railway vehicles has been a great interest of many countries because high-speed trains have been proven as an efficient and economical transportation means while minimizing air pollution. However, the high speed of the train would cause significant car body vibrations. Thus effective vibration control of the car body is needed to improve the ride comfort and safety of the railway vehicle. Various kinds of railway vehicle suspensions such as passive, active, and semi-active systems could be used to cushion passengers from vibrations. Among them, semi-active suspensions are believed to achieve high performance while maintaining system stable and fail-safe. In this paper, it is aimed to design a magnetorheological (MR) fluid damper, which is suitable for semi-active train suspension system in order to improve the ride quality. A double-ended MR damper is designed, fabricated, and tested. Then a model for the double-ended MR damper is integrated in the secondary suspension of a full-scale railway vehicle model. A semi-active on-off control strategy based on the absolute velocity measurement of the car body is adopted. The controlled performances are compared with other types of suspension systems. The results show the feasibility and effectiveness of the semi-active train suspension system with the developed MR dampers.

  15. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  16. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  17. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  18. Simulation of disturbance rejection control of half-car active suspension system using active disturbance rejection control with decoupling transformation

    NASA Astrophysics Data System (ADS)

    Hasbullah, Faried; Faris, Waleed F.

    2017-12-01

    In recent years, Active Disturbance Rejection Control (ADRC) has become a popular control alternative due to its easy applicability and robustness to varying processes. In this article, ADRC with input decoupling transformation (ADRC-IDT) is proposed to improve ride comfort of a vehicle with an active suspension system using half-car model. The ride performance of the ADRC-IDT is evaluated and compared with decentralized ADRC control as well as the passive system. Simulation results show that both ADRC and ADRC-IDT manage to appreciably reduce body accelerations and able to cope well with varying conditions typically encountered in an active suspension system. Also, it is sufficient to control only the body motions with both active controllers to improve ride comfort while maintaining good road holding and small suspension working space.

  19. Rheological behavior and stability of ciprofloxacin suspension: Impact of structural vehicles and flocculating agent.

    PubMed

    Moghimipour, Eskandar; Rezaee, Saeed; Salimi, Anayatollah; Asadi, Elham; Handali, Somayeh

    2013-07-01

    Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC), hydroxypropylmethylcellulose (HPMC) and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v) and sodium chloride (0.05% w/v) as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v). Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v) was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved.

  20. Rheological behavior and stability of ciprofloxacin suspension: Impact of structural vehicles and flocculating agent

    PubMed Central

    Moghimipour, Eskandar; Rezaee, Saeed; Salimi, Anayatollah; Asadi, Elham; Handali, Somayeh

    2013-01-01

    Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC), hydroxypropylmethylcellulose (HPMC) and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v) and sodium chloride (0.05% w/v) as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v). Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v) was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved. PMID:24083201

  1. Modelling generalisation and power dissipation of flexible-wheel suspension concept for planetary surface vehicles

    NASA Astrophysics Data System (ADS)

    Cao, Dongpu; Khajepour, Amir; Song, Xubin

    2011-08-01

    Flexible-wheel (FW) suspension concept has been regarded to be one of the novel technologies for future planetary surface vehicles (PSVs). This study develops generalised models for fundamental stiffness and damping properties and power consumption characteristics of the FW suspension with and without considering wheel-hub dimensions. Compliance rolling resistance (CRR) coefficient is also defined and derived for the FW suspension. Based on the generalised models and two dimensionless measures, suspension properties are analysed for two FW suspension configurations. The sensitivity analysis is performed to investigate the effects of the design parameters and operating conditions on the CRR and power consumption characteristic of the FW suspension. The modelling generalisation permits analyses of fundamental properties and power consumption characteristics of different FW suspension designs in a uniform and very convenient manner, which would serve as a theoretical foundation for the design of FW suspensions for future PSVs.

  2. Comparative analysis of the operation efficiency of the continuous and relay control systems of a multi-axle wheeled vehicle suspension

    NASA Astrophysics Data System (ADS)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to improve the efficiency of the multi-axle wheeled vehicles (MWV) automotive engineers are increasing their cruising speed. One of the promising ways to improve ride comfort of the MWV is the development of the dynamic active suspension systems and control laws for such systems. Here, by the dynamic control systems we mean the systems operating in real time mode and using current (instantaneous) values of the state variables. The aim of the work is to develop the MWV suspension optimal control laws that would reduce vibrations on the driver’s seat at kinematic excitation. The authors have developed the optimal control laws for damping the oscillations of the MWV body. The developed laws allow reduction of the vibrations on the driver’s seat and increase in the maximum speed of the vehicle. The laws are characterized in that they allow generating the control inputs in real time mode. The authors have demonstrated the efficiency of the proposed control laws by means of mathematical simulation of the MWV driving over unpaved road with kinematic excitation. The proposed optimal control laws can be used in the MWV suspension control systems with magnetorheological shock absorbers or controlled hydropneumatic springs. Further evolution of the research line can be the development of the energy-efficient MWV suspension control systems with continuous control input on the vehicle body.

  3. Stability and uniformity of extemporaneous preparations of voriconazole in two liquid suspension vehicles at two storage temperatures.

    PubMed

    Nguyen, Kyvan Q; Hawkins, Michelle G; Taylor, Ian T; Wiebe, Valerie J; Tell, Lisa A

    2009-07-01

    To determine the stability and distribution of voriconazole in 2 extemporaneously prepared (compounded) suspensions stored for 30 days at 2 temperatures. Voriconazole suspensions (40 mg/mL) compounded from commercially available 200-mg tablets suspended in 1 of 2 vehicles. One vehicle contained a commercially available suspending agent and a sweetening syrup in a 1:1 mixture (SASS). The other vehicle contained the suspending agent with deionized water in a 3:1 mixture (SADI). Voriconazole suspensions (40 mg/mL in 40-mL volumes) were compounded on day 0 and stored at room temperature (approx 21 degrees C) or refrigerated (approx 5 degrees C). To evaluate distribution, room-temperature aliquots of voriconazole were measured immediately after preparation. Refrigerated aliquots were measured after 3 hours of refrigeration. To evaluate stability, aliquots from each suspension were measured at approximately 7-day intervals for up to 30 days. Voriconazole concentration, color, odor, opacity, and pH were measured, and aerobic and anaerobic bacterial cultures were performed at various points. Drug distribution was uniform (coefficient of variation, < 5%) in both suspensions. On day 0, 87.8% to 93.0% of voriconazole was recovered; percentage recovery increased to between 95.1% and 100.8% by day 7. On subsequent days, up to day 30, percentage recovery was stable (> 90%) for all suspensions. The pH of each suspension did not differ significantly throughout the 30-day period. Storage temperature did not affect drug concentrations at any time, nor was bacterial growth obtained. Extemporaneously prepared voriconazole in SASS and SADI resulted in suspensions that remained stable for at least 30 days. Refrigerated versus room-temperature storage of the suspensions had no effect on drug stability.

  4. Besifloxacin ophthalmic suspension 0.6% in patients with bacterial conjunctivitis: A multicenter, prospective, randomized, double-masked, vehicle-controlled, 5-day efficacy and safety study.

    PubMed

    Karpecki, Paul; Depaolis, Michael; Hunter, Judy A; White, Eric M; Rigel, Lee; Brunner, Lynne S; Usner, Dale W; Paterno, Michael R; Comstock, Timothy L

    2009-03-01

    Besifloxacin ophthalmic suspension 0.6% is a new topical fluoroquinolone for the treatment of bacterial conjunctivitis. Besifloxacin has potent in vitro activity against a broad spectrum of ocular pathogens, including drug-resistant strains. The primary objective of this study was to compare the clinical and microbiologic efficacy of besifloxacin ophthalmic suspension 0.6% with that of vehicle (the formulation without besifloxacin) in the treatment of bacterial conjunctivitis. This was a multicenter, prospective, randomized, double-masked, vehicle-controlled, parallel-group study in patients with acute bacterial conjunctivitis. Patients received either topical besifloxacin ophthalmic suspension or vehicle administered 3 times daily for 5 days. At study entry and on days 4 and 8 (visits 2 and 3), a clinical assessment of ocular signs and symptoms was performed in both eyes, as well as pinhole visual acuity testing, biomicroscopy, and culture of the infected eye(s). An ophthalmoscopic examination was performed at study entry and on day 8. The primary efficacy outcome measures were clinical resolution and eradication of the baseline bacterial infection on day 8 in culture-confirmed patients. The safety evaluation included adverse events, changes in visual acuity, and biomicroscopy and ophthalmoscopy findings in all patients who received at least 1 dose of active treatment or vehicle. The safety population consisted of 269 patients (mean [SD] age, 34.2 [22.3] years; 60.2% female; 82.5% white) with acute bacterial conjunctivitis. The culture-confirmed intent-to-treat population consisted of 118 patients (60 besifloxacin ophthalmic suspension, 58 vehicle). Significantly more patients receiving besifloxacin ophthalmic suspension than vehicle had clinical resolution of the baseline infection at visit 3 (44/60 [73.3%] vs 25/58 [43.1%], respectively; P < 0.001). Rates of bacterial eradication also were significantly greater with besifloxacin ophthalmic suspension compared

  5. Extensional rheology of active suspensions

    NASA Astrophysics Data System (ADS)

    Saintillan, David

    2010-05-01

    A simple model is presented for the effective extensional rheology of a dilute suspension of active particles, such as self-propelled microswimmers, extending previous classical studies on suspensions of passive rodlike particles. Neglecting particle-particle hydrodynamic interactions, we characterize the configuration of the suspension by an orientation distribution, which satisfies a Fokker-Planck equation including the effects of an external flow field and of rotary diffusion. Knowledge of this orientation distribution then allows the determination of the particle extra stress as a configurational average of the force dipoles exerted by the particles on the fluid, which involve contributions from the imposed flow, rotary diffusion, and the permanent dipoles resulting from activity. Analytical expressions are obtained for the stress tensor in uniaxial extensional and compressional flows, as well as in planar extensional flow. In all types of flows, the effective viscosity is found to increase as a result of activity in suspensions of head-actuated swimmers (pullers) and to decrease in suspensions of tail-actuated swimmers (pushers). In the latter case, a negative particle viscosity is found to occur in weak flows. In planar extensional flow, we also characterize normal stresses, which are enhanced by activity in suspensions of pullers but reduced in suspensions of pushers. Finally, an energetic interpretation of the seemingly unphysical decrease in viscosity predicted in suspensions of pushers is proposed, where the decrease is explained as a consequence of the active power input generated by the swimming particles and is shown not to be directly related to viscous dissipative processes.

  6. Design and analysis of a shock absorber with variable moment of inertia for passive vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Xu, Tongyi; Liang, Ming; Li, Chuan; Yang, Shuai

    2015-10-01

    A two-terminal mass (TTM) based vibration absorber with variable moment of inertia (VMI) for passive vehicle suspension is proposed. The VMI of the system is achieved by the motion of sliders embedded in a hydraulic driven flywheel. The moment of inertia increases in reaction to strong vertical vehicle oscillations and decreases for weak vertical oscillations. The hydraulic mechanism of the system converts the relative linear motion between the two terminals of the suspension into rotating motion of the flywheel. In the case of stronger vehicle vertical oscillation, the sliders inside the flywheel move away from the center of the flywheel because of the centrifugal force, hence yielding higher moment of inertia. The opposite is true in the case of weaker vehicle oscillation. As such, the moment of inertia adjusts itself adaptively in response to the road conditions. The performance of the proposed TTM-VMI absorber has been analyzed via dynamics modeling and simulation and further examined by experiments. In comparison to its counterpart with constant moment of inertia, the proposed VMI system offers faster response, better road handling and safety, improved ride comfort, and reduced suspension deflection except in the case of sinusoidal excitations.

  7. Solution or suspension - Does it matter for lipid based systems? In vivo studies of chase dosing lipid vehicles with aqueous suspensions of a poorly soluble drug.

    PubMed

    Larsen, A T; Holm, R; Müllertz, A

    2017-08-01

    In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS and three evaluated poorly soluble model compounds, danazol, cinnarizine and halofantrine. For cinnarizine and danazol the oral bioavailability in rats after chase dosing or dosing the compound dissolved in Labrafil M21515CS was similar and significantly higher than for the aqueous suspension. For halofantrine the chase dosed group had a tendency towards a low bioavailability relative to the Labrafil M2125CS solution, but still a significant higher bioavailability relative to the aqueous suspension. This could be due to factors such as a slower dissolution rate in the intestinal phase of halofantrine or a lower solubility in the colloidal structures formed during digestion, but other mechanisms may also be involved. The study thereby supported the potential of chase dosing as a potential dosing regimen in situations where it is beneficial to have a drug in the solid state, e.g. due to chemical stability issues in the lipid vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The effect of spring pads in the secondary suspension of railway vehicles on bogie yaw resistance

    NASA Astrophysics Data System (ADS)

    Michálek, Tomáš; Zelenka, Jaromír

    2015-12-01

    This paper deals with properties of bogie yaw resistance of an electric locomotive with secondary suspension consisting of flexi-coil springs supplemented with tilting spring pads. Transversal stiffness of a sample of a spring/pad assembly was measured on a dynamic test stand of the University of Pardubice (Czech Republic) and the results were applied into a multi-body model of the locomotive created in the simulation tool 'SJKV'. On the basis of the simulation results, a detailed analysis of the bogie yaw resistance was performed in order to explain the effect in dynamic behaviour of the locomotive when the moment against bogie rotation (and therefore the distribution of guiding forces on individual wheels, as well) is influenced with the vehicle speed in a certain curve. Results of this analysis show that the application of suspension elements with strongly directionally dependent transversal stiffness into the secondary suspension can just lead to a dependency of the bogie yaw resistance on cant deficiency, i.e. on the vehicle speed in curve. This fact has wide consequences on the vehicle dynamics (especially on the guiding behaviour of the vehicle in curves) and it also points out that the current method of evaluation of the bogie yaw resistance according to relevant standards, which is related with assessment of the quasistatic safety of a railway vehicle against derailment, is not objective enough.

  9. Estimation of Road Loads and Vibration Transmissibility of Torsion Bar Suspension System in a Tracked Vehicle

    NASA Astrophysics Data System (ADS)

    Gagneza, G. P. S.; Chandramohan, Sujatha

    2018-05-01

    Designing the suspension system of a tracked combat vehicle (CV) is really challenging as it has to satisfy conflicting requirements of good ride comfort, vehicle handling and stability characteristics. Many studies in this field have been reported in literature and it has been found that torsion bars satisfy the designer's conflicting requirements of good ride and handling and thus have reserved a place for themselves as the most widely used suspension system for military track vehicles. Therefore, it is imperative to evaluate the effectiveness of the torsion bar under dynamic conditions of undulating terrain and validating the same by correlating it with computer simulation results. Thus in the present work, the dynamic simulation of a 2N + 4 degrees of freedom (DOF) mathematical model has been carried out using MATLAB Simulink and the vibration levels were also measured experimentally on a 12 wheel stationed high mobility military tracked infantry combat vehicle (ICV BMP-II) traversing different terrain, that is, Aberdeen proving ground (APG) and Sinusoidal, at a constant vehicle speed. The dynamic force transmitted to the hull CG through the 12 torsion bar suspension systems was computed to be around 26,700 N and found to match the measured values. The vibration isolation of the torsion bar in bounce was found to be effective, with a transmissibility from the road wheel to the hull of about 0.6.

  10. Influence of flocculating agents and structural vehicles on the physical stability and rheological behavior of nitrofurantoin suspension.

    PubMed

    Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh

    2014-05-01

    Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation.

  11. Optimisation of active suspension control inputs for improved performance of active safety systems

    NASA Astrophysics Data System (ADS)

    Čorić, Mirko; Deur, Joško; Xu, Li; Tseng, H. Eric; Hrovat, Davor

    2018-01-01

    A collocation-type control variable optimisation method is used to investigate the extent to which the fully active suspension (FAS) can be applied to improve the vehicle electronic stability control (ESC) performance and reduce the braking distance. First, the optimisation approach is applied to the scenario of vehicle stabilisation during the sine-with-dwell manoeuvre. The results are used to provide insights into different FAS control mechanisms for vehicle performance improvements related to responsiveness and yaw rate error reduction indices. The FAS control performance is compared to performances of the standard ESC system, optimal active brake system and combined FAS and ESC configuration. Second, the optimisation approach is employed to the task of FAS-based braking distance reduction for straight-line vehicle motion. Here, the scenarios of uniform and longitudinally or laterally non-uniform tyre-road friction coefficient are considered. The influences of limited anti-lock braking system (ABS) actuator bandwidth and limit-cycle ABS behaviour are also analysed. The optimisation results indicate that the FAS can provide competitive stabilisation performance and improved agility when compared to the ESC system, and that it can reduce the braking distance by up to 5% for distinctively non-uniform friction conditions.

  12. Influence of Flocculating Agents and Structural Vehicles on the Physical Stability and Rheological Behavior of Nitrofurantoin Suspension

    PubMed Central

    Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh

    2014-01-01

    Background: Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. Objectives: The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. Materials and Methods: To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. Results: According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. Conclusions: In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation. PMID:24872937

  13. Disturbance observer based Takagi-Sugeno fuzzy control for an active seat suspension

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Zhang, Fei; Du, Haiping; Li, Weihua; Zhang, Bangji

    2017-09-01

    In this paper, a disturbance observer based Takagi-Sugeno (TS) fuzzy controller is proposed for an active seat suspension; both simulations and experiments have been performed verifying the performance enhancement and stability of the proposed controller. The controller incorporates closed-loop feedback control using the measured acceleration of the seat and deflection of the suspension; these two variables can be easily measured in practical applications, thus allowing the proposed controller to be robust and adaptable. A disturbance observer that can estimate the disturbance caused by friction, model simplification, and controller output error has also been used to compensate a H∞ state feedback controller. The TS fuzzy control method is applied to enhance the controller's performance by considering the variation of driver's weight during operation. The vibration of a heavy duty vehicle seat is largest in the frequency range between 2 Hz and 4 Hz, in the vertical direction; therefore, it is reasonable to focus on controlling low frequency vibration amplitudes and maintain the seat suspensions passivity at high frequency. Moreover, both the simulation and experimental results show that the active seat suspension with the proposed controller can effectively isolate unwanted vibration amplitudes below 4.5 Hz, when compared with a well-tuned passive seat suspension. The active controller has been further validated under bump and random road tests with both a 55 kg and a 70 kg loads. The bump road test demonstrated the controller has good transient response capabilities. The random road test result has been presented both in the time domain and the frequency domain. When with the above two loads, the controlled seat suspensions root-mean-square (RMS) accelerations were reduced by 45.5% and 49.5%, respectively, compared with a well-tuned passive seat suspension. The proposed active seat suspension controller has great potential and is very practical for application

  14. Articulated suspension system

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B. (Inventor)

    1989-01-01

    The invention provides a rough terrain vehicle which maintains a substantially constant weight, and therefore traction, on all wheels, despite one wheel moving considerably higher or lower than the others, while avoiding a very soft spring suspension. The vehicle includes a chassis or body to be supported and a pair of side suspensions at either side of the body. In a six wheel vehicle, each side suspension includes a middle wheel, and front and rear linkages respectively coupling the front and rear wheels to the middle wheel. A body link pivotally connects the front and rear linkages together, with the middle of the body link rising or falling by only a fraction of the rise or fall of any of the three wheels. The body link pivotally supports the middle of the length of the body. A transverse suspension for suspending the end of the body on the side suspensions includes a middle part pivotally connected to the body about a longitudinal axis and opposite ends each pivotally connected to one of the side suspensions along at least a longitudinal axis.

  15. Simulation and analysis of vertical displacement characteristics of three wheels reverse trike vehicle with PID controller application

    NASA Astrophysics Data System (ADS)

    Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.

    2017-08-01

    The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.

  16. Wheeled Vehicle Drive Lines, Axles, and Suspension Systems. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle drive lines, axles, and suspension systems. It provides the basic…

  17. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  18. High-Clearance Six-Wheel Suspension

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1992-01-01

    Multilevered suspension system gives body of vehicle high clearance and allows wheels to be steered independently. Suspension linkages above wheels enable body to skim over obstacles as high as wheel. Levers and independently steered wheels enable vehicle to climb steps 1 1/2 wheel diameters high and cross gaps 1 3/4 wide. Adaptable to off-the-road recreational vehicles, military scout vehicles, and robotic emergency vehicles.

  19. Oesophageal bioadhesion of sodium alginate suspensions 2. Suspension behaviour on oesophageal mucosa.

    PubMed

    Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D

    2005-01-01

    Sodium alginate suspensions in a range of water miscible vehicles were investigated as novel bioadhesive liquids for targeting the oesophageal mucosa. Such a dosage form might be utilised to coat the oesophageal surface and provide a protective barrier against gastric reflux, or to deliver therapeutic agents site-specifically. Alginate suspensions swelled and formed an adherent viscous layer on contact with the mucosa. The swelling kinetics of alginate particles on the oesophageal surface was examined with respect to vehicle composition and related to the extent, duration and location of bioadhesion within the oesophagus. Mucosal retention was evaluated in two in vitro models utilising tissue immersion and a peristaltic tube. By varying the vehicle composition it was possible to modulate the rate of swelling of alginate particles on the mucosa and the mucosal retention of suspensions. Suspensions containing predominantly glycerol exhibited superior retention and were preferentially retained within the lower oesophagus. The propensity of these suspensions to rapidly swell on the mucosa and establish adhesive/cohesive bonds may explain their enhanced retention. The potential to control, through vehicle composition, the extent, duration and location of oesophageal retention could provide a useful tool for site targeting of viscous polymers to the oesophagus.

  20. Oesophageal bioadhesion of sodium alginate suspensions: particle swelling and mucosal retention.

    PubMed

    Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D

    2004-09-01

    This paper describes a prospective bioadhesive liquid dosage form designed to specifically adhere to the oesophageal mucosa. It contains a swelling polymer, sodium alginate, suspended in a water-miscible vehicle and is activated by dilution with saliva to form an adherent layer of polymer on the mucosal surface. The swelling of alginate particles and the bioadhesion of 40% (w/w) sodium alginate suspensions were investigated in a range of vehicles: glycerol, propylene glycol, PEG 200 and PEG 400. Swelling of particles as a function of vehicle dilution with artificial saliva was quantified microscopically using 1,9-dimethyl methylene blue (DMMB) as a visualising agent. The minimum vehicle dilution to initiate swelling varied between vehicles: glycerol required 30% (w/w) dilution whereas PEG 400 required nearly 60% (w/w). Swelling commenced when the Hildebrand solubility parameter of the diluted vehicle was raised to 37 MPa(1/2). The bioadhesive properties of suspensions were examined by quantifying the amount of sodium alginate retained on oesophageal mucosa after washing in artificial saliva. Suspensions exhibited considerable mucoretention and strong correlations were obtained between mucosal retention, the minimum dilution to initiate swelling, and the vehicle Hildebrand solubility parameter. These relationships may allow predictive design of suspensions with specific mucoretentive properties, through judicious choice of vehicle characteristics.

  1. Modernisation of a test rig for determination of vehicle shock absorber characteristics by considering vehicle suspension elements and unsprung masses

    NASA Astrophysics Data System (ADS)

    Maniowski, M.; Para, S.; Knapczyk, M.

    2016-09-01

    This paper presents a modernization approach of a standard test bench for determination of damping characteristics of automotive shock absorbers. It is known that the real-life work conditions of wheel-suspension dampers are not easy to reproduce in laboratory conditions, for example considering a high frequency damper response or a noise emission. The proposed test bench consists of many elements from a real vehicle suspension. Namely, an original tyre-wheel with additional unsprung mass, a suspension spring, an elastic top mount, damper bushings and a simplified wheel guiding mechanism. Each component was tested separately in order to identify its mechanical characteristics. The measured data serve as input parameters for a numerical simulation of the test bench behaviour by using a vibratory model with 3 degrees of freedom. Study on the simulation results and the measurements are needed for further development of the proposed test bench.

  2. Evaluation of Active Damping for Reduction of Noise, Vibration and Motion of Ground Vehicles by Multibody Simulation

    DTIC Science & Technology

    2004-10-01

    practical applications of the technology in road vehicles. Active dampers based on several mechanical principles are available on the market ...between sportive and comfortable operating modes. A second type is the feedback of vehicle motion and, consequently, a dynamic suspension control...of-the-art in railway and automotive applications and have found an, albeit yet small, market . Typical representatives of semi-active devices are

  3. Effects of oral administration of a commercial activated charcoal suspension on serum osmolality and lactate concentration in the dog.

    PubMed

    Burkitt, Jamie M; Haskins, Steve C; Aldrich, Janet; Jandrey, Karl E; Rezende, Marlis L; Boyle, Jennifer E

    2005-01-01

    The purpose of this investigation was to determine the effects of an activated charcoal (AC) suspension containing propylene glycol and glycerol on serum osmolality, osmolal gap, and lactate concentration in dogs. Six healthy adult dogs were administered 4 g/kg AC in a commercially available suspension that contained propylene glycol and glycerol as vehicles. Blood samples were taken before and 1, 4, 6, 8, 12, and 24 hours after the administration of the test suspension. Samples were analyzed for osmolality, blood gases, and concentrations of lactate, sodium, potassium, serum urea nitrogen, and glucose. Osmolal gaps were calculated for each time point. Mean serum osmolality, osmolal gap, and lactate concentration were significantly increased after suspension administration compared to baseline. Serum osmolality increased from 311 mOsm/kg at baseline to 353 mOsm/kg, osmolal gap increased from 5 to 52 mOsm/kg, and lactate concentration increased from 1.9 to 4.5 mmol/L after suspension administration (all P < .01). Three of the 6 dogs vomited between 1 and 3 hours after the administration of the test suspension, and 4 of 6 dogs were lethargic. All dogs drank frequently after AC administration. Commercial AC suspension administered at a clinically relevant dose increases serum osmolality, osmolal gap, and lactate concentration in dogs. These laboratory measures and the clinical signs of vomiting, lethargy, and increased frequency of drinking might complicate the diagnosis or monitoring of some intoxications (such as ethylene glycol) in dogs that have previously received AC suspension containing propylene glycol, glycerol, or both as vehicles.

  4. Design analysis of formula student race car suspension system

    NASA Astrophysics Data System (ADS)

    Wirawan, Julian Wisnu; Ubaidillah, Aditra, Rama; Alnursyah, Rafli; Rahman, Rizki Abdul; Cahyono, Sukmaji Indro

    2018-02-01

    Design analysis of suspension especially for racecar suspension is very crucial to achieve maximum performance and handling. Suspension design may vary depending on the road terrain and the vehicle purpose itself, such as high speed or off-road vehicle. This paper focused on the suspension which used for racecar vehicle. The suspension type used was unequal double wishbone. This model is used because of its stability for high-speed usage compared to another kind of suspension. The suspension parameter was calculated to achieve desired performance. The result is the motion ratio of the designed suspension geometry. The obtained value of motion ratio was 1:2 for front suspension and 1:1 for the rear suspension. These calculation result the front suspension is still too soft, which the optimal motion ratio should be kept around 1:1 for better handling. This problem caused by the lack of space for suspension linkage.

  5. Evaluation of the Stability of Mercaptopurine Suspension Compounded in a Commercial Vehicle and the Determination of an Appropriate Beyond-use Date.

    PubMed

    Peacock, Gina F; Sauvageot, Jurgita; Hill, Ashley; Killian, Alyssa

    2016-01-01

    Mercaptopurine is commonly used to treat acute lymphoblastic leukemia and has historically been commercially available only in tablet form. Since tablets may be difficult for children and elderly patients to swallow, many pharmacists have compounded mercaptopurine suspensions. The U.S. Food and Drug Administration recently approved a commercial suspension, but it is not widely available at this time. Therefore, pharmacists may still need to compound mercaptopurine suspension for use in areas where it is not available or if the commercial suspension is in short supply. Stability studies must be conducted in order to assign appropriate beyond-use dates for compounded preparations. The objective of this study was to evaluate the stability of extemporaneously compounded suspensions using commercially available mercaptopurine tablets, as well as active pharmaceutical ingredient in a vehicle of Ora-Sweet and Ora-Plus (1:1) stored in plastic and glass containers at room temperature. Each mercaptopurine preparation was analyzed using a validated stability-indicating high-performance liquid chromatography method at the following time points: 0, 7, 14, 21, 30, 60, and 90 days. Suspensions were also observed for changes in appearance or odor, and pH was tested at each time point. The suspension compounded from Roxane generic tablets was extremely viscous and was therefore eliminated from the study. All other suspensions showed no observed physical changes and maintained greater than 93% of initial concentration of mercaptopurine for the entire study period.

  6. Simulation analysis of the EUSAMA Plus suspension testing method including the impact of the vehicle untested side

    NASA Astrophysics Data System (ADS)

    Dobaj, K.

    2016-09-01

    The work deals with the simulation analysis of the half car vehicle model parameters on the suspension testing results. The Matlab simulation software was used. The considered model parameters are involved with the shock absorber damping coefficient, the tire radial stiffness, the car width and the rocker arm length. The consistent vibrations of both test plates were considered. Both wheels of the car were subjected to identical vibration, with frequency changed similar to the EUSAMA Plus principle. The shock absorber damping coefficient (for several values of the car width and rocker arm length) was changed on one and both sides of the vehicle. The obtained results are essential for the new suspension testing algorithm (basing on the EUSAMA Plus principle), which will be the aim of the further author's work.

  7. Multiphysics modelling of multibody systems: application to car semi-active suspensions

    NASA Astrophysics Data System (ADS)

    Docquier, N.; Poncelet, A.; Delannoy, M.; Fisette, P.

    2010-12-01

    The goal of the present article is to analyse the performances of a modern vehicle equipped with a novel suspension system linking front, rear, right and left cylinders via a semi-active hydraulic circuit, developed by the Tenneco Automotive company. In addition to improving the vehicle's vertical performances (in terms of comfort), both the stiff roll motion of the carbody and the soft wrap motion of the rear/front wheel-axle units can be obtained and tuned via eight electrovalves. The proposed system avoids the use of classical anti-roll bars, which would be incompatible with the wrap performance. A major problem of the project is to produce a realistic and efficient 3D multibody dynamic model of an Audi A6 coupled, at the equational level, with an hydraulic model of the suspension including cylinders, accumulators, valve characteristics, oil compressibility and pipe dynamics. As regards the hydraulic submodel, a particular attention is paid to assemble resistive components properly without resorting to the use of artificial volumes, as proposed by some software dealing with the dynamics of hydraulic systems. According to Tenneco Automotive requirements, this model must be produced in a Matlab/Simulink form, in particular for control purposes. Thanks to the symbolic approach underlying our multibody program; a unified hybrid model can be obtained as a unique plant dynamic block to be real-time integrated in the Simulink environment on a standard computer. Simulation results highlight the advantages of this new suspension system, in particular regarding the behaviour of the car which can remain stiff in roll for curve negotiation, while maintaining a soft wrap behaviour on uneven surfaces.

  8. Influence of unsprung weight on vehicle ride quality

    NASA Astrophysics Data System (ADS)

    Hrovat, D.

    1988-08-01

    In the first part of this paper, a simple quarter-car, two-degree-of-freedom (2 DOF) vehicle model is used to investigate potential benefits and adaptive control capabilities of active suspensions. The results of this study indicate that, with an active suspension, it is possible to trade each 1% increase in tire deflection with a circa 1% decrease in r.m.s. sprung mass acceleration. This can be used for adaptive suspension tuning based on varying road/speed conditions. The second part of this paper is concerned with the influence of unsprung mass on optimal vibration isolation for the case of a linear 2 DOF, quarter-car model. In the study, it is assumed that the tire stiffness and geometry remain the same while unsprung mass is changed. The comprehensive computer analysis shows that, for active suspensions, both ride and handling can be improved by reducing the unsprung mass. In particular, when the total vehicle mass is kept constant, every 10% reduction in unsprung mass contributes to a circa 6% reduction in r.m.s. sprung mass acceleration for the same level of wheel-hop. For active suspension vehicles, this gives an added incentive for reducing the unsprung weight through the usage of, for example, aluminum wheels and lightweight composite materials. Although used primarily in the context of automotive applications, the results of this study are generic to similar 2 DOF structures in other areas of vibration isolation, ranging from computer peripherals to off-road vehicles.

  9. Non-linear modelling and control of semi-active suspensions with variable damping

    NASA Astrophysics Data System (ADS)

    Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin

    2013-10-01

    Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.

  10. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2017-07-01

    This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.

  11. Study on kinematic and compliance test of suspension

    NASA Astrophysics Data System (ADS)

    Jing, Lixin; Wu, Liguang; Li, Xuepeng; Zhang, Yu

    2017-09-01

    Chassis performance development is a major difficulty in vehicle research and development, which is the main factor restricting the independent development of vehicles in China. These years, through a large number of studies, chassis engineers have found that the suspension K&C characteristics as a quasi-static characteristic of the suspension provides a technical route for the suspension performance R&D, and the suspension K&C test has become an important means of vehicle benchmarking, optimization and verification. However, the research on suspension K&C test is less in china, and the test conditions and setting requirements vary greatly from OEM to OEM. In this paper, the influence of different settings on the characteristics of the suspension is obtained through experiments, and the causes of the differences are analyzed; in order to fully reflect the suspension characteristics, the author recommends the appropriate test case and settings.

  12. Multiobjective optimisation of bogie suspension to boost speed on curves

    NASA Astrophysics Data System (ADS)

    Milad Mousavi-Bideleh, Seyed; Berbyuk, Viktor

    2016-01-01

    To improve safety and maximum admissible speed on different operational scenarios, multiobjective optimisation of bogie suspension components of a one-car railway vehicle model is considered. The vehicle model has 50 degrees of freedom and is developed in multibody dynamics software SIMPACK. Track shift force, running stability, and risk of derailment are selected as safety objective functions. The improved maximum admissible speeds of the vehicle on curves are determined based on the track plane accelerations up to 1.5 m/s2. To attenuate the number of design parameters for optimisation and improve the computational efficiency, a global sensitivity analysis is accomplished using the multiplicative dimensional reduction method (M-DRM). A multistep optimisation routine based on genetic algorithm (GA) and MATLAB/SIMPACK co-simulation is executed at three levels. The bogie conventional secondary and primary suspension components are chosen as the design parameters in the first two steps, respectively. In the last step semi-active suspension is in focus. The input electrical current to magnetorheological yaw dampers is optimised to guarantee an appropriate safety level. Semi-active controllers are also applied and the respective effects on bogie dynamics are explored. The safety Pareto optimised results are compared with those associated with in-service values. The global sensitivity analysis and multistep approach significantly reduced the number of design parameters and improved the computational efficiency of the optimisation. Furthermore, using the optimised values of design parameters give the possibility to run the vehicle up to 13% faster on curves while a satisfactory safety level is guaranteed. The results obtained can be used in Pareto optimisation and active bogie suspension design problems.

  13. Development of Matlab Simulink model for dynamics analysis of passive suspension system for lightweight vehicle

    NASA Astrophysics Data System (ADS)

    Jamali, M. S.; Ismail, K. A.; Taha, Z.; Aiman, M. F.

    2017-10-01

    In designing suitable isolators to reduce unwanted vibration in vehicles, the response from a mathematical model which characterizes the transmissibility ratio of the input and output of the vehicle is required. In this study, a Matlab Simulink model is developed to study the dynamic behaviour performance of passive suspension system for a lightweight electric vehicle. The Simulink model is based on the two degrees of freedom system quarter car model. The model is compared to the theoretical plots of the transmissibility ratios between the amplitudes of the displacements and accelerations of the sprung and unsprung masses to the amplitudes of the ground, against the frequencies at different damping values. It was found that the frequency responses obtained from the theoretical calculations and from the Simulink simulation is comparable to each other. Hence, the model may be extended to a full vehicle model.

  14. Motion-mode energy method for vehicle dynamics analysis and control

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  15. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii

    NASA Astrophysics Data System (ADS)

    Cheng, Yung-Chang; Lee, Cheng-Kang

    2017-10-01

    This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.

  16. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  17. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems.

    PubMed

    Rath, J J; Veluvolu, K C; Defoort, M

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system.

  18. Adaptive Super-Twisting Observer for Estimation of Random Road Excitation Profile in Automotive Suspension Systems

    PubMed Central

    Rath, J. J.; Veluvolu, K. C.; Defoort, M.

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system. PMID:24683321

  19. Assessment of railway wagon suspension characteristics

    NASA Astrophysics Data System (ADS)

    Soukup, Josef; Skočilas, Jan; Skočilasová, Blanka

    2017-05-01

    The article deals with assessment of railway wagon suspension characteristics. The essential characteristics of a suspension are represented by the stiffness constants of the equivalent springs and the eigen frequencies of the oscillating movements in reference to the main central inertia axes of a vehicle. The premise of the experimental determination of these characteristic is the knowledge of the gravity center position and the knowledge of the main central inertia moments of the vehicle frame. The vehicle frame performs the general spatial movement when the vehicle moves. An analysis of the frame movement generally arises from Euler's equations which are commonly used for the description of the spherical movement. This solution is difficult and it can be simplified by applying the specific assumptions. The eigen frequencies solutions and solutions of the suspension stiffness are presented in the article. The solutions are applied on the railway and road vehicles with the simplifying conditions. A new method which assessed the characteristics is described in the article.

  20. An approach for multi-objective optimization of vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Koulocheris, D.; Papaioannou, G.; Christodoulou, D.

    2017-10-01

    In this paper, a half car model of with nonlinear suspension systems is selected in order to study the vertical vibrations and optimize its suspension system with respect to ride comfort and road holding. A road bump was used as road profile. At first, the optimization problem is solved with the use of Genetic Algorithms with respect to 6 optimization targets. Then the k - ɛ optimization method was implemented to locate one optimum solution. Furthermore, an alternative approach is presented in this work: the previous optimization targets are separated in main and supplementary ones, depending on their importance in the analysis. The supplementary targets are not crucial to the optimization but they could enhance the main objectives. Thus, the problem was solved again using Genetic Algorithms with respect to the 3 main targets of the optimization. Having obtained the Pareto set of solutions, the k - ɛ optimality method was implemented for the 3 main targets and the supplementary ones, evaluated by the simulation of the vehicle model. The results of both cases are presented and discussed in terms of convergence of the optimization and computational time. The optimum solutions acquired from both cases are compared based on performance metrics as well.

  1. The pitch-heave dynamics of transportation vehicles

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.; Richardson, H. H.

    1975-01-01

    The analysis and design of suspensions for vehicles of finite length using pitch-heave models is presented. Dynamic models for the finite length vehicle include the spatial distribution of the guideway input disturbance over the vehicle length, as well as both pitch and heave degrees-of-freedom. Analytical results relate the vehicle front and rear accelerations to the pitch and heave natural frequencies, which are functions of vehicle suspension geometry and mass distribution. The effects of vehicle asymmetry and suspension contact area are evaluated. Design guidelines are presented for the modification of vehicle and suspension parameters to meet alternative ride quality criteria.

  2. Naratriptan hydrochloride in extemporaneosly compounded oral suspensions.

    PubMed

    Zhang, Y P; Trissel, L A; Fox, J L

    2000-01-01

    The purpose of this study was to determine the pharmaceutical acceptability and chemical stability of naratriptan hydrochloride in three extemporaneously compounded suspension formulations. The naratriptan-hydrochloride oral suspensions were prepared from 2.5-mg commercial tablets yielding a nominal naratriptan concentration of 0.5 mg/mL. The suspension vehicles selected for testing were Syrpalta, an equal-parts mixture of Ora-Plus and Ora-Sweet, and an equal-parts mixture of Ora-Plus and Ora-Sweet SF. The tablets were crushed and thoroughly triturated to a fine powder using a porcelain mortar and pestle. The powder was incorporated into a portion of the Syrpalta or Ora-Plus suspension vehicle and mixed until homogeneous. The mixtures were then brought to volume with Syrpalta, Ora-Sweet or Ora-Sweet SF, as appropriate. The suspensions were packaged in amber, plastic, screw-cap prescription bottles and stored at 23 deg C for seven days and 4 deg C for 90 days. An adequate suspension was never achieved in Syrpalta. The crushed-tablet powder did not produce a uniformly dispersed mixture and exhibited clumping and a high rate of sedimentation. A distinct layer of the solid tablet material settled immediately after shaking. Over the next four hours, a densely packed, yellow, caked layer formed at the bottom of the containers, making resuspension difficult. During storage, the caking became worse. Chemical analysis was not performed. The Ora-Plus and Ora-Sweet or Ora-Sweet SF suspensions had a slight greenish cast and were resuspended without difficulty by shaking for approximately ten seconds, yielding easily poured and homogeneous mixtures throughout the study. Visible settling and layering did not begin for four hours with the Ora-Sweet suspension and 24 hours for the Ora-Sweet SF suspension. High pressure liquid chromatographic analysis found that the naratriptan concentration in both suspension-vehicle combinations exhibited little or no loss for seven days at 23

  3. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  4. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  5. Chassis integrated control for active suspension, active front steering and direct yaw moment systems using hierarchical strategy

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Wong, Pak Kin; Ma, Xinbo; Xie, Zhengchao

    2017-01-01

    This paper proposes a novel integrated controller with three-layer hierarchical structure to coordinate the interactions among active suspension system (ASS), active front steering (AFS) and direct yaw moment control (DYC). First of all, a 14-degree-of-freedom nonlinear vehicle dynamic model is constructed. Then, an upper layer is designed to calculate the total corrected moment for ASS and intermediate layer based on linear moment distribution. By considering the working regions of the AFS and DYC, the intermediate layer is functionalised to determine the trigger signal for the lower layer with corresponding weights. The lower layer is utilised to separately trace the desired value of each local controller and achieve the local control objectives of each subsystem. Simulation results show that the proposed three-layer hierarchical structure is effective in handling the working region of the AFS and DYC, while the quasi-experimental result shows that the proposed integrated controller is able to improve the lateral and vertical dynamics of the vehicle effectively as compared with a conventional electronic stability controller.

  6. Core Muscle Activation in Suspension Training Exercises.

    PubMed

    Cugliari, Giovanni; Boccia, Gennaro

    2017-02-01

    A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.

  7. 49 CFR 592.7 - Suspension, revocation, and reinstatement of suspended registrations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicle during the time that its registration has been suspended. (d) Effect of suspension or revocation... date of the suspension or revocation all vehicles that it imported to which it has not affixed a... 49 Transportation 7 2010-10-01 2010-10-01 false Suspension, revocation, and reinstatement of...

  8. Comparison of Rheological and Sedimentation Behavior of Commercially Available Suspending Vehicles for Oral Pharmaceutical Preparations.

    PubMed

    Visser, J Carolina; Ten Seldam, Inge E J; van der Linden, Isabella J; Hinrichs, Wouter L J; Veenendaal, Reinier F H; Dijkers, Eli C F; Woerdenbag, Herman J

    2018-01-01

    A pharmaceutical suspension is a semi-liquid dosage form suitable for patients being unable to swallow solid medicines such as tablets and capsules. A vehicle used for the preparation of pharmaceutical oral suspensions preferably shows pseudo-plastic behavior. In a product that gets thinner with agitation and thicker upon standing, slow settlement of the suspended active pharmaceutical ingredient is combined with good pourability and rehomogenization. This gives the best guarantee of uniformity of dose for oral suspensions. In this study, the rheological behavior of commercially available ready-to-use vehicles for oral pharmaceutical preparations was compared, and the sedimentation of paracetamol dispersed in these vehicles was investigated. With SuspendIt and SyrSpend SF PH4 (Liquid), both pseudoplastic vehicles, very stable paracetamol suspensions were obtained. Of these two vehicles, SyrSpend SF PH4 (Liquid) displayed somewhat higher viscosity, which is a favorable quality characteristic for suspensions. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  9. Hydrodynamic suppression of phase separation in active suspensions.

    PubMed

    Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M

    2014-09-01

    We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.

  10. A semi-active damper in vertical secondary suspension for the comfort increase in passenger trains

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Chiarabaglio, Andrea; Resta, Ferruccio

    2017-04-01

    Passive oil dampers for railway vehicles present a damping and stiffness characteristics, which depend from excitation history. This behaviour is not acceptable for many high-performance applications. A mechatronic approach, able to continuously adjust the damping coefficient according to the operation requirements, represents a very attractive and smart solution. In this paper, a control strategy for semi-active dampers of train vertical secondary suspensions is presented. The controller aims at assuring the maximum available damping at low frequencies, while at high frequencies minimizes the force transmitted to the carbody that excites the bending modes.

  11. Semi-active suspension for automotive application

    NASA Astrophysics Data System (ADS)

    Venhovens, Paul J. T.; Devlugt, Alex R.

    The theoretical considerations for semi-active damping system evaluation, with respect to semi-active suspension and Kalman filtering, are discussed in terms of the software. Some prototype hardware developments are proposed. A significant improvement in ride comfort performance can be obtained, indicated by root mean square body acceleration values and frequency responses, using a switchable damper system with two settings. Nevertheless the improvement is accompanied by an increase in dynamic tire load variations. The main benefit of semi-active suspensions is the potential of changing the low frequency section of the transfer function. In practice this will support the impression of extra driving stability. It is advisable to apply an adaptive control strategy like the (extended) skyhook version switching more to the 'comfort' setting for straight (and smooth/moderate roughness) road running and switching to 'road holding' for handling maneuvers and possibly rough roads and discrete, severe events like potholes.

  12. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements

    NASA Astrophysics Data System (ADS)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr

    2017-07-01

    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  13. Temozolomide stability in extemporaneously compounded oral suspensions.

    PubMed

    Trissel, Lawrence A; Zhang, Yanping; Koontz, Susannah E

    2006-01-01

    Temozolomide, commercially available in capsules, is an oral alkylating agent used to treat brain tumors. The purpose of this study was to determine the pharmaceutical acceptability and chemical stability of temozolomide in two extemporaneously compounded suspension formulations prepared from the capsules. The temozolomide oral suspensions were prepared from 100-mg commercial capsules yielding a nominal temozolomide concentration of 10 mg/mL. The suspension vehicles selected for testing were an equal parts mixture of Ora-Plus and Ora-Sweet and an equal parts mixture of Ora-Plus and Ora-Sweet SF. The suspensions were packaged in amber plastic screw-cap prescription bottles, which were stored at 23 deg C for 21 days or 4 deg C for 60 days. Stability-indicating high-performance liquid chromatographic analysis revealed that the temozolomide concentration in both suspension vehicle combinations exhibited little or no loss for 60 days at 4 deg C. At 23 deg C, temozolomide losses were somewhat greater. In the Ora-Sweet formulation, the loss was 6% at 7 days; in the Ora-Sweet SF formulation, losses were about 8% at 14 days and 10% to 11% at 21 days. Temozolomide extemporaneously prepared as oral suspensions from capsules in equal parts mixtures of Ora-Plus suspension vehicle with Ora-Sweet and with ora-Sweet SF syrups with added povidine k-30 and acidified with citric acid were pharmaceutically acceptable and chemically stable for at least 60 days at 4 deg C. Refrigerated storage is recommended. The suspensions should not be stored at room temperature longer than 1 week if Ora-Sweet is used or longer than 2 weeks if Ora-Sweet SF is used.

  14. Auto Mechanics I. Learning Activity Packets (LAPs). Section D--Suspension.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains six learning activity packets (LAPs) that outline the study activities for the "suspension" instructional area for an Auto Mechanics I course. The six LAPs cover the following topics: wheel bearings, tires and wheels, wheel balancing, suspension system, steering system, and wheel alignment. Each LAP contains a…

  15. Robustness analysis of bogie suspension components Pareto optimised values

    NASA Astrophysics Data System (ADS)

    Mousavi Bideleh, Seyed Milad

    2017-08-01

    Bogie suspension system of high speed trains can significantly affect vehicle performance. Multiobjective optimisation problems are often formulated and solved to find the Pareto optimised values of the suspension components and improve cost efficiency in railway operations from different perspectives. Uncertainties in the design parameters of suspension system can negatively influence the dynamics behaviour of railway vehicles. In this regard, robustness analysis of a bogie dynamics response with respect to uncertainties in the suspension design parameters is considered. A one-car railway vehicle model with 50 degrees of freedom and wear/comfort Pareto optimised values of bogie suspension components is chosen for the analysis. Longitudinal and lateral primary stiffnesses, longitudinal and vertical secondary stiffnesses, as well as yaw damping are considered as five design parameters. The effects of parameter uncertainties on wear, ride comfort, track shift force, stability, and risk of derailment are studied by varying the design parameters around their respective Pareto optimised values according to a lognormal distribution with different coefficient of variations (COVs). The robustness analysis is carried out based on the maximum entropy concept. The multiplicative dimensional reduction method is utilised to simplify the calculation of fractional moments and improve the computational efficiency. The results showed that the dynamics response of the vehicle with wear/comfort Pareto optimised values of bogie suspension is robust against uncertainties in the design parameters and the probability of failure is small for parameter uncertainties with COV up to 0.1.

  16. Calcipotriene plus betamethasone dipropionate topical suspension for the treatment of mild to moderate psoriasis vulgaris on the body: a randomized, double-blind, vehicle-controlled trial.

    PubMed

    Menter, Alan; Gold, Linda Stein; Bukhalo, Michael; Grekin, Steven; Kempers, Steven; Boyce, Brent M; Ganslandt, Cecilia; Villumsen, John; Lebwohl, Mark

    2013-01-01

    A combination topical suspension/gel containing calcipotriene plus betamethasone dipropionate has been developed as a safe and effective treatment for patients with psoriasis vulgaris of the scalp. This same preparation has the potential to be a convenient, effective, and cosmetically appealing formulation for psoriasis on the body. This trial evaluated the efficacy and safety of a topical suspension containing calcipotriene plus betamethasone dipropionate compared with its constituent components and topical suspension vehicle in the treatment of mild to moderate psoriasis on the trunk and limbs. This was a randomized, double-blind, vehicle-controlled, 4-arm trial in 1,152 subjects. The co-primary efficacy end points were the proportion of subjects achieving controlled disease based on the Investigators' Global Assessment of disease severity at weeks 4 and 8. Adverse events, vital signs, and clinical laboratory measurements were also assessed. At week 4, a greater proportion of subjects in the calcipotriene plus betamethasone group achieved controlled disease compared with subjects in the calcipotriene-only and vehicle-only treatment groups. At week 8, a statistically significantly (P<.01) greater proportion of subjects in the calcipotriene plus betamethasone group achieved controlled disease compared with subjects in the 3 other treatment groups. Adverse events and other safety assessments were similar between the groups. The topical suspension containing calcipotriene plus betamethasone dipropionate traditionally used for scalp psoriasis is also a safe and effective once-daily treatment for psoriasis vulgaris on the body.

  17. Microfluidic rheology of active particle suspensions: Kinetic theory.

    PubMed

    Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David

    2016-07-01

    We analyze the effective rheology of a dilute suspension of self-propelled slender particles confined between two infinite parallel plates and subject to a pressure-driven flow. We use a continuum kinetic model to describe the configuration of the particles in the system, in which the disturbance flows induced by the swimmers are taken into account, and use it to calculate estimates of the suspension viscosity for a range of channel widths and flow strengths typical of microfluidic experiments. Our results are in agreement with previous bulk models, and in particular, demonstrate that the effect of activity is strongest at low flow rates, where pushers tend to decrease the suspension viscosity whereas pullers enhance it. In stronger flows, dissipative stresses overcome the effects of activity leading to increased viscosities followed by shear-thinning. The effects of confinement and number density are also analyzed, and our results confirm the apparent transition to superfluidity reported in recent experiments on pusher suspensions at intermediate densities. We also derive an approximate analytical expression for the effective viscosity in the limit of weak flows and wide channels, and demonstrate good agreement between theory and numerical calculations.

  18. Three-axial evaluation of whole-body vibration in agricultural telehandlers: The effects of an active cab-suspension system.

    PubMed

    Caffaro, Federica; Preti, Christian; Micheletti Cremasco, Margherita; Cavallo, Eugenio

    2017-10-01

    Agricultural and earth-moving machinery operators are particularly exposed to whole-body vibration (WBV), which has severe effects on health and affects comfort and performance. Few studies have investigated vibrational safety and comfort issues in telescopic handlers. These vehicles are widespread in many off-road applications-such as construction, agriculture, and mining-used to handle loads and to lift persons and equipment. This study investigated the effects of an active hydro-pneumatic cab-suspension system fitted to a telehandler on a driver's vibration exposure along the x-, y-, and z-axes, through both objective and subjective assessments. Sixteen healthy professional telehandler drivers took part in the study. Objective measurements were acquired at the operator's seat, and subjective ratings were taken while participants drove the telehandler with either a deactivated or activated suspension system at 12 kph on an ISO 5008 smooth track. The results showed that the activation of the cab-suspension system reduced the root-mean-square acceleration along the x- and z-axes (p =.038 and p =.000, respectively). Moreover, the frequency analysis showed a reduction in the acceleration along the z-axis in the range of 2-25 Hz (p <.05 for all comparisons); in particular, the acceleration was reduced by 50% in the higher frequency range (4-20 Hz). A reduction in the vibration intensity was perceived by the participants along the y- and z-axes (p =.009 and p =.003, respectively). Implications for the future development of suspension systems are discussed.

  19. Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guangzhong; Zhang, Nong; Roser, Holger M.

    2015-12-01

    In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.

  20. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    NASA Astrophysics Data System (ADS)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  1. Administrative license suspension: Does length of suspension matter?

    PubMed

    Fell, James C; Scherer, Michael

    2017-08-18

    Administrative license revocation (ALR) laws, which provide that the license of a driver with a blood alcohol concentration at or over the illegal limit is subject to an immediate suspension by the state department of motor vehicles, are an example of a traffic law in which the sanction rapidly follows the offense. The power of ALR laws has been attributed to how swiftly the sanction is applied, but does the length of suspension matter? Our objectives were to (a) determine the relationship of the ALR suspension length to the prevalence of drinking drivers relative to sober drivers in fatal crashes and (b) estimate the extent to which the relationship is associated to the general deterrent effect compared to the specific deterrent effect of the law. Data comparing the impact of ALR law implementation and ALR law suspension periods were analyzed using structural equation modeling techniques on the ratio of drinking drivers to nondrinking drivers in fatal crashes from the Fatality Analysis Reporting System (FARS). States with an ALR law with a short suspension period (1-30 days) had a significantly lower drinking driver ratio than states with no ALR law. States with a suspension period of 91-180 days had significantly lower ratios than states with shorter suspension periods, while the three states with suspension lengths of 181 days or longer had significantly lower ratios than states with shorter suspension periods. The implementation of any ALR law was associated with a 13.1% decrease in the drinking/nondrinking driver fatal crash ratio but only a 1.8% decrease in the intoxicated/nonintoxicated fatal crash ratio. The ALR laws and suspension lengths had a significant general deterrent effect, but no specific deterrent effect. States might want to keep (or adopt) ALR laws for their general deterrent effects and pursue alternatives for specific deterrent effects. States with short ALR suspension periods should consider lengthening them to 91 days or longer.

  2. Constrained ℋ∞ control for low bandwidth active suspensions

    NASA Astrophysics Data System (ADS)

    Wasiwitono, Unggul; Sutantra, I. Nyoman

    2017-08-01

    Low Bandwidth Active Suspension (LBAS) is shown to be more competitive to High Bandwidth Active Suspension (HBAS) when energy and cost aspects are taken into account. In this paper, the constrained ℋ∞ control scheme is applied for LBAS system. The ℋ∞ performance is used to measure ride comfort while the concept of reachable set in a state-space ellipsoid defined by a quadratic storage function is used to capture the time domain constraint that representing the requirements for road holding, suspension deflection limitation and actuator saturation. Then, the control problem is derived in the framework of Linear Matrix Inequality (LMI) optimization. The simulation is conducted considering the road disturbance as a stationary random process. The achievable performance of LBAS is analyzed for different values of bandwidth and damping ratio.

  3. Physical transformation of niclosamide solvates in pharmaceutical suspensions determined by DSC and TG analysis.

    PubMed

    de Villiers, M M; Mahlatji, M D; Malan, S F; van Tonder, E C; Liebenberg, W

    2004-07-01

    This study reports the preparation of four niclosamide solvates and the determination of the stability of the crystal forms in different suspension vehicles by DSC and TG analysis. Thermal analysis showed that the niclosamide solvates were extremely unstable in a PVP-vehicle and rapidly changed to monohydrated crystals. A suspension in propylene glycol was more stable and TG analysis showed that crystal transformation was less rapid. In this vehicle, the crystals transformed to the anhydrate, rather than the monohydrate, since the vehicle was non-aqueous. The TEG-hemisolvate was the most stable in suspension and offered the best possibility of commercial exploitation.

  4. The effect of visual and musical suspense on brain activation and memory during naturalistic viewing.

    PubMed

    Bezdek, Matthew A; Wenzel, William G; Schumacher, Eric H

    2017-10-01

    We tested the hypothesis that, during naturalistic viewing, moments of increasing narrative suspense narrow the scope of attentional focus. We also tested how changes in the emotional congruency of the music would affect brain responses to suspense, as well as subsequent memory for narrative events. In our study, participants viewed suspenseful film excerpts while brain activation was measured with functional magnetic resonance imaging. Results indicated that suspense produced a pattern of activation consistent with the attention-narrowing hypothesis. For example, we observed decreased activation in the anterior calcarine sulcus, which processes the visual periphery, and increased activity in nodes of the ventral attention network and decreased activity in nodes of the default mode network. Memory recall was more accurate for high suspense than low suspense moments, but did not differ by soundtrack congruency. These findings provide neural evidence that perceptual, attentional, and memory processes respond to suspense on a moment-by-moment basis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Real-time identification of vehicle motion-modes using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, Lifu; Zhang, Nong; Du, Haiping

    2015-01-01

    A four-wheel ground vehicle has three body-dominated motion-modes, that is, bounce, roll, and pitch motion-modes. Real-time identification of these motion-modes can make vehicle suspensions, in particular, active suspensions, target on the dominant motion-mode and apply appropriate control strategies to improve its performance with less power consumption. Recently, a motion-mode energy method (MEM) was developed to identify the vehicle body motion-modes. However, this method requires the measurement of full vehicle states and road inputs, which are not always available in practice. This paper proposes an alternative approach to identify vehicle primary motion-modes with acceptable accuracy by employing neural networks (NNs). The effectiveness of the trained NNs is verified on a 10-DOF full-car model under various types of excitation inputs. The results confirm that the proposed method is effective in determining vehicle primary motion-modes with comparable accuracy to the MEM method. Experimental data is further used to validate the proposed method.

  6. 40 CFR 86.1114-87 - Suspension and voiding of certificates of conformity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Duty Vehicles, Including Light-Duty Trucks § 86.1114-87 Suspension and voiding of certificates of... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Suspension and voiding of certificates... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...

  7. 19 CFR 112.30 - Suspension or revocation of license.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Suspension or revocation of license. 112.30... Suspension or revocation of license. (a) Grounds for suspension or revocation of licenses. The port director... produced upon demand; (2) His vehicle or vessel is not properly marked, as required by § 112.27; (3) The...

  8. Articulated Suspension Without Springs

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1990-01-01

    Wheels negotiate bumps and holes with minimal tilting of vehicle body. In new suspension, wheel climbs obstacle as high as 1 1/2 times its diameter without excessive tilting of chassis. Provides highly stable ride over rough ground for such vehicles as wheelchairs, military scout cars, and police and fire robots. System of levers distributes weight to wheels. Sized to distribute equal or other desired portions of load among wheels.

  9. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long

    2016-01-01

    The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.

  10. Decoupling suspension controller based on magnetic flux feedback.

    PubMed

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  11. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    PubMed Central

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced. PMID:23844415

  12. An efficient sensitivity analysis method for modified geometry of Macpherson suspension based on Pearson correlation coefficient

    NASA Astrophysics Data System (ADS)

    Shojaeefard, Mohammad Hasan; Khalkhali, Abolfazl; Yarmohammadisatri, Sadegh

    2017-06-01

    The main purpose of this paper is to propose a new method for designing Macpherson suspension, based on the Sobol indices in terms of Pearson correlation which determines the importance of each member on the behaviour of vehicle suspension. The formulation of dynamic analysis of Macpherson suspension system is developed using the suspension members as the modified links in order to achieve the desired kinematic behaviour. The mechanical system is replaced with an equivalent constrained links and then kinematic laws are utilised to obtain a new modified geometry of Macpherson suspension. The equivalent mechanism of Macpherson suspension increased the speed of analysis and reduced its complexity. The ADAMS/CAR software is utilised to simulate a full vehicle, Renault Logan car, in order to analyse the accuracy of modified geometry model. An experimental 4-poster test rig is considered for validating both ADAMS/CAR simulation and analytical geometry model. Pearson correlation coefficient is applied to analyse the sensitivity of each suspension member according to vehicle objective functions such as sprung mass acceleration, etc. Besides this matter, the estimation of Pearson correlation coefficient between variables is analysed in this method. It is understood that the Pearson correlation coefficient is an efficient method for analysing the vehicle suspension which leads to a better design of Macpherson suspension system.

  13. Stability of Acetazolamide, Baclofen, Dipyridamole, Mebeverine Hydrochloride, Propylthiouracil, Quinidine Sulfate, and Topiramate Oral Suspensions in SyrSpend SF PH4.

    PubMed

    Ferreira, Anderson de Oliveira; Polonini, Hudson; da Silva, Sharlene Loures; Aglio, Natália Cristina Buzinari; Abreu, Jordana; Fernandes, Brandão Marcos Antônio

    2017-01-01

    The objective of this study was to evaluate the stability of 7 commonly used active pharmaceutical ingredients compounded in oral suspensions using an internationally used suspending vehicle (SyrSpend SF PH4): acetazolamide 25.0 mg/mL, baclofen 10.0 mg/mL, dipyridamole 10.0 mg/mL, mebeverine hydrochloride 10.0 mg/mL, propylthiouracil 5.0 mg/mL, quinidine sulfate 10.0 mg/mL, and topiramate 5.0 mg/mL. All suspensions were stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by measuring the percentage recovery at varying time points throughout a 90-day period. Active pharmaceutical ingredient quantification was performed by ultraviolet (UV) high-performance liquid chromatography, via a stability-indicating method. Given the percentage of recovery of the active pharmaceutical ingredients within the suspensions, the beyond-use date of the final products (active pharmaceutical ingredient + vehicle) was at least 90 days for all suspensions with regards to both temperatures. This suggests that SyrSpend SF PH4 is suitable for compounding active pharmaceutical ingredients from different pharmacological classes. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  14. Advanced Suspension and Control Algorithm for U.S. Army Ground Vehicles

    DTIC Science & Technology

    2013-04-01

    Army Materiel Systems Analysis Activity (AMSAA), for his assistance and guidance in building a multibody vehicle dynamics model of a typical light...Mobility Multipurpose Wheeled Vehicle [HMMWV] model) that was developed in collaboration with the U.S. Army Materiel Systems Analysis Activity (5) is...control weight for GPC With Explicit Disturbance was R = 1.0e-7 over the entire speed range. To simplify analysis , the control weights for the other two

  15. Design and modeling of new suspension system using direct drive servo-valve system actuated by piezostack actuator

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Kim, Wan Ho; Choi, Seung-Bok

    2016-04-01

    This paper proposes a new type of a direct-drive valve (DDV) suspension system for vehicle controlled by the piezostack actuator associated with displacement amplifier. In order to achieve this goal, a new type of controllable piezostack DDV damper is designed and its performance evaluation of damping force is undertaken. Next, a full vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the governing equations of the motion for the proposed the piezostack DDV suspension system, the skyhook controller is implemented for the realization of the full vehicle. Analytical model of the whole suspension system is then derived and performance characteristics are analyzed through numerical simulation. Finally, vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and sine road conditions.

  16. 41 CFR 109-40.103-2 - Disqualification and suspension of carriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspension of carriers. 109-40.103-2 Section 109-40.103-2 Public Contracts and Property Management Federal... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.1-General Provision § 109-40.103-2 Disqualification and suspension of carriers. Disqualification and suspension are...

  17. Stability of Alprazolam, Atropine Sulfate, Glutamine, Levofloxacin, Metoprolol Tartrate, Nitrofurantoin, Ondansetron Hydrochloride, Oxandrolone, Pregabaline, and Riboflavin in SyrSpend SF pH4 Oral Suspensions.

    PubMed

    Ferreira, Anderson O; Polonini, Hudson C; Loures da Silva, Sharlene; Cerqueira de Melo, Victor Augusto; de Andrade, Laura; Brandão, Marcos Antônio Fernandes

    2017-01-01

    The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using an internationally used suspending vehicle (SyrSpend SF PH4): alprazolam 1.0 mg/mL, atropine sulfate 0.1 mg/mL, glutamine 250.0 mg/mL, levofloxacin 50.0 mg/mL, metoprolol tartrate 10.0 mg/mL, nitrofurantoin 2.0 mg/mL, ondansetron hydrochloride 0.8 mg/mL, oxandrolone 3.0 mg/mL, pregabaline 20.0 mg/mL, riboflavin 10.0 mg/mL. All suspensions were stored at both controlled refrigeration (2°C to 8°C) and controlled room temperature (20°C to 25°C). Stability was assessed by measuring the percent recovery at varying time points throughout a 90-day period. Active pharmaceutical ingredients quantification was performed by high-performance liquid chromatography via a stability-indicating method. Given the percentage of recovery of the active pharmaceutical ingredients within the suspensions, the beyond-use date of the final products (active pharmaceutical ingredients + vehicle) was at least 90 days for all suspensions with regard to both temperatures. This suggests that the vehicle is stable for compounding active pharmaceutical ingredients from different pharmacological classes. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  18. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  19. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  20. Optimization of damping in the passive automotive suspension system with using two quarter-car models

    NASA Astrophysics Data System (ADS)

    Lozia, Z.; Zdanowicz, P.

    2016-09-01

    The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.

  1. About the preliminary design of the suspension spring and shock absorber

    NASA Astrophysics Data System (ADS)

    Preda, I.

    2016-08-01

    The aim of this paper is to give some recommendation for the design of main-spring and shock absorber of motor vehicle suspensions. Starting from a 2DoF model, the suspension parameters are transferred on the real vehicle on the base of planar schemes for the linkage. For the coil spring, the equations that must be fulfilled simultaneously permit to calculate three geometrical parameters. The indications presented for the shock absorber permit to obtain the damping coefficients in the compression and rebound strokes and to calculate the power dissipated during the vehicle oscillatory movement.

  2. Development of a simulation model of semi-active suspension for monorail

    NASA Astrophysics Data System (ADS)

    Hasnan, K.; Didane, D. H.; Kamarudin, M. A.; Bakhsh, Qadir; Abdulmalik, R. E.

    2016-11-01

    The new Kuala Lumpur Monorail Fleet Expansion Project (KLMFEP) uses semiactive technology in its suspension system. It is recognized that the suspension system influences the ride quality. Thus, among the way to further improve the ride quality is by fine- tuning the semi-active suspension system on the new KL Monorail. The semi-active suspension for the monorail specifically in terms of improving ride quality could be exploited further. Hence a simulation model which will act as a platform to test the design of a complete suspension system particularly to investigate the ride comfort performance is required. MSC Adams software was considered as the tool to develop the simulation platform, where all parameters and data are represented by mathematical equations; whereas the new KL Monorail being the reference model. In the simulation, the model went through step disturbance on the guideway for stability and ride comfort analysis. The model has shown positive results where the monorail is in stable condition as an outcome from stability analysis. The model also scores a Rating 1 classification in ISO 2631 Ride Comfort performance which is very comfortable as an overall outcome from ride comfort analysis. The model is also adjustable, flexibile and understandable by the engineers within the field for the purpose of further development.

  3. 49 CFR 383.33 - Notification of driver's license suspensions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Notification of driver's license suspensions. 383... Employer Responsibilities § 383.33 Notification of driver's license suspensions. Each employee who has a... operate a commercial motor vehicle in a State or jurisdiction for any period, or who is disqualified from...

  4. Stability of an Alcohol-free, Dye-free Hydrocortisone (2 mg/mL) Compounded Oral Suspension.

    PubMed

    Manchanda, Arushi; Laracy, Melissa; Savji, Taslim; Bogner, Robin H

    2018-01-01

    The stability of hydrocortisone in a commercially available dye-free oral vehicle was monitored to establish a beyond-use date for hydrocortisone oral suspension 2 mg/mL. Hydrocortisone oral suspension (2 mg/mL) was prepared from 10-mg tablets in a dye-free oral vehicle (Oral Mix, Medisca) and stored at 4°C and 25°C for 90 days in amber, plastic prescription bottles and oral syringes. The suspendability and dose repeatability of the oral suspension were evaluated. The solubility of hydrocortisone in the dye-free vehicle was determined. Over 90 days, pH and concentration of hydrocortisone in the oral suspension were measured. The stability-indicating nature of a high-pressure liquid chromatographic assay was evaluated in detail. The solubility of hydrocortisone in the dye-free vehicle was 230 mcg/mL at 25°C. This means that about 90% of the drug remains in the solid state where it is less susceptible to degradation. The preparation suspended well to support dose repeatability. The chromatographic assay resolved hydrocortisone from cortisone, excipients in the vehicle, and all degradation products. The assay passed United States Pharmacopeia system suitability tests. Hydrocortisone oral suspension (2 mg/mL) compounded using a dye-free, alcohol-free oral vehicle, Oral Mix, was stable in amber plastic bottles and syringes stored at 4°C and 25°C for 90 days within a 95% confidence interval. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  5. Defect Proliferation in Active Nematic Suspensions

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant; Bowick, Mark J.; Giomi, Luca; Marchetti, M. Cristina

    2014-03-01

    The rich structure of equilibrium nematic suspensions, with their characteristic disclination defects, is modified when active forces come into play. The uniform nematic state is known to be unstable to splay (extensile) or bend (contractile) deformations above a critical activity. At even higher activity the flow becomes oscillatory and eventually turbulent. Using hydrodynamics, we classify the active flow regimes as functions of activity and order parameter friction for both contractile and extensile systems. The turbulent regime is marked by a non-zero steady state density of mobile defect pairs. The defect density itself scales with an ``active Ericksen number,'' defined as the ratio of the rate at which activity is injected into the system to the relaxation rate of orientational deformations. The work at Syracuse University was supported by the NSF on grant DMR-1004789 and by the Syracuse Soft Matter Program.

  6. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Vibration isolation analysis of new design OEM damper for malaysia vehicle suspension system featuring MR fluid

    NASA Astrophysics Data System (ADS)

    Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.

    2018-01-01

    The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.

  8. TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research

    DTIC Science & Technology

    2015-09-01

    inferred roll angles that are found with the IMU . This is usually done with UNCLASSIFIED UNCLASSIFIED linear potentiometers, which have an electrical...wire electric, Electric traction control. Suspension Styles: Suspension is what keeps the vehicle off the ground and mechanically isolated from the...lot” maneuvers. Because of this, they roll with no slip angles. This means that the steering angles of the front wheels must be calibrated perfectly

  9. The effect of a multi-axis suspension on whole body vibration exposures and physical stress in the neck and low back in agricultural tractor applications.

    PubMed

    Kim, Jeong Ho; Dennerlein, Jack T; Johnson, Peter W

    2018-04-01

    Whole body vibration (WBV) exposures are often predominant in the fore-aft (x) or lateral (y) axis among off-road agricultural vehicles. However, as the current industry standard seats are designed to reduce mainly vertical (z) axis WBV exposures, they may be less effective in reducing drivers' exposure to multi-axial WBV. Therefore, this laboratory-based study aimed to determine the differences between a single-axial (vertical) and multi-axial (vertical + lateral) suspension seat in reducing WBV exposures, head acceleration, self-reported discomfort, and muscle activity (electromyography) of the major muscle of the low back, neck and shoulders. The results showed that the multi-axial suspension seat had significantly lower WBV exposures compared to the single-axial suspension seats (p' < 0.04). Similarly, the multi-axial suspension seat had lower head acceleration and muscle activity of the neck, shoulder, and low back compared to the single-axial suspension seat; some but not all of the differences were statistically significant. These results indicate that the multi-axial suspension seat may reduce the lateral WBV exposures and associated muscular loading in the neck and low back in agricultural vehicle operators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A review of dynamic stability of repulsive-force maglev suspension systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Rote, D.M.

    1998-07-01

    Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDSmore » suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.« less

  11. Dry powder dosing in liquid vehicles: ocular tolerance and scintigraphic evaluation of a perfluorocarbon suspension.

    PubMed

    Zhu, Y; Wilson, C G; Meadows, D; Olejnik, O; Frier, M; Washington, N; Musson, R

    1999-11-30

    The ocular tolerance and precorneal disposition of 99mTc-labelled sterile carbon-perfluorodecalin (PFD) and carbon-aqueous suspensions were examined in a cohort of healthy volunteers. Formulations were prepared in PFD or saline using charcoal particles, radiolabelled with [99mTc]diethylenetriaminepentaacetic acid (DTPA) under GMP conditions. Colloidal silicon dioxide was used as a suspending agent. Ocular tolerance was examined following the instillation of each formulation to the eyes of 12 volunteers. The precorneal distribution of both formulations in man was monitored using gamma scintigraphy. Dynamic and static data acquisitions were taken over a period of 150 min after dosing. Carbon particulates suspended in PFD did not show any irritation to the eye. Administration of PFD formulation in man produced a significant increase in ocular retention over a saline formulation (mean residence time (MRT)=157+/-42 and 0.29+/-0.08 min, respectively, P=0.0001). Distribution of the carbon in man followed the same pattern as in a previous reported study in animals. The carbon deposited uniformly along the lid margin in the case of the PFD vehicle, whereas it agglomerated following dosing in the saline vehicle and was ejected from the eye. The novel non-aqueous vehicle system is able to significantly improve the ocular retention of charcoal particles in man and provides a unique distribution of the particles in the eye, which suggests a potential for the PFD system for the treatment of periocular diseases.

  12. Electrochemical analysis in a liposome suspension using lapachol as a hydrophobic electro active species.

    PubMed

    Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji

    2014-01-01

    This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.

  13. Stability of Prednisone in Oral Mix Suspending Vehicle.

    PubMed

    Friciu, Mihaela; Plourde, Kevin; Leclair, Grégoire; Danopoulos, Panagiota; Savji, Taslim

    2015-01-01

    The stability of prednisone (5 mg/mL) formulated as a suspension in Oral Mix vehicle was evaluated. Oral Mix is a novel oral, dye-free suspending vehicle developed by Medisca Pharmaceutique Inc. for preparation of extemporaneous dosage forms. This drug was chosen based on its high frequency of prescription among the pediatric population. Suspensions were prepared from both pure active and commercial tablets utilizing two different container closures: amber glass bottles and polypropylene syringes (PreciseDose Dispenser Medisca Pharmaceutique Inc.). Formulations were stored at 5°C or 25°C and organoleptic properties, pH, and concentration were evaluated at predetermined time points up to 90 days. Validated stability-indicating high-performance liquid chromatography methods were developed. Beyond-use date was evaluated by statistical analysis of the overall degradation trend. Prednisone was stable for at least 90 days at 25°C. No changes in organoleptic properties or pH were observed for either of the formulations, and the global stability was roughly equivalent and sometimes superior to the stability of the same drugs in other previously used vehicles. Thus, Oral Mix was found to be a suitable dye-free vehicle for extemporaneous formulations.

  14. Stochastic optimal control of non-stationary response of a single-degree-of-freedom vehicle model

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Raju, G. V.

    1990-09-01

    An active suspension system to control the non-stationary response of a single-degree-of-freedom (sdf) vehicle model with variable velocity traverse over a rough road is investigated. The suspension is optimized with respect to ride comfort and road holding, using stochastic optimal control theory. The ground excitation is modelled as a spatial homogeneous random process, being the output of a linear shaping filter to white noise. The effect of the rolling contact of the tyre is considered by an additional filter in cascade. The non-stationary response with active suspension is compared with that of a passive system.

  15. 32 CFR 636.3 - Suspension or revocation of driving privileges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Suspension or revocation of driving privileges. 636.3 Section 636.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.3 Suspension...

  16. Stability of an extemporaneously compounded minoxidil oral suspension.

    PubMed

    Song, Yunmei; Chin, Zen Whey; Ellis, David; Lwin, Ei Mon Phyo; Turner, Sean; Williams, Desmond; Garg, Sanjay

    2018-03-01

    Results of a study to determine the stability of an extemporaneously compounded minoxidil oral suspension under various temperature and stress conditions are reported. Commercially available minoxidil tablets (10 mg) were crushed to a fine powder, and predetermined amounts of 2 suspending vehicles were added to produce a 1-mg/mL suspension, which was stored in glass bottles at room temperature (25 ± 2 °C) or in a refrigerator (4 ± 2 °C). To simulate daily patient use, 5 days weekly 1 bottle of the suspension was removed from refrigerated storage and shaken and 0.5 mL of the contents discarded. At each specified time point, samples were analyzed in duplicate ( n = 6 for each test condition) using a validated high-performance liquid chromatography method. Samples were visually observed and their pH measured at each time point. Microbiological studies were performed on day 0 and at week 24. The mean percentage of initial minoxidil concentration remaining in all refrigerated samples exceeded 90% throughout the 24-week study, with no change in appearance, pH, microbial activity, odor, or redispersibility. During storage at room temperature, the suspension exhibited a color change at week 4, with slight sedimentation after 6 weeks, although minoxidil recovery exceeded 90% for 10 weeks. An extemporaneously compounded minoxidil oral suspension was stable for 24 weeks when stored in a refrigerator. This suspension can be used for up to 3 weeks when stored at room temperature. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  17. Diffusion of passive particles in active suspensions

    NASA Astrophysics Data System (ADS)

    Mussler, Matthias; Rafai, Salima; John, Thomas; Peyla, Philippe; Wagner, Christian

    2013-11-01

    We study how an active suspension consisting of a definite volume fraction of the microswimmer Chlamydomonas Reinhardtii modifies the Brownian movement of small to medium size microspheres. We present measurements and simulations of trajectories of microspheres with a diameter of 20 μm in suspensions of Chlamydomonas Reinhardtii, a so called ``puller,'' and show that the mean squared displacement of such trajectories consist of parabolic and a linear part. The linear part is due to the hydrodynamic noise of the microswimmers while the parabolic part is a consequence of directed motion events that occur randomly, when a microsphere is transported by a microswimmer on a timescale that is in higher order of magnitude than the Brownian like hydrodynamic interaction. In addition, we theoretically describe this effect with a dimensional analysis that takes the force dipole model used to describe ``puller'' like Chlamydomonas Reinhardtii into account.

  18. 31 CFR 903.2 - Suspension of collection activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Suspension of collection activity. 903.2 Section 903.2 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... on a debt when the debtor's future prospects justify retention of the debt for periodic review and...

  19. 31 CFR 903.2 - Suspension of collection activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Suspension of collection activity. 903.2 Section 903.2 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... on a debt when the debtor's future prospects justify retention of the debt for periodic review and...

  20. Muscle Activation during Push-Ups with Different Suspension Training Systems.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martín, Fernando F; Rogers, Michael E; Behm, David G; Andersen, Lars L

    2014-09-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001). Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key PointsCompared with standard push-ups on the floor, suspended push-ups increase core muscle activation.A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity.More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation.A suspended push-up is an effective method to achieve high muscle activity levels in the ABS.

  1. Muscle Activation during Push-Ups with Different Suspension Training Systems

    PubMed Central

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C.; Martín, Fernando F; Rogers, Michael E.; Behm, David G.; Andersen, Lars L.

    2014-01-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001). Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key Points Compared with standard push-ups on the floor, suspended push-ups increase core muscle activation. A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity. More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation. A suspended push-up is an effective method to achieve high muscle activity levels in the ABS. PMID:25177174

  2. Base Vehicle Equipment, Special Vehicle, General Purpose Vehicle, and Vehicle Body Mechanics Career Ladders, AFSs 472X0, 472X1A/B/C/D, 472X2 and 472X3.

    DTIC Science & Technology

    1982-08-01

    brakes , belts, and carburetors; servicing air cleaners, oil systems , and drive belts; and lubricating vehicles. Although the six distinct jobs...vehicle systems . General Repair Mechanics repaired, inspected, serviced, and maintained electrical, brake , suspension, and other vehicle systems . This...installing intake or exhaust manifolds removing or installing parking- brake cables removing or’installing head assemblies inspecting gasoline fuel system

  3. Stability of Metronidazole Suspensions.

    PubMed

    Donnelly, Ronald F; Ying, James

    2015-01-01

    Metronidazole is an antiprotozoal agent used in the treatment of bacterial and protozoal anaerobic infections. The objectives of this study were to develop concentrated metronidazole suspensions that are inexpensive and easy to prepare and determine the stability of these suspensions after storage in amber polyvinyl chloride bottles at room temperature (23°C) and under refrigeration (5°C). Metronidazole suspensions (50 mg/mL) were prepared from powder using Ora-Blend or simple syrup as the vehicles. Samples were collected in triplicate from each container on days 0, 7, 14, 28, 56, and 93. Samples were assayed using a high-performance liquid chromatography method that had been validated as stability indicating. Color, change in physical appearance, and pH were also monitored at each time interval. There was no apparent change in color or physical appearance. The pH values changed by less than 0.20 units over the 93 days. The stability of metronidazole suspensions compounded from United States Pharmacopeia powder using Ora-Blend or simple syrup and packaged in amber polyvinyl chloride bottles was determined to be 93 days when stored at either room temperature or under refrigeration.

  4. Magnetic suspension and pointing system

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1978-01-01

    An apparatus is reported for accurate pointing of instruments on a carrier vehicle and for isolation of the instruments from the vehicle's motion disturbances. The apparatus includes two assemblies with connecting interfaces. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plase which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides attitude fine pointing and roll positioning of the instruments as well as six degree-of-freedom isolation from carrier motion disturbances.

  5. Torsion bar stabilizer for a vehicle and method for mounting the stabilizer on the vehicle frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauber, C.J.

    This patent describes a method of mounting a stabilizing mechanism on a vehicle frame which is supported and biased on a suspension assembly at opposite sides of the frame. The frame includes overload stops riveted to opposite sides of the frame and the suspension assembly includes bracket assemblies which secure the vehicle's suspension springs to a wheel axle. The method comprises the following steps: removing an overload stop from each side of the vehicle frame; mounting a modified overload stop on each side of the frame which serves as both an overload stop and a support for the stabilizing mechanismmore » wherein the modified overload stop is mounted into the holes in the frame left from the removal of the overload stop; removing from each side of the vehicle the top bracket from the bracket assembly; inserting a modified top bracket into each bracket assembly wherein the top bracket assembly is modified to couple with the stabilizing mechanism; and mounting on the modified overload stops a torsion bar whose opposite ends are coupled to the modified top bracket by way of linkages.« less

  6. Non-Gaussian limit fluctuations in active swimmer suspensions

    NASA Astrophysics Data System (ADS)

    Kurihara, Takashi; Aridome, Msato; Ayade, Heev; Zaid, Irwin; Mizuno, Daisuke

    2017-03-01

    We investigate the hydrodynamic fluctuations in suspensions of swimming microorganisms (Chlamydomonas) by observing the probe particles dispersed in the media. Short-term fluctuations of probe particles were superdiffusive and displayed heavily tailed non-Gaussian distributions. The analytical theory that explains the observed distribution was derived by summing the power-law-decaying hydrodynamic interactions from spatially distributed field sources (here, swimming microorganisms). The summing procedure, which we refer to as the physical limit operation, is applicable to a variety of physical fluctuations to which the classical central limiting theory does not apply. Extending the analytical formula to compare to experiments in active swimmer suspensions, we show that the non-Gaussian shape of the observed distribution obeys the analytic theory concomitantly with independently determined parameters such as the strength of force generations and the concentration of Chlamydomonas. Time evolution of the distributions collapsed to a single master curve, except for their extreme tails, for which our theory presents a qualitative explanation. Investigations thereof and the complete agreement with theoretical predictions revealed broad applicability of the formula to dispersions of active sources of fluctuations.

  7. Steering redundancy for self-driving vehicles using differential braking

    NASA Astrophysics Data System (ADS)

    Jonasson, M.; Thor, M.

    2018-05-01

    This paper describes how differential braking can be used to turn a vehicle in the context of providing fail-operational control for self-driving vehicles. Two vehicle models are developed with differential input. The models are used to explain the bounds of curvature that differential braking provides and they are then validated with measurements in a test vehicle. Particular focus is paid on wheel suspension effects that significantly influence the obtained curvature. The vehicle behaviour and its limitations due to wheel suspension effects are, owing to the vehicle models, defined and explained. Finally, a model-based controller is developed to control the vehicle curvature during a fault by differential braking. The controller is designed to compensate for wheel angle disturbance that is likely to occur during the control event.

  8. Suspension-line wave motion during the lines-first parachute unfurling process

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Whitesides, J. L.

    1974-01-01

    A new mathematical approach to modeling the lines-first parachute unfurling process is presented. The unfurling process is treated as two distinct phases: a suspension-line unfurling phase, during which a massless-spring model of the suspension-line elasticity may be employed; and a canopy unfurling phase, during which a formulation considering suspension-line wave mechanics is employed. Histories of unfurled length and tension at the vehicle obtained using the model are compared with flight test data, and generally good agreement is observed.

  9. Anti-Quorum Sensing Activity of Forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa.

    PubMed

    Zhang, An; Chu, Wei-Hua

    2017-01-01

    Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in Pseudomonas aeruginosa , and the interruption of QS will be a hopeful pathway to combat bacterial infection. In this study, we selected Forsythia suspense (Thunb.) Vahl from traditional Chinese herbal medicines for its anti-QS activity. Anti-QS of F. suspense extracts (FSE) was monitored using the Chromobacterium violaceum 12472 bioassay. Standard methods were used to investigate the effects of FSE on QS-controlled virulence factors production, swimming motility, and biofilm establishment in P. aeruginosa PAO1. FSE could obviously inhibit the violacein production in C. violaceum 12472 and also could inhibit quorum sensing-regulated virulence factors production and biofilm formation in P. aeruginosa in a concentration-dependent manner. The elastase activity and pyocyanin production were inhibited at a maximum of 40.97 and 47.58% when P. aeruginosa was grown in the presence of 0.25 g/mL FSE, which can also inhibit swimming motility of P. aeruginosa . The biofilm formation ability was decreased about 72.45% when in PAO1 cultured with the 0.25 g/mL FSE. The results suggested that FSE may be used as an alternative drug to control and handle harmful infections caused by bacterial pathogens based on QS inhibition. Forsythia suspense water extract could obviously inhibit the purple pigment production in C. violaceum 12472 Forsythia suspense water extract could inhibit QS-regulated virulence factors production and biofilm formation in P. aeruginosa . Abbreviations used: QS: Quorum sensing, Pseudomonas aeruginosa P. aeruginosa , Forsythia suspense F. suspense , FSE: F. suspense extracts, Chromobacterium violaceum 12472 C. violaceum 12472, AIs: autoinducers, AHLs: N -acyl-homoserinelactones, LB: Luria-Bertani, MICs: Minimum inhibitory concentrations, CFU: Colony-Forming Units, ATCC: American Type Culture Collection, PBS: phosphate buffered saline.

  10. Anti-Quorum Sensing Activity of Forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa

    PubMed Central

    Zhang, An; Chu, Wei-Hua

    2017-01-01

    Background: Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in Pseudomonas aeruginosa, and the interruption of QS will be a hopeful pathway to combat bacterial infection. Objective: In this study, we selected Forsythia suspense (Thunb.) Vahl from traditional Chinese herbal medicines for its anti-QS activity. Materials and Methods: Anti-QS of F. suspense extracts (FSE) was monitored using the Chromobacterium violaceum 12472 bioassay. Standard methods were used to investigate the effects of FSE on QS-controlled virulence factors production, swimming motility, and biofilm establishment in P. aeruginosa PAO1. Results: FSE could obviously inhibit the violacein production in C. violaceum 12472 and also could inhibit quorum sensing–regulated virulence factors production and biofilm formation in P. aeruginosa in a concentration-dependent manner. The elastase activity and pyocyanin production were inhibited at a maximum of 40.97 and 47.58% when P. aeruginosa was grown in the presence of 0.25 g/mL FSE, which can also inhibit swimming motility of P. aeruginosa. The biofilm formation ability was decreased about 72.45% when in PAO1 cultured with the 0.25 g/mL FSE. The results suggested that FSE may be used as an alternative drug to control and handle harmful infections caused by bacterial pathogens based on QS inhibition. SUMMARY Forsythia suspense water extract could obviously inhibit the purple pigment production in C. violaceum 12472Forsythia suspense water extract could inhibit QS-regulated virulence factors production and biofilm formation in P. aeruginosa. Abbreviations used: QS: Quorum sensing, Pseudomonas aeruginosa P. aeruginosa, Forsythia suspense F. suspense, FSE: F. suspense extracts, Chromobacterium violaceum 12472 C. violaceum 12472, AIs: autoinducers, AHLs: N-acyl-homoserinelactones, LB: Luria-Bertani, MICs: Minimum inhibitory concentrations, CFU: Colony-Forming Units, ATCC: American Type Culture Collection

  11. The Influence of End-Stop Buffer Characteristics on the Severity of Suspension Seat End-Stop Impacts

    NASA Astrophysics Data System (ADS)

    Wu, X.; Griffin, M. J.

    1998-08-01

    Suspension seat end-stop impacts may be a source of increased risk of injury for the drivers of some machines and work vehicles, such as off-road vehicles. Most suspension seats use rubber buffers to reduce the severity of end-stop impacts, but they still result in a high magnitude of acceleration being transmitted to drivers when an end-stop impact occurs. An experimental study has been conducted to investigate the effect of buffer stiffness and buffer damping on the severity of end-stop impacts. The results show that the end-stop impact performance of suspension seats with only bottom buffers can be improved by the use of both top and bottom buffers. The force-deflection characteristics of rubber buffers had a significant influence on the severity of end-stop impacts. The optimum buffer should have medium stiffness which is nearly linear and occurs over a long deflection, without being compressed to its high stiffness stage. It is shown, theoretically, that buffer damping is capable of significantly reducing the severity of end-stop impacts. However, since current rubber material provides only low damping, alternative materials to those in current use, or either passive or active damping devices, are required.

  12. Reading a Suspenseful Literary Text Activates Brain Areas Related to Social Cognition and Predictive Inference

    PubMed Central

    Lehne, Moritz; Engel, Philipp; Rohrmeier, Martin; Menninghaus, Winfried; Jacobs, Arthur M.; Koelsch, Stefan

    2015-01-01

    Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc.) is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI) data while participants read a suspenseful literary text (E.T.A. Hoffmann's “The Sandman”) subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus), lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference. PMID:25946306

  13. Stability of three commonly compounded extemporaneous enrofloxacin suspensions for oral administration to exotic animals.

    PubMed

    Petritz, Olivia A; Guzman, David Sanchez-Migallon; Wiebe, Valerie J; Papich, Mark G

    2013-07-01

    To evaluate the stability of 3 extemporaneous oral suspensions of enrofloxacin mixed with readily available flavoring vehicles when stored at room temperature (approx 22°C). Evaluation study. 3 commonly compounded oral suspensions of enrofloxacin. On day 0, commercially available enrofloxacin tablets were compounded with a mixture of distilled water and corn syrup (formulation A) or cherry syrup (formulation B) flavoring vehicles to create suspensions with a nominal enrofloxacin concentration of 22.95 mg/mL, and 2.27% enrofloxacin injectable solution was compounded with a liquid sweetener (formulation C) to create a suspension with a nominal enrofloxacin concentration of 11.35 mg/mL. Preparations were stored in amber-colored vials at room temperature for 56 days. For each preparation, the enrofloxacin concentration was evaluated with high-performance liquid chromatography at prespecified intervals during the study. The pH, odor, and consistency for all suspensions were recorded at the start and completion of the study. Relative to the nominal enrofloxacin concentration, the enrofloxacin concentration strength ranged from 95.80% to 100.69% for formulation A, 108.44% to 111.06% for formulation B, and 100.99% to 103.28% for formulation C. A mild pH increase was detected in all 3 suspensions during the study. Results indicated that, when stored in amber-colored vials at room temperature for 56 days, the enrofloxacin concentration strength in all 3 formulations was retained within acceptance criteria of 90% to 110%. Subjectively, cherry syrup flavoring was better at masking the smell and taste of enrofloxacin than were the other mixing vehicles.

  14. Compounded Apixaban Suspensions for Enteral Feeding Tubes.

    PubMed

    Caraballo, Maria L; Donmez, Seda; Nathan, Kobi; Zhao, Fang

    2017-07-01

    Objective: There is limited information on compounded apixaban formulations for administration via enteral feeding tubes. This study was designed to identify a suitable apixaban suspension formulation that is easy to prepare in a pharmacy setting, is compatible with commonly used feeding tubes, and has a beyond-use date of 7 days. Methods: Apixaban suspensions were prepared from commercially available 5-mg Eliquis tablets. Several vehicles and compounding methods were screened for ease of preparation, dosage accuracy, and tube compatibility. Two tubing types, polyurethane and polyvinyl chloride, with varying lengths and diameters, were included in the study. They were mounted on a peg board during evaluation to mimic the patient body position. A 7-day stability study of the selected formulation was also conducted. Results: Vehicles containing 40% to 60% Ora-Plus in water all exhibited satisfactory flowability through the tubes. The mortar/pestle compounding method was found to produce more accurate and consistent apixaban suspensions than the pill crusher or crushing syringe method. The selected formulation, 0.25 mg/mL apixaban in 50:50 Ora-Plus:water, was compatible with both tubing types, retaining >98% drug in posttube samples. The stability study also confirmed that this formulation was stable physically and chemically over 7 days of storage at room temperature. Conclusions: A suitable apixaban suspension formulation was identified for administration via enteral feeding tubes. The formulation consisted of 0.25 mg/mL apixaban in 50:50 Ora-Plus:water. The stability study results supported a beyond-use date of 7 days at room temperature.

  15. Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis

    NASA Astrophysics Data System (ADS)

    MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul

    2018-03-01

    Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.

  16. Vehicle systems: coupled and interactive dynamics analysis

    NASA Astrophysics Data System (ADS)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  17. 32 CFR 935.51 - Motor vehicle violations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Motor vehicle violations. 935.51 Section 935.51... REGULATIONS WAKE ISLAND CODE Penalties § 935.51 Motor vehicle violations. Whoever is found guilty of a... than 30 days, or suspension or revocation of his motor vehicle operator's permit, or any combination or...

  18. 32 CFR 935.51 - Motor vehicle violations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Motor vehicle violations. 935.51 Section 935.51... REGULATIONS WAKE ISLAND CODE Penalties § 935.51 Motor vehicle violations. Whoever is found guilty of a... than 30 days, or suspension or revocation of his motor vehicle operator's permit, or any combination or...

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  20. A nonlinear kinematic and dynamic modeling of Macpherson suspension systems with a magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Dutta, Saikat; Choi, Seung-Bok

    2016-03-01

    It is well known that Macpherson strut suspension systems are widely used in light and medium weight vehicles. The performance of these suspension systems can be enriched by incorporating magneto-rheological (MR) dampers and an appropriate dynamic model is required in order to find out the ride comfort and other performances properly in the sense of practical environment conditions. Therefore, in this work the kinematic and dynamic modeling of Macpherson strut suspension system with MR damper is presented and its responses are evaluated. The governing equations are formulated using the kinematic properties of the suspension system and adopting Lagrange’s equation. In the formulation of the model, both the rotation of the wheel assembly and the lateral stiffness of the tire are considered to represent the nonlinear characteristic of Macpherson type suspension system. The formulated mathematical model is then compared with equivalent conventional quarter car suspension model and the different dynamic responses such as the displacement of the sprung mass are compared to emphasize the effectiveness of the proposed model. Additionally, in this work the important kinematic properties of suspension system such as camber angle, king-pin angle and track width alteration, which cannot be obtained from conventional quarter car suspension model, are evaluated in time and frequency domains. Finally, vibration control responses of the proposed suspension system are presented in time and frequency domains which are achieved from the semi-active sky-hook controller.

  1. Total dynamic response of a PSS vehicle negotiating asymmetric road excitations

    NASA Astrophysics Data System (ADS)

    Zhu, Jian Jun; Khajepour, Amir; Esmailzadeh, Ebrahim

    2012-12-01

    A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring-damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre-ground contact model and a 2D tyre-ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.

  2. Some cable suspension systems and their effects on the flexural frequencies of slender aerospace structures

    NASA Technical Reports Server (NTRS)

    Herr, R. W.

    1974-01-01

    The effects of several cable suspension configurations on the first free-free flexural frequency of uniform beams have been determined by experiment and analysis. The results of this study confirm that in general the larger the test vehicle the larger is the flexural frequency measurement error attributable to a given cable suspension configuration. For horizontally oriented beams representing modern aerospace vehicles of average size and flexibility, the restraining effects of all but the shortest support cables were minor. The restraining effects of support cables of moderate length attached near the base of vertically oriented vehicles were overshadowed by the effects of beam compression due to gravity.

  3. Randomized, open-label, single-dose, crossover, relative bioavailability study in healthy adults, comparing the pharmacokinetics of rabeprazole granules administered using soft food or infant formula as dosing vehicle versus suspension.

    PubMed

    Thyssen, An; Solanki, Bhavna; Treem, William

    2012-07-01

    A sprinkle capsule formulation containing enteric-coated, delayed-release rabeprazole granules is being developed for the treatment of children with gastrointestinal reflux disease. The granules are designed to be mixed with vehicles that facilitate delivery to children, who may be unable to swallow solid formulations. The primary objective of this study-conducted on the sponsor's initiative-was to compare the bioavailability of rabeprazole granules when mixed with various dosing vehicles (small amount of soft food or infant formula) with that of a rabeprazole suspension with inactive vehicle granules (reference), to determine which dosing vehicle can be used to deliver rabeprazole in children. Tolerability was also assessed. This single-center, single-dose, randomized, open-label, 5-period crossover study was conducted in 35 healthy adult subjects. In a randomized sequence, fasting subjects received a single dose of 10-mg rabeprazole granules per treatment period, mixed with small amounts of 1 of 5 dosing vehicles (a strawberry-flavored suspension of rabeprazole granules with inactive vehicle granules reconstituted with water, yogurt [1 tablespoon], applesauce [1 tablespoon], or infant formula [5 mL], or a suspension of rabeprazole granules with inactive vehicle tablet reconstituted with water). Full plasma pharmacokinetic (PK) profiles of rabeprazole and its thioether metabolite were collected; concentrations were estimated via LC-MS/MS. PK properties were estimated using noncompartmental methods; 90% CIs around least squares mean test-to-reference ratios were calculated for C(max) and AUC values. All treatment-emergent adverse events (TEAEs) were recorded and assessed for severity (mild, moderate, or severe) and relationship to study drug. A total of 35 subjects were enrolled (mean age, 38 years; 54.3% female; 100% white; mean weight, 71.4 kg). Thirty-four subjects completed the study. Rabeprazole and rabeprazole thioether plasma PK properties were comparable

  4. Comparison between different sets of suspension parameters and introduction of new modified skyhook control strategy incorporating varying road condition

    NASA Astrophysics Data System (ADS)

    Abul Kashem, Saad Bin; Ektesabi, Mehran; Nagarajah, Romesh

    2012-07-01

    This study examines the uncertainties in modelling a quarter car suspension system caused by the effect of different sets of suspension parameters of a corresponding mathematical model. To overcome this problem, 11 sets of identified parameters of a suspension system have been compared, taken from the most recent published work. From this investigation, a set of parameters were chosen which showed a better performance than others in respect of peak amplitude and settling time. These chosen parameters were then used to investigate the performance of a new modified continuous skyhook control strategy with adaptive gain that dictates the vehicle's semi-active suspension system. The proposed system first captures the road profile input over a certain period. Then it calculates the best possible value of the skyhook gain (SG) for the subsequent process. Meanwhile the system is controlled according to the new modified skyhook control law using an initial or previous value of the SG. In this study, the proposed suspension system is compared with passive and other recently reported skyhook controlled semi-active suspension systems. Its performances have been evaluated in terms of ride comfort and road handling performance. The model has been validated in accordance with the international standards of admissible acceleration levels ISO2631 and human vibration perception.

  5. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  6. A new active variable stiffness suspension system using a nonlinear energy sink-based controller

    NASA Astrophysics Data System (ADS)

    Anubi, Olugbenga Moses; Crane, Carl D.

    2013-10-01

    This paper presents the active case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism which consists of a horizontal control strut and a vertical strut. The horizontal strut is used to vary the load transfer ratio by actively controlling the location of the point of attachment of the vertical strut to the car body. The control algorithm, effected by a hydraulic actuator, uses the concept of nonlinear energy sink (NES) to effectively transfer the vibrational energy in the sprung mass to a control mass, thereby reducing the transfer of energy from road disturbance to the car body at a relatively lower cost compared to the traditional active suspension using the skyhook concept. The analyses and simulation results show that a better performance can be achieved by subjecting the point of attachment of a suspension system, to the chassis, to the influence of a horizontal NES system.

  7. Between simplicity and accuracy: Effect of adding modeling details on quarter vehicle model accuracy.

    PubMed

    Soong, Ming Foong; Ramli, Rahizar; Saifizul, Ahmad

    2017-01-01

    Quarter vehicle model is the simplest representation of a vehicle that belongs to lumped-mass vehicle models. It is widely used in vehicle and suspension analyses, particularly those related to ride dynamics. However, as much as its common adoption, it is also commonly accepted without quantification that this model is not as accurate as many higher-degree-of-freedom models due to its simplicity and limited degrees of freedom. This study investigates the trade-off between simplicity and accuracy within the context of quarter vehicle model by determining the effect of adding various modeling details on model accuracy. In the study, road input detail, tire detail, suspension stiffness detail and suspension damping detail were factored in, and several enhanced models were compared to the base model to assess the significance of these details. The results clearly indicated that these details do have effect on simulated vehicle response, but to various extents. In particular, road input detail and suspension damping detail have the most significance and are worth being added to quarter vehicle model, as the inclusion of these details changed the response quite fundamentally. Overall, when it comes to lumped-mass vehicle modeling, it is reasonable to say that model accuracy depends not just on the number of degrees of freedom employed, but also on the contributions from various modeling details.

  8. Between simplicity and accuracy: Effect of adding modeling details on quarter vehicle model accuracy

    PubMed Central

    2017-01-01

    Quarter vehicle model is the simplest representation of a vehicle that belongs to lumped-mass vehicle models. It is widely used in vehicle and suspension analyses, particularly those related to ride dynamics. However, as much as its common adoption, it is also commonly accepted without quantification that this model is not as accurate as many higher-degree-of-freedom models due to its simplicity and limited degrees of freedom. This study investigates the trade-off between simplicity and accuracy within the context of quarter vehicle model by determining the effect of adding various modeling details on model accuracy. In the study, road input detail, tire detail, suspension stiffness detail and suspension damping detail were factored in, and several enhanced models were compared to the base model to assess the significance of these details. The results clearly indicated that these details do have effect on simulated vehicle response, but to various extents. In particular, road input detail and suspension damping detail have the most significance and are worth being added to quarter vehicle model, as the inclusion of these details changed the response quite fundamentally. Overall, when it comes to lumped-mass vehicle modeling, it is reasonable to say that model accuracy depends not just on the number of degrees of freedom employed, but also on the contributions from various modeling details. PMID:28617819

  9. A technical feasibility study of surfactant-free drug suspensions using octenyl succinate-modified starches.

    PubMed

    Kuentz, Martin; Egloff, Peter; Röthlisberger, Dieter

    2006-05-01

    Many new drugs exhibit poor wetting behaviour and low aqueous solubility. This is particularly an issue for preclinical studies like toxicological trials, in which considerably higher doses and volumes are being administered compared to clinical studies. Preclinical vehicles typically contain high levels of surfactants that can exert biological effects. However, the biological inertness of vehicles is pivotal for the application in preclinical studies stressing the need in finding new excipients to solve formulation problems of today's drug discovery. The present study investigated the technical feasibility of surfactant-free suspensions using a new poorly soluble drug as model. It was shown that octenyl succinate-modified starches adequately wetted the drug and homogenous tasteless suspensions were obtained. The polymer xanthan gum was identified as macroscopically compatible gelling agent. Concentration effects of xanthan, drug and different modified starches were studied in a D-optimal design with respect to rheological properties. The suspensions were also tested in an analytical centrifuge using NIR transmission profiles to obtain a measure of sedimentation stability under accelerated conditions. The modified starches exhibited only little influence on the viscosity as well as on the yield point in contrast to the rheological effects of xanthan gum. This gelling agent was the main stabilising excipient as the modified starches hindered to a lesser extent sedimentation. The most stable suspensions displayed convenient flow properties. The viscosity at 100 s(-1) and 25 degrees C was in technically acceptable range of 120-140 mPa s in view of a application via gavage or a syringe in animal studies. The results demonstrated that surfactant-free drug suspensions with excellent technical performance can be obtained using octenyl succinate-modified starches. The vehicles were tasteless and based on the experience of modified starches in the food industry, the

  10. Stowable Energy-Absorbing Rocker-Bogie Suspensions

    NASA Technical Reports Server (NTRS)

    Harrington, Brian; Voorhees, Christopher

    2007-01-01

    A report discusses the design of the rocker-bogie suspensions of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. Going beyond the basic requirements regarding mobility on uneven terrain, the design had to satisfy requirements (1) to enable each suspension to contort so that the rover could be stowed within limited space in a tetrahedral lander prior to deployment and (2) that the suspension be able to absorb appreciable impact loads, with limited deflection, during egress from the lander and traversal of terrain. For stowability, six joints (three on the right, three on the left) were added to the basic rocker-bogie mechanism. One of the joints on each side was a yoke-and-clevis joint at the suspension/differential interface, one was a motorized twist joint in the forward portion of the rocker, and one was a linear joint created by modifying a fixed-length bogie member into a telescoping member. For absorption of impact, the structural members were in the form of box beams made by electron-beam welding of machined, thin-walled, C-channel, titanium components. The box beams were very lightweight and could withstand high bending and torsional loads.

  11. Analysis of Rail Transit Vehicle Dynamic Curving Performance

    DOT National Transportation Integrated Search

    1984-06-01

    An analytical model is developed for determining the dynamic curving performance of rail transit vehicles. The dynamic wheel/rail interaction forces, vehicle suspension and body motions and track displacement are computed, as well as wheel and rail w...

  12. The influence of suspension components friction on race car vertical dynamics

    NASA Astrophysics Data System (ADS)

    Benini, Claudio; Gadola, Marco; Chindamo, Daniel; Uberti, Stefano; Marchesin, Felipe P.; Barbosa, Roberto S.

    2017-03-01

    This work analyses the effect of friction in suspension components on a race car vertical dynamics. It is a matter of fact that race cars aim at maximising their performance, focusing the attention mostly on aerodynamics and suspension tuning: suspension vertical and rolling stiffness and damping are parameters to be taken into account for an optimal setup. Furthermore, friction in suspension components must not be ignored. After a test session carried out with a F4 on a Four Poster rig, friction was detected on the front suspension. The real data gathered allow the validation of an analytical model with friction, confirming that its influence is relevant for low frequency values closed to the car pitch natural frequency. Finally, some setup proposals are presented to describe what should be done on actual race cars in order to correct vehicle behaviour when friction occurs.

  13. Ondansetron: design and development of oral pharmaceutical suspensions.

    PubMed

    Gallardo Lara, V; Gallardo, M Lopez-Viota; Morales Hernandez, Ma E; Ruiz Martinez, Ma A

    2009-02-01

    Ondansetron is a carbazol with antiemetic properties that acts as a competitive and selective antagonist for the 5 HT3 serotonin receptors. It is used primarily to control nausea and vomiting caused by cytotoxic chemotherapy and radiotherapy, as well as in postoperative vomiting in gynecological surgery. The main aim of this work was to obtain a stable, long-acting oral suspension of ondansetron. To prolong the action, latexes are used as transport vehicles, specifically we tested, Aquateric, which comprises mainly cellulose acetophthalate. We prepared a complex drug-polymer, and the release profile of ondansetron was evaluated at acid, basic and acid-basic pH. This complex is additioned to a vehicle with xanthan gum and sodium carboxymethylcellulose (CMCNa) as thickeners to retard as much as possible particle sedimentation and thus increase physical stability of the suspension. The results obtained for sediment volume and degree of flocculation suggest that xanthan gum provides the best results, with better organolepticcharacteristics, appearance, physical stability and easy redispersability.

  14. Stability of sotalol hydrochloride in extemporaneously prepared oral suspension formulations.

    PubMed

    Sidhom, Madiha B; Rivera, Nadya; Almoazen, Hassan; Taft, David R; Kirschenbaum, Harold L

    2005-01-01

    The physical, chemical, and microbial stabilities of extemporaneously compounded oral liquid formulations of sotalol hydrochloride were studied. Sotalol hydrochloride oral liquid suspensions (5mg/mL) were prepared from commercially available tablets (Betapace) in a 1:1 mixture of Ora-Plus: Ora-Sweet, a 1:1 mixture of Ora-Plus:Ora-Sweet SF, and a 1:2.4 mixture of simple syrup:methylcellulose vehicle. Six batches of each formulation were prepared; three were stored at refrigerated temperature (2 deg to 8 deg C) and three at room temperature (20 deg to 25 deg C). Samples were collected from each batch weekly for 6 weeks, and again at 12 weeks. Samples were analyzed by means of a high-performance liquid chromatographic method, and the concentrations obtained were compared to the theoretical time zero value. Samples were examined for pH, odor, color, and consistency changes. The suspensions also were evaluated for their microbial stability. Sotalol hydrochloride oral liquid suspensions (5mg/mL) were chemically stable for 12 weeks regardless of storage conditions (room temperature or refrigerated). Bacterial growth was not supported by any of the formulations. Suspensions stored at refrigerated temperature retained better physical quality (e.g., odor, color, and consistency) than suspensions stored at room temperature. Overall, this study demonstrates that oral formulations of sotalol hydrochloride can be readily prepared with commercially available vehicles. The method of preparation is relatively simple, the materials are relatively inexpensive, and the products have a shelf-life of at least 12 weeks.

  15. A new pneumatic suspension system with independent stiffness and ride height tuning capabilities

    NASA Astrophysics Data System (ADS)

    Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui

    2012-12-01

    This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.

  16. Feasibility of amlodipine besylate, chloroquine phosphate, dapsone, phenytoin, pyridoxine hydrochloride, sulfadiazine, sulfasalazine, tetracycline hydrochloride, trimethoprim and zonisamide in SyrSpend(®) SF PH4 oral suspensions.

    PubMed

    Ferreira, Anderson O; Polonini, Hudson C; Silva, Sharlene L; Patrício, Fernando B; Brandão, Marcos Antônio F; Raposo, Nádia R B

    2016-01-25

    The objective of this study was to evaluate the feasibility of 10 commonly used active pharmaceutical ingredients (APIs) compounded in oral suspensions using an internationally used suspending vehicle (SyrSpend(®) SF PH4 liquid): (i) amlodipine, (as besylate) 1.0mg/mL; (ii) chloroquine phosphate,15.0 mg/mL; (iii) dapsone, 2.0 mg/mL; (iv) phenytoin, 15.0 mg/mL; (v) pyridoxine hydrochloride, 50.0 mg/mL; (vi) sulfadiazine, 100.0 mg/mL; (vii) sulfasalazine, 100.0 mg/mL; (viii) tetracycline hydrochloride, 25.0 mg/mL; (ix) trimethoprim, 10.0 mg/mL; and (x) zonisamide, 10.0 mg/mL. All suspensions were stored both at controlled refrigeration (2-8 °C) and controlled room temperature (20-25 °C). Feasibility was assessed by measuring the percent recovery at varying time points throughout a 90-day period. API quantification was performed by high-performance liquid chromatography (HPLC-UV), via a stability-indicating method. Given the percentage of recovery of the APIs within the suspensions, the expiration date of the final products (API+vehicle) was at least 90 days for all suspensions with regard to both the controlled temperatures. This suggests that the vehicle is stable for compounding APIs from different pharmacological classes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Time response analysis in suspension system design of a high-speed car

    NASA Astrophysics Data System (ADS)

    Pagwiwoko, Cosmas Pandit

    2010-03-01

    A land speed record vehicle is designed to run on a flat surface like salt lake where the wheels are normally made from solid metal with a special suspension system. The suspension is designed to provide a stable platform to keep the wheel treads on tract, to insulate the car and the driver from the surface irregularities and to take part of good handling properties. The surface condition of the lake beds is basically flat without undulations but with inconsistent surface textures and ridges. Spring with nonlinear rate is used with the reason that the resistance builds up roughly proportional to the aerodynamic download for keeping the height more nearly constant. The objective of the work is to produce an efficient method for assisting the design of suspension system. At the initial step, the stiffness and the damping constants are determined based on RMS optimization by following the optimization strategy i.e. to minimize the absolute acceleration respect to the relative displacement of the suspension. Power bond graph technique is then used to model the nonlinearity of the components i.e. spring and dashpot of the suspension system. This technique also enables to incorporate the interactions of dynamic response of the vehicle's body with aerodynamic flow as a result of the base excitation of the ground to the wheels. The simulation is conducted on the platform of Simulink-MATLAB and the interactions amongst the components within the system are observed in time domain to evaluate the effectiveness of the suspension.

  18. Development of Sub-Ischial Prosthetic Sockets with Vacuum-Assisted Suspension for Highly Active Persons with Transfemoral Amputations

    DTIC Science & Technology

    2013-10-01

    15. SUBJECT TERMS Transfemoral amputation, sub-ischial socket, prosthesis , vacuum-assisted suspension 16. SECURITY CLASSIFICATION OF: 17...vacuum for suspension of the prosthesis ...14 Task 6 Determine range of volumes to be evacuated from transfemoral sockets of highly active prosthesis users

  19. Active vibration attenuating seat suspension for an armored helicopter crew seat

    NASA Astrophysics Data System (ADS)

    Sztein, Pablo Javier

    An Active Vibration Attenuating Seat Suspension (AVASS) for an MH-60S helicopter crew seat is designed to protect the occupants from harmful whole-body vibration (WBV). Magnetorheological (MR) suspension units are designed, fabricated and installed in a helicopter crew seat. These MR isolators are built to work in series with existing Variable Load Energy Absorbers (VLEAs), have minimal increase in weight, and maintain crashworthiness for the seat system. Refinements are discussed, based on testing, to minimize friction observed in the system. These refinements include the addition of roller bearings to replace friction bearings in the existing seat. Additionally, semi-active control of the MR dampers is achieved using special purpose built custom electronics integrated into the seat system. Experimental testing shows that an MH-60S retrofitted with AVASS provides up to 70.65% more vibration attenuation than the existing seat configuration as well as up to 81.1% reduction in vibration from the floor.

  20. Ride comfort enhancement in railway vehicle by the reduction of the car body structural flexural vibration

    NASA Astrophysics Data System (ADS)

    Dumitriu, M.

    2017-08-01

    The paper approaches the issue of reduction in the vertical bending vibrations of the railway vehicle carbody and the ride comfort enhancement at high velocities, starting from the prospect of isolating the vibrations by the best possible selection of the passive suspension damping in the vehicle. To this purpose, the examination falls on the influence of the vertical suspension damping upon the vibrations regime of the vehicle at the bending resonance frequency and upon the ride comfort. The results of the numerical simulations regarding the frequency response of the carbody acceleration and the comfort index will be therefore used. A value of the secondary suspension damping can be thus identified that will provide the best ride comfort performance. Similarly, the ride comfort can be increased by raising the primary suspension damping ratio.

  1. Chemical stability of extemporaneously prepared Lorazepam suspension at two temperatures.

    PubMed

    Lee, Wan-Man Ellaria; Lugo, Ralph A; Rusho, William J; Mackay, Mark; Sweeley, John

    2004-10-01

    The objective of this study was to determine the chemical stability of extemporaneously prepared lorazepam suspension (1 mg/mL) stored at two temperatures (4°C and 22°C) for 3 months. Lorazepam tablets marketed by two manufacturers (Mylan Pharmaceuticals and Watson Laboratories) were used to extemporaneously formulate two independently prepared suspensions. Each suspension was prepared using sterile water, Ora-Plus(®) and Ora-Sweet(®) to achieve a final concentration of 1 mg/mL. The two brands of tablets required different volumes of vehicles to prepare a pharmaceutically optimal suspension. The suspensions were stored in amber glass bottles at 4°C and 22°C for 91 days. Samples were analyzed by high performance liquid chromatography at baseline and on days 2, 3, 7, 14, 21, 28, 42, 63, and 91. The suspensions were considered stable if the mean lorazepam concentration remained greater than 90% of the initial concentration.The chemical stabilities of these two extemporaneously prepared lorazepam suspensions were comparable throughout the study. Both lorazepam suspensions were stable for 63 days when stored at 4°C or 22°C, and both were stable for 91 days when refrigerated at 4°C. When stored at room temperature, the suspension prepared from the Watson tablet retained 88.9 ± 1.4% of the initial concentration on day 91 and was therefore considered unstable, while the suspension prepared from the Mylan tablet was stable for the entire 91-day study.

  2. Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach

    DOE PAGES

    Usabiaga, Florencio Balboa; Kallemov, Bakytzhan; Delmotte, Blaise; ...

    2016-01-12

    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest numbermore » of iterations that is essentially independent of the number of particles. Key to the efficiency of the method is a technique for fast computation of the product of the blob-blob mobility matrix and a vector. For unbounded suspensions, we rely on existing analytical expressions for the Rotne-Prager-Yamakawa tensor combined with a fast multipole method (FMM) to obtain linear scaling in the number of particles. For suspensions sedimented against a single no-slip boundary, we use a direct summation on a graphical processing unit (GPU), which gives quadratic asymptotic scaling with the number of particles. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently developed rigid-body immersed boundary method by B. Kallemov, A. P. S. Bhalla, B. E. Griffith, and A. Donev (Commun. Appl. Math. Comput. Sci. 11 (2016), no. 1, 79-141) to suspensions of freely moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid-body equations converges in a bounded number of iterations regardless of the system size. In our approach, each iteration only requires a few cycles of a geometric multigrid solver for the Poisson equation, and an application of the block-diagonal preconditioner

  3. Dynamic interaction between vehicles and infrastructure experiment (DIVINE) : policy implications

    DOT National Transportation Integrated Search

    1998-01-01

    The Dynamic Interaction between Vehicles and Infrastructure Experiment (DIVINE) Project provided scientific evidence of the dynamic effects of heavy vehicles and their suspension systems on pavements and bridges. These conclusions are detailed in the...

  4. Dynamic interaction between vehicles and infrastructure experiment (DIVINE) : technical report

    DOT National Transportation Integrated Search

    1998-10-27

    The Dynamic Interaction between Vehicles and Infrastructure Experiment (DIVINE) Project provides scientific evidence of the dynamic effects of heavy vehicles and their suspension systems on pavements and bridges in support of transport policy decisio...

  5. An Active Micro Vibration Isolator with Zero-Power Controlled Magnetic Suspension Technology

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Emdadul; Takasaki, Masaya; Ishino, Yuji; Suzuki, Hirohisa; Mizuno, Takeshi

    In this paper, a three-degree-of-freedom vibration isolation system using active zero-power controlled magnetic suspension is presented in order to isolate vibrations transmitted from the ground and to attenuate the effect of direct disturbances on the table. The zero-compliance of the isolator for direct disturbances was realized by connecting a conventional mechanical spring in series with a negative spring produced by an active magnetic suspension mechanism. In this work, each degree-of-freedom-of-motion of the vibration isolator is treated analytically and it is shown that the developed system is capable to generate infinite stiffness in each mode. Experimental studies have been conducted as well to measure the effectiveness of the isolator under both types of disturbances. Further improvements for the developed system as well as the control techniques are also discussed.

  6. Development of Subischial Prosthetic Sockets with Vacuum-Assisted Suspension for Highly Active Persons with Transfemoral Amputations

    DTIC Science & Technology

    2015-10-01

    2011;92:1570– 1575 . 12. Ferraro C. Outcomes study of transtibial amputees using elevated vacuum suspension in comparison with pin suspension. J Prosthet...Amputees: Effect on Fit, Activity, and Limb Volume,” Arch. Phys. Med. Rehabil., 92(10), pp. 1570– 1575 . [6] Hoskins, R. D., Sutton, E. E., Kinor, D

  7. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    NASA Astrophysics Data System (ADS)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  8. Intracerebral Cell Implantation: Preparation and Characterization of Cell Suspensions.

    PubMed

    Rossetti, Tiziana; Nicholls, Francesca; Modo, Michel

    2016-01-01

    Intracerebral cell transplantation is increasingly finding a clinical translation. However, the number of cells surviving after implantation is low (5-10%) compared to the number of cells injected. Although significant efforts have been made with regard to the investigation of apoptosis of cells after implantation, very little optimization of cell preparation and administration has been undertaken. Moreover, there is a general neglect of the biophysical aspects of cell injection. Cell transplantation can only be an efficient therapeutic approach if an optimal transfer of cells from the dish to the brain can be ensured. We therefore focused on the in vitro aspects of cell preparation of a clinical-grade human neural stem cell (NSC) line for intracerebral cell implantation. NSCs were suspended in five different vehicles: phosphate-buffered saline (PBS), Dulbecco's modified Eagle medium (DMEM), artificial cerebral spinal fluid (aCSF), HypoThermosol, and Pluronic. Suspension accuracy, consistency, and cell settling were determined for different cell volume fractions in addition to cell viability, cell membrane damage, and clumping. Maintenance of cells in suspension was evaluated while being stored for 8 h on ice, at room temperature, or physiological normothermia. Significant differences between suspension vehicles and cellular volume fractions were evident. HypoThermosol and Pluronic performed best, with PBS, aCSF, and DMEM exhibiting less consistency, especially in maintaining a suspension and preserving viability under different storage conditions. These results provide the basis to further investigate these preparation parameters during the intracerebral delivery of NSCs to provide an optimized delivery process that can ensure an efficient clinical translation.

  9. Summary of Optimization Techniques That Can Be Applied to Suspension System Design

    DOT National Transportation Integrated Search

    1973-03-01

    Summaries are presented of the analytic techniques available for three levitated vehicle suspension optimization problems: optimization of passive elements for fixed configuration; optimization of a free passive configuration; optimization of a free ...

  10. Development of a Retractable Compressible Fluid Suspension System. Task 1

    DTIC Science & Technology

    1988-06-01

    the design and fabrication cost of the suspension units, the roadwheel hub and spindle currently used on the AAV -7AI amphibious vehicle dre to be...SUSPENSION HOUSING FIGURE .5. FEM HOUSING STRESS ANALYSIS, SOLID MODEL, SECTION VIEW -16- ,"~1 /IZ4: 45 "" / EAL UN ~iST=h~~ / 6DIE5.8la DTJJ.-RER.SUSP. HSC ...SHX M1784 DS=-792 IIDDEN - 9983 -1779 Ti___ 4869 5_ 6334 64959- 71784 DTli--RETR. SUSP. HSC .,CiASE1:HAX VERT, 29K OUT FIGURE 7. PIVOT SHAFT, SOLID

  11. Intelligent mobility for robotic vehicles in the army after next

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Goetz, Richard C.; Gorsich, David J.

    1999-07-01

    The TARDEC Intelligent Mobility program addresses several essential technologies necessary to support the army after next (AAN) concept. Ground forces in the AAN time frame will deploy robotic unmanned ground vehicles (UGVs) in high-risk missions to avoid exposing soldiers to both friendly and unfriendly fire. Prospective robotic systems will include RSTA/scout vehicles, combat engineering/mine clearing vehicles, indirect fire artillery and missile launch platforms. The AAN concept requires high on-road and off-road mobility, survivability, transportability/deployability and low logistics burden. TARDEC is developing a robotic vehicle systems integration laboratory (SIL) to evaluate technologies and their integration into future UGV systems. Example technologies include the following: in-hub electric drive, omni-directional wheel and steering configurations, off-road tires, adaptive tire inflation, articulated vehicles, active suspension, mine blast protection, detection avoidance and evasive maneuver. This paper will describe current developments in these areas relative to the TARDEC intelligent mobility program.

  12. Road simulation for four-wheel vehicle whole input power spectral density

    NASA Astrophysics Data System (ADS)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  13. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  14. 32 CFR 636.7 - Extensions of suspensions and revocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Extensions of suspensions and revocations. 636.7 Section 636.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.7 Extensions of...

  15. A comparative analysis of passive twin tube and skyhook MRF dampers for motorcycle front suspensions

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi; Gravatt, John

    2004-07-01

    A comparative analysis between conventional passive twin tube dampers and skyhook-controlled magneto-rheological fluid (MRF) dampers for motorcycle front suspensions is provided, based on single axis testing in a damper test rig and suspension performance testing in road trials. Performance motorcycles, while boasting extremely light suspension components and competition-ready performance, have an inherent weakness in comfort, as the suspension systems are designed primarily for racing purposes. Front suspension acceleration and shock loading transmit directly through the front suspension triple clamp into the rider's arms and shoulders, causing rapid fatigue in shoulder muscles. Magneto-rheological fluid dampers and skyhook control systems offer an alternative to conventional sport motorcycle suspensions - both performance and comfort can be combined in the same package. Prototype MRF dampers designed and manufactured specifically for this application require no more space than conventional twin tube designs while adding only 1.7 pounds total weight to the system. The MRF dampers were designed for high controllability and low power consumption, two vital considerations for a motorcycle application. The tests conducted include the dampers' force-velocity curve testing in a damper test rig and suspension performance based on damper position, velocity, and acceleration measurement. Damper test rig results show the MRF dampers have a far greater range of adjustability than the test vehicle's OEM dampers. Combined with a modified sky-hook control system, the MRF dampers can greatly decrease the acceleration and shock loading transmitted to the rider through the handlebars while contributing performance in manners such as anti-dive under braking. Triple clamp acceleration measurements from a variety of staged road conditions, such as sinusoidal wave inputs, will be compared to subjective test-rider field reports to establish a correlation between rider fatigue and the

  16. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    NASA Technical Reports Server (NTRS)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  17. Stability of extemporaneous erlotinib, lapatinib, and imatinib oral suspensions.

    PubMed

    Li, Quan; Liu, Zhaoying; Kolli, Shamalatha; Wetz, Karen; Griffith, Niesha; Poi, Ming J

    2016-09-01

    The stability of extemporaneously prepared erlotinib, lapatinib, and imatinib oral liquid dosage forms using two commercially available vehicles when stored at 4 and 25 °C was evaluated. Three batches of extemporaneous oral suspensions were prepared for each drug. Erlotinib and lapatinib tablets were crushed and mixed in a 1:1 mixture of Ora-Plus:Ora-Sweet solution to yield 10- and 50-mg/mL suspensions, respectively. Imatinib tablets were crushed and mixed in Ora-Sweet solution to yield a 40-mg/mL suspension. Suspensions were stored in amber plastic bottles, and samples from each bottle were obtained on days 0, 1, 3, 7, 14, and 28. Erlotinib 10-mg/mL and lapatinib 50-mg/mL oral suspensions in a 1:1 mixture of Ora-Plus and Ora-Sweet retained at least 90% of their initial concentration throughout the 28-day study when stored at 25 °C. Visual inspection revealed notable viscosity changes in the erlotinib and lapatinib suspensions stored at 4 °C for 7 days and beyond. The viscosity of these preparations increased with time and was particularly evident with the erlotinib suspension, which exhibited a puddinglike texture. Imatinib 40-mg/mL oral suspension in Ora-Sweet appeared stable for up to 14 days when stored at both 25 and 4 °C. Erlotinib 10-mg/mL and lapatinib 50-mg/mL oral suspensions prepared from commercially available tablets were stable for at least 28 days when prepared in a 1:1 mixture of Ora-Plus:Ora-Sweet at 25 °C. Imatinib 40-mg/mL oral suspension prepared from commercially available tablets was stable for up to 14 days when prepared in Ora-Sweet and stored at 25 and 4 °C. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  18. Diesel Vehicle Maintenance Competencies.

    ERIC Educational Resources Information Center

    Braswell, Robert; And Others

    Designed to provide a model set of competencies, this manual presents tasks which were identified by employers, employees, and teachers as important in a postsecondary diesel vehicle maintenance curriculum. The tasks are divided into seven major component areas of instruction: chassis and suspension, diesel engines, diesel fuel, electrical,…

  19. Vehicle load-equalization system

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.

    1976-01-01

    System uses cables and associated pulleys to form closed-loop suspension system for terrain compensation. Loop causes reactions at each of three wheels in response to loading at remaining wheel. Simplicity of design should be of interest to designers and manufacturers of construction equipment and off-road vehicles.

  20. Extemporaneous suspension of propafenone: attending lack of pediatric formulations in Mexico.

    PubMed

    Juárez Olguín, Hugo; Flores Pérez, Carmen; Ramírez Mendiola, Blanca; Coria Jiménez, Rafael; Sandoval Ramírez, Eunice; Flores Pérez, Janett

    2008-11-01

    Physicians have frequently encountered difficulties when prescribing drugs not available in doses suitable for pediatric age groups. Furthermore, children have difficulty swallowing tablets. This study aimed to determine the stability of an oral propafenone suspension made from commercial tablets with a syrup vehicle and to establish its reliable use with children. An extemporaneous suspension of propafenone 1.5 mg/ml was prepared with commercial tablets. Its physicochemical and microbiologic stability was established by constant monitoring during 90 days at room temperature (15 +/- 5 degrees C) and at refrigeration (3-5 degrees C). Plasma levels of propafenona were measured in two children with supraventricular tachycardia at steady state. The suspension was stable, maintaining its original physicochemical and microbiologic properties. Moreover, no apparent changes in color or odor were observed. Plasma levels of propafenone in patients demonstrated therapeutic concentrations after they had taken the suspension, with no unwanted outcome. The conservation of both physicochemical and microbiologic stability of the suspension represents an option for the administration of propafenone to children.

  1. Computer program for investigating effects of nonlinear suspension-system elastic properties on parachute inflation loads and motions

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1972-01-01

    A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.

  2. 32 CFR 634.11 - Administrative due process for suspensions and revocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drunk driving or driving under the influence offenses, reliable evidence readily available will be.... (9) Hearing on suspension actions under § 634.9(a) for drunk or impaired driving pending resolution... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges...

  3. 32 CFR 634.11 - Administrative due process for suspensions and revocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drunk driving or driving under the influence offenses, reliable evidence readily available will be.... (9) Hearing on suspension actions under § 634.9(a) for drunk or impaired driving pending resolution... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges...

  4. Spatial multibody modeling and vehicle dynamics analysis of advanced vehicle technologies

    NASA Astrophysics Data System (ADS)

    Letherwood, Michael D.; Gunter, David D.; Gorsich, David J.; Udvare, Thomas B.

    2004-08-01

    The US Army vision, announced in October of 1999, encompasses people, readiness, and transformation. The goal of the Army vision is to transition the entire Army into a force that is strategically responsive and dominant at every point of the spectrum of operations. The transformation component will be accomplished in three ways: the Objective Force, the Legacy (current) Force, and the Interim Force. The objective force is not platform driven, but rather the focus is on achieving capabilities that will operate as a "system of systems." As part of the Objective Force, the US Army plans to begin production of the Future Combat System (FCS) in FY08 and field the first unit by FY10 as currently defined in the FCS solicitation(1). As part of the FCS program, the Future Tactical Truck System (FTTS) encompasses all US Army tactical wheeled vehicles and its initial efforts will focus only on the heavy class. The National Automotive Center (NAC) is using modeling and simulation to demonstrate the feasibility and operational potential of advanced commercial and military technologies with application to new and existing tactical vehicles and to describe potential future vehicle capabilities. This document will present the results of computer-based, vehicle dynamics performance assessments of FTTS concepts with such features as hybrid power sources, active suspensions, skid steering, and in-hub electric drive motors. Fully three-dimensional FTTS models are being created using commercially available modeling and simulation methodologies such as ADAMS and DADS and limited vehicle dynamics validation studies are will be performed.

  5. Preservative-free triamcinolone acetonide suspension developed for intravitreal injection.

    PubMed

    Bitter, Christoph; Suter, Katja; Figueiredo, Verena; Pruente, Christian; Hatz, Katja; Surber, Christian

    2008-02-01

    All commercially available triamcinolone acetonide (TACA) suspensions, used for intravitreal treatment, contain retinal toxic vehicles (e.g., benzyl alcohol, solubilizer). Our aim was to find a convenient and reproducible method to compound a completely preservative-free TACA suspension, adapted to the intraocular physiology, with consistent quality (i.e., proven sterility and stability, constant content and dose uniformity, defined particle size, and 1 year shelf life). We evaluated two published (Membrane-filter, Centrifugation) and a newly developed method (Direct Suspending) to compound TACA suspensions for intravitreal injection. Parameters as TACA content (HPLC), particle size (microscopy and laser spectrometry), sterility, and bacterial endotoxins were assessed. Stability testing (at room temperature and 40 degrees C) was performed: color and homogeneity (visually), particle size (microscopically), TACA content and dose uniformity (HPLC) were analyzed according to International Conference on Harmonisation guidelines. Contrary to the known methods, the direct suspending method is convenient, provides a TACA suspension, which fulfills all compendial requirements, and has a 2-year shelf life. We developed a simple, reproducible method to compound stable, completely preservative-free TACA suspensions with a reasonable shelf-life, which enables to study the effect of intravitreal TACA--not biased by varying doses and toxic compounds or their residues.

  6. 19 CFR 146.82 - Suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) FOREIGN TRADE ZONES Penalties; Suspension; Revocation § 146.82 Suspension. (a) For cause. The port director may suspend for cause the activated status of a zone or zone site, or the privilege to admit, manufacture, manipulate, exhibit, destroy, transfer or remove merchandise at a zone or zone site...

  7. 19 CFR 146.82 - Suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) FOREIGN TRADE ZONES Penalties; Suspension; Revocation § 146.82 Suspension. (a) For cause. The port director may suspend for cause the activated status of a zone or zone site, or the privilege to admit, manufacture, manipulate, exhibit, destroy, transfer or remove merchandise at a zone or zone site...

  8. 19 CFR 146.82 - Suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) FOREIGN TRADE ZONES Penalties; Suspension; Revocation § 146.82 Suspension. (a) For cause. The port director may suspend for cause the activated status of a zone or zone site, or the privilege to admit, manufacture, manipulate, exhibit, destroy, transfer or remove merchandise at a zone or zone site...

  9. 19 CFR 146.82 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) FOREIGN TRADE ZONES Penalties; Suspension; Revocation § 146.82 Suspension. (a) For cause. The port director may suspend for cause the activated status of a zone or zone site, or the privilege to admit, manufacture, manipulate, exhibit, destroy, transfer or remove merchandise at a zone or zone site...

  10. 19 CFR 146.82 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) FOREIGN TRADE ZONES Penalties; Suspension; Revocation § 146.82 Suspension. (a) For cause. The port director may suspend for cause the activated status of a zone or zone site, or the privilege to admit, manufacture, manipulate, exhibit, destroy, transfer or remove merchandise at a zone or zone site...

  11. Stability of Allopurinol, Amitriptyline Hydrochloride, Carbamazepine, Domperidone, Isoniazid, Ketoconazole, Lisinopril, Naproxen, Paracetamol (Acetaminophen), and Sertraline Hydrochloride in SyrSpend SF PH4 Oral Suspensions.

    PubMed

    Polonini, Hudson C; Loures, Sharlene; de Araujo, Edson Peter; Brandão, Marcos Antônio F; Ferreira, Anderson O

    2016-01-01

    Oral liquids are safe alternatives to solid dosage forms, notably for elderly and pediatric patients that present dysphagia. The use of ready-to-use suspending vehicles such as SyrSpend SF PH4 is a suitable resource for pharmacists as they constitute a safe and timesaving option that has been studied often. The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients (allopurinol 20 mg/mL; amitriptyline hydrochloride 10 mg/mL; carbamazepine 25 mg/mL; domperidone 5 mg/mL; isoniazid 10 mg/mL; ketoconazole 20 mg/mL; lisinopril 1 mg/mL; naproxen 25 mg/mL; paracetamol [acetaminophen] 50 mg/mL; and sertraline hydrochloride 10 mg/mL) compounded in oral suspensions using SyrSpend SF PH4 as the vehicle throughout the study period and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring the percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by high-performance liquid chromatography through a stability-indicating method. Methods were adequately validated. Forced-degradation studies showed that at least one parameter influenced the stability of the active pharmaceutical ingredients. All suspensions were assayed and showed active pharmaceutical ingredient contents between 90% and 110% during the 90-day study period. Although the forced-degradation experiments led to visible fluctuations in the chromatographic responses, the final preparations were stable in the storage conditions. The beyond-use dates of the preparations were found to be at least 90 days for all suspensions, both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients for different medical usages. Copyright© by International Journal of

  12. Control of maglev vehicles with aerodynamic and guideway disturbances

    NASA Technical Reports Server (NTRS)

    Flueckiger, Karl; Mark, Steve; Caswell, Ruth; Mccallum, Duncan

    1994-01-01

    A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.

  13. The Enabler: A concept for a lunar work vehicle

    NASA Technical Reports Server (NTRS)

    Brazell, James W.; Campbell, Craig; Kaser, Ken; Austin, James A.; Beard, Clark; Ceniza, Glenn; Hamby, Thomas; Robinson, Anne; Wooters, Dana

    1992-01-01

    The Enabler is an earthbound prototype designed to model an actual lunar work vehicle and is able to perform many of the tasks that might be expected of a lunar work vehicle. The vehicle will be constructed entirely from parts made by students and from standard stock parts. The design utilizes only four distinct chassis pieces and sixteen moving parts. The Enabler has non-orthogonal articulating joints that give the vehicle a wide range of mobility and reduce the total number of parts. Composite wheels provide the primary suspension system for the vehicle.

  14. Stability of gabapentin in extemporaneously compounded oral suspensions.

    PubMed

    Friciu, Mihaela; Roullin, V Gaëlle; Leclair, Grégoire

    2017-01-01

    This study reports the stability of extemporaneously prepared gabapentin oral suspensions prepared at 100 mg/mL from bulk drug and capsules in either Oral Mix or Oral Mix SF suspending vehicles. Suspensions were packaged in amber plastic bottles and amber plastic syringes at 25°C / 60%RH for up to 90 days. Throughout the study period, the following tests were performed to evaluate the stability of the preparations: organoleptic inspection to detect homogeneity, color or odor changes; pH measurements; and gabapentin assay using a stability-indicating HPLC-UV method. As crystallization was observed at 5°C, storage at this temperature condition is not recommended. All preparations stored at 25°C / 60%RH remained stable for the whole study duration of 90 days.

  15. Microfluidic Bead Suspension Hopper

    PubMed Central

    2014-01-01

    Many high-throughput analytical platforms, from next-generation DNA sequencing to drug discovery, rely on beads as carriers of molecular diversity. Microfluidic systems are ideally suited to handle and analyze such bead libraries with high precision and at minute volume scales; however, the challenge of introducing bead suspensions into devices before they sediment usually confounds microfluidic handling and analysis. We developed a bead suspension hopper that exploits sedimentation to load beads into a microfluidic droplet generator. A suspension hopper continuously delivered synthesis resin beads (17 μm diameter, 112,000 over 2.67 h) functionalized with a photolabile linker and pepstatin A into picoliter-scale droplets of an HIV-1 protease activity assay to model ultraminiaturized compound screening. Likewise, trypsinogen template DNA-coated magnetic beads (2.8 μm diameter, 176,000 over 5.5 h) were loaded into droplets of an in vitro transcription/translation system to model a protein evolution experiment. The suspension hopper should effectively remove any barriers to using suspensions as sample inputs, paving the way for microfluidic automation to replace robotic library distribution. PMID:24761972

  16. Measuring the value of Kentucky vehicle enforcement activities.

    DOT National Transportation Integrated Search

    2008-01-01

    The responsibility for monitoring commercial vehicles on Kentuckys roadways and enforcing the applicable laws and regulations falls primarily on Kentucky Vehicle Enforcement (KVE). KVE personnel are involved in a variety of activities including co...

  17. Dynamic Interaction of Long Suspension Bridges with Running Trains

    NASA Astrophysics Data System (ADS)

    XIA, H.; XU, Y. L.; CHAN, T. H. T.

    2000-10-01

    This paper presents an investigation of dynamic interaction of long suspension bridges with running trains. A three-dimensional finite element model is used to represent a long suspension bridge. Each 4-axle vehicle in a train is modelled by a 27-degrees-of-freedom dynamic system. The dynamic interaction between the bridge and train is realized through the contact forces between the wheels and track. By applying a mode superposition technique to the bridge only and taking the measured track irregularities as known quantities, the number of degrees of freedom (d.o.f.) the bridge-train system is significantly reduced and the coupled equations of motion are efficiently solved. The proposed formulation and the associated computer program are then applied to a real long suspension bridge carrying a railway within the bridge deck. The dynamic response of the bridge-train system and the derail and offload factors related to the running safety of the train are computed. The results show that the formulation presented in this paper can well predict dynamic behaviors of both bridge and train with reasonable computation efforts. Dynamic interaction between the long suspension bridge and train is not significant.

  18. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    PubMed Central

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  19. Integrated thermal management of a hybrid electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traci, R.M.; Acebal, R.; Mohler, T.

    1999-01-01

    A thermal management methodology, based on the Vehicle Integrated Thermal Management Analysis Code (VITMAC), has been developed for a notional vehicle employing the All-Electric Combat Vehicle (AECV) concept. AECV uses a prime power source, such as a diesel, to provide mechanical energy which is converted to electrical energy and stored in a central energy storage system consisting of flywheels, batteries and/or capacitors. The combination of prime power and stored energy powers the vehicle drive system and also advanced weapons subsystems such as an ETC or EM gun, electrically driven lasers, an EM armor system and an active suspension. Every majormore » system is electrically driven with energy reclamation when possible from braking and gun recoil. Thermal management of such a complicated energy transfer and utilization system is a major design consideration due to the substantial heat rejection requirements. In the present paper, an overall integrated thermal management system (TMS) is described which accounts for energy losses from each subsystem component, accepts the heat using multiple coolant loops and expels the heat from the vehicle. VITMAC simulations are used to design the TMS and to demonstrate that a conventional TMS approach is capable of successfully handling vehicle heat rejection requirements under stressing operational conditions.« less

  20. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn.

    PubMed

    Mundo, Jorge; Villeda-Hernández, Juana; Herrera-Ruiz, Maribel; Gutiérrez, María Del Carmen; Arellano-García, Jesús; León-Rivera, Ismael; Perea-Arango, Irene

    2017-10-01

    Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H 2 O and WAsc-CH 2 Cl 2 . For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H 2 O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H 2 O and WAsc-CH 2 Cl 2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Intelligent systems of the vehicles’ suspension

    NASA Astrophysics Data System (ADS)

    Yurlin, D.

    2018-02-01

    The article is devoted to the current condition of car’s active suspension system. It presents the tendencies in development of the active systems of suspension system, adjustable elements incorporated in them and the companies succeeded in designing such systems. It also mirrors the problem of impact of active systems on car’s safety and their importance for the driver. Advantages and disadvantages of the most common types of active elements are being described, analyzed and compared. The author concludes about the perspectives of these systems’ development.

  2. Non-homogeneous flow profiles in sheared bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  3. A forecast of new test capabilities using Magnetic Suspension and Balance Systems

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.; Johnson, William G., Jr.

    1988-01-01

    This paper outlines the potential of Magnetic Suspension and Balance System (MSBS) technology to solve existing problems related to support interference in wind tunnels. Improvement of existing test techniques and exciting new techniques are envisioned as a result of applying MSBS. These include improved data accuracy, dynamic stability testing, two-body/stores release testing, and pilot/designer-in-the-loop tests. It also discusses the use of MSBS for testing exotic configurations such as hybrid hypersonic vehicles. A new facility concept that combines features of ballistic tubes, magnetic suspension, and cryogenic tunnels is described.

  4. Besifloxacin ophthalmic suspension, 0.6%: a novel topical fluoroquinolone for bacterial conjunctivitis.

    PubMed

    O'Brien, Terrence P

    2012-06-01

    Acute bacterial conjunctivitis, the most common cause of conjunctivitis, is responsible for approximately 1% of all primary-care consultations. Of the topical ophthalmic antibiotics used to treat acute bacterial conjunctivitis, fluoroquinolones are especially useful because they possess a broad antibacterial spectrum, are bactericidal in action, are generally well tolerated, and have been less prone to development of bacterial resistance. Besifloxacin, the latest advanced fluoroquinolone approved for treating bacterial conjunctivitis, is the first fluoroquinolone developed specifically for topical ophthalmic use. It has a C-8 chlorine substituent and is known as a chloro-fluoroquinolone. Besifloxacin possesses relatively balanced dual-targeting activity against bacterial topoisomerase IV and DNA gyrase (topoisomerse II), two essential enzymes involved in bacterial DNA replication, leading to increased potency and decreased likelihood of bacterial resistance developing to besifloxacin. Microbiological data suggest a relatively high potency and rapid bactericidal activity for besifloxacin against common ocular pathogens, including bacteria resistant to other fluoroquinolones, especially resistant staphylococcal species. Randomized, double-masked, controlled clinical studies demonstrated the clinical efficacy of besifloxacin ophthalmic suspension 0.6% administered three-times daily for 5 days to be superior to the vehicle alone and similar to moxifloxacin ophthalmic solution 0.5% for bacterial conjunctivitis. In addition, besifloxacin ophthalmic suspension 0.6% administered two-times daily for 3 days was clinically more effective than the vehicle alone for bacterial conjunctivitis. Besifloxacin has also been shown in preclinical animal studies to be potentially effective for the "off-label" treatment of infections following ocular surgery, prophylaxis of endophthalmitis, and the treatment of bacterial keratitis. Taken together, clinical and preclinical animal studies

  5. The Effects of Parachute System Mass and Suspension-Line Elastic Properties on the LADT #3 Viking Parachute Inflation Load

    NASA Technical Reports Server (NTRS)

    Talay, Theodore A.; Poole, Lamont R.

    1971-01-01

    Analytical calculations have considered the effects of 1) varying parachute system mass, 2) suspension-line damping, and 3) alternate suspension-line force-elongation data on the canopy force history. Results indicate the canopy force on the LADT #3 parachute did not substantially exceed the recorded vehicle force reading and that the above factors can have significant effects on the canopy force history. Analytical calculations have considered the effects of i) varying parachute system mass, 2) suspension line damping, and 3) different suspension-line force-elongation data on the canopy force history. Based on the results of this study the following conclusions are drawn: Specifically, 1. At the LADT #3 failure time of 1.70 seconds, the canopy force ranged anywhere from 15.7% below to 2.4% above the vehicle force depending upon the model and data used. Therefore, the canopy force did not substantially exceed the recorded vehicle force reading. 2. At a predicted full inflation time of 1.80 seconds the canopy force would be greater than the vehicle force by from 1.1% to 10.6%, again depending upon the model and data used. Generally, 3. At low altitudes, enclosed and apparent air mass can significantly effect the canopy force calculated and should, therefore, not be neglected. 4. The canopy force calculations are sensitive to decelerator physical properties. In this case changes in the damping and/or force-elongation characteristics produced significant changes in the canopy force histories. Accurate prediction of canopy force histories requires accurate inputs in these areas.

  6. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Stability study of oral pediatric idebenone suspensions.

    PubMed

    Schlatter, Joël; Bourguignon, Elodie; Majoul, Elyes; Kabiche, Sofiane; Balde, Issa-Bella; Cisternino, Salvatore; Fontan, Jean-Eudes

    2017-03-01

    Adapted forms for administration to infants are limited. The proposed study was performed to propose oral liquid formulations of idebenone in Ora-Plus and either Ora-Sweet or Ora-Sweet SF, Ora-Blend, Ora-Blend SF and Inorpha. Each formulation was stored in 30 ml amber glass bottle at 5 or 25 °C for 90 days. Idebenone contents in these suspensions, determined by a stability-indicating high-performance liquid chromatography method, remained stable at least 90 days in Inorpha when stored at the two temperatures. In Ora-Blend, the stability was estimated at 14 days and in other suspensions at 20 days at the two temperatures. After 90 days storage, the pH of Ora-Plus and Ora-Sweet or Ora-Sweet SF changed between -0.10 and -0.25 units. For others suspensions, the pH changes were not significant (< -0.09 unit). No change was observed in color, odor or visual microbiology. To conclude, we recommended the use of idebenone in Inorpha vehicle stable for at least 90 days at 25 °C.

  8. Stability and optimised H∞ control of tripped and untripped vehicle rollover

    NASA Astrophysics Data System (ADS)

    Jin, Zhilin; Zhang, Lei; Zhang, Jiale; Khajepour, Amir

    2016-10-01

    Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.

  9. Factors affecting shear thickening behavior of a concentrated injectable suspension of levodopa.

    PubMed

    Allahham, Ayman; Stewart, Peter; Marriott, Jennifer; Mainwaring, David

    2005-11-01

    Previous clinical studies on a subcutaneous injectable suspension of levodopa showed poor injectability into human tissue. When this formulation was rheologically characterised, a clinical shear thickening interval was observed at increased shear rates. The formulation parameters that contributed to this rheological behavior were systematically evaluated with the aim of removing this flow limitation while maintaining the concentration of 60% levodopa to retain the clinical applicability. The three suspension parameters examined were: levodopa volume fraction, concentration of the HPMC suspending vehicle, and particle size distribution. Shear thickening increased with the drug concentration and the critical shear rate was inversely dependent on the drug concentration. Increasing the vehicle concentration retarded the shear thickening but increased the overall suspension viscosity. There was an increase in shear thickening with increased average particle diameter. Combinations of micronized and non-micronized particles were used to prepare bimodal particle size distributions. The rheology of these bimodal distributions resulted in removal of shear thickening. This allowed the preparation of 60% levodopa formulations that showed a range of flow characteristics spanning near Newtonian flow or shear thinning at initial injectable viscosities of about 0.6 Pa.s and final viscosities in the range of 0.1 Pa.s, alleviating the shear thickening limitation of these levodopa formulations.

  10. Stability of gabapentin in extemporaneously compounded oral suspensions

    PubMed Central

    Friciu, Mihaela; Roullin, V. Gaëlle

    2017-01-01

    This study reports the stability of extemporaneously prepared gabapentin oral suspensions prepared at 100 mg/mL from bulk drug and capsules in either Oral Mix or Oral Mix SF suspending vehicles. Suspensions were packaged in amber plastic bottles and amber plastic syringes at 25°C / 60%RH for up to 90 days. Throughout the study period, the following tests were performed to evaluate the stability of the preparations: organoleptic inspection to detect homogeneity, color or odor changes; pH measurements; and gabapentin assay using a stability-indicating HPLC-UV method. As crystallization was observed at 5°C, storage at this temperature condition is not recommended. All preparations stored at 25°C / 60%RH remained stable for the whole study duration of 90 days. PMID:28414771

  11. 32 CFR 636.4 - Administrative due process for suspensions and revocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Administrative due process for suspensions and revocations. 636.4 Section 636.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.4...

  12. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.

    PubMed

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P

    2015-01-01

    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.

  13. The Challenges of Designing the Rocker-Bogie Suspension for the Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Harrington, Brian D.; Voorhees, Chris

    2004-01-01

    Over the past decade, the rocker-bogie suspension design has become a proven mobility application known for its superior vehicle stability and obstacle-climbing capability. Following several technology and research rover implementations, the system was successfully flown as part of Mars Pathfinder s Sojourner rover. When the Mars Exploration Rover (MER) Project was first proposed, the use of a rocker-bogie suspension was the obvious choice due to its extensive heritage. The challenge posed by MER was to design a lightweight rocker-bogie suspension that would permit the mobility to stow within the limited space available and deploy into a configuration that the rover could then safely use to egress from the lander and explore the Martian surface. This paper will describe how the MER rocker-bogie suspension subsystem was able to meet these conflicting design requirements while highlighting the variety of deployment and latch mechanisms employed in the design.

  14. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    NASA Technical Reports Server (NTRS)

    Kalsi, Swarn S.

    1994-01-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  15. Dynamic stability of repulsive-force maglev suspension systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Rote, D.M.; Mulcahy, T.M.

    1996-11-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents both measured and calculated magnetic-force data. Because dynamic instability is not acceptable for any commercial maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments on maglev systems and compares the results with predictions calculated by a nonlinear-dynamics computer code. Instabilities of an electrodynamic-suspension system type vehicle model were obtained by experimental observation and computer simulation of a five-degree-of-freedom maglev vehicle moving on a guidewaymore » that consists of a pair of L-shaped aluminum conductors attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.« less

  16. Active System for Electromagnetic Perturbation Monitoring in Vehicles

    NASA Astrophysics Data System (ADS)

    Matoi, Adrian Marian; Helerea, Elena

    Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.

  17. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  18. Population and Activity of On-road Vehicles in MOVES2014 ...

    EPA Pesticide Factsheets

    This report describes the sources and derivation for on-road vehicle population and activity information and associated adjustments as stored in the MOVES2014 default databases. Motor Vehicle Emission Simulator, the MOVES2014 model, is a set of modeling tools for estimating emissions produced by on-road (cars, trucks, motorcycles, etc.) and nonroad (backhoes, lawnmowers, etc.) mobile sources. The national default activity information in MOVES2014 provides a reasonable basis for estimating national emissions. However, the uncertainties and variability in the default data contribute to the uncertainty in the resulting emission estimates. Properly characterizing emissions from the on-road vehicle subset requires a detailed understanding of the cars and trucks that make up the vehicle fleet and their patterns of operation. The MOVES model calculates emission inventories by multiplying emission rates by the appropriate emission-related activity, applying correction (adjustment) factors as needed to simulate specific situations, and then adding up the emissions from all sources (populations) and regions. This report describes the sources and derivation for on-road vehicle population and activity information and associated adjustments as stored in the MOVES2014 default databases. Motor Vehicle Emission Simulator, the MOVES2014 model, is a set of modeling tools for estimating emissions produced by on-road (cars, trucks, motorcycles, etc.) and nonroad (backhoes, law

  19. The Annular Suspension and Pointing System /ASPS/

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Woolley, C. T.

    1978-01-01

    The Annular Suspension and Pointing System (ASPS) may be attached to a carrier vehicle for orientation, mechanical isolation, and fine pointing purposes applicable to space experiments. It has subassemblies for both coarse and vernier pointing. A fourteen-degree-of-freedom simulation of the ASPS mounted on a Space Shuttle has yielded initial performance data. The simulation describes: the magnetic actuators, payload sensors, coarse gimbal assemblies, control algorithms, rigid body dynamic models of the payload and Shuttle, and a control system firing model.

  20. Photosensitized degradation of losartan potassium in an extemporaneous suspension formulation.

    PubMed

    Seburg, Randal A; Ballard, John M; Hwang, Tsang-Lin; Sullivan, Caitlin M

    2006-10-11

    During development of an extemporaneous suspension formulation for losartan potassium, previously unknown degradation products were observed in experimental suspensions prepared in a commercial cherry syrup vehicle. These degradates increased rapidly when analytical solutions prepared from that suspension were exposed to ambient light. The structures of the degradates were determined using a combination of preparative HPLC, LC/MS, (13)C and (1)H NMR (1D and 2D), and mechanistic chemistry. Each degradate results from destruction of the imidazole ring of losartan. Formation of the two major degradates required exposure to light (UV or visible) and the presence of oxygen. Experiments using Rose Bengal (a singlet oxygen photosensitizer) and 1,4-diazabicyclooctane (DABCO; a singlet oxygen quencher) established that the major photodegradates are formed via the intermediacy of singlet oxygen. The identity of the photosensitizer in the formulation was not unequivocally determined; however, the experiments implicated the artificial flavoring in fulfilling this role.

  1. Analysis of Train Suspension System Using MR dampers

    NASA Astrophysics Data System (ADS)

    RamaSastry, DVA; Ramana, K. V.; Mohan Rao, N.; Siva Kumar, SVR; Priyanka, T. G. L.

    2016-09-01

    This paper deals with introducing MR dampers to the Train Suspension System for improving the ride comfort of the passengers. This type of suspension system comes under Semi-active suspension system which utilizes the properties of MR fluid to damp the vibrations. In case of high speed trains, the coach body is subjected to vibrations due to vertical displacement, yaw and pitch movements. When the body receives these disturbances from the ground,the transmission of vibrations to the passenger increases which affect the ride comfort. In this work, the equations of motion of suspension system are developed for both conventional passive system and semi-active system and are modelled in Matlab/Simulink and analysis has been carried out. The passive suspension system analysis shows that it is taking more time to damp the vibrations and at the same time the transmissibility of vibrations is more.Introducing MR dampers,vertical and angular displacements of the body are computed and compared. The results show that the introduction of MR dampers into the train suspension system improves ride comfort.

  2. Effects of the Truck Suspension System on Animal Welfare, Carcass and Meat Quality Traits in Pigs

    PubMed Central

    Dalla Costa, Filipe Antônio; Lopes, Letícia S.; Dalla Costa, Osmar Antônio

    2017-01-01

    Simple Summary Transportation is a complex stressor in which animals are exposed to a series negatively stimuli, such as vibration, new environmental conditions, variation in temperature and humidity, social mixing, noises among other poor factors, which can result in welfare problems and economic losses such as increased skin lesions, poorer pork quality traits. Transport stress may be reduced through a vehicle suspension system that provides a much smoother ride during transport, and consequently is less aversive to pigs. However, air suspension systems are more expensive and have bigger maintenance costs. This increase in transportation cost must be supported by the benefits from improvements in quality of freight transport; otherwise, the truckers will be paying unnecessarily for a similar or equivalent ride quality. Thus, finishing pigs were assessed after transport to slaughter by the same two double-decked trucks using two types of commercial vehicle suspension, leaf-spring and air suspension, to compare effects on blood cortisol and lactate at exsanguination, behaviour during lairage, and carcass (skin lesions) and pork quality traits. The use of leaf-spring suspension system negatively affects the welfare of pigs due to the increased carcass damage and resulted in poorer pork quality traits. Abstract The objective of this study was to assess the effects of two types of commercial suspension (leaf-spring (LS) vs. air suspension (AS)) installed on two similar double-decked trucks on blood cortisol and lactate concentration, lairage behavior, carcass skin lesions and pork quality traits of 120 crossbred pigs. The suspension type neither influenced pig behaviour in lairage nor blood cortisol and lactate concentrations (p > 0.10). However, when compared with the AS suspension system, the use of LS increased the number of skin lesions in the back and thigh (p = 0.03 and p = 0.01, respectively) and produced thigh with lower pHu (p < 0.001) and yellower colour

  3. Galenics of dermal products--vehicles, properties and drug release.

    PubMed

    Daniels, Rolf; Knie, Ulrich

    2007-05-01

    The efficiency, tolerability, and applicability of topical agents are directly related to employed vehicles. Thus to achieve optimum topical therapy, a solid knowledge of the vehicles, their composition, and their physical and dermato-pharmacological actions are important. Common vehicles are complex mixtures consisting of diverse ingredients belonging to six major groups, i. e. hydrophilic and lipophilic bases, emulsifiers, gel-forming agents, preservatives, and antioxidants. This makes it possible to optimize both the cosmetic features and to adjust a vehicle to the properties of an incorporated drug and site of application. On the other hand it makes it difficult to make a proper choice between several alternatives or to use it in individual prescriptions. In order to simplify the selection of a formulation, it is useful to categorize them systemically into several groups, such as ointments, creams, gels, emulsions, and suspensions. Within these groups some general rules can be derived for the selection of a vehicle with respect to skin conditions and the application site. When active substances are incorporated into a base the dermato-biopharmaceutical properties of the whole system (drug + vehicle) also have to be considered. If for a given vehicle drug transport into the skin does not suffice, several methods are described to facilitate its penetration, such as by hydrating the skin or by adding chemical penetration enhancers.

  4. The effect of polymer content on the non-newtonian behavior of acetaminophen suspension.

    PubMed

    Moghimipour, Eskandar; Kouchak, Maryam; Salimi, Anayatollah; Bahrampour, Saeed; Handali, Somayeh

    2013-01-01

    Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), tragacanth, and magnesium aluminum silicate (Veegum) were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F), redispersibility (n), and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na(+) ions.

  5. The Effect of Polymer Content on the Non-Newtonian Behavior of Acetaminophen Suspension

    PubMed Central

    Moghimipour, Eskandar; Kouchak, Maryam; Salimi, Anayatollah; Bahrampour, Saeed; Handali, Somayeh

    2013-01-01

    Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), tragacanth, and magnesium aluminum silicate (Veegum) were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F), redispersibility (n), and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na+ ions. PMID:24109512

  6. Microfluidic rheology of active particle suspensions: Kinetic theory

    NASA Astrophysics Data System (ADS)

    Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David

    2016-11-01

    We analyze the effective rheology of a dilute suspension of self-propelled slender particles between two infinite parallel plates in a pressure-driven flow. We use a continuum kinetic model to study the dynamics and transport of particles, where hydrodynamic interactions induced by the swimmers are taken into account. Using finite volume simulations we study how the activity of the swimmer and the external flow modify the rheological properties of the system. Results indicate that at low flow rates, activity decreases the value of the viscosity for pushers and increases its value for pullers. Both effects become weaker with increasing the flow strength due to the alignment of the particles with the flow. In the case of puller particles, shear thinning is observed over the entire range of flow rates. Pusher particles exhibit shear thickening at intermediate flow rates, where passive stresses start dominating over active stresses, reaching a viscosity greater than that of the Newtonian fluid. Finally shear thinning is observed at high flow rates. Both pushers and pullers exhibit a Newtonian plateau at very high flow rates. We demonstrate a good agreement between numerical results and experiments.

  7. Large angle magnetic suspension test fixture

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P. (Principal Investigator); Huang, Jen-Kuang (Principal Investigator)

    1996-01-01

    Good progress is being made in several major areas. These include eddy current modelling and analysis, design optimization methods, wind tunnel Magnetic Suspension and Balance Systems (MSBS), payload pointing and vibration isolation systems, and system identification. In addition, another successful International Symposium has been completed, with the Proceedings being printed at the time of writing. These activities continue current work under this Grant and extend previous work on magnetic suspension systems and devices in the Guidance and Control Branch and will permit the demonstration of several new developments in the field of magnetic suspension technology.

  8. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions

    PubMed Central

    Akenhead, Michael L.; Horrall, Nolan M.; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y.

    2015-01-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s−1 shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia). PMID:26065495

  9. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions.

    PubMed

    Akenhead, Michael L; Horrall, Nolan M; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y

    2015-09-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s(-1) shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia).

  10. The effect of linear spring number at side load of McPherson suspension in electric city car

    NASA Astrophysics Data System (ADS)

    Budi, Sigit Setijo; Suprihadi, Agus; Makhrojan, Agus; Ismail, Rifky; Jamari, J.

    2017-01-01

    The function of the spring suspension on Mc Pherson type is to control vehicle stability and increase ride convenience although having tendencies of side load presence. The purpose of this study is to obtain simulation results of Mc Pherson suspension spring in the electric city car by using the finite element method and determining the side load that appears on the spring suspension. This research is conducted in several stages; they are linear spring designing models with various spring coil and spring suspension modeling using FEM software. Suspension spring is compressed in the vertical direction (z-axis) and at the upper part of the suspension springs will be seen the force that arises towards the x, y, and z-axis to simulate the side load arising on the upper part of the spring. The results of FEM simulation that the side load on the spring toward the x and y-axis which the value gets close to zero is the most stable spring.

  11. Alternative sensor system and MLP neural network for vehicle pedal activity estimation.

    PubMed

    Wefky, Ahmed M; Espinosa, Felipe; Jiménez, José A; Santiso, Enrique; Rodríguez, José M; Fernández, Alfredo J

    2010-01-01

    It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver's behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.

  12. Chiral stability of an extemporaneously prepared clopidogrel bisulfate oral suspension.

    PubMed

    Tynes, Clay R; Livingston, Brad; Patel, Hetesh; Arnold, John J

    2014-01-01

    The purpose of this study was to evaluate the chiral stability of clopidogrel bisulfate in an extemporaneously compounded oral suspension for a period of 60 days. A 5 mg/mL oral suspension of clopidogrel bisulfate was prepared from commercially available Plavix tablets. The clopidogrel suspension was then evenly divided between two light-resistant prescription bottles and stored either under refrigeration (4°C) or at room temperature (25°C). Samples were drawn from the stored suspensions immediately after preparation and on days 7, 14, 28, and 60. Samples were subsequently analyzed at each time point by high-performance liquid chromatography using a reversed-phase column, with chemical stability defined as the retention of at least 90% of the initial intact clopidogrel concentration measured. To determine the chiral stability of the suspension, samples were also analyzed by high-performance liquid chromatography using a chiral column to investigate possible enantiomeric inversion. Chiral stability was defined as the retention of at least 90% of the initial concentration of the suspension as the S-enantiomer, the active moiety of Plavix. Regardless of storage conditions, the oral suspension of clopidogrel retained at least 98% of the active S-enantiomer for 60 days after preparation. Compared with the clopidogrel suspension stored in the refrigerator, more chiral inversion was noted in the clopidogrel suspension stored at room temperature. Our investigation of chiral stability indicates that a 5 mg/mL clopidogrel oral suspension stored under refrigeration and at room temperature maintains chiral stability as the active S-enantiomer.

  13. 76 FR 56505 - Agency Information Collection (Suspension of Monthly Check) Activity Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... (Suspension of Monthly Check) Activity Under OMB Review AGENCY: Veterans Benefits Administration, Department... 1995 (44 U.S.C. 3501-3521), this notice announces that the Veterans Benefits Administration (VBA... Vermont Avenue, NW., Washington, DC 20420, (202) 461-7485, fax (202) 461-0966 or e-mail [email protected

  14. Effect of using a suspension training system on muscle activation during the performance of a front plank exercise.

    PubMed

    Byrne, Jeannette M; Bishop, Nicole S; Caines, Andrew M; Crane, Kalynn A; Feaver, Ashley M; Pearcey, Gregory E P

    2014-11-01

    The objective of the study was to examine the effect of suspension training on muscle activation during performance of variations of the plank exercise. Twenty-one participants took part. All individuals completed 2 repetitions each of 4 different plank exercises that consisted of a floor based plank, or planks with arms suspended, feet suspended, or feet and arms suspended using a TRX Suspension System. During plank performance, muscle activation was recorded from rectus abdominis, external oblique, rectus femoris, and serratus anterior (SA) muscles using electromyography. All planks were performed for a total of 3 seconds. Resulting muscle activation data were amplitude normalized, and root mean square activation was then determined over the full 3 second duration of the exercise. A significant main effect of plank type was found for all muscles. Post hoc analysis and effect size examination indicated that abdominal muscle activation was higher in all suspended conditions compared to the floor based plank. The highest level of abdominal muscle activation occurred in the arms suspended and arms/feet suspended conditions, which did not differ from one another. Rectus femoris activation was greatest during the arms suspended condition, whereas SA activity peaked during normal and feet suspended planks. These results indicate that suspension training as performed in this study seems to be an effective means of increasing muscle activation during the plank exercise. Contrary to expectations, the additional instability created by suspending both the arms and feet did not result in any additional abdominal muscle activation. These findings have implications in prescription and progression of core muscle training programs.

  15. Reliable and fast quantitative analysis of active ingredient in pharmaceutical suspension using Raman spectroscopy.

    PubMed

    Park, Seok Chan; Kim, Minjung; Noh, Jaegeun; Chung, Hoeil; Woo, Youngah; Lee, Jonghwa; Kemper, Mark S

    2007-06-12

    The concentration of acetaminophen in a turbid pharmaceutical suspension has been measured successfully using Raman spectroscopy. The spectrometer was equipped with a large spot probe which enabled the coverage of a representative area during sampling. This wide area illumination (WAI) scheme (coverage area 28.3 mm2) for Raman data collection proved to be more reliable for the compositional determination of these pharmaceutical suspensions, especially when the samples were turbid. The reproducibility of measurement using the WAI scheme was compared to that of using a conventional small-spot scheme which employed a much smaller illumination area (about 100 microm spot size). A layer of isobutyric anhydride was placed in front of the sample vials to correct the variation in the Raman intensity due to the fluctuation of laser power. Corrections were accomplished using the isolated carbonyl band of isobutyric anhydride. The acetaminophen concentrations of prediction samples were accurately estimated using a partial least squares (PLS) calibration model. The prediction accuracy was maintained even with changes in laser power. It was noted that the prediction performance was somewhat degraded for turbid suspensions with high acetaminophen contents. When comparing the results of reproducibility obtained with the WAI scheme and those obtained using the conventional scheme, it was concluded that the quantitative determination of the active pharmaceutical ingredient (API) in turbid suspensions is much improved when employing a larger laser coverage area. This is presumably due to the improvement in representative sampling.

  16. Railway vehicle body structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finitemore » element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.« less

  17. Antidepressant-like activity of liposomal formulation containing nimodipine treatment in the tail suspension test, forced swim test and MAOB activity in mice.

    PubMed

    Moreno, Lina Clara Gayoso E Almendra Ibiapina; Rolim, Hercília Maria Lins; Freitas, Rivelilson Mendes; Santos-Magalhães, Nereide Stela

    2016-09-01

    Previous studies have shown that intracellular calcium ion dysfunction may be an etiological factor in affective illness. Nimodipine (NMD) is a Ca(2+) channel blocker that has been extensively investigated for therapy of central nervous system (CNS) disorders. In this work, we have evaluated the antidepressant-like activity of nimodipine encapsulated into liposomes (NMD-Lipo) in mice through tail suspension and forced swim assays, as well as MAOB activity. During the tail suspension test, the administration of NMD-Lipo at 0.1, 1 and 10mg/kg was able to promote a reduction in the immobility time of animals greater than the positive control (imipramine). In the forced swim test, the immobility time of mice treated with NMD-Lipo was reduced. This reduction was significantly greater than that found in the animals treated with imipramine and paroxetine. This may suggest that NMD-Lipo provides more antidepressant-like activity than in positive controls. The groups that received a combination of liposomal NMD and antidepressant drugs showed lower immobility time than the groups, which were treated only with imipramine or paroxetine. The mice treated with the combination of NMD-Lipo and reserpine presented an increase in the time of immobility compared with animals treated only with NMD-Lipo. There was a significant decrease in MAOB activity in animals treated with NMD-Lipo compared with untreated animals. The results of the tail suspension test, forced swim test and MAOB activity suggested that the antidepressant activity of NMD-Lipo may be related to an increase in the cerebral monoamine concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  19. Vibration control of an energy regenerative seat suspension with variable external resistance

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Du, Haiping; Li, Weihua; Zhang, Nong

    2018-06-01

    In this paper, an energy regenerative seat suspension with a variable external resistance is proposed and built, and a semi-active controller for its vibration control is also designed and validated. The energy regenerative seat suspension is built with a three-phase generator and a gear reducer, which are installed in the scissors structure centre of the seat suspension, and the vibration energy is directly harvested from the rotary movement of suspension's scissors structure. The electromagnetic torque of the semi-active seat suspension actuator is controlled by an external variable resistor. An integrated model including the seat suspension's kinematics and the generator is built and proven to match the test result very well. A simplified experimental phenomenon model is also built based on the test results for the controller design. A state feedback H∞ controller is proposed for the regenerative seat suspension's semi-active vibration control. The proposed regenerative seat suspension and its controller are validated with both simulations and experiments. A well-tuned passive seat suspension is applied to evaluate the regenerative seat's performance. Based on ISO 2631-1, the frequency-weighted root mean square (FW-RMS) acceleration of the proposed seat suspension has a 22.84% reduction when compared with the passive one, which indicates the improvement of ride comfort. At the same time, the generated RMS power is 1.21 W. The proposed regenerative seat suspension can greatly improve the driver's ride comfort and has the potential to be developed to a self-powered semi-active system.

  20. Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation

    PubMed Central

    Wefky, Ahmed M.; Espinosa, Felipe; Jiménez, José A.; Santiso, Enrique; Rodríguez, José M.; Fernández, Alfredo J.

    2010-01-01

    It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer. PMID:22319326

  1. Three-body correlations and conditional forces in suspensions of active hard disks

    NASA Astrophysics Data System (ADS)

    Härtel, Andreas; Richard, David; Speck, Thomas

    2018-01-01

    Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.

  2. Development and validation of a discriminative dissolution test for nimesulide suspensions.

    PubMed

    da Fonseca, Laís Bastos; Labastie, Márcio; de Sousa, Valéria Pereira; Volpato, Nadia Maria

    2009-01-01

    The dissolution test for oral dosage forms has recently widened to a variety of special dosage forms such as suspensions. For class II drugs, such as nimesulide (NMS), this study is very important because formulation problems may compromise drug bioavailability. In the present work, tests with four brands of commercially available NMS (RA, TS, TB, and TC) have been performed in order to study their dissolution at different conditions. The suspensions have been characterized relatively to particle size, pH, and density besides NMS assay and the amount of drug in solution in the suspension vehicles. The dissolution study was conducted using the following media: simulated intestinal fluid, pH 6.8, containing polysorbate 80 (P80) or sodium lauryl sulfate (SLS); phosphate buffer, pH 7.4, with P80 and aqueous solution of SLS. Concerning the quantitative analysis, the UV-VIS spectrophotometry could have been used in substitution to high-performance liquid chromatography since the methodology had been adequately validated. The influence of the drug particle size distribution was significant on the dissolution profiles of NMS formulations, confirming to be a factor that should be strictly controlled in the development of oral suspensions.

  3. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  4. Pre-Alignment Checks. Automotive Mechanics. Steering & Suspension. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automotive steering and suspension, consists of a student guide and an instructor guide dealing with prealignment checks. Covered in the module are the following steps in a prealignment check: checking the ride height of a vehicle, checking the ball joints and the…

  5. Development of Subischial Prosthetic Sockets with Vacuum-Assisted Suspension for Highly Active Persons with Transfemoral Amputations

    DTIC Science & Technology

    2012-10-01

    materials to facilitate dissemination of this technique. 15. SUBJECT TERMS Transfemoral amputation, sub-ischial socket, prosthesis , vacuum-assisted...an appropriate mechanical pump to create suitable vacuum for suspension of the prosthesis ...sockets of highly active prosthesis users

  6. Comparison of vehicle activity and emission inventory between Beijing and Shanghai.

    PubMed

    Liu, Huan; He, Kebin; Wang, Qidong; Huo, Hong; Lents, James; Davis, Nicole; Nikkila, Nick; Chen, Changhong; Osses, Mauricio; He, Chunyu

    2007-10-01

    Vehicle emission inventory is a critical element for air quality study. This study created systemic methods to establish a vehicle emission inventory in Chinese cities. The methods were used to obtain credible results of vehicle activity in Beijing and Shanghai. On the basis of the vehicle activity data, the International Vehicle Emission model is used to establish vehicle emission inventories. The emissions analysis indicates that 3 t of particulate matter (PM), 199 t of nitrogen oxides (NO(x)), 192 t of volatile organic compounds (VOCs), and 2403 t of carbon monoxide (CO) are emitted from on-road vehicles each day in Beijing, whereas 4 t of PM, 189 t of NO(x), 113 t of VOCs, and 1009 t of CO are emitted in Shanghai. Although common features were found in these two cities (many new passenger cars and a high taxi proportion in the fleet), the emission results are dissimilar because of the different local policy regarding vehicles. The method to quantify vehicle emission on an urban scale can be applied to other Chinese cities. Also, knowing how different policies can lead to diverse emissions is beneficial knowledge for other city governments.

  7. Superelement model based parallel algorithm for vehicle dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, O.P.; Danhof, K.J.; Kumar, R.

    1994-05-01

    This paper presents a superelement model based parallel algorithm for a planar vehicle dynamics. The vehicle model is made up of a chassis and two suspension systems each of which consists of an axle-wheel assembly and two trailing arms. In this model, the chassis is treated as a Cartesian element and each suspension system is treated as a superelement. The parameters associated with the superelements are computed using an inverse dynamics technique. Suspension shock absorbers and the tires are modeled by nonlinear springs and dampers. The Euler-Lagrange approach is used to develop the system equations of motion. This leads tomore » a system of differential and algebraic equations in which the constraints internal to superelements appear only explicitly. The above formulation is implemented on a multiprocessor machine. The numerical flow chart is divided into modules and the computation of several modules is performed in parallel to gain computational efficiency. In this implementation, the master (parent processor) creates a pool of slaves (child processors) at the beginning of the program. The slaves remain in the pool until they are needed to perform certain tasks. Upon completion of a particular task, a slave returns to the pool. This improves the overall response time of the algorithm. The formulation presented is general which makes it attractive for a general purpose code development. Speedups obtained in the different modules of the dynamic analysis computation are also presented. Results show that the superelement model based parallel algorithm can significantly reduce the vehicle dynamics simulation time. 52 refs.« less

  8. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    NASA Astrophysics Data System (ADS)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  9. Antifungal activity against Candida albicans of starch Pickering emulsion with thymol or amphotericin B in suspension and calcium alginate films.

    PubMed

    Cossu, Andrea; Wang, Min S; Chaudhari, Amol; Nitin, Nitin

    2015-09-30

    Conventional antifungal treatments against Candida albicans in the oral cavity often result in increased cytotoxicity. The goal of this study was to determine the potential of starch Pickering emulsion as a delivery vehicle for an antifungal natural phenolic compound such as thymol in simulated saliva fluid (SSF) compared to amphotericin B. An oil-in-water (o/w) emulsion was stabilized using starch particles. Physical stability of the emulsion and disruption induced by α-amylase activity in SSF was evaluated. Encapsulated thymol in o/w emulsion was compared to encapsulated amphotericin B for antifungal activity against C. albicans in suspension using emulsions or zone inhibition assay on agar plates using emulsions dispersed in alginate films. Results showed that the emulsions were stable for at least three weeks. Digestion of the emulsion by α-amylase led to coalescence of emulsion droplets. The antifungal activity of thymol and amphotericin B in emulsion formulation was enhanced upon incubation with α-amylase. Results from the zone inhibition assay demonstrated efficacy of the emulsions dispersed in alginate films. Interestingly, addition of α-amylase to the alginate films resulted in a decreased inhibitory effect. Overall, this study showed that starch Pickering emulsions have a potential to deliver hydrophobic antifungal compounds to treat oral candidiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Passive detection of vehicle loading

    NASA Astrophysics Data System (ADS)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Salvaggio, Philip S.; McKeown, Donald M.; Garrett, Alfred J.; Coleman, David H.; Koffman, Larry D.

    2012-01-01

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  11. Wind tunnel magnetic Suspension Systems at the University of Southampton, England

    NASA Technical Reports Server (NTRS)

    Goodyer, Michael J.

    1992-01-01

    The magnetic suspension system at Southampton University was used in two roles: as a device for producing useful aerodynamic data, and as a vehicle to develop and demonstrate new technology for application to a projected larger facility. Examples of both follow, beginning with an outline of the quest to develop methods for reaching high angles of attack because of current interest in researching the associated aerodynamics.

  12. Structural analysis of compression helical spring used in suspension system

    NASA Astrophysics Data System (ADS)

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  13. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  14. Living Clusters and Crystals from Low-Density Suspensions of Active Colloids

    NASA Astrophysics Data System (ADS)

    Mognetti, B. M.; Šarić, A.; Angioletti-Uberti, S.; Cacciuto, A.; Valeriani, C.; Frenkel, D.

    2013-12-01

    Recent studies aimed at investigating artificial analogs of bacterial colonies have shown that low-density suspensions of self-propelled particles confined in two dimensions can assemble into finite aggregates that merge and split, but have a typical size that remains constant (living clusters). In this Letter, we address the problem of the formation of living clusters and crystals of active particles in three dimensions. We study two systems: self-propelled particles interacting via a generic attractive potential and colloids that can move toward each other as a result of active agents (e.g., by molecular motors). In both cases, fluidlike “living” clusters form. We explain this general feature in terms of the balance between active forces and regression to thermodynamic equilibrium. This balance can be quantified in terms of a dimensionless number that allows us to collapse the observed clustering behavior onto a universal curve. We also discuss how active motion affects the kinetics of crystal formation.

  15. Composite structural armor for combat vehicle applications

    NASA Technical Reports Server (NTRS)

    Haskell, William E., III; Alesi, A. L.; Parsons, G. R.

    1990-01-01

    Several projects that have demonstrated the advantages of using thick composite armor technology for structural applications in armored combat vehicles are discussed. The first involved composite cargo doors for the Marine Corps LVTP-7 amphibious landing vehicle. Another was a demonstration composite turret that offered a weight reduction of 15.5 percent. The advantages of this composite armor compared to metallic armors used for combat vehicle hull and turret applications are reduced weight at equal ballistic protection; reduced back armor spall; excellent corrosion resistance; reduced production costs by parts consolidation; and inherent thermal and acoustic insulative properties. Based on the encouraging results of these past programs, the Demonstration Composite Hull Program was started in September 1986. To demonstrate this composite armor technology, the Army's newest infantry fighting vehicle, the Bradley Fighting Vehicle (BFV), was selected as a model. A composite infantry fighting vehicle, designated the CIFV for this program, has been designed and fabricated and is currently undergoing a 6000 mile field endurance test. The CIFV demonstration vehicle uses the BFV engine, transmission, suspension, track and other equipment.

  16. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    PubMed

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  17. Population and Activity of On-road Vehicles in MOVES2014

    EPA Science Inventory

    This report describes the sources and derivation for on-road vehicle population and activity information and associated adjustments as stored in the MOVES2014 default databases. Motor Vehicle Emission Simulator, the MOVES2014 model, is a set of modeling tools for estimating emiss...

  18. Non-linear dielectric spectroscopy of microbiological suspensions

    PubMed Central

    Treo, Ernesto F; Felice, Carmelo J

    2009-01-01

    Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not

  19. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    NASA Technical Reports Server (NTRS)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    upgraded. Two new cranes will help move test articles at the test stand and at the Redstone Arsenal railhead where first stage segments will be received in 2011. The Hydrodynamic Support systems (HDSs) used for Saturn and Shuttle have been disassembled and evaluated for use during IVGVT. Analyses indicate that the 45-year-old HDSs can be refurbished to support the Ares I IVGVT. An alternate concept for a pneumatic suspension system is also being explored. A decision on which suspension system configuration to use for IVGVT will be made in 2010. In the next three years, the team will complete the updates to TS 4550, upgrade the test and data collection equipment, and finalize the configurations of the test articles to be used in the IVGVT. With NASA's GVT capabilities reestablished, the FITO team will be well positioned to perform similar work on Ares V, the largest exploration launch vehicle NASA has ever built. The GVT effort continues NASA's 50-year commitment to using testing and data analysis for safer, more reliable launch vehicles.

  20. The behaviour of a vehicle’s suspension system on dynamic testing conditions

    NASA Astrophysics Data System (ADS)

    Mihon, L.; Lontiş, N.; Deac, S.

    2018-01-01

    The paper presents a car suspension’s behaviour on dynamic testing conditions through theoretical and mathematical simulation on specific model, on the single traction wheel, according to the real vehicle and by experiment on the test bench by reproducing the road’s geometry and vehicle’s speed and measuring the acceleration and damping response of the suspension system on that wheel. There are taking in consideration also the geometry and properties of the tyre-wheel model and physical wheel’s properties. The results are important due to the suspension’s model properties which allows to extend the theory and applications to the whole vehicle for improving the vehicle’s dynamics.

  1. Physical and Chemical Stability of Budesonide Mucoadhesive Oral Suspensions (MucoLox).

    PubMed

    Ip, Kendice; Carvalho, Maria; Shan, Ashley; Banov, Daniel

    2017-01-01

    Budesonide is a corticosteroid that has been shown effective in the treatment of eosinophilic esophagitis, but there are currently no commercial medicines to treat this chronic allergic/immune condition, despite its prevalence in the U.S. Therefore, pharmaceutical compounding is the alternative choice to meet the therapeutic need of eosinophilic esophagitis patients. Two budesonide mucoadhesive oral suspensions (1 mg/10 mL and 2 mg/10 mL) were developed using the compounding vehicle MucoLox, a proprietary mucoadhesive polymer blend that promotes mucosal adhesion. The physical and chemical stability of the oral suspensions was tested over a period of 182 days, at room temperature and refrigerated conditions, in order to determine the corresponding beyond-use date. The physical characterization consisted in observing all samples for color/appearance and odor, and testing for pH and density, whereas the chemical characterization consisted in ultra-performance liquid chromatography assay testing. Both oral suspensions were proven physically and chemically stable, and the ultra-performance liquid chromatography method was proven stability indicating. As a result, the beyond-use date of the budesonide 1-mg/10-mL and 2-mg/10-mL mucoadhesive oral suspensions (MucoLox), in amber plastic bottles, is six months at both room temperature and refrigerated conditions. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  2. Stiffness Parameter Design of Suspension Element of Under-Chassis-Equipment for A Rail Vehicle

    NASA Astrophysics Data System (ADS)

    Ma, Menglin; Wang, Chengqiang; Deng, Hai

    2017-06-01

    According to the frequency configuration requirements of the vibration of railway under-chassis-equipment, the three- dimension stiffness of the suspension elements of under-chassis-equipment is designed based on the static principle and dynamics principle. The design results of the concrete engineering case show that, compared with the design method based on the static principle, the three- dimension stiffness of the suspension elements designed by the dynamic principle design method is more uniform. The frequency and decoupling degree analysis show that the calculation frequency of under-chassis-equipment under the two design methods is basically the same as the predetermined frequency. Compared with the design method based on the static principle, the design method based on the dynamic principle is adopted. The decoupling degree can be kept high, and the coupling vibration of the corresponding vibration mode can be reduced effectively, which can effectively reduce the fatigue damage of the key parts of the hanging element.

  3. Assessment of the Pozzolanic Activity of a Spent Catalyst by Conductivity Measurement of Aqueous Suspensions with Calcium Hydroxide

    PubMed Central

    Velázquez, Sergio; Monzó, José M.; Borrachero, María V.; Payá, Jordi

    2014-01-01

    The pozzolanic activity of the spent catalyst produced by fluid catalytic cracking (FCC) has been studied by various methods in recent years. However, no quick and easy method has been reported for this activity based on the associated studies. In this work, the pozzolanic activity of a spent catalyst was investigated by measuring its electrical conductivity in aqueous suspensions of pozzolan/calcium hydroxide. The behavior of the FCC catalyst residue was compared to that of reactive and inert materials of similar chemical compositions. Further, the influence of temperature on the suspension was studied, and also, a new method was proposed in which the pozzolan/calcium hydroxide ratio was varied (with the initial presence of solid Ca(OH)2 in the system). It was concluded that the method is effective, fast and simple for evaluating the high reactivity of the catalyst. Therefore, this method is an alternative for the evaluation of the reactivity of pozzolanic materials. PMID:28788583

  4. Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening Truss; Upper & Lower Decks; Assembled System - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  5. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    PubMed

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  6. Suspension of Registrations under FIFRA

    EPA Pesticide Factsheets

    Under FIFRA Section 3(c)(2)(B), this generally halts further distribution and sale of the suspended pesticide product by the registrant. Find suspension listings by product name, active ingredient, registrant name, date, and contact information.

  7. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  8. Intermittent turbulence in flowing bacterial suspensions

    PubMed Central

    Secchi, Eleonora; Rusconi, Roberto; Buzzaccaro, Stefano; Salek, M. Mehdi; Smriga, Steven; Piazza, Roberto; Stocker, Roman

    2016-01-01

    Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome. PMID:27307513

  9. Intermittent turbulence in flowing bacterial suspensions.

    PubMed

    Secchi, Eleonora; Rusconi, Roberto; Buzzaccaro, Stefano; Salek, M Mehdi; Smriga, Steven; Piazza, Roberto; Stocker, Roman

    2016-06-01

    Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome. © 2016 The Author(s).

  10. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes.

    PubMed

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development.

  11. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes

    PubMed Central

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development. PMID:24920902

  12. Particle-based simulations of self-motile suspensions

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  13. Stability of extemporaneous enalapril maleate suspensions for pediatric use prepared from commercially available tablets.

    PubMed

    Sosnowska, Katarzyna; Winnicka, Katarzyna; Czajkowska-Kośnik, Anna

    2009-01-01

    In this paper, the stability of enalapril maleate in oral formulations prepared from commercially available tablets was investigated. Extemporaneously compounded, 0.1 mg/mL and 1.0 mg/mL, oral suspensions of enalapril maleate in sugar-containing and sugar-free vehicles were stored in the absence of light at 4 degrees and 25 degrees C for 30 days. Enalapril maleate stability was quantified after 7, 14, 21, and 30 days using HPLC method. Viscosities and pH of prepared suspensions were measured on each study day and no appreciable changes from the initial pH and initial viscosities occurred in any of the samples both at 25 degrees and 4 degrees C. It was shown that all the formulations retain minimum 98% of the initial enalapril maleate concentration after 30 days of storage at 25 degrees and 4 degrees C and they may provide an option in situations where the marketed suspension is unavailable.

  14. Mesenchymal stromal cell secretomes are modulated by suspension time, delivery vehicle, passage through catheter, and exposure to adjuvants.

    PubMed

    Parsha, Kaushik; Mir, Osman; Satani, Nikunj; Yang, Bing; Guerrero, Waldo; Mei, Zhuyong; Cai, Chunyan; Chen, Peng R; Gee, Adrian; Hanley, Patrick J; Aronowski, Jaroslaw; Savitz, Sean I

    2017-01-01

    Extensive animal data indicate that mesenchymal stromal cells (MSCs) improve outcome in stroke models. Intra-arterial (IA) injection is a promising route of delivery for MSCs. Therapeutic effect of MSCs in stroke is likely based on the broad repertoire of secreted trophic and immunomodulatory cytokines produced by MSCs. We determined the differential effects of exposing MSCs to different types of clinically relevant vehicles, and/or different additives and passage through a catheter relevant to IA injections. MSCs derived from human bone marrow were tested in the following vehicles: 5% albumin (ALB), 6% Hextend (HEX) and 40% dextran (DEX). Each solution was tested (i) alone, (ii) with low-dose heparin, (iii) with 10% Omnipaque, or (iv) a combination of heparin and Omnipaque. Cells in vehicles were collected directly or passed through an IA catheter, and MSC viability and cytokine release profiles were assessed. Cell viability remained above 90% under all tested conditions with albumin being the highest at 97%. Viability was slightly reduced after catheter passage or exposure to heparin or Omnipaque. Catheter passage had little effect on MSC cytokine secretion. ALB led to increased release of angiogenic factors such as vascular endothelial growth factor compared with other vehicles, while HEX and DEX led to suppression of pro-inflammatory cytokines such as interleukin-6. However, when these three vehicles were subjected to catheter passage and/or exposure to additives, the cytokine release profile varied depending on the combination of conditions to which MSCs were exposed. Exposure of MSCs to certain types of vehicles or additives changes the profile of cytokine secretion. The activation phenotype of MSCs may therefore be affected by the vehicles used for these cells or the exposure to the adjuvants used in their administration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Stability of Extemporaneously Prepared Hydroxychloroquine Sulfate 25-mg/mL Suspensions in Plastic Bottles and Syringes.

    PubMed

    McHenry, Adam R; Wempe, Michael F; Rice, Peter J

    2017-01-01

    This study evaluated the stability of the antimalarial and anti-rheumatic drug hydroxychloroquine sulfate in two commercially available suspension vehicles, Oral Mix and Oral Mix SF (Medisca Pharmaceutique Inc.). Hydroxychloroquine sulfate (25 mg/mL) suspension was prepared, packaged in amber 50-mL polyethylene terephthalate bottles and amber 3-mL syringes, and stored at room temperature or at 4°C. Samples were collected and analyzed over a 16-week period by high-performance liquid chromatography with ultraviolet detection at 340 nm. Approximately 99.8% of the hydroxychloroquine remained at the conclusion of the study, with no observable difference between room temperature and refrigerated storage. Hydroxychloroquine sulfate is stable for at least 90 days in Medisca Oral Mix or Oral Mix SF suspension media at 25°C and 4°C. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  16. Effect of Seating on Exposures to Whole-Body Vibration in Vehicles

    NASA Astrophysics Data System (ADS)

    PADDAN, G. S.; GRIFFIN, M. J.

    2002-05-01

    The vibration isolation efficiency of seating has been evaluated in 100 work vehicles in 14 categories (cars, vans, lift trucks, lorries, tractors, buses, dumpers, excavators, helicopters, armoured vehicles, mobile cranes, grass rollers, mowers and milk floats). Seat isolation efficiency, expressed by the SEAT value, was determined for all seats (67 conventional seats and 33 suspension seats) from the vertical acceleration measured on the floors and on the seats of the vehicles.For most categories of vehicle, the average SEAT value was less than 100%, indicating that the average seat provided some attenuation of vibration. However, there were large variations in SEAT values between vehicles within categories. Two alternative vibration frequency weightings (Wb from BS 6841, 1987; Wk from ISO 2631, 1997) yielded SEAT values that differed by less than 6%. Overall, the SEAT values determined by two alternative methods (the ratio of r.m.s. values and the ratio of vibration dose values) differed by less than 4·5% when using weighting Wb, although larger differences may be expected in some situations. The median SEAT value for the suspension seats was 84·6%; the median SEAT value for the conventional seats was 86·9% (based on weighting Wb and the ratio of r.m.s. values).Predicted SEAT values were obtained assuming that each seat could be interchanged between vehicles without altering its transmissibility. The calculations suggest that 94% of the vehicles investigated might benefit from changing the current seat to a seat from one of the other vehicles investigated. Although the predictions are based on assumptions that will not always apply, it is concluded that the severity of whole-body vibration exposures in many work environments can be lessened by improvements to seating dynamics.

  17. Compact, Isolating Elastomeric Suspension for Vehicle Acoustic Vector Sensor

    DTIC Science & Technology

    2007-09-30

    well as underwater acoustics. His Master’s thesis, funded by NUSC, was a study of near-body acoustic signal behavior entitled “Some Characteristics of ...in non-polymer based composites, including cermets . He has formulated a very wide range of materials for an equally wide range of applications, and...with a moving vehicle of an instrument responsive to particle accelerations in the surrounding medium. The overall goal of this project is to develop

  18. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    NASA Technical Reports Server (NTRS)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  19. Non-equilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting suspensions

    NASA Astrophysics Data System (ADS)

    Chu, Henry; Zia, Roseanna

    In our recently developed non-equilibrium Stokes-Einstein relation, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here, we generalize our theory for systems of hydrodynamically interacting colloids, via active microrheology, where motion of a Brownian probe through the medium reveals rheological properties. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, the first normal stress difference and the osmotic pressure scale as Pe4 and Pe2 respectively when probe forcing is weak, and uniformly as Pe for strong probe forcing. As hydrodynamics become important, interparticle forces give way to lubrication interactions. Hydrodynamic coupling leads to a new low-Pe scaling of the first normal stress difference and the osmotic pressure as Pe2, and high-Pe scaling as Peδ, where 0.799 <= δ <= 1 as hydrodynamics vary from strong to weak. For the entire range of the strength of hydrodynamic interactions and probe forcing, the new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. We further draw a connection between the stress and the energy storage in a suspension, and the entropic nature of such storage is identified.

  20. Suspension parameter estimation in the frequency domain using a matrix inversion approach

    NASA Astrophysics Data System (ADS)

    Thite, A. N.; Banvidi, S.; Ibicek, T.; Bennett, L.

    2011-12-01

    The dynamic lumped parameter models used to optimise the ride and handling of a vehicle require base values of the suspension parameters. These parameters are generally experimentally identified. The accuracy of identified parameters can depend on the measurement noise and the validity of the model used. The existing publications on suspension parameter identification are generally based on the time domain and use a limited degree of freedom. Further, the data used are either from a simulated 'experiment' or from a laboratory test on an idealised quarter or a half-car model. In this paper, a method is developed in the frequency domain which effectively accounts for the measurement noise. Additional dynamic constraining equations are incorporated and the proposed formulation results in a matrix inversion approach. The nonlinearities in damping are estimated, however, using a time-domain approach. Full-scale 4-post rig test data of a vehicle are used. The variations in the results are discussed using the modal resonant behaviour. Further, a method is implemented to show how the results can be improved when the matrix inverted is ill-conditioned. The case study shows a good agreement between the estimates based on the proposed frequency-domain approach and measurable physical parameters.

  1. Vehicle lift-off modelling and a new rollover detection criterion

    NASA Astrophysics Data System (ADS)

    Mashadi, Behrooz; Mostaghimi, Hamid

    2017-05-01

    The modelling and development of a general criterion for the prediction of rollover threshold is the main purpose of this work. Vehicle dynamics models after the wheels lift-off and when the vehicle moves on the two wheels are derived and the governing equations are used to develop the rollover threshold. These models include the properties of the suspension and steering systems. In order to study the stability of motion, the steady-state solutions of the equations of motion are carried out. Based on the stability analyses, a new relation is obtained for the rollover threshold in terms of measurable response parameters. The presented criterion predicts the best time for the prevention of the vehicle rollover by applying a correcting moment. It is shown that the introduced threshold of vehicle rollover is a proper state of vehicle motion that is best for stabilising the vehicle with a low energy requirement.

  2. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    PubMed Central

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-01-01

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver’s vigilance level . Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model. PMID:26907278

  3. Development of an MR seat suspension with self-powered generation capability

    NASA Astrophysics Data System (ADS)

    Sun, S. S.; Ning, D. H.; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.; Nakano, M.

    2017-08-01

    This paper proposes a self-powered magnetorheological (MR) seat suspension on the basis of a rotary MR damper and an electromagnetic induction device. By applying the self-powering component to the MR seat suspension, the operation cost of the semi-active seat is much cheaper because no external energy is required to control the MR damper. In this paper, the structure, design and analysis of the seat suspension were presented following the introduction section. The property tests of the self-powered seat suspension were conducted using an MTS machine. A robust control algorithm was developed to control the self-powered MR seat suspension and the vibration attenuation performance of the seat suspension was tested under two different vibration excitations, i.e. harmonic excitation and random excitation. The testing result verifies that the self-powered MR seat suspension under proper control can improve the ride comfort for passengers and drivers.

  4. Stability of an extemporaneously prepared alcohol-free phenobarbital suspension.

    PubMed

    Cober, Mary Petrea; Johnson, Cary E

    2007-03-15

    The physical and chemical short-term stability of alcohol-free, oral suspensions of phenobarbital 10 mg/mL prepared from commercially available tablets in both a sugar and a sugar-free vehicle was assessed at room temperature. Phenobarbital oral suspension 10 mg/mL was prepared by crushing 10 60-mg tablets of phenobarbital with a mortar and pestle. A small amount of Ora-Plus was added to the phenobarbital powder to sufficiently wet the particles. A 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF was combined with the phenobarbital powder to produce a final volume of 60 mL. Three identical samples of each of the two different formulations were prepared and stored at room temperature in 2-oz amber plastic bottles. Immediately after preparation and at 15, 30, 60, and 115 days, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography. The samples were tasted and inspected for color and odor changes. The percent of the initial concentration remaining at each study time for each phenobarbital suspension was determined. Stability was defined as the retention of at least 90% of the initial concentration. There were no detectable changes in color, odor, and taste and no visible microbial growth in any sample. At least 98% of the initial phenobarbital concentration remained throughout the 115-day study period in both preparations. An extemporaneously prepared alcohol-free suspension of phenobarbital 10 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF was stable for at least 115 days when stored in 2-oz amber plastic bottles at room temperature.

  5. Stability of Cyclophosphamide in Extemporaneous Oral Suspensions

    PubMed Central

    Kennedy, Rachel; Groepper, Daniel; Tagen, Michael; Christensen, Robbin; Navid, Fariba; Gajjar, Amar; Stewart, Clinton F.

    2010-01-01

    Background Cyclophosphamide, an alkylating agent, is widely used for the treatment of many adult and pediatric malignancies. The stability of cyclophosphamide in aqueous- and methylcellulose-based oral suspending vehicles is currently unknown. Objectives The goals of this study were (1) to develop and validate a stability-indicating HPLC method to measure cyclophosphamide concentrations in simple syrup and Ora-Plus, and (2) to assess the 56-day chemical stability and physical appearance of cyclophosphamide in these suspensions at both room temperature and 4°C. Methods The i.v. formulation of cyclophosphamide was diluted to 20 mg/mL in normal saline, compounded 1:1 with either suspending vehicle, and stored in the dark in 3mL amber polypropylene oral syringes at 4°C and 22°C. Aliquots from each syringe were obtained on days 0, 3, 7, 14, 21, 28, 35, 42, 49, and 56 and assayed using the validated stability-indicating HPLC-UV method. A C18 analytical column was used to separate cyclophosphamide from the internal standard, ifosfamide, with a mobile phase of 21% acetonitrile in 79% sodium phosphate buffer. The suspension was examined for odor change, visually examined under normal fluorescent light for color change, and examined under a light microscope for evidence of microbial growth. Results Samples of cyclophosphamide in both simple syrup and Ora-Plus were stable when kept at 4°C for at least 56 days. At room temperature, cyclophosphamide in simple syrup and Ora-Plus had a shelf life of 8 and 3 days, respectively. No changes in color or odor or evidence of microbial growth were observed. Conclusion Cyclophosphamide can be extemporaneously prepared in simple syrup or Ora-Plus and stored at least 2 months under refrigeration without significant degradation. PMID:20103616

  6. Stability of cyclophosphamide in extemporaneous oral suspensions.

    PubMed

    Kennedy, Rachel; Groepper, Daniel; Tagen, Michael; Christensen, Robbin; Navid, Fariba; Gajjar, Amar; Stewart, Clinton F

    2010-02-01

    Cyclophosphamide, an alkylating agent, is widely used for the treatment of many adult and pediatric malignancies. The stability of cyclophosphamide in aqueous- and methylcellulose-based oral suspending vehicles is currently unknown. To develop and validate a stability-indicating high-performance liquid chromatography (HPLC) method to measure cyclophosphamide concentrations in simple syrup and Ora-Plus, and assess the 56-day chemical stability and physical appearance of cyclophosphamide in these suspensions at both room temperature (22 degrees C) and 4 degrees C. The intravenous formulation of cyclophosphamide was diluted to 20 mg/mL in NaCl 0.9%, compounded 1:1 with either suspending vehicle, and stored in the dark in 3-mL amber polypropylene oral syringes at 4 degrees C and 22 degrees C. Aliquots from each syringe were obtained on days 0, 3, 7, 14, 21, 28, 35, 42, 49, and 56 and assayed using the validated stability-indicating HPLC-UV method. A C18 analytical column was used to separate cyclophosphamide from the internal standard, ifosfamide, with a mobile phase of 21% acetonitrile in 79% sodium phosphate buffer. The suspension was examined for odor change, visually examined under normal fluorescent light for color change, and examined under a light microscope for evidence of microbial growth. Samples of cyclophosphamide in both simple syrup and Ora-Plus were stable when kept at 4 degrees C for at least 56 days. At room temperature, cyclophosphamide in simple syrup and Ora-Plus had a shelf life of 8 and 3 days, respectively. No changes in color or odor or evidence of microbial growth were observed. Cyclophosphamide can be extemporaneously prepared in simple syrup or Ora-Plus and stored for at least 2 months under refrigeration without significant degradation.

  7. 29 CFR 500.103 - Activities not subject to vehicle safety standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Activities not subject to vehicle safety standards. 500.103... LABOR REGULATIONS MIGRANT AND SEASONAL AGRICULTURAL WORKER PROTECTION Motor Vehicle Safety and Insurance for Transportation of Migrant and Seasonal Agricultural Workers, Housing Safety and Health for Migrant...

  8. 29 CFR 500.103 - Activities not subject to vehicle safety standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Activities not subject to vehicle safety standards. 500.103... LABOR REGULATIONS MIGRANT AND SEASONAL AGRICULTURAL WORKER PROTECTION Motor Vehicle Safety and Insurance for Transportation of Migrant and Seasonal Agricultural Workers, Housing Safety and Health for Migrant...

  9. Vehicle Engineering Development Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; Champion, Robert H., Jr.

    1999-01-01

    New initiatives in the Space Transportation Directorate at the Marshall Space Flight Center include an emphasis on Vehicle Engineering to enhance the strong commitment to the Directorate's projects in the development of flight hardware and flight demonstrators for the advancement of space transportation technology. This emphasis can be seen in the activities of a newly formed organization in the Transportation Directorate, The Vehicle Subsystems Engineering Group. The functions and type of activities that this group works on are described. The current projects of this group are outlined including a brief description of the status and type of work that the group is performing. A summary section is included to describe future activities.

  10. 32 CFR 634.9 - Suspension or revocation of driving or privately owned vehicle registration privileges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... owned vehicle registration privileges. 634.9 Section 634.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE... vehicle registration privileges. The installation commander or designee may for cause, or any lawful...

  11. 32 CFR 634.9 - Suspension or revocation of driving or privately owned vehicle registration privileges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... owned vehicle registration privileges. 634.9 Section 634.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE... vehicle registration privileges. The installation commander or designee may for cause, or any lawful...

  12. 32 CFR 634.9 - Suspension or revocation of driving or privately owned vehicle registration privileges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... owned vehicle registration privileges. 634.9 Section 634.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE... vehicle registration privileges. The installation commander or designee may for cause, or any lawful...

  13. 32 CFR 634.9 - Suspension or revocation of driving or privately owned vehicle registration privileges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... owned vehicle registration privileges. 634.9 Section 634.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE... vehicle registration privileges. The installation commander or designee may for cause, or any lawful...

  14. 46 CFR 565.10 - Suspension procedures, period of suspension, and replacement rates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Suspension procedures, period of suspension, and replacement rates. 565.10 Section 565.10 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AND ACTIONS TO ADDRESS RESTRICTIVE FOREIGN MARITIME PRACTICES CONTROLLED CARRIERS § 565.10 Suspension procedures, period...

  15. Flux-canceling electrodynamic maglev suspension. Part 1: Test fixture design and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.T.; Thornton, R.D.; Kondoleon, A.

    1999-05-01

    The design and analysis of a scale-model suspension test facility for magnetic levitation (maglev) is discussed. The authors describe techniques for the design, construction, and testing of a prototype electrodynamic suspension (EDS) levitation system. The viability of future high-temperature superconducting magnet designs for maglev has been investigated with regard to their application to active secondary suspensions. In order to test the viability of a new flux-canceling EDS suspension, a 1/5-scale suspension magnet and guideway was constructed. The suspension was tested by using a high-speed rotating test wheel facility with linear peripheral speed of up to 84 m/s (300 km/h). Amore » set of approximate design tools and scaling laws has been developed in order to evaluate forces and critical velocities in the suspension.« less

  16. Mathematical modelling of active safety system functions as tools for development of driverless vehicles

    NASA Astrophysics Data System (ADS)

    Ryazantsev, V.; Mezentsev, N.; Zakharov, A.

    2018-02-01

    This paper is dedicated to a solution of the issue of synthesis of the vehicle longitudinal dynamics control functions (acceleration and deceleration control) based on the element base of the vehicle active safety system (ESP) - driverless vehicle development tool. This strategy helps to reduce time and complexity of integration of autonomous motion control systems (AMCS) into the vehicle architecture and allows direct control of actuators ensuring the longitudinal dynamics control, as well as reduction of time for calibration works. The “vehicle+wheel+road” longitudinal dynamics control is complicated due to the absence of the required prior information about the control object. Therefore, the control loop becomes an adaptive system, i.e. a self-adjusting monitoring system. Another difficulty is the driver’s perception of the longitudinal dynamics control process in terms of comfort. Traditionally, one doesn’t pay a lot of attention to this issue within active safety systems, and retention of vehicle steerability, controllability and stability in emergency situations are considered to be the quality criteria. This is mainly connected to its operational limits, since it is activated only in critical situations. However, implementation of the longitudinal dynamics control in the AMCS poses another challenge for the developers - providing the driver with comfortable vehicle movement during acceleration and deceleration - while the possible highest safety level in terms of the road grip is provided by the active safety system (ESP). The results of this research are: universal active safety system - AMCS interaction interface; block diagram for the vehicle longitudinal acceleration and deceleration control as one of the active safety system’s integrated functions; ideology of adaptive longitudinal dynamics control, which enables to realize the deceleration and acceleration requested by the AMCS; algorithms synthesised; analytical experiments proving the

  17. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    PubMed Central

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  18. 76 FR 22423 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Suspension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... for OMB Review; Comment Request; Suspension of Pension Benefits ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Suspension of Pension Benefits,'' to the Office of Management... regulations govern the circumstances under which pension plans may suspend pension benefit payments to...

  19. 32 CFR 634.9 - Suspension or revocation of driving or privately owned vehicle registration privileges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRAFFIC SUPERVISION Driving Privileges § 634.9 Suspension or revocation of driving or privately owned... revocation of installation driving privileges or POV registrations, for lawful reasons unrelated to traffic... occurring on the installation or in areas subject to military traffic supervision. After a review of...

  20. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    PubMed

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  1. Literature review on recent international activity in cooperative vehicle-highway automation systems.

    DOT National Transportation Integrated Search

    2012-12-01

    This literature review supports the report, Recent International Activity in Cooperative VehicleHighway Automation Systems. It : reviews the published literature in English dating from 2007 or later about non-U.S.-based work on cooperative vehicle...

  2. Development of Subischial Prosthetic Sockets with Vacuum-Assisted Suspension for Highly Active Persons with Transfemoral Amputations

    DTIC Science & Technology

    2014-10-01

    Award Number: W81XWH-10-1-0744 TITLE: Development of Subischial Prosthetic Sockets with Vacuum...REPORT TYPE Annual 3. DATES COVERED 15 Sep 2013 – 14 Sep 2014 4. TITLE AND SUBTITLE Development of Subischial Prosthetic Sockets with Vacuum...to develop a highly flexible sub-ischial prosthetic socket with assisted-vacuum suspension for highly active persons with transfemoral amputation. The

  3. Investigation on dynamical interaction between a heavy vehicle and road pavement

    NASA Astrophysics Data System (ADS)

    Yang, Shaopu; Li, Shaohua; Lu, Yongjie

    2010-08-01

    This paper presents a model for three-dimensional, heavy vehicle-pavement-foundation coupled system, which is modelled as a seven-DOF vehicle moving along a simply supported double-layer rectangular thin plate on a linear viscoelastic foundation. The vertical tyre force is described by a single point-contact model, while the pavement-foundation is modelled as a double-layer plate on a linear viscoelastic foundation. Using the Galerkin method and quick direct integral method, the dynamical behaviour of the vehicle-pavement-foundation coupled system is investigated numerically and compared with that of traditional vehicle system and pavement system. The effects of coupling action on vehicle body vertical acceleration, suspension deformations, tyre forces and pavement displacements are also obtained. The investigation shows that the coupling action could not be neglected even on a smooth road surface, such as highway. Thus, it is necessary to investigate the dynamics of vehicle and pavement simultaneously based on the vehicle-pavement-foundation coupled system.

  4. Statistical effects in the absorption and optical activity of particulate suspensions.

    PubMed Central

    Bustamante, C; Maestre, M F

    1988-01-01

    The phenomenon of Duysens flattening of the absorption spectra resulting from the inhomogeneous distribution of the chromophores in the solution is analyzed. These inhomogeneities are treated as localized statistical fluctuations in the concentration of the absorbing species, by using the Gaussian distribution. A law of absorbance is obtained, and the effect of light scattering on the flattening is also characterized. The flattening in the circular dichroism spectra of particulate suspensions is then analyzed. It is shown that the degree of flattening of the circular dichroism of a suspension is, in general, different from the corresponding flattening of its absorption spectrum. A quantitative relationship between the two effects is established. PMID:3186738

  5. Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L.

    PubMed

    Chee, P P; Tricoli, D M

    1988-06-01

    A procedure for the regeneration of whole cucumber plants (Cucumis sativus L. cv. Poinsett 76) by embryogenesis from cell suspension cultures is described. Embryogenic callus was initiated from the primary leaves of 14-17 day old plants. Suspension cultures of embryogenic cells were grown in liquid Murashige and Skoog basal medium containing 5 uM 2,4,5-trichlorophenoxyacetic acid and 4 uM 6-benzylaminopurine. Suspension cultures were composed of a population of cells that were densely cytoplasmic and potentially embryogenic. Differentiation of embryos was enhanced by washing the suspension culture cells with MS basal medium containing 0.5% activated charcoal and twice with MS basal medium followed by liquid shake cultures in MS basal medium. Sixty to 70 percent of the embryos prewashed with activated charcoal germinated into plantlets with normal morphology. Embryos obtained from suspension cultured cells without prewashing with activated charcoal organized into plantlets with abnormal primary leaves. Morphologically normal plantlets were obtained by excising the shoot tips and transferring them to fresh medium.

  6. 45 CFR 1641.11 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Suspension. 1641.11 Section 1641.11 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.11 Suspension. (a) IPAs suspended from providing audit...

  7. 45 CFR 1641.11 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Suspension. 1641.11 Section 1641.11 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.11 Suspension. (a) IPAs suspended from providing audit...

  8. Remotely detected vehicle mass from engine torque-induced frame twisting

    NASA Astrophysics Data System (ADS)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  9. Numerical solution of equations governing longitudinal suspension line wave motion during the parachute unfurling process. Ph.D. Thesis - George Washington Univ., Washington, D. C.

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1973-01-01

    Equations are presented which govern the dynamics of the lines-first parachute unfurling process, including wave motion in the parachute suspension lines. Techniques are developed for obtaining numerical solutions to the governing equations. Histories of tension at test data, and generally good agreement is observed. Errors in computed results are attributed to several areas of uncertainty, the most significant being a poorly defined boundary condition on the wave motion at the vehicle-suspension line boundary.

  10. Development of a non-piston MR suspension rod for variable mass systems

    NASA Astrophysics Data System (ADS)

    Deng, Huaxia; Han, Guanghui; Zhang, Jin; Wang, Mingxian; Ma, Mengchao; Zhong, Xiang; Yu, Liandong

    2018-06-01

    The semi-active suspension systems for variable mass systems require long work stroke and variable damping, while the currently piston structure limits the work stroke for the magnetorheological (MR) dampers. The main work of this paper is to design a semi-active non-piston MR (NPMR) suspension rod for the reduction of the vibration of an automatic impeller washing machine, which is a typical variable mass system. The designed suspension rod locates in the suspension system that links the internal tub to the washing machine cabinet. The NPMR suspension rod includes a MR part and a air part. The MR part can provide low initial damping force and the unlimited work stroke compared with the piston MR damper. The hysteretic response tests and vibration performance evaluation with different loadings are conducted to verify the dynamic performance for the designed rod. The measured damping force of the MR part varies from 5 to 20 N. Studies of dehydration mode experiments of the washing machine indicate that its vibration acceleration with the NPMR suspension rods can reduce to half of the original passive ones in certain conditions.

  11. Performance Analysis of a Semiactive Suspension System with Particle Swarm Optimization and Fuzzy Logic Control

    PubMed Central

    Qazi, Abroon Jamal; de Silva, Clarence W.

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868

  12. Rethinking Suspensions

    ERIC Educational Resources Information Center

    Stetson, Frank H.; Collins, Betty J.

    2010-01-01

    The overrepresentation of the Black and Hispanic subgroups in suspension data is a national problem and a troubling issue for schools and school systems across the United States. In Maryland, an analysis of student suspensions by school districts for the 2006-2007 school year revealed disproportionality issues. In 23 of the 24 jurisdictions,…

  13. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  14. Walkability parameters, active transportation and objective physical activity: moderating and mediating effects of motor vehicle ownership in a cross-sectional study

    PubMed Central

    2012-01-01

    Background Neighborhood walkability has been associated with physical activity in several studies. However, as environmental correlates of physical activity may be context specific, walkability parameters need to be investigated separately in various countries and contexts. Furthermore, the mechanisms by which walkability affects physical activity have been less investigated. Based on previous research, we hypothesized that vehicle ownership is a potential mediator. We investigated the associations between walkability parameters and physical activity, and the mediating and moderating effects of vehicle ownership on these associations in a large sample of Swedish adults. Methods Residential density, street connectivity and land use mix were assessed within polygon-based network buffers (using Geographic Information Systems) for 2,178 men and women. Time spent in moderate to vigorous physical activity was assessed by accelerometers, and walking and cycling for transportation were assessed by the International Physical Activity Questionnaire. Associations were examined by linear regression and adjusted for socio-demographic characteristics. The product of coefficients approach was used to investigate the mediating effect of vehicle ownership. Results Residential density and land use mix, but not street connectivity, were significantly associated with time spent in moderate to vigorous physical activity and walking for transportation. Cycling for transportation was not associated with any of the walkability parameters. Vehicle ownership mediated a significant proportion of the association between the walkability parameters and physical activity outcomes. For residential density, vehicle ownership mediated 25% of the association with moderate to vigorous physical activity and 20% of the association with the amount of walking for transportation. For land use mix, the corresponding proportions were 34% and 14%. Vehicle ownership did not moderate any of the associations

  15. Walkability parameters, active transportation and objective physical activity: moderating and mediating effects of motor vehicle ownership in a cross-sectional study.

    PubMed

    Eriksson, Ulf; Arvidsson, Daniel; Gebel, Klaus; Ohlsson, Henrik; Sundquist, Kristina

    2012-10-05

    Neighborhood walkability has been associated with physical activity in several studies. However, as environmental correlates of physical activity may be context specific, walkability parameters need to be investigated separately in various countries and contexts. Furthermore, the mechanisms by which walkability affects physical activity have been less investigated. Based on previous research, we hypothesized that vehicle ownership is a potential mediator. We investigated the associations between walkability parameters and physical activity, and the mediating and moderating effects of vehicle ownership on these associations in a large sample of Swedish adults. Residential density, street connectivity and land use mix were assessed within polygon-based network buffers (using Geographic Information Systems) for 2,178 men and women. Time spent in moderate to vigorous physical activity was assessed by accelerometers, and walking and cycling for transportation were assessed by the International Physical Activity Questionnaire. Associations were examined by linear regression and adjusted for socio-demographic characteristics. The product of coefficients approach was used to investigate the mediating effect of vehicle ownership. Residential density and land use mix, but not street connectivity, were significantly associated with time spent in moderate to vigorous physical activity and walking for transportation. Cycling for transportation was not associated with any of the walkability parameters. Vehicle ownership mediated a significant proportion of the association between the walkability parameters and physical activity outcomes. For residential density, vehicle ownership mediated 25% of the association with moderate to vigorous physical activity and 20% of the association with the amount of walking for transportation. For land use mix, the corresponding proportions were 34% and 14%. Vehicle ownership did not moderate any of the associations between the walkability

  16. In-vehicle group activity modeling and simulation in sensor-based virtual environment

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Telagamsetti, Durga; Poshtyar, Azin; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human group activity recognition is a very complex and challenging task, especially for Partially Observable Group Activities (POGA) that occur in confined spaces with limited visual observability and often under severe occultation. In this paper, we present IRIS Virtual Environment Simulation Model (VESM) for the modeling and simulation of dynamic POGA. More specifically, we address sensor-based modeling and simulation of a specific category of POGA, called In-Vehicle Group Activities (IVGA). In VESM, human-alike animated characters, called humanoids, are employed to simulate complex in-vehicle group activities within the confined space of a modeled vehicle. Each articulated humanoid is kinematically modeled with comparable physical attributes and appearances that are linkable to its human counterpart. Each humanoid exhibits harmonious full-body motion - simulating human-like gestures and postures, facial impressions, and hands motions for coordinated dexterity. VESM facilitates the creation of interactive scenarios consisting of multiple humanoids with different personalities and intentions, which are capable of performing complicated human activities within the confined space inside a typical vehicle. In this paper, we demonstrate the efficiency and effectiveness of VESM in terms of its capabilities to seamlessly generate time-synchronized, multi-source, and correlated imagery datasets of IVGA, which are useful for the training and testing of multi-source full-motion video processing and annotation. Furthermore, we demonstrate full-motion video processing of such simulated scenarios under different operational contextual constraints.

  17. 21 CFR 1404.1015 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Suspension. 1404.1015 Section 1404.1015 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.1015 Suspension. Suspension is an action taken by a suspending official under subpart G of...

  18. NOS II inhibition attenuates post-suspension hypotension in Sprague-Dawley rats

    NASA Technical Reports Server (NTRS)

    Eatman, D.; Walton, M.; Socci, R. R.; Emmett, N.; Bayorh, M. A.

    2003-01-01

    The reduction in mean arterial pressure observed in astronauts may be related to the impairment of autonomic function and/or excessive production of endothelium-derived relaxing factors. Here, we examined the role of a nitric oxide synthase II (NOS II) inhibitor AMT (2-amino-dihydro-6-methyl-4H-1,3-thiazine) against the post-suspension reduction in mean arterial pressure (MAP) in conscious male Sprague-Dawley rats. Direct MAP and heart rate were determined prior to tail-suspension, daily during the 7-day suspension and every 2 hrs post-suspension. Prior to release from suspension and at 2 and 4 hrs post-suspension, AMT (0.1 mg/kg), or saline, were administered intravenously. During the 7-day suspension, MAP was not altered, nor were there significant changes in heart rate. The reduction in MAP post-suspension in saline-treated rats was associated with significant increases in plasma nitric oxide and prostacyclin. 2-Amino-dihydro-6-methyl4H-1,3-thiazine reduced plasma nitric oxide levels, but not those of prostacyclin, attenuated the observed post-suspension reduction in MAP and modified the baroreflex sensitivity for heart rate. Thus, the post suspension reduction in mean arterial pressure is due, in part, to overproduction of nitric oxide, via the NOS II pathway, and alteration in baroreflex activity.

  19. Effectiveness of the Ohio vehicle action and administrative license suspension laws

    DOT National Transportation Integrated Search

    2000-01-01

    Author's abstract: This report presents a study of the effectiveness of two laws in the State of Ohio, one of which provided for the impounding and immobilization (with a "club" device) of the vehicles of multiple drunk driving offenders and drivers ...

  20. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Douarche, Carine; Salin, Dominique; Collaboration between Laboratory FAST; LPS Collaboration

    2016-11-01

    The successive run and tumble of Escherichia coli bacteria provides an active matter suspension of rod-like particles with a large swimming diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering and instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analyzing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume.

  1. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds?

    PubMed

    Matsuno, Koya; Fujimura, Tatsuhito

    2015-08-01

    Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.

  2. Numerical assessment of fore-and-aft suspension performance to reduce whole-body vibration of wheel loader drivers

    NASA Astrophysics Data System (ADS)

    Fleury, Gérard; Mistrot, Pierre

    2006-12-01

    While driving off-road vehicles, operators are exposed to whole-body vibration acting in the fore-and-aft direction. Seat manufacturers supply products equipped with fore-and-aft suspension but only a few studies report on their performance. This work proposes a computational approach to design fore-and-aft suspensions for wheel loader seats. Field tests were conducted in a quarry to analyse the nature of vibration to which the driver was exposed. Typical input signals were recorded to be reproduced in the laboratory. Technical specifications are defined for the suspension. In order to evaluate the suspension vibration attenuation performance, a model of a sitting human body was developed and coupled to a seat model. The seat model combines the models of each suspension component. A linear two-degree-of-freedom model is used to describe the dynamic behaviour of the sitting driver. Model parameters are identified by fitting the computed apparent mass frequency response functions to the measured values. Model extensions are proposed to investigate postural effects involving variations in hands and feet positions and interaction of the driver's back with the backrest. Suspension design parameters are firstly optimized by computing the seat/man model response to sinusoidal acceleration. Four criteria including transmissibility, interaction force between the driver's back and the backrest and relative maximal displacement of the suspension are computed. A new suspension design with optimized features is proposed. Its performance is checked from calculations of the response of the seat/man model subjected to acceleration measured on the wheel loader during real work conditions. On the basis of the computed values of the SEAT factors, it is found possible to design a suspension that would increase the attenuation provided by the seat by a factor of two.

  3. In-School Suspension Program.

    ERIC Educational Resources Information Center

    Thomas County Schools, Thomasville, GA.

    The in-school suspension program (ISS) for grades 6-12 in Thomas County, Georgia, is described in this report. The program retains students in school, offers individual help, and provides the opportunity to stay on task. During the suspension period, students are placed in individualized carrels in the suspension center and must complete…

  4. Materials for suspension (semi-solid) electrodes for energy and water technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzell, Kelsey B.; Boota, Muhammad; Gogotsi, Yury

    2015-01-01

    Suspension or semi-solid electrodes have recently gained increased attention for large-scale applications such as grid energy storage, capacitive water deionization, and wastewater treatment. A suspension electrode is a multiphase material system comprised of an active (charge storing) material suspended in ionic solution (electrolyte). Gravimetrically, the electrolyte is the majority component and aids in physical transport of the active material. For the first time, this principle enables, scalability of electrochemical energy storage devices (supercapacitors and batteries) previously limited to small and medium scale applications. This critical review describes the ongoing material challenges encompassing suspension-based systems. The research described here combines classicalmore » aspects of electrochemistry, colloidal science, material science, fluid mechanics, and rheology to describe ion and charge percolation, adsorption of ions, and redox charge storage processes in suspension electrodes. Our review summarizes the growing inventory of material systems, methods and practices used to characterize suspension electrodes, and describes universal material system properties (rheological, electrical, and electrochemical) that are pivotal in the design of high performing systems. We include a discussion of the primary challenges and future research directions.« less

  5. Motion stability of high-speed maglev systems in consideration of aerodynamic effects: a study of a single magnetic suspension system

    NASA Astrophysics Data System (ADS)

    Wu, Han; Zeng, Xiao-Hui; Yu, Yang

    2017-12-01

    In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed, the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward, and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.

  6. A new angle on microscopic suspension feeders near boundaries.

    PubMed

    Pepper, Rachel E; Roper, Marcus; Ryu, Sangjin; Matsumoto, Nobuyoshi; Nagai, Moeto; Stone, Howard A

    2013-10-15

    Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermediate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular to surfaces they live upon, whereas we observe that sessile suspension feeders often feed at an angle to these boundaries. Using experiments and calculations, we show that living suspension feeders (Vorticella) likely actively regulate the angle that they feed relative to a substratum. We then use theory and simulations to show that angled feeding increases nutrient and particle uptake by reducing the reprocessing of depleted water. This work resolves an open question of how a key class of suspension-feeding organisms escapes physical limitations associated with their sessile lifestyle. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Study on figure-eight-shaped coil electrodynamic suspension magnetic levitation systems without cross-connection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribani, P.L.; Urbano, N.

    2000-01-01

    Two figure-eight-shaped coils for electrodynamic suspension (EDS) magnetic levitation (MAGLEV) systems without cross-connection are proposed and analyzed. The guideway coils are positioned under the MAGLEV vehicle; they are parallel to the horizontal plane. The interaction of a magnetic module on the vehicle, composed of three or four superconducting (SC) coils, with a guideway module, comprised of two figure-eight coils, is studied by means of the dynamic circuit theory. The currents in the SC coils are supposed to be constant in time while they move as a rigid body, with a constant velocity. Some results are presented and compared with thosemore » for a standard side-wall cross-connected system.« less

  8. The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film

    NASA Astrophysics Data System (ADS)

    Rochima, Emma; Fiyanih, Elisah; Afrianto, Eddy; Subhan, Ujang; Praseptiangga, Danar; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    This research aimed to investigate the effect of nanochitosan (CSNPs) suspension by beads milling method as filler in carrageenan-tapioca biocomposite film. In addition, the antibacterial activity of CSNPs as filler with two food pathogenic bacteria, Staphylococcus aureus and Escherichia coli and then influence of nano fillers for appearance of films were observed. The incorporation of CSNPs suspension with 0.5, 1, 1.5 and 2 (%v/v) in carrageenan-tapioca film exhibited antibacterial activity againts both bacteria. CSNPs had slightly higher antimicrobial activity against E. coli aureus compared to S. aureus at all concentrations due to different mechanisms. Therefore, the best antimicrobial activity was obtained from 1 wt%. Furthermore the best antimicrobial activity was characterized by means of the thickness and transparency. The result showed that the thickness of film was 0.059 mm and the transparency was 87.88. It was concluded that the incorporation of CSNPs suspension 1 wt% in carrageenan-tapioca composite film is suitable for developing active packaging.

  9. 77 FR 35993 - Agency Information Collection Activities: Cargo Container and Road Vehicle Certification for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Activities: Cargo Container and Road Vehicle Certification for Transport Under Customs Seal AGENCY: U.S... Paperwork Reduction Act: Cargo Container and Road Vehicle for Transport under Customs Seal. This is a.... Title: Cargo Container and Road Vehicle for Transport under Customs Seal. OMB Number: 1651-0124. Form...

  10. Equations of motion of the lunar roving vehicle.

    NASA Technical Reports Server (NTRS)

    Kaufman, S.

    1973-01-01

    Equations of motion have been formulated for a four-wheel vehicle as it traverses a terrain characterized by slopes, craters, bumps, washboards, or a power spectrum. Independent suspension and electric motor propulsion are considered. These equations were programmed on the UNIVAC 1108 digital computer. Results are given for the steerability of the Lunar Roving Vehicle (LRV) which was found to be satisfactory for normal operating speeds and turning radii. The vehicle was also found to be satisfactory against overturning in both the pitch and roll mode, and results are presented for various speeds as the LRV engages a bump on meter in diameter and of varying heights. Speed, power consumption, and load characteristics are presented for the LRV traversing a simulated lunar soil at full throttle. Comparisons are given against data compiled from the Apollo 15 mission.

  11. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles.

    PubMed

    Lefauve, Adrien; Saintillan, David

    2014-02-01

    Strongly confined active liquids are subject to unique hydrodynamic interactions due to momentum screening and lubricated friction by the confining walls. Using numerical simulations, we demonstrate that two-dimensional dilute suspensions of fore-aft asymmetric polar swimmers in a Hele-Shaw geometry can exhibit a rich variety of novel phase behaviors depending on particle shape, including coherent polarized density waves with global alignment, persistent counterrotating vortices, density shocks and rarefaction waves. We also explain these phenomena using a linear stability analysis and a nonlinear traffic flow model, both derived from a mean-field kinetic theory.

  12. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  13. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats.

    PubMed

    Jayachandra Babu, R; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip

    2011-11-01

    Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer's and Parkinson's diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway(™). The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway(™) as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats.

  14. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats

    PubMed Central

    Babu, R. Jayachandra; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip

    2012-01-01

    Purpose Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer’s and Parkinson’s diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Methods Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway™. The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. Results MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway™ as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats. PMID:21428693

  15. 44 CFR 17.615 - Grounds for suspension of payments, suspension or termination of grants, or suspension or debarment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Grounds for suspension of... Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (GRANTS) § 17.615 Grounds for suspension of payments...

  16. Decreasing School Suspensions among Middle School Children by Implementing a Rehabilitative In-Room Suspension.

    ERIC Educational Resources Information Center

    Novell, Ireneanne

    This practicum report describes a 15-day in-room suspension strategy designed to reduce the increasing number of principal-initiated student suspensions resulting from inappropriate conduct. The program's distinguishing features entailed a central figure who predetermined the candidates by means of a pre-suspension interview, parental-student…

  17. Suspension, a Wake-Up Call: Rural Educators' Attitudes toward Suspension.

    ERIC Educational Resources Information Center

    Henderson, Joan; Friedland, Billie

    Data from the West Virginia Department of Education reveals that from September 1991 to January 1992, school districts reported 18,915 out-of-school suspensions involving 12,997 students. In 1995, the West Virginia State Legislature enacted the Safe Schools Act, which specifically mandates suspension for no less than 12 consecutive months for…

  18. Evaluating the effectiveness of active vehicle safety systems.

    PubMed

    Jeong, Eunbi; Oh, Cheol

    2017-03-01

    Advanced vehicle safety systems have been widely introduced in transportation systems and are expected to enhance traffic safety. However, these technologies mainly focus on assisting individual vehicles that are equipped with them, and less effort has been made to identify the effect of vehicular technologies on the traffic stream. This study proposed a methodology to assess the effectiveness of active vehicle safety systems (AVSSs), which represent a promising technology to prevent traffic crashes and mitigate injury severity. The proposed AVSS consists of longitudinal and lateral vehicle control systems, which corresponds to the Level 2 vehicle automation presented by the National Highway Safety Administration (NHTSA). The effectiveness evaluation for the proposed technology was conducted in terms of crash potential reduction and congestion mitigation. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic stream and collect vehicle-maneuvering data. In addition, an external application program interface, VISSIM's COM-interface, was used to implement the AVSS. A surrogate safety assessment model (SSAM) was used to derive indirect safety measures to evaluate the effectiveness of the AVSS. A 16.7-km freeway stretch between the Nakdong and Seonsan interchanges on Korean freeway 45 was selected for the simulation experiments to evaluate the effectiveness of AVSS. A total of five simulation runs for each evaluation scenario were conducted. For the non-incident conditions, the rear-end and lane-change conflicts were reduced by 78.8% and 17.3%, respectively, under the level of service (LOS) D traffic conditions. In addition, the average delay was reduced by 55.5%. However, the system's effectiveness was weakened in the LOS A-C categories. Under incident traffic conditions, the number of rear-end conflicts was reduced by approximately 9.7%. Vehicle delays were reduced by approximately 43.9% with 100% of market penetration rate (MPR). These results

  19. Gait Biomechanics of Individuals with Transtibial Amputation: Effect of Suspension System

    PubMed Central

    Eshraghi, Arezoo; Abu Osman, Noor Azuan; Karimi, Mohammad; Gholizadeh, Hossein; Soodmand, Ehsan; Abas, Wan Abu Bakar Wan

    2014-01-01

    Prosthetic suspension system is an important component of lower limb prostheses. Suspension efficiency can be best evaluated during one of the vital activities of daily living, i.e. walking. A new magnetic prosthetic suspension system has been developed, but its effects on gait biomechanics have not been studied. This study aimed to explore the effect of suspension type on kinetic and kinematic gait parameters during level walking with the new suspension system as well as two other commonly used systems (the Seal-In and pin/lock). Thirteen persons with transtibial amputation participated in this study. A Vicon motion system (six cameras, two force platforms) was utilized to obtain gait kinetic and kinematic variables, as well as pistoning within the prosthetic socket. The gait deviation index was also calculated based on the kinematic data. The findings indicated significant difference in the pistoning values among the three suspension systems. The Seal-In system resulted in the least pistoning compared with the other two systems. Several kinetic and kinematic variables were also affected by the suspension type. The ground reaction force data showed that lower load was applied to the limb joints with the magnetic suspension system compared with the pin/lock suspension. The gait deviation index showed significant deviation from the normal with all the systems, but the systems did not differ significantly. Main significant effects of the suspension type were seen in the GRF (vertical and fore-aft), knee and ankle angles. The new magnetic suspension system showed comparable effects in the remaining kinetic and kinematic gait parameters to the other studied systems. This study may have implications on the selection of suspension systems for transtibial prostheses. Trial Registration Iranian Registry of Clinical Trials IRCT2013061813706N1. PMID:24865351

  20. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones.

    PubMed

    Lu, Dang-Nhac; Nguyen, Duc-Nhan; Nguyen, Thi-Hau; Nguyen, Ha-Nam

    2018-03-29

    In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS), that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers' vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features) as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine) contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97.33% that is

  1. Suspension and Debarment Regulations

    EPA Pesticide Factsheets

    Governmentwide Nonprocurement Suspension and Debarment Guidelines and EPA Implementation. Executive Order 12549 provides for a governmentwide system of nonprocurment (grants and cooperative agreements) debarment and suspension.

  2. Space and Time Resolved Detection of Platelet Activation and von Willebrand Factor Conformational Changes in Deep Suspensions.

    PubMed

    Biasetti, Jacopo; Sampath, Kaushik; Cortez, Angel; Azhir, Alaleh; Gilad, Assaf A; Kickler, Thomas S; Obser, Tobias; Ruggeri, Zaverio M; Katz, Joseph

    2017-01-01

    Tracking cells and proteins' phenotypic changes in deep suspensions is critical for the direct imaging of blood-related phenomena in in vitro replica of cardiovascular systems and blood-handling devices. This paper introduces fluorescence imaging techniques for space and time resolved detection of platelet activation, von Willebrand factor (VWF) conformational changes, and VWF-platelet interaction in deep suspensions. Labeled VWF, platelets, and VWF-platelet strands are suspended in deep cuvettes, illuminated, and imaged with a high-sensitivity EM-CCD camera, allowing detection using an exposure time of 1 ms. In-house postprocessing algorithms identify and track the moving signals. Recombinant VWF-eGFP (rVWF-eGFP) and VWF labeled with an FITC-conjugated polyclonal antibody are employed. Anti-P-Selectin FITC-conjugated antibodies and the calcium-sensitive probe Indo-1 are used to detect activated platelets. A positive correlation between the mean number of platelets detected per image and the percentage of activated platelets determined through flow cytometry is obtained, validating the technique. An increase in the number of rVWF-eGFP signals upon exposure to shear stress demonstrates the technique's ability to detect breakup of self-aggregates. VWF globular and unfolded conformations and self-aggregation are also observed. The ability to track the size and shape of VWF-platelet strands in space and time provides means to detect pro- and antithrombotic processes.

  3. Stability of penethamate, a benzylpenicillin ester prodrug, in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Tucker, Ian G

    2015-01-01

    Penethamate (PNT) is an ester prodrug of benzylpenicillin which is marketed as dry powder for reconstitution with aqueous vehicle prior to injection. The purpose of this paper was to investigate the chemical stability of PNT in oily formulations to provide a basis for a ready-to-use (RTU) oil-based PNT formulation. The chemical stability of PNT solutions and suspensions in light liquid paraffin (LP), medium chain triglyceride (MIG), ethyl oleate (EO) and sunflower oil (SO) was investigated at 30 °C. Solid state stability of PNT powder and stability of PNT in EO suspensions with different moisture contents were also evaluated. The solubility of PNT in the oils was in order SO > EO > MIG > LP. Degradation of PNT was rapid in oily solutions and less than 10% remained after 7-15 days. Stability of PNT decreased with increase in moisture content in ethyl oleate suspensions. PNT was stable over four weeks in the solid state. Hydrolysis, due to moisture in the oil formulation is not the only degradation mechanism. PNT stability (% drug remaining) in oily suspensions after 3.5 months was in the order LP (96.2%) > MIG (95.4%) > EO (94.1%) > SO (86%). A shelf-life of up to 5.5 years at 30 °C may be achieved for PNT suspension in these oils.

  4. Post-suspension hypotension is attenuated in Sprague-Dawley rats by prostacyclin synthase inhibition

    NASA Technical Reports Server (NTRS)

    Bayorh, M. A.; Eatman, D.; Walton, M.; Socci, R. R.; Emmett, N.

    2002-01-01

    Cardiovascular deconditioning, sometimes manifested in astronauts during standing postflight, may be related to the impairment of autonomic function and/or excessive production of endothelium-dependent relaxing factors. In the present study, we examined the cardiovascular responses to 7-day 30 degrees tail-suspension and a subsequent 6-h post-suspension period in conscious male Sprague-Dawley rats to determine the role of prostacyclin in the observed post-suspension reduction in mean arterial pressure (MAP). The specific prostacyclin synthase inhibitor U-51605 (0.3 mg/kg), or saline, was administered intravenously prior to release from suspension and at 2 and 4 h post-suspension. During 7 days of suspension, MAP did not change, however, there was a post-suspension reduction in MAP which was associated with significant increases in plasma prostacyclin and nitric oxide. U-51605 attenuated the observed post-suspension hypotension and reduced plasma prostacyclin levels, but not nitric oxide levels. The baroreflex sensitivity for heart rate was modified by U-51605: increased MAP threshold and effective MAP range. Thus, the post-suspension reduction in mean arterial pressure may be due to overproduction of prostacyclin and/or other endothelium-dependent relaxing factors and alteration in baroreflex activity.

  5. 13 CFR 147.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Suspension. 147.670 Section 147.670 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (NONPROCUREMENT) Definitions § 147.670 Suspension. Suspension means an action taken by a...

  6. 45 CFR 630.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Suspension. 630.670 Section 630.670 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 630.670 Suspension. Suspension means an action...

  7. 50 CFR 13.27 - Permit suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Permit suspension. 13.27 Section 13.27... GENERAL PERMIT PROCEDURES Permit Administration § 13.27 Permit suspension. (a) Criteria for suspension..., the reason(s) for such suspension, the actions necessary to correct the deficiencies, and inform the...

  8. Stability of Atenolol, Clonazepam, Dexamethasone, Diclofenac Sodium, Diltiazem, Enalapril Maleate, Ketoprofen, Lamotrigine, Penicillamine-D, and Thiamine in SyrSpend SF PH4 Oral Suspensions.

    PubMed

    Polonini, Hudson C; Loures, Sharlene; Lima, Luis Claudio; Ferreira, Anderson O; Brandão, Marcos Antônio F

    2016-01-01

    The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using SyrSpend SF PH4 (atenolol 1.0 and 5.0 mg/mL, clonazepam 0.2 mg/mL, dexamethasone 1.0 mg/mL, diclofenac sodium 5.0 mg/mL, diltiazem 12.0 mg/mL, enalapril maleate 1.0 mg/mL, ketoprofen 20.0 mg/mL, lamotrigine 1.0 mg/mL, penicillamine-D 50.0 mg/mL, thiamine 100 mg/m) and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by a stability-indicating, high-performance liquid chromatographic method. The beyond-use date of the products was found to be at least 90 days for all suspensions (except atenolol 1 mg/mL, which was stable up to 60 days), both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients.

  9. 10 CFR 607.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Suspension. 607.670 Section 607.670 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 607.670 Suspension. Suspension means an action taken by a Federal agency that...

  10. 34 CFR 84.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Suspension. 84.670 Section 84.670 Education Office of the Secretary, Department of Education GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 84.670 Suspension. Suspension means an action taken by a Federal agency that...

  11. A suspension-feeding anomalocarid from the Early Cambrian.

    PubMed

    Vinther, Jakob; Stein, Martin; Longrich, Nicholas R; Harper, David A T

    2014-03-27

    Large, actively swimming suspension feeders evolved several times in Earth's history, arising independently from groups as diverse as sharks, rays and stem teleost fishes, and in mysticete whales. However, animals occupying this niche have not been identified from the early Palaeozoic era. Anomalocarids, a group of stem arthropods that were the largest nektonic animals of the Cambrian and Ordovician periods, are generally thought to have been apex predators. Here we describe new material from Tamisiocaris borealis, an anomalocarid from the Early Cambrian (Series 2) Sirius Passet Fauna of North Greenland, and propose that its frontal appendage is specialized for suspension feeding. The appendage bears long, slender and equally spaced ventral spines furnished with dense rows of long and fine auxiliary spines. This suggests that T. borealis was a microphagous suspension feeder, using its appendages for sweep-net capture of food items down to 0.5 mm, within the size range of mesozooplankton such as copepods. Our observations demonstrate that large, nektonic suspension feeders first evolved during the Cambrian explosion, as part of an adaptive radiation of anomalocarids. The presence of nektonic suspension feeders in the Early Cambrian, together with evidence for a diverse pelagic community containing phytoplankton and mesozooplankton, indicate the existence of a complex pelagic ecosystem supported by high primary productivity and nutrient flux. Cambrian pelagic ecosystems seem to have been more modern than previously believed.

  12. Effect of Different Carbon Sources on Relative Growth Rate, Internal Carbohydrates, and Mannitol 1-Oxidoreductase Activity in Celery Suspension Cultures.

    PubMed Central

    Stoop, JMH.; Pharr, D. M.

    1993-01-01

    Little information exists concerning the biochemical route of mannitol catabolism in higher plant cells. In this study, the role of a recently discovered mannitol 1-oxidoreductase (MDH) in mannitol catabolism was investigated. Suspension cultures of celery (Apium graveolens L. var dulce [Mill.] Pers.) were successfully grown on nutrient media with either mannitol, mannose, or sucrose as the sole carbon source. Cell cultures grown on any of the three carbon sources did not differ in relative growth rate, as measured by packed cell volume, but differed drastically in internal carbohydrate concentration. Mannitol-grown cells contained high concentrations of mannitol and extremely low concentrations of sucrose, fructose, glucose, and mannose. Sucrose-grown cells had high concentrations of sucrose early in the growth cycle and contained a substantial hexose pool. Mannose-grown cells had a high mannose concentration early in the cycle, which decreased during the growth cycle, whereas their internal sucrose concentrations remained relatively constant during the entire growth cycle. Celery suspension cultures on all three carbon substrates contained an NAD-dependent MDH. Throughout the growth cycle, MDH activity was 2- to 4-fold higher in mannitol-grown cells compared with sucrose- or mannose-grown cells, which did not contain detectable levels of mannitol, indicating that MDH functions pre-dominantly in an oxidative capacity in situ. The MDH activity observed in celery cells was 3-fold higher than the minimum amount required to account for the observed rate of mannitol utilization from the media. Cultures transferred from mannitol to mannose underwent a decrease in MDH activity over a period of days, and transfer from mannose to mannitol resulted in an increase in MDH activity. These data provide strong evidence that MDH plays an important role in mannitol utilization in celery suspension cultures. PMID:12231996

  13. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    NASA Astrophysics Data System (ADS)

    Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang

    2016-03-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).

  14. 31 CFR 20.670 - Suspension.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Suspension. 20.670 Section 20.670 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 20.670 Suspension. Suspension means an action taken...

  15. 31 CFR 20.670 - Suspension.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Suspension. 20.670 Section 20.670 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 20.670 Suspension. Suspension means an action taken...

  16. 31 CFR 20.670 - Suspension.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Suspension. 20.670 Section 20.670 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 20.670 Suspension. Suspension means an action taken...

  17. 31 CFR 20.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Suspension. 20.670 Section 20.670 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 20.670 Suspension. Suspension means an action taken...

  18. 31 CFR 20.670 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Suspension. 20.670 Section 20.670 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 20.670 Suspension. Suspension means an action taken...

  19. Simulations of flexible fiber suspensions

    Treesearch

    Emilio J. Tozzi; Daniel J. Klingenberg; C. Tim Scott; Pasi Miettinen

    2005-01-01

    Fiber-level simulations are employed to probe the relationships between various properties and macroscopic behavior of flexible fiber suspensions. Issues addressed include flocculation, suspension rheology, and handsheet formation and testing. Results show that such simulations can be useful tools for understanding the factors that control the behavior of suspensions...

  20. 77 FR 44258 - Agency Information Collection Activities: Exportation of Used Self-Propelled Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Activities: Exportation of Used Self-Propelled Vehicles AGENCY: U.S. Customs and Border Protection (CBP... information collection requirement concerning the Exportation of Used Self-Propelled Vehicles. This request... clarity of the information to be collected; (d) ways to minimize the burden including the use of automated...

  1. Forestry Vehicle

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.

  2. Optimization of Casting Design Parameters on Fabrication of Reliable Semi-Solid Aluminum Suspension Control Arm

    NASA Astrophysics Data System (ADS)

    Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.

    2017-09-01

    The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.

  3. Population and Activity of On road Vehicles in MOVES201X

    EPA Science Inventory

    This report documents changes to assumptions about the US national highway vehicle fleet population and activity data for the next version of the MOVES model. Fleet population and activity data is used to convert emission rates into emission inventory values and then is used to ...

  4. Crewbot Suspension Design

    NASA Technical Reports Server (NTRS)

    Wood, Nathan A.

    2005-01-01

    Planetary Surface Robot Work Crews (RWC) represent a new class of construction robots for future deployment in planetary exploration. Rovers currently being used for the RWC platform lack the load carrying capabilities required in regular work. Two new rovers, dubbed CrewBots, being designed in JPL's Planetary Robotics Lab specifically for RWC applications greatly increase the load carrying capabilities of the platform. A major component of the rover design was the design of the rocker type suspension, which increases rover mobility. The design of the suspension for the Crewbots departed from the design of recent rovers. While many previous rovers have used internal bevel gear differentials, the increased load requirements of the Crewbots calls for a more robust system. The solution presented is the use of an external modified three-bar, slider-linkage, rocker-style suspension that increases the moment arm of the differential. The final product is a suspension system capable of supporting the extreme loading cases the RWC platform presents, without consuming a large portion of the Crewbots' internal space.

  5. Heavy and Overweight Vehicle Defects Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siekmann, Adam; Capps, Gary J

    2012-12-01

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included amore » much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.« less

  6. Limited Influence of Excipients in Extemporaneous Compounded Suspensions

    PubMed Central

    Dijkers, Eli; Nanhekhan, Valerie; Thorissen, Astrid; Marro, Diego; Uriel, Marta

    2017-01-01

    Objective: The objective of this study was to identify whether compounding oral suspensions with SyrSpend SF based on tablets or capsules is a suitable alternative for using raw pharmaceutical materials. Methods: Suspensions based on 5 different tablets and capsules were studied in SyrSpend SF. The summary of product characteristics of these different tablets and capsules were obtained from the manufacturer. Our hypothesis was that, if the maximum beyond-use date of the study was reached, the excipient did not seem to have an influence on the stability of the active pharmaceutical ingredient (API) within the studied time frame. Results: All excipients used in flecainide acetate, labetalol HCl, and tiagabine HCl tablets as well as in celecoxib and oseltamivir capsules did not seem to influence the beyond-use date of the overall suspension based on SyrSpend SF. Conclusion: Although using raw materials as API sources is preferred, oral suspensions with SyrSpend SF prepared from crushed tablets or opened capsules could be a possible alternative. Based on this study, a wide range of different excipients does not seem to impact the beyond-use date of different APIs compounded in SyrSpend SF. PMID:29276267

  7. Limited Influence of Excipients in Extemporaneous Compounded Suspensions.

    PubMed

    Dijkers, Eli; Nanhekhan, Valerie; Thorissen, Astrid; Marro, Diego; Uriel, Marta

    2017-06-01

    Objective: The objective of this study was to identify whether compounding oral suspensions with SyrSpend SF based on tablets or capsules is a suitable alternative for using raw pharmaceutical materials. Methods: Suspensions based on 5 different tablets and capsules were studied in SyrSpend SF. The summary of product characteristics of these different tablets and capsules were obtained from the manufacturer. Our hypothesis was that, if the maximum beyond-use date of the study was reached, the excipient did not seem to have an influence on the stability of the active pharmaceutical ingredient (API) within the studied time frame. Results: All excipients used in flecainide acetate, labetalol HCl, and tiagabine HCl tablets as well as in celecoxib and oseltamivir capsules did not seem to influence the beyond-use date of the overall suspension based on SyrSpend SF. Conclusion: Although using raw materials as API sources is preferred, oral suspensions with SyrSpend SF prepared from crushed tablets or opened capsules could be a possible alternative. Based on this study, a wide range of different excipients does not seem to impact the beyond-use date of different APIs compounded in SyrSpend SF.

  8. Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes.

    PubMed

    Pacios, María Gabriela; Silva, Clara; López, María Elena; Cecilia, Marta

    2012-11-01

    To evaluate the in vitro action of vehicles alone and with calcium hydroxide against different bacterial species. Agar plates were inoculated with the microbial suspensions, and wells were made and filled with the calcium hydroxide pastes and the vehicles used to prepare the pastes. The zones of inhibited bacterial growth were recorded, and the resulting measurements were statistically analyzed. Enterococcus faecalis was the most resistant microorganism to all medicaments. Calcium hydroxide + p-monochlorophenol; calcium hydroxide + p-monochlorophenol-propylene glycol pastes; and p-monochlorophenol, p-monochlorophenol-propylene glycol, and chlorhexidine gluconate gel alone showed the largest zones of inhibition against all the tested microorganisms. The vehicle used to prepare the calcium hydroxide paste might contribute to its antibacterial action. Chlorhexidine gluconate gel used alone, and camphorated p-monochlorophenol and camphorated p-monochlorophenol-propylene glycol as vehicles of calcium hydroxide, could be recommended, in an antimicrobial sense. © 2012 Wiley Publishing Asia Pty Ltd.

  9. Compatibility of cholecalciferol, haloperidol, imipramine hydrochloride, levodopa/carbidopa, lorazepam, minocycline hydrochloride, tacrolimus monohydrate, terbinafine, tramadol hydrochloride and valsartan in SyrSpend SF PH4 oral suspensions.

    PubMed

    Polonini, H C; Silva, S L; Cunha, C N; Brandão, M A F; Ferreira, A O

    2016-04-01

    A challenge with compounding oral liquid formulations is the limited availability of data to support the physical, chemical and microbiological stability of the formulation. This poses a patient safety concern and a risk for medication errors. The objective of this study was to evaluate the compatibility of the following active pharmaceutical ingredients (APIs) in 10 oral suspensions, using SyrSpend SF PH4 (liquid) as the suspending vehicle: cholecalciferol 50,000 IU/mL, haloperidol 0.5 mg/mL, imipramine hydrochloride 5.0 mg/mL, levodopa/carbidopa 5.0/1.25 mg/mL, lorazepam 1.0 mg/mL, minocycline hydrochloride 10.0 mg/mL, tacrolimus monohydrate 1.0 mg/mL, terbinafine 25.0 mg/mL, tramadol hydrochloride 10.0 mg/mL and valsartan 4.0 mg/mL. The suspensions were stored both refrigerated (2 - 8 degrees C) and at controlled room temperature (20 - 25 degrees C). This is the first stability study for these APIs in SyrSpend SF PH4 (liquid). Further, the stability of haloperidol,ilmipramine hydrochloride, minocycline, and valsartan in oral suspension has not been previously reported in the literature. Compatibility was assessed by measuring percent recovery at varying time points throughout a 90 days period. Quantification of the APIs was performed by high performance liquid chromatography (HPLC-UV). Given the percentage of recovery of the APIs within the suspensions, the beyond-use date of the final preparations was found to be at least 90 days for most suspensions both refrigerated and at room temperature. Exceptions were: Minocycline hydrochloride at both storage temperatures (60 days), levodopa/carbidopa at room temperature (30 days), and lorazepam at room temperature (60 days). This suggests that compounded suspensions of APIs from different pharmacological classes in SyrSpend SF PH4 (liquid) are stable.

  10. The Pneumatic Actuators As Vertical Dynamic Load Simulators On Medium Weighted Wheel Suspension Mechanism

    NASA Astrophysics Data System (ADS)

    Ka'ka, Simon; Himran, Syukri; Renreng, Ilyas; Sutresman, Onny

    2018-02-01

    Almost all of road damage can be caused by dynamic loads of vehicles that fluctuate according to the type of vehicle that passes through. This study aims to calculate the vertical dynamic load of the vehicle actually occurs on road construction by the mechanism of vehicle wheel suspension. Pneumatic cylinders driven by pressurized air directly load the spring and shock absorber installed on the wheels of the vehicle. The load fluctuations of the medium weight categorized vehicles are determined by the regulation of the amount of pressurized air that enters into the pneumatic cylinder chamber, pushing the piston and connecting rods. The displacement that occurs during compression on the spring and shock absorber, is substituted into the equation of vehicle dynamic load while taking into account the spring stiffness constant, and the fluid or damper gas coefficient. The results show that the magnitude of the displacement when the compression force works has significant influences to the amount of vertical dynamic load of the vehicle that overlies the road construction. The presence of dynamic load of vehicles that fluctuates and repeats, also affects on the reduction of road ability to receive the load. Experimental results using pneumatic actuators instead of real dynamic vehicle loads illustrate the characteristics of the relationship between work pressure and dynamic load. If the working pressure of P2 (bar) is greater, the vertical dynamic load Ft (N) that overloads the road structure is also greater. The associate graphs show that the shock absorber has a greater ability to reduce dynamic load vertically that burden the road structure when compared with the ability of screw spring.

  11. Rheological aspects of C. elegans suspensions under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Malvar, Sara; Carmo, Bruno S.; Cunha, Francisco R.

    2017-11-01

    The rheological nature of an active suspension of nematodes is discussed. The nematode chosen for the study is Caenorhabditis elegans and its motion is subjected to the time reversibility of creeping flows. We investigate how the movement of the nematodes under different volumetric fractions alter the fluid rheological characteristics, considering collective behavior. We provide a deep discussion based on the experimental data obtained through a rotating disk rheometer. Oscillatory shear and step strain tests were conducted in order to present a discussion regarding zero shear viscosity and relaxation time for different nematodes concentrations. Moreover, theassociated time scales coupling provide a good physical comprehension of active suspensions. The authors wish to aknowledge the following Brazilian research foundation: Fapesp.

  12. 20 CFR 416.1320 - Suspensions; general.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., BLIND, AND DISABLED Suspensions and Terminations § 416.1320 Suspensions; general. (a) When suspension is... (a) of this section apply because your impairment is no longer disabling or you are no longer blind...

  13. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  14. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.« less

  15. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE PAGES

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; ...

    2017-06-08

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  16. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  17. Design of a recovery system for a reentry vehicle

    NASA Technical Reports Server (NTRS)

    Von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    1993-01-01

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  18. Virtual test rig to improve the design and optimisation process of the vehicle steering and suspension systems

    NASA Astrophysics Data System (ADS)

    Mántaras, Daniel A.; Luque, Pablo

    2012-10-01

    A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.

  19. Protopine production by fumaria cell suspension cultures: effect of light.

    PubMed

    Georgieva, Lidiya; Ivanov, Ivan; Marchev, Andrey; Aneva, Ina; Denev, Panteley; Georgiev, Vasil; Pavlov, Atanas

    2015-05-01

    Protopine biosynthesis in Fumaria rostellata and Fumaria officinalis cell suspensions was investigated. For the first time, we reported for calli and cell suspensions obtained from F. rostellata and F. officinalis. Callus induction was initiated on a Murashige and Skoog medium, supplemented with sucrose and various concentrations of plant growth regulators: 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The best morphological characteristics, growth behavior, and protopine biosynthesis were observed for two callus lines (5FRL14 and 12FOL1) cultivated under submerged conditions, at low concentration of 2,4-D (0.2 and 0.5 mg/L) and higher concentration of BAP (2.0 and 3.0 mg/L). The maximal yield of protopine was accumulated from cell suspension of F. rostellata (line 5FRL14) cultivated under illumination-49.6 mg/L. Time courses of utilization of sucrose, ammonium, nitrate, and phosphate ions in cultural liquid and acetylcholinesterase inhibitory activity of alkaloid extracts of studied suspensions are also presented.

  20. Characterizing dense suspensions: two case studies from the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Goldfarb, David J.; Khawaja, Nazia; Kazakevich, Irina; Bhattacharjee, Himanshu; Heslinga, Michael; Dalton, Chad

    2015-11-01

    Liquid suspensions of Active Pharmaceutical Ingredient powders are present as pharmaceutical dosage forms in the form of oral suspensions and injectables. We present two case studies, both dense (~ 30-40%) suspensions, in which the physical characterization of the product, specifically, particle size & shape and rheology were key to understanding the key product attributes as pertaining to the manufacturing process and to patient administration. For the one case study, an oral suspension, identifying variations in particle morphology during the wet milling of the product was key to the product understanding necessary to modify the milling process. Rheological measurements were applied as well. For the second case study, an injectable, results from different particle size measurement techniques and rheological measurements indicated the possibility of flocculation in a formulation. Additionally, measurements were obtained to assess the ``injectability'' of the product via rheometer and texture analyzer measurements and Poiseuille flow modeling. As a result, the relevant shear rate regime for this drug product administration was identified.

  1. Feasibility assessment for battery electric vehicles based on multi-day activity-travel patterns.

    DOT National Transportation Integrated Search

    2017-04-11

    A Battery Electric Vehicle (BEV) feasibility considering State Of Charge (SOC) level is : assessed using multiday activity-travel patterns to overcome the limitations of using one-day : activity-travel patterns. Since multi-day activity-travel patter...

  2. 77 FR 21577 - Agency Information Collection Activities: Cargo Container and Road Vehicle Certification for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Activities: Cargo Container and Road Vehicle Certification for Transport Under Customs Seal AGENCY: U.S... agencies to comment on an information collection requirement concerning the Cargo Container and Road... concerning the following information collection: Title: Cargo Container and Road Vehicle for Transport under...

  3. Composite Manganese Oxide Percolating Networks As a Suspension Electrode for an Asymmetric Flow Capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzell, Kelsey B.; Fan, Lei; Beidaghi, Majid

    2014-05-05

    In this study, we examine the use of a percolating network of metal oxide (MnO2) as the active material in a suspension electrode as a way to increase the capacitance and energy density of an electrochemical flow capacitor. Amorphous manganese oxide was synthesized via a low-temperature hydrothermal approach and combined with carbon black to form composite flowable electrodes of different compositions. All suspension electrodes were tested in static configurations and consisted of an active solid material (MnO2 or activated carbon) immersed in aqueous neutral electrolyte (1 M Na2SO4). Increasing concentrations of carbon black led to better rate performance but atmore » the cost of capacitance and viscosity. Furthermore, it was shown that an expanded voltage window of 1.6 V could be achieved when combining a composite MnO2-carbon black (cathode) and an activated carbon suspension (anode) in a charge balanced asymmetric device. The expansion of the voltage window led to a significant increase in the energy density to ~11 Wh kg–1 at a power density of ~50 W kg–1. These values are ~3.5 times and ~2 times better than a symmetric suspension electrode based on activated carbon.« less

  4. Flow-induced gelation of microfiber suspensions.

    PubMed

    Perazzo, Antonio; Nunes, Janine K; Guido, Stefano; Stone, Howard A

    2017-10-10

    The flow behavior of fiber suspensions has been studied extensively, especially in the limit of dilute concentrations and rigid fibers; at the other extreme, however, where the suspensions are concentrated and the fibers are highly flexible, much less is understood about the flow properties. We use a microfluidic method to produce uniform concentrated suspensions of high aspect ratio, flexible microfibers, and we demonstrate the shear thickening and gelling behavior of such microfiber suspensions, which, to the best of our knowledge, has not been reported previously. By rheological means, we show that flowing the suspension triggers the irreversible formation of topological entanglements of the fibers resulting in an entangled water-filled network. This phenomenon suggests that flexible fiber suspensions can be exploited to produce a new family of flow-induced gelled materials, such as porous hydrogels. A significant consequence of these flow properties is that the microfiber suspension is injectable through a needle, from which it can be extruded directly as a hydrogel without any chemical reactions or further treatments. Additionally, we show that this fiber hydrogel is a soft, viscoelastic, yield-stress material.

  5. Optimizing Adipose Tissue Extract Isolation with Stirred Suspension Culture.

    PubMed

    Zhang, Yan; Yu, Mei; Zhao, Xueyong; Dai, Minjia; Chen, Chang; Tian, Weidong

    2018-05-31

    Adherent culture which is used to collect adipose tissue extract (ATE) previously brings the problem of inhomogeneity and non-repeatability. Here we aim to extract ATE with stirred suspension culture to speed up the extraction process, stabilize the yield and improve consistent potency metrics of ATE. ATE was collected with adherent culture (ATE-A) and stirred suspension culture (ATE-S) separately. Protein yield and composition were detected by SDS-PAGE while cytokines in ATE were determined with ELISA. The adipogenic and angiogenic potential of ATE were compared by Western blot and qPCR. In addition, HE staining and LDH activity assays were used to analyze the cell viability of adipose tissue cultured with different methods. The yield of ATE-S was consistent while ATE-A varied notably. Characterization of the protein composition and exosome-like vesicles (ELVs) indicated no significant difference between ATE-S and ATE-A. The concentrations of cytokines (VEGF, bFGF and IL-6) showed no significant difference while IGF in ATE-S was higher than that in ATE-A. ATE-S showed upregulated adipogenic and angiogenic potential compared to ATE-A. Morever, stirred suspension culture decreased the LDH activity of ATE while increased the number of viable adipocytes and reduced adipose tissue necrosis. Compared with adherent culture, stirred suspension culture is a reliable, time and labor-saving method to collect ATE, which might be used to improve the downstream applications of ATE.

  6. Research on optimization of test cycles for comfort to the special vehicles

    NASA Astrophysics Data System (ADS)

    Mitroi, Marian; Chiru, Anghel

    2017-10-01

    The comfort of vehicles, regardless of their type is represent a requirement to by fulfilled in the context of current technological developments special vehicles generally move under different soil, time, or season conditions, and the land in which the vehicles move is complex and varied in the physical structure. Due to the high level of involvement in the driveability, safety and comfort of automotive, suspension system is a key factor with major implications for vibration and noise, affecting the human body. The objective of the research is related to determining the test cycles of special vehicles that are approaching real situations, to determine the level of comfort. The evaluate of the degree of comfort will be realized on acceleration values recorded, especially the vertical ones that have the highest influence on the human body. Thus, in this way the tests can be established needed to determine the level of comfort required for each particular type of special vehicle. The utility of the test cycles to optimize comfort is given to the accurate identification of the specific test needs, depending on the each vehicle.

  7. 45 CFR 1641.12 - Procedures for suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Procedures for suspension. 1641.12 Section 1641.12 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.12 Procedures for suspension. Before...

  8. 45 CFR 1641.12 - Procedures for suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Procedures for suspension. 1641.12 Section 1641.12 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.12 Procedures for suspension. Before...

  9. Synthesis of the adaptive continuous system for the multi-axle wheeled vehicle body oscillation damping

    NASA Astrophysics Data System (ADS)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.

  10. Design of an Active Bumper with a Series Elastic Actuator for Pedestrian Protection of Small Unmanned Vehicles

    NASA Astrophysics Data System (ADS)

    Terumasa, Narukawa; Tomoki, Tsuge; Hiroshi, Yamamoto; Takahiro, Suzuki

    2016-09-01

    When autonomous unmanned vehicles are operated on sidewalks, the vehicles must have high safety standards such as avoiding injury when they come in contact with pedestrians. In this study, we established a design for preventing serious injury when such collisions occur. We designed an active bumper with a series elastic actuator, with the goal of avoiding serious injury to a pedestrian in a collision with a small unmanned vehicle. The series elastic actuator comprised an elastic element in series with a table driven by a ball screw and servo motor. The active bumper was used to control the contact force between a vehicle and a pedestrian. The optimal force for minimizing the deflection of the object of the collision was derived, and the actuator controlled to apply this optimal force. Numerical simulations showed that the active bumper was successful in improving the collision safety of small unmanned vehicles.

  11. 45 CFR 1641.13 - Causes for suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Causes for suspension. 1641.13 Section 1641.13 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.13 Causes for suspension. The debarring...

  12. 45 CFR 1641.13 - Causes for suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Causes for suspension. 1641.13 Section 1641.13 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.13 Causes for suspension. The debarring...

  13. Active control of turbulent boundary layer sound transmission into a vehicle interior

    NASA Astrophysics Data System (ADS)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2016-09-01

    In high speed automotive, aerospace, and railway transportation, the turbulent boundary layer (TBL) is one of the most important sources of interior noise. The stochastic pressure distribution associated with the turbulence is able to excite significantly structural vibration of vehicle exterior panels. They radiate sound into the vehicle through the interior panels. Therefore, the air flow noise becomes very influential when it comes to the noise vibration and harshness assessment of a vehicle, in particular at low frequencies. Normally, passive solutions, such as sound absorbing materials, are used for reducing the TBL-induced noise transmission into a vehicle interior, which generally improve the structure sound isolation performance. These can achieve excellent isolation performance at higher frequencies, but are unable to deal with the low-frequency interior noise components. In this paper, active control of TBL noise transmission through an acoustically coupled double panel system into a rectangular cavity is examined theoretically. The Corcos model of the TBL pressure distribution is used to model the disturbance. The disturbance is rejected by an active vibration isolation unit reacting between the exterior and the interior panels. Significant reductions of the low-frequency vibrations of the interior panel and the sound pressure in the cavity are observed.

  14. Rethinking Universal Suspension for Severe Student Behavior

    ERIC Educational Resources Information Center

    Hinze-Pifer, Rebecca; Sartain, Lauren

    2018-01-01

    Driven by a combination of concern for historically high suspension rates and substantial disproportionalities in suspension use, a recent wave of education reforms encourages schools to reduce their use of suspensions for student behavior management. Both academic and political discourse has focused on the extensive use of suspension for…

  15. An analytical study of electric vehicle handling dynamics

    NASA Technical Reports Server (NTRS)

    Greene, J. E.; Segal, D. J.

    1979-01-01

    Hypothetical electric vehicle configurations were studied by applying available analytical methods. Elementary linearized models were used in addition to a highly sophisticated vehicle dynamics computer simulation technique. Physical properties of specific EV's were defined for various battery and powertrain packaging approaches applied to a range of weight distribution and inertial properties which characterize a generic class of EV's. Computer simulations of structured maneuvers were performed for predicting handling qualities in the normal driving range and during various extreme conditions related to accident avoidance. Results indicate that an EV with forward weight bias will possess handling qualities superior to a comparable EV that is rear-heavy or equally balanced. The importance of properly matching tires, suspension systems, and brake system front/rear torque proportioning to a given EV configuration during the design stage is demonstrated.

  16. Suspension Needn't Arrest Learning.

    ERIC Educational Resources Information Center

    Seegrist, Ruth

    1985-01-01

    An inschool suspension program at a Pennsylvania school district is described. Students spend suspension time completing classroom assignments under strict teacher supervision in detention halls. (TE)

  17. Identification and assessment of permeability enhancing vehicles for transdermal delivery of glucosamine hydrochloride.

    PubMed

    Han, In Hee; Choi, Sung-Up; Nam, Dae Young; Park, Young Mi; Kang, Myung Joo; Kang, Kyoung Hoon; Kim, Yong Min; Bae, Gunho; Oh, Il Young; Park, Jong Hyeok; Ye, Jin Soo; Choi, Yoon Bae; Kim, Duk Ki; Lee, Jaehwi; Choi, Young Wook

    2010-02-01

    As an initial step to develop the transdermal delivery system of glucosamine hydrochloride (GL-HCl), the permeation study across the rat skin in vitro was performed to identify the most efficient vehicle with regard to the ability to deliver GL-HCl transdermally. The GL-HCl formulations such as o/w cream, liposome suspension, liposomal gel, and liquid crystalline vehicles were prepared and compared for transdermal flux of GL-HCl. The liquid crystalline vehicles were more effective in increasing the skin permeation of GL-HCl than o/w cream and liposomal vehicles. Of the liquid crystalline vehicles tested, the permeation enhancing ability of the cubic phase was greater than that of the hexagonal phase when the nanoparticle dispersion was used. The skin permeation enhancing ability of the cubic nanoparticles for GL-HCl was further increased by employing both oleic acid and polyethylene glycol 200. Therefore, the cubic liquid crystalline nanodispersion containing oleic acid and PEG 200 can provide a possibility of clinical application of transdermal GL-HCl.

  18. Impact of Motile Bacterial Suspensions on Viscous Fingering and Mixing

    NASA Astrophysics Data System (ADS)

    Chui, Jane; Auradou, Harold; de Anna, Pietro; Fahrner, Karen; Berg, Howard; Juanes, Ruben

    2017-11-01

    Viscous fingering is a hydrodynamic instability that occurs when a less viscous fluid displaces a more viscous one. Instead of progressing as a uniform front, the less viscous fluid forms fingers to create complex patterns. Understanding how these patterns and their associated gradients evolve over time is of critical importance in characterizing the mixing of two fluids, which in turn is important to applications such as enhanced oil recovery, bioremediation, and microfluidics. Here, we investigate the impact of replacing the less viscous fluid with an active suspension of motile bacteria. In this series of experiments, a suspension of motile Escherichia coli capable of collective swimming is injected into a microfluidic Hele-Shaw cell under viscous fingering conditions. Through videomicroscopy, we obtain high-resolution concentration fields to determine the evolution of the mixing zone (region with concentration gradients). We quantify the impact that active suspensions have on the formation of viscous fingering patterns and mixing efficiency between the two fluids, and-conversely-report details of the collective swimming behavior in the presence of a viscous-gradient front.

  19. 49 CFR 570.61 - Suspension system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Suspension system. 570.61 Section 570.61 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.61 Suspension system. (a) Suspension condition. Ball joint seals shall not be cut...

  20. 49 CFR 570.61 - Suspension system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Suspension system. 570.61 Section 570.61 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.61 Suspension system. (a) Suspension condition. Ball joint seals shall not be cut...

  1. 29 CFR 4281.41 - Benefit suspensions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Benefit suspensions. 4281.41 Section 4281.41 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION INSOLVENCY, REORGANIZATION... WITHDRAWAL Benefit Suspensions § 4281.41 Benefit suspensions. If the plan sponsor determines that the plan is...

  2. 29 CFR 4281.41 - Benefit suspensions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Benefit suspensions. 4281.41 Section 4281.41 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION INSOLVENCY, REORGANIZATION... WITHDRAWAL Benefit Suspensions § 4281.41 Benefit suspensions. If the plan sponsor determines that the plan is...

  3. 29 CFR 4281.41 - Benefit suspensions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Benefit suspensions. 4281.41 Section 4281.41 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION INSOLVENCY, REORGANIZATION... WITHDRAWAL Benefit Suspensions § 4281.41 Benefit suspensions. If the plan sponsor determines that the plan is...

  4. 29 CFR 4281.41 - Benefit suspensions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Benefit suspensions. 4281.41 Section 4281.41 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION INSOLVENCY, REORGANIZATION... WITHDRAWAL Benefit Suspensions § 4281.41 Benefit suspensions. If the plan sponsor determines that the plan is...

  5. 29 CFR 4281.41 - Benefit suspensions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Benefit suspensions. 4281.41 Section 4281.41 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION INSOLVENCY, REORGANIZATION... WITHDRAWAL Benefit Suspensions § 4281.41 Benefit suspensions. If the plan sponsor determines that the plan is...

  6. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension systems. 570.8 Section 570.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.8 Suspension systems. (a) Suspension condition. Ball joint seals shall not be cut or...

  7. Development and Testing of a Hydropneumatic Suspension System on a USMC AAV7A1

    DTIC Science & Technology

    1991-07-30

    original material, SAE 4140 steel alloy hardened to 30/34 Rc, has a yield strength of 130,000 psi. All of the ISU’s were disassembled and were reassembled...plugged and welded in place. Aluminum I-beams were welded in place in the water jet tunnels to act as jounce stops for the aft suspension units. The...following Is a tabulation of components attributed to the vehicle: 1000 Hull, Welded & machined 1100 Bow Plane 2000 Powertrain 3000 Transmission 4000

  8. Magnetic suspension options for spacecraft inertia-wheel applications

    NASA Technical Reports Server (NTRS)

    Downer, J. R.

    1984-01-01

    Design criteria for spacecraft inertia-wheel suspensions are listed. The advantages of magnetic suspensions over other suspension types for spacecraft inertia-wheel applications are cited along with the functions performed by magnetic suspension. The common designs for magnetic suspensions are enumerated. Materials selection of permanent magnets and core materials is considered.

  9. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  10. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    NASA Astrophysics Data System (ADS)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  11. Source of cytotoxicity in a colloidal silver nanoparticle suspension.

    PubMed

    Hatipoglu, Manolya Kukut; Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-15

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee–Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  12. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... bar. No torsion bar or torsion bar suspension shall be cracked or broken. (f) Air suspensions. The air... the controls are either located on the trailer, or the power unit and trailer combination are not....207 Suspension systems. (a) Axles. No axle positioning part shall be cracked, broken, loose or missing...

  13. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    NASA Astrophysics Data System (ADS)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  14. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  15. Core Muscle Activity during TRX Suspension Exercises with and without Kinesiology Taping in Adults with Chronic Low Back Pain: Implications for Rehabilitation.

    PubMed

    Fong, Shirley S M; Tam, Y T; Macfarlane, Duncan J; Ng, Shamay S M; Bae, Young-Hyeon; Chan, Eleanor W Y; Guo, X

    2015-01-01

    This study aimed to examine the effects of kinesiology taping (KT) and different TRX suspension workouts on the amplitude of electromyographic (EMG) activity in the core muscles among people with chronic low back pain (LBP). Each participant (total n = 21) was exposed to two KT conditions: no taping and taping, while performing four TRX suspension exercises: (1) hamstring curl, (2) hip abduction in plank, (3) chest press, and (4) 45-degree row. Right transversus abdominis/internal oblique (TrAIO), rectus abdominis (RA), external oblique (EO), and superficial lumbar multifidus (LMF) activity was recorded with surface EMG and expressed as a percentage of the EMG amplitude recorded during a maximal voluntary isometric contraction of the respective muscles. Hip abduction in plank increased TrAIO, RA, and LMF EMG amplitude compared with other TRX positions (P < 0.008). Only the hamstring curl was effective in inducing a high EMG amplitude of LMF (P < 0.001). No significant difference in EMG magnitude was found between the taping and no taping conditions overall (P > 0.05). Hip abduction in plank most effectively activated abdominal muscles, whereas the hamstring curl most effectively activated the paraspinal muscles. Applying KT conferred no immediate benefits in improving the core muscle activation during TRX training in adults with chronic LBP.

  16. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Salin, Dominique; Douarche, Carine

    2017-11-01

    The successive runs and tumbles of Escherichia coli bacteria provide an active matter suspension of rod-like particles with a large swimming, Brownian like, diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering of the particles and hence instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analysing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume. Comparing these quantities to the ones of equivalent passive particles (ellipsoid, rod) we tentatively infer the effective shape and size of the bacteria involved in its buoyancy induced advection and diffusion. Laboratoire FAST University Paris Saclay France.

  17. Rheological behavior of oxide nanopowder suspensions

    NASA Astrophysics Data System (ADS)

    Cinar, Simge

    Ceramic nanopowders offer great potential in advanced ceramic materials and many other technologically important applications. Because a material's rheological properties are crucial for most processing routes, control of the rheological behavior has drawn significant attention in the recent past. The control of rheological behavior relies on an understanding of how different parameters affect the suspension viscosities. Even though the suspension stabilization mechanisms are relatively well understood for sub-micron and micron size particle systems, this knowledge cannot be directly transferred to nanopowder suspensions. Nanopowder suspensions exhibit unexpectedly high viscosities that cannot be explained with conventional mechanisms and are still a topic of investigation. This dissertation aims to establish the critical parameters governing the rheological behavior of concentrated oxide nanopowder suspensions, and to elucidate the mechanisms by which these parameters control the rheology of these suspensions. Aqueous alumina nanopowders were chosen as a model system, and the findings were extrapolated to other oxide nanopowder systems such as zirconia, yttria stabilized zirconia, and titania. Processing additives such as fructose, NaCl, HCl, NaOH, and ascorbic acid were used in this study. The effect of solids content and addition of fructose on the viscosity of alumina nanopowder suspensions was investigated by low temperature differential scanning calorimetry (LT-DSC), rheological, and zeta potential measurements. The analysis of bound water events observed in LT-DSC revealed useful information regarding the rheological behavior of nanopowder suspensions. Because of the significance of interparticle interactions in nanopowder suspensions, the electrostatic stabilization was investigated using indifferent and potential determining ions. Different mechanisms, e.g., the effect of the change in effective volume fraction caused by fructose addition and electrostatic

  18. Application of optimization techniques to vehicle design: A review

    NASA Technical Reports Server (NTRS)

    Prasad, B.; Magee, C. L.

    1984-01-01

    The work that has been done in the last decade or so in the application of optimization techniques to vehicle design is discussed. Much of the work reviewed deals with the design of body or suspension (chassis) components for reduced weight. Also reviewed are studies dealing with system optimization problems for improved functional performance, such as ride or handling. In reviewing the work on the use of optimization techniques, one notes the transition from the rare mention of the methods in the 70's to an increased effort in the early 80's. Efficient and convenient optimization and analysis tools still need to be developed so that they can be regularly applied in the early design stage of the vehicle development cycle to be most effective. Based on the reported applications, an attempt is made to assess the potential for automotive application of optimization techniques. The major issue involved remains the creation of quantifiable means of analysis to be used in vehicle design. The conventional process of vehicle design still contains much experience-based input because it has not yet proven possible to quantify all important constraints. This restraint on the part of the analysis will continue to be a major limiting factor in application of optimization to vehicle design.

  19. Dynamic shear jamming in granular suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Majumdar, Sayantan; Jaeger, Heinrich

    2014-11-01

    Jamming by shear allows a frictional granular packing to transition from an unjammed state into a jammed state while keeping the system volume and average packing fraction constant. Shear jamming of dry granular media can occur quasi-statically, but boundaries are crucial to confine the material. We perform experiments in aqueous starch suspension where we apply shear using a rheometer with a large volume (400 ml) cylindrical Couette cell. In our suspensions the packing fraction is sufficiently low that quasi-static deformation does not induce a shear jammed state. Applying a shock-like deformation however, will turn the suspension into a jammed solid. A fully jammed state is reached within tens of microseconds, and can be sustained for at least several seconds. High speed imaging of the initial process reveals a jamming front propagating radially outward through the suspension, while the suspension near the outer boundary remains quiescent. This indicates that granular suspensions can be shear jammed without the need of confining solid boundaries. Instead, confinement is most likely provided by the dynamics in the front region.

  20. Phagocytes in cell suspensions of human colon mucosa.

    PubMed Central

    Beeken, W; Northwood, I; Beliveau, C; Gump, D

    1987-01-01

    Because little is known of the phagocytes of the human colon we enumerated these cells in mucosal suspensions and studied their phagocytic activity. Phagocyte rich suspensions were made by EDTA collagenase dissociation followed by elutriation centrifugation. Phagocytosis was evaluated by measuring cellular radioactivity after incubation of phagocytes with 3H-adenine labelled E coli ON2 and checked microscopically. Dissociation of normal mucosa from colorectal neoplasms yielded means of 1.9 X 10(6) eosinophils, 1.4 X 10(6) macrophages and 2 X 10(5) neutrophils per gram of mucosa. Visually normal mucosa of inflammatory states yielded 2.2 X 10(6) eosinophils, 2.3 X 10(6) macrophages and 7 X 10(5) neutrophils per gram of mucosa. Phagocyte rich suspensions of normal mucosa from tumour patients phagocytosed 21.8% of a pool of opsonised tritiated E coli ON2 and by microscopy 100% of mucosal neutrophils ingested bacteria, 83% of eosinophils were phagocytic, and 53% of macrophages contained bacteria. These results suggest that in the human colonic mucosa, the eosinophil is more abundant than the macrophage and the per cent of those cells exhibiting phagocytosis is intermediate between that of the macrophage and the neutrophil. Thus these three types of cells are actively phagocytic and share the potential for a major role in host defence against invasive enteric bacteria. PMID:3666566

  1. 48 CFR 42.1302 - Suspension of work.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Delay of Work 42.1302 Suspension of work. A suspension of work under a construction or architect... suspension is unreasonable, the contractor may submit a written claim for increases in the cost of...

  2. 48 CFR 42.1302 - Suspension of work.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Delay of Work 42.1302 Suspension of work. A suspension of work under a construction or architect... suspension is unreasonable, the contractor may submit a written claim for increases in the cost of...

  3. 48 CFR 42.1302 - Suspension of work.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Delay of Work 42.1302 Suspension of work. A suspension of work under a construction or architect... suspension is unreasonable, the contractor may submit a written claim for increases in the cost of...

  4. 48 CFR 42.1302 - Suspension of work.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Delay of Work 42.1302 Suspension of work. A suspension of work under a construction or architect... suspension is unreasonable, the contractor may submit a written claim for increases in the cost of...

  5. 48 CFR 42.1302 - Suspension of work.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Delay of Work 42.1302 Suspension of work. A suspension of work under a construction or architect... suspension is unreasonable, the contractor may submit a written claim for increases in the cost of...

  6. A viscous-to-brittle transition in eruptions through clay suspensions

    NASA Astrophysics Data System (ADS)

    Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben M.; Jolly, Arthur; Dingwell, Donald B.

    2017-05-01

    Volcanic lakes are often associated with active geothermal circulation, mineral alteration, and precipitation, each of which can complicate the analysis of shallow magma physics, geophysical signals, and chemical signals. The rheology of the lake and associated hydrothermal system affects the eruptive activity as bubbles ascend and burst through the lake producing distinct ejection behavior. We investigate such phenomena by conducting scaled experiments in which heated water-clay suspensions are decompressed rapidly from relevant pressures. After a jet phase of expanding vapor, the suspensions break up into ejecta that are either angular or droplet geometry. We parameterize these regimes and find a universal clay volume fraction of 0.28 below which the ejecta are form droplets and above which the ejecta are angular. We propose a regime diagram for optical observations of active lakes, which allows rheological characterization and informs volcanic monitoring.

  7. Ultrasonic characterization of solid liquid suspensions

    DOEpatents

    Panetta, Paul D.

    2010-06-22

    Using an ultrasonic field, properties of a solid liquid suspension such as through-transmission attenuation, backscattering, and diffuse field are measured. These properties are converted to quantities indicating the strength of different loss mechanisms (such as absorption, single scattering and multiple scattering) among particles in the suspension. Such separation of the loss mechanisms can allow for direct comparison of the attenuating effects of the mechanisms. These comparisons can also indicate a model most likely to accurately characterize the suspension and can aid in determination of properties such as particle size, concentration, and density of the suspension.

  8. The first man-loading high temperature superconducting Maglev test vehicle in the world

    NASA Astrophysics Data System (ADS)

    Wang, Jiasu; Wang, Suyu; Zeng, Youwen; Huang, Haiyu; Luo, Fang; Xu, Zhipei; Tang, Qixue; Lin, Guobin; Zhang, Cuifang; Ren, Zhongyou; Zhao, Guomin; Zhu, Degui; Wang, Shaohua; Jiang, He; Zhu, Min; Deng, Changyan; Hu, Pengfei; Li, Chaoyong; Liu, Fang; Lian, Jisan; Wang, Xiaorong; Wang, Lianghui; Shen, Xuming; Dong, Xiaogang

    2002-10-01

    The first man-loading high temperature superconducting Maglev test vehicle in the world is reported. This vehicle was first tested successfully on December 31, 2000 in the Applied Superconductivity Laboratory, Southwest Jiaotong University, China. Heretofore over 17,000 passengers took the vehicle, and it operates very well from beginning to now. The function of suspension is separated from one of propulsion. The high temperature superconducting Maglev provides inherent stable forces both in the levitation and in the guidance direction. The vehicle is 3.5 m long, 1.2 m wide, and 0.8 m high. When five people stand on vehicle and the total weight is 530 kg, the net levitation gap is more than 20 mm. The whole vehicle system includes three parts, vehicle body, guideway and controlling system. The high temperature superconducting Maglev equipment on board is the most important for the system. The onboard superconductors are melt-textured YBaCuO bulks. The superconductors are fixed on the bottom of liquid nitrogen vessels and cooled by liquid nitrogen. The guideway consists of two parallel permanent magnetic tracks, whose surface concentrating magnetic field is up to 1.2 T. The guideway is 15.5 m long.

  9. L-NAME, a nitric oxide synthase inhibitor, as a potential countermeasure to post-suspension hypotension in rats

    NASA Technical Reports Server (NTRS)

    Bayorh, M. A.; Socci, R. R.; Watts, S.; Wang, M.; Eatman, D.; Emmett, N.; Thierry-Palmer, M.

    2001-01-01

    A large number of astronauts returning from spaceflight experience orthostatic hypotension. This hypotension may be due to overproduction of vasodilatory mediators, such as nitric oxide (NO) and prostaglandins. To evaluate the role of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) as a countermeasure against the post-suspension reduction in mean arterial pressure (MAP), we assessed the cardiovascular responses and vascular reactivity to 7-day 30 degrees tail-suspension and a subsequent 6 hr post-suspension period in conscious rats. After a pre-suspension reading, direct MAP and heart rate (HR) were measured daily and every 2 hrs post-suspension. The NO synthase inhibitor L-NAME (20 mg/kg, i.v.), or saline, were administered after the 7th day reading prior to release from suspension and at 2 and 4 hrs post-suspension. At 6 hrs post-suspension, vascular reactivity was assessed. While MAP did not change during the suspension period, it was reduced post-suspension. Heart rate was not significantly altered. L-NAME administration reversed the post-suspension reduction in MAP. In addition, the baroreflex sensitivity for heart rate was modified by L-NAME. Thus, the post-suspension reduction in MAP may be due to overproduction of NO and altered baroreflex activity.

  10. Launch Vehicle Selection and the Implementation of the Soil Moisture Active Passive Mission

    NASA Technical Reports Server (NTRS)

    Sherman, Sarah; Waydo, Peter; Eremenko, Alexander

    2016-01-01

    Soil Moisture Active Passive (SMAP) is a NASA-developed Earth science satellite currently mapping the soil moisture content and freeze/thaw state of Earth's land mass from a 685km, near-polar, sun-synchronous orbit. It was launched on January 31, 2015 from Vandenberg AFB upon a Delta II 7320 launch vehicle. Due to external considerations, SMAP's launch vehicle selection remained an open item until Project Critical Design Review (CDR). Thus, certain key aspects of the spacecraft design had to accommodate a diverse range of candidate launch vehicle environments, performance envelopes, interfaces and operational scenarios. Engineering challenges stemmed from two distinct scenarios: decisions that had to be made prior to launch vehicle selection to accommodate all possible outcomes, and post-selection changes constrained by schedule and the existing spacecraft configuration. The effects of the timing of launch vehicle selection reached virtually every aspect of the Observatory's design and development. Physical environments, mass allocations, material selections, propulsion system performance, dynamic response, launch phase and mission planning, overall size and configuration, and of course all interfaces to the launch vehicle were heavily dependent on this outcome. This paper will discuss the resolution of these technical challenges.

  11. Simple control-theoretic models of human steering activity in visually guided vehicle control

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1991-01-01

    A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.

  12. Drop formation in shear-thickening granular suspensions.

    PubMed

    Pan, Zhongcheng; Louvet, Nicolas; Hennequin, Yves; Kellay, Hamid; Bonn, Daniel

    2015-11-01

    We study droplet formation in granular suspensions by systematically varying the volume fractions (φ) and particle diameters (d). For suspensions with water as the suspending liquid, we find three different regimes. For dilute suspensions (φ≤45%), drop formation follows the predictions for inertial breakup and exhibits identical dynamics to that of pure water. The breakup is strongly asymmetrical in this case. Only for more concentrated suspensions (φ>45%) does the presence of particles change the dynamics and two other regimes, a symmetrical inertial regime and a Bagnoldian regime, are uncovered. We construct and discuss a phase diagram that allows us to understand and predict the breakup behavior in granular suspensions.

  13. 7 CFR 1407.3 - Procurement debarment and suspension.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Procurement debarment and suspension. CCC will proceed under this part when taking action to debar or suspend contractors with CCC or participants or potential participants in CCC's procurement activities. CCC will apply... debarring and suspending official will be the Executive Vice President, CCC, or a designee. ...

  14. 7 CFR 1407.3 - Procurement debarment and suspension.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Procurement debarment and suspension. CCC will proceed under this part when taking action to debar or suspend contractors with CCC or participants or potential participants in CCC's procurement activities. CCC will apply... debarring and suspending official will be the Executive Vice President, CCC, or a designee. ...

  15. 7 CFR 1407.3 - Procurement debarment and suspension.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Procurement debarment and suspension. CCC will proceed under this part when taking action to debar or suspend contractors with CCC or participants or potential participants in CCC's procurement activities. CCC will apply... debarring and suspending official will be the Executive Vice President, CCC, or a designee. ...

  16. 7 CFR 1407.3 - Procurement debarment and suspension.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Procurement debarment and suspension. CCC will proceed under this part when taking action to debar or suspend contractors with CCC or participants or potential participants in CCC's procurement activities. CCC will apply... debarring and suspending official will be the Executive Vice President, CCC, or a designee. ...

  17. 7 CFR 1407.3 - Procurement debarment and suspension.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Procurement debarment and suspension. CCC will proceed under this part when taking action to debar or suspend contractors with CCC or participants or potential participants in CCC's procurement activities. CCC will apply... debarring and suspending official will be the Executive Vice President, CCC, or a designee. ...

  18. 45 CFR 1641.14 - Notice of proposed suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Notice of proposed suspension. 1641.14 Section 1641.14 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.14 Notice of proposed suspension...

  19. 45 CFR 1641.14 - Notice of proposed suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Notice of proposed suspension. 1641.14 Section 1641.14 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.14 Notice of proposed suspension...

  20. Rheology of fiber suspensions using MRI

    NASA Astrophysics Data System (ADS)

    Jenny, M.; Ferrari, M.; Gaudel, N.; Kiesgen de Richter, S.

    2018-02-01

    The suspensions of non-Brownian fibers are of interest for many applications. Although many studies concerning suspensions are available in the literature, most of them concern suspensions of spherical particles. In this paper, global and local rheology of fiber suspensions are explored near the jamming transition. A critical volume fraction is extracted from the experimental data. The value of this critical volume fraction is in agreement with the expected value of the concentration of rigid rods above which the isotropic phase becomes unstable. Moreover, non-reversible effects of the shearing are observed in flow curves because of the non-Brownian behavior of the studied fibers.

  1. Human factors evaluation of an in-vehicle active traffic and demand management (ATDM) system : final report.

    DOT National Transportation Integrated Search

    2016-02-15

    This research study focused on the development and subsequent evaluation of an in-vehicle Active Traffic and Demand Management (ATDM) system deployed on Interstate 66 in Northern Virginia. The ATDM elements inside the vehicle allowed drivers to remai...

  2. Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans.

    PubMed

    Zubrická, Daniela; Mišianiková, Anna; Henzelyová, Jana; Valletta, Alessio; De Angelis, Giulia; D'Auria, Felicia Diodata; Simonetti, Giovanna; Pasqua, Gabriella; Čellárová, Eva

    2015-11-01

    Highest xanthone contents were found in Hypericum pulchrum and H. annulatum untransformed roots. The best anti- Candida activity was obtained for hairy roots extracts of H. tetrapterum clone 2 ATCC 15834. Extracts of root cultures, hairy roots and cell suspensions of selected Hypericum spp. were screened for the presence of xanthones and tested for their antifungal activity against Candida albicans strain ATCC 10231. At least one of the following xanthones, 5-methoxy-2-deprenylrheediaxanthone; 1,3,6,7-tetrahydroxyxanthone; 1,3,5,6-tetrahydroxyxanthone; paxanthone; kielcorin or mangiferin was identified in methanolic extracts of the untransformed root cultures. The highest total xanthone content, with five xanthones, was found in untransformed H. pulchrum and H. annulatum root cultures. Hairy roots and the controls of H. tetrapterum contained 1,7-dihydroxyxanthone, while hairy root cultures and the corresponding controls of H. tomentosum contained toxyloxanthone B, 1,3,6,7- and 1,3,5,6-tetrahydroxyxanthone. Two xanthones, cadensin G and paxanthone, were identified in cell suspension cultures of H. perforatum. Their content increased about two-fold following elicitation with salicylic acid. The anti-Candida activity of the obtained extracts ranged from MIC 64 to >256 µg ml(-1). Among the extracts of Hypericum untransformed roots, the best antifungal activity was obtained for extracts of H. annulatum grown under CD conditions. Extracts of hairy roots clones A4 and 7 ATCC15834 of H. tomentosum and clone 2 ATCC15834 of H. tetrapterum displayed inhibition of 90% of Candida growth with 256 μg ml(-1). Extracts from chitosan-elicitated cells did not show antifungal activity.

  3. Flagellum synchronization inhibits large-scale hydrodynamic instabilities in sperm suspensions

    NASA Astrophysics Data System (ADS)

    Schöller, Simon F.; Keaveny, Eric E.

    2016-11-01

    Sperm in suspension can exhibit large-scale collective motion and form coherent structures. Our picture of such coherent motion is largely based on reduced models that treat the swimmers as self-locomoting rigid bodies that interact via steady dipolar flow fields. Swimming sperm, however, have many more degrees of freedom due to elasticity, have a more exotic shape, and generate spatially-complex, time-dependent flow fields. While these complexities are known to lead to phenomena such as flagellum synchronization and attraction, how these effects impact the overall suspension behaviour and coherent structure formation is largely unknown. Using a computational model that captures both flagellum beating and elasticity, we simulate suspensions on the order of 103 individual swimming sperm cells whose motion is coupled through the surrounding Stokesian fluid. We find that the tendency for flagella to synchronize and sperm to aggregate inhibits the emergence of the large-scale hydrodynamic instabilities often associated with active suspensions. However, when synchronization is repressed by adding noise in the flagellum actuation mechanism, the picture changes and the structures that resemble large-scale vortices appear to re-emerge. Supported by an Imperial College PhD scholarship.

  4. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less

  5. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.« less

  6. Multi Purpose Crew Vehicle Active Thermal Control and Environmental Control and Life Support Development Status

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Barido, Richard A.; Boehm, Paul; Cross, Cynthia D.; Rains, George Edward

    2014-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in September of 2014. The development of the Orion Active Thermal Control (ATCS) and Environmental Control and Life Support (ECLS) System, focused on the integrating the components into the EFT1 vehicle and preparing them for launch. Work also has started on preliminary design reviews for the manned vehicle. Additional development work is underway to keep the remaining component progressing towards implementation on the flight tests of EM1 in 2017 and of EM2 in 2020. This paper covers the Orion ECLS development from April 2013 to April 2014

  7. Active Debris Removal Using Modified Launch Vehicle Upper Stages

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea

    2013-09-01

    During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).

  8. Large-Angle Magnetic Suspension (LAMS)

    NASA Technical Reports Server (NTRS)

    Oglevie, Ronald E.; Eisenhaure, David B.; Downer, James R.

    1988-01-01

    Spherical LAMS is magnetic syspension that provides dual functions of magnetic bearing and rotorgimbal system. Provides two degrees of angular freedom within single magnetic suspension system. Approach employs spherically-shaped magnetic-gap surfaces to achieve much-larger angular freedom than available from previous suspensions.

  9. Design of a robotic vehicle with self-contained intelligent wheels

    NASA Astrophysics Data System (ADS)

    Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.

    1998-08-01

    The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.

  10. Clay-cement suspensions - rheological and functional properties

    NASA Astrophysics Data System (ADS)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  11. 48 CFR 423.506 - Suspension of payments, termination of contract, and debarment and suspension actions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Suspension of payments, termination of contract, and debarment and suspension actions. 423.506 Section 423.506 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY...

  12. 48 CFR 423.506 - Suspension of payments, termination of contract, and debarment and suspension actions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension of payments, termination of contract, and debarment and suspension actions. 423.506 Section 423.506 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY...

  13. 48 CFR 423.506 - Suspension of payments, termination of contract, and debarment and suspension actions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Suspension of payments, termination of contract, and debarment and suspension actions. 423.506 Section 423.506 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY...

  14. 48 CFR 423.506 - Suspension of payments, termination of contract, and debarment and suspension actions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Suspension of payments, termination of contract, and debarment and suspension actions. 423.506 Section 423.506 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY...

  15. 48 CFR 423.506 - Suspension of payments, termination of contract, and debarment and suspension actions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Suspension of payments, termination of contract, and debarment and suspension actions. 423.506 Section 423.506 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY...

  16. Length of Residence and Vehicle Ownership in Relation to Physical Activity Among U.S. Immigrants.

    PubMed

    Terasaki, Dale; Ornelas, India; Saelens, Brian

    2017-04-01

    Physical activity among U.S. immigrants over time is not well understood. Transportation may affect this trajectory. Using a survey of documented immigrants (N = 7240), we performed simple, then multivariable logistic regression to calculate ORs and 95 % CIs between length of residence (LOR) and both light-to-moderate (LPA) and vigorous (VPA) activity. We adjusted for demographic variables, then vehicle ownership to assess changes in ORs. Compared to new arrivals, all four LOR time-intervals were associated with lower odds of LPA and higher odds of VPA in simple analysis. All ORs for LPA remained significant after including demographics, but only one remained significant after adding vehicle ownership. Two ORs for VPA remained significant after including demographics and after adding vehicle ownership. Immigrants lower their light-to-moderate activity the longer they reside in the U.S., partly from substituting driving for walking. Efforts to maintain walking for transportation among immigrants are warranted.

  17. 13 CFR 103.4 - What is “good cause” for suspension or revocation?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... unlawful or unethical activity is good cause for suspension or revocation of the privilege to conduct... other unlawful or unethical activity, with respect to any matter involving SBA assistance. (b...

  18. 13 CFR 103.4 - What is “good cause” for suspension or revocation?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... unlawful or unethical activity is good cause for suspension or revocation of the privilege to conduct... other unlawful or unethical activity, with respect to any matter involving SBA assistance. (b...

  19. 13 CFR 103.4 - What is “good cause” for suspension or revocation?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... unlawful or unethical activity is good cause for suspension or revocation of the privilege to conduct... other unlawful or unethical activity, with respect to any matter involving SBA assistance. (b...

  20. 13 CFR 103.4 - What is “good cause” for suspension or revocation?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... unlawful or unethical activity is good cause for suspension or revocation of the privilege to conduct... other unlawful or unethical activity, with respect to any matter involving SBA assistance. (b...