Science.gov

Sample records for active zone molecule

  1. Small molecule inhibitors of the Pyk2 and FAK kinases modulate chemoattractant-induced migration, adhesion and Akt activation in follicular and marginal zone B cells.

    PubMed

    Tse, Kathy W K; Lin, Kevin B L; Dang-Lawson, May; Guzman-Perez, Angel; Aspnes, Gary E; Buckbinder, Leonard; Gold, Michael R

    2012-01-01

    B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells. PMID:22507871

  2. Serpentine in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-09-01

    Serpentinization is a key phenomenon for understanding the geodynamics of subduction zones in the 10-200 km depth range. Serpentines are a major water carrier, and their rheological properties have a strong influence on deformation partitioning and seismicity at depths. I review experimental investigations that have been conducted on serpentines, with emphasis on the large body of data acquired over the past decade. Determinations of physical properties at the pressure and temperature conditions of subductions allow interpreting geophysical data in active subduction in terms of mineralogy and petrology, and to link the presence of serpentinites with deformation and fluid circulation. The fluid budget can be partially constrained from geophysical data. Elasticity data provide a quantitative basis for mapping serpentinization in the mantle wedge and slab from seismic tomography. Anisotropy suggests the existence of thin serpentinite channels above the plate interface, that account for mechanical decoupling inferred from down-dip limit of the seismogenic zone and heat flow. Strain-rate dependent rheology of antigorite serpentine is consistent with stable deformation of this thin layer or channel over timescales ranging from those of the seismic cycle to those of thermal equilibration and exhumation of high-pressure rocks, and with the geological record of subduction-related deformation. Circulation of serpentinizing fluids depends on the permeability structure, and is imaged by electrical conductivity tomography. It could be controlled by fracturing in the undeformed cold nose of the mantle wedge, and by plastic deformation along the plate interface. Fluid migration mechanisms are similar to those inferred from petrological and geochemical data on exhumed serpentinites. Estimation of the fluid budget associated with serpentine formation will rely on numerical simulations for which coupling of kinetics of hydration and dehydration at scales ranging from grain size up

  3. Rab3-interacting molecules 2α and 2β promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones

    PubMed Central

    Jung, Sangyong; Oshima-Takago, Tomoko; Chakrabarti, Rituparna; Wong, Aaron B.; Jing, Zhizi; Yamanbaeva, Gulnara; Picher, Maria Magdalena; Wojcik, Sonja M.; Göttfert, Fabian; Predoehl, Friederike; Michel, Katrin; Hell, Stefan W.; Schoch, Susanne; Strenzke, Nicola; Wichmann, Carolin; Moser, Tobias

    2015-01-01

    Ca2+ influx triggers the fusion of synaptic vesicles at the presynaptic active zone (AZ). Here we demonstrate a role of Ras-related in brain 3 (Rab3)–interacting molecules 2α and β (RIM2α and RIM2β) in clustering voltage-gated CaV1.3 Ca2+ channels at the AZs of sensory inner hair cells (IHCs). We show that IHCs of hearing mice express mainly RIM2α, but also RIM2β and RIM3γ, which all localize to the AZs, as shown by immunofluorescence microscopy. Immunohistochemistry, patch-clamp, fluctuation analysis, and confocal Ca2+ imaging demonstrate that AZs of RIM2α-deficient IHCs cluster fewer synaptic CaV1.3 Ca2+ channels, resulting in reduced synaptic Ca2+ influx. Using superresolution microscopy, we found that Ca2+ channels remained clustered in stripes underneath anchored ribbons. Electron tomography of high-pressure frozen synapses revealed a reduced fraction of membrane-tethered vesicles, whereas the total number of membrane-proximal vesicles was unaltered. Membrane capacitance measurements revealed a reduction of exocytosis largely in proportion with the Ca2+ current, whereas the apparent Ca2+ dependence of exocytosis was unchanged. Hair cell-specific deletion of all RIM2 isoforms caused a stronger reduction of Ca2+ influx and exocytosis and significantly impaired the encoding of sound onset in the postsynaptic spiral ganglion neurons. Auditory brainstem responses indicated a mild hearing impairment on hair cell-specific deletion of all RIM2 isoforms or global inactivation of RIM2α. We conclude that RIM2α and RIM2β promote a large complement of synaptic Ca2+ channels at IHC AZs and are required for normal hearing. PMID:26034270

  4. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jovan Jose, K V; Raghavachari, Krishnan

    2016-02-01

    We present an efficient method for the calculation of the Raman optical activity (ROA) spectra for large molecules through the molecules-in-molecules (MIM) fragment-based method. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule to enable the extension of the MIM method for evaluating ROA spectra (MIM-ROA). Two factors were found to be particularly important in yielding accurate results. First, the link-atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, yielding a mathematically rigorous method. Second, the long-range interactions between fragments are taken into account by using a less computationally expensive lower level of theory. The performance of the MIM-ROA model is calibrated on the enantiomeric pairs of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and ROA intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-ROA method is employed to predict the ROA spectra of d-maltose, α-D-cyclodextrin, and cryptophane-A, yielding spectra in excellent agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-ROA model for exploring ROA spectra of large molecules. PMID:26760444

  5. Uranium-mediated activation of small molecules.

    PubMed

    Arnold, Polly L

    2011-08-28

    Molecular complexes of uranium are capable of activating a range of industrially and economically important small molecules such as CO, CO(2), and N(2); new and often unexpected reactions provide insight into an element that needs to be well-understood if future clean-energy solutions are to involve nuclear power. PMID:21614341

  6. Attachment of second harmonic-active moiety to molecules for detection of molecules at interfaces

    DOEpatents

    Salafsky, Joshua S.; Eisenthal, Kenneth B.

    2005-10-11

    This invention provides methods of detecting molecules at an interface, which comprise labeling the molecules with a second harmonic-active moiety and detecting the labeled molecules at the interface using a surface selective technique. The invention also provides methods for detecting a molecule in a medium and for determining the orientation of a molecular species within a planar surface using a second harmonic-active moiety and a surface selective technique.

  7. Activation of small molecules by phosphorus biradicaloids.

    PubMed

    Hinz, Alexander; Kuzora, Rene; Rosenthal, Uwe; Schulz, Axel; Villinger, Alexander

    2014-11-01

    The reactivity of biradicaloid [P(μ-NTer)]2 was employed to activate small molecules bearing single, double, and triple bonds. Addition of chalcogens (O2 , S8 , Sex and Tex ) led to the formation of dichalcogen-bridged P2 N2 heterocycles, except from the reaction with molecular oxygen, which gave a P2 N2 ring featuring a dicoordinated P(III) and a four-coordinated P(V) center. In formal [2πe+2πe] addition reactions, small unsaturated compounds such as ethylene, acetylene, acetone, acetonitrile, tolane, diphenylcarbodiimide, and bis(trimethylsilyl)sulfurdiimide are readily added to the P2 N2 heterocycle of the biradicaloid [P(μ-NTer)]2 , yielding novel heteroatom cage compounds. The synthesis, reactivity, and bonding of the biradicaloid [P(μ-NTer)]2 were studied in detail as well as the synthesis, properties, and structural features of all addition products. PMID:25266101

  8. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  9. Molecular Mechanism of Active Zone Organization at Vertebrate Neuromuscular Junctions

    PubMed Central

    Nishimune, Hiroshi

    2013-01-01

    Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses. PMID:22135013

  10. Microscopy beyond the diffraction limit using actively controlled single molecules

    PubMed Central

    MOERNER, W.E.

    2013-01-01

    Summary In this short review, the general principles are described for obtaining microscopic images with resolution beyond the optical diffraction limit with single molecules. Although it has been known for several decades that single-molecule emitters can blink or turn on and off, in recent work the addition of on/off control of molecular emission to maintain concentrations at very low levels in each imaging frame combined with sequential imaging of sparse subsets has enabled the reconstruction of images with resolution far below the optical diffraction limit. Single-molecule active control microscopy provides a powerful window into information about nanoscale structures that was previously unavailable. PMID:22582796

  11. Molecules and mechanisms that regulate multipolar migration in the intermediate zone

    PubMed Central

    Cooper, Jonathan A.

    2014-01-01

    Most neurons migrate with an elongated, “bipolar” morphology, extending a long leading process that explores the environment. However, when immature projection neurons enter the intermediate zone (IZ) of the neocortex they become “multipolar”. Multipolar cells extend and retract cytoplasmic processes in different directions and move erratically—sideways, up and down. Multipolar cells extend axons while they are in the lower half of the IZ. Remarkably, the cells then resume radial migration: they reorient their centrosome and Golgi apparatus towards the pia, transform back to bipolar morphology, and commence locomotion along radial glia (RG) fibers. This reorientation implies the existence of directional signals in the IZ that are ignored during the multipolar stage but sensed after axonogenesis. In vivo genetic manipulation has implicated a variety of candidate directional signals, cell surface receptors, and signaling pathways, that may be involved in polarizing multipolar cells and stabilizing a pia-directed leading process for radial migration. Other signals are implicated in starting multipolar migration and triggering axon outgrowth. Here we review the molecules and mechanisms that regulate multipolar migration, and also discuss how multipolar migration affects the orderly arrangement of neurons in layers and columns in the developing neocortex. PMID:25452716

  12. Identification of Biologically Active, HIV TAR RNA-Binding Small Molecules Using Small Molecule Microarrays

    PubMed Central

    2015-01-01

    Identifying small molecules that selectively bind to structured RNA motifs remains an important challenge in developing potent and specific therapeutics. Most strategies to find RNA-binding molecules have identified highly charged compounds or aminoglycosides that commonly have modest selectivity. Here we demonstrate a strategy to screen a large unbiased library of druglike small molecules in a microarray format against an RNA target. This approach has enabled the identification of a novel chemotype that selectively targets the HIV transactivation response (TAR) RNA hairpin in a manner not dependent on cationic charge. Thienopyridine 4 binds to and stabilizes the TAR hairpin with a Kd of 2.4 μM. Structure–activity relationships demonstrate that this compound achieves activity through hydrophobic and aromatic substituents on a heterocyclic core, rather than cationic groups typically required. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) analysis was performed on a 365-nucleotide sequence derived from the 5′ untranslated region (UTR) of the HIV-1 genome to determine global structural changes in the presence of the molecule. Importantly, the interaction of compound 4 can be mapped to the TAR hairpin without broadly disrupting any other structured elements of the 5′ UTR. Cell-based anti-HIV assays indicated that 4 inhibits HIV-induced cytopathicity in T lymphocytes with an EC50 of 28 μM, while cytotoxicity was not observed at concentrations approaching 1 mM. PMID:24820959

  13. Active zones of mammalian neuromuscular junctions: formation, density, and aging

    PubMed Central

    Nishimune, Hiroshi

    2012-01-01

    Presynaptic active zones are synaptic vesicle release sites that playessential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization utilize presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2, and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. PMID:23252894

  14. On the biological activity of drug molecules: Busulfan and nabumetone

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Kovač, Branka

    2010-10-01

    The electronic structures of drug molecules busulfan (BSU) and nabumetone (NAB) have been investigated by HeI and HeII UV photoelectron spectroscopy (UPS), quantum chemical calculations and virtual docking studies. Their biological activities are discussed in the framework of their electronic and molecular structures, reactivity and drug-enzyme binding.

  15. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals at their surface. While individual colloids that are symmetrically coated do not exhibit dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. In dilute conditions these active colloids join up to form molecules via generalized ionic bonds. Colloids are found to join up to form self-assembled molecules that could be inert or have spontaneous activity in the form of net translational velocity and spin depending on their symmetry properties and their constituents. As the interactions do not satisfy detailed-balance, it is possible to achieve structures with time dependent functionality. We study a molecule that adopts spontaneous oscillations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities.

  16. Is There any Relationship Between Active Tabriz Fault Zone and Bozkush Fault Zones, NW Iran?

    NASA Astrophysics Data System (ADS)

    ISIK, V.; Saber, R.; Caglayan, A.

    2012-12-01

    Tectonic plate motions and consequent earthquakes can be actively observed along the northwestern Iran. The Tabriz fault zone (TFZ), also called the North Tabriz fault, active right-lateral strike-slip fault zone with slip rates estimated as ~8 mm/yr, has been vigorously deforming much of northwestern Iran for over the past several million years. Historical earthquakes on the TFZ consist of large magnitude, complimentary rupture length and changed the landscape of regions surrounding the fault zone. The TFZ in the city of Bostanabad is more segmented with several strands and joined by a series of WNW-ESE trending faults, called the Bozkush fault zones. The Bozkush fault zones (BFZ's) (south and north), bounding arch-shaped Bozkush mountains, generates not only hundreds of small earthquakes each year but also has provided significant earthquakes that have been historically documented. The rock units deformed within the BFZ's include Eocene-Oligocene volcanic rocks with intercalation limestone, Oligo-Miocene clastic rocks with intercalation gypsiferous marl and Plio-Quaternary volcano-sedimentary rocks, travertine and alluvium. The North and South Bozkush fault zones are characterized by development of structures typically associated with transpression. These include right-lateral strike-slip faults, thrust faults and foldings. Our field studies indicate that these zones include step to sub-vertical fault surfaces trending NW and NE with slickenlines. Slickensides preserve brittle kinematic indicators (e.g., Riedel shear patterns, slickenside marks) suggesting both dextral displacements and top-to-the-NE/NW and-SE/SW sense of shearing. Besides, mesoscopic and microscopic ductile kinematic indicators (e.g., asymmetric porphyroclasts, C/S fabrics) within Miocene gypsum marl show dextral displacements. Fault rocks along most of these faults consist of incohesive fault breccia and gauge. Adjacent to the fault contact evidence of bedding in Oligo-Miocene and Plio

  17. Biased and unbiased strategies to identify biologically active small molecules.

    PubMed

    Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël

    2014-08-15

    Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. PMID:24811300

  18. Mechanism of intersystem crossing of thermally activated delayed fluorescence molecules.

    PubMed

    Ogiwara, Toshinari; Wakikawa, Yusuke; Ikoma, Tadaaki

    2015-04-01

    The spin sublevel dynamics of the excited triplet state in thermally activated delayed fluorescence (TADF) molecules have not been investigated for high-intensity organic light-emitting diode materials. Understanding the mechanism for intersystem crossing (ISC) is thus important for designing novel TADF materials. We report the first study on the ISC dynamics of the lowest excited triplet state from the lowest excited singlet state with charge-transfer (CT) character of TADF molecules with different external quantum efficiencies (EQEs) using time-resolved electron paramagnetic resonance methods. Analysis of the observed spin polarization indicates a strong correlation of the EQE with the population rate due to ISC induced by hyperfine coupling with the magnetic nuclei. It is concluded that molecules with high EQE have an extremely small energy gap between the (1)CT and (3)CT states, which allows an additional ISC channel due to the hyperfine interactions. PMID:25774790

  19. Triggered tremors beneath the seismogenic zone of an active fault zone, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Miyazaki, Masahiro; Matsumoto, Satoshi; Shimizu, Hiroshi

    2015-11-01

    Non-volcanic tremors were induced by the surface waves of the 2012 Sumatra earthquake around the Hinagu fault zone in Kyushu, Japan. We inferred from dense seismic observation data that the hypocenters of these tremors were located beneath the seismogenic zone of the Hinagu fault. Focal mechanisms of the tremors were estimated using S-wave polarization angles. The estimated focal mechanisms show similarities to those of shallow earthquakes in this region. In addition, one of the nodal planes of the focal mechanisms is almost parallel to the strike direction of the Hinagu fault. These observations suggest that the tremors were triggered at the deeper extension of the active fault zone under stress conditions similar to those in the shallower seismogenic region. A low-velocity anomaly beneath the hypocentral area of the tremors might be related to the tremor activity.

  20. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    2015-05-01

    Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1 /r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.

  1. Structural basis of AMPK regulation by small molecule activators

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.

    2013-12-01

    AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.

  2. Anti-Ebola Activity of Diazachrysene Small Molecules.

    PubMed

    Selaković, Života; Soloveva, Veronica; Gharaibeh, Dima N; Wells, Jay; Šegan, Sandra; Panchal, Rekha G; Šolaja, Bogdan A

    2015-06-12

    Herein we report on a diazachrysene class of small molecules that exhibit potent antiviral activity against the Ebola (EBOV) virus. The antiviral compounds are easily synthesized, and the most active compounds have excellent in vitro activity (0.34-0.70 μM) and are significantly less lipophilic than their predecessors. The three most potent diazachrysene antivirals do not exhibit any toxicity in vivo and protected 70-90% of the mice at 10 mg/kg following EBOV challenge. Together, these studies suggest that diazachrysenes are a promising class of compounds for hit to lead optimization and as potential Ebola therapeutics. PMID:27622742

  3. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  4. Small molecules reveal an alternative mechanism of Bax activation.

    PubMed

    Brahmbhatt, Hetal; Uehling, David; Al-Awar, Rima; Leber, Brian; Andrews, David

    2016-04-15

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  5. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  6. Myricetin: A Dietary Molecule with Diverse Biological Activities.

    PubMed

    Semwal, Deepak Kumar; Semwal, Ruchi Badoni; Combrinck, Sandra; Viljoen, Alvaro

    2016-02-01

    Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson's and Alzheimer's. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound's ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities. PMID:26891321

  7. Polarized Raman optical activity of menthol and related molecules

    NASA Astrophysics Data System (ADS)

    Barron, L. D.; Hecht, L.; Blyth, S. M.

    1989-01-01

    Polarized and depolarized Raman optical activity spectra of menthol, menthyl chloride, neomenthol and neothiomenthol from 800 to 1500 cm -1 are reported. Despite axial symmetry in all the bonds, the presence of the heteroatoms O or S seems to induce large deviations from the expected ratio of 2:1 between the polarized and depolarized Raman optical activity intensities, but Cl does not. These deviations might originate in large electric quadrupole contributions induced by excited state interactions involving O or S Rydberg p orbitals and valence orbitals on other parts of the molecule. Such interactions appear to undermine the bond polarizability theory of Raman intensities.

  8. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1

    PubMed Central

    Wagh, Dhananjay; Terry-Lorenzo, Ryan; Waites, Clarissa L.; Leal-Ortiz, Sergio A.; Maas, Christoph; Reimer, Richard J.; Garner, Craig C.

    2015-01-01

    The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1. PMID:25897839

  9. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  10. Single-Molecule Manipulation Studies of a Mechanically Activated Protein

    NASA Astrophysics Data System (ADS)

    Botello, Eric; Harris, Nolan; Choi, Huiwan; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa

    2009-10-01

    Plasma von Willebrand factor (pVWF) is the largest multimeric adhesion ligand found in human blood and must be adhesively activated by exposure to shear stress, like at sites of vascular injury, to initiate blood clotting. Sheared pVWF (sVWF) will undergo a conformational change from a loose tangled coil to elongated strings forming adhesive fibers by binding with other sVWF. VWF's adhesion activity is also related to its length, with the ultra-large form of VWF (ULVWF) being hyper-actively adhesive without exposure to shear stress; it has also been shown to spontaneously form fibers. We used single molecule manipulation techniques with the AFM to stretch pVWF, sVWF and ULVWF and monitor the forces as a function of molecular extension. We showed a similar increase in resistance to unfolding for sVWF and ULVWF when compared to pVWF. This mechanical resistance to forced unfolding is reduced when other molecules known to disrupt their fibril formation are present. Our results show that sVWF and ULVWF domains unfold at higher forces than pVWF, which is consistent with the hypothesis that shear stress induces lateral association that alters adhesion activity of pVWF.

  11. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  12. 78 FR 4155 - Agency Information Collection Activities: Application for Foreign Trade Zone and/or Status...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... Foreign Trade Zone and/or Status Designation, and Application for Foreign Trade Zone Activity Permit... Application for Foreign Trade Zone Admission and/or Status Designation, and Application for Foreign Trade Zone... Foreign Trade Zone Admission and/or Status Designation, and Application for Foreign Trade......

  13. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  14. Neurotransmitters couple brain activity to subventricular zone neurogenesis

    PubMed Central

    Young, Stephanie Z.; Taylor, M. Morgan; Bordey, Angélique

    2011-01-01

    Adult neurogenesis occurs in two privileged microenvironments, the hippocampal subgranular zone of the dentate gyrus and the subventricular zone (SVZ) along the lateral ventricle. This review focuses on accumulating evidence suggesting that the activity of specific brain regions or bodily states influences SVZ cell proliferation and neurogenesis. Neuromodulators such as dopamine and serotonin have been shown to have long-range effects through neuronal projections into the SVZ. Local GABA and glutamate signaling have demonstrated effects on SVZ proliferation and neurogenesis, but an extra-niche source of these neurotransmitters remains to be explored and options will be discussed. There is also accumulating evidence that diseases and bodily states such as Alzheimer's disease, seizures, sleep, and pregnancy influence SVZ cell proliferation. With such complex behavior and environmentally-driven factors that control subregion-specific activity, it will become necessary to account for overlapping roles of multiple neurotransmitter systems on neurogenesis when developing cell therapies or drug treatments. PMID:21395856

  15. Myricetin: A Dietary Molecule with Diverse Biological Activities

    PubMed Central

    Semwal, Deepak Kumar; Semwal, Ruchi Badoni; Combrinck, Sandra; Viljoen, Alvaro

    2016-01-01

    Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities. PMID:26891321

  16. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    NASA Astrophysics Data System (ADS)

    San Nicolas, Rackel; Provis, John

    2015-12-01

    The interfacial transition zone (ITZ) is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz) aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE) generated in an environmental scanning electron microscope (ESEM) are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N)-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution) and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  17. 78 FR 16701 - Agency Information Collection Activities: Application for Foreign Trade Zone and/or Status...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Foreign Trade Zone and/or Status Designation, and Application for Foreign Trade Zone Activity Permit... approval in accordance with the Paperwork Reduction Act: Application for Foreign Trade Zone Admission and/or Status Designation, and Application for Foreign Trade Zone Activity Permit (CBP Forms 214,...

  18. Active Microfluidic Devices for Single-Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Meiners, Jens-Christian

    2003-03-01

    Microfluidic chips have become an increasingly powerful and versatile tool in the life sciences. Multilayer devices fabricated from soft silicone elastomers in a replication molding technique are especially promising, because they permit flexible integration of active elements such as valves and pumps. In addition, they are fairly easy and inexpensive to produce. In a wide range of applications, microfluidic chips are used in conjunction with optical detection and manipulation techniques. However their widespread use has been hampered due to problems with interconnect stability, optical accessibility, and ability to perform surface chemistry. We have developed a packaging technique that encapsulates the elastomer in an epoxy resin of high optical quality. This stabilizes the interconnects so that a chip can be repeatedly plugged in and out of a socket. Our technique also eliminates the need for a baking step that is conventionally used to attach a glass cover slip to the elastomer surface. This allows us to assemble devices that contain a cover slip coated with proteins, thereby permitting subsequent in situ attachment of DNA molecules to the bottom of the flow channels. We demonstrate the utility of our chips in single-molecule applications involving tethered-particles and optical tweezers. Support: NIH R01 GM065934 & Research Corporation

  19. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  20. 50 CFR Table 8 to Part 679 - Harvest Zone Codes for Use With Vessel Activity Reports

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Harvest Zone Codes for Use With Vessel... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 8 Table 8 to Part 679—Harvest Zone Codes for Use With Vessel Activity Reports Harvest Zone Description A1 BSAI EEZ off Alaska A2 GOA EEZ off Alaska B State waters...

  1. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    NASA Astrophysics Data System (ADS)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  2. Friction mediated by redox-active supramolecular connector molecules.

    PubMed

    Bozna, B L; Blass, J; Albrecht, M; Hausen, F; Wenz, G; Bennewitz, R

    2015-10-01

    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium-cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2-1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments. PMID:26367352

  3. Studies Relevent to Catalytic Activation Co & other small Molecules

    SciTech Connect

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  4. Application of Optical Biosensors in Small-Molecule Screening Activities

    PubMed Central

    Geschwindner, Stefan; Carlsson, Johan F.; Knecht, Wolfgang

    2012-01-01

    The last two decades have seen remarkable progress and improvements in optical biosensor systems such that those are currently seen as an important and value-adding component of modern drug screening activities. In particular the introduction of microplate-based biosensor systems holds the promise to match the required throughput without compromising on data quality thus representing a sought-after complement to traditional fluidic systems. This article aims to highlight the application of the two most prominent optical biosensor technologies, namely surface plasmon resonance (SPR) and optical waveguide grating (OWG), in small-molecule screening and will present, review and discuss the advantages and disadvantages of different assay formats on these platforms. A particular focus will be on the specific advantages of the inhibition in solution assay (ISA) format in contrast to traditional direct binding assays (DBA). Furthermore we will discuss different application areas for both fluidic as well as plate-based biosensor systems by considering the individual strength of the platforms. PMID:22666031

  5. The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus.

    PubMed

    Kobayashi, Shizuka; Hida, Yamato; Ishizaki, Hiroyoshi; Inoue, Eiji; Tanaka-Okamoto, Miki; Yamasaki, Miwako; Miyazaki, Taisuke; Fukaya, Masahiro; Kitajima, Isao; Takai, Yoshimi; Watanabe, Masahiko; Ohtsuka, Toshihisa; Manabe, Toshiya

    2016-09-01

    Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system. PMID:27422015

  6. Sustainable production of biologically active molecules of marine based origin.

    PubMed

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. PMID:23563183

  7. Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation

    PubMed Central

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272

  8. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions. PMID:27537484

  9. Understanding Enzyme Activity Using Single Molecule Tracking (Poster)

    SciTech Connect

    Liu, Y.-S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M.; Smith S.; Wei, H.; Ding, S.-Y.

    2009-06-01

    This poster describes single-molecule tracking and total internal reflection fluorescence microscopy. It discusses whether the carbohydrate-binding module (CBM) moves on cellulose, how the CBM binds to cellulose, and the mechanism of cellulosome assembly.

  10. 78 FR 14963 - Foreign-Trade Zone 163-Ponce, Puerto Rico; Authorization of Production Activity; Zimmer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Foreign-Trade Zones Board Foreign-Trade Zone 163--Ponce, Puerto Rico; Authorization of Production Activity; Zimmer Manufacturing BV (Medical Devices); Ponce, Puerto Rico On November 1, 2012, CODEZOL, C.D., grantee of FTZ 163, submitted a notification of proposed production activity to the Foreign-Trade Zones...

  11. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Activities Far East Marine... SECURITY GENERAL COAST GUARD AREAS, DISTRICTS, SECTORS, MARINE INSPECTION ZONES, AND CAPTAIN OF THE PORT ZONES Fourteenth Coast Guard District § 3.70-20 Activities Far East Marine Inspection Zone....

  12. Nitrogen molecule activation by excited states of copper

    SciTech Connect

    Sanchez-Zamora, M.; Novaro, O.; Ruiz, M.E. )

    1990-04-05

    Ab initio molecular orbital studies that include variational (with a multiconfiguration reference state of 200 states) and perturbational (including over 3 million configurations) configuration interaction calculations were addressed to the interaction of nitrogen molecules with copper. The Cu ground state {sup 2}S and first two excited states {sup 2}P and {sup 2}D were studied as they interact in different geometrical approaches (including side-on and end-on geometries) with ground-state N{sub 2} molecules.

  13. Spatial distribution of microfractures in damage zone along active faults

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.; Ueta, K.

    2011-12-01

    For basement faults without overlying quaternary sediments, there are few methods to determine whether the fault is active or not. Recently, we focus on microfracture characteristics of damage zone along active faults as used for the assessment of seismic activity of basement faults. In this study, we examined a newly-found active fault (Sasaki et al., 2011) located to the east of the epicentral area of 1943 Tottori earthquake, southwest Japan. The fault zone consists of the 75 cm thick fault core of the purple-colored clayey fault gouge and the fault breccia with cataclastic foliation, and the surrounding damage zone developed in Cretaceous Kyushozan granite. A subsidiary fault accompanying a fault core of white clayey fault gouge that ranges from 3 to 5 mm thickness is located at about 110 m from the main fault. We collected ten orientated samples 9 m to 180 m from the main fault. The samples were coated with epoxy and then thin sections were cut perpendicular to the fault plane and parallel to a horizontal plane because the slip direction is unknown. Microfracture density data were collected from 40 quartz grains per thin section (per sample). A thin section is marked with a square grid at 3 mm intervals and we picked one grain up in each square of the grid marked on the thin section to reduce operator sampling bias resulting from the selection of quartz grains. Quartz is suitable to estimate the damage that the rock sample has sustained because quartz without cleavage acts as an isotropic medium for fracturing and it is physically and chemically resistant to weathering than other minerals constituting the granite. We counted the number of microfractures that intersected a line which was drawn from the edge of each quartz grain, through the center point, to the other edge of the grain. The linear microfracture density for each sample is calculated to be the total number of microfractures intersecting the lines divided by the total counting line length. Under the

  14. Super-resolution microscopy of the synaptic active zone

    PubMed Central

    Ehmann, Nadine; Sauer, Markus; Kittel, Robert J.

    2015-01-01

    Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins. PMID:25688186

  15. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  16. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release.

    PubMed

    Liu, Karen S Y; Siebert, Matthias; Mertel, Sara; Knoche, Elena; Wegener, Stephanie; Wichmann, Carolin; Matkovic, Tanja; Muhammad, Karzan; Depner, Harald; Mettke, Christoph; Bückers, Johanna; Hell, Stefan W; Müller, Martin; Davis, Graeme W; Schmitz, Dietmar; Sigrist, Stephan J

    2011-12-16

    The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery. PMID:22174254

  17. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states

    NASA Astrophysics Data System (ADS)

    Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; Diantonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J.

    2014-08-01

    The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.

  18. The possibility of a fuzzy zone of semiotic activity.

    PubMed

    Morioka, Masayoshi

    2007-12-01

    In this commentary I tried to further develop the idea of Madureira (Integr Psych Behav Sci, 42(2), 2007), who challenges to clarify the complex sexuality problem of homophobia from the viewpoint of the cultural semiotic activity. Two remarking points were proposed in this commentary article. First, I took notice of the boundary phenomenon constructed between the homophobia and the other. It has a cultural meaning. Concerning with this process, I introduced and examined the concept of tonus that is sensed a subtle changing process of tension in self-other relationship. The second, I discussed about the fuzzy zone of semiotic activity. If one can feel in oneself fuzzy awareness into the source of discomfort affect, it is able to be a creative moment in the tension of fuzzy field (A and non-A) where generates dialogical activity in both vertical and horizontal. Through this discussion, I proposed some remarks for the dissolution on the culturally constructed prejudice of sexuality. PMID:18232094

  19. Investigation of the binding modes between AIE-active molecules and dsDNA by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Ma, Ke; Hu, Ting; Jiang, Bo; Xu, Bin; Tian, Wenjing; Sun, Jing Zhi; Zhang, Wenke

    2015-05-01

    AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The experimental data indicate that DSAI can strongly intercalate into DNA base pairs, while DSABr-C6 is unable to intercalate into DNA due to the steric hindrance of the alkyl side chains. Cis-TPEDPy and trans-TPEDPy can also intercalate into DNA base pairs, but the binding shows strong ionic strength dependence. Multiple binding modes of TPEDPy with dsDNA have been discussed. In addition, the electrostatic interaction enhanced intercalation of cis-TPEDPy with dsDNA has also been revealed.AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The

  20. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Activities Far East Marine... ZONES Fourteenth Coast Guard District § 3.70-20 Activities Far East Marine Inspection Zone. (a) Activities Far East's office is located in Yokota, Japan. The boundaries of Activities Far East's...

  1. Small Molecule Antagonizes Autoinhibition and Activates AMP-activated Protein Kinase in Cells*

    PubMed Central

    Pang, Tao; Zhang, Zhen-Shan; Gu, Min; Qiu, Bei-Ying; Yu, Li-Fang; Cao, Peng-Rong; Shao, Wei; Su, Ming-Bo; Li, Jing-Ya; Nan, Fa-Jun; Li, Jia

    2008-01-01

    AMP-activated protein kinase (AMPK) serves as an energy sensor and is considered a promising drug target for treatment of type II diabetes and obesity. A previous report has shown that mammalian AMPK α1 catalytic subunit including autoinhibitory domain was inactive. To test the hypothesis that small molecules can activate AMPK through antagonizing the autoinhibition in α subunits, we screened a chemical library with inactive human α1394 (α1, residues 1-394) and found a novel small-molecule activator, PT1, which dose-dependently activated AMPK α1394, α1335, α2398, and even heterotrimer α1β1γ1. Based on PT1-docked AMPK α1 subunit structure model and different mutations, we found PT1 might interact with Glu-96 and Lys-156 residues near the autoinhibitory domain and directly relieve autoinhibition. Further studies using L6 myotubes showed that the phosphorylation of AMPK and its downstream substrate, acetyl-CoA carboxylase, were dose-dependently and time-dependently increased by PT1 with-out an increase in cellular AMP:ATP ratio. Moreover, in HeLa cells deficient in LKB1, PT1 enhanced AMPK phosphorylation, which can be inhibited by the calcium/calmodulin-dependent protein kinase kinases inhibitor STO-609 and AMPK inhibitor compound C. PT1 also lowered hepatic lipid content in a dose-dependent manner through AMPK activation in HepG2 cells, and this effect was diminished by compound C. Taken together, these data indicate that this small-molecule activator may directly activate AMPK via antagonizing the autoinhibition in vitro and in cells. This compound highlights the effort to discover novel AMPK activators and can be a useful tool for elucidating the mechanism responsible for conformational change and autoinhibitory regulation of AMPK. PMID:18321858

  2. A comparative phenotypical analysis of rheumatoid nodules and rheumatoid synovium with special reference to adhesion molecules and activation markers

    PubMed Central

    Elewaut, D.; De Keyser, F.; De Wever, N.; Baeten, D.; Van Damme, N.; Verbruggen, G.; Cuvelier, C.; Veys, E.

    1998-01-01

    OBJECTIVES—(1)To analyse the in situ expression of adhesion molecules in rheumatoid nodules. (2) To compare the endothelial expression of adhesion molecules in synovial tissue and subcutaneous nodules obtained from the same patients. (3) To compare the expression of adhesion molecules and activation markers on T cell lines from nodules and synovium.
METHODS—(1) Immunohistochemical analysis by APAAP technique of E selectin, CD44, ICAM-1, PECAM-1, and VCAM-1 was performed on 10 rheumatoid nodules from seven patients with rheumatoid arthritis (RA); nodules and synovium were simultaneously analysed from three patients. (2) T cell lines were generated from RA nodules (n=7) and synovium (n=7) by interleukin 2 expansion, and subsequently characterised by flow cytometry for surface expression of αEβ7, α4β7, CD44, L selectin, LFA-1a, PECAM-1, and CD30.
RESULTS—(1) In rheumatoid nodules, the palisading layer strongly stains for ICAM-1 and PECAM-1, but less pronounced for CD44. VCAM-1 staining was usually negative. ICAM-1 is upregulated in the vessels surrounding the central zone of fibrinoid necrosis. The immunohistological picture in different nodules derived from the same patient was similar. (2) The endothelial expression of adhesion molecules is comparable in RA nodules and synovium on an individual level, except for E selectin, which is overexpressed in nodule endothelium. (3) T cell lines from nodules and synovium display similar adhesion molecule profiles. However, the expression of CD30, a T cell activation marker linked with Th2 subsets, is higher in nodules compared with synovium.
CONCLUSION—These data support a recirculation hypothesis of T cells between articular and extra-articular manifestations in RA, although the activation state of the T cells in each of these localisations may differ.

 Keywords: T cells; adhesion molecules; rheumatoid nodules; rheumatoid synovium PMID:9797554

  3. Small molecules with antiviral activity against the Ebola virus.

    PubMed

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  4. Small molecules with antiviral activity against the Ebola virus

    PubMed Central

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  5. 78 FR 28801 - Foreign-Trade Zone 117-Orange, TX, Authorization of Production Activity, Signal International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... notice in the Federal Register inviting public comment (78 FR 4383, 1-22-2013). The FTZ Board has... Foreign-Trade Zones Board Foreign-Trade Zone 117--Orange, TX, Authorization of Production Activity, Signal International Texas GP, LLC (Shipbuilding), Orange, TX On January 10, 2013, the Foreign Trade Zone of...

  6. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Activities Far East Marine Inspection Zone. 3.70-20 Section 3.70-20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL COAST GUARD AREAS, DISTRICTS, SECTORS, MARINE INSPECTION ZONES, AND CAPTAIN OF THE PORT ZONES Fourteenth Coast Guard District...

  7. 78 FR 4383 - Foreign-Trade Zone 117-Orange, Texas; Notification of Proposed Production Activity; Signal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 117--Orange, Texas; Notification of Proposed Production Activity; Signal International Texas GP, LLC (Shipbuilding), Orange, TX The Foreign Trade Zone of Southeast Texas, Inc., grantee of FTZ 117, submitted...

  8. Distributed Anelastic Strain and its Relationship to Compliant Zones Surrounding Active Faults of the Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Shelef, E.; Oskin, M.; Fialko, Y.

    2006-12-01

    Geologic measurements of distributed anelastic strain (DAS) adjacent to active strike slip faults of the Mojave Desert portion of the Eastern California shear zone quantify the magnitude, mechanism, temporal evolution, and relationship of DAS to fault compliant zones imaged via InSAR. Prefaulting markers (mylonitic lineation, dikes, and faults assumed linear prior to dextral faulting) in crystalline rocks next to the Harper Lake fault and Calico fault indicate that DAS accounts for 6 to 23 percent of total displacement and that this displacement scales with fault slip. We conclude that DAS is a significant, active process that is not restricted to the initial fault propagation stage. We find that the width of the zone of DAS is 400-700 m on each side of the faults studied, irrespective of total fault slip. 60 percent of the displacement due to DAS occurs within 100 m of the Calico fault. A similar zone of more intense deformation occurs adjacent to the Harper Lake fault. These 100m- wide-zones are of the same extent but much less intensely deformed compared to the damage zones surrounding the San Andreas fault. Based on these relationships, we hypothesize that damage feedback progressively focuses DAS into a stable, approximately 100-m-wide-zone where its intensity can increase proportionally to fault slip. Disruption of linear markers supports that DAS in crystalline rocks occurs via slip along secondary faults and small-scale block rotation with block sizes decreasing with proximity to faults. The widths of the geologically documented zones of DAS in the Eastern California shear zone are similar to the approximately 1 km width of compliant zones modeled from InSAR observations of surface deformation due to stress changes caused by nearby earthquakes. This correlation suggests a relationship between damage- reduction of shear modulus and displacement via DAS. Paleomagnetic measurements of prefaulting and syntectonically emplaced volcanic rocks in sedimentary

  9. Persistently Active Microbial Molecules Prolong Innate Immune Tolerance In Vivo

    PubMed Central

    Lu, Mingfang; Varley, Alan W.; Munford, Robert S.

    2013-01-01

    Measures that bolster the resolution phase of infectious diseases may offer new opportunities for improving outcome. Here we show that inactivation of microbial lipopolysaccharides (LPS) can be required for animals to recover from the innate immune tolerance that follows exposure to Gram-negative bacteria. When wildtype mice are exposed to small parenteral doses of LPS or Gram-negative bacteria, their macrophages become reprogrammed (tolerant) for a few days before they resume normal function. Mice that are unable to inactivate LPS, in contrast, remain tolerant for several months; during this time they respond sluggishly to Gram-negative bacterial challenge, with high mortality. We show here that prolonged macrophage reprogramming is maintained in vivo by the persistence of stimulatory LPS molecules within the cells' in vivo environment, where naïve cells can acquire LPS via cell-cell contact or from the extracellular fluid. The findings provide strong evidence that inactivation of a stimulatory microbial molecule can be required for animals to regain immune homeostasis following parenteral exposure to bacteria. Measures that disable microbial molecules might enhance resolution of tissue inflammation and help restore innate defenses in individuals recovering from many different infectious diseases. PMID:23675296

  10. Thermally activated delayed fluorescence evidence in non-bonding transition electron donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Marghad, Ikbal; Clochard, M. C.; Ollier, N.; Wade, Travis L.; Aymes-Chodur, C.; Renaud, C.; Zissis, G.

    2015-09-01

    The exhibition of thermally activated delayed fluorescence on triazine derivative by the introduction of a nonbonding part is demonstrated. Two molecules containing triazine core as acceptor and carbazole part as donor has been synthesized and characterized. One of these molecules bears an additional nonbonding part by the means of a phenoxy group. The results indicated that the molecule bearing the nonbonding molecular part (phenoxy) exhibit thermally activated delayed fluorescence while not on molecule free of non-bonding group. The results are supported by, photoluminescence, spectral analysis time-resolved fluorescence and time-dependent density functional estimation

  11. DYNAMICS OF NASCENT AND ACTIVE ZONE ULTRASTRUCTURE AS SYNAPSES ENLARGE DURING LTP IN MATURE HIPPOCAMPUS

    PubMed Central

    Bell, Maria Elizabeth; Bourne, Jennifer N.; Chirillo, Michael A.; Mendenhall, John M.; Kuwajima, Masaaki; Harris, Kristen M.

    2014-01-01

    Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation and comparisons were made to control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo. Nascent zones were present at the edges of ~35% of synapses in perfusion-fixed hippocampus and as many as ~50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased without significant change in synapse area, suggesting that presynaptic vesicles were recruited to pre-existing nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed that glutamate receptors can be found in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170±5 nm in perfusion-fixed hippocampus to 251±4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that falloff in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP. PMID:25043676

  12. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation.

    PubMed

    Fonte, Eleonora; Agathangelidis, Andreas; Reverberi, Daniele; Ntoufa, Stavroula; Scarfò, Lydia; Ranghetti, Pamela; Cutrona, Giovanna; Tedeschi, Alessandra; Xochelli, Aliki; Caligaris-Cappio, Federico; Ponzoni, Maurilio; Belessi, Chrysoula; Davis, Zadie; Piris, Miguel A; Oscier, David; Ghia, Paolo; Stamatopoulos, Kostas; Muzio, Marta

    2015-11-01

    Recent studies on splenic marginal zone lymphoma identified distinct mutations in genes belonging to the B-cell receptor and Toll-like receptor signaling pathways, thus pointing to their potential implication in the biology of the disease. However, limited data is available regarding the exact role of TLRs. We aimed at characterizing the expression pattern of TLRs in splenic marginal zone lymphoma cells and their functional impact on the activation, proliferation and viability of malignant cells in vitro. Cells expressed significant levels of TLR1, TLR6, TLR7, TLR8, TLR9 and TLR10 mRNA; TLR2 and TLR4 showed a low, variable pattern of expression among patients whereas TLR3 and TLR5 mRNAs were undetectable; mRNA specific for TLR signaling molecules and adapters was also expressed. At the protein level, TLR1, TLR6, TLR7, TLR9 and TLR10 were detected. Stimulation of TLR1/2, TLR2/6 and TLR9 with their respective ligands triggered the activation of IRAK kinases, MAPK and NF-κB signaling pathways, and the induction of CD86 and CD25 activation molecules, although in a heterogeneous manner among different patient samples. TLR-induced activation and cell viability were also inhibited by a specific IRAK1/4 inhibitor, thus strongly supporting the specific role of TLR signaling in these processes. Furthermore, TLR2/6 and TLR9 stimulation also significantly increased cell proliferation. In conclusion, we demonstrate that splenic marginal zone lymphoma cells are equipped with functional TLR and signaling molecules and that the stimulation of TLR1/2, TLR2/6 and TLR9 may play a role in regulating disease pathobiology, likely promoting the expansion of the neoplastic clone. PMID:26294727

  13. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation

    PubMed Central

    Fonte, Eleonora; Agathangelidis, Andreas; Reverberi, Daniele; Ntoufa, Stavroula; Scarfò, Lydia; Ranghetti, Pamela; Cutrona, Giovanna; Tedeschi, Alessandra; Xochelli, Aliki; Caligaris-Cappio, Federico; Ponzoni, Maurilio; Belessi, Chrysoula; Davis, Zadie; Piris, Miguel A.; Oscier, David; Ghia, Paolo; Stamatopoulos, Kostas; Muzio, Marta

    2015-01-01

    Recent studies on splenic marginal zone lymphoma identified distinct mutations in genes belonging to the B-cell receptor and Toll-like receptor signaling pathways, thus pointing to their potential implication in the biology of the disease. However, limited data is available regarding the exact role of TLRs. We aimed at characterizing the expression pattern of TLRs in splenic marginal zone lymphoma cells and their functional impact on the activation, proliferation and viability of malignant cells in vitro. Cells expressed significant levels of TLR1, TLR6, TLR7, TLR8, TLR9 and TLR10 mRNA; TLR2 and TLR4 showed a low, variable pattern of expression among patients whereas TLR3 and TLR5 mRNAs were undetectable; mRNA specific for TLR signaling molecules and adapters was also expressed. At the protein level, TLR1, TLR6, TLR7, TLR9 and TLR10 were detected. Stimulation of TLR1/2, TLR2/6 and TLR9 with their respective ligands triggered the activation of IRAK kinases, MAPK and NF-κB signaling pathways, and the induction of CD86 and CD25 activation molecules, although in a heterogeneous manner among different patient samples. TLR-induced activation and cell viability were also inhibited by a specific IRAK1/4 inhibitor, thus strongly supporting the specific role of TLR signaling in these processes. Furthermore, TLR2/6 and TLR9 stimulation also significantly increased cell proliferation. In conclusion, we demonstrate that splenic marginal zone lymphoma cells are equipped with functional TLR and signaling molecules and that the stimulation of TLR1/2, TLR2/6 and TLR9 may play a role in regulating disease pathobiology, likely promoting the expansion of the neoplastic clone. PMID:26294727

  14. Structure and seismic activity of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Evain, M.; Galve, A.; Charvis, P.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Thales Scientific Party

    2011-12-01

    Several active and passive seismic experiments conducted in 2007 in the framework of the European program "Thales Was Right" and of the French ANR program "Subsismanti" provided a unique set of geophysical data highlighting the deep structure of the central part of the Lesser Antilles subduction zone, offshore Dominica and Martinique, and its seismic activity during a period of 8 months. The region is characterized by a relatively low rate of seismicity that is often attributed to the slow (2 cm/yr) subduction of the old, 90 My, Atlantic lithosphere beneath the Caribbean Plate. Based on tomographic inversion of wide-angle seismic data, the forearc can clearly be divided into an inner forearc, characterised by a high vertical velocity gradient in the igneous crust, and an outer forearc with lower crustal velocity gradient. The thick, high velocity, inner forearc is possibly the extension at depth of the Mesozoic Caribbean crust outcropping in La Désirade Island. The outer forearc, up to 70 km wide in the northern part of the study area, is getting narrower to the south and disappears offshore Martinique. Based on its seismic velocity structure with velocities higher than 6 km/s the backstop consists, at least partly, of magmatic rocks. The outer forearc is also highly deformed and faulted within the subducting trend of the Tiburon Ridge. With respect to the inner forearc velocity structure the outer forearc basement could either correspond to an accreted oceanic terrane or made of highly fractured rocks. The inner forearc is a dense, poorly deformable crustal block, tilted southward as a whole. It acts as a rigid buttress increasing the strain within both the overriding and subducting plates. This appears clearly in the current local seismicity affecting the subducting and the overriding plates that is located beneath the inner forearc. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. The main seismic activity is

  15. Contemporary approaches to studying and mapping of active water exchange zone of ground water

    NASA Astrophysics Data System (ADS)

    Moraru, C. Ye

    2016-03-01

    The article deals with a zone of ground water active exchange. New principles of the zone study and mapping under the platform hydrogeological condition are discussed. The assessment and distribution techniques are suggested for the active water exchange zone under the condition of hydrogeological parameterization uncertainty. The efficiency and significance of the suggested techniques are proved using the example of ground water in the southwest of Black Sea artesian basin.

  16. Naphthylnitrobutadienes as pharmacologically active molecules: evaluation of the in vivo antitumour activity.

    PubMed

    Petrillo, Giovanni; Fenoglio, Carla; Ognio, Emanuela; Aiello, Cinzia; Spinelli, Domenico; Mariggiò, Maria A; Maccagno, Massimo; Morganti, Stefano; Cordazzo, Cinzia; Viale, Maurizio

    2007-12-01

    On the basis of our previous interesting results in vitro on the antiproliferative activity of (1E,3E)-1,4-bis(1-naphthyl)-2,3-dinitro-1,3-butadiene (1-Naph-DNB) we have designed and synthesized the new molecule methyl (2Z,4E)-2-methylsulphanyl-5-(1-naphthyl)-4-nitro-2,4-pentadienoate (1-Naph-NMCB) characterized by the same naphthylnitrobutadiene array but with a different functional group at one end of the diene system. This new molecule showed an in vitro antiproliferative activity more significant than that found for the original 1-Naph-DNB. In order to verify in vivo our in vitro results we have tested the antitumour activity of 1-Naph-DNB and 1-Naph-NMCB in several murine tumour models, namely the myelomonocytic P388 and the Lewis lung carcinoma 3LL in BDF1 mice, the melanoma B16 in C57Bl mice, the fibrosarcoma WEHI 164 in nude mice and, finally, the C51 colon cancer in Balb/c mice. In the case of 1-Naph-NMCB the analysis of the antitumour activity has been preceded by toxicological experiments on CD-1 mice, in order to determine the lethal (LD) and the maximal tolerated (MTD) doses together with the spectrum of histological alterations caused by its iv administration. The results obtained show that the modification of the original structure of 1-Naph-DNB according to the molecular-simplification strategy has led to an asymmetric nitrobutadiene array, i.e. that of 1-Naph-NMCB, endowed with an antitumour activity which is in some cases even better than that showed by the parental compound itself, together with differences in tumour selectivity and negligible histological toxic effects.A promising, versatile route to new, more active and/or safe nitrobutadiene derivatives has thus been positively tested. PMID:17572851

  17. 77 FR 68103 - Foreign-Trade Zone 163-Ponce, PR; Notification of Proposed Production Activity; Zimmer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Foreign-Trade Zones Board Foreign-Trade Zone 163--Ponce, PR; Notification of Proposed Production Activity; Zimmer Manufacturing BV (Medical Devices); Ponce, PR CODEZOL, C.D., grantee of FTZ 163, submitted a notification of proposed production activity on behalf of Zimmer Manufacturing BV (Zimmer), located in...

  18. High quality, small molecule-activity datasets for kinase research.

    PubMed

    Sharma, Rajan; Schürer, Stephan C; Muskal, Steven M

    2016-01-01

    Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR) data. Bioactivity databases such as the Kinase Knowledgebase (KKB), WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note. PMID:27429748

  19. High quality, small molecule-activity datasets for kinase research

    PubMed Central

    Sharma, Rajan; Schürer, Stephan C.; Muskal, Steven M.

    2016-01-01

    Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR) data. Bioactivity databases such as the Kinase Knowledgebase (KKB), WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note. PMID:27429748

  20. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    PubMed

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483

  1. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones.

    PubMed

    Sarkar, Souvik; Siddiqui, Asim A; Saha, Shubhra J; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S; Nag, Shiladitya; Adhikari, Susanta; Bandyopadhyay, Uday

    2016-07-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. PMID:27139466

  2. Atmospheric Aerosols: Cloud Condensation Nucleus Activity of Selected Organic Molecules

    NASA Astrophysics Data System (ADS)

    Rosenorn, T.; Henning, S.; Hartz, K. H.; Kiss, G.; Pandis, S.; Bilde, M.

    2005-12-01

    Gas/particle partitioning of vapors in the atmosphere plays a major role in both climate through micro meteorology and in the physical and chemical processes of a single particle. This work has focused on the cloud droplet activation of a number of pure and mixed compounds. The means used to investigate these processes have been the University of Copenhagen cloud condensation nucleus counter setup and the Carnegie Mellon University CCNC setup. The importance of correct water activity modeling has been addressed and it has been pointed out that the molecular mass is an important parameter to consider when choosing model compounds for cloud activation models. It was shown that both traditional Kohler theory and Kohler theory modified to account for limited solubility reproduce measurements of soluble compounds well. For less soluble compounds it is necessary to use Kohler theory modified to account for limited solubility. It was also shown that this works for mixtures of compounds containing both inorganic salts and dicarboxylic acids. It has also been shown that particle phase and humidity history is important for activation behavior of particles consisting of two slightly soluble organic substances (succinic and adipic acid) and a soluble salt (NaCl). Model parameters for terpene oxidation product cloud activation have been derived. These are based on two sets of average parameters covering monoterpene oxidation products and sesquiterpene oxidation products. All parameters except the solubility were estimated and an effective solubility was calculated as the fitting parameter. The average solubility of the model compound found for mono terpene oxidation products is similar to those of sodium chloride and ammonium sulfate; however the higher molecular weight leads to a slightly higher activation diameter at fixed supersaturation. On a molar basis the monoterpene oxidation products show a 1.5 times higher effective solubility than the sesquiterpene oxidation products.

  3. Synthesis and Antimicrobial Activity of the Hybrid Molecules between Sulfonamides and Active Antimicrobial Pleuromutilin Derivative.

    PubMed

    Chen, Liangzhu; Yang, Dexue; Pan, Zhikun; Lai, Lihong; Liu, Jianhua; Fang, Binghu; Shi, Shuning

    2015-08-01

    A series of novel hybrid molecules between sulfonamides and active antimicrobial 14-o-(3-carboxy-phenylsulfide)-mutilin were synthesized, and their in vitro antibacterial activities were evaluated by the broth microdilution. Results indicated that these compounds displayed potent antimicrobial activities in vitro against various drug-susceptible and drug-resistant Gram-positive bacteria such as Staphylococci and streptococci, including methicillin-resistant Staphylococcus aureus, and mycoplasma. In particular, sulfapyridine analog (6c) exhibited more potent inhibitory activity against Gram-positive bacteria and mycoplasma, including Staphylococcus aureus (MIC = 0.016-0.063 μg/mL), methicillin-resistant Staphylococcus aureus (MIC = 0.016 μg/mL), Streptococcus pneumoniae (MIC = 0.032-0.063 μg/mL), Mycoplasma gallisepticum (MIC = 0.004 μg/mL), with respect to other synthesized compounds and reference drugs sulfonamide (MIC = 8-128 μg/mL) and valnemulin (MIC = 0.004-0.5 μg/mL). Furthermore, comparison between MIC values of pleuromutilin-sulfonamide hybrids 6a-f with pleuromutilin parent compound 3 revealed that these modifications at 14 position side chain of the pleuromutilin with benzene sulfonamide could greatly improve the antibacterial activity especially against Gram-positives. PMID:25431015

  4. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia

    PubMed Central

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  5. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia.

    PubMed

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  6. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone.

    PubMed

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ. PMID:26973506

  7. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone

    PubMed Central

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ. PMID:26973506

  8. Small Molecule Active Site Directed Tools for Studying Human Caspases.

    PubMed

    Poreba, Marcin; Szalek, Aleksandra; Kasperkiewicz, Paulina; Rut, Wioletta; Salvesen, Guy S; Drag, Marcin

    2015-11-25

    Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes. PMID:26551511

  9. Small-Molecule Inhibitors of SETD8 with Cellular Activity

    PubMed Central

    2015-01-01

    SETD8/SET8/Pr-SET7/KMT5A is the sole protein lysine methyltransferase (PKMT) known to monomethylate lysine 20 of histone H4 in vivo. SETD8’s methyltransferase activity has been implicated in many essential cellular processes including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. Developing SETD8 inhibitors with cellular activity is a key step toward elucidating the diverse roles of SETD8 via convenient pharmacological perturbation. From the hits of a prior high throughput screen (HTS), SPS8I1–3 (NSC663284, BVT948, and ryuvidine) were validated as potent SETD8 inhibitors. These compounds contain different structural motifs and inhibit SETD8 via distinct modes. More importantly, these compounds show cellular activity by suppressing the H4K20me1 mark of SETD8 and recapitulate characteristic S/G2/M-phase cell cycle defects as observed for RNAi-mediated SETD8 knockdown. The commonality of SPS8I1–3 against SETD8, together with their distinct structures and mechanisms for SETD8 inhibition, argues for the collective application of these compounds as SETD8 inhibitors. PMID:25137013

  10. N-substituted 2-isonicotinoylhydrazinecarboxamides--new antimycobacterial active molecules.

    PubMed

    Rychtarčíková, Zuzana; Krátký, Martin; Gazvoda, Martin; Komlóová, Markéta; Polanc, Slovenko; Kočevar, Marijan; Stolaříková, Jiřina; Vinšová, Jarmila

    2014-01-01

    This report presents a new modification of the isoniazid (INH) structure linked with different anilines via a carbonyl group obtained by two synthetic procedures and with N-substituted 5-(pyridine-4-yl)-1,3,4-oxadiazole-2-amines prepared by their cyclisation. All synthesised derivatives were characterised by IR, NMR, MS and elemental analyses and were evaluated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv, Mycobacterium avium 330/88, Mycobacterium kansasii 235/80 and one clinical isolated strain of M. kansasii 6509/96. 2-Isonicotinoyl-N-(4-octylphenyl)hydrazinecarboxamide displayed an in vitro efficacy comparable to that of INH for M. tuberculosis with minimum inhibitory concentrations (MICs) of 1-2 μM. Among the halogenated derivatives, the best anti-tuberculosis activity was found for 2-isonicotinoyl-N-(2,4,6-trichlorophenyl)hydrazinecarboxamide (MIC=4 μM). In silico modelling on the enoyl-acyl carrier protein reductase InhA confirmed that longer alkyl substituents are advantageous for the interactions and affinity to InhA. Most of the hydrazinecarboxamides, especially those derived from 4-alkylanilines, exhibited significant activity against INH-resistant nontuberculous mycobacteria. PMID:24686575

  11. Features of the electronic structure of the active center of an HbS molecule

    NASA Astrophysics Data System (ADS)

    Novoselov, D. Yu.; Korotin, Dm. M.; Anisimov, V. I.

    2016-01-01

    Features of the electronic structure of the nonprotein part of the mutant form of the human hemoglobin molecule, HbS, are studied along with the magnetic state of the iron ion that is the "nucleus" of the active center of the molecule. It is found that the mutant form of the HbS molecule differs from a normal hemoglobin molecule by the distortion of the local environment of the iron ion, which changes the energy level splitting by a crystal field. As a result of ab initio calculations, the magnetic transition in the iron atom from the high-spin state to the low-spin state upon the addition of molecular oxygen to hemoglobin molecule is reproduced. It is established for the first time that a change in the crystal and electronic structure of the active center as a result of a mutation can lead to a substantial change in the energy of the bond between the active center of the hemoglobin molecule and an oxygen molecule.

  12. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  13. Ozone: A Multifaceted Molecule with Unexpected Therapeutic Activity.

    PubMed

    Zanardi, I; Borrelli, E; Valacchi, G; Travagli, V; Bocci, V

    2016-01-01

    A comprehensive outline for understanding and recommending the therapeutic use of ozone in combination with established therapy in diseases characterized by a chronic oxidative stress is currently available. The view of the absolute ozone toxicity is incorrect, because it has been based either on lung or on studies performed in artificial environments that do not correspond to the real antioxidant capacity of body compartments. In fact, ozone exerts either a potent toxic activity or it can stimulate biological responses of vital importance, analogously to gases with prospective therapeutic value such as NO, CO, H2S, H2, as well as O2 itself. Such a crucial difference has increasingly become evident during the last decade. The purpose of this review is to explain the aspects still poorly understood, highlighting the divergent activity of ozone on the various biological districts. It will be clarified that such a dual effect does not depend only upon the final gas concentration, but also on the particular biological system where ozone acts. The real significance of ozone as adjuvant therapeutic treatment concerns severe chronic pathologies among which are cardiovascular diseases, chronic obstructive pulmonary diseases, multiple sclerosis, and the dry form of age-related macular degeneration. It is time for a full insertion of ozone therapy within pharmaceutical sciences, responding to all the requirements of quality, efficacy and safety, rather than as either an alternative or an esoteric approach. PMID:26687830

  14. Use of Small Fluorescent Molecules to Monitor Channel Activity

    NASA Astrophysics Data System (ADS)

    Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley

    2001-03-01

    The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.

  15. 15 CFR 400.49 - Monitoring and reviews of zone operations and activity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Monitoring and reviews of zone operations and activity. 400.49 Section 400.49 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) FOREIGN-TRADE ZONES BOARD, DEPARTMENT OF COMMERCE REGULATIONS OF...

  16. 15 CFR 400.49 - Monitoring and reviews of zone operations and activity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Monitoring and reviews of zone operations and activity. 400.49 Section 400.49 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) FOREIGN-TRADE ZONES BOARD, DEPARTMENT OF COMMERCE REGULATIONS OF...

  17. Development and Validation of a Model to Predict Aerosol Breathing Zone Concentrations During Common Outdoor Activities

    EPA Science Inventory

    Research has been conducted on aerosol emission rates during various activities as well as aerosol transport into the breathing zone under idealized conditions. However, there has been little effort to link the two into a model for predicting a person’s breathing zone concentrat...

  18. 78 FR 68026 - Foreign-Trade Zone (FTZ) 99-Wilmington, Delaware, Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 99--Wilmington, Delaware, Notification of Proposed Production Activity, Noramco, Inc., (Pharmaceutical Intermediate), Wilmington, Delaware The Delaware Economic Development Office, grantee of FTZ...

  19. 77 FR 36997 - Foreign-Trade Zone 7-Mayaguez, PR; Notification of Proposed Production Activity; Baxter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 7--Mayaguez, PR; Notification of Proposed Production Activity; Baxter Healthcare of Puerto Rico; (Pharmaceutical and Nutritional Intravenous Bags and Administration Sets); Aibonito and Jayuya, PR The...

  20. 77 FR 61381 - Foreign-Trade Zone 7-Mayaguez, Puerto Rico, Authorization of Production Activity, Baxter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... Foreign-Trade Zones Board Foreign-Trade Zone 7--Mayaguez, Puerto Rico, Authorization of Production Activity, Baxter Healthcare of Puerto Rico, (Pharmaceutical and Nutritional Intravenous Bags and Administration Sets); Aibonito and Jayuya, Puerto Rico The Puerto Rico Industrial Development Company, grantee...

  1. 77 FR 48127 - Foreign-Trade Zone 20-Suffolk, VA; Notification of Proposed Production Activity, Usui...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 20--Suffolk, VA; Notification of Proposed Production Activity, Usui International Corporation, (Diesel Engine Fuel Lines), Chesapeake, VA The Virginia Port Authority, grantee of FTZ 20, submitted a...

  2. 77 FR 55182 - Foreign-Trade Zone 45-Portland, OR, Authorization of Production Activity, Shimadzu USA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ...-52-2012, 77 FR 48127, 8/13/2012). The notification was processed in accordance with the regulations... (77 FR 28353, 5/14/2012). The FTZ Board has determined that no further review of the activity is... Foreign-Trade Zones Board Foreign-Trade Zone 45--Portland, OR, Authorization of Production...

  3. 77 FR 71167 - Foreign-Trade Zone 59-Lincoln, Nebraska, Authorization of Production Activity, Novartis Consumer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... inviting public comment (77 FR 50462, August 21, 2012). The FTZ Board has determined that no further review... Foreign-Trade Zones Board Foreign-Trade Zone 59--Lincoln, Nebraska, Authorization of Production Activity, Novartis Consumer Health, Inc. (Pharmaceutical and Related Preparations Production), Lincoln,...

  4. 78 FR 66330 - Foreign-Trade Zone 196-Fort Worth, Texas, Authorization of Production Activity, Flextronics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 196--Fort Worth, Texas, Authorization of Production Activity, Flextronics International USA, Inc. (Mobile Phone Assembly and Kitting), Fort Worth, Texas On June 14, 2013, Flextronics International USA,...

  5. 77 FR 74170 - Foreign-Trade Zone 84-Houston, TX; Notification of Proposed Production Activity; Mitsubishi...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 84--Houston, TX; Notification of Proposed Production Activity; Mitsubishi Caterpillar Forklift America Inc.; (Forklift Trucks); Houston, TX The Port of Houston Authority, grantee of FTZ 84, submitted...

  6. 77 FR 58354 - Foreign-Trade Zone 265-Conroe, TX; Notification of Proposed Production Activity, Bauer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 265--Conroe, TX; Notification of Proposed Production Activity, Bauer Manufacturing Inc. (Pile Drivers and Boring Machinery); Conroe, TX The City of Conroe, Texas, grantee of FTZ 265, submitted a notification...

  7. Key Role of Active-Site Water Molecules in Bacteriorhodopsin Proton-Transfer Reactions

    SciTech Connect

    Bondar, A.N.; Baudry, Jerome Y; Suhai, Sandor; Fischer, S.; Smith, Jeremy C

    2008-10-01

    The functional mechanism of the light-driven proton pump protein bacteriorhodopsin depends on the location of water molecules in the active site at various stages of the photocycle and on their roles in the proton-transfer steps. Here, free energy computations indicate that electrostatic interactions favor the presence of a cytoplasmic-side water molecule hydrogen bonding to the retinal Schiff base in the state preceding proton transfer from the retinal Schiff base to Asp85. However, the nonequilibrium nature of the pumping process means that the probability of occupancy of a water molecule in a given site depends both on the free energies of insertion of the water molecule in this and other sites during the preceding photocycle steps and on the kinetic accessibility of these sites on the time scale of the reaction steps. The presence of the cytoplasmic-side water molecule has a dramatic effect on the mechanism of proton transfer: the proton is channeled on the Thr89 side of the retinal, whereas the transfer on the Asp212 side is hindered. Reaction-path simulations and molecular dynamics simulations indicate that the presence of the cytoplasmic-side water molecule permits a low-energy bacteriorhodopsin conformer in which the water molecule bridges the twisted retinal Schiff base and the proton acceptor Asp85. From this low-energy conformer, proton transfer occurs via a concerted mechanism in which the water molecule participates as an intermediate proton carrier.

  8. Aryl-alkyl-lysines: Membrane-Active Small Molecules Active against Murine Model of Burn Infection.

    PubMed

    Ghosh, Chandradhish; Manjunath, Goutham B; Konai, Mohini M; Uppu, Divakara S S M; Paramanandham, Krishnamoorthy; Shome, Bibek R; Ravikumar, Raju; Haldar, Jayanta

    2016-02-12

    Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-β-lactamase-1 (blaNDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days. PMID:27624962

  9. Small Molecule Activation by Constrained Phosphorus Compounds: Insights from Theory.

    PubMed

    Pal, Amrita; Vanka, Kumar

    2016-01-19

    An exciting new development in main group chemistry has been the use of a constrained, "flat", phosphorus-based complex to mediate in reactions such as the dehydrogenation of ammonia borane (AB), and the activation of the N-H bond in primary amines. Its importance is based on the fact that it shows that main group compounds, when properly designed, can be as effective as transition metal complexes for doing significant chemical transformations. What the current computational study, employing density functional theory (DFT), reveals is that a common, general mechanism exists that accounts for the behavior of the flat phosphorus compound in the different reactions that have been experimentally reported to date. This mechanism, which involves the mediation by a base as a proton transfer agent, is simpler and energetically more favorable than the previous mechanisms that have been proposed for the same reactions in the literature. It is likely that the knowledge gained from the current work about the chemical behavior of this phosphorus compound can be utilized to design new constrained phosphorus-based compounds. PMID:26700074

  10. Earthquake mechanisms and active tectonics of the Hellenic subduction zone

    NASA Astrophysics Data System (ADS)

    Shaw, Beth; Jackson, James

    2010-05-01

    We use improved focal mechanisms and centroid depth estimates of earthquakes, combined with GPS velocities, to examine the tectonics of the Hellenic subduction zone, and in particular the processes occurring at both ends of the Hellenic Arc. Nubia-Aegean convergence is accommodated by shallowly dipping thrust-faulting along the subduction-zone interface, as well as by steeper splay faults in the overriding material. From a comparison of observed and expected seismic moment release over the last 100 yr, combined with existing knowledge of the longer-term documented historical record, we confirm earlier suggestions that most (80 per cent) of this convergence is accommodated aseismically, that is, that the subduction zone is uncoupled. This conclusion is robust, even allowing for rare very large earthquakes on splay faults, such as that of AD 365, and also allowing for the contribution of small earthquakes. The downgoing Nubian plate deforms by arc-parallel contraction at all depths, from 200 km seaward of Crete to at least 100 km within the subducting slab. Extensional (T) axes of earthquakes are aligned downdip within the descending slab suggesting that, even if the aseismic prolongation of the slab has reached the 670 km mantle discontinuity, it does not transmit stresses to shallower depths. Shallow thrust-faulting earthquakes on the subduction interface show a divergence of slip vectors round the arc, and GPS measurements show that this is accommodated mainly by E-W extension on normal faults in the overriding Aegean material. The eastern end of the subduction zone, south of Rhodes, displays distributed deformation in the overriding material, including a mixture of strike-slip and splay-thrust faulting, and probably involves rotations about a vertical axes. Here slip on the interface itself is by thrust faulting with slip vectors oblique to the arc but parallel to the overall Nubia-Aegean convergence: there is no evidence for slip-partitioning in the traditional

  11. [Differences of activations in visual and associative zones during figurative and verbal activity].

    PubMed

    Nagornova, Zh V; Shemiakina, N V

    2014-04-01

    The study considers correlates of figurative and verbal tasks performance during attention paid to visual stimuli. There are 34 subjects (20 female, mean age 21, 2.5 [SD]) took parts in the study. During subjects performance of the task, there was carried out EEG registration from 19 sites according to 10-20%. Performance of the figurative creative task in comparison with control non-creative task of the same modality was accompanied by activation of occipital and parietal zones of the cerebral cortex (decrease of EEG spectral power in alpha 1 (7.5-9.5 Hz) and alpha2 (10-12.5 Hz) frequency bands was observed) whereas performance of a verbal creative task in the similar test-control comparison was accompanied by decrease of activation in occipital zones (revealed through increase of EEG spectral in alphal and alpha2 frequency bands). As visual stimuli were shown during the whole time of the creative and control tasks fulfilment was made an assumption observed distinction can be connected with redistribution of attention focus at various types of creative activity (figurative or verbal). PMID:25272453

  12. FINAL REPORT. CONTROL OF BIOLOGICALLY ACTIVE DEGRADATION ZONES BY VERTICAL HETEROGENEITY: APPLICATIONS IN FRACTURED MEDIA

    EPA Science Inventory

    The key objective of this research was to determine the distribution of biologically active contaminant degradation zones in a fractured, subsurface medium with respect to vertical heterogeneities. Our expectation was that
    hydrogeological properties would determine the size, d...

  13. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function

    PubMed Central

    Muhammad, Karzan; Reddy-Alla, Suneel; Driller, Jan H; Schreiner, Dietmar; Rey, Ulises; Böhme, Mathias A.; Hollmann, Christina; Ramesh, Niraja; Depner, Harald; Lützkendorf, Janine; Matkovic, Tanja; Götz, Torsten; Bergeron, Dominique D.; Schmoranzer, Jan; Goettfert, Fabian; Holt, Mathew; Wahl, Markus C.; Hell, Stefan W.; Scheiffele, Peter; Walter, Alexander M.; Loll, Bernhard; Sigrist, Stephan J.

    2015-01-01

    Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis. PMID:26471740

  14. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function.

    PubMed

    Muhammad, Karzan; Reddy-Alla, Suneel; Driller, Jan H; Schreiner, Dietmar; Rey, Ulises; Böhme, Mathias A; Hollmann, Christina; Ramesh, Niraja; Depner, Harald; Lützkendorf, Janine; Matkovic, Tanja; Götz, Torsten; Bergeron, Dominique D; Schmoranzer, Jan; Goettfert, Fabian; Holt, Mathew; Wahl, Markus C; Hell, Stefan W; Scheiffele, Peter; Walter, Alexander M; Loll, Bernhard; Sigrist, Stephan J

    2015-01-01

    Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis. PMID:26471740

  15. Group Problem Solving as a Zone of Proximal Development activity

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2006-12-01

    Vygotsky described learning as a process, intertwined with development, which is strongly influenced by social interactions with others that are at differing developmental stages.i These interactions create a Zone of Proximal Development for each member of the interaction. Vygotsky’s notion of social constructivism is not only a theory of learning, but also of development. While teaching introductory physics in an interactive format, I have found manifestations of Vygotsky’s theory in my classroom. The source of evidence is a paired problem solution. A standard mechanics problem was solved by students in two classes as a homework assignment. Students handed in the homework and then solved the same problem in small groups. The solutions to both the group and individual problem were assessed by multiple reviewers. In many cases the group score was the same as the highest individual score in the group, but in some cases, the group score was higher than any individual score. For this poster, I will analyze the individual and group scores and focus on three groups solutions and video that provide evidence of learning through membership in a Zone of Proximal Development. Endnotes i L. Vygotsky -Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press. (1978).

  16. Implication of crystal water molecules in inhibitor binding at ALR2 active site.

    PubMed

    Hymavati; Kumar, Vivek; Sobhia, M Elizabeth

    2012-01-01

    Water molecules play a crucial role in mediating the interaction between a ligand and a macromolecule. The solvent environment around such biomolecule controls their structure and plays important role in protein-ligand interactions. An understanding of the nature and role of these water molecules in the active site of a protein could greatly increase the efficiency of rational drug design approaches. We have performed the comparative crystal structure analysis of aldose reductase to understand the role of crystal water in protein-ligand interaction. Molecular dynamics simulation has shown the versatile nature of water molecules in bridge H bonding during interaction. Occupancy and life time of water molecules depend on the type of cocrystallized ligand present in the structure. The information may be useful in rational approach to customize the ligand, and thereby longer occupancy and life time for bridge H-bonding. PMID:22649481

  17. Electro-optical parameters in excited states of some spectrally active molecules

    NASA Astrophysics Data System (ADS)

    Benchea, Andreea Celia; Closca, Valentina; Rusu, Cristina Marcela; Morosanu, Cezarina; Dorohoi, Dana Ortansa

    2014-08-01

    The spectral shifts measured in different solvents are expressed as functions of the solvent macroscopic parameters. The value of the correlation coefficient multiplying the functions of electric permittivity was determined by statistical means. The correlation coefficient depends on the electric dipole moment of the spectrally active molecules. The electro-optical parameters in the ground state of the solute molecules can be approximated by molecular modeling. The excited state parameters are usually estimated using the results obtained both by HyperChem Programme and solvatochromic study. The importance of this approximate method is that it offers information about of the excited state of solute molecule for which our measuring possibilities are very restrictive. The information about the excited electronic state is affected by the limits in which the theories of liquid solutions are developed. Our results refer to two molecules of vitamins from B class, namely B3 and B6.

  18. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    PubMed Central

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-01-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule. PMID:27026506

  19. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    NASA Astrophysics Data System (ADS)

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-03-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  20. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex.

    PubMed

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K; Yamashita, Masahiro

    2016-01-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule. PMID:27026506

  1. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain.

    PubMed

    Kim, Duk-Joong; Choi, Chang-Ki; Lee, Chan-Soo; Park, Mee-Hee; Tian, Xizhe; Kim, Nam Doo; Lee, Kee-In; Choi, Joong-Kwon; Ahn, Jin Hee; Shin, Eun-Young; Shin, Injae; Kim, Eung-Gook

    2016-01-01

    p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors. PMID:27126178

  2. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain

    PubMed Central

    Kim, Duk-Joong; Choi, Chang-Ki; Lee, Chan-Soo; Park, Mee-Hee; Tian, Xizhe; Kim, Nam Doo; Lee, Kee-In; Choi, Joong-Kwon; Ahn, Jin Hee; Shin, Eun-Young; Shin, Injae; Kim, Eung-Gook

    2016-01-01

    p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors. PMID:27126178

  3. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  4. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics.

    PubMed

    Robles, Eloy F; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M; Prosper, Felipe; Oscier, David G; Carrasco, Yolanda R; Dyer, Martin J S; Martinez-Climent, Jose A

    2016-01-01

    NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662

  5. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

    PubMed Central

    Robles, Eloy F.; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V.; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M.; Prosper, Felipe; Oscier, David G.; Carrasco, Yolanda R.; Dyer, Martin J. S.; Martinez-Climent, Jose A.

    2016-01-01

    NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662

  6. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy.

    PubMed

    Guo, Qing; He, Yufan; Lu, H Peter

    2015-11-10

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure-function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2-amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme-substrate interactions, enzyme-substrate active complex formation, and protein folding-binding interactions. PMID:26512103

  7. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    PubMed Central

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  8. Information entropy of activation process: Application for low-temperature fluctuations of a myoglobin molecule

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.

    2015-11-01

    Activation process for unimolecular reaction has been considered by means of radiation theory. The formulae of information entropy of activation have been derived for the Boltzmann-Arrhenius model and the activation process model (APM). The physical meaning of this entropy has been determined. It is a measure of conversion of thermal radiation energy to mechanical energy that moves atoms in a molecule during elementary activation act. It is also a measure of uncertainty of this energy conversion. The uncertainty is due to unevenness of distribution function representing the activation process. It has been shown that Arrhenius dependence is caused by the entropy change. Efficiency comparison of the two models under consideration for low-temperature fluctuations of a myoglobin molecule structure shows that the APM should be favored over the Boltzmann-Arrhenius one.

  9. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). PMID:27100009

  10. Dense small molecule labeling enables activator-dependent STORM by proximity mapping.

    PubMed

    Chen, Ye; Gu, Min; Gunning, Peter W; Russell, Sarah M

    2016-09-01

    Stochastic optical reconstruction microscopy (STORM) enables high-resolution imaging, but multi-channel 3D imaging is problematic because of chromatic aberrations and alignment errors. The use of activator-dependent STORM in which spectrally distinct activators can be coupled with a single reporter can circumvent such issues. However, the standard approach of linking activators and reporters to a single antibody molecule is hampered by low labeling density and the large size of the antibody. We proposed that small molecule labels might enable activator-dependent STORM if the reporter or activator were linked to separate small molecules that bound within 3.5 nm of each other. This would greatly increase the labeling density and therefore improve resolution. We tested various mixtures of phalloidin- or mCling-conjugated fluorophore to demonstrate this feasibility. The specific activation was dependent on the choice of activator, its density, a matching activating laser and its power. In addition to providing an effective means of multi-channel 3D STORM imaging, this method also provides information about the local proximity between labels, potentially enabling super-resolved mapping of the conformation of the labeled structures. PMID:27246003

  11. The Root Apex of Arabidopsis thaliana Consists of Four Distinct Zones of Growth Activities

    PubMed Central

    De Cnodder, Tinne; Le, Jie

    2006-01-01

    In the growing apex of Arabidopsis thaliana primary roots, cells proceed through four distinct phases of cellular activities. These zones and their boundaries can be well defined based on their characteristic cellular activities. The meristematic zone comprises, and is limited to, all cells that undergo mitotic divisions. Detailed in vivo analysis of transgenic lines reveals that, in the Columbia-0 ecotype, the meristem stretches up to 200 µm away from the junction between root and root cap (RCJ). In the transition zone, 200 to about 520 µm away from the RCJ, cells undergo physiological changes as they prepare for their fast elongation. Upon entering the transition zone, they progressively develop a central vacuole, polarize the cytoskeleton and remodel their cell walls. Cells grow slowly during this transition: it takes ten hours to triplicate cell length from 8.5 to about 35 µm in the trichoblast cell files. In the fast elongation zone, which covers the zone from 520 to about 850 µm from the RCJ, cell length quadruplicates to about 140 µm in only two hours. This is accompanied by drastic and specific cell wall alterations. Finally, root hairs fully develop in the growth terminating zone, where root cells undergo a minor elongation to reach their mature lengths. PMID:19517000

  12. 78 FR 75331 - Foreign-Trade Zone (FTZ) 100-Dayton, Ohio; Notification of Proposed Production Activity; THOR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 100--Dayton, Ohio; Notification of Proposed Production Activity; THOR Industries, Inc. (Commercial Bus Manufacturing); Jackson Center, Ohio The Greater Dayton Foreign-Trade Zone, Inc., grantee of FTZ 100, submitted a notification of proposed production activity...

  13. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  14. Machine learning models identify molecules active against the Ebola virus in vitro

    PubMed Central

    Ekins, Sean; Freundlich, Joel S.; Clark, Alex M.; Anantpadma, Manu; Davey, Robert A.; Madrid, Peter

    2016-01-01

    The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC 50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro. PMID:26834994

  15. Machine learning models identify molecules active against the Ebola virus in vitro.

    PubMed

    Ekins, Sean; Freundlich, Joel S; Clark, Alex M; Anantpadma, Manu; Davey, Robert A; Madrid, Peter

    2015-01-01

    The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC 50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro. PMID:26834994

  16. Lessons from isolable nickel(I) precursor complexes for small molecule activation.

    PubMed

    Yao, Shenglai; Driess, Matthias

    2012-02-21

    Small-molecule activation by transition metals is essential to numerous organic transformations, both biological and industrial. Creating useful metal-mediated activation systems often depends on stabilizing the metal with uncommon low oxidation states and low coordination numbers. This provides a redox-active metal center with vacant coordination sites well suited for interacting with small molecules. Monovalent nickel species, with their d(9) electronic configuration, are moderately strong one-electron reducing agents that are synthetically attractive if they can be isolated. They represent suitable reagents for closing the knowledge gap in nickel-mediated activation of small molecules. Recently, the first strikingly stable dinuclear β-diketiminate nickel(I) precursor complexes were synthesized, proving to be suitable promoters for small-molecule binding and activation. They have led to many unprecedented nickel complexes bearing activated small molecules in different reduction stages. In this Account, we describe selected achievements in the activation of nitrous oxide (N(2)O), O(2), the heavier chalcogens (S, Se, and Te), and white phosphorus (P(4)) through this β-diketiminatonickel(I) precursor species. We emphasize the reductive activation of O(2), owing to its promise in oxidation processes. The one-electron-reduced O(2) activation product, that is, the corresponding β-diketiminato-supported Ni-O(2) complex, is a genuine superoxonickel(II) complex, representing an important intermediate in the early stages of O(2) activation. It selectively acts as an oxygen-atom transfer agent, hydrogen-atom scavenger, or both towards exogenous organic substrates to yield oxidation products. The one-electron reduction of the superoxonickel(II) moiety was examined by using elemental potassium, β-diketiminatozinc(II) chloride, and β-diketiminatoiron(I) complexes, affording the first heterobimetallic complexes featuring a [NiO(2)M] subunit (M is K, Zn, or Fe). Through

  17. Small Molecule Activators of the Heat Shock Response: Chemical Properties, Molecular Targets, and Therapeutic Promise

    PubMed Central

    West, James D.; Wang, Yanyu; Morano, Kevin A.

    2012-01-01

    All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases. PMID:22799889

  18. Triplet supercurrent due to spin-active zones in a Josephson junction

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Sudbø, Asle

    2010-07-01

    Motivated by a recent experiment evidencing triplet superconductivity in a ferromagnetic Josephson junction with a Cu2MnAl -Heusler barrier, we construct a theoretical model accounting for this observation. The key ingredients in our model which generate the triplet supercurrent are spin-active zones, characterized by an effective canted interface magnetic moment. Using a numerical solution of the quasiclassical equations of superconductivity with spin-active boundary conditions, we find qualitatively very good agreement with the experimentally observed supercurrent. Further experimental implications of the spin-active zones are discussed.

  19. Spin state transition in the active center of the hemoglobin molecule: DFT + DMFT study

    NASA Astrophysics Data System (ADS)

    Novoselov, D.; Korotin, Dm. M.; Anisimov, V. I.

    2016-05-01

    An ab initio study of electronic and spin configurations of the iron ion in the active center of the human hemoglobin molecule is presented. With a combination of the Density Functional Theory (DFT) method and the Dynamical Mean Field Theory (DMFT) approach, the spin state transition description in the iron ion during the oxidation process is significantly improved in comparison with previous attempts. It was found that the origin of the iron ion local moment behavior both for the high-spin and for the low-spin states in the hemoglobin molecule is caused by the presence of a mixture of several atomic states with comparable statistical probability.

  20. An RNA molecule copurifies with RNase P activity from Xenopus laevis oocytes.

    PubMed Central

    Doria, M; Carrara, G; Calandra, P; Tocchini-Valentini, G P

    1991-01-01

    Utilizing a procedure for the purification of RNase P from Xenopus laevis germinal vesicle (GV) extracts, according to which the contamination by a large, cytoplasmic, cylindrical structure (1) is avoided, we demonstrate that the X.laevis enzyme, like the HeLa RNase P, is precipitated by anti-Th antibodies and an RNA molecule (XL RNA), 320 nucleotides long, copurifies with the activity. The sequence of XL RNA is 60% homologous to HeLa H1 RNA, therefore the two molecules seem related. Images PMID:1710353

  1. Calcium-channel number critically influences synaptic strength and plasticity at the active zone

    PubMed Central

    Sheng, Jiansong; He, Liming; Zheng, Hongwei; Xue, Lei; Luo, Fujun; Shin, Wonchul; Sun, Tao; Kuner, Thomas; Yue, David T; Wu, Ling-Gang

    2016-01-01

    How synaptic-vesicle release is controlled at the basic release structure, the active zone, is poorly understood. By performing cell-attached current and capacitance recordings predominantly at single active zones in rat calyces, we found that single active zones contained 5-218 (mean, 42) calcium channels and 1–10 (mean, 5) readily releasable vesicles (RRVs) and released 0–5 vesicles during a 2-ms depolarization. Large variation in the number of calcium channels caused wide variation in release strength (measured during a 2-ms depolarization) by regulating the RRV release probability (PRRV) and the RRV number. Consequently, an action potential opened ~1–35 (mean, ~7) channels, resulting in different release probabilities at different active zones. As the number of calcium-channels determined PRRV, it critically influenced whether subsequent release would be facilitated or depressed. Regulating calcium channel density at active zones may thus be a major mechanism to yield synapses with different release properties and plasticity. These findings may explain large differences reported at synapses regarding release strength (release of 0, 1 or multiple vesicles), PRRV, short-term plasticity, calcium transients and the requisite calcium-channel number for triggering release. PMID:22683682

  2. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    NASA Astrophysics Data System (ADS)

    Morrow, C.; Lockner, D. A.; Hickman, S.

    2015-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drill hole near Parkfield, California, crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m wide fault damage zone of sandstones, siltstones, and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 Ω-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were 1 to 2 orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  3. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    SciTech Connect

    Lichtenberger, D.L.

    1992-01-01

    Purpose of this research program is to obtain experimental information on the different fundamental ways metals bond and activate organic molecules. Our approach has been to directly probe the electronic interactions between metals and molecules through a wide variety of ionization spectroscopies and other techniques, and to investigate the relationships with bonding modes, structures, and chemical behavior. During this period, we have (1) characterized the electronic features of diphosphines and monophosphines in their coordination to metals, (2) carried out theoretical and experimental investigations of the bonding capabilities of C[sub 60] to transition metals, (3) developed techniques for the imaging of single molecules on gold substrates that emphasizes the electronic backbonding from the metal to the molecule, (4) obtained the high resolution photoelectron spectrum of pure C[sub 70] in the gas phase, (5) compared the bonding of [eta][sup 3]- acetylide ligands to the bonding of other small organic molecules with metals, and (6) reported the photoelectron spectra and bonding of [eta][sup 3]-cyclopropenyl groups to metals.

  4. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING

    SciTech Connect

    LICHTENBERGER, DENNIS L.

    2002-03-26

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  5. Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis

    PubMed Central

    Shen, Yiguo; Ge, Woo-Ping; Li, Yulong; Hirano, Arisa; Lee, Hsien-Yang; Rohlmann, Astrid; Missler, Markus; Tsien, Richard W.; Jan, Lily Yeh; Fu, Ying-Hui; Ptáček, Louis J.

    2015-01-01

    Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder precipitated by coffee, alcohol, and stress. We previously identified the causative gene but the function of the encoded protein remains unknown. We also generated a PNKD mouse model that revealed dysregulated dopamine signaling in vivo. Here, we show that PNKD interacts with synaptic active zone proteins Rab3-interacting molecule (RIM)1 and RIM2, localizes to synapses, and modulates neurotransmitter release. Overexpressed PNKD protein suppresses release, and mutant PNKD protein is less effective than wild-type at inhibiting exocytosis. In PNKD KO mice, RIM1/2 protein levels are reduced and synaptic strength is impaired. Thus, PNKD is a novel synaptic protein with a regulatory role in neurotransmitter release. PMID:25730884

  6. Structural and Lithologic Characteristics of the Wenchuan Earthquake Fault Zone and its Relationship with Seismic Activity

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Pei, J.; Li, T.; Huang, Y.; Zhao, Z.

    2010-12-01

    the older earthquake, but rather along the edge of the gouge. According to the gouge statistics of the whole fault zone, seismic events have the obvious tendency towards the foot wall, and the thickness of gouge is proportional to the activity of the fault, indicating that the width of fault zone is directly related to the number and evolution history of earthquakes . Repeated earthquakes maybe the main cause for the formation of the Longmenshan Moutains

  7. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    PubMed

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith

    2016-07-01

    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate. PMID:27107386

  8. Optoporation of impermeable molecules and genes for visualization and activation of cells

    NASA Astrophysics Data System (ADS)

    Dhakal, Kamal; Batbyal, Subrata; Kim, Young-Tae; Mohanty, Samarendra

    2015-03-01

    Visualization, activation, and detection of the cell(s) and their electrical activity require delivery of exogenous impermeable molecules and targeted expression of genes encoding labeling proteins, ion-channels and voltage indicators. While genes can be delivered by viral vector to cells, delivery of other impermeable molecules into the cytoplasm of targeted cells requires microinjection by mechanical needle or microelectrodes, which pose significant challenge to the viability of the cells. Further, it will be useful to localize the expression of the targeted molecules not only in specific cell types, but to specific cells in restricted spatial regions. Here, we report use of focused near-infrared (NIR) femtosecond laser beam to transiently perforate targeted cell membrane to insert genes encoding blue light activatable channelrhodopsin-2 (ChR2) and red-shifted opsin (ReachR). Optoporation of nanomolar concentrations of rhodamine phalloidin (an impermeable dye molecule for staining filamentous actin) into targeted living mammalian cells (both HEK and primary cortical neurons) is also achieved allowing imaging of dynamics and intact morphology of cellular structures without requiring fixation.

  9. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  10. Single molecule investigation of the onset and minimum size of the calcium-mediated junction zone in alginate.

    PubMed

    Bowman, Kate A; Aarstad, Olav Andreas; Nakamura, Marcela; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Round, Andrew N

    2016-09-01

    One of the principal roles of alginate, both natively and in commercial applications, is gelation via Ca(2+)-mediated crosslinks between blocks of guluronic acid. In this work, single molecule measurements were carried out between well-characterised series of nearly monodisperse guluronic acid blocks ('oligoGs') using dynamic force spectroscopy. The measurements provide evidence that for interaction times on the order of tens of milliseconds the maximum crosslink strength is achieved by pairs of oligoGs long enough to allow the coordination of 4Ca(2+) ions, with both shorter and longer oligomers forming weaker links. Extending the interaction time from tens to hundreds of milliseconds allows longer oligoGs to achieve much stronger crosslinks but does not change the strength of individual links between shorter oligoGs. These results are considered in light of extant models for the onset of cooperative crosslinking in polyelectrolytes and an anisotropic distribution of oligoGs on interacting surfaces and provide a timescale for the formation and relaxation of alginate gels at the single crosslink level. PMID:27185115

  11. Force Spectroscopy of Substrate Molecules En Route to the Proteasome's Active Sites

    PubMed Central

    Classen, Mirjam; Breuer, Sarah; Baumeister, Wolfgang; Guckenberger, Reinhard; Witt, Susanne

    2011-01-01

    We used an atomic force microscope to study the mechanism underlying the translocation of substrate molecules inside the proteasome. Our specific experimental setup allowed us to measure interaction forces between the 20S proteasome and its substrates. The substrate (β-casein) was covalently bound either via a thiol-Au bond or by a PEG-based binding procedure to the atomic force microscope cantilever tip and offered as bait to proteasomes from Methanosarcina mazei. The proteasomes were immobilized densely in an upright orientation on mica, which made their upper pores accessible for substrates to enter. Besides performing conventional single-molecule force spectroscopy experiments, we developed a three-step procedure that allows the detection of specific proteasome-substrate single-molecule events without tip-sample contact. Using the active 20S wild type and an inactive active-site mutant, as well as two casein mutants bound with opposite termini to the microscope tip, we detected no directional preference of the proteasome-substrate interactions. By comparing the distribution of the measured forces for the proteasome-substrate interactions, were observed that a significant proportion of interaction events occurred at higher forces for the active versus the inactive proteasome. These forces can be attributed to the translocation of substrate en route to the active sites that are harbored deep inside the proteasome. PMID:21244845

  12. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity

    PubMed Central

    Horn, Abigail E.; Kugel, Jennifer F.; Goodrich, James A.

    2016-01-01

    Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity. PMID:27112574

  13. Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme

    PubMed Central

    Çakir, Bilal; Dağliyan, Onur; Dağyildiz, Ezgi; Bariş, İbrahim; Kavakli, Ibrahim Halil; Kizilel, Seda; Türkay, Metin

    2012-01-01

    Background Insulin-degrading enzyme (IDE) is an allosteric Zn+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. Methodology/Principal Findings In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. Conclusion/Significance This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible. PMID:22355395

  14. 78 FR 51707 - Foreign-Trade Zone 59-Lincoln, Nebraska; Authorization of Production Activity; CNH America, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... FTZ Board (15 CFR part 400), including notice in the Federal Register inviting public comment (78 FR... Foreign-Trade Zones Board Foreign-Trade Zone 59--Lincoln, Nebraska; Authorization of Production Activity..., 2013, the Lincoln-Foreign Trade Zone, Inc., grantee of FTZ 59, submitted a notification of...

  15. 77 FR 28569 - Foreign-Trade Zone 92-Gulfport, MS Notification of Proposed Production Activity; Gulf Ship, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 92--Gulfport, MS Notification of Proposed Production Activity; Gulf Ship, LLC, (Shipbuilding), Gulfport, MS The Mississippi Coast Foreign-Trade Zone, Inc., grantee...

  16. 77 FR 59890 - Foreign-Trade Zone 92-Gulfport, MS; Authorization of Production Activity; Gulf Ship, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... notice in the Federal Register inviting public comment (77 FR 28569, 5-15-2012). The FTZ Board has... Foreign-Trade Zones Board Foreign-Trade Zone 92--Gulfport, MS; Authorization of Production Activity; Gulf Ship, LLC (Shipbuilding); Gulfport, MS On May 10, 2012, the Mississippi Coast Foreign-Trade Zone,...

  17. 77 FR 75972 - Foreign-Trade Zone 26 - Atlanta, Georgia Notification of Proposed Production Activity Suzuki Mfg...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 26 -- Atlanta, Georgia Notification of Proposed Production Activity Suzuki Mfg. of America Corp. (All-Terrain Vehicles) Rome, Jonesboro and Cartersville, Georgia Georgia Foreign-Trade Zone, Inc., grantee of...

  18. Nanoscale charge transport in cytochrome c3/DNA network: Comparative studies between redox-active molecules

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Harumasa; Che, Dock-Chil; Hirano, Yoshiaki; Suzuki, Masayuki; Higuchi, Yoshiki; Matsumoto, Takuya

    2015-09-01

    The redox-active molecule of a cytochrome c3/DNA network exhibits nonlinear current-voltage (I-V) characteristics with a threshold bias voltage at low temperature and zero-bias conductance at room temperature. I-V curves for the cytochrome c3/DNA network are well matched with the Coulomb blockade network model. Comparative studies of the Mn12 cluster, cytochrome c, and cytochrome c3, which have a wide variety of redox potentials, indicate no difference in charge transport, which suggests that the conduction mechanism is not directly related to the redox states. The charge transport mechanism has been discussed in terms of the newly-formed electronic energy states near the Fermi level, induced by the ionic interaction between redox-active molecules with the DNA network.

  19. Investigations of electron helicity in optically active molecules using polarized beams of electrons and positrons

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.

    1981-01-01

    A positronium-formation experiment with a high sensitivity to a possible relation between the helicity of beta particles emitted in nuclear beta decay and the optical asymmetry of biological molecules is presented. The experiment is based on a mechanism in which the electrons in optically active molecules possess a helicity of less than 0.001, too weak to detect in radiolysis experiments, the sign of which depends on the chirality of the isomer. A helicity-dependent asymmetry is sought in the formation of the triplet ground state of positronium when a low-energy beam of polarized positrons of reversible helicity interacts with an optically active substance coating a channel electron multiplier. Asymmetries between positronium decays observed at positive and negative helicities for the same substance can thus be determined with a sensitivity of 0.0001, which represents a factor of 100 improvement over previous positronium experiments.

  20. Tsunamigenic potential of Mediterranean fault systems and active subduction zones

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Babeyko, Andrey

    2016-04-01

    Since the North East Atlantic and Mediterranean Tsunami Warning System (NEAMTWS) is under development by the European scientific community, it becomes necessary to define guidelines for the characterization of the numerous parameters must be taken into account in a fair assessment of the risk. Definition of possible tectonic sources and evaluation of their potential is one of the principal issues. In this study we systematically evaluate tsunamigenic potential of up-to-now known real fault systems and active subduction interfaces in the NEAMTWS region. The task is accomplished by means of numerical modeling of tsunami generation and propagation. We have simulated all possible uniform-slip ruptures populating fault and subduction interfaces with magnitudes ranging from 6.5 up to expected Mmax. A total of 15810 individual ruptures were processed. For each rupture, a tsunami propagation scenario was computed in linear shallow-water approximation on 1-arc minute bathymetric grid (Gebco_08) implying normal reflection boundary conditions. Maximum wave heights at coastal positions (totally - 23236 points of interest) were recorded for four hours of simulation and then classified according to currently adopted warning level thresholds. The resulting dataset allowed us to classify the sources in terms of their tsunamigenic potential as well as to estimate their minimum tsunamigenic magnitude. Our analysis shows that almost every source in the Mediterranean Sea is capable to produce local tsunami at the advisory level (i.e., wave height > 20 cm) starting from magnitude values of Mw=6.6. In respect to the watch level (wave height > 50 cm), the picture is less homogeneous: crustal sources in south-west Mediterranean as well as East-Hellenic arc need larger magnitudes (around Mw=7.0) to trigger watch levels even at the nearby coasts. In the context of the regional warning (i.e., source-to-coast distance > 100 km) faults also behave more heterogeneously in respect to the minimum

  1. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser

    PubMed Central

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc’h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3–57.3) of CECs with low mortality (0.5%, range (0.55–1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for

  2. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser.

    PubMed

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc'h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3-57.3) of CECs with low mortality (0.5%, range (0.55-1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for future

  3. Anticancer molecule AS1411 exhibits low nanomolar antiviral activity against HIV-1.

    PubMed

    Métifiot, Mathieu; Amrane, Samir; Mergny, Jean-Louis; Andreola, Marie-Line

    2015-11-01

    During clinical trials, a number of fully characterized molecules are dropped along the way because they do not provide enough benefit for the patient. Some of them show limited side effects and might be of great use for other applications. AS1411 is a nucleolin-targeting aptamer that underwent phase II clinical trials as anticancer agent. Here, we show that AS1411 exhibits extremely potent antiviral activity and is therefore an attractive new lead as anti-HIV agent. PMID:26363100

  4. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  5. Smart magnetic poly(N-isopropylacrylamide) to control the release of bio-active molecules.

    PubMed

    Dionigi, Chiara; Lungaro, Lisa; Goranov, Vitaly; Riminucci, Alberto; Piñeiro-Redondo, Yolanda; Bañobre-López, Manuel; Rivas, José; Dediu, Valentin

    2014-10-01

    Thermo switchable magnetic hydrogels undoubtedly have a great potential for medical applications since they can behave as smart carriers able to transport bioactive molecules to a chosen part of the body and release them on demand via magneto-thermal activation. We report on the ability to modify the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM) on demand from 32 °C to LCST ≥ 37 °C. This was achieved by the absorption of controlled amounts of magnetite nanoparticles on the polymer chains. We show, through the effect on cell viability, that the resulting magnetic PNIPAM is able to trap and to release bio-active molecules, such as cell growth factors. The activities of the released bio molecule are tested on human umbilical vein endothelial cells culture. We demonstrate that the LCST of the magnetic PNIPAM can be reached remotely via inductive heating with an alternating magnetic field. This approach on magnetic PNIPAM clearly supports appealing applications in safe biomedicine. PMID:24477874

  6. Supported gold catalysis: from small molecule activation to green chemical synthesis.

    PubMed

    Liu, Xiang; He, Lin; Liu, Yong-Mei; Cao, Yong

    2014-03-18

    With diminishing natural resources, there is an ever-increasing demand for cost-effective and sustainable production of fine and commodity chemicals. For this purpose, there is a need for new catalytic methods that can permit efficient and targeted conversion of fossil and biorenewable feedstocks with lower energy requirements and environmental impact. A significant number of industrial catalytic processes are performed by platinum-group-metal (PGM)-based heterogeneous catalysts capable of activating a range of important small molecules, such as CO, O2, H2, and N2. In contrast, there is a general feeling that gold (Au) cannot act as an efficient catalyst because of its inability to activate most molecules, which is essential to any catalytic processes. As a consequence, researchers have long neglected the potential for use of gold as a catalyst. In recent years, however, chemists have put forth tremendous effort and progress in the use of supported gold catalysts to facilitate a variety of useful synthetic transformations. The seminal discovery by Haruta in 1987 that suitably prepared Au-based catalysts were surprisingly active for CO oxidation even at 200 K initiated rapid development of the field. Since then, researchers have widely employed Au-based catalysts in many types of mild chemical processes, with special focus on selective reactions involving small molecules (for example, CO, H2O, O2, or H2) as a reactant. That gold in the form of tiny nanoparticles (NPs, generally less than 5 nm in diameter) can subtly activate the reactant molecules under mild conditions has been evoked to explain the superior effectiveness of gold compared with conventional PGMs. In this context, Au-based catalysts are gaining great significance in developing new green processes with improved selectivity and energy minimization. In this Account, we describe our efforts toward the development of a range of green and selective processes largely through the appropriate choice of Au

  7. Amplitude analysis of active source seismic data from the grounding zone of Whillans Ice Stream

    NASA Astrophysics Data System (ADS)

    Horgan, Huw; Anandakrishnan, Sridhar; Alley, Richard; Christianson, Knut

    2015-04-01

    Amplitude analysis of active source seismic data is often used to estimate acoustic properties and thereby infer the lithology of the substrate beneath glaciers and ice streams. The substrate beneath the ice streams of West Antarctica is of particular interest as here subglacial sediment deformation results in the rapid flow of the overriding ice. At the grounding zone, where the grounded ice sheet transitions to the floating ice shelf, this substrate is thought to stiffen due to tidal compaction resulting in a zone of higher basal shear stress which is manifest in the buckling of the internal layering in the overriding ice. Here we investigate these processes by estimating subglacial properties using active source seismic data acquired across the grounding zone of Whillans Ice Stream. Perhaps uniquely, we are able to test our methodology due to the survey crossing from an ice overlying sediment interface into a known ice overlying water interface. Our analysis indicates that lithological variations within the grounding zone are below the resolution of our methodology with the exception of a body of water trapped by a hydropotential reversal upstream of the grounding zone.

  8. Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR.

    PubMed

    Lamichhane, Rajan; Liu, Jeffrey J; Pljevaljcic, Goran; White, Kate L; van der Schans, Edwin; Katritch, Vsevolod; Stevens, Raymond C; Wüthrich, Kurt; Millar, David P

    2015-11-17

    Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic receptor surface. Knowledge of this process provides a platform for the development of GPCR-targeting drugs. Here, using a site-specific Cy3 fluorescence probe in the human β2-adrenergic receptor (β2AR), we observed that individual receptor molecules in the native-like environment of phospholipid nanodiscs undergo spontaneous transitions between two distinct conformational states. These states are assigned to inactive and active-like receptor conformations. Individual receptor molecules in the apo form repeatedly sample both conformations, with a bias toward the inactive conformation. Experiments in the presence of drug ligands show that binding of the full agonist formoterol shifts the conformational distribution in favor of the active-like conformation, whereas binding of the inverse agonist ICI-118,551 favors the inactive conformation. Analysis of single-molecule dwell-time distributions for each state reveals that formoterol increases the frequency of activation transitions, while also reducing the frequency of deactivation events. In contrast, the inverse agonist increases the frequency of deactivation transitions. Our observations account for the high level of basal activity of this receptor and provide insights that help to rationalize, on the molecular level, the widely documented variability of the pharmacological efficacies among GPCR-targeting drugs. PMID:26578769

  9. RIM Promotes Calcium Channel Accumulation at Active Zones of the Drosophila Neuromuscular Junction

    PubMed Central

    Graf, Ethan R.; Valakh, Vera; Wright, Christina M.; Wu, Chunlai; Liu, Zhihua; Zhang, Yong Q.; DiAntonio, Aaron

    2012-01-01

    Summary Synaptic communication requires the controlled release of synaptic vesicles from presynaptic axon terminals. Release efficacy is regulated by the many proteins that comprise the presynaptic release apparatus, including Ca2+ channels and proteins that influence Ca2+ channel accumulation at release sites. Here we identify Drosophila RIM and demonstrate that it localizes to active zones at the larval neuromuscular junction. In Drosophila RIM mutants, there is a large decrease in evoked synaptic transmission, due to a significant reduction in both the clustering of Ca2+ channels and the size of the readily releasable pool of synaptic vesicles at active zones. Hence, RIM plays an evolutionarily conserved role in regulating synaptic calcium channel localization and readily releasable pool size. Since RIM has traditionally been studied as an effector of Rab3 function, we investigate whether RIM is involved in the newly identified function of Rab3 in the distribution of presynaptic release machinery components across release sites. Bruchpilot (Brp), an essential component of the active zone cytomatrix T bar, is unaffected by RIM disruption, indicating that Brp localization and distribution across active zones does not require wild type RIM. In addition, larvae containing mutations in both RIM and rab3 have reduced Ca2+ channel levels and a Brp distribution that is very similar to that of the rab3 single mutant, indicating that RIM functions to regulate Ca2+ channel accumulation but is not a Rab3 effector for release machinery distribution across release sites. PMID:23175814

  10. Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone

    PubMed Central

    Ullrich, Alexander; Böhme, Mathias A.; Schöneberg, Johannes; Depner, Harald; Sigrist, Stephan J.; Noé, Frank

    2015-01-01

    Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release. PMID:26367029

  11. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.

    PubMed

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-06-01

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca(2+) signals, which are confined in their spatiotemporal extent by endogenous Ca(2+) buffers. However, it remains elusive how rapid and reliable Ca(2+) signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca(2+) imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca(2+)-binding ratio (∼ 15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca(2+) from the active zone during repetitive firing. Measuring Ca(2+) signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca(2+) buffering enables fast active zone Ca(2+) signaling, suggesting that the strength of endogenous Ca(2+) buffering limits the rate of synchronous synaptic transmission. PMID:26015575

  12. 78 FR 16247 - Foreign-Trade Zone 38-Spartanburg County, South Carolina; Authorization of Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Federal Register inviting public comment (77 FR 70992-70993, 11-28-2012). The FTZ Board has determined... On November 8, 2012, the South Carolina State Ports Authority, grantee of FTZ 38, submitted a notification of proposed production activity to the Foreign-Trade Zones (FTZ) Board on behalf of...

  13. Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone.

    PubMed

    Ullrich, Alexander; Böhme, Mathias A; Schöneberg, Johannes; Depner, Harald; Sigrist, Stephan J; Noé, Frank

    2015-09-01

    Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release. PMID:26367029

  14. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    EPA Science Inventory

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  15. 77 FR 47429 - Agency Information Collection Activities; Petroleum Refineries in Foreign Trade Sub-zones

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... concerning the Petroleum Refineries in Foreign Trade Sub-zones. This request for comment is being made... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities; Petroleum Refineries... CBP is soliciting comments concerning the following information collection: Title:...

  16. 78 FR 49255 - Foreign-Trade Zone 158-Vicksburg/Jackson, Mississippi; Authorization of Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... (15 CFR part 400), including notice in the Federal Register inviting public comment (78 FR 20889, 4-8... Production Activity; Extension of Production Authority; Lane Furniture Industries, Inc. (Upholstered... Foreign-Trade Zones (FTZ) Board on behalf of Lane Furniture Industries, Inc., in Belden, Saltillo,...

  17. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling

    PubMed Central

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-01-01

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca2+ signals, which are confined in their spatiotemporal extent by endogenous Ca2+ buffers. However, it remains elusive how rapid and reliable Ca2+ signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca2+ imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca2+-binding ratio (∼15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca2+ from the active zone during repetitive firing. Measuring Ca2+ signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca2+ buffering enables fast active zone Ca2+ signaling, suggesting that the strength of endogenous Ca2+ buffering limits the rate of synchronous synaptic transmission. PMID:26015575

  18. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    SciTech Connect

    Thomas, Christine M.

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  19. Facile reversibility by design: tuning small molecule capture and activation by single component frustrated Lewis pairs.

    PubMed

    Mo, Zhenbo; Kolychev, Eugene L; Rit, Arnab; Campos, Jesús; Niu, Haoyu; Aldridge, Simon

    2015-09-30

    A series of single component FLPs has been investigated for small molecule capture, with the finding that through tuning of both the thermodynamics of binding/activation and the degree of preorganization (i.e., ΔS(⧧)) reversibility can be brought about at (or close to) room temperature. Thus, the dimethylxanthene system {(C6H4)2(O)CMe2}(PMes2)(B(C6F5)2): (i) heterolytically cleaves dihydrogen to give an equilibrium mixture of FLP and H2 activation product in solution at room temperature and (ii) reversibly captures nitrous oxide (uptake at room temperature, 1 atm; release at 323 K). PMID:26356306

  20. The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis.

    PubMed

    Astudillo, Luisana; Da Silva, Thiago G; Wang, Zhiqiang; Han, Xiaoqing; Jin, Ke; VanWye, Jeffrey; Zhu, Xiaoxia; Weaver, Kelly; Oashi, Taiji; Lopes, Pedro E M; Orton, Darren; Neitzel, Leif R; Lee, Ethan; Landgraf, Ralf; Robbins, David J; MacKerell, Alexander D; Capobianco, Anthony J

    2016-06-15

    In many cancers, aberrant Notch activity has been demonstrated to play a role in the initiation and maintenance of the neoplastic phenotype and in cancer stem cells, which may allude to its additional involvement in metastasis and resistance to therapy. Therefore, Notch is an exceedingly attractive therapeutic target in cancer, but the full range of potential targets within the pathway has been underexplored. To date, there are no small-molecule inhibitors that directly target the intracellular Notch pathway or the assembly of the transcriptional activation complex. Here, we describe an in vitro assay that quantitatively measures the assembly of the Notch transcriptional complex on DNA. Integrating this approach with computer-aided drug design, we explored potential ligand-binding sites and screened for compounds that could disrupt the assembly of the Notch transcriptional activation complex. We identified a small-molecule inhibitor, termed Inhibitor of Mastermind Recruitment-1 (IMR-1), that disrupted the recruitment of Mastermind-like 1 to the Notch transcriptional activation complex on chromatin, thereby attenuating Notch target gene transcription. Furthermore, IMR-1 inhibited the growth of Notch-dependent cell lines and significantly abrogated the growth of patient-derived tumor xenografts. Taken together, our findings suggest that a novel class of Notch inhibitors targeting the transcriptional activation complex may represent a new paradigm for Notch-based anticancer therapeutics, warranting further preclinical characterization. Cancer Res; 76(12); 3593-603. ©2016 AACR. PMID:27197169

  1. Ethosomes for the delivery of anti-HSV-1 molecules: preparation, characterization and in vitro activity.

    PubMed

    Cortesi, R; Ravani, L; Zaid, A N; Menegatti, E; Romagnoli, R; Drechsler, M; Esposito, E

    2010-10-01

    This paper describes the production, characterization and in vitro activity of ethosomes containing two molecules with antiviral activity, such as acyclovir (ACY) and N1-beta-D-ribofuranosyl-pyrazole [3,4d]pyridazin-7(6p-chlorine-phenyl)-one nucleoside (N1CP). Ethosomes were prepared and morphologically characterized by Cryo-TEM. The encapsulation efficiency was 92.3 +/- 2.5% for ACY and 94.2 +/- 2.8% for N1CP. The release of the drug from vesicles, determined by a Franz cell method, indicated that both drugs were released in a controlled manner. In order to possibly guarantee the stability during long-term storage ethosome suspensions was freeze-dried. It was found that the freeze-dried ethosomes' cakes were compact, glassy characterized by low density and quick re-hydration. However, the storage time slightly influences the percentage of drug encapsulation within ethosomes showing a drug leakage after re-hydration around 10%. The antiviral activity against HSV-1 of both drugs was tested by plaque reduction assay in monolayer cultures of Vero cells. Data showed that ethosomes allowed a reduction of the ED50 of N1CP evidencing an increase of its antiviral activity. However, ACY remains more active than N1CP. No differences are appreciable between drug-containing ethosomes before and after freeze-drying. Taken together these results, ethosomal formulation could be possibly proposed as mean for topical administration of anti-herpetic molecules. PMID:21105576

  2. Single-molecule kinetics under force: probing protein folding and enzymatic activity with optical tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley

    2010-03-01

    Weak non-covalent bonds between and within single molecules govern many aspects of biological structure and function (e.g. DNA base-paring, receptor-ligand binding, protein folding, etc.) In living systems, these interactions are often subject to mechanical forces, which can greatly alter their kinetics and activity. My group develops and applies novel single-molecule manipulation techniques to explore and quantify these force-dependent kinetics. Using optical tweezers, we have quantified the force-dependent unfolding and refolding kinetics of different proteins, including the cytoskeletal protein spectrin in collaboration with E. Evans's group [1], and the A2 domain of the von Willebrand factor blood clotting protein in collaboration with T. Springer's group [2]. Furthermore, we have studied the kinetics of the ADAMTS13 enzyme acting on a single A2 domain, and have shown that physiolgical forces in the circulation can act as a cofactor for enzymatic cleavage, regulating hemostatic activity [2]. References: 1. E. Evans, K. Halvorsen, K. Kinoshita, and W.P. Wong, Handbook of Single Molecule Biophysics, P. Hinterdorfer, ed., Springer (2009). 2. X. Zhang, K. Halvorsen, C.-Z. Zhang, W.P. Wong, and T.A. Springer, Science 324 (5932), 1330-1334 (2009).

  3. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis.

    PubMed

    Trippier, Paul C; Zhao, Kevin Tianmeng; Fox, Susan G; Schiefer, Isaac T; Benmohamed, Radhia; Moran, Jason; Kirsch, Donald R; Morimoto, Richard I; Silverman, Richard B

    2014-09-17

    Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal neurodegenerative disease. Pyrazolone containing small molecules have shown significant disease attenuating efficacy in cellular and murine models of ALS. Pyrazolone based affinity probes were synthesized to identify high affinity binding partners and ascertain a potential biological mode of action. Probes were confirmed to be neuroprotective in PC12-SOD1(G93A) cells. PC12-SOD1(G93A) cell lysates were used for protein pull-down, affinity purification, and subsequent proteomic analysis using LC-MS/MS. Proteomics identified the 26S proteasome regulatory subunit 4 (PSMC1), 26S proteasome regulatory subunit 6B (PSMC4), and T-complex protein 1 (TCP-1) as putative protein targets. Coincubation with appropriate competitors confirmed the authenticity of the proteomics results. Activation of the proteasome by pyrazolones was demonstrated in the absence of exogenous proteasome inhibitor and by restoration of cellular protein degradation of a fluorogenic proteasome substrate in PC12-SOD1(G93A) cells. Importantly, supplementary studies indicated that these molecules do not induce a heat shock response. We propose that pyrazolones represent a rare class of molecules that enhance proteasomal activation in the absence of a heat shock response and may have therapeutic potential in ALS. PMID:25001311

  4. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics

    PubMed Central

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J.; Lu, H. Peter

    2015-01-01

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  5. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics.

    PubMed

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J; Lu, H Peter

    2015-09-22

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  6. Single-Active-Electron Approximation for Describing Molecules in Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Saenz, Alejandro; Awasthi, Manohar; Vanne, Yulian; Castro, Alberto; Decleva, Piero

    2008-05-01

    A numerical approach that allows for the solution of the time-dependent Schr"odinger equation (TDSE) describing molecules exposed to intense short laser pulses was developed. The molecular response to the strong field is described within the single-active electron approximation (SAE). The method is applied to molecular hydrogen and the validity of the SAE is investigated by comparing the ionization and electronic excitation yields to full two-electron solutions of the TDSE. The present results are also used to investigate the validity of approximate SAE methods like the molecular Ammosov-Delone-Krainov and the strong-field approximation. Finally, results for larger molecules like O2, N2, and C2H2 (acetylene) are presented.

  7. Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells.

    PubMed

    Acevedo, Ramiro; Lombardini, Richard; Halas, Naomi J; Johnson, Bruce R

    2009-11-26

    Surface-enhanced Raman optical activity (SEROA) is investigated theoretically for molecules near a metal nanoshell. For this purpose, induced molecular electric dipole, magnetic dipole, and electric quadrupole moments must all be included. The incident field and the induced multipole fields all scatter from the nanoshell, and the scattered waves can be calculated via extended Mie theory. It is straightforward in this framework to calculate the incident frequency dependence of SEROA intensities, i.e., SEROA excitation profiles. The differential Raman scattering is examined in detail for a simple chiroptical model that provides analytical forms for the relevant dynamical molecular response tensors. This allows a detailed investigation into circumstances that simultaneously provide strong enhancement of differential intensities and remain selective for molecules with chirality. PMID:19639972

  8. A HIGH-THROUGHPUT FLUORESCENCE ACTIVATED NANOSCALE SUBCELLULAR SORTER WITH SINGLE-MOLECULE SENSITIVITY

    PubMed Central

    Schiro, Perry G.; Gadd, Jennifer C.; Yen, Gloria S.; Chiu, Daniel T.

    2012-01-01

    Recent single-cell and single-molecule studies have shown that a variety of subpopulations exist within biological systems, such as synaptic vesicles, that have previously been overlooked in common bulk studies. By isolating and enriching these various subpopulations, detailed analysis with a variety of analytical techniques can be done to further understand the role that various subpopulations play in cellular dynamics and how alterations to these subpopulations affect the overall function of the biological system. Previous sorters lack the sensitivity, sorting speed, and efficiency to isolate synaptic vesicles and other nanoscale systems. This paper describes the development of a fluorescence activated nanoscale subcellular sorter that can sort nearly 10 million objects per hour with single-molecule sensitivity. Utilizing a near-nanoscale channel system, we were able to achieve upwards of 91% recovery of desired objects with a 99.7% purity. PMID:22574902

  9. Microgravimetric Analysis Method for Activation-Energy Extraction from Trace-Amount Molecule Adsorption.

    PubMed

    Xu, Pengcheng; Yu, Haitao; Li, Xinxin

    2016-05-01

    Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials. PMID:27100734

  10. Antithrombotic and antiplatelet activities of small-molecule alkaloids from Scolopendra subspinipes mutilans

    PubMed Central

    Lee, Wonhwa; Lee, JungIn; Kulkarni, Roshan; Kim, Mi-Ae; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2016-01-01

    The aim of this study was to discover small-molecule anticoagulants from Scolopendra subspinipes mutilans (SSM). A new acylated polyamine (1) and a new sulfated quinoline alkaloid (2) were isolated from SSM. Treatment with the new alkaloids 1, 2, and indole acetic acid 4 prolonged the activated partial thromboplastin time and prothrombin time and inhibited the activity and production of thrombin and activated factor X. Furthermore, compounds 1, 2, and 4 inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation. In accordance with these potential in vitro antiplatelet activities, compounds 1, 2, and 4 showed enhanced antithrombotic effects in an in vivo pulmonary embolism and arterial thrombosis model. Compounds 1, 2, and 4 also elicited anticoagulant effects in mice. Collectively, this study may serve as the groundwork for commercializing SSM or compounds 1, 2, and 4 as functional food components for the prevention and treatment of pathogenic conditions and serve as new scaffolds for the development of anticoagulants. PMID:26905699

  11. Small-molecule probes elucidate global enzyme activity in a proteomic context

    PubMed Central

    Lee, Jun-Seok; Yoo, Young-Hwa; Yoon, Chang No

    2014-01-01

    The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied. [BMB Reports 2014; 47(3): 149-157] PMID:24499666

  12. Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation.

    PubMed

    Paul, Mila M; Pauli, Martin; Ehmann, Nadine; Hallermann, Stefan; Sauer, Markus; Kittel, Robert J; Heckmann, Manfred

    2015-01-01

    The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp(69) ). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp(69) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt(KD) ) in wildtype (wt), brp(69) and rab3 null mutants (rab3(rup) ), where Brp is concentrated at a small number of AZs. At wt and rab3(rup) synapses, syt(KD) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt(KD) did not alter EPSC amplitude at brp(69) synapses, but shortened delay and rise time. In fact, following syt(KD) , these kinetic properties were strikingly similar in wt and brp(69) , which supports the notion that Syt protracts release at brp(69) synapses. To gain insight into this surprising role of Syt at brp(69) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At 'tonic' type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt(KD) . Notably, syt(KD) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt(KD) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires

  13. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    SciTech Connect

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J.

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  14. Molecular mimicry of substrate oxygen atoms by water molecules in the beta-amylase active site.

    PubMed

    Pujadas, G; Palau, J

    2001-08-01

    Soybean beta-amylase (EC 3.2.1.2) has been crystallized both free and complexed with a variety of ligands. Four water molecules in the free-enzyme catalytic cleft form a multihydrogen-bond network with eight strategic residues involved in enzyme-ligand hydrogen bonds. We show here that the positions of these four water molecules are coincident with the positions of four potential oxygen atoms of the ligands within the complex. Some of these waters are displaced from the active site when the ligands bind to the enzyme. How many are displaced depends on the shape of the ligand. This means that when one of the four positions is not occupied by a ligand oxygen atom, the corresponding water remains. We studied the functional/structural role of these four waters and conclude that their presence means that the conformation of the eight side chains is fixed in all situations (free or complexed enzyme) and preserved from unwanted or forbidden conformational changes that could hamper the catalytic mechanism. The water structure at the active pocket of beta-amylase is therefore essential for providing the ligand recognition process with plasticity. It does not affect the protein active-site geometry and preserves the overall hydrogen-bonding network, irrespective of which ligand is bound to the enzyme. We also investigated whether other enzymes showed a similar role for water. Finally, we discuss the potential use of these results for predicting whether water molecules can mimic ligand atoms in the active center. PMID:11468361

  15. Antifungal activities of Ocimum sanctum essential oil and its lead molecules.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Manzoor, Nikhat; Khan, Luqman A

    2010-02-01

    Aqueous extracts and oils of five Indian medicinal plants, traditionally used for their antimicrobial activities, were evaluated against two of the most prevalent Candida species causing candidiasis, C. albicans and C. tropicalis. Of these plant materials, three showed varying degrees of antifungal activity against both species. Tulsi (Ocimum sanctum Linn.) essential oil (TEO) was found to be the most effective, followed by Peppermint essential oil, and Aloe vera aqueous leaf extract. The product with the lowest MIC was further studied along with its lead molecules to explore the possible mechanism of action of the most active constituents. Eugenol, methyl eugenol, linalool, and 1, 8-cineole, along with TEO were then evaluated at the same. The pattern and extent of inhibition was studied using growth and WST1 cytotoxicity assays. Proton pumps are important for growth and metabolism of Candida species and so H+ extrusion studies were performed to explore the possible mechanism of the test compounds. Linalool was the most active constituent of TEO, whereas inhibition of H+ extrusion appeared to be a synergistic function of the lead molecules. PMID:20334156

  16. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure

    PubMed Central

    Kho, Changwon; Lee, Ahyoung; Jeong, Dongtak; Oh, Jae Gyun; Gorski, Przemek A.; Fish, Kenneth; Sanchez, Roberto; DeVita, Robert J.; Christensen, Geir; Dahl, Russell; Hajjar, Roger J.

    2015-01-01

    Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), a critical pump regulating calcium cycling in cardiomyocyte, are hallmarks of heart failure. We have previously described a role for the small ubiquitin-like modifier type 1 (SUMO-1) as a regulator of SERCA2a and have shown that gene transfer of SUMO-1 in rodents and large animal models of heart failure restores cardiac function. Here, we identify and characterize a small molecule, N106, which increases SUMOylation of SERCA2a. This compound directly activates the SUMO-activating enzyme, E1 ligase, and triggers intrinsic SUMOylation of SERCA2a. We identify a pocket on SUMO E1 likely to be responsible for N106's effect. N106 treatment increases contractile properties of cultured rat cardiomyocytes and significantly improves ventricular function in mice with heart failure. This first-in-class small-molecule activator targeting SERCA2a SUMOylation may serve as a potential therapeutic strategy for treatment of heart failure. PMID:26068603

  17. Signaling Lymphocytic Activation Molecule Family Receptor Homologs in New World Monkey Cytomegaloviruses

    PubMed Central

    Pérez-Carmona, Natàlia; Farré, Domènec; Martínez-Vicente, Pablo; Terhorst, Cox; Engel, Pablo

    2015-01-01

    ABSTRACT Throughout evolution, large DNA viruses have been usurping genes from their hosts to equip themselves with proteins that restrain host immune defenses. Signaling lymphocytic activation molecule (SLAM) family (SLAMF) receptors are involved in the regulation of both innate and adaptive immunity, which occurs upon engagement with their ligands via homotypic or heterotypic interactions. Here we report a total of seven SLAMF genes encoded by the genomes of two cytomegalovirus (CMV) species, squirrel monkey CMV (SMCMV) and owl monkey CMV (OMCMV), that infect New World monkeys. Our results indicate that host genes were captured by retrotranscription at different stages of the CMV-host coevolution. The most recent acquisition led to S1 in SMCMV. S1 is a SLAMF6 homolog with an amino acid sequence identity of 97% to SLAMF6 in its ligand-binding N-terminal Ig domain. We demonstrate that S1 is a cell surface glycoprotein capable of binding to host SLAMF6. Furthermore, the OMCMV genome encodes A33, an LY9 (SLAMF3) homolog, and A43, a CD48 (SLAMF2) homolog, two soluble glycoproteins which recognize their respective cellular counterreceptors and thus are likely to be viral SLAMF decoy receptors. In addition, distinct copies of further divergent CD48 homologs were found to be encoded by both CMV genomes. Remarkably, all these molecules display a number of unique features, including cytoplasmic tails lacking characteristic SLAMF signaling motifs. Taken together, our findings indicate a novel immune evasion mechanism in which incorporation of host SLAMF receptors that retain their ligand-binding properties enables viruses to interfere with SLAMF functions and to supply themselves with convenient structural molds for expanding their immunomodulatory repertoires. IMPORTANCE The way in which viruses shape their genomes under the continual selective pressure exerted by the host immune system is central for their survival. Here, we report that New World monkey cytomegaloviruses

  18. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    It has been observed that hydrogen gas emissions from the subsurface along active faults exceed atmospheric concentrations (e.g. Sugisaki et. al., 1983). Experimental studies have shown that hydrogen gas is generated in a radical reaction of water with fractured silicate minerals due to rock fracturing caused by fault movement (e.g. Kita et al., 1982). Based on such research, we are studying an investigation method for an assessment of fault activity using hydrogen gas emissions from fracture zones. To start, we have devised portable equipment for rapid and simple in situ measurement of hydrogen gas emissions (Shimada et al., 2008). The key component of this equipment is a commercially available and compact hydrogen gas sensor with an integral data logger operable at atmospheric pressure. In the field, we have drilled shallow boreholes into incohesive fault rocks to depths ranging from 15 to 45 cm using a hand-operated drill with a 9mm drill-bit. Then, we have measured the hydrogen gas concentrations in emissions from active faults such as: the western part of the Atotsugawa fault zone, the Atera fault zone and the Neodani fault in central Japan; the Yamasaki fault zone in southwest Japan; and the Yamagata fault zone in northeast Japan. In addition, we have investigated the hydrogen gas concentrations in emissions from other major geological features such as tectonic lines: the Butsuzo Tectonic Line in the eastern Kii Peninsula and the Atokura Nappe in the Northeastern Kanto Mountains. As a result of the investigations, hydrogen gas concentration in emissions from the active faults was measured to be in the approximate range from 6,000 ppm to 26,000 ppm in two to three hours after drilling. A tendency for high concentrations of hydrogen gas in active faults was recognized, in contrast with low concentrations in emissions from tectonic lines that were observed to be in the range from 730 ppm to 2,000 ppm. It is inferred that the hydrogen gas migrates to ground

  19. Discovery of Diverse Small Molecule Chemotypes with Cell-Based PKD1 Inhibitory Activity

    PubMed Central

    Sharlow, Elizabeth R.; Mustata Wilson, Gabriela; Close, David; Leimgruber, Stephanie; Tandon, Manuj; Reed, Robyn B.; Shun, Tong Ying; Wang, Q. Jane; Wipf, Peter; Lazo, John S.

    2011-01-01

    Protein kinase D (PKD) is a novel family of serine/threonine kinases regulated by diacylglycerol, which is involved in multiple cellular processes and various pathological conditions. The limited number of cell-active, selective inhibitors has historically restricted biochemical and pharmacological studies of PKD. We now markedly expand the PKD1 inhibitory chemotype inventory with eleven additional novel small molecule PKD1 inhibitors derived from our high throughput screening campaigns. The in vitro IC50s for these eleven compounds ranged in potency from 0.4 to 6.1 µM with all of the evaluated compounds being competitive with ATP. Three of the inhibitors (CID 1893668, (1Z)-1-(3-ethyl-5-methoxy-1,3-benzothiazol-2-ylidene)propan-2-one; CID 2011756, 5-(3-chlorophenyl)-N-[4-(morpholin-4-ylmethyl)phenyl]furan-2-carboxamide; CID 5389142, (6Z)-6-[4-(3-aminopropylamino)-6-methyl-1H-pyrimidin-2-ylidene]cyclohexa-2,4-dien-1-one) inhibited phorbol ester-induced endogenous PKD1 activation in LNCaP prostate cancer cells in a concentration-dependent manner. The specificity of these compounds for PKD1 inhibitory activity was supported by kinase assay counter screens as well as by bioinformatics searches. Moreover, computational analyses of these novel cell-active PKD1 inhibitors indicated that they were structurally distinct from the previously described cell-active PKD1 inhibitors while computational docking of the new cell-active compounds in a highly conserved ATP-binding cleft suggests opportunities for structural modification. In summary, we have discovered novel PKD1 inhibitors with in vitro and cell-based inhibitory activity, thus successfully expanding the structural diversity of small molecule inhibitors available for this important pharmacological target. PMID:21998636

  20. 34 CFR 299.3 - What priority may the Secretary establish for activities in an Empowerment Zone or Enterprise...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activities in an Empowerment Zone or Enterprise Community? For any ESEA discretionary grant program, the Secretary may establish a priority, as authorized by 34 CFR 75.105(b), for projects that will— (a) Use a... activities in an Empowerment Zone or Enterprise Community? 299.3 Section 299.3 Education Regulations of...

  1. 34 CFR 299.3 - What priority may the Secretary establish for activities in an Empowerment Zone or Enterprise...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activities in an Empowerment Zone or Enterprise Community? For any ESEA discretionary grant program, the Secretary may establish a priority, as authorized by 34 CFR 75.105(b), for projects that will— (a) Use a... activities in an Empowerment Zone or Enterprise Community? 299.3 Section 299.3 Education Regulations of...

  2. 34 CFR 299.3 - What priority may the Secretary establish for activities in an Empowerment Zone or Enterprise...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activities in an Empowerment Zone or Enterprise Community? For any ESEA discretionary grant program, the Secretary may establish a priority, as authorized by 34 CFR 75.105(b), for projects that will— (a) Use a... activities in an Empowerment Zone or Enterprise Community? 299.3 Section 299.3 Education Regulations of...

  3. 34 CFR 299.3 - What priority may the Secretary establish for activities in an Empowerment Zone or Enterprise...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activities in an Empowerment Zone or Enterprise Community? For any ESEA discretionary grant program, the Secretary may establish a priority, as authorized by 34 CFR 75.105(b), for projects that will— (a) Use a... activities in an Empowerment Zone or Enterprise Community? 299.3 Section 299.3 Education Regulations of...

  4. 34 CFR 299.3 - What priority may the Secretary establish for activities in an Empowerment Zone or Enterprise...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activities in an Empowerment Zone or Enterprise Community? For any ESEA discretionary grant program, the Secretary may establish a priority, as authorized by 34 CFR 75.105(b), for projects that will— (a) Use a... activities in an Empowerment Zone or Enterprise Community? 299.3 Section 299.3 Education Regulations of...

  5. 77 FR 52680 - Foreign-Trade Zone 242-Boundary County, ID, Notification of Proposed Production Activity, AREVA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Foreign-Trade Zones Board Foreign-Trade Zone 242--Boundary County, ID, Notification of Proposed Production Activity, AREVA Enrichment Services, LLC, (Gas Centrifuge Production Equipment), Bonneville County, ID Boundary County, grantee of FTZ 242, submitted a notification of proposed production activity on behalf...

  6. 77 FR 39209 - Foreign-Trade Zone 74-Baltimore, MD, Notification of Proposed Production Activity, J.D. Neuhaus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Foreign-Trade Zones Board Foreign-Trade Zone 74--Baltimore, MD, Notification of Proposed Production Activity, J.D. Neuhaus LP (Overhead Lifting Equipment Production) Sparks, MD The Baltimore Development Corporation, grantee of FTZ 74, submitted a notification of proposed production activity on behalf of...

  7. 77 FR 28353 - Foreign-Trade Zone 45-Portland, OR, Notification of Proposed Production Activity, Shimadzu USA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... Foreign-Trade Zones Board Foreign-Trade Zone 45--Portland, OR, Notification of Proposed Production Activity, Shimadzu USA Manufacturing, Inc. (Chromatograph and Mass Spectrometer Production), Canby, OR The Port of Portland, grantee of FTZ 45, submitted a notification of proposed production activity on...

  8. Influence of the water molecules near surface of viral protein on virus activation process

    NASA Astrophysics Data System (ADS)

    Shepelenko, S. O.; Salnikov, A. S.; Rak, S. V.; Goncharova, E. P.; Ryzhikov, A. B.

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  9. Syntenin-1 and Ezrin Proteins Link Activated Leukocyte Cell Adhesion Molecule to the Actin Cytoskeleton*

    PubMed Central

    Tudor, Cicerone; te Riet, Joost; Eich, Christina; Harkes, Rolf; Smisdom, Nick; Bouhuijzen Wenger, Jessica; Ameloot, Marcel; Holt, Matthew; Kanger, Johannes S.; Figdor, Carl G.; Cambi, Alessandra; Subramaniam, Vinod

    2014-01-01

    Activated leukocyte cell adhesion molecule (ALCAM) is a type I transmembrane protein member of the immunoglobulin superfamily of cell adhesion molecules. Involved in important pathophysiological processes such as the immune response, cancer metastasis, and neuronal development, ALCAM undergoes both homotypic interactions with other ALCAM molecules and heterotypic interactions with the surface receptor CD6 expressed at the T cell surface. Despite biochemical and biophysical evidence of a dynamic association between ALCAM and the actin cytoskeleton, no detailed information is available about how this association occurs at the molecular level. Here, we exploit a combination of complementary microscopy techniques, including FRET detected by fluorescence lifetime imaging microscopy and single-cell force spectroscopy, and we demonstrate the existence of a preformed ligand-independent supramolecular complex where ALCAM stably interacts with actin by binding to syntenin-1 and ezrin. Interaction with the ligand CD6 further enhances these multiple interactions. Altogether, our results propose a novel biophysical framework to understand the stabilizing role of the ALCAM supramolecular complex engaged to CD6 during dendritic cell-T cell interactions and provide novel information on the molecular players involved in the formation and signaling of the immunological synapse at the dendritic cell side. PMID:24662291

  10. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation.

    PubMed

    Heckmann, M; Douwes, K; Peter, R; Degitz, K

    1998-01-10

    During cutaneous inflammatory reactions the recruitment of circulating leukocytes into the tissue critically depends on the regulated expression of endothelial cell adhesion molecules (CAMs). Various proinflammatory stimuli upregulate endothelial CAMs, including cytokines and UV irradiation. We have investigated the effects of ionizing radiation (IR) on endothelial CAM expression. Organ cultures of normal human skin as well as cultured human dermal microvascular endothelial cells (HDMEC) were exposed to IR. Expression of three major endothelial CAMs was studied in skin organ cultures by immunohistochemistry and in cell culture by Northern blot analysis and flow cytometry. In skin organ cultures vascular immunoreactivity for ICAM-1, E-selectin, and VCAM-1 was strongly induced 24 h after exposure to 5 or 10 Gy of IR, while immunoreactivity for CD31/PECAM-1, a constitutively expressed endothelial cell adhesion molecule, remained unchanged. In cultured HDMEC IR upregulated ICAM-1, VCAM-1, and E-selectin mRNAs and cell surface expression in a time- and dose-dependent fashion. Cellular morphology and viability remained unaltered by IR up to 24 h postirradiation. This study characterizes microvascular activation of adhesion molecule expression in response to ionizing radiation in a clinically relevant IR dose range. The findings also underscore the ability of endothelial cells to integrate environmental electromagnetic stimuli. PMID:9457067

  11. In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections

    PubMed Central

    Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera

    2014-01-01

    Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737

  12. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice.

    PubMed

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya; Nan, Fa-Jun; Li, Jia

    2013-12-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. PMID:24055643

  13. Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation

    PubMed Central

    Jung, Bomi; Messias, Ana C.; Schorpp, Kenji; Geerlof, Arie; Schneider, Günter; Saur, Dieter; Hadian, Kamyar; Sattler, Michael; Wanker, Erich E.; Hasenöder, Stefan; Lickert, Heiko

    2016-01-01

    Trafficking of the G protein-coupled receptor (GPCR) Smoothened (Smo) to the primary cilium (PC) is a potential target to inhibit oncogenic Hh pathway activation in a large number of tumors. One drawback is the appearance of Smo mutations that resist drug treatment, which is a common reason for cancer treatment failure. Here, we undertook a high content screen with compounds in preclinical or clinical development and identified ten small molecules that prevent constitutive active mutant SmoM2 transport into PC for subsequent Hh pathway activation. Eight of the ten small molecules act through direct interference with the G protein-coupled receptor associated sorting protein 2 (Gprasp2)-SmoM2 ciliary targeting complex, whereas one antagonist of ionotropic receptors prevents intracellular trafficking of Smo to the PC. Together, these findings identify several compounds with the potential to treat drug-resistant SmoM2-driven cancer forms, but also reveal off-target effects of established drugs in the clinics. PMID:26931153

  14. Novel Small Molecule Activators of the Trk Family of Receptor Tyrosine Kinases

    PubMed Central

    Obianyo, Obiamaka; Ye, Keqiang

    2012-01-01

    The Tropomyosin-related kinase (Trk) receptors are a subset of the receptor tyrosine kinase family with an important functionality in the regulation of neurotrophic signaling in the peripheral and central nervous system. As the receptors are able to mediate neuronal survival by associating with their respective neurotrophin ligands, many studies have focused on the therapeutic potential of generating small-molecule mimetic compounds that elicit agonistic effects similar to those of the natural protein ligands. To this end, various structure-based studies have led to the generation of bivalent peptide-based agonists and antibodies that selectively initiate Trk receptor signaling; however, these compounds do not possess the ideal characteristics of a potential drug. Additionally, the reliance of structure-based data to generate the compound libraries, limits the potential identification of novel chemical structures with desirable activity. Therefore, subsequent investigations utilized a cell-based apoptotic screen to facilitate the analysis of large, diverse chemical libraries of small molecules and quickly identify compounds with Trk-dependent antiapoptotic activity. Herein, we describe the Trk agonists that have been identified by this screening methodology and summarize their in vitro and in vivo neurotrophic activity as well as their efficacy in various neurological disease models, implicating their future utility as therapeutic compounds. PMID:22982231

  15. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization.

    PubMed

    Graves, Bradford; Thompson, Thelma; Xia, Mingxuan; Janson, Cheryl; Lukacs, Christine; Deo, Dayanand; Di Lello, Paola; Fry, David; Garvie, Colin; Huang, Kuo-Sen; Gao, Lin; Tovar, Christian; Lovey, Allen; Wanner, Jutta; Vassilev, Lyubomir T

    2012-07-17

    Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo- and/or heterodimerization of MDM2 and MDMX proteins. Structural studies revealed that the inhibitors bind into and occlude the p53 pockets of MDM2 and MDMX by inducing the formation of dimeric protein complexes kept together by a dimeric small-molecule core. This mode of action effectively stabilized p53 and activated p53 signaling in cancer cells, leading to cell cycle arrest and apoptosis. Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMX-overexpressing cancers. PMID:22745160

  16. Single Molecule Characterization of UV-Activated Antibodies on Gold by Atomic Force Microscopy.

    PubMed

    Funari, R; Della Ventura, B; Altucci, C; Offenhäusser, A; Mayer, D; Velotta, R

    2016-08-16

    The interaction between proteins and solid surfaces can influence their conformation and therefore also their activity and affinity. These interactions are highly specific for the respective combination of proteins and solids. Consequently, it is desirable to investigate the conformation of proteins on technical surfaces, ideally at single molecule level, and to correlate the results with their activity. This is in particular true for biosensors where the conformation-dependent target affinity of an immobilized receptor determines the sensitivity of the sensor. Here, we investigate for the first time the immobilization and orientation of antibodies (Abs) photoactivated by a photonic immobilization technique (PIT), which has previously demonstrated to enhance binding capabilities of antibody receptors. The photoactivated immunoglobulins are immobilized on ultrasmooth template stripped gold films and investigated by atomic force microscopy (AFM) at the level of individual molecules. The observed protein orientations are compared with results of nonactivated antibodies adsorbed on similar gold films and mica reference samples. We find that the behavior of Abs is similar for mica and gold when the protein are not treated (physisorption), whereas smaller contact area and larger heights are measured when Abs are treated (PIT). This is explained by assuming that the activated antibodies tend to be more upright compared with nonirradiated ones, thereby providing a better exposure of the binding sites. This finding matches the observed enhancement of Abs binding efficiency when PIT is used to functionalize gold surface of QCM-based biosensors. PMID:27444884

  17. Probe molecule studies: Active species in alcohol synthesis. Final report, July 1993--July 1994

    SciTech Connect

    Blackmond, D.G.; Wender, I.; Oukaci, R.; Wang, Jian

    1994-07-01

    The objectives of this project are to investigate the role(s) of cobalt and copper in constructing the active sites for the formation of higher alcohols from CO/H{sub 2} over the Co-Cu based catalysts by using different reduction treatments and applying selected characterization tools such as TPR, TPD, XRD and XPS as well as to generate mechanistic information on the reaction pathway(s) and key intermediate(s) of higher alcohol synthesis from CO/H{sub 2} over Co-Cu/ZnO catalysts by the approach of in-situ addition of a probe molecule (nitromethane).

  18. Mechanically activated switching of Si-based single-molecule junction as imaged with three-dimensional dynamic probe.

    PubMed

    Nakamura, Miki; Yoshida, Shoji; Katayama, Tomoki; Taninaka, Atsushi; Mera, Yutaka; Okada, Susumu; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-01-01

    Understanding and extracting the full functions of single-molecule characteristics are key factors in the development of future device technologies, as well as in basic research on molecular electronics. Here we report a new methodology for realizing a three-dimensional (3D) dynamic probe of single-molecule conductance, which enables the elaborate 3D analysis of the conformational effect on molecular electronics, by the formation of a Si/single molecule/Si structure using scanning tunnelling microscopy (STM). The formation of robust covalent bonds between a molecule and Si electrodes, together with STM-related techniques, enables the stable and repeated control of the conformational modulation of the molecule. By 3D imaging of the conformational effect on a 1,4-diethynylbenzene molecule, a binary change in conductance with hysteresis is observed for the first time, which is considered to originate from a mechanically activated conformational change. PMID:26439280

  19. Mechanically activated switching of Si-based single-molecule junction as imaged with three-dimensional dynamic probe

    NASA Astrophysics Data System (ADS)

    Nakamura, Miki; Yoshida, Shoji; Katayama, Tomoki; Taninaka, Atsushi; Mera, Yutaka; Okada, Susumu; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-10-01

    Understanding and extracting the full functions of single-molecule characteristics are key factors in the development of future device technologies, as well as in basic research on molecular electronics. Here we report a new methodology for realizing a three-dimensional (3D) dynamic probe of single-molecule conductance, which enables the elaborate 3D analysis of the conformational effect on molecular electronics, by the formation of a Si/single molecule/Si structure using scanning tunnelling microscopy (STM). The formation of robust covalent bonds between a molecule and Si electrodes, together with STM-related techniques, enables the stable and repeated control of the conformational modulation of the molecule. By 3D imaging of the conformational effect on a 1,4-diethynylbenzene molecule, a binary change in conductance with hysteresis is observed for the first time, which is considered to originate from a mechanically activated conformational change.

  20. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    PubMed Central

    Hoskins, Aaron A; Rodgers, Margaret L; Friedman, Larry J; Gelles, Jeff; Moore, Melissa J

    2016-01-01

    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI: http://dx.doi.org/10.7554/eLife.14166.001 PMID:27244240

  1. Accumulation of Exogenous Activated TGF-β in the Superficial Zone of Articular Cartilage

    PubMed Central

    Albro, Michael B.; Nims, Robert J.; Cigan, Alexander D.; Yeroushalmi, Kevin J.; Alliston, Tamara; Hung, Clark T.; Ateshian, Gerard A.

    2013-01-01

    It was recently demonstrated that mechanical shearing of synovial fluid (SF), induced during joint motion, rapidly activates latent transforming growth factor β (TGF-β). This discovery raised the possibility of a physiological process consisting of latent TGF-β supply to SF, activation via shearing, and transport of TGF-β into the cartilage matrix. Therefore, the two primary objectives of this investigation were to characterize the secretion rate of latent TGF-β into SF, and the transport of active TGF-β across the articular surface and into the cartilage layer. Experiments on tissue explants demonstrate that high levels of latent TGF-β1 are secreted from both the synovium and all three articular cartilage zones (superficial, middle, and deep), suggesting that these tissues are capable of continuously replenishing latent TGF-β to SF. Furthermore, upon exposure of cartilage to active TGF-β1, the peptide accumulates in the superficial zone (SZ) due to the presence of an overwhelming concentration of nonspecific TGF-β binding sites in the extracellular matrix. Although this response leads to high levels of active TGF-β in the SZ, the active peptide is unable to penetrate deeper into the middle and deep zones of cartilage. These results provide strong evidence for a sequential physiologic mechanism through which SZ chondrocytes gain access to active TGF-β: the synovium and articular cartilage secrete latent TGF-β into the SF and, upon activation, TGF-β transports back into the cartilage layer, binding exclusively to the SZ. PMID:23601326

  2. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche.

    PubMed

    Chang, Eun Hyuk; Adorjan, Istvan; Mundim, Mayara V; Sun, Bin; Dizon, Maria L V; Szele, Francis G

    2016-01-01

    Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI. PMID:27531972

  3. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche

    PubMed Central

    Chang, Eun Hyuk; Adorjan, Istvan; Mundim, Mayara V.; Sun, Bin; Dizon, Maria L. V.; Szele, Francis G.

    2016-01-01

    Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI. PMID:27531972

  4. Regulation of cellular signals from nutritional molecules: a specific role for phytochemicals, beyond antioxidant activity.

    PubMed

    Virgili, Fabio; Marino, Maria

    2008-11-01

    Phytochemicals (PhC) are a ubiquitous class of plant secondary metabolites. A "recommended" human diet should warrant a high proportion of energy from fruits and vegetables, therefore providing, among other factors, a huge intake of PhC, in general considered "health promoting" by virtue of their antioxidant activity and positive modulation, either directly or indirectly, of the cellular and tissue redox balance. Diet acts through multiple pathways and the association between the consumption of specific food items and the risk of degenerative diseases is extremely complex. Recent literature suggests that molecules having a chemical structure compatible with a putative antioxidant capacity can actually "perform" activities and roles independent of such capacity, interacting with cellular functions at different levels, such as affecting enzyme activities, binding to membrane or nuclear receptors as either an elective ligand or a ligand mimic. Inductive or signaling effects may occur at concentrations much lower than that required for effective antioxidant activity. Therefore, the "antioxidant hypothesis" is to be considered in some cases an intellectual "shortcut" possibly biasing the real understanding of the molecular mechanisms underlying the beneficial effects of various classes of food items. In the past few years, many exciting new indications elucidating the mechanisms of polyphenols have been published. Here, we summarize the current knowledge of the mechanisms by which specific molecules of nutritional interest, and in particular polyphenols, play a role in cellular response and in preventing pathologies. In particular, their direct interaction with nuclear receptors and their ability to modulate the activity of key enzymes involved in cell signaling and antioxidant responses are presented and discussed. PMID:18762244

  5. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease.

    PubMed

    Flores, Alyssa M; Casey, Scott D; Felix, Christian M; Phuan, Puay W; Verkman, A S; Levin, Marc H

    2016-05-01

    Dry eye disorders, including Sjögren's syndrome, constitute a common problem in the aging population, with limited effective therapeutic options available. The cAMP-activated Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR) is a major prosecretory channel at the ocular surface. We investigated whether compounds that target CFTR can correct the abnormal tear film in dry eye. Small-molecule activators of human wild-type CFTR identified by high-throughput screening were evaluated in cell culture and in vivo assays, to select compounds that stimulate Cl(-)-driven fluid secretion across the ocular surface in mice. An aminophenyl-1,3,5-triazine, CFTRact-K089, fully activated CFTR in cell cultures with EC50 ∼250 nM and produced an ∼8.5 mV hyperpolarization in ocular surface potential difference. When delivered topically, CFTRact-K089 doubled basal tear volume for 4 h and had no effect in CF mice. CFTRact-K089 showed sustained tear film bioavailability without detectable systemic absorption. In a mouse model of aqueous-deficient dry eye produced by lacrimal ablation, topical administration of 0.1 nmol CFTRact-K089 3 times daily restored tear volume to basal levels, preventing corneal epithelial disruption when initiated at the time of surgery and reversing it when started after development of dry eye. Our results support the potential utility of CFTR-targeted activators as a novel prosecretory treatment for dry eye.-Flores, A. M., Casey, S. D., Felix, C. M., Phuan, P. W., Verkman, A. S., Levin, M. H. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease. PMID:26842854

  6. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule.

    PubMed

    Fayad-Kobeissi, Sarah; Ratovonantenaina, Johary; Dabiré, Hubert; Wilson, Jayne Louise; Rodriguez, Anne Marie; Berdeaux, Alain; Dubois-Randé, Jean-Luc; Mann, Brian E; Motterlini, Roberto; Foresti, Roberta

    2016-02-15

    Carbon monoxide (CO) is generated by heme oxygenase-1 (HO-1) and displays important signaling, anti-apoptotic and anti-inflammatory activities, indicating that pharmacological agents mimicking its action may have therapeutic benefit. This study examined the biochemical and pharmacological properties of CORM-401, a recently described CO-releasing molecule containing manganese as a metal center. We used in vitro approaches, ex-vivo rat aortic rings and the EA.hy926 endothelial cell line in culture to address how CORM-401 releases CO and whether the compound modulates vascular tone and pro-angiogenic activities, respectively. We found that CORM-401 released up to three CO/mole of compound depending on the concentration of the acceptor myoglobin. Oxidants such as H2O2, tert-butyl hydroperoxide or hypochlorous acid increased the CO liberated by CORM-401. CORM-401 also relaxed pre-contracted aortic rings and vasorelaxation was enhanced in combination with H2O2. Consistent with the release of multiple CO molecules, CORM-401-induced vasodilation was three times higher than that elicited by CORM-A1, which exhibits a similar half-life to CORM-401 but liberates only one CO/mole of compound. Furthermore, endothelial cells exposed to CORM-401 accumulated CO intracellularly, accelerated migration in vitro and increased VEGF and IL-8 levels. Studies using pharmacological inhibitors revealed HO-1 and p38 MAP kinase as two independent and parallel mechanisms involved in stimulating migration. We conclude that the ability of CORM-401 to release multiple CO, its sensitivity to oxidants which increase CO release, and its vascular and pro-angiogenic properties highlight new advances in the design of CO-releasing molecules that can be tailored for the treatment of inflammatory and oxidative stress-mediated pathologies. PMID:26721585

  7. High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units.

    PubMed

    Numata, Masaki; Yasuda, Takuma; Adachi, Chihaya

    2015-06-11

    Highly efficient blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units were reported. Pure blue emission peaking at around 450 nm with a high external electroluminescence quantum efficiency of around 20% was demonstrated. PMID:25959457

  8. Conserved Active Site Residues Limit Inhibition of a Copper-Containing Nitrite By Small Molecules

    SciTech Connect

    Tocheva, E.I.; Eltis, L.D.; Murphy, M.E.P.

    2009-05-26

    The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.

  9. Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity

    PubMed Central

    Watanabe, Rikiya; Soga, Naoki; Fujita, Daishi; Tabata, Kazuhito V.; Yamauchi, Lisa; Hyeon Kim, Soo; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Suga, Hiroaki; Noji, Hiroyuki

    2014-01-01

    Nano- to micron-size reaction chamber arrays (femtolitre chamber arrays) have facilitated the development of sensitive and quantitative biological assays, such as single-molecule enzymatic assays, digital PCR and digital ELISA. However, the versatility of femtolitre chamber arrays is limited to reactions that occur in aqueous solutions. Here we report an arrayed lipid bilayer chamber system (ALBiC) that contains sub-million femtolitre chambers, each sealed with a stable 4-μm-diameter lipid bilayer membrane. When reconstituted with a limiting amount of the membrane transporter proteins α-hemolysin or F0F1-ATP synthase, the chambers within the ALBiC exhibit stochastic and quantized transporting activities. This demonstrates that the single-molecule analysis of passive and active membrane transport is achievable with the ALBiC system. This new platform broadens the versatility of femtolitre chamber arrays and paves the way for novel applications aimed at furthering our mechanistic understanding of membrane proteins’ function. PMID:25058452

  10. Single-molecule imaging at high fluorophore concentrations by local activation of dye.

    PubMed

    Geertsema, Hylkje J; Schulte, Aartje C; Spenkelink, Lisanne M; McGrath, William J; Morrone, Seamus R; Sohn, Jungsan; Mangel, Walter F; Robinson, Andrew; van Oijen, Antoine M

    2015-02-17

    Single-molecule fluorescence microscopy is a powerful tool for observing biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Making use of short-distance energy-transfer mechanisms, only the fluorescence from those proteins that bind to their substrate is activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease on DNA in the presence of a background of hundreds of nanomolar Cy5 fluorophore. PMID:25692599

  11. Design of a Small-Molecule Entry Inhibitor with Activity against Primary Measles Virus Strains

    PubMed Central

    Plemper, Richard K.; Doyle, Joshua; Sun, Aiming; Prussia, Andrew; Cheng, Li-Ting; Rota, Paul A.; Liotta, Dennis C.; Snyder, James P.; Compans, Richard W.

    2005-01-01

    The incidence of measles virus (MV) infection has been significantly reduced in many nations through extensive vaccination; however, the virus still causes significant morbidity and mortality in developing countries. Measles outbreaks also occur in some developed countries that have failed to maintain high vaccine coverage rates. While vaccination is essential in preventing the spread of measles, case management would greatly benefit from the use of therapeutic agents to lower morbidity. Thus, the development of new therapeutic strategies is desirable. We previously reported the generation of a panel of small-molecule MV entry inhibitors. Here we show that our initial lead compound, although providing proof of concept for our approach, has a short half-life (<16 h) under physiological conditions. In order to combine potent antiviral activity with increased compound stability, a targeted library of candidate molecules designed on the structural basis of the first lead has been synthesized and tested against MV. We have identified an improved lead with low toxicity and high stability (half-life ≫ 16 h) that prevents viral entry and hence infection. This compound shows high MV specificity and strong activity (50% inhibitory concentration = 0.6 to 3.0 μM, depending on the MV genotype) against a panel of wild-type MV strains representative of viruses that are currently endemic in the field. PMID:16127050

  12. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    SciTech Connect

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-10-14

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW₁₂O₄₀³⁻, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  13. Single-molecule imaging at high fluorophore concentrations by local activation of dye

    SciTech Connect

    Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.; Spenkelink, Lisanne M.; McGrath, William J.; Morrone, Seamus R.; Sohn, Jungsan; Robinson, Andrew; van Oijen, Antoine M.

    2015-02-17

    Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use of short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.

  14. Single-Molecule Imaging at High Fluorophore Concentrations by Local Activation of Dye

    PubMed Central

    Geertsema, Hylkje J.; Schulte, Aartje C.; Spenkelink, Lisanne M.; McGrath, William J.; Morrone, Seamus R.; Sohn, Jungsan; Mangel, Walter F.; Robinson, Andrew; van Oijen, Antoine M.

    2015-01-01

    Single-molecule fluorescence microscopy is a powerful tool for observing biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Making use of short-distance energy-transfer mechanisms, only the fluorescence from those proteins that bind to their substrate is activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease on DNA in the presence of a background of hundreds of nanomolar Cy5 fluorophore. PMID:25692599

  15. Single-molecule imaging at high fluorophore concentrations by local activation of dye

    DOE PAGESBeta

    Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.; Spenkelink, Lisanne M.; McGrath, William J.; Morrone, Seamus R.; Sohn, Jungsan; Robinson, Andrew; van Oijen, Antoine M.

    2015-02-17

    Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use ofmore » short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.« less

  16. Discovery of Novel Small Molecule Activators of β-Catenin Signaling

    PubMed Central

    Verkaar, Folkert; van der Stelt, Mario; Blankesteijn, W. Matthijs; van der Doelen, Antoon A.; Zaman, Guido J. R.

    2011-01-01

    Wnt/β-catenin signaling plays a major role in embryonic development and adult stem cell maintenance. Reduced activation of the Wnt/β-catenin pathway underlies neurodegenerative disorders and aberrations in bone formation. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed bona fide activators of β-catenin signaling. The compounds stabilized cytoplasmic β-catenin and activated β–catenin-dependent reporter gene activity. Although the mechanism through which the compounds activate β-catenin signaling has yet to be determined, several key regulators of Wnt/β-catenin signaling, including glycogen synthase kinase 3 and Frizzled receptors, were excluded as the molecular target. The compounds displayed remarkable selectivity, as they only induced β-catenin signaling in a human osteosarcoma U2OS cell line and not in a variety of other cell lines examined. Our data indicate that differences in cellular Wnt/β-catenin signaling machinery can be exploited to identify cell type-specific activators of Wnt/β-catenin signaling. PMID:21559429

  17. Small-Molecule Inhibition and Activation-Loop Trans-Phosphorylation of the IGF1 Receptor

    SciTech Connect

    Wu,J.; Li, W.; Craddock, B.; Foreman, K.; Mulvihill, M.; Ji, Q.; Miller, W.; Hubbard, S.

    2008-01-01

    The insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase (RTK) that has a critical role in mitogenic signalling during embryogenesis and an antiapoptotic role in the survival and progression of many human tumours. Here, we present the crystal structure of the tyrosine kinase domain of IGF1R (IGF1RK), in its unphosphorylated state, in complex with a novel compound, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1, 5-a]pyrazin-8-ylamine (PQIP), which we show is a potent inhibitor of both the unphosphorylated (basal) and phosphorylated (activated) states of the kinase. PQIP interacts with residues in the ATP-binding pocket and in the activation loop, which confers specificity for IGF1RK and the highly related insulin receptor (IR) kinase. In this crystal structure, the IGF1RK active site is occupied by Tyr1135 from the activation loop of an symmetry (two-fold)-related molecule. This dimeric arrangement affords, for the first time, a visualization of the initial trans-phosphorylation event in the activation loop of an RTK, and provides a molecular rationale for a naturally occurring mutation in the activation loop of the IR that causes type II diabetes mellitus.

  18. Single DNA molecule stretching measures the activity of chemicals that target the HIV-1 nucleocapsid protein

    PubMed Central

    Cruceanu, Margareta; Stephen, Andrew G.; Beuning, Penny J.; Gorelick, Robert J.; Fisher, Robert J.; Williams, Mark C.

    2006-01-01

    We develop a biophysical method for investigating chemical compounds that target the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NCp7). We used an optical tweezers instrument to stretch single λ-DNA molecules through the helix-to-coil transition in the presence of NCp7 and various chemical compounds. The change in the helix-coil transition width induced by wild-type NCp7 and its zinc finger variants correlates with in vitro nucleic acid chaperone activity measurements and in vivo assays. The compound-NC interaction measured here reduces NCp7’s capability to alter the transition width. Purified compounds from the NCI Diversity set, 119889, 119911, and 119913 reduce the chaperone activity of 5 nM NC in aqueous solution at 10 nM, 25 nM, and 100 nM concentration, respectively. Similarly, gallein reduced the activity of 4 nM NC at 100 nM concentration. Further analysis allows us to dissect the impact of each compound on both sequence-specific and non-sequence-specific DNA binding of NC, two of the main components of NC’s nucleic acid chaperone activity. These results suggest that DNA stretching experiments can be used to screen chemical compounds targeting NC proteins, and to further explore the mechanisms by which these compounds interact with NC and alter its nucleic acid chaperone activity. PMID:17034752

  19. Small molecule activators of pre-mRNA 3′ cleavage

    PubMed Central

    Ryan, Kevin; Khleborodova, Asya; Pan, Jingyi; Ryan, Xiaozhou P.

    2009-01-01

    3′ Cleavage and polyadenylation are obligatory steps in the biogenesis of most mammalian pre-mRNAs. In vitro reconstitution of the 3′ cleavage reaction from human cleavage factors requires high concentrations of creatine phosphate (CP), though how CP activates cleavage is not known. Previously, we proposed that CP might work by competitively inhibiting a cleavage-suppressing serine/threonine (S/T) phosphatase. Here we show that fluoride/EDTA, a general S/T phosphatase inhibitor, activates in vitro cleavage in place of CP. Subsequent testing of inhibitors specific for different S/T phosphatases showed that inhibitors of the PPM family of S/T phosphatases, which includes PP2C, but not the PPP family, which includes PP1, PP2A, and PP2B, activated 3′ cleavage in vitro. In particular, NCI 83633, an inhibitor of PP2C, activated extensive 3′ cleavage at a concentration 50-fold below that required by fluoride or CP. The testing of structural analogs led to the identification of a more potent compound that activated 3′ cleavage at 200 μM. While testing CP analogs to understand the origin of its cleavage activation effect, we found phosphocholine to be a more effective activator than CP. The minimal structural determinants of 3′ cleavage activation by phosphocholine were identified. Our results describe a much improved small molecule activator of in vitro pre-mRNA cleavage, identify the molecular determinants of cleavage activation by phosphoamines such as phosphocholine, and suggest that a PPM family phosphatase is involved in the negative regulation of mammalian pre-mRNA 3′ cleavage. PMID:19155323

  20. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice

    SciTech Connect

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya Nan, Fa-Jun Li, Jia

    2013-12-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. - Highlights: • C24 activates AMPK through antagonizing autoinhibition within α subunit. • C24 activates AMPK in hepatocytes and decreases glucose output via AMPK. • C24 exerts beneficial effects on diabetic db/db mice. • C24 represents a novel therapeutic for treatment of metabolic syndrome.

  1. Accelerating the Discovery of Biologically Active Small Molecules Using a High-Throughput Yeast Halo Assay#

    PubMed Central

    Gassner, Nadine C.; Tamble, Craig M.; Bock, Jonathan E.; Cotton, Naomi; White, Kimberly N.; Tenney, Karen; St. Onge, Robert P.; Proctor, Michael J.; Giaever, Guri; Davis, Ronald W.; Crews, Phillip; Holman, Theodore R.; Lokey, R. Scott

    2008-01-01

    The budding yeast Saccharomyces cerevisiae, a powerful model system for the study of basic eukaryotic cell biology, has been used increasingly as a screening tool for the identification of bioactive small molecules. We have developed a novel yeast toxicity screen that is easily automated and compatible with high-throughput screening robotics. The new screen is quantitative and allows inhibitory potencies to be determined, since the diffusion of the sample provides a concentration gradient and a corresponding toxicity halo. The efficacy of this new screen was illustrated by testing materials including 3,104 compounds from the NCI libraries, 167 marine sponge crude extracts, and 149 crude marine-derived fungal extracts. There were 46 active compounds among the NCI set. One very active extract was selected for bioactivity-guided fractionation resulting in the identification of crambescidin 800 as a potent antifungal agent. PMID:17291044

  2. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    SciTech Connect

    Lupardus, P.J.; Shen, A.; Bogyo, M.; Garcia, K.C.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  3. Preparation and performance of chitosan encapsulated activated charcoal (ACCB) adsorbents for small molecules.

    PubMed

    Chandy, T; Sharma, C P

    1993-01-01

    A technique is described to encapsulate activated charcoal for haemoperfusion to be used in an artificial liver support. Activated charcoal was encapsulated within chitosan matrix (ACCB) in different concentrations, and was used as the supports for perfusion of a mixture of solutes, having molecular weight ranges from 60 to 69,000; under a flow rate of 8 ml/min. It seems the ACCB may be a good adsorbent system for the removal of toxic uric acid, creatinine, bilirubin, etc., from solutions; while larger molecules such as albumin are adsorbed less. The encapsulated charcoal did not leach out from the matrix during perfusion, and the system may be useful for detoxification of blood. The haemolytic potential of ACCB has been compatible with polystyrene control tubes. However, further studies are needed to determine their behaviour under clinical conditions. PMID:8263676

  4. Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression

    PubMed Central

    Sanz, María-Jesús; Nabah, Yafa Naim Abu; Cerdá-Nicolás, Miguel; O'Connor, José-Enrique; Issekutz, Andrew C; Cortijo, Julio; Morcillo, Esteban J

    2004-01-01

    Macrolides have long been used as anti-bacterial agents; however, there is some evidence that may exert anti-inflammatory activity. Therefore, erythromycin was used to characterize the mechanisms involved in their in vivo anti-inflammatory activity. Erythromycin pretreatment (30 mg kg−1 day−1 for 1 week) reduced the lipopolysaccharide (LPS; intratracheal, 0.4 mg kg−1)-induced increase in neutrophil count and elastase activity in the bronchoalveolar lavage fluid (BALF) and lung tissue myeloperoxidase activity, but failed to decrease tumor necrosis factor-α and macrophage-inflammatory protein-2 augmented levels in BALF. Erythromycin pretreatment also prevented lung P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) mRNA upregulation in response to airway challenge with LPS. Mesentery superfusion with LPS (1 μg ml−1) induced a significant increase in leukocyte–endothelial cell interactions at 60 min. Erythromycin pretreatment abolished the increases in these parameters. LPS exposure of the mesentery for 4 h caused a significant increase in leukocyte rolling flux, adhesion and emigration, which were inhibited by erythromycin by 100, 93 and 95%, respectively. Immunohistochemical analysis showed that LPS exposure of the mesentery for 4 h caused a significant enhancement in P-selectin, E-selectin, ICAM-1 and VCAM-1 expression that was downregulated by erythromycin pretreatment. Flow cytometry analysis indicated that erythromycin pretreatment inhibited LPS-induced CD11b augmented expression in rat neutrophils. In conclusion, erythromycin inhibits leukocyte recruitment in the lung and this effect appears mediated through downregulation of CAM expression. Therefore, macrolides may be useful in the control of neutrophilic pulmonary diseases. PMID:15665859

  5. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level.

    PubMed

    Zhou, Xiaochun; Xu, Weilin; Liu, Guokun; Panda, Debashis; Chen, Peng

    2010-01-13

    Nanoparticles are important catalysts for petroleum processing, energy conversion, and pollutant removal. As compared to their bulk counterparts, their often superior or new catalytic properties result from their nanometer size, which gives them increased surface-to-volume ratios and chemical potentials. The size of nanoparticles is thus pivotal for their catalytic properties. Here, we use single-molecule fluorescence microscopy to study the size-dependent catalytic activity and dynamics of spherical Au-nanoparticles under ambient solution conditions. By monitoring the catalysis of individual Au-nanoparticles of three different sizes in real time with single-turnover resolution, we observe clear size-dependent activities in both the catalytic product formation reaction and the product dissociation reaction. Within a model of classical thermodynamics, these size-dependent activities of Au-nanoparticles can be accounted for by the changes in the adsorption free energies of the substrate resazurin and the product resorufin because of the nanosize effect. We also observe size-dependent differential selectivity of the Au-nanoparticles between two parallel product dissociation pathways, with larger nanoparticles less selective between the two pathways. The particle size also strongly influences the surface-restructuring-coupled catalytic dynamics; both the catalysis-induced and the spontaneous dynamic surface restructuring occur more readily for smaller Au-nanoparticles due to their higher surface energies. Using a simple thermodynamic model, we analyze the catalysis- and size-dependent dynamic surface restructuring quantitatively; the results provide estimates on the activation energies and time scales of spontaneous dynamic surface restructuring that are fundamental to heterogeneous catalysis in both the nano- and the macro-scale. This study further exemplifies the power of the single-molecule approach in probing the intricate workings of nanoscale catalysts. PMID

  6. Effects of the small molecule HERG activator NS1643 on Kv11.3 channels.

    PubMed

    Bilet, Arne; Bauer, Christiane K

    2012-01-01

    NS1643 is one of the small molecule HERG (Kv11.1) channel activators and has also been found to increase erg2 (Kv11.2) currents. We now investigated whether NS1643 is also able to act as an activator of Kv11.3 (erg3) channels expressed in CHO cells. Activation of rat Kv11.3 current occurred in a dose-dependent manner and maximal current increasing effects were obtained with 10 µM NS1643. At this concentration, steady-state outward current increased by about 80% and the current increase was associated with a significant shift in the voltage dependence of activation to more negative potentials by about 15 mV. In addition, activation kinetics were accelerated, whereas deactivation was slowed. There was no significant effect on the kinetics of inactivation and recovery from inactivation. The strong current-activating agonistic effect of NS1643 did not result from a shift in the voltage dependence of Kv11.3 channel inactivation and was independent from external Na(+) or Ca(2+). At the higher concentration of 20 µM, NS1643 induced clearly less current increase. The left shift in the voltage dependence of activation reversed and the voltage sensitivity of activation dramatically decreased along with a slowing of Kv11.3 channel activation. These data show that, in comparison to other Kv11 family members, NS1643 exerts distinct effects on Kv11.3 channels with especially pronounced partial antagonistic effects at higher concentration. PMID:23226420

  7. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Busato, Laura; Boaga, Jacopo; Cassiani, Giorgio; Binley, Andrew; Putti, Mario; Consoli, Simona

    2016-04-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  8. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Busato, L.; Vanella, D.; Consoli, S.; Binley, A. M.

    2015-12-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  9. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  10. Regulation of invertase activity in different root zones of wheat (Triticum aestivum L.) seedlings in the course of osmotic adjustment under water deficit conditions.

    PubMed

    Königshofer, Helga; Löppert, Hans-Georg

    2015-07-01

    Osmotic adjustment of roots is an essential adaptive mechanism to sustain water uptake and root growth under water deficit. In this paper, the role of invertases (β-fructofuranosidase, EC 3.2.1.26) in osmotic adjustment was investigated in the root tips (cell division and elongation zone) and the root maturation zone of wheat (Triticum aestivum L. cv. Josef) in the course of osmotic stress imposed by 20% polyethylene glycol (PEG) 6000. The two root zones investigated differed distinctly in the response of invertases to water deprivation. In the root tips, the activity of the vacuolar and cell wall-bound invertases increased markedly under water stress resulting in the accumulation of hexoses (glucose and fructose) that contributed significantly to osmotic adjustment. A transient rise in hydrogen peroxide (H2O2) preceded the enhancement of invertases upon exposure to osmotic stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished the stress induced H2O2 production and suppressed the stimulation of the vacuolar invertase activity, whereas the activity of the cell wall-bound invertase was not influenced by DPI. As a consequence of the inhibitory effect of DPI on the vacuolar invertase, hexose levels and osmotic adjustment were also markedly decreased in the root tips under water deficit in the presence of DPI. These data suggest that H2O2 probably generated by a NADPH oxidase is required as a signalling molecule for the up-regulation of the vacuolar invertase activity in the root tips under osmotic stress, thereby enhancing the capacity for osmotic adjustment. In the root maturation zone, an early H2O2 signal could not be detected in response to PEG application. Only an increase in the glucose level that was not paralleled by fructose and a slight stimulation of the activity of the vacuolar invertase occurred in the maturation zone after water deprivation. The stress induced accumulation of glucose in the maturation zone was not